9,217 research outputs found

    Malware Detection Using Dynamic Analysis

    Get PDF
    In this research, we explore the field of dynamic analysis which has shown promis- ing results in the field of malware detection. Here, we extract dynamic software birth- marks during malware execution and apply machine learning based detection tech- niques to the resulting feature set. Specifically, we consider Hidden Markov Models and Profile Hidden Markov Models. To determine the effectiveness of this dynamic analysis approach, we compare our detection results to the results obtained by using static analysis. We show that in some cases, significantly stronger results can be obtained using our dynamic approach

    THE SCALABLE AND ACCOUNTABLE BINARY CODE SEARCH AND ITS APPLICATIONS

    Get PDF
    The past decade has been witnessing an explosion of various applications and devices. This big-data era challenges the existing security technologies: new analysis techniques should be scalable to handle “big data” scale codebase; They should be become smart and proactive by using the data to understand what the vulnerable points are and where they locate; effective protection will be provided for dissemination and analysis of the data involving sensitive information on an unprecedented scale. In this dissertation, I argue that the code search techniques can boost existing security analysis techniques (vulnerability identification and memory analysis) in terms of scalability and accuracy. In order to demonstrate its benefits, I address two issues of code search by using the code analysis: scalability and accountability. I further demonstrate the benefit of code search by applying it for the scalable vulnerability identification [57] and the cross-version memory analysis problems [55, 56]. Firstly, I address the scalability problem of code search by learning “higher-level” semantic features from code [57]. Instead of conducting fine-grained testing on a single device or program, it becomes much more crucial to achieve the quick vulnerability scanning in devices or programs at a “big data” scale. However, discovering vulnerabilities in “big code” is like finding a needle in the haystack, even when dealing with known vulnerabilities. This new challenge demands a scalable code search approach. To this end, I leverage successful techniques from the image search in computer vision community and propose a novel code encoding method for scalable vulnerability search in binary code. The evaluation results show that this approach can achieve comparable or even better accuracy and efficiency than the baseline techniques. Secondly, I tackle the accountability issues left in the vulnerability searching problem by designing vulnerability-oriented raw features [58]. The similar code does not always represent the similar vulnerability, so it requires that the feature engineering for the code search should focus on semantic level features rather than syntactic ones. I propose to extract conditional formulas as higher-level semantic features from the raw binary code to conduct the code search. A conditional formula explicitly captures two cardinal factors of a vulnerability: 1) erroneous data dependencies and 2) missing or invalid condition checks. As a result, the binary code search on conditional formulas produces significantly higher accuracy and provides meaningful evidence for human analysts to further examine the search results. The evaluation results show that this approach can further improve the search accuracy of existing bug search techniques with very reasonable performance overhead. Finally, I demonstrate the potential of the code search technique in the memory analysis field, and apply it to address their across-version issue in the memory forensic problem [55, 56]. The memory analysis techniques for COTS software usually rely on the so-called “data structure profiles” for their binaries. Construction of such profiles requires the expert knowledge about the internal working of a specified software version. However, it is still a cumbersome manual effort most of time. I propose to leverage the code search technique to enable a notion named “cross-version memory analysis”, which can update a profile for new versions of a software by transferring the knowledge from the model that has already been trained on its old version. The evaluation results show that the code search based approach advances the existing memory analysis methods by reducing the manual efforts while maintaining the reasonable accuracy. With the help of collaborators, I further developed two plugins to the Volatility memory forensic framework [2], and show that each of the two plugins can construct a localized profile to perform specified memory forensic tasks on the same memory dump, without the need of manual effort in creating the corresponding profile

