79 research outputs found

    Collecting system percutaneous access using real-time tracking sensors : first pig model in vivo experience

    Get PDF
    PURPOSE: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. MATERIALS AND METHODS: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. RESULTS: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p=0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p=0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. CONCLUSIONS: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.Supported by the Foundation for Science and Technology-Portugal Fellowships SFRH/BD/ 74276/2010 and SFRH/BPD/46851/2008, and Foundation for Science and Technology-Portugal Research and Development Projects PTDC/SAUBEB/ 103368/2008 and PTDC/SAU-OSM/105578/2008 FCOMP-01-0124-FEDER-011363

    Innovations in Minimally Invasive Techniques for Urinary Stone Management

    Get PDF
    The therapy of urinary stones has undergone a revolution because to minimally invasive procedures, which offer less recovery time and lower morbidity than open surgery. This extensive study delves into the latest developments in laser lithotripsy, ureteroscopy, shockwave lithotripsy (SWL), percutaneous nephrolithotomy (PCNL), and new technologies. The investigation looks closely at these novel techniques' effectiveness, drawbacks, and changing patterns. Improvements in patient screening criteria and shockwave delivery devices, among other technological advancements in SWL, have maximised therapy results. Advances in URS, such as flexible ureteroscopes and sophisticated imaging modalities, have increased accuracy and broadened the range of stones that may be treated. PCNL's advancements in imaging and equipment miniaturisation have increased access and stone fragmentation efficiency. With its accuracy and variety of fibre shapes, laser lithotripsy is becoming a more attractive option. Looking ahead, the main concerns are going to be technology integration, tailored medication, and all-encompassing patient-centered care. For adoption to be widely adopted, issues with cost, accessibility, and complexities must still be resolved

