
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2009

Detecting Malicious Software By Dynamicexecution Detecting Malicious Software By Dynamicexecution

Jianyong Dai
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Dai, Jianyong, "Detecting Malicious Software By Dynamicexecution" (2009). Electronic Theses and
Dissertations, 2004-2019. 3993.
https://stars.library.ucf.edu/etd/3993

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236257665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F3993&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F3993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3993?utm_source=stars.library.ucf.edu%2Fetd%2F3993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Detecting Malicious Software by Dynamic

Execution

by

JIANYONG DAI

M.S., University of Central Florida, 2008

B.S., Shanghai Jiaotong University, 1998

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science

at the University of Central Florrida

Orlando, Florida

Summer Term

2009

Major Professor: Ratan K. Guha

c© 2009 Jianyong Dai

ii

ABSTRACT

Traditional way to detect malicious software is based on signature matching. However,

signature matching only detects known malicious software. In order to detect unknown

malicious software, it is necessary to analyze the software for its impact on the system when

the software is executed. In one approach, the software code can be statically analyzed

for any malicious patterns. Another approach is to execute the program and determine

the nature of the program dynamically. Since the execution of malicious code may have

negative impact on the system, the code must be executed in a controlled environment.

For that purpose, we have developed a sandbox to protect the system. Potential malicious

behavior is intercepted by hooking Win32 system calls.

Using the developed sandbox, we detect unknown virus using dynamic instruction se-

quences mining techniques. By collecting runtime instruction sequences in basic blocks, we

extract instruction sequence patterns based on instruction associations. We build classifica-

tion models with these patterns. By applying this classification model, we predict the nature

of an unknown program. We compare our approach with several other approaches such as

simple heuristics, NGram and static instruction sequences.

We have also developed a method to identify a family of malicious software utilizing the

system call trace. We construct a structural system call diagram from captured dynamic

system call traces. We generate smart system call signature using profile hidden Markov

model (PHMM) based on modularized system call block. Smart system call signature weakly

identifies a family of malicious software.

iii

ACKNOWLEDGMENTS

A PhD degree is not just a personal achievement. It is a contribution of a group of

people.

First, I would like to thank my thesis committee members. In particular, Dr Ratan

Guha who advise me to finish my major research accomplishment during my PhD study.

Dr Joohan Lee, who advise me for my initial part research and build a solid ground for my

continuous work. Dr Cliff Zou, who arouse my interest to work on security. Dr Morgan

Wang, who give me lots of suggestions on data mining.

I would also thank for Dr Ning Zhang, without your support, I can hardly finish my PhD

study. Dr Jianlin Cheng, who consistently encourages me with my research.

I would like to give thanks to my parents. Without your wholehearted support, I may

not be able to make my decision to pursue a PhD degree.

Last but not the least, I would like to thank all my friends in the University of Central

Florida who are around me everyday. I can only name a few here, Ping Wang, Shipeng Qiu,

Yu Ao, Danzhou Liu, Ruifeng Xu, Qing Chang, etc. You keep me happy and give me the

courage and help to get through all the difficulties.

