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ABSTRACT

Malware Detection Using Dynamic Analysis

by Swapna Vemparala

In this research, we explore the field of dynamic analysis which has shown promis-

ing results in the field of malware detection. Here, we extract dynamic software birth-

marks during malware execution and apply machine learning based detection tech-

niques to the resulting feature set. Specifically, we consider Hidden Markov Models

and Profile Hidden Markov Models. To determine the effectiveness of this dynamic

analysis approach, we compare our detection results to the results obtained by using

static analysis. We show that in some cases, significantly stronger results can be

obtained using our dynamic approach.
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CHAPTER 1

Introduction

Malicious software or malware are harmful software that are designed to harm

computers or computer networks. Malware attacks have become a major threat to the

world. This is a major concern in the consumer space as hackers try to get personal

information of users, steal their identities to make money and use them for other

nefarious activities.

To cite a few examples, Twitter a popular social networking company that re-

cently went public was in the news for the wrong reasons. This newly formed company

was at the receiving end of a major cyber attack. According to news reports 250,000

users’ email addresses, user names and passwords were compromised. Twitter was

able to detect the live attack by identifying the abnormal patterns in which the data

was accessed [11].Target fell victim to a major security breach during the 2013 holiday

season, which is believed to be one of the biggest retail security breaches in United

States. This breach compromised the personal information including credit and debit

card details of a whopping million customers. The information was stolen by hack-

ing the credit card swipe systems at Target stores [10]. This one attack drove down

quarterly revenues of Target by tens of millions of dollars [33].

In today’s world of malware and cyber threats, it has become critical to develop

techniques that quickly detect and eradicate malware. This is important for businesses

and consumers alike. In this paper, we look at different malware detection techniques

and compare their results. Based on the results the best detection techniques will be

identified.
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In this research we use the concept of software birthmarks for malware detection.

Software birthmarks are inherent characteristics that is used to identify a particular

software [18, 31]. The basic idea here is to obtain a "software birthmark", which is

a unique identifier of a software. Having obtained the software birthmark for each

software, one can use this to test the similarity between the two software. If the two

birthmarks are the same, the similarity in the birthmarks implies that one software

is a copy of another. Based on this, there has been a lot of research in the field of

software birthmarks [12, 14, 18, 21, 31, 32, 35, 36].

Software birthmarks can be either static or dynamic [12]. Static birthmarks

are characteristics that can be extracted from a program without executing it [36].

For example, a static birthmark can be based on an extracted opcode sequence. In

contrast, dynamic birthmarks are obtained from a program when it is executed [14,

31, 36]. An example of a dynamic birthmark is the sequence of API calls that occur

when a program is executed [32].

This project extends previous work involving static birthmarks for malware de-

tection [32] to dynamic birthmarks. We employ a variety of machine learning tech-

niques, including Hidden Markov Models (HMMs) and Profile Hidden Markov Mod-

els (PHMMs). To determine the effectiveness of our dynamic analysis techniques, we

compare static and dynamic analysis results on substantial malware datasets using

Receiving Operating Characteristics(ROC) analysis [7]. We show that significantly

stronger malware detection results can be obtained using dynamic analysis of software

birthmarks, as compared to static analysis.

The remainder of this paper is organized as follows. In Chapter 2, we provide

background information on types of malware and detection techniques. Here we

discuss in detail about the two main machine learning based techniques used in this

2



project, Hidden Markov Model based detection and Profile Hidden Markov Model

based detection. In Chapter 3, we discuss the implementation details for this project.

Here we discuss in detail about the tools used for extracting the data, the dataset used

and we also explain in detail the implementation of the machine learning techniques

used in this project. The experiments and discussion of the results are outlined in

Chapter 4. This paper concludes with Chapter 5 that discusses the conclusion and

future work.
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CHAPTER 2

Background

Malware is a generic term that encompasses viruses, worms, backdoor and tro-

jans. Next we will be discussing about the different types of malware in detail.

2.1 Types of Malware

2.1.1 Virus

Virus is a malware that has a self replicating nature. It is constructed to modify

or stop the functioning of a computer. It multiplies by first infecting one program.

When this program is executed the virus tries to insert another version of itself into

another program. A virus can locate itself within multiple areas of a system such

as boot sector,hard drives and programs [1, 4]. An example for a virus is a macro

virus, when the word document is infected by this virus and is opened by a user,

the macros inside the document gets executed, allowing the virus to gain control [4].

In the year 2010, a destructive virus called the Stuxnet virus was created. It was

primarily developed to target industrial control systems which are used in power

plants. This malware was designed to modify and control the programmable logic

controllers present in the control systems in the way the attackers needed [30].

2.1.1.1 Encrypted Virus

These viruses are designed to evade signature based detection techniques used

in Antivirus software as encryption hides the actual signature of the malware. In an

encrypted virus, the body of the virus is encrypted to evade detection. In order for

the virus to run it has to decrypt itself before running the actual virus program. This
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is done by means of the decrypter loop present in the virus. The type of encryption

can be done by means of a static or a variable key or a simple bitwise rotation

or by incrementing or decrementing the bits in the virus body [4]. The basis for

selecting the decrypter algorithm is to choose a simple algorithm that can evade

pattern based detection. Also since the decrypter code is not encrypted choosing a

complex algorithm does not provide any benefit. The first encrypted virus was the

DOS virus Cascade [34].

2.1.1.2 Polymorphic Virus

A polymorphic virus is also similar to the encrypted virus. The difference is that

the decrypter loop changes in each generation unlike in the case of an encrypted virus

whose decrypter loop remains constant. Once the decrypter code gains control of

the host computer it decryptes the body of the virus after which the virus program

can run [27]. This virus can have up to a million decrypter loops with the help of

a mutation engine and hence they are harder to detect compared to the encrypted

viruses [4]. Hence this virus can evade detection by Antivirus software as it has no

specific signature and no constant decryptor code that can help in the identification

process. The polymorphic viruses are indeed hard to detect. Over the past few years,

detection techniques have been developed that wait for the virus to decrypt itself

before detecting it [15]. In 1991 the first polymorphic Tequila and Maltese Amoeba

viruses were detected [27].

2.1.1.3 Metamorphic Virus

These viruses unlike the viruses stated in the above two subsections are not

encrypted. The detection of metamorphic viruses is pretty challenging. They are
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more advanced compared to the encrypted and polymorphic viruses. These viruses

make use of a mutation engine in order to morph its body at each generation but

the basic functionality of the virus remains unchanged [4]. Metamorphic viruses can

make use of different methods to morph the internal structure. A few of the methods

are discussed below.

1. Dead Code Insertion

This is a simple technique used in many of the metamorphic viruses. The idea

here is to insert dead code in such a way that it does alter the functionality of

the code. The Win32/Evol virus, which was created in 2000, is an example of

a virus that has a metamorphic engine that would insert garbage code [15].

2. Instruction Reordering

This involves reordering of the instructions as long as the reordered instructions

do not have a dependency on the previous ones. Since no dependency is broken

instruction reordering does not affect the functionality of the virus but provides

a lot of morphed copies.

3. Instruction Substitution

This involves replacing a group of instructions by their equivalent ones. Hence

the functionality of the malware remains unchanged but we derive a morphed

version of the body [4].

4. Register Swapping

In this technique the virus body is morphed by swapping operand registers with

different registers. Though the virus body is mutated this technique does not

change the opcode sequence as swapping techniques only changes the register
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names. An example for a metamorphic virus that used register swapping is the

W95/Regswap virus that was created back in 1998 [15].

