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Abstract—One of the main challenges to implement Industry
4.0 technologies within the industrial fabric is the lack of suit-
able concrete models and tools that demonstrate the potential
benefits of embracing the digital transformation process. To
overcome this challenge, over the past years, various Industry
4.0 automation and robotics providers have presented solutions
based on visual block programming languages, which follow
an emerging low-code approach to reduce the entry barriers
of digital technologies. However, block-based low-code tools
typically lack the formality introduced by specification lan-
guages, limiting their ability to model the industrial processes
formally. Taking this into account, in this article, we present
the combination of specification languages and visual block
programming languages to enable industrial users to test
and/or build their own Digital Twin models at a suitable
abstraction level and with low entry barriers. In particular,
we combine SDL and Snap! to create SDL4Snap!, an open-
source and web-based tool that facilitates the implementation
and validation of Digital Twin prototypes. Overall, the resulting
tool has the potential to reduce the entry barrier to Digital
Twins in small and medium enterprises, which are part of the
late majority and laggard groups regarding the adoption of
digital technologies in the context of Industry 4.0.

1. Introduction

The 4th Industrial Revolution, also known as Industry
4.0, is characterized by the digital transformation of the
industrial fabric [1]. It is formalized through two main ref-
erence architectures: the Reference Architecture Model In-
dustry 4.0 (RAMI 4.0), standardized as IEC/PAS 63088 [2],
and the Industrial Internet Reference Architecture (IIRA)
[3]. Both standards are based on the notion of Cyber-
physical Systems (CPS), which rise from the coupling of
the physical and digital worlds [4]. Physical systems can
integrate electronic embedded systems, or simulators can
integrate physical systems, becoming emulators [5].

Embracing simulation, data analytics and other engineer-
ing disciplines, the Digital Twin (DT) is regarded as the most
important artifact of Industry 4.0 [6]. The term was first
introduced in 2002 by Michael Grieves [7] and was later

used by NASA as a Product Life-cycle Management (PLM)
tool [8]. A Digital Twin is defined as a virtual reproduction
of a system based on simulations, either with real-time
or historical data, that allows representing, understanding,
and predicting scenarios of the past, present, and future,
with verified and validated models, and synchronized at a
specified frequency and fidelity with the system [9].

According to the European Union Commission [10], the
main limitation for the adoption of Industry 4.0 technologies
in small and medium-sized enterprises currently lies in the
lack of specific and concrete models and tools. In that
regard, De Leeuw [11] has identified the existence of a
minimum threshold of digital maturity in resources, systems,
organization, and culture, required for a successful industrial
digital transformation process. In the same direction, we
use the term "suitable digital mindset for Industry 4.0"
to denote the transversal model-based and computational
thinking skills required to understand and apply the fun-
damental concepts, including Industry 4.0 architectures. A
model-based low-code approach involving Digital Twins is
a minimal core of this mindset. In that regard, Datta [12]
explains that democratization of the ad hoc and en masse
configuration of Digital Twins by non-experts will no longer
limit the use and application of Digital Twins in the hands
of experts alone, and leaders must proactively support to
pursue collaborative initiatives.

In that direction, the low-code movement has recently
emerged, aiming to remove barriers to use, configure, and
build software for everybody, enabling a general digital
cultural literacy and facilitating the challenge of interdis-
ciplinary work. Given its potential, low-code is being pro-
moted as a key infrastructure in the digital transformation
landscape [13], and there is an increasing interest in low-
code in the Industry 4.0 scope [14]. For example, Bosch-
Rexroth introduced the "ctrlX developR" for automation sys-
tems, whereas ABB introduced the "ABB Wizard easy pro-
gramming" for robotic applications. However, block-based
low-code programming languages currently lack support for
modeling, limiting their applicability to building and using
Digital Twins due to a lower user empowerment.

Considering the importance of lowering the entry barrier
to Digital Twins as a mechanism to foster the adoption of
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Industry 4.0 in small and medium enterprises, this work fo-
cuses on extending a visual block-based low-code program-
ming language with modeling capabilities. To implement our
tool, we have selected SDL and Snap! for two main reasons.
On the one hand, SDL is a well-regarded standard graphical
modeling language widely used to specify communications
and simulation models that people from different disci-
plines can use. On the other hand, Snap! is an open-source
and web-based visual block-based programming language
that is widely used. For example, academia members such
as Eckard Modrow [15], use Snap! in Computer Science
courses because it covers many aspects of computer science
from algoritmia, object/agent orientation, simulation, sound,
and image processing to artificial intelligence.