    Navigation system based in motion tracking sensor for percutaneous renal access

    Get PDF
    Tese de Doutoramento em Engenharia BiomédicaMinimally-invasive kidney interventions are daily performed to diagnose and treat several renal diseases. Percutaneous renal access (PRA) is an essential but challenging stage for most of these procedures, since its outcome is directly linked to the physician’s ability to precisely visualize and reach the anatomical target. Nowadays, PRA is always guided with medical imaging assistance, most frequently using X-ray based imaging (e.g. fluoroscopy). Thus, radiation on the surgical theater represents a major risk to the medical team, where its exclusion from PRA has a direct impact diminishing the dose exposure on both patients and physicians. To solve the referred problems this thesis aims to develop a new hardware/software framework to intuitively and safely guide the surgeon during PRA planning and puncturing. In terms of surgical planning, a set of methodologies were developed to increase the certainty of reaching a specific target inside the kidney. The most relevant abdominal structures for PRA were automatically clustered into different 3D volumes. For that, primitive volumes were merged as a local optimization problem using the minimum description length principle and image statistical properties. A multi-volume Ray Cast method was then used to highlight each segmented volume. Results show that it is possible to detect all abdominal structures surrounding the kidney, with the ability to correctly estimate a virtual trajectory. Concerning the percutaneous puncturing stage, either an electromagnetic or optical solution were developed and tested in multiple in vitro, in vivo and ex vivo trials. The optical tracking solution aids in establishing the desired puncture site and choosing the best virtual puncture trajectory. However, this system required a line of sight to different optical markers placed at the needle base, limiting the accuracy when tracking inside the human body. Results show that the needle tip can deflect from its initial straight line trajectory with an error higher than 3 mm. Moreover, a complex registration procedure and initial setup is needed. On the other hand, a real-time electromagnetic tracking was developed. Hereto, a catheter was inserted trans-urethrally towards the renal target. This catheter has a position and orientation electromagnetic sensor on its tip that function as a real-time target locator. Then, a needle integrating a similar sensor is used. From the data provided by both sensors, one computes a virtual puncture trajectory, which is displayed in a 3D visualization software. In vivo tests showed a median renal and ureteral puncture times of 19 and 51 seconds, respectively (range 14 to 45 and 45 to 67 seconds). Such results represent a puncture time improvement between 75% and 85% when comparing to state of the art methods. 3D sound and vibrotactile feedback were also developed to provide additional information about the needle orientation. By using these kind of feedback, it was verified that the surgeon tends to follow a virtual puncture trajectory with a reduced amount of deviations from the ideal trajectory, being able to anticipate any movement even without looking to a monitor. Best results show that 3D sound sources were correctly identified 79.2 ± 8.1% of times with an average angulation error of 10.4º degrees. Vibration sources were accurately identified 91.1 ± 3.6% of times with an average angulation error of 8.0º degrees. Additionally to the EMT framework, three circular ultrasound transducers were built with a needle working channel. One explored different manufacture fabrication setups in terms of the piezoelectric materials, transducer construction, single vs. multi array configurations, backing and matching material design. The A-scan signals retrieved from each transducer were filtered and processed to automatically detect reflected echoes and to alert the surgeon when undesirable anatomical structures are in between the puncture path. The transducers were mapped in a water tank and tested in a study involving 45 phantoms. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Hereupon, it is expected that the introduction of the proposed system on the PRA procedure, will allow to guide the surgeon through the optimal path towards the precise kidney target, increasing surgeon’s confidence and reducing complications (e.g. organ perforation) during PRA. Moreover, the developed framework has the potential to make the PRA free of radiation for both patient and surgeon and to broad the use of PRA to less specialized surgeons.Intervenções renais minimamente invasivas são realizadas diariamente para o tratamento e diagnóstico de várias doenças renais. O acesso renal percutâneo (ARP) é uma etapa essencial e desafiante na maior parte destes procedimentos. O seu resultado encontra-se diretamente relacionado com a capacidade do cirurgião visualizar e atingir com precisão o alvo anatómico. Hoje em dia, o ARP é sempre guiado com recurso a sistemas imagiológicos, na maior parte das vezes baseados em raios-X (p.e. a fluoroscopia). A radiação destes sistemas nas salas cirúrgicas representa um grande risco para a equipa médica, aonde a sua remoção levará a um impacto direto na diminuição da dose exposta aos pacientes e cirurgiões. De modo a resolver os problemas existentes, esta tese tem como objetivo o desenvolvimento de uma framework de hardware/software que permita, de forma intuitiva e segura, guiar o cirurgião durante o planeamento e punção do ARP. Em termos de planeamento, foi desenvolvido um conjunto de metodologias de modo a aumentar a eficácia com que o alvo anatómico é alcançado. As estruturas abdominais mais relevantes para o procedimento de ARP, foram automaticamente agrupadas em volumes 3D, através de um problema de optimização global com base no princípio de “minimum description length” e propriedades estatísticas da imagem. Por fim, um procedimento de Ray Cast, com múltiplas funções de transferência, foi utilizado para enfatizar as estruturas segmentadas. Os resultados mostram que é possível detetar todas as estruturas abdominais envolventes ao rim, com a capacidade para estimar corretamente uma trajetória virtual. No que diz respeito à fase de punção percutânea, foram testadas duas soluções de deteção de movimento (ótica e eletromagnética) em múltiplos ensaios in vitro, in vivo e ex vivo. A solução baseada em sensores óticos ajudou no cálculo do melhor ponto de punção e na definição da melhor trajetória a seguir. Contudo, este sistema necessita de uma linha de visão com diferentes marcadores óticos acoplados à base da agulha, limitando a precisão com que a agulha é detetada no interior do corpo humano. Os resultados indicam que a agulha pode sofrer deflexões à medida que vai sendo inserida, com erros superiores a 3 mm. Por outro lado, foi desenvolvida e testada uma solução com base em sensores eletromagnéticos. Para tal, um cateter que integra um sensor de posição e orientação na sua ponta, foi colocado por via trans-uretral junto do alvo renal. De seguida, uma agulha, integrando um sensor semelhante, é utilizada para a punção percutânea. A partir da diferença espacial de ambos os sensores, é possível gerar uma trajetória de punção virtual. A mediana do tempo necessário para puncionar o rim e ureter, segundo esta trajetória, foi de 19 e 51 segundos, respetivamente (variações de 14 a 45 e 45 a 67 segundos). Estes resultados representam uma melhoria do tempo de punção entre 75% e 85%, quando comparados com o estado da arte dos métodos atuais. Além do feedback visual, som 3D e feedback vibratório foram explorados de modo a fornecer informações complementares da posição da agulha. Verificou-se que com este tipo de feedback, o cirurgião tende a seguir uma trajetória de punção com desvios mínimos, sendo igualmente capaz de antecipar qualquer movimento, mesmo sem olhar para o monitor. Fontes de som e vibração podem ser corretamente detetadas em 79,2 ± 8,1% e 91,1 ± 3,6%, com erros médios de angulação de 10.4º e 8.0 graus, respetivamente. Adicionalmente ao sistema de navegação, foram também produzidos três transdutores de ultrassom circulares com um canal de trabalho para a agulha. Para tal, foram exploradas diferentes configurações de fabricação em termos de materiais piezoelétricos, transdutores multi-array ou singulares e espessura/material de layers de suporte. Os sinais originados em cada transdutor foram filtrados e processados de modo a detetar de forma automática os ecos refletidos, e assim, alertar o cirurgião quando existem variações anatómicas ao longo do caminho de punção. Os transdutores foram mapeados num tanque de água e testados em 45 phantoms. Os resultados mostraram que o feixe de área em corte transversal oscila em torno do raio de cerâmica, e que os ecos refletidos são detetados em phantoms com comprimentos superiores a 80 mm. Desta forma, é expectável que a introdução deste novo sistema a nível do ARP permitirá conduzir o cirurgião ao longo do caminho de punção ideal, aumentado a confiança do cirurgião e reduzindo possíveis complicações (p.e. a perfuração dos órgãos). Além disso, de realçar que este sistema apresenta o potencial de tornar o ARP livre de radiação e alarga-lo a cirurgiões menos especializados.The present work was only possible thanks to the support by the Portuguese Science and Technology Foundation through the PhD grant with reference SFRH/BD/74276/2010 funded by FCT/MEC (PIDDAC) and by Fundo Europeu de Desenvolvimento Regional (FEDER), Programa COMPETE - Programa Operacional Factores de Competitividade (POFC) do QREN