2.1.2 Trojan

A trojan is a malware that looks innocuous to the user but performs malicious

activities in the background and unlike a virus it is a standalone programs. It is not

self-replicating in nature and is user dependent for its propagation. As an example, an

attacker can create a login program that prompts the user to enter the username and

password. If the user mistakenly enters his or her credentials, the program steals the

users credentials by displaying an invalid message and in the second attempt the actual

login program is run [4]. Trojans are very harmful as the user is completely unaware

of the malicious activities that take place in the background. Trojans constitute a

major portion of the today’s malware activity [15].

2.1.3 Worm

A worm is a malware that is similar to a virus. A worm differs from a virus in

the way it spreads to different systems through the network. Worms are not parasitic

in behavior like the viruses. They are independent programs that can cause harm

on their own. These worms may or may not have a payload but both types can be

pretty harmful. Worms without payloads does not affect the system that it infects.

Whereas the worms with payload will do harm to the infected system as well. In

some cases the payload acts as a backdoor instead of making changes to the system.

The backdoor in the user’s system can be used to steal users’ personal information

or credentials. The Morris worm created in 1988 was one of the earliest worms that

was created. In the year 2000, the SQL Slammer worm caused great disruption to
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computers that were connected to the internet and had Microsoft SQL Server running

on their machines [15].

2.1.4 Backdoor

A backdoor is a malware that is used to bypass normal security authentication

processes. After gaining access, it takes control of the system and can remotely control

and monitor it while stealing personal information [4]. An example for a backdoor

malware is Back Orifice [8]. This malware on gaining control of the infected system

can download, upload or delete files, lock or shutdown the computer, or even take

control of the keyboard and mouse [24].

2.2 Static Anti-Virus Techniques

2.2.1 Signature Based Detection

Signature based detection technique is used by many anti-virus products. This

involves scanning through the files in your system in search of a specific set of pat-

terns. The anti-virus products have a database of patterns or signatures and if a

match is found then that file is classified as a malware. The key to a good signa-

ture based detection is that the database of signatures has to be updated frequently

otherwise newly added malware can go undetected. Though this technique can help

in identifying the detected malware, some of the more sophisticated malware such

as metamorphic, encrypted and polymorphic viruses can easily evade this type of

detection [4].
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2.2.2 Static Heuristics Analysis

Unlike signature based detection static heuristics does not identify malware by

scanning signatures. Instead it analyses the behavior, structure and other attributes

for virus-like qualities [4]. This technique can be used to identify zero-day malware as

well as existing malware. This method identifies the probability of a file being infected

by performing an in depth analysis of the instructions, logic of the program, data used

and overall structure of the binary file it scans. There are heuristic scanners that are

available in the industry that have a high detection rate of 70% to 80%. On the pros

side, static heuristics analysis has the ability to detect malware even before they can

infect the computer. On the con side, an inefficient heuristics scanner can results in

multiple false positives where a benign file is wrongly identified as a malware [28].

2.3 Dynamic Anti-Virus Techniques

2.3.1 Behavior Blocker

Behavior blocker executes the program and closely monitors it for suspicious

activities. If a suspicious activity is encountered, the behavior blocker will stop the

program [4]. Unlike static based detection techniques the dynamic based detection

techniques need to only consider the instructions that have been executed. The

behavior blocker takes advantage of this fact and hence focuses on the calls that are

obtained when the code gets executed, since dead code becomes irrelevant as it never

gets executed. Behavior blockers make use of dynamic signatures. The dynamic

signatures are created by collecting the calls that are obtained when executing a

malware. The calls are then grouped over a window of size k. Figure 1 gives an

example of a dynamic signature of length 𝐾 = 3.
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Figure 1: Dynamic Signatures [4]

2.3.2 Emulators

Unlike in the case of behavior blockers the emulators do not run the malware

directly in the system, instead they run it in an emulated environment which is a safe

virtual environment. The emulators make use of dynamic heuristics which collect the

information about the malware that is being executed in an emulated environment.

The information collected by dynamic heuristics can include the requests made to

the operating system by the malware which form the dynamic signatures. Given

the fact that dynamic heuristics closely monitor the operating system, they have a

significant advantage over static heuristics in detecting virus that target operating

systems. On the negative, side the CPU emulation process is much slower compared

to the signature scanning process and hence the dynamic heuristics is slower than

static heuristics. Also some viruses employ logic tricks and hide its infection logic

from the emulator by performing the infection only under specific conditions, which

prevents the dynamic scanner for detecting the malware [28].
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2.4 Hidden Markov Model Based Detection

Hidden Markov models (HMMs) are generally used for statistical pattern anal-

ysis. They have been proven to do well in the fields of speech recognition, biological

sequence analysis [1] and software piracy detection [21]. In this project we extend

the Hidden Markov Model machine learning technique to perform malware detection

using dynamic analysis. A Markov process is a memoryless process that depends only

on the present state. A HMM is used to model a system that is assumed to be a

Markov process with hidden states. In HMM since the state is hidden the user can

only observe the output. The output is dependent on the hidden state. Each state

has an associated probability distribution for a set of observations. The transition

probabilities between the states are fixed. Using the observation sequences that is ob-

tained from the malware(in the case of this project) the HMM can be trained. After

training we can test the observation sequence against a trained HMM to determine

the likelihood of the sequence being a part of the model. A high probability indicates

a good match [1].

Figure 2 represents a typical Hidden Markov Model. The notations used for in

the Hidden Model are shown below Figure 2:

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 2: Hidden Markov Model [22].
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𝑇 = length of the observation sequence
𝑁 = number of states in the model
𝑀 = number of observation symbols
𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} = distinct states of the Markov process
𝑉 = {0, 1, . . . ,𝑀 − 1} = set of possible observations
𝐴 = state transition probabilities
𝐵 = observation probability matrix
𝜋 = initial state distribution
𝒪 = (𝒪0,𝒪1, . . . ,𝒪𝑇−1) = observation sequence.

A HMM is represented as 𝜆 = (A,B, 𝜋). In figure 2, 𝑋𝑖 represent the hidden states.

As mentioned above the Markov process is hidden and is determined by the 𝐴 matrix

and present state. The observations 𝒪𝑖 are visible and are related to the hidden

states, hence we can indirectly obtain information about the hidden states. These

observations are related to B matrix [22].

The HMM can be used to solve three basic problems that are listed below.

1. Problem 1: When given a model 𝜆 = (A,B, 𝜋) and a observation sequence, we

can determine the likelihood of the sequence in that model [22].

2. Problem 2: Given a model 𝜆 = (A,B, 𝜋) and an observation sequence 𝒪, we can

determine an optimal state sequence for the Markov model. We can determine

the most likely hidden sequence [22].

3. Problem 3: When given a observation sequence we can generate the model 𝜆

such that it maximizes the probability of the observation sequences [22].

We use problem 3 for training the HMM in our project. We use the sequences that we

obtain from the malware dataset and append them after which we send them to the

HMM for training. We then use problem 1 for testing where we use the sequences from
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benign datasets to check if the model can classify malware from benign files. Next

we will look at the algorithms used to solve the problems listed above. The forward

algorithm, backward algorithm and Baum-Welch re-estimation algorithm are used

during the training phase and to perform the scoring we used the forward algorithm.

The forward algorithm computes 𝑃 (O|𝜆). It is also known as the alpha pass

algorithm. We can state the algorithm as [22]:

1. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1

2. 𝛼𝑡(𝑖) = 𝑃 (𝒪0,𝒪1, . . . ,𝒪𝑡, 𝑥𝑡 = 𝑞𝑖|𝜆)

The partial observation sequence until time 𝑡 has the probability as 𝛼𝑡(𝑖). This

value is computed recursively using the following forward algorithm approach.