Hence, the contributions of the article are the following.
First, it introduces SDL4Snap!, a tool that facilitates the
direct translation from a set of standard SDL blocks to
Snap!. Second, it shows how to build a minimal implementa-
tion example, namely PingPong, from an SDL specification.
Third, through a set of early experiments, it anticipates
that combining model-based reasoning with low-code tools
can help lowering the entry barrier to Digital Twins and
fostering the adoption of Industry 4.0 technologies within
the industrial fabric.

The remainder of the article is organized as follows.
Section 2 presents the related work. Section 3 introduces
the tools that have been used to create the SDL4Snap! tool.
Section 4 gives an implementation example, namely Ping-
Pong, using the SDL4Snap! extension. Section 5 presents
the results of a preliminary qualitative evaluation using the
SDL4Snap! tool. Finally, Section 6 concludes the article.

2. Related Work

This section introduces the main concepts that are related
to the topic of the paper: Industry 4.0 Architectures, Digital
Twin and Low Code Programming.

2.1. Industry 4.0 Architectures

As stated earlier, Cyber-Physical Systems are a crucial
building block of Industry 4.0. Cyber-Physical Systems are
formally characterized by the reference architectures RAMI
4.0 [16] and IIRA [3]. RAMI has its origins in the OT
(Operations Technologies) world and is standardized as
IEC/PAS 63088 [2]. In contrast, IIRA has its roots in the
IT (Information Technologies) world and is defined by the
IIC (Industrial Internet Consortium). Hence, while RAMI
focuses on the assets that compose the system, IIRA focuses
on the network that interconnects the system. In 2018, a
joint workgroup started to work on the harmonization of
both architectures [17].

An interesting aspect of RAMI for CPS is that it repre-
sents assets through the notion of an Administration Shell,
which relies on the metaphor that every artifact (real or
virtual) can be covered with a "digital bell", giving rise to
the Industry 4.0 Component (I4.0 Component). Therefore,

an asset can be seen as an entity that exposes digital inter-
face such as an API (Application Programming Interface)
that allows it to be remotely monitored and controlled,
partially or fully. In addition, RAMI specifies that the I4.0
Components must have the characteristics of nestability and
encapsulability properties. The former means that every I4.0
Component can consist of other I4.0 Components which can
be logically nested. The latter means that each I4.0 Com-
ponent should be able to establish all necessary connections
within an I4.0 System, and that they must be able to retain its
core functionality even if the external network is disrupted
[2]. Hence, a CPS can be defined as a composition of I4.0
Components that are connected through a network.

Regarding connectivity, both RAMI 4.0 and IIRA ad-
vocate for the servitization of assets based on supporting
SOA (Service Oriented Architectures). RAMI 4.0 specifies
that I4.0 Components must be SOA compliant [18], and
according to Erl, [19] [20], this includes both client-server
and event-driven architectures, such as publish-subscribe
(PubSub). On the one hand, client-server architectures are
based on the request-respond mechanism, which can be
synchronous and asynchronous, as shown in Figure 1. In
contrast, the PubSub architecture is based on the call-back
mechanism and can be regarded as a generalization of client-
server architectures. That is, in the PubSub architecture
communications are not limited to one-to-one, but one-to-
many communications are also supported.

AsynchronousSynchronous

:Server:Client:Server:Client

callback(response)

request(params, callback)

«response»

request(params)

Figure 1. Client-server architectures

.

. . . topic0n:Subscriber:Broker topic01:Subscriber:Publisher

callbackAction0n(msg)

callbackAction01(msg)
pub(topic, msg)

Figure 2. PubSub architectures

As shown in Figure 2, in a PubSub architecture the
publisher agent sends a message to an intermediate agent
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named broker, indicating a channel (named as topic). Upon
receiving a message, the broker forwards it to all subscribed
agents. Hence, PubSub architectures have an asynchronous
nature. However, it is possible to implement an equivalent
synchronous request-response behavior if there is only one
subscriber for the request and the publisher is also the only
subscriber of the response [19].