iv

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES x

CHAPTER 1: INTRODUCTION 1

1.1 Motivation . 1

1.2 Dynamic Instruction Sequences Approach Overview 2

1.3 Structural System Call Diagram Approach Overview 3

1.4 Dissertation Organization . 4

CHAPTER 2: BACKGROUND 5

2.1 Malicious Software . 5

2.2 Conventional Malicious Software Detection Techniques 7

2.3 Detecting Unknown malicious software . 11

2.3.1 Heuristics . 11

2.3.2 Research Domain . 16

CHAPTER 3: DYNAMIC EXECUTION MONITOR 23

3.1 Overview . 23

3.2 Malicious Behavior Sandbox . 25

3.3 Elicit Malicious Behaviors . 27

3.4 API Protection Policy . 28

3.5 Implementation . 29

3.6 Instruction Capturing . 32

3.7 Backend . 34

3.8 Limitation . 35

v

CHAPTER 4: DETECTING WIN32 VIRUSES USING DYNAMIC IN-

STRUCTION SEQUENCES 36

4.1 SYSTEM OVERVIEW . 36

4.2 LOGIC ASSEMBLY . 38

4.3 INSTRUCTION ASSOCIATIONS . 42

4.4 DATA MINING . 43

4.4.1 Process Overview . 43

4.4.2 Feature Selection . 44

4.4.3 Classification . 46

4.4.3.1 Decision Tree . 46

4.4.3.2 Support Vector Machine . 47

4.4.3.3 Other Classifier . 49

4.4.4 N-folds Cross Validation . 49

4.4.5 Ensemble Model . 49

4.4.6 Performance Measurement . 50

4.5 PERFORMANCE ANALYSIS . 51

4.6 Dataset . 53

4.7 EXPERIMENTAL RESULTS . 54

4.7.1 Methodology . 54

4.7.2 Parameter Selection . 55

4.7.3 Outlier Analysis . 56

4.7.4 Decision Process . 58

4.7.5 Ensemble Model . 60

4.8 Comparison Study . 61

4.8.1 Simple Heuristics Approach . 61

4.8.2 NGram Approach . 62

4.8.3 Static Assembly Approach . 62

vi

4.8.4 Comparison Result . 66

4.9 Malicious Software Analysis Toolkit . 70

CHAPTER 5: DETECTING MALICIOUS SOFTWARE FAMILY USING

STRUCTURAL SYSTEM CALL DIAGRAM 74

5.1 Introduction . 74

5.2 Capturing Dynamic System Call . 76

5.3 Structural System Call Diagram . 78

5.3.1 Generating Blocks . 79

5.3.1.1 Identifying Functions . 79

5.3.1.2 Breaking Functions . 82

5.3.2 Constructing Graph . 84

5.3.3 Generating Block Description . 85

5.4 Structural System Call Visualizer . 85

5.5 Smart System Call Signature . 86

5.6 Automatic Smart Signature Generation . 89

5.7 Experimental Results . 90

5.7.1 Visualizer . 90

5.7.2 Dataset . 90

5.7.3 Manual Signature Generation . 92

5.7.4 Automatic Signature Generation . 94

5.8 PERFORMANCE ANALYSIS . 95

5.9 Conclusion . 96

CHAPTER 6: CONCLUSION 97

REFERENCES 106

vii

LIST OF FIGURES

2.1 Virus Signature . 8

2.2 Self Relocation Code . 13

2.3 Illustration of 8-Gram . 17

3.1 Dynamic Instruction Sequence Capturing System 24

3.2 Win32 Architecture . 31

3.3 Trampoline . 32

3.4 Captured Instruction Sequences . 34

4.1 System Overview . 37

4.2 Model Selector . 38

4.3 Logic Assembly and Abstract Assembly . 40

4.4 Different Incarnations . 41

4.5 Example for instruction associations of length 2 43

4.6 Data Mining Process . 44

4.7 Apriori Algorithm . 45

4.8 Support Vector Machine . 48

4.9 Effect of L . 56

4.10 Effect of N . 57

4.11 Wrong Assembly Code . 64

4.12 Correct Assembly Code . 64

4.13 From Assembly to Abstract Assembly . 65

4.14 Experimental Result for NGram (C4.5) . 67

4.15 Experimental Result for NGram (SVM) . 68

4.16 PE Anatomy Snapshot 1 . 71

4.17 PE Anatomy Snapshot 2 . 72

viii

5.1 System Call Trace . 77

5.2 Stack Structure . 78

5.3 Identifying Functions . 80

5.4 Merge Functions . 81

5.5 Functions Point Variables . 82

5.6 Splitting into blocks . 84

5.7 Merge blocks . 84

5.8 Profile Hidden Markov Model . 87

5.9 Structural system call diagram for “charmap.exe” 91

5.10 Structural system call diagram for “SdBot.afz” 92

5.11 System call signature for SDBot . 93

5.12 Secondary system call signature for SDBot 94

ix

LIST OF TABLES

2.1 ClamAV Database Sample . 9

2.2 Top 8-Gram . 18

3.1 Intercepted Functions . 30

4.1 Dataset Statistics . 54

4.2 Top 10 Configurations . 57

4.3 FPR/FNR for top 10 models . 58

4.4 Misclassified Sample . 59

4.5 Typical Runtime for Monitor System . 60

4.6 Normalized Runtime for Monitor System . 60

4.7 Performance of Ensemble Models . 61

4.8 Performance of Simple Heuristic Features . 66

4.9 Performance of NGram (C4.5) . 66

4.10 Performance of NGram (SVM) . 67

4.11 Top 10 static models . 68

4.12 FPR/FNR for top 10 static models . 69

5.1 Missed Malware by Commercial Antivirus Software 93

x

CHAPTER 1: INTRODUCTION

1.1 Motivation

Malicious software is becoming a major threat to the computer world. The general

availability of the malicious software programming skill and malicious code authoring tools

makes it easier to build new malicious codes. In 2008, the number of new malicious code