1. For 𝑖 = 0, 1, . . . , 𝑁 − 1, let

𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝑂0)

2. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute

𝛼𝑡(𝑖) =

[︃
𝑁−1∑︁
𝑗=0

𝛼𝑡−1(𝑗)𝑎𝑗𝑖

]︃
𝑏𝑖(𝒪𝑡)

3. The probability of the observation sequence in the model is given by

𝑃 (𝒪|𝜆) =
𝑁−1∑︁
𝑖=0

𝛼𝑇−1(𝑖)

Problem 2 can be solved using the backward algorithm also know as beta

pass [22]. This is opposite to the forward algorithm as it works in reverse. The

algorithm is given below

1. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1
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2. 𝛽𝑡(𝑖) = 𝑃 (O𝑡+1,O𝑡+2, . . . , 𝑂𝑇−1, 𝑥𝑡 = 𝑞𝑖, 𝜆)

This value is computed recursively using the following approach.

1. Let 𝛽𝑇−1(𝑖) = 1, for 𝑖 = 0, 1, . . . , 𝑁 − 1,

2. Compute

𝛽𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

For 𝑡 = 𝑇 − 2, 𝑇 − 3, . . . , 0 and 𝑖 = 0, 1, . . . , 𝑁 − 1 and

𝛾𝑡(𝑖) = 𝑃 (𝑥𝑡 = 𝑞𝑖|𝒪, 𝜆)

For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1,

Having computed 𝛽𝑡(𝑖) and 𝛼𝑡(𝑖) we can determine the probability upto time t

by:

𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)/𝑃 (𝒪|𝜆)

The final algorithm that is discussed here is the Baum-Welch algorithm. In this

algorithm the parameters 𝐴, 𝐵 and 𝜋 are iteratively re-estimated [22]. Problem 3 is

solved using this approach.

1. Step1. We first Initialize 𝜆 = (A,B, 𝜋) to random non uniform values. The

values can be chosen such that 𝜋𝑖 ≈ 1/𝑁 , 𝐴𝑖𝑗 ≈ 1/𝑁 and 𝐵𝑗𝑘 ≈ 1/𝑀 .

2. Step2. Then, we compute 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗).

where

𝛾𝑡(𝑖, 𝑗) = 𝑃 (𝑥𝑡 = 𝑞𝑖, 𝑥𝑡+1 = 𝑞𝑗|𝒪, 𝜆).
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For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑁 − 1} and

𝛾𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

𝑃 (𝒪|𝜆)
.

where di-gammas is the probability of transitioning from state 𝑞𝑖 at time 𝑡 to

state 𝑞𝑗 at time 𝑡+ 1.

𝛾𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗)

the above equation shows the relation between di-gammas and 𝛾𝑡(𝑖)

3. Step3. Re-estimate the HMM model 𝐴, 𝐵 and 𝜋.

4. Step4. If 𝑃 (𝒪|𝜆) increases, then repeat step 2.

This process is stopped when 𝑃 (𝒪|𝜆) does not increase after a certain number

of iterations or threshold [22].

In Chapter 3 we will discuss in detail the implementation of the HMM discussed

here in our project.

2.5 Profile Hidden Markov Model Based Detection

Profile Hidden Markov Model(PHMM) is a probabilistic technique that is widely

used in the field of Bioinformatics. As an application, a Profile Hidden Markov model

could be created by aligning several protein families and this model can be used to

identify the similarity between given unknown protein sequences and the generated

model [20]. An application for this can be obtained in software packages that are

available like HMMER, SAM, PFTOOLS etc. The Profile Hidden Markov Model

technique has unique advantages over the Hidden Markov Model(HMM) technique.

It takes into account the positional information in the sequences used for training

unlike in the case of HMM which appends all the sequences and sends them for
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training. Given the statistical nature of the HMM the position of the sequences

are inconsequential. Also unlike PHMM the HMM does not take into account the

insertions and deletions in a sequence which are important in certain applications [9].

The goal in this project is to test the effectiveness of the PHMM technique in the

field of malware detection using dynamic analysis. The training sequence considered

here are the API calls that are obtained by executing the malware. After the PHMM

model has been created the model will be used to test if a given sequence belongs to

the family or not. It will be tested for malware sequences that belong to the same

family and benign sequences.Figure 3 represents a PHMM.

begin 𝑀1 𝑀2 𝑀3 𝑀4 end

𝐼0 𝐼1 𝐼2 𝐼3 𝐼4

𝐷1 𝐷2 𝐷3 𝐷4

Figure 3: Profile Hidden Markov Model [23].

The rectangles depict the match states. These states as are used to compute a

probability distribution as they have sufficient information to do so. The diamonds

in the figure depict the insert states. The circles depict the delete states. This is

discussed in more detail below. The first step in creating the PHMM is aligning

the sequence to build a multiple sequence alignment(MSA). This is equivalent to the

training step in HMM. A pairwise alignment technique is used to align the sequences

that are obtained from the training set. In this technique a pair of sequences are
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considered and an attempt is made to align the symbols in the sequences. In the

case where the sequences are not similar, gaps are introduced to bring about the

alignment. A special symbol ‘-’ is introduced to represent the gaps. In this project

the training datasets consists of the API calls that are obtained by executing the

malware. In order to perform the pairwise alignment on the dataset some amount of

preprocessing is required.

In the preprocessing step, we followed [3] where the API calls are first sorted by

the frequency of occurrence in a particular malware family and the top 36 API calls

are considered. These top 36 API calls constitute 99.8% to 100% of the total API

calls in a given family. These API calls are then mapped to the letters in the English

alphabet[A-Z] and numbers[0-9]. All the remaining API calls will are mapped to an

asterisk symbol ‘*’ [3]. This preprocessing step simplifies the process of performing a

pairwise alignment to the dataset in consideration.

The next step is creating a substitution matrix. This matrix consists of scores for

all the possible alignment of symbols. The approach used for creating the substitution

matrix is similar to the approach used in [3]. If two symbols are alike then a high

positive score will be assigned. In the case where both symbols are ‘*’ a medium

positive score is assigned .Finally for the case where both the symbols are different a

low negative score is assigned.

For a better understanding of the PHMM technique we will proceed with the

rest of discussion on PHMM by using the example of masquerade detection problem

discussed in [23]. The goal in masquerade detection is to be able to identify an

attacker that would act as a genuine user to get access into the users account and

avoid detection. This is achieved by monitoring the activities of the legitimate user

and collecting patterns and testing to check if the usage pattern differs from the user’s
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pattern. If there is a deviation from the standard behavior of the user then we can

detect the presence of an attacker. For this example we will assume that user uses

only four operations which are elaborated in Table 1.

Table 1: Masquerade detection example with PHMM [23]

E send email
G play games
C C programming
J Java programming

In order to use the PHMM technique for this problem we will monitor these four

operations and collect pattern sequences that describe the general behavior of the user.

The first step is training the PHMM. This involves creating the MSA. The creation

of the MSA requires building a substitution matrix which was discussed earlier and

performing a pairwise alignment of the sequence using dynamic programming. The

dynamic programming approach will require a gap penalty function which we will be

discussing next.

There are two basic types of gap penalty function. The first one is the linear

gap penalty function 𝑔(𝑥) = 𝑎𝑥 where 𝑥 is the length of the gap. The second type is

affine gap penalty 𝑔(𝑥) = 𝑎 + 𝑏(𝑥 − 1) where the cost to open a gap is represented

by 𝑎 and cost for extending an existing gap is given by 𝑏 [23]. With the gap penalty

function and the substitution matrix the alignment of sequences can be done using

dynamic programming. This approach will obtain the alignment with the highest

scoring path. We will now look at the dynamic program recursion [23].
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The pairwise alignment dynamic program is initialized with

𝐺(𝑖, 0) = 𝐹 (𝑖, 0) = 0

𝐺(0, 𝑗) = 𝑗

𝐹 (0, 𝑗) =

𝑗∑︁
𝑛=1

𝑔(𝑛).