    The construction of high-performance virtual machines for dynamic languages

    Get PDF
    Dynamic languages, such as Python and Ruby, have become more widely used over the past decade. Despite this, the standard virtual machines for these languages have disappointing performance. These virtual machines are slow, not because methods for achieving better performance are unknown, but because their implementation is hard. What makes the implementation of high-performance virtual machines difficult is not that they are large pieces of software, but that there are fundamental and complex interdependencies between their components. In order to work together correctly, the interpreter, just-in-time compiler, garbage collector and library must all conform to the same precise low-level protocols. In this dissertation I describe a method for constructing virtual machines for dynamic languages, and explain how to design a virtual machine toolkit by building it around an abstract machine. The design and implementation of such a toolkit, the Glasgow Virtual Machine Toolkit, is described. The Glasgow Virtual Machine Toolkit automatically generates a just-in-time compiler, integrates precise garbage collection into the virtual machine, and automatically manages the complex inter-dependencies between all the virtual machine components. Two different virtual machines have been constructed using the GVMT. One is a minimal implementation of Scheme; which was implemented in under three weeks to demonstrate that toolkits like the GVMT can enable the easy construction of virtual machines. The second, the HotPy VM for Python, is a high-performance virtual machine; it demonstrates that a virtual machine built with a toolkit can be fast and that the use of a toolkit does not overly constrain the high-level design. Evaluation shows that HotPy outperforms the standard Python interpreter, CPython, by a large margin, and has performance on a par with PyPy, the fastest Python VM currently available

    Integrating Multiple Data Views for Improved Malware Analysis

    Get PDF
    Malicious software (malware) has become a prominent fixture in computing. There have been many methods developed over the years to combat the spread of malware, but these methods have inevitably been met with countermeasures. For instance, signature-based malware detection gave rise to polymorphic viruses. This arms race\u27 will undoubtedly continue for the foreseeable future as the incentives to develop novel malware continue to outweigh the costs. In this dissertation, I describe analysis frameworks for three important problems related to malware: classification, clustering, and phylogenetic reconstruction. The important component of my methods is that they all take into account multiple views of malware. Typically, analysis has been performed in either the static domain (e.g. the byte information of the executable) or the dynamic domain (e.g. system call traces). This dissertation develops frameworks that can easily incorporate well-studied views from both domains, as well as any new views that may become popular in the future. The only restriction that must be met is that a positive semidefinite similarity (kernel) matrix must be defined on the view, a restriction that is easily met in practice. While the classification problem can be solved with well known multiple kernel learning techniques, the clustering and phylogenetic problems required the development of novel machine learning methods, which I present in this dissertation. It is important to note that although these methods were developed in the context of the malware problem, they are applicable to a wide variety of domains