signatures increased by 265 percent over 2007; over 60 percent of all currently detected

malicious code threats were detected in 2008 [1]. Moreover, the advent of more sophisticated

virus writing techniques such as polymorphism [2] and metamorphism [3] makes it even

harder to detect a virus.

The prevailing technique in the anti-virus industry is based on signature matching. The

detection mechanism searches for a signature pattern that identifies a particular virus or

strain of viruses. Though accurate in detecting known viruses, the technique falls short for

detecting new or unknown viruses for which no identifying pattern is present. Whenever a

new virus comes into the wild, virus experts extract identifying byte sequences of that virus

either manually or automatically [4], then deliver the fingerprint of the new virus through

an automatic update process. The end user will finally get the fingerprint and be able to

scan for the new viruses.

However, zero-day attacks are not uncommon these days [5]. These zero-day viruses

propagate fast and cause catastrophic damage to the computers before the new identifying

fingerprint is distributed.

Furthermore, polymorphic and metamorphic viruses change their appearance every time

they propagate. The signature generated for one virus copy may not capture other virus

copies.

1

Several approaches have been proposed to detect unknown virus without signatures.

These approaches can be further divided into two categories: static approaches and dynamic

approaches. Static approaches check executable binary or assembly code derived from the

executable without executing it. Detecting virus from binary code is semantic agnostic and

may not capture the key component of virus code. Static approaches based on assembly code

seems to be promising, however, deriving assembly code from an executable itself is a hard

problem. In our experiment, we find that approximately 90% of virus binary code cannot

be fully disassembled by state of art disassembler. Dynamic approaches are to actually run

the executables and capture the runtime behavior.

1.2 Dynamic Instruction Sequences Approach Overview

Most existing dynamic approaches are based on system calls made by the unknown

executable at runtime. The idea behind is that viral behavior of a malicious code is revealed

by system calls. However, some malicious code will not reveal itself by making such system

calls in every invocation of the virus code. On the other hand, some malicious behaviors

such as self-modifying are not revealed through system calls. Based on these observations,

we propose to use dynamic instruction sequences instead of system calls to detect virus

dynamically.

One approach to detect unknown virus automatically is to use heuristic rules based on

expert knowledge [6]. Although this approach is widely adopted by commercial anti-virus

software, it is easier to be evaded by the virus writers once the rules are known to them. The

other approach is data mining. Data mining refers to the process to prepare, transform, and

discover useful knowledge from data automatically [7]. In our context, it is a classification

problem to determine whether a program can be classified into either malicious or benign.

The key problem for this classification problem is how to extract features from captured

runtime instruction sequences. We use the information how instructions group together to

2

capture the nature of malicious behavior. To this end, we devise a notion called instruction

association.

In the first step, we organize instructions into logic assembly. Logic assembly is a re-

constructed program assembly using available runtime instruction sequences. It may have

incomplete code coverage, but logic assembly will keep the structure of the executable code.

In addition, the process of logic assembly construction handles the self-modifying code in a

normal way.

The second step is to extract frequent instruction groups inside basic blocks within logic

assembly. We call these instruction groups “instruction associations”. We use three varia-

tions of instruction associations. The first is the instruction association that observes which

instructions appear together in a block but does not consider the order. Second, we consider

the order of the instructions in a block but not necessarily consecutive. Third, we consider

the exact consecutive order of instructions in a block.

We use the relative frequency of instruction association as features of our dataset. We

then build classification models based on the dataset.