Finally, it is important to mention that RAMI 4.0 is tech-
nologically agnostic. To apply the architecture it proposes
two basic technology mappings [18] based on widely used
standards in Industry 4.0 such as HTTP (RESTful) [21] and
OPC-UA [22], which accepts MQTT [23] for PubSub. These
three technologies are based on the TCP/IP protocol and
belong to the so-called Industrial Internet of Things (IIoT)
ecosystem. MQTT is the most popular PubSub protocol for
the IoT and IIoT.

2.2. Digital Twin

As introduced earlier, a Digital Twin is a virtual re-
production of a system based on simulations, real-time
and historical data that allows representing, understanding,
and predicting scenarios of the past, present, and future,
with verified and validated models, and synchronized at a
specified frequency and fidelity with the system [9].

The two constituent parts of the Digital Twin are the
Digital Model (DM) and the Digital Shadow (DS) [24].
On the one hand, the DM comprises the requirements,
specifications, and theoretical models, both assets and asset
simulators. On the other hand, the DS contains models based
on data captured from the actual world, via observation or
by automatic measurements using sensors

In addition to the DM and DS model, Stark [25] in-
troduces the concept of the Digital Master (DM), which is
defined as the set of digital models used in the Digital Twin.
Hence, the formula DT = DM + DS expresses that Digital
Twins are composed of models and data. Both DM and DS,
and DT can be modeled as I4.0 Components [9]. According
to Drath [26], Digital Twins can be defined based on I4.0
Components.

Moreover, the expression that a Digital Twin is com-
posed of simulators and data is valid in most cases. DT
synchronization can be achieved by the cyclical calibration
and adjustment of the simulators (DM) from the captured
data in the DS. Another aspect of synchronization relies
on the execution speed of simulations. For complex models
that simulations require a long time, model order reduction
techniques are key for Digital Twins [27].

Industry 4.0 highly demands interdisciplinary ap-
proaches [28], and the Digital Twin is becoming a core
element of model-based systems engineering (MBSE) [29].
Hence models must be conceptualized using formal lan-
guages involving several specialists or experts of diverse
disciplines, and latter codified utilizing programming lan-
guages. According to Lindemann [30], the Digital Twin can
encapsulate the interdisciplinary models of an asset, and
it has been identified as a crucial artifact for implement
Industry 4.0 [26].

The notion of Minimum Viable Digital Twin (MVDT)
has been presented by Schalkwyk [31] initially in the Indus-
trial Internet Consortium, and afterward in the Digital Twin
Consortium. It is inspired by the principles of the Minimum
Viable Product (MVP) proposed by Ries [32], based on
Blank product development concepts [33]. According to
Thomson, [34], the success of an MVP validates an idea, but
its failure does not invalidate it. Schalkwyk [31] proposes
the MVDT as a DT implemented at the conceptualization
phase as a starting point for interdisciplinary approaches. DT
models have the capability to encapsulate tacit and explicit
knowledge [35], and both can be conceptually validated and
transferred.

Madni [29] introduces the first level of a Digital Twin
naming it pre-Digital Twin, in which the system may not
yet exist, and there is no need for DS. It supports decision-
making at the concept design and preliminary design.

According to Sargent [36], mutually accepted mod-
els can be achieved at the early stages with face-to-face
or Conceptual Model validation using formal specification
languages. The starting point can be building an MVDT,
implementing simulators from scratch (pre-Digital Twin),
or orchestrating and integrating existing simulators with
Industry 4.0 low-code tools.

2.3. Low-Code Programming

The term low-code programming was coined in a 2014
Forrester Research report [37], and is regarded as a paradigm
that leverages visual tools to accelerate software develop-
ment by dramatically reducing the amount of hand-coding
required [37]. The initial purpose was to run projects at "dig-
ital clock speed", a term introduced by Fine [38] that denotes
a characteristic pace that organizations have. Nowadays, we
have an additional purpose: breaking silos.

Existing low-code tools are both oriented to program-
mers and non-programmers, enabling the quick generation
and delivery of applications with minimum effort by re-
quiring the least possible effort to install and configure the
development environments, as well as the time required
for training and developing [39]. Furthermore, low-code
programming enables people to get an effective digital
cultural literacy, effectively democratizing software devel-
opment [40].