    Análise de malware com suporte de hardware

    Get PDF
    Orientadores: Paulo Lício de Geus, André Ricardo Abed GrégioDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O mundo atual é impulsionado pelo uso de sistemas computacionais, estando estes pre- sentes em todos aspectos da vida cotidiana. Portanto, o correto funcionamento destes é essencial para se assegurar a manutenção das possibilidades trazidas pelos desenvolvi- mentos tecnológicos. Contudo, garantir o correto funcionamento destes não é uma tarefa fácil, dado que indivíduos mal-intencionados tentam constantemente subvertê-los visando benefíciar a si próprios ou a terceiros. Os tipos mais comuns de subversão são os ataques por códigos maliciosos (malware), capazes de dar a um atacante controle total sobre uma máquina. O combate à ameaça trazida por malware baseia-se na análise dos artefatos coletados de forma a permitir resposta aos incidentes ocorridos e o desenvolvimento de contramedidas futuras. No entanto, atacantes têm se especializado em burlar sistemas de análise e assim manter suas operações ativas. Para este propósito, faz-se uso de uma série de técnicas denominadas de "anti-análise", capazes de impedir a inspeção direta dos códigos maliciosos. Dentre essas técnicas, destaca-se a evasão do processo de análise, na qual são empregadas exemplares capazes de detectar a presença de um sistema de análise para então esconder seu comportamento malicioso. Exemplares evasivos têm sido cada vez mais utilizados em ataques e seu impacto sobre a segurança de sistemas é considerá- vel, dado que análises antes feitas de forma automática passaram a exigir a supervisão de analistas humanos em busca de sinais de evasão, aumentando assim o custo de se manter um sistema protegido. As formas mais comuns de detecção de um ambiente de análise se dão através da detecção de: (i) código injetado, usado pelo analista para inspecionar a aplicação; (ii) máquinas virtuais, usadas em ambientes de análise por questões de escala; (iii) efeitos colaterais de execução, geralmente causados por emuladores, também usados por analistas. Para lidar com malware evasivo, analistas tem se valido de técnicas ditas transparentes, isto é, que não requerem injeção de código nem causam efeitos colaterais de execução. Um modo de se obter transparência em um processo de análise é contar com suporte do hardware. Desta forma, este trabalho versa sobre a aplicação do suporte de hardware para fins de análise de ameaças evasivas. No decorrer deste texto, apresenta-se uma avaliação das tecnologias existentes de suporte de hardware, dentre as quais máqui- nas virtuais de hardware, suporte de BIOS e monitores de performance. A avaliação crítica de tais tecnologias oferece uma base de comparação entre diferentes casos de uso. Além disso, são enumeradas lacunas de desenvolvimento existentes atualmente. Mais que isso, uma destas lacunas é preenchida neste trabalho pela proposição da expansão do uso dos monitores de performance para fins de monitoração de malware. Mais especificamente, é proposto o uso do monitor BTS para fins de construção de um tracer e um debugger. O framework proposto e desenvolvido neste trabalho é capaz, ainda, de lidar com ataques do tipo ROP, um dos mais utilizados atualmente para exploração de vulnerabilidades. A avaliação da solução demonstra que não há a introdução de efeitos colaterais, o que per- mite análises de forma transparente. Beneficiando-se desta característica, demonstramos a análise de aplicações protegidas e a identificação de técnicas de evasãoAbstract: Today¿s world is driven by the usage of computer systems, which are present in all aspects of everyday life. Therefore, the correct working of these systems is essential to ensure the maintenance of the possibilities brought about by technological developments. However, ensuring the correct working of such systems is not an easy task, as many people attempt to subvert systems working for their own benefit. The most common kind of subversion against computer systems are malware attacks, which can make an attacker to gain com- plete machine control. The fight against this kind of threat is based on analysis procedures of the collected malicious artifacts, allowing the incident response and the development of future countermeasures. However, attackers have specialized in circumventing analysis systems and thus keeping their operations active. For this purpose, they employ a series of techniques called anti-analysis, able to prevent the inspection of their malicious codes. Among these techniques, I highlight the analysis procedure evasion, that is, the usage of samples able to detect the presence of an analysis solution and then hide their malicious behavior. Evasive examples have become popular, and their impact on systems security is considerable, since automatic analysis now requires human supervision in order to find evasion signs, which significantly raises the cost of maintaining a protected system. The most common ways for detecting an analysis environment are: i) Injected code detec- tion, since injection is used by analysts to inspect applications on their way; ii) Virtual machine detection, since they are used in analysis environments due to scalability issues; iii) Execution side effects detection, usually caused by emulators, also used by analysts. To handle evasive malware, analysts have relied on the so-called transparent techniques, that is, those which do not require code injection nor cause execution side effects. A way to achieve transparency in an analysis process is to rely on hardware support. In this way, this work covers the application of the hardware support for the evasive threats analysis purpose. In the course of this text, I present an assessment of existing hardware support technologies, including hardware virtual machines, BIOS support, performance monitors and PCI cards. My critical evaluation of such technologies provides basis for comparing different usage cases. In addition, I pinpoint development gaps that currently exists. More than that, I fill one of these gaps by proposing to expand the usage of performance monitors for malware monitoring purposes. More specifically, I propose the usage of the BTS monitor for the purpose of developing a tracer and a debugger. The proposed framework is also able of dealing with ROP attacks, one of the most common used technique for remote vulnerability exploitation. The framework evaluation shows no side-effect is introduced, thus allowing transparent analysis. Making use of this capability, I demonstrate how protected applications can be inspected and how evasion techniques can be identifiedMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Survey of Return-Oriented Programming Defense Mechanisms

    Get PDF
    A prominent software security violation-buffer overflow attack has taken various forms and poses serious threats until today. One such vulnerability is return-oriented programming attack. An return-oriented programming attack circumvents the dynamic execution prevention, which is employed in modern operating systems to prevent execution of data segments, and attempts to execute unintended instructions by overwriting the stack exploiting the buffer overflow vulnerability. Numerous defense mechanisms have been proposed in the past few years to mitigate/prevent the attack – compile time methods that add checking logic to the program code before compilation, dynamic methods that monitor the control-flow integrity during execution and randomization methods that aim at randomizing instruction locations. This paper discusses (i) these different static, dynamic, and randomization techniques proposed recently and (ii) compares the techniques based on their effectiveness and performances