While accuracy is the main focus for virus detection, efficiency is another concern. No

matter how accurate the detection mechanism is, if it takes long time to determine if an

executable is a virus or not, it is not useful in practice. We log the first several thousand

dynamic instructions of an unknown program. We believe the initial part of a virus and a

benign code is quite different. Our analysis shows that compared to system calls, our ap-

proach takes less time to collect enough data for the classification model, and the subsequent

calculation time is affordable.

1.3 Structural System Call Diagram Approach Overview

Most existing dynamic malicious software detection approaches are using system call

traces. System call trace contains important information about the behavior of a program,

3

however, system call trace is chronological logs with repetitions. It is hard and time con-

suming to read.

Structural system call diagram is an approach to address this problem. We construct

a control flow graph like structure to visualize the execution flow of the system call trace.

With the help of structural system call diagram, it is much easier to analyze the behavior of

the program.

Structural system call diagram also provides a natural boundary of system calls. Using

this system call boundary, we are able to identify a distinctive system call signature to capture

a family of malicious software. We can derive the system call signature either manually or

automatically. We do not require exact match, we allow insertion, deletion and mutation of

any system calls within this system call signature.

1.4 Dissertation Organization

In the rest of dissertation, we first provide background of this research in chapter 2, then

describe dynamic execution environment in chapter 3, present dynamic instruction sequence

approach in chapter 4, structural system call diagram approach in chapter 5, and present

our conclusion in chapter 6.

4

CHAPTER 2: BACKGROUND

2.1 Malicious Software

Malicious software is a software written purposefully to perform unwanted actions to

the authorized computer users. The exact action malicious software performing evolves

over time. In the early years, the unwanted actions could be some simple pranks, such as

displaying message “catch me if you can!”. Later on, many malicious softwares are designed

to destroy end user’s computer, such as formatting the hard drive or deleting crucial system

files. Current trend for malicious code is to perform criminal actions such as steal user’s

private information or use one’s computer as a zombie to attack other computers. Some

software are written in good intention in mind, such as patch the computer against certain

system vulnerability. But as long as it is not the intention of the end user, it is generally

considered as malicious software as well.

Malicious software is a collective notion. It can be further divided into several categories.

Different categories may overlap each other.

Computer virus is the first kind of malicious software ever written. Computer virus is

characterized by the ability to infect other executable files. Computer virus do not prop-

agate automatically. Typically virus code propagates when user execute a malicious code

inadvertently. Nowadays, these malicious codes typically come with email attachments.

Malicious software can also propagate totally unnoticed by the user by exploiting system

vulnerabilities. We call this type of malicious software worm. Network service vulnerabilities

are the most common threats. “Code Red” [8] exploits a vulnerability in IIS web server.

“Klez” worm [9] propagates via email. Different from email virus which requires user in-

teraction, “Klez” worm exploits a vulnerability [10] in Outlook Express and will execute

automatically without explicitly opening the email attachment by the user. “Nimaya” [11]

5

is able to propagate by simply inserting an infected flash memory into the victim computer

without any other additional actions by the user.

Trojan horse [6] is memory resident malicious software. Once infected, the victim com-

puter opens up one or several control ports for intruders to control certain part of the

computer behavior. Trojan horse can either passively listens to the open ports and waits

for the instructions from the intruder (backdoors), or actively collects information on the

victim’s computer and sends it out to the intruders. Keylogger is a special type of trojan

horse that records user’s key strokes stealthily and sends them back to the intruders. Key

strokes may contain valuable information such as password and credit card number.

Macro virus [6] is characterized by the type of code it utilizes. Instead of binary code,

Macro virus is coded using Macro language provided by application software such as Mi-

crosoft Word. A big install base of these application software make Macro virus be able to

run on a thousands of millions computers.

Spyware [6] is installed together with legal software without user’s notice. Spyware do not

propagate automatically and do not infect other system files. They abuse the user consent

on the legal software they want to install. Once installed, Spyware collects user’s privacy

information such as online behavior and sends back to the designated agents.

Rootkit [12] is characterized by its extreme stealth. Rootkit modifies part of operating

system files to conceal its files, processes and registry entries. Conventional techniques cannot

detect the presence of the rootkit because of invisibility of the trace of rootkit. The focus of

rootkit research is to reveal the presence of a rootkit.

