222 research outputs found

    SysML modeling of service-oriented system-of-systems

    Get PDF
    The success of the ongoing fourth industrial revolution largely depends on our ways to cope with the novel design challenges arising from a combination of an enormous increase in process and product complexity, as well as the expected autonomy and self-organization of complex and diverse industrial hardware–software installments, often called systems-of-systems. In this paper, we employ the service-oriented architectural paradigm, as materialized in the Eclipse Arrowhead framework, to represent modern systems engineering principles and their open structural principles and, thus, relevance to flexible and adaptive systems. As for adequately capturing the structural aspect, we propose using model-based engineering techniques and, in particular, a SysML-based specialization of systems modeling. The approach is illustrated by a real-life use-case in industrial automation.publishedVersio

    The Internet of Simulation, a Specialisation of the Internet of Things with Simulation and Workflow as a Service (SIM/WFaaS)

    Get PDF
    Abstract: A trend seen in many industries is the increasing reliance on modelling and simulation to facilitate design, decision making and training. Previously, these models would operate in isolation but now there is a growing need to integrate and connect simulations together for co-simulation. In addition, the 21st century has seen the expansion of the Internet of Things (IoT) enabling the interconnectivity of smart devices across the Internet. In this paper we propose that an important, and often overlooked, domain of IoT is that of modelling and simulation. Expanding IoT to encompass interconnected simulations enables the potential for an Internet of Simulation whereby models and simulations are exposed to the wider internet and can be accessed on an "as-a-service" basis. The proposed IoS would need to manage simulation across heterogeneous infrastructures, temporal and causal aspects of simulations, as well as variations in data structures. Via the proposed Simulation as a Service (SIMaaS) and Workflow as a Service (WFaaS) constructs in IoS, highly complex simulation integration could be performed automatically, resulting in high fidelity system level simulations. Additionally, the potential for faster than real-time simulation afforded by IoS opens the possibility of connecting IoS to existing IoT infrastructure via a real-time bridge to facilitate decision making based on live data

    The Internet of Simulation: Enabling Agile Model Based Systems Engineering for Cyber-Physical Systems

    Get PDF
    The expansion of the Internet of Things (IoT) has resulted in a complex cyber-physical system of systems that is continually evolving. With ever more complex systems being developed and changed there has been an increasing reliance on simulation as a vital part of the design process. There is also a growing need for simulation integration and co-simulation in order to analyse the complex interactions between system components. To this end we propose that the Internet of Simulation (IoS) as an extension of IoT can be used to meet these needs. The IoS allows for multiple heterogeneous simulations to be integrated together for co-simulation. It's effect on the engineer process is to facilitate agile practices without sacrificing rigour. An Industry 4.0 example case study is provided showing how IoS could be utilized

    An architecture for the future business of things

    Get PDF
    A brave new world made of interconnected smart devices will soon revolutionize the world. The application of the Internet of Things vision will foster the creation of new businesses across different industrial sectors. Communication Service Providers need to set the pace of this change if they want to lead this transformation. They need to both leverage and evolve their architectures in order to support a flexible creation of innovative services over distributed networks, linking heterogeneous sensors and actuators. This paper presents the roles of the telecoms on the upcoming machine-to-machine markets and devises an advanced architecture able to withstand the demands of a new plethora of evermore clever and useful services

    Innovating the Construction Life Cycle through BIM/GIS Integration: A Review

    Get PDF
    The construction sector is in continuous evolution due to the digitalisation and integration into daily activities of the building information modelling approach and methods that impact on the overall life cycle. This study investigates the topic of BIM/GIS integration with the adoption of ontologies and metamodels, providing a critical analysis of the existing literature. Ontologies and metamodels share several similarities and could be combined for potential solutions to address BIM/GIS integration for complex tasks, such as asset management, where heterogeneous sources of data are involved. The research adopts a systematic literature review (SLR), providing a formal approach to retrieve scientific papers from dedicated online databases. The results found are then analysed, in order to describe the state of the art and suggest future research paths, which is useful for both researchers and practitioners. From the SLR, it emerged that several studies address ontologies as a promising way to overcome the semantic barriers of the BIM/GIS integration. On the other hand, metamodels (and MDE and MDA approaches, in general) are rarely found in relation to the integration topic. Moreover, the joint application of ontologies and metamodels for BIM/GIS applications is an unexplored field. The novelty of this work is the proposal of the joint application of ontologies and metamodels to perform BIM/GIS integration, for the development of software and systems for asset management

    A Framework for Service-Oriented Architecture (SOA)-Based IoT Application Development

    Get PDF
    Funding: This research was partially supported by funds provided by the European Commission in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT— Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de Tecnologia e Sistemas research unit.In the last decades, the increasing complexity of industrial information technology has led to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT) platforms to harvest sensor information to improve production. Such a transformation contributes to efficiency growth and reduced production costs. To deal with the heterogeneity of the services within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being advantageous for the design and development of software to support IoT-based production processes.The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services at the middleware layer to minimise system integration problems. We propose a system architecture that follows the SOA architectural pattern and enables developers and business process designers to dynamically add, query or use instances of existing modular software in the IoT context. Furthermore, an analysis of utilization of modular software that presents some challenges and limitations of this approach is also in the scope of this workpublishersversionpublishe

    Software Engineering Timeline: major areas of interest and multidisciplinary trends

    Get PDF
    Ingeniería del software. EvolucionSociety today cannot run without software and by extension, without Software Engineering. Since this discipline emerged in 1968, practitioners have learned valuable lessons that have contributed to current practices. Some have become outdated but many are still relevant and widely used. From the personal and incomplete perspective of the authors, this paper not only reviews the major milestones and areas of interest in the Software Engineering timeline helping software engineers to appreciate the state of things, but also tries to give some insights into the trends that this complex engineering will see in the near future

    Combining low-code programming and SDL-based modeling with snap! in the industry 4.0 context

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.One of the main challenges to implement Industry 4.0 technologies within the industrial fabric is the lack of suitable concrete models and tools that demonstrate the potential benefits of embracing the digital transformation process. To overcome this challenge, over the past years, various Industry 4.0 automation and robotics providers have presented solutions based on visual block programming languages, which follow an emerging low-code approach to reduce the entry barriers of digital technologies. However, block-based low-code tools typically lack the formality introduced by specification languages, limiting their ability to model the industrial processes formally. Taking this into account, in this article, we present the combination of specification languages and visual block programming languages to enable industrial users to test and/or build their own Digital Twin models at a suitable abstraction level and with low entry barriers. In particular, we combine SDL and Snap! to create SDL4Snap!, an opensource and web-based tool that facilitates the implementation and validation of Digital Twin prototypes. Overall, the resulting tool has the potential to reduce the entry barrier to Digital Twins in small and medium enterprises, which are part of the late majority and laggard groups regarding the adoption of digital technologies in the context of Industry 4.0.Peer ReviewedPostprint (published version
    corecore