Low-code usually relies on visual programming and,
according to Mason [41], they can be divided into two broad
categories: flow-based and block-based. On the one hand,
flow-based are functional languages, and they are reasoned
about as data flowing from one node to another. On the
other hand, block-based are imperative languages, and they
are reasoned as mutating state. Examples of flow-based low
code environments include those based on BPMN (Business
Process Model Notation) [42], such as those are in the
BPMN Tool Matrix list [43]. In contrast, examples of block-
based programming languages include Logo Blocks, Scratch
or Blockly [44].

Block-based low-code imperative programming lan-
guages usually focus on programming rather than modeling.
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They permit exploring, creating, and remixing interactive
animations, supporting structured, modular, object-oriented,
agent-oriented, and parallel programming paradigms. How-
ever, they do not directly support formal modeling elements
for state machines, signaling, or discrete event simulations.
Nevertheless, such limitation can be circumvented by the
use of library extensions, which allow to add new blocks
mapped to a formal specification language, such as SDL
(Specification and Description Language).

3. Tools and Mapping to build SDL4Snap!

In this section we introduce the SDL modeling language
and the Snap! programming language, and present how to
map SDL on to Snap! to create the Snap!4SDL tool.

3.1. The SDL Modeling Language

A modeling language is any language that can be used
to express information, knowledge, or systems by using a
consistent set of rules. Modeling languages can be graphical
or non-graphical and executable or non-executable.

SDL is a well-known standardized modeling language
with an easy-to-understand graphical representation that
is formally consistent (unambiguous), complete, and exe-
cutable [35]. Given its characteristics, SDL is widely used
in academia and in the industry to build models for simu-
lation software, process control, real-time applications, and
telecommunications systems. SDL development tools such
as SDLPS [45] or PragmaDev Studio [46] are focused on
manage complex SDL specifications.

SDL models can be converted to Discrete Event System
Specification (DEVS) [47], which is considered a universal
reference formal model for simulation engines [48]. In ad-
dition, DEVS models can be converted to SDL models [49]
which, in turn, can be translated into state machine-based
algorithms [50]. Therefore, DEVS models can be translated
into a general-purpose programming language.

SDL models can also be formally verified and automat-
ically converted to executable artifacts, such as simulators,
which capture both explicit and tacit knowledge, so SDL is
a way to represent tacit knowledge [35].

In addition, SDL can be used stand-alone or integrated
with the Unified Modeling Language (UML) [51] as an
UML Profile [52]. System, block, block class, process, and
process class elements have been defined as UML stereo-
types. In addition, an I4.0 Component can be defined as an
UML component stereotype.

Last but not least, SDL can also be combined with 2D
or 3D synchronized animations of the models, calling a user
defined procedure call for this purpose in the right state and
event of the SDL specification [35].

The SDL architecture and its building blocks are shown
in Figure 3. An SDL system is composed of block agents or
block processes. SDL is conceptually distributed, and agents
can communicate with each other via messages (also called
signals). A process is an agent and has a message queue that
receives signals from other agents, can execute algorithms,

and has the capability to send messages to other agents.
The SDL engine is the system that executes the simulation,
determining the order of the events to be treated by the
processes, as depicted in Figure 4.

agents

processprocess

process

block

state

msg

state

msg

state
block

system

process

Figure 3. SDL architecture and building blocksg g

Figure 4. SDL signal queues

At the process level, SDL represents states and mes-
sages in a diagram that combines finite state machines,
flowchart decision logic, and message sending and receiving
specifications. This unified representation is general enough
for modeling the integration of existing models with co-
simulation [45], which consists of executing the subsystems
simulations separately, with adequate coordination between
them.

3.2. The Snap! Programming Language

Snap! is a graphical blocks-based programming lan-
guage created by Jens Mönig and Brian Harvey in 2011.
Before becoming a browser application (i.e., no software
installation needed), the Snap! project’s former name was
BYOB (Build Your Own Blocks). Currently, the Snap!
project is driven by the University of California Berkeley
and the SAP software company. While inspired by Scratch,
Snap! has the feature of user-defined JavaScript blocks,
which permit extraordinary extension possibilities.