Botnet [13] is characterized by infecting a large number of computers into zombies to form

a malicious network. The term botnet refers to the whole malicious network. Each victim

computer is called a bot. Botnet is frequently used to send spam emails [14] and launch

DDos attack. Usually the number of bots consisting a botnet is around several hundred to

several thousand [15]. A smaller number of bots is harder to detect and still powerful to

be useful to the botnet owner. The focus of botnet research is to turn down the existing

6

botnet rather than defend against the bot code to be installed on end user computers. The

installation process of bots is similar to those of worms.

The classification of malicious software mentioned above is not mutually exclusive. Some

malicious software can sit on two or more categories. Bots which forms a botnet usually

propagates by exploiting a system vulnerability which makes them also computer worms.

Some advanced worms conceal themselves using rootkit techniques, which makes them both

worm and rootkit.

2.2 Conventional Malicious Software Detection Techniques

Conventional malicious software detection relies on signature matching [6]. The detection

mechanism searches for a signature pattern that identifies a particular virus or a strain of

viruses.

Simple signature figure 2.1 is a byte sequence requiring exact match against virus code.

Short signature results a high false positive rate. False positive rate is the proportion of

benign executables that were erroneously reported as being malicious. A high false positive

rate is very annoying to the user. However, long signature can be very restrictive that can

only capture one particular malicious code not even its closest relatives.

Wildcard signature figure 2.1 is more flexible than simple signature in that they are

able to catch a family of malicious code. Wildcard signature contains special “wildcard”

character that capture any character. The mechanism is similar to Unix filename wildcard.

With wildcard signature, we are able to capture invariant part of a family of malicious code.

However, wildcard signature is much slower than the simple signature.

Signature of malicious software can be derived either manually or automatically. When

a new malicious software comes into wide, computer security expert analyzes the malicious

code and find out a unique feature of it. With the domain knowledge, security expert

can find near optimal signature of the malicious code. However, this approach is costly

7

Figure 2.1: Virus Signature

and slow. When the outbreak of the malicious software becomes faster and faster, security

experts are becoming overwhelmingly busy. An alternative approach is to extract signature

automatically [4]. This approach relies on maintaining a benign signature database. For

every malicious software, a random signature is generated and then compared with benign

signature database to ensure that no benign program contains that byte sequence.

Signature database for malicious software is a critical asset for an anti-virus company.

It is usually a well guarded secret and not available to general public. However, some open

source anti-virus software do open its signature database. ClamAV [16] is one of the most

popular open source anti-virus software, and its signature database is available to public. At

the time this thesis is written, there are 513,978 malicious software signatures in its database

and this number is keep increasing. ClamAV signature support wildcard character “?” and

“*”, the meaning of both characters are similar to those in Unix wildcard. The length of the

signature varies and most signatures are longer than 100 bytes to avoid false positive. All

signatures are intended to capture only one malicious code rather than a family. Table 2.1

illustrates some of the signatures inside the ClamAV signature database.

A constant update of the signature database is essential to make it possible to capture

latest malicious code. There is certainly a time gap between the outbreak of a malicious

code and the availability of its signature. This gap often creates problem because by the

8

Table 2.1: ClamAV Database Sample

Trojan.Pakes-17 363e0380085a21b6b3e2e5f9f945a6aba3d9232

3820d488a220622589ceab79fbd9209c564b5b3

230082d8c69d02806400468503b78122222621f

8bcb0f9dd510000f8eeaa173cec93ee9ce87409

80ca1e5d0e44ba269134375c244108497583c46

71c586540e0f2d1e441120ab53354e7667f28c0

e45075a99ade135960a47b

Trojan.Win32.Rootkit d3001110010e68026e81887f2e2bf6ff7984881

de4b73371205cb518d46000857e6bb5da517a0e

a53b38df5f5a800e06852f1b0fe627d85452881

fc3034dc2180b961bbfc7231006176462c01396

24f9b6a6e21fa188903100e53c9c60e51c6edc4

74b68261c0c6f0d84e061095809eaeb1907c448

61e951a8bb340041e39196

JS.Feebs.Y 6c616e67756167653d{-1}6a617661736372697
074{3-6}3d22*3d756e65736361706528{-4}29
3b{-25}3b6576616c28{-4}293b{-4}3d2228??
223b??28{-4}293b3c2f736372