Here, 𝐹 (0, 𝑗) is the cost associated with aligning 𝑗 gaps.

The dynamic program recursion is defined by

𝐹 (𝑖, 𝑗) = max

⎧⎨⎩ 𝐹 (𝑖− 1, 𝑗 − 1) + 𝑠(𝑥𝑖, 𝑦𝑗) case 1
𝐹 (𝑖− 1, 𝑗) + 𝑔(𝐺(𝑖− 1, 𝑗)) case 2
𝐹 (𝑖, 𝑗 − 1) + 𝑔(𝐺(𝑖, 𝑗 − 1)) case 3

(1)

where

𝐺(𝑖, 𝑗) =

⎧⎨⎩ 0 if case 1 holds
𝐺(𝑖− 1, 𝑗) + 1 if case 2 holds
𝐺(𝑖, 𝑗 − 1) + 1 if case 3 holds

case 𝑖 “holds” only if it gives the max in (1).

The notation used by the above program is described below [23].

Table 2: PHMM Pairwise Alignment [23]

notation explanation
𝑥 first sequence to align, (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑦 second sequence to align, (𝑦1, 𝑦2, . . . , 𝑦𝑚)

𝑧𝑖...𝑗 subsequence 𝑧𝑖, 𝑧𝑖+1, . . . , 𝑧𝑗 of sequence 𝑧
𝑠(𝑝, 𝑞) score for substituting symbol 𝑝 for 𝑞
𝑔(𝑛) cost of adding 𝑛th gap to sequence of 𝑛− 1 gaps
𝐹,𝐺 matrices of size 𝑛+ 1×𝑚+ 1
𝐹 (𝑖, 𝑗) optimal score for aligning 𝑥1...𝑖 with 𝑦1...𝑗
𝐺(𝑖, 𝑗) number of gaps used to generate 𝐹 (𝑖, 𝑗)

Using the pairwise alignment technique we will now construct the MSA. An ef-

ficient approach to use the pairwise alignment is the progressive pairwise alignment
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strategy. In this approach we start off with a pair of aligned sequences and then we

successively keep adding pair of sequences until all the sequences have been included.

The algorithm used for this approach will be the Feng-Dolittle algorithm. In this al-

gorithm, we start off by computing the pairwise alignment for all the pair of sequences

with the help of the dynamic programming approach that was discussed previously.

We also compute the score from the program. Then we select 𝑛−1 pairwise alignments

(where 𝑛 is the number of sequences) that maximizes the pairwise alignment scores.

Next the minimum spanning tree is created. This is done using the Prim’s algorithm

which takes into consideration the maximum pairwise alignment scores. Finally the

alignments are added to the MSA in order of maximum to minimum score based on

the spanning tree. Additional gaps may have to be inserted during this process using

the gap penalty function. Table 3 represents the final MSA that is created by this

procedure.

Table 3: MSA [23]

E
E
–
E
E

1

𝑀1

C
C
C
G
G

2

𝑀2 𝐼2

–
–
G
–
–

3

–
E
E
–
–

4

–
–
J
J
–

5

–
G
G
G
G

6

𝑀3

Now that we have the MSA the next step is build a PHMM. This involves calcu-

lating the emission and transition probabilities. In order to perform these calculations

we will first identify the match and insert states. The insert states are columns that

have half or more of the total number of elements as gaps. The match states on the

other hand have less than half of the total number of elements as gaps.
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For the first step we will calculate the emission probabilities at the match and

insert state. For example for the first column which is a match state, the emission

probability is calculated by counting the number of symbols in each state. Hence for

the first column the values are

𝑒𝑀1(𝐸) = 4/4, 𝑒𝑀1(𝐺) = 0/4, 𝑒𝑀1(𝐶) = 0/4, 𝑒𝑀1(𝐽) = 0/4

The zero probabilities will lead to overfitting of the data hence the "add-one"

rule is applied to discard the zero probabilities. The add-one rule involves adding one

to the numerator and adding the total number of symbols to the denominator. In

this example one is added to the numerator and four is added to the denominator.

After the add one rule we get the following probabilities

𝑒𝑀1(𝐸) = (4 + 1)/(4 + 4) = 5/8, 𝑒𝑀1(𝐺) = 1/8, 𝑒𝑀1(𝐶) = 1/8, 𝑒𝑀1(𝐽) = 1/8.

For calculating the emission probabilities in the insert state 𝐼2 we consider all

the elements in the dashed box. We get the emission probabilities as

𝑒𝐼2(𝐸) = 2/5, 𝑒𝐼2(𝐺) = 1/5, 𝑒𝐼2(𝐶) = 0/5, 𝑒𝐼2(𝐽) = 2/5

Hence after the add-one rule the emission probabilities are

𝑒𝐼2(𝐸) = 3/9, 𝑒𝐼2(𝐺) = 2/9, 𝑒𝐼2(𝐶) = 1/9, 𝑒𝐼2(𝐽) = 3/9.

For the states that do not have any information like in the case of 𝐼1 we consider

a uniform probability distribution. The final emission probabilities can be seen in

Table 4.

The next step involves calculating the transition probabilities. In this step we

use the following formula in 2 to calculate the probabilities.

𝑎𝑚𝑛 =
number of transitions from state 𝑚 to state 𝑛

total number of transitions from state 𝑚 to any state
. (2)
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Table 4: Emission Probabilities for the MSA in Table 3

𝑒𝑀1(𝐸) = 5/8 𝑒𝐼1(𝐸) = 1/4
𝑒𝑀1(𝐺) = 1/8 𝑒𝐼1(𝐺) = 1/4
𝑒𝑀1(𝐶) = 1/8 𝑒𝐼1(𝐶) = 1/4
𝑒𝑀1(𝐽) = 1/8 𝑒𝐼1(𝐽) = 1/4
𝑒𝑀2(𝐸) = 1/9 𝑒𝐼2(𝐸) = 3/9
𝑒𝑀2(𝐺) = 3/9 𝑒𝐼2(𝐺) = 2/9
𝑒𝑀2(𝐶) = 4/9 𝑒𝐼2(𝐶) = 1/9
𝑒𝑀2(𝐽) = 1/9 𝑒𝐼2(𝐽) = 3/9
𝑒𝑀3(𝐸) = 1/8 𝑒𝐼3(𝐸) = 1/4
𝑒𝑀3(𝐺) = 5/8 𝑒𝐼3(𝐺) = 1/4
𝑒𝑀3(𝐶) = 1/8 𝑒𝐼3(𝐶) = 1/4
𝑒𝑀3(𝐽) = 1/8 𝑒𝐼3(𝐽) = 1/4

Similar to the case of the emission transition probabilities we use the add one rule to

remove the zero probabilities. Calculating the transition probabilities from the begin

state B to 𝑀1 state we get 𝑎𝐵𝑀1 = 4/5. And the transition probabilities from the

begin state B to insert state 𝐼0 and delete state 𝐷1 are

𝑎𝐵𝐷1 = 1/5 and 𝑎𝐵𝐷1 = 1/5

For the add one-one rule we add one to the numerator and the total number of possible

transitions that is three to the denominator. Hence after the add one rule we get

𝑎𝐵𝑀1 = (4 + 1)/(5 + 3) = 5/8, 𝑎𝐵𝐷1 = 2/8, and 𝑎𝐵𝐼0 = 1/8.

For the states which we have no data we assume a uniform distribution and assign a

value of 1/3. Using this method we compute all the values and the results are shown

in table 5.