    Ureteroscopy-assisted percutaneous kidney access made easy: first clinical experience with a novel navigation system using electromagnetic guidance (IDEAL Stage 1)

    Get PDF
    Background: Puncture of the renal collecting system represents a challenging step in percutaneous nephrolithotomy (PCNL). Limitations related to the use of standard fluoroscopic-based and ultrasound-based maneuvers have been recognized. Objectives: To describe the technique and early clinical outcomes of a novel navigation system for percutaneous kidney access. Design, setting, and participants: This was a proof-of-concept study (IDEAL phase 1) conducted at a single academic center. Ten PCNL procedures were performed for patients with kidney stones. Surgical procedure: Flexible ureterorenoscopy was performed to determine the optimal renal calyx for access. An electromagnetic sensor was inserted through the working channel. Then the selected calyx was punctured with a needle with a sensor on the tip guided by real-time three-dimensional images observed on the monitor. Outcome measurements and statistical analysis: The primary endpoints were the accuracy and clinical applicability of the system in clinical use. Secondary endpoints were the time to successful puncture, the number of attempts for successful puncture, and complications. Results and limitations: Ten patients were enrolled in the study. The median age was 47.1 yr (30-63), median body mass index was 22.85 kg/m(2) (19-28.3), and median stone size was 2.13 cm (1.5-2.5 cm). All stones were in the renal pelvis. The Guy's stone score was 1 in nine cases and 2 in one case. All 10 punctures of the collecting system were successfully completed at the first attempt without X-ray exposure. The median time to successful puncture starting from insertion of the needle was 20 s (range 15-35). No complications occurred. Conclusions: We describe the first clinical application of a novel navigation system using real-time electromagnetic sensors for percutaneous kidney access. This new technology overcomes the intrinsic limitations of traditional methods of kidney access, allowing safe, precise, fast, and effective puncture of the renal collecting system. Patient summary: We describe a new technology allowing safe and easy puncture of the kidney without radiation exposure. This could significantly facilitate one of the most challenging steps in percutaneous removal of kidney stones.info:eu-repo/semantics/publishedVersio