Trojan.Downloader.Small-1170 3005723d25640c0826092ea489c3034d414a914

845d544c2275680525920423a4947265ad49c4d

433a294c4f950318776a74974a036720c36d6e7

602ab5cfb7273aeeb57

Trojan.Downloader.Small-1171 6b68626073686e6d725b4b687273000000003b2

b3b464f42434d46453b31000000005a65726174

756c2e20427261737361692073

Email.Phishing.Pay-4 496620796f7520646f6e??74206167726565207

769746820746869732065{-1}6d61696c20616e
6420696620796f75206e6565642061737369737

4616e6365207769746820796f7572206163{-28
}61737465207468652066616c6c6f77696e6720
{3-4}20696e20796f757220(69|49)6e7465

HTML.Phishing.Bank-379 6c6f67206f6666206166746572207573696e672

0796f7572206f6e6c696e65206163636f756e74

3c2f6469763e3c6469763e{-7}636c69636b207
4686520666f6c6c6f77696e67206c696e6b2c20

746f2076657269667920796f7572206163636f7

56e742061637469766974793a3c2f64

9

time a massive outbreak could already happen. For every unknown malicious code, there

will be such a gap. Even for a variation of known malicious code, existing signature fails.

Creating a variation of known malicious code is easy. Manually, malicious software writer

can change some part of the source code to create a new virus code. As long as the captured

signature of old malicious code changes, the new variation will penetrate the protection of

existing anti-virus software. Although signature database of most anti-virus software is not

open, virus writer can test this new binary code against existing anti-virus software to make

sure the new code will not be captured by existing malicious software database. If none of

existing anti-virus software captures it, the virus writer can launch a zero-day attack again

easily.

Another way to create a variation of an existing malicious software is through polymor-

phism [2] and metamorphism [3]. Polymorphism is a self-encrypted code with a unique

encryption key embed for each malicious software copy. The initial part of the execution

decrypt the encrypted code using the embed encryption key. Each time malicious code infect

other file, it changes its encryption key to make a complete different copy. Only the initial

decryption code is the same for all those copies, and these invariant codes are the key to

detect a polymorphic malicious code. Metamorphism on the other hand, do not encrypt

the code. It replaces the original codes with equivalent but transformed codes. The tech-

niques for metamorphic code include code swap, redundant code injection, etc. This impose

a challenge to the malicious software writer. They need to reorganize the malicious code

as they propagate. However, it is a greater challenge for security expert. No part of the

malicious code is reliable to detect all variations of the metamorphic code. There are several

efforts aim to deal with metamorphism [17,18,19,20]. However, no general solution has been

invented yet.

All above mentioned approaches: constant code rewriting, polymorphism and metamor-

phism impose a great challenge for the signature based detection mechanism. The effort to

10

derive a new signature is much more than the effort to create a new malicious code variation.

To cope with this, a different mechanism to detect unknown malicious code is highly desired.

One promising research area is smarter virus signature. In addition to wildcard signa-

tures, Brumley et al [21] experiment Turing machine signatures, Symbolic constraint signa-

tures and regular expression signatures.

In [22, 23], the authors use binary as their features and derive a profile hidden Markov

model from a family of computer viruses. They use the profile hidden Markov model as

a signature to score an unknown executable to determine the nature of the unknown exe-

cutable.

Smarter signature relax the constraint of the virus signature. However, the basic problem

of signature still exists. If the new variation is very different or the virus comes from another

computer virus family, smarter virus signatures fail as well.

2.3 Detecting Unknown malicious software

Although the problem of determining whether an unknown software is malicious or not

has been proven to be generally undecidable [24], detecting malicious software with an ac-

ceptable detecting rate is still possible. A number of approaches have been proposed to

detect unknown malicious software. Here we discuss the approaches to detect Win32 com-

puter viruses only.

2.3.1 Heuristics

Unlike conventional programming, virus code need to inject its code into existing program

without the support of a compiler. Some unique problem need to be solved by the virus

writer.