The main building block of Snap! is the block, which can
be a command (i.e., procedure) or a reporter (i.e., function).
Reporters are intended for synchronous calls, and commands
support asynchronous calls by using callback blocks. Snap!
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also allows to implement blocks directly in JavaScript,
which empowers the development of library extensions.

A higher level fundamental building block in Snap! is the
sprite, which is used to manage its looks and sounds. Sprites
support object orientation, with properties, operations and
parallel execution. In addition, sprites also support agent
orientation with the capability of sending and receiving
messages.

We adopt the Wooldridge weak notion of agent defined
as a hardware/software system with the properties of au-
tonomy, reactivity, proactivity, and social ability [53] to
characterize both SDL and Snap! agent orientation. Sprites
are agents that share a singleton object called stage, which
defines a scope for a set of sprites. Other agents are the
Snap! browser tabs that have their correspondent stages.
One browser can run simultaneously many Snap! instances
in different tabs, and one computer can run simultaneously
many browser instances.

The "send" and "broadcast" native Snap! blocks can send
messages to sprite, and other sprite blocks can be invoked
remotely with the "tell" and "ask" blocks for commands
and reporters, respectively. Sending and receiving messages
from/to different Snap! instances can be achieved with ex-
tensions like MQTT4Snap!, interacting each other under a
publish-subscribe architecture1.

3.3. Mapping SDL on to Snap! to create the
SDL4Snap! extension

In this section, we present a library extension to include
SDL model-level abstraction support to Snap!, explaining
how SDL converts to pseudocode and how the implemented
SDL elements subset map to the Snap! blocks, which rely
on the SDL Engine, also implemented in Snap!.

To translate SDL into pseudocode in SDL4Snap! we
use the scheme suggested by Rockström and Saracco [54].
Figure 5 shows the translation of Algorithm 1 into Snap!.
As it can be observed, the algorithm is based on two nested
switch structures, where the external one branches by the
state value and the branches of the internal one by the signal
received. Unexpected signals are ignored, but SDL4Snap!
could easily be modified to warn or halt if required.

To implement SDL in Snap!, we have adopted the logic
of SDL processes message queues described by Belina [55].
That is, each agent (i.e., a sprite that corresponds to an
SDL process) has two attributes: SDL signal input queue
and SDL state, as shown in Figure 4. Sprites, as agents, can
send and receive messages in both local or network modes.
Extensions like MQTT4Snap! allow messages to go over a
local network and also over the Internet, allowing sprites
to send and receive messages from/to different browsers.
Moreover, so approach allows emulating both synchronous
and asynchronous calls in a client-server architecture, as
depicted in Figure 1. Based on cooperating browsers, mul-

1. MQTT4Snap! is an open-source Snap! MQTT extension library avail-
able in a public GitHub repository (https://github.com/pixavier/mqtt4snap.

Figure 5. Algorithm 1 and its translation into Snap!.

tiple distributed SDL blocks can constitute SDL systems, as
illustrated in Figure 3.

SDL4Snap! considers the minimum set of SDL ele-
ments to implement a minimal consistent and complete SDL
engine, as identified by Fonseca [56]: Start, State, Input,
Create, Task, Output, Decision, Set State and Block.

The element-by-element SDL to Snap! mapping is ex-
plained textually below, but the Table 1 shows graphically
the mapping at a glance.

The SDL "start" element maps onto the "when green
flag clicked" and "SDL start" blocks. The last one sets
up the process (agent), initializing its "SDL signal input
queue" and "SDL state" attributes. The SDL "state" element
maps onto an event Snap! block that fires when the SDL
Signal event is received, combined with "when SDL state is
..." with a callback block. The SDL "input" element maps
onto the "when SDL signal is ..." with a callback block.
The SDL "create" element, restricted to processes, maps
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Element SDL Snap!

Start

State

Input

Create

Task

Output

Decision

Set State

Block

Table 1. SDL ELEMENTS MAPPING ONTO SNAP! ELEMENTS.

onto the create Snap! block. The SDL task (procedure call)
element has maps onto the standard Snap! block. The SDL
"output" element maps onto the "SDL send local signal ..."
or the "SDL send signal ..." block, and it supports parameter
passing. This parameter can be a JSON (JavaScript Object
Notation) string. The SDL decision element maps to the
"if-then-else" standard block of Snap!. The SDL "set state"
maps onto "SDL set state", and it is always present at the
end of SDL threads.