    Paediatric kidney stone surgery: state-of-the-art review

    Full text link
    While urolithiasis in children is rare, the global incidence is rising, and the volume of minimally invasive surgeries being performed reflects this. There have been many developments in the technology, which have supported the advancement of these interventions. However, innovation of this kind has also resulted in wide-ranging practice patterns and debate regarding how they should be best implemented. This is in addition to the extra challenges faced when treating stone disease in children where the patient population often has a higher number of comorbidities and for example, the need to avoid risk such as ionising exposure is higher. The overall result is a number of challenges and controversies surrounding many facets of paediatric stone surgery such as imaging choice, follow-up and different treatment options, for example, medical expulsive therapy, shockwave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy. This article provides an overview of the current status of paediatric stone surgery and discussion on the key topics of debate

    Oman Urological Society Conference 2019

    Get PDF
    Conference Abstract

    Anesthesia for Urological Surgery

    Get PDF
    Because of the variable techniques and patients’ positions used in urological surgery, anesthesia for urologic surgery requires advanced knowledge and special transactions. In this matter, it is important to follow current approaches for anesthesiologists. Different surgical procedures and complications due to different positions or anesthesia were evaluated separately to be more concise. We have researched recent literature and created this chapter about new technologies in urological surgery and development in anesthesia for urological surgery

    Percutaneous lithotripsy, old and new techniques that preserve it as a basic modality in modern minimal invasive urology

    Get PDF
    Η διαδερμική νεφρολιθοθρυψία αποτελεί μια από τις σημαντικότερες χειρουργικές επιλογές στην αντιμετώπιση της λιθίασης του νεφρού. Στο παρόν άρθρο παρουσιάζονται τα στάδια της τεχνικής της διαδερμικής νεφρολιθοτριψίας αλλά και τα πλεονεκτήματα και τα μειονεκτήματα της κάθε μεθόδου.. Ειδικότερα, αναλύονται τα επικρατούντα και τα νεότερα δεδομένα στη θέση του ασθενή, της νεφρικής προσπέλασης, στους τρόπους διαστολής της οδού νεφροστομίας αλλά και το είδος της νεφρικής παροχέτευσης και της νεφρολιθοτριψίας και των πιθανών μελλοντικών προοπτικών που καθιστούν αυτήν την επέμβαση βασικό μέλος των ελάχιστα επεμβατικών ουρολογικών χειρουργείων.Percutaneous nephrolithotripsy is one of the most important surgical options in the treatment of renal calculi. This article presents the stages of the technique of percutaneous nephrolithotripsy and the advantages and disadvantages of each method. In particular, analyzes the prevailing and new data in patients position, renal access, dilation of the nephrostomy tract and the type of renal drainage and lithotripsy as well as the possible future perspectives that make this intervention a key member of minimally invasive urological surger

    Minimally Invasive Urological Procedures and Related Technological Developments

    Get PDF
    The landscape of minimally invasive urological intervention is changing. A lot of new innovations and technological developments have happened over the last 3 decades. Laparoscopy and robotic surgery have revolutionised kidney and prostate cancer treatment, with more minimally invasive procedures now being carried out than ever before. At the same time, technological advancements and the use of laser have changed the face of endourology. Several new innovative treatments are now commonplace for benign prostate enlargement (BPE). Management of prostate cancer now involves procedures such as robotic prostatectomy, brachytherapy, radiotherapy, cryotherapy and HIFU. Robotic partial nephrectomy and cryotherapy have changed the face of renal cancer. En-bloc resection of bladder cancer is challenging the traditional management of non-muscle invasive bladder cancer and becoming commonplace, while robotic cystectomy is also gaining popularity for muscle invasive bladder cancer. Newer surgical intervention related to BPE includes laser (holmium, thulium and green light), water-based treatment (Rezum, Aquablation) and other minimally invasive procedures such as prostate artery embolisation (PAE) and Urolift. Endourological procedures have incorporated newer laser types and settings such as moses technology, disposable ureteroscopes (URS) and minimisation of percutaneous nephrolithotomy (PCNL) instruments. All these technological innovations and improvements have led to shorter hospital stay, reduced cost, potential reduction in complications and improvement in the quality of life (QoL)
    corecore