11

(i) Consistency of Win32 executable head. For a conventional program, compiler and

linker will generate correct Win32 executable head structure. Every Win32 executable

consists of a head followed by several sections of code and data. The head contains meta

data for the executable and each individual section. It also contains import table and

export table for the executable. Pietrek describe Win32 head structure in detail [25,26].

A virus, however, injects its code into the victim executable, the consistency of the

victim executable head is compromised. Virus writer should adjust the Win32 head of

the victim executable carefully to correct those inconsistency.

(ii) Placement of code. It is hard to move existing code inside victim executable around.

So the easiest and most popular strategy is to add the virus code in the end. That is,

append to the last section of the code or create a new section in the end.

(iii) Self relocation. A large amount of instructions take absolute values of virtual memory

address as their operands. However, virtual memory address of a program is determined

at runtime by the program loader. The relocation table within executable file will

point to those operands and the value of these operands will be adjusted when loading.

Injected virus code lacks the support of relocation table and virtual addresses inside

virus code cannot be adjusted at load time. Virus writers have two choices to deal

with this problem. Either do not use absolute addressing at all, or manipulate the

relocation table when injecting the virus code. The former approach is much easier

and popular. The idea is to use some special instruction sequences to get PC address

of the current instruction. For the afterward access to the virtual memory address, use

relative address instead of absolute value. Figure 2.2 illustrate a self relocation code

snippet.

(iv) Locate Win32 API call. All destructive actions of a virus are performed through Win32

API calls. Win32 API calls are provided by system DLLs. A Win32 program can invoke

a Win32 API call dynamically or statically. Static approach utilizes the DLL entries

12

Figure 2.2: Self Relocation Code

information in the import table in PE head. However, there is no guarantee that the

Win32 API the virus required is already in the PE head and it is hard to modify

the import table. An easier solution is to use dynamic DLL call. However, two DLL

invocations are required to perform an arbitrary dynamic dll call, “LoadLibrary” and

“GetProcAddress”. These two API calls are inside “kernel32.dll”. The base address

for module “kernel32.dll” differs even if the minor versions of the Windows operating

system are different. Virus writers usually do a memory search to find “kernel32.dll”,

and get the virtual address for these two system APIs.

To detect unknown Win32 viruses, simple heuristics is one frequently used approach by

commercial anti-virus software. It is based on invariant parts of a computer virus. [6]

describes many heuristics to detect Win32 viruses.

A well structured binary code is usually compact. So it is hard for a virus to insert

its code between sections. Most viruses choose to insert their code into the last section or

append a new section to the victim binary, both of which can be extended almost unlimitedly.

Once they have appended the viral code, they also change the program entry point to the

newly added viral code. The result is that the entry point points to the last section of the

executable binary. It is totally legal and some compilers will generate executable binary

share this character. However, most compilers put all executable codes into “.text” section,

and “.text” section rarely located in the last section. The fact that entry point points to the

13

last section by itself is not obvious enough to tell malicious code from benign. However, this

is an important clue if combined with other observations.

Another strategy used by virus writers is to inject virus code into the holes between

neighboring sections. Each hole is small, but by combining several holes, it could be large

enough to fit all code of a virus. Virus code uses control flow transfer instructions to glue

each small part together. It is more difficult to write this kind of virus code but it is a more

stealthy way in that entry point do not need to be in the last section. A heuristic to detect

such phenomena is to get the percentage of occupation for the last blocks of every section.

If last blocks of all sections are very full, then this executable binary code is suspicious.

Each section has a section name. Most compiler will use some well defined section names

such as “.text” or “.code” for instructions, “.data” for global variables, “.bss” for uninitialized

variables, etc. Although users are able to override these default settings, it is not common for

most of programs. That makes section name another heuristics to detect unknown viruses.

Size consistency is a heuristics based on the correctness of section size calculation. For

a well-formed executable file, the size field in PE head should equal to the aggregate of the

size all sections of the executable plus the size of the PE head. However, virus code may

skip the size calculation and leaves an inconsistent PE head.