We have now successfully constructed the PHMM from the MSA and the next

step is scoring. Similar to the case of the HMM the algorithm used for scoring is the

forward algorithm. The target of the algorithm is to compute the score of a given
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Table 5: Transition Probabilities for the MSA in Table 3

𝑎𝐵𝑀1 = 5/8 𝑎𝐼0𝑀1 = 1/3
𝑎𝐵𝐼0 = 1/8 𝑎𝐼0𝐼0 = 1/3
𝑎𝐵𝐷1 = 2/8 𝑎𝐼0𝐷1 = 1/3
𝑎𝑀1𝑀2 = 5/7 𝑎𝐼1𝑀2 = 1/3 𝑎𝐷1𝑀2 = 2/4
𝑎𝑀1𝐼1 = 1/7 𝑎𝐼1𝐼1 = 1/3 𝑎𝐷1𝐼1 = 1/4
𝑎𝑀1𝐷2 = 1/7 𝑎𝐼1𝐷2 = 1/3 𝑎𝐷1𝐷2 = 1/4
𝑎𝑀2𝑀3 = 2/8 𝑎𝐼2𝑀3 = 4/8 𝑎𝐷2𝑀3 = 1/3
𝑎𝑀2𝐼2 = 4/8 𝑎𝐼2𝐼2 = 3/8 𝑎𝐷2𝐼2 = 1/3
𝑎𝑀2𝐷3 = 2/8 𝑎𝐼2𝐷3 = 1/8 𝑎𝐷2𝐷3 = 1/3
𝑎𝑀3𝐸 = 5/6 𝑎𝐼3𝐸 = 1/2 𝑎𝐷3𝐸 = 2/3
𝑎𝑀3𝐼3 = 1/6 𝑎𝐼3𝐼3 = 1/2 𝑎𝐷3𝐼3 = 1/3

sequence X = 𝑥1, 𝑥2,. . . ,𝑥𝑛 of length 𝐿 with (𝑁 + 1) states based on how well it

matches with the PHMM model. State 0 and state 𝑁 are the begin and end states

respectively. The forward algorithm computes the probability of a a given sequence

in the PHMM model recursively. Hence it is a very efficient algorithm. Below of all

the recursive relations are described [23].
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𝐹𝑀
𝑗 (𝑖) = log

(︂
𝑒𝑀𝑗

(𝑥𝑖)

𝑞𝑥𝑖

)︂
+ log

(︁
𝑎𝑀𝑗−1𝑀𝑗

exp
(︀
𝐹𝑀
𝑗−1(𝑖− 1)

)︀
+ 𝑎𝐼𝑗−1𝑀𝑗

exp
(︀
𝐹 𝐼
𝑗−1(𝑖− 1)

)︀
+ 𝑎𝐷𝑗−1𝑀𝑗

exp
(︀
𝐹𝐷
𝑗−1(𝑖− 1)

)︀)︁
𝐹 𝐼
𝑗 (𝑖) = log

(︂
𝑒𝐼𝑗(𝑥𝑖)

𝑞𝑥𝑖

)︂
+ log

(︁
𝑎𝑀𝑗𝐼𝑗 exp

(︀
𝐹𝑀
𝑗 (𝑖− 1)

)︀
+ 𝑎𝐼𝑗𝐼𝑗 exp

(︀
𝐹 𝐼
𝑗 (𝑖− 1)

)︀
+ 𝑎𝐷𝑗𝐼𝑗 exp

(︀
𝐹𝐷
𝑗 (𝑖− 1)

)︀)︁
𝐹𝐷
𝑗 (𝑖) = log

(︁
𝑎𝑀𝑗−1𝐷𝑗

exp
(︀
𝐹𝑀
𝑗−1(𝑖)

)︀
+ 𝑎𝐼𝑗−1𝐷𝑗

exp
(︀
𝐹 𝐼
𝑗−1(𝑖)

)︀
+ 𝑎𝐷𝑗−1𝐷𝑗

exp
(︀
𝐹𝐷
𝑗−1(𝑖)

)︀)︁

The value for the base case for this algorithm is zero and 𝑞𝑥𝑖
is the distribution

of 𝑥𝑖. From the forward algorithm all the terms provide the score of a given sequence

and the sum of the scores provides the final score. In order to be able to compare

scores for different sequences directly we normalize the score by dividing it by the

length of the sequence. The logarithms take care of any possible underflow problems.

In [3] an in depth analysis has been done in using the PHMM model for detecting

computer virus variants generated using construction kits. The PHMM model was

created using the opcode sequences. The experiments proved that the PHMM was

able to achieve a high detection rate for the chosen malware families. The work also

shows that the PHMM based detection was successful in detecting even the hard to

detect metamorphic viruses. The authors in [6] have also achieved good results using

PHMM in aligning words that linguistically have the same root. Given the success of

PHMM in various applications in this project we extend the work in [3] to perform

24



the PHMM based detection using dynamic analysis. The implementation details are

discussed in Chapter 3.

2.6 Analysis Techniques

Software birthmarks are characteristics that are unique to a particular software.

There are two types of birthmarks - static and dynamic Birthmarks. The static birth-

marks are the characteristics that can be extracted from the program itself without

executing it. For example opcodes sequences can be considered as a static birthmark

for a program.

Dynamic birthmarks are the characteristics that are obtained from a program

when it is executed. These can be API calls that are recorded when the program is

executed.

In this section we will discuss two main analysis techniques which use the concept

of static and dynamic birthmarks for malware Detection

2.6.1 Static Analysis

Static Analysis involves analyzing the program without executing it. In [21] static

analysis is performed by extracting opcode sequences with the help of a disassembler.

The key advantage of static analysis is that it is more efficient, fast and a more

preferred approach if it works effectively as it is less expensive in terms of consuming

the system resources. Compared to the dynamic analysis technique, it is also safer

since it does not involve the execution of the malware. The drawback of this technique

is that it can easily be defeated by simple code obfuscation techniques like morphing

the virus, garbage code insertion or encrypting the virus [4].
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2.6.2 Dynamic Analysis

Dynamic Analysis is performed by extracting dynamic software birthmarks. Dy-

namic birthmarks, such as Application Program Interface(API) calls obtained at run-

time, cannot be defeated so easily [31] and hence a powerful signature of a particular

malware family for detection. Dynamic birthmarks are resilient to code obfuscation

when compared to the static birthmarks. The disadvantages of dynamic analysis is

that it is more expensive, can be potentially harmful as it involves executing the

malware and is slower compared to static analysis.

In this project we use the dynamic and static birthmarks for malware detection.

We compare the results obtained from dynamic and static analysis. We then attempt

to show that the results obtained from dynamic analysis are better compared to static

analysis in terms accuracy.

2.7 Previous Work

There has been a lot of research done in the field of static and dynamic birth-

marks. In this section we will review some of the static and dynamic birthmark

techniques.

2.7.1 𝐾-gram Based Techniques

In [18] the authors propose a static 𝑘-gram based birthmark. This birthmark is

computed by extracting unique opcodes of length 𝑘 for a module. The effectiveness

of this birthmark is tested on randomly selected applications and also on programs

that are semantically different but accomplish the same task. The authors identify an

optimum k value at which the credibility and resilience of the birthmark is maximized.
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Continuing on this work the authors in [5] have proposed a dynamic birthmark

based on the 𝐾-gram technique. In this paper the authors construct a 𝑘-gram based

birthmark by traversing a window of length 𝑘 over an opcode sequence in the case of

static and over an executable trace for the case of dynamic. The authors evaluated the

strength of the dynamic birthmarking technique by comparing the results obtained

from static and dynamic cases when code obfuscation is applied. They show that

the static 𝑘-gram birthmark fails with simple code obfuscation like insertion of dead

code. On the other hand, dynamic 𝑘-gram birthmark is much more robust since it is

based on runtime behavior which is tougher to change by an attacker.