The combination of SDL and Snap! is possible in both
ways. On the one hand, we can build an SDL model and
enrich it with user-defined procedures, and on the other
hand, a Snap! project can use SDL to define the behavior
of some specific elements, such as sprites.

The SDL elements shown in Figure 3 can also be
mapped onto Snap!. The SDL processes map onto Snap!
sprites, whereas the SDL blocks map onto the Snap! stages.
Please notice that several stages can be simultaneously

active in various browser tabs or independent browsers
instances in the same or different computers. As men-
tioned earlier, signals can travel between stages using the
MQTT4Snap! extension.

4. An SDL4Snap! implementation example:
PingPong

In this section we present a minimal SDL4Snap! exam-
ple, namely PingPong, and demonstrate how to convert it
into an I4.0 Component.

4.1. PingPong SDL4Snap! implementation

PingPong is a basic multi-agent example that comes out
of the box with SDL tools, and can be regarded as a "Hello
World" program. The PingPong example implies two agents
exchanging messages between them.
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In our implementation using SDL4Snap!2, there are two
agents (i.e., SDL processes), called pPing and pPong. A
third auxiliary agent called Env represents the environment,
and its only purpose is to trigger the initial signal to start
the message exchange. The subsequent messages are sent
alternatively from pPing to pPong and vice-versa.

The block diagram of the SDL model (top) and the
SDL behavior of the pPing agent (bottom) are depicted in
Figure 6. The process to convert the former to the latter can
be regarded as an example3 of the mapping rules shown in
Table 1. As it can be observed, the agent pPing can be in
two states: idle and running. The idle state is the default
one when the agent starts, and in this state, the agent can
receive the mStart signal. When the agent is in the "running"
state, it can receive one of the following three signals:
mPong, mStop, and tWait. Hence, the possible transitions
are "idle" to "running" and "running" to "idle", as shown
in the diagram. Finally, the user-defined procedure call for
animation purposes is named "animTo", and it can use the
graphical and multimedia Snap! potential.

4.2. PingPong as an Industry 4.0 Component

The PingPong example presented in the previous section
can be easily encapsulated into an I4.0 Component to show
how to formalize low-code components with RAMI 4.0 at
the architectural level, using UML and SDL at the modeling
level, and using Snap! at the implementation level.

The component specification is depicted in Figure 7. It
includes the "digital bell" of the I4.0 Component, which
only exposes added value digital services while hiding the
internal component complexity. It consists of the Ping-
Pong facade class with its attributes and, PubTopic and
SubTopic enumerations with PubSub defined operations by
their correspondent topics. As shown, the system can do
the following operations: start, stop and notify each time a
process agent is animated. The notation shown in Figure 7
is a simplification of the UML lollipop representation of the
graphically stereotyped I4.0 Component for a pure PubSub
component, as depicted in Figure 8.

Using RAMI 4.0 terminology, we apply an MQTT tech-
nology mapping, implementing the specification shown in
Figure 7. To allow the I4.0 Component to be accessible
ubiquitously, we use the MQTT4Snap! extension presented
earlier. In the Env agent, which is the initiator of the execu-
tion, the component subscribes to the "pingpong/start" and
"pingpong/stop" topics. According to the SDL specification
depicted in Figure 6, when a start message is received, a
local SDL signal mStart is sent to pPing, and when a stop
message is received, a local SDL signal mStop is sent to
pPing. The resulting code is shown in Figure 9.

The third and last operation to implement is the publica-
tion of the animation of each process agent, informing the

2. The PingPong example is available in the SDL4Snap! public GitHub
repository (https://github.com/pixavier/sdl4snap)). It can be executed on-
line, and all source code and technical details are also provided.

3. Please notice that the "SDL set state" rightmost dummy-parameter
filled with dots is only added for formatting purposes.

Figure 6. pPing agent modeled in SDL and mapped onto Snap!

agent ID (pPing or pPong) and a timestamp. For that, we
have to add the line shown in Figure 10 at the end of the
"anim to" block. This "notify" operation can delegate the
PingPong animation to a remote agent that subscribes to it.