    Combatting Advanced Persistent Threat via Causality Inference and Program Analysis

    Get PDF
    Cyber attackers are becoming more and more sophisticated. In particular, Advanced Persistent Threat (APT) is a new class of attack that targets a specifc organization and compromises systems over a long time without being detected. Over the years, we have seen notorious examples of APTs including Stuxnet which disrupted Iranian nuclear centrifuges and data breaches affecting millions of users. Investigating APT is challenging as it occurs over an extended period of time and the attack process is highly sophisticated and stealthy. Also, preventing APTs is diffcult due to ever-expanding attack vectors. In this dissertation, we present proposals for dealing with challenges in attack investigation. Specifcally, we present LDX which conducts precise counter-factual causality inference to determine dependencies between system calls (e.g., between input and output system calls) and allows investigators to determine the origin of an attack (e.g., receiving a spam email) and the propagation path of the attack, and assess the consequences of the attack. LDX is four times more accurate and two orders of magnitude faster than state-of-the-art taint analysis techniques. Moreover, we then present a practical model-based causality inference system, MCI, which achieves precise and accurate causality inference without requiring any modifcation or instrumentation in end-user systems. Second, we show a general protection system against a wide spectrum of attack vectors and methods. Specifcally, we present A2C that prevents a wide range of attacks by randomizing inputs such that any malicious payloads contained in the inputs are corrupted. The protection provided by A2C is both general (e.g., against various attack vectors) and practical (7% runtime overhead)

    VirtSC: Combining Virtualization Obfuscation with Self-Checksumming

    Full text link
    Self-checksumming (SC) is a tamper-proofing technique that ensures certain program segments (code) in memory hash to known values at runtime. SC has few restrictions on application and hence can protect a vast majority of programs. The code verification in SC requires computation of the expected hashes after compilation, as the machine-code is not known before. This means the expected hash values need to be adjusted in the binary executable, hence combining SC with other protections is limited due to this adjustment step. However, obfuscation protections are often necessary, as SC protections can be otherwise easily detected and disabled via pattern matching. In this paper, we present a layered protection using virtualization obfuscation, yielding an architecture-agnostic SC protection that requires no post-compilation adjustment. We evaluate the performance of our scheme using a dataset of 25 real-world programs (MiBench and 3 CLI games). Our results show that the SC scheme induces an average overhead of 43% for a complete protection (100% coverage). The overhead is tolerable for less CPU-intensive programs (e.g. games) and when only parts of programs (e.g. license checking) are protected. However, large overheads stemming from the virtualization obfuscation were encountered

    Detecting Malicious Software By Dynamicexecution

    Get PDF
    Traditional way to detect malicious software is based on signature matching. However, signature matching only detects known malicious software. In order to detect unknown malicious software, it is necessary to analyze the software for its impact on the system when the software is executed. In one approach, the software code can be statically analyzed for any malicious patterns. Another approach is to execute the program and determine the nature of the program dynamically. Since the execution of malicious code may have negative impact on the system, the code must be executed in a controlled environment. For that purpose, we have developed a sandbox to protect the system. Potential malicious behavior is intercepted by hooking Win32 system calls. Using the developed sandbox, we detect unknown virus using dynamic instruction sequences mining techniques. By collecting runtime instruction sequences in basic blocks, we extract instruction sequence patterns based on instruction associations. We build classification models with these patterns. By applying this classification model, we predict the nature of an unknown program. We compare our approach with several other approaches such as simple heuristics, NGram and static instruction sequences. We have also developed a method to identify a family of malicious software utilizing the system call trace. We construct a structural system call diagram from captured dynamic system call traces. We generate smart system call signature using profile hidden Markov model (PHMM) based on modularized system call block. Smart system call signature weakly identifies a family of malicious software
    corecore