2.7.2 Graph Based Technique

Another novel technique is discussed in [2]. This is a graph based technique in

which a graph is constructed by collecting dynamic instruction traces of an executable

file. The constructed graphs are Markov chains consisting of instructions and transi-

tion probabilities. A similarity matrix is created using the graph kernels for different

instruction traces. A Support Vector Machine takes this similarity matrix as input

to perform the malware classification. The author shows that this technique is an

improvement over raw 𝑛-gram, signature and machine learning based techniques.

2.7.3 API Calls Based Techniques

Next, we look at a birthmark technique discussed in [31]. In this paper two

birthmarks are proposed which are the API call sequences and API call frequencies

that are collected during runtime. As mentioned in the previous papers, altering

information at runtime is very tough to accomplish by an attacker because it is

difficult to substitute API calls with equivalent ones especially in the case of file
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I/O, semaphore and GUIs APIs without altering program behavior. The authors

leverage this fact for creating a strong dynamic birthmark. A key fact to note is that

different programs using the same APIs will not have the same order of API calls

upon execution. In the event that an attacker is able to alter the API call sequences,

the frequency of API calls would remain unchanged. Hence the author looks at a

combination of both the birthmarks discussed above to make the detection technique

more robust.

2.7.4 Operand Stack Runtime Based Technique

In the papers above we have predominantly looked at API calls as dynamic

birthmarks. In [12] the authors use the operand stack runtime behavior of a Java

Virtual Machine. This is considered as a birthmark due to its unique nature at

runtime. This birthmark exhibits high tolerance towards code change and good ability

to discern programs that could be a pirated version of another.

It is evident from the works above that dynamic birthmarks have inherent ad-

vantages over its static counter parts. Having done an extensive survey of existing

research, our work is built upon idea of using a dynamic birthmark in the field of

malware detection using machine learning based detection techniques.
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CHAPTER 3

Implementation

This chapter consists of the method used in the implementation part of the

project. The first section gives information about the training and testing approach

using HMMs. The second section gives information on training and testing using

PHMMs. The third section contains an overview of how the data was collected. The

fourth section gives details about the tools used in the project

3.1 HMM

3.1.1 Dynamic Analysis Technique

In order to perform the dynamic analysis, we used the Buster Sandbox Analyzer

to execute the malware and benign datasets and collected API call logs. Then we

extracted the API calls from the log files by writing shell scripts. These constitute the

dynamic birthmarks of the chosen malware. These API call sequences were then ap-

pended to form a long observation sequence that was sent for training using the HMM.

After the training step is completed a model is obtained from the HMM. This model

is then used during the scoring step. The malware and benign sets are scored against

the model. These scores are then plotted in a scatter plot. From the scatterplot the

separation between the malware and benign scores were observed to determine the

separation. Then the ROC curves were plotted to determine the effectiveness of the

chosen birthmark and the area under the curve(AUC) was calculated.

The training was performed for 1000 to 1500 iterations depending on the chosen

dataset till the 𝐵 matrix values converged completely. The five-fold cross-validation

method was used in our experiments. For the five-fold cross-validation method we
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divided the dataset into five groups. Four of the five groups were used for training

and one group was used for testing. This process was performed five times until all

the permutation of groups have been used for training and testing. We performed the

experiments for seven different malware families. In our experiments we have chosen

𝑁 (number of hidden states)=2.

3.1.2 Static Analysis Technique

This technique Involves disassembling the malware using the IDA Pro disassem-

bler. After which the opcode sequences are extracted from the malware. We then

wrote scripts to extract only the opcodes and disregard the operands and the rest of

the data. These constitute the static birthmarks of the chosen malware. The opcode

sequences from all the files were merged to form a observation sequence which was

then sent for training using the HMM. After the training step is completed a model is

obtained from the HMM. The malware and benign set are scored against the model.

We then created a scatterplot from the scores. From the scatterplot the separation

between the malware and benign scores are observed and ROC curves are also plot-

ted to determine the effectiveness of the chosen birthmark. Similar to the dynamic

analysis technique, the training was performed for 1000 to 1500 iterations depending

on the chosen dataset till the 𝐵 matrix values converged completely. The five-fold

cross-validation method was also used in this case [14, 21] similar to the dynamic

analysis case mentioned previously. In this case also we have chosen 𝑁=2 and we

have performed the experiments on seven different malware families.
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3.2 PHMM

The goal here is to create a MSA from the sequences of API calls that are

obtained from the malware families and build a PHMM model from it. Using the

PHMM model we will score the benign and malware sequences to test the effectiveness

of this technique in the field of malware detection using dynamic analysis.

The first step involves preprocessing the input dataset for each malware fam-

ily individually. This involves mapping the API call sequences to alphabet[A-Z],

numbers[0-9] and the asterisk symbol "*" based on the frequency of occurrence. After

this step we will have a total of 37 unique symbols. This preprocessing step simplifies

the process of aligning the sequences. The next step involves creating a substitution

matrix by assigning scores for different combination of alignment of symbols. Then

we build the MSA using the pairwise alignment approach and dynamic programming

taking into consideration the gap penalty functions using the approach in [3]. The

algorithm used for building the MSA is the Feng-Dolittle algorithm. Given the MSA

we next build the PHMM model from it using the implementation we have written.

We developed a model for each of the families using a subset of the sequences. We

have reserved the remaining sequences in the malware family for testing.

For building the PHMM model we did the following in our implementation.

We first compute the begin probabilities. The begin states is considered to be the

𝑀0 state. The probabilities from 𝑀0 state to the first insert, match and delete

state are calculated. We then identify the match and insert states by identifying

the conservative (columns which have more than half of the elements as deletes) and

non-conservative columns. We then compute the emission probabilities by computing

the frequency of symbols in each of the columns. The next step involves calculating

the transition probabilities. This is done by calculating the transitions made between
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the columns. While performing the emission and transition probability calculations

we use the add-one rule to avoid zero values that could overfit the data. Finally

we calculate the end probabilities. The last state also known as the exit state is

considered to be the 𝑀𝑛+1 state. The begin state and the exit state do not emit

symbols and hence we do not calculate the emission probabilities [3] for this case.

Once we have built the PHMM model we then use the forward algorithm to

compute scores against the PHMM model. The scoring program generated three

different scores. They are scores of the input sequence ending in a insert, match or

delete state. We then sum up the three values to get the final score. In order to be

able to compare scores for different sequences we normalize the scores. We achieve

this by dividing the final score with the length of the sequence. We have used malware

sequences from the same family and benign sequences for the scoring. The details of

the forward algorithm used are described in chapter2.

3.3 Chosen Dataset

For the Malware set we have considered seven different malware families:

Zbot: Zbot is a Trojan that compromises the system it infects and steals all the

confidential information from the system such as online credentials [26].

Cridex: Cridex is a worm that multiplies and spreads through removable drives.

It downloads malicious programs into the system it has attacked [25].

Winwebsec: Winwebsec is a Trojan that generally attacks users of windows op-

erating systems. It impersonates anti-malware software and displays fake messages

saying that the user’s system has been infected. It then makes the user pay for the

fake anti-malware product to remove the threats [17].
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SmartHdd: SmartHdd is a malware that targets users of Windows operating

system. It tricks the users into thinking that it is SMART hardware monitoring

system and hence the name. It generates fake messages indicating that the hard

drive is failing and makes the user pay in order to fix the issue. It also disables the

antivirus software in the compromised systems [13].

Security Shield: This is a fake antivirus software that falsely claims that it will

protect the system from malware and demands the user to pay money to get the full

version [16].

Zeroaccess: This is a Trojan that attacks systems with Windows operating sys-

tem. It downloads other malicious programs into the compromised system from a

botnet [29].