A set of Snap! independent blocks shown in Figure 11
has been used to test the resulting PingPong I4.0 Component
from another Internet browser instance. A single click on
each can execute these Snap! blocks independently. After
clicking on the connection block, we click on the start block,
check that PingPong starts, click on the stop block, and
check that PingPong stops. Finally, there is a subscription
block to check that we receive the animation notifications.

Last but not least, it is important to mention that
SDL4Snap! can also be used as a simplified facade of more
complex DTs. It can interact with other low-code tools,
such as Node-RED, enabling easy interaction with existing
Industry 4.0 systems through their communication protocols.
On the other hand, it can interact with instant messaging
systems, such as Telegram, to explore new use cases such
as integrating I4.0 Components with bots.
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Figure 7. PingPong as UML I4.0 Component.g g g p

Figure 8. I4.0 Component as stereotyped UML Component

5. Preliminary evaluation of SDL4Snap!

To understand the potential of the SDL4Snap! tool,
we have conducted a preliminary evaluation in the con-
text of Industry 4.0 postgraduate programs at Universitat
Politècnica de Catalunya (UPC) and Universitat Oberta de
Catalunya (UOC). In these courses, students are introduced
to the concept of Digital Twins and are required to put
it into practice by studying how different self-contained
examples of industrial process automation, either discrete or
continuous, are implemented and testing how they operate.
For instance, we provide Digital Twin models of water

Figure 9. I4.0 Component Snap! implementation

Figure 10. I4.0 Component Snap! notifications publisher implementation

Figure 11. I4.0 Component Snap! testing blocks

treatment processes, bottling-packaging processes, and an
elevator system.

Students of these programs have an engineering back-
ground, either from the IT or the OT worlds. It is an
important factor to consider, as students with an OT back-
ground have had less exposure to programming. In contrast,
students with an IT background have had less exposure to
process automation. Thus, creating a Digital Twin represents
a challenge to both, as their understanding of the industrial
process automation or the tools to implement it are limited.

During the initial versions of the courses, the implemen-
tation of the Digital Twin models was based on textual pro-
gramming languages, such as Python, JavaScript, or C/C++.
While the provided examples were considered valuable to
understand the concept and applicability of Digital Twins,
we observed that a significant part of the students with an
OT background found that the learning curve to understand
the implementation was disproportionate. Moreover, such a
steep learning curve caused frustration and, in some cases,
limited the motivation to continue learning.

In contrast, after introducing SDL4Snap! in later ver-
sions of the same courses, we observed that these problems
vanished thanks to the low entry barrier of block-based
visual programming tools. Moreover, we also observed that
the learning curve was also shortened in later activities,
consisting of converting parts of these Digital Twin models
to textual programming languages. We believe that this may
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be related to the fact that students better comprehend the
problems and the tools. It is also important to mention that
such low-code tools did not seem to create an aversion to
students with an IT background.

While we acknowledge that only qualitative data has
been gathered so far, these early results show that following
a low-code approach can increase student engagement in
the activities, as well as their satisfaction with the learning
outcomes, when compared to using non-low-code program-
ming languages for similar activities. Hence, SDL4Snap!
can be used as a resource to teach the modeling process of
both continuous and discrete industrial systems and become
a facilitator in the adoption of the Digital Twin within the
industrial fabric.

6. Conclusions and Future Work

In this article, we have presented SDL4Snap!, an open-
source and web-based tool that combines the SDL modeling
language and the Snap! low-code block-based programming
language. SDL4Snap! facilitates to design, build, test, and
use of Digital Twin models that are compliant with the SDL
specification. To evaluate the suitability of SDL4Snap!, we
have conducted a preliminary qualitative evaluation in the
context of Industry 4.0 postgraduate courses. The results
show that SDL4Snap! has the potential to reduce the entry
barrier to digital technologies, thus fostering their adoption
in the context of Industry 4.0.

Taking into account these results, in the future, we
plan to create an open repository of Digital Twin models
compatible with SDL4Snap!, allowing students to use it for
learning purposes. In addition, we also plan to extend the
evaluation process to gather quantitative data that enables us
to measure to which extent the introduction of SDL4Snap!
improves student engagement and learning outcomes.
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