Harebot: This is a backdoor malware that generally affects the systems with

Windows operating system. It brings down the productivity of the compromised

system. It provides a backdoor for the hackers to gain access to the compromised

system and steal information [19]. Table 6 has the list of malware families and number

of files used in this project

Table 6: Benign files

Malware family Number of files
Zbot 100

Cridex 50
Winwebsec 100
SmartHdd 50

Security Shield 50
Zeroaccess 100
Harebot 50

The benign set used for this project were the Microsoft games available in Win-
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dows 7 along with some freeware. Table 8 has the list of benign files used in this

project

Table 7: Benign files

No. Benign file
1 bdaycontrol.exe
2 IRATrack.exe
3 MineSweeper.exe
4 SpiderSolitaire.exe
5 PurblePlace.exe
6 FreeCell.exe
7 Chess.exe
8 7zFM.exe
9 hh.exe
10 Mahjong.exe
11 DVDMaker.exe
12 datewiz.exe
13 winhlp32.exe
14 bdaycheck.exe
15 setup.exe
16 Countdown Pro.exe
17 unins000.exe
18 bckgzm.exe
19 nanoclock.exe
20 shvlzm.exe

3.4 Tools Used In the Project

3.4.1 Tools Used for Dynamic Analysis

For this project we used the Buster Sandboxie Analyzer(BSA) for getting the

API calls. The BSA is an analyzer that analyzes malware behavior of processes.

It captures all the changes made to the system by the processes. The information

captured by the BSA include file system changes, windows registry changes and port

changes. The sandbox software which is in this tool helps protect the system when
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the malware is being executed. It prevents the malware from making changes into

the system [9].

3.4.2 Tools Used for Static Analysis

The other tool that was used in the project was IDA Pro. IDA Pro is a disas-

sembler which can generate machine level code given an executable file. This tool

was used to disassemble the malware and benign set and generate the asm files. The

opcodes were the extracted from these asm files with the help of scripts.
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CHAPTER 4

Experiments and Results

The main goal of our experiments is to test the effectiveness of the dynamic

analysis technique. This chapter comprises of the setup and the results of the exper-

iments of the project. The setup section consists of the specifications of the host and

the guest machines. The results section contains the discussion on the results of the

project.

4.1 Setup

In this project, we have used a virtual machine container and we have taken

the snapshots of the whole system for recovery purposes. We have used the Oracle

VM Virtual Box. The host machine that we used had a Intel(R) Core(TM) i5-

3317U CPU@1.7Ghz processor, 6GB RAM, 64-bit Operating system and Windows

8.1 operating system. The guest machine that we used in out experiments was a

Oracle Virtual Box 4.3.16 VMs and it consisted of a base memory of 3310MB, 6 GB

RAM, 32 bit operating system and Windows 7 operating system.

The training and testing of the HMMs and PHMM are done in the host machine

whereas the API calls and opcode extraction are done in the guest machine.

4.2 Results

After performing the experiments we plotted Receiving Operating Characteristics

(ROC) and calculated Area Under the Curve (AUC) for all the malware families.
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4.2.1 Receiving Operating Characteristics

Receiving operating characteristic (ROC) is a graphical plot used to determine

the effectiveness of a machine learning algorithm. In this project we will be using

this as a bench marking tool for evaluating the performance of the machine learning

techniques for our feature set. We construct the ROC by plotting the true positive

rate (TPR) versus the False positive rate (FPR) by taking into consideration different

thresholds. It can be seen in Figure 4 that there is a shaded region in the ROC curve.

The Area Under the Curve is obtained by calculating the area in the shaded region.

This value lies between 0.5 and 1. An AUC of 1 implies that it has no false positive

or false negatives and can hence classify perfectly [22]. Figure 4 is an example of a

ROC curve where the area under curve is 1. It has been show in [7] that ROC works

efficiently as a classification performance measure for machine learning algorithms.

Figure 4: ROC Curve

4.2.2 Hidden Markov Model

We perform HMM on seven malware families using both static and dynamic

analysis. We then plot the ROC for each case and calculate the AUC. To perform a

comparison on both the techniques we have chosen the same data set in both cases.

We now consider a single family and examine the results. Figure 5 and A.13 show the
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scatterplot and the ROC curve for the security shield malware family respectively.

Figure 5: Security Sheild: Scatterplot

Figure 6: Security Shield: Area Under the Curve

It can be seen that there is a clear separation between the malware and benign

scores. The AUC = 1 for this family using dynamic analysis. This implies that it

is a perfect classifier and does not not have any false positives or false negatives.

This indicates that the dynamic analysis technique using HMM works effectively

for detecting malware.They represent the scatterplot and the ROC curve for the

security shield malware family respectively. We now turn our attention to the Figure 7

and B.20

Figure 7: Security Shield: Scatterplot
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Figure 8: Security Shield: Area Under the Curve.

It can be seen from the scatterplot that there is a lot of misclassification of the

malware and benign files and there is no clear separation between the scores unlike

in the dynamic analysis case. Also the AUC = 0.676 indicates that it is a very

poor classifier. It can be clearly seen that dynamic analysis using HMM based de-

tection has outperformed static analysis. We have performed experiments on a total

of seven malware families and the scatterplots and ROC curves are presented in the

appendix A for dynamic analysis and appendix B for static analysis. A summary of

the results comparing the area under the curves obtained from static and dynamic

analysis using HMM for all the malware families are presented in the Table 8. From

the table we can see that the AUC for dynamic analysis is much greater the AUC

for static analysis except for the case of the SmartHdd malware family where the

static analysis has marginally performed better than dynamic analysis. This is be-

cause the number of unique API calls obtained from SmartHdd were fewer in number

compared to the unique opcodes in the static analysis case which makes the HMM

model weaker for classifying malware and benign files. On an average the AUC for

dynamic analysis technique is 0.976 the average AUC for the static analysis technique

is 0.785. It clearly shows that the our dynamic analysis technique has outdone the

static analysis technique and that our chosen birthmarks are effective in detecting

malware. This is because the dynamic analysis requires the execution of the malware
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which removes a layer of obfuscation and hence provides a robust birthmark for de-

tecting malware. Also in the case of static analysis we just consider opcode sequences

which do not capture the actual behavior of the malware. In the case of dynamic

analysis we take into account the execution trace which is unique to different malware

families at different inputs and hence captures the unique behavior of the malware

and hence renders itself nicely as a dynamic birthmark. Although the dynamic anal-

ysis technique is expensive as it involves executing the malware the classification is

far better than static analysis.

Table 8: AUC curve results for static and Dynamic Analysis

AUC
Malware family Dynamic Static

Zbot 0.990 0.847
Security Shield 1.000 0.676

Cridex 0.964 0.596
Zeroaccess 0.979 0.923
Winwebsec 0.985 0.835
SmartHdd 0.980 0.996
Harebot 0.974 0.622

4.2.3 Profile Hidden Markov Model

In the previous section we discussed we have seen that the HMM technique using

dynamic analysis has performed well. In this section we test the effectiveness of the

PHMM technique to see if we can get improved scores over the HMM technique in the

field of malware detection using the dynamic analysis approach. We have achieved

this by considering each malware family individually and then grouping the sequences

in increments of 5 or 10 sequences. We have then created the PHMM model for each

of these groups. We have done this to check which grouping of sequences produces
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effective results. We have kept the mapping used for the malware families fixed for the

scoring involved for the respective malware families. For scoring we have used benign

sequences and unseen malware sequences of the family. The score of a sequence with

respect to the model will give the similarity of the sequence to the model. A high

score indicated that the sequences is related to the model and a low score indicated

that it is not similar.

The ROC curves obtained using PHMM for all the possible groups for the ze-

roaccess family if provided in figure C.30. It can be seen that we get an AUC of 1

for groups 30, 50 and 70 and for the remaining groups the AUC is above 0.90. This

implies that we are able to get a group for which we get perfect classification.

Figure 9: Zeroaccess PHMM ROC -all groups

We have performed the experiments for all the malware families for different

grouping of sequences. And the summary of the results are provided in Table 9. The

ROC Curves for all the families are presented in Appendix C

Figure 10 shows a graphical representation of the AUC obtained for all groups

of the malware families using PHMM.
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Figure 10: PHMM results -all groups

We select the maximum AUC value among all the groups for each of the mal-

ware family and that will represent the AUC for that particular malware family. To

compare the performance of the PHMM over the HMM technique we have plotted a

bar graph considering the AUC for each malware family in Figure 11. It can be seen

that PHMM has performed consistently well across all the families with an AUC of 1.

This implies that we are able to achieve perfect detection using PHMM consistently.

This is because we are taking into account the positional information of the sequences

and it provides more information of the malware’s behavior. The HMM technique

using dynamic analysis has also performed comparatively well with the minimum

AUC being 0.96 and maximum AUC being 1 for Security shield. This shows that the

chosen dynamic birthmark is able to capture the behavior of the malware effectively

and is effective for malware detection.

Figure 11: HMM and PHMM Comparison -all groups
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Table 9: PHMM Results

Malware family PHMM score
Harebot group 5 .875
Harebot group 10 0.952
Harebot group 15 1.00
Cridex group 5 0.9575
Cridex group 10 1
Cridex group 15 0.9975

SmartHdd group 5 0.812
SmartHdd group 10 0.905
SmartHdd group 15 0.9625
SmartHdd group 20 1.00
SmartHdd group 30 0.9975
SmartHdd group 40 1
SmartHdd group 50 1

Zbot group 5 0.915
Zbot group 10 0.97
Zbot group 15 1
Zbot group 20 0.9725
Zbot group 30 1
Zbot group 40 1

Zeroaccess group 5 0.905
Zeroaccess group 10 0.9875
Zeroaccess group 15 0.9675
Zeroaccess group 20 0.975
Zeroaccess group 30 1
Zeroaccess group 40 0.995
Zeroaccess group 50 1
Zeroaccess group 60 0.9975
Zeroaccess group 70 1

Security Shield group 5 0.9875
Security Shield group 10 0.964
Security Shield group 15 1

Winwebsec group 5 0.997
Winwebsec group 10 0.995
Winwebsec group 15 1
Winwebsec group 20 0.98
Winwebsec group 30 1
Winwebsec group 40 1
Winwebsec group 50 0.975
Winwebsec group 60 1
Winwebsec group 70 0.995
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CHAPTER 5

Conclusion and Future work

Growing malware and cyber threats have necessitated the need for robust and

efficient detection techniques. In our project we analyzed the static and dynamic

antivirus detection techniques and identified the advantages of dynamic analysis. We

then applied the dynamic analysis techniques for malware detection using the Hidden

Markov Model and Profile Hidden Markov Model machine learning techniques.

HMM has been proven to be successful in the field speech recognition, software

piracy detection and metamorphic malware detection [14, 21]. Given that it is a

popular machine learning technique with good rates of success we have chosen to

implement HMM to detect malware using the dynamic analysis technique.

For the dynamic analysis technique we extracted the API calls from the malware

and benign files. We then tested to see if the HMM technique is effective in detecting

malware using dynamic analysis. Our results show that the HMM technique using

dynamic analysis is robust in detecting malware. In order to get an idea on how

the dynamic analysis technique performed over static analysis we performed static

analysis on the same malware families. Our results show that the dynamic analysis

has out performed static analysis. This is because of the fact that the dynamic

analysis technique removes a layer of obfuscation and hence provides a more effective

way of detecting malware. The average AUC we obtained for all the families using

dynamic analysis was 0.976 and the average AUC we obtained for all the families

using static analysis was 0.785. We were able to prove that the dynamic analysis

using HMM is better than static analysis and that our chosen dynamic birthmark is
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effective in detecting malware.

In our project we have also implemented the PHMM in the field of malware

detection. PHMM has been successful in the field of bio informatics and works well

in identifying the relation between DNA sequences. Given that PHMM works well

with sequences it lends itself nicely for malware detection using dynamic analysis. We

have tested our PHMM model for different grouping of sequences and we were able to

a achieve perfect detection for all the malware families. This shows that the PHMM

model along with the chosen dynamic birthmark is able to capture the behavior of

the malware family effectively and is effective in malware detection.

For future work, these experiments can be extended to metamorphic viruses

where the HMM and PHMM technique can be performed at different morphing ra-

tios using the dynamic analysis approach to test its effectiveness. The performance

of dynamic analysis can be compared with the static analysis technique to determine

which technique works the best for metamorphic viruses. The dynamic birthmark

considered in this paper are API calls. The dynamic analysis approach can be tried

for different birthmarks and a more efficient birthmark can be identified. Another

potential approach can be combining the API calls with other types of dynamic birth-

mark using a Support Vector Machines to develop an even robust malware detection

model. The effectiveness of dynamic analysis can be tested by applying advanced

code obfuscation technique to the malware hence providing a challenging dataset for

testing. Different machine learning based detection techniques can be applied using

dynamic analysis to evaluate the performance of dynamic analysis for different cases.

.
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APPENDIX A

Dynamic Analysis Results

Figure A.12: ZBOT: Area Under the Curve.

Figure A.13: Security Shield: Area Under the Curve.

Figure A.14: Harebot: Area Under the Curve.
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Figure A.15: Smarthdd: Area Under the Curve.

Figure A.16: Winwebsec: Area Under the Curve.

Figure A.17: Zeroaccess: Area Under the Curve.

Figure A.18: Cridex: Area Under the Curve.
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APPENDIX B

Static Analysis Results

Figure B.19: ZBOT: Area Under the Curve.

Figure B.20: Security Shield: Area Under the Curve.

Figure B.21: Harebot: Area Under the Curve.
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Figure B.22: Smarthdd: Area Under the Curve.

Figure B.23: Winwebsec: Area Under the Curve.

Figure B.24: Zeroaccess: Area Under the Curve.
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Figure B.25: Cridex: Area Under the Curve.
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APPENDIX C

PHMM RESULTS

Figure C.26: Cridex PHMM ROC -all groups

Figure C.27: Harebot PHMM ROC -all groups
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Figure C.28: Security Shield ROC -all groups

Figure C.29: SmartHhdd PHMM ROC -all groups
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Figure C.30: Zeroaccess PHMM ROC -all groups

Figure C.31: Winwebsec PHMM ROC -all groups
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Figure C.32: Zbot PHMM ROC -all groups

57


	San Jose State University
	SJSU ScholarWorks
	Spring 5-25-2015

	Malware Detection Using Dynamic Analysis
	Swapna Vemparala
	Recommended Citation


	Introduction
	Background
	Types of Malware
	Virus
	Trojan
	Worm
	Backdoor

	Static Anti-Virus Techniques
	Signature Based Detection
	Static Heuristics Analysis

	Dynamic Anti-Virus Techniques
	Behavior Blocker
	Emulators

	Hidden Markov Model Based Detection
	Profile Hidden Markov Model Based Detection
	Analysis Techniques
	Static Analysis
	Dynamic Analysis

	Previous Work
	K-gram Based Techniques
	Graph Based Technique
	API Calls Based Techniques
	Operand Stack Runtime Based Technique


	Implementation
	HMM
	Dynamic Analysis Technique
	Static Analysis Technique

	PHMM
	Chosen Dataset 
	Tools Used In the Project 
	Tools Used for Dynamic Analysis 
	Tools Used for Static Analysis 


	Experiments and Results
	Setup 
	Results
	Receiving Operating Characteristics
	Hidden Markov Model
	Profile Hidden Markov Model


	Conclusion and Future work
	Dynamic Analysis Results
	Static Analysis Results
	PHMM RESULTS 