To solve the problem of self-relocation, virus frequently use “call next address” operation

(See figure 2.2) in the beginning of virus body. This operation is meaningless in regular

program. The hex representation for this operation is “E800000000”. Existence of such

bytes is another important heuristics in detecting Win32 virus.

Memory search for “PE” and “kernel32.dll” is suspicious because it is a mechanism

frequently used by virus to locate “LoadLibrary” and “GetProcAddress” Win32 API. Legit-

imated programs do not need to do that because they can use these functions directly with

the support of a compiler and linker.

14

However, heuristics is becoming less effective in detecting new generation of computer

viruses. Once known to the virus writers, these simple heuristics can be easily avoided as

follows.

(i) Consistency of executable is not a hard problem to solve. Virus writer should be more

careful to adjust all fields in Win32 head.

(ii) Entry point obscuring (EPO) [27] technology makes code placement heuristics less

effective. With EPO, virus code is still placed in the end of the executable, however,

entry point is located in other location in the executable other than the virus code.

A control flow transfer instruction will be placed near the entry point to divert the

execution of the code to the virus code. With such an arrangement, entry point is not

necessarily to be placed in the last section.

(iii) Self-relocation seems to be unavoidable in an executable. However, most executables

do not need relocation and there is no relocation table inside executable. Relocation

process is usually used by dynamic linked library. It is guaranteed that executable file

module is the first module to be loaded into the process address space. So executable

is always granted the preferred base address and there is no need to relocate. Without

relocation, it is much easier for a virus to calculate the virtual address operands of an

instruction. And because of this, self-relocation code becomes unnecessary.

(iv) API locating operation is unavoidable. However, there could be a huge variation for

API locating code and capture these code is not easy. The conventional way is to check

the string “PE” and “kernel32.dll” for which the virus code is searching. However, using

simple string encryption hides the string and compromises this heuristics.

15

2.3.2 Research Domain

There are other approaches in the research domain which go beyond simple heuristics.

We can divide them into static approaches and dynamic approaches.

Static approaches check executable binaries or assembly codes without actually executing

the unknown program.

Weber et al [28] develop a Portable Executable Analysis Tool (PEAT) system that is

basically a GUI tool to assist virus researchers to identify computer viruses. It first checks

the consistency of PE header, and then presents key statistics such as instruction frequencies,

call distances, together with byte-type view, ASCII view and other views to the end user.

End users need their own experience to judge if the executable is a virus using the provided

statistics on the given program.

The work of Arnold et al [29] uses binary trigram as their detecting criteria. They use

neural network as their classifier and reported a good result in detecting boot sector viruses

for a small sample size.

InSeon et al [30] also use binary sequences as features. However, they construct a self or-

ganizing map on top of these features. Self organizing map converts binary sequences into a

two dimensional map. They claim that malicious viruses from the same virus family demon-

strate the same characteristic in the resulting graph. But they do not give a quantitative

way to differentiate a virus from benign code.

Schultz et al [31] use comprehensive features in their classifiers. They use three groups of

features. The first group is the list of DLLs and DLL function calls used by the binary. The

second group is string information acquired from GNU strings utility. The third group is a

simple binary sequence feature. They conducted experimentation using numerous classifiers

such as RIPPER, Naive Bayes and Multi-Naive Bayes.

In recent years, researchers start to explore the possibility to use N-Gram in detecting

computer viruses [32, 33, 34]. Here N-Gram refers to consecutive binary sequences of fixed

16

Figure 2.3: Illustration of 8-Gram

size inside binary code. In binary executables, it stands for n consecutive binary sequences

as shown in figure 2.3.

Kolter et al [34] extract all N-Gram from a training set and then perform a feature

selection process based on information gain. Top 500 N-Gram features are selected. Then,

they mark the presence of each N-Gram in the training dataset. These binary tabular

data are used as the input data for numerous classifiers. They experimented with Instance-

based Learner, TFIDF classifier, Naive Bayes, Support Vector Machines, Decision Trees and

Boosted Classifiers. Instead of accuracy, they only reported AUC (Areas Under Curves).

The best result is achieved by boosted J48 at AUC, 0.996.

Although above approaches show satisfactory results, these detection techniques are lim-

ited in that they do not distinguish the instructions from data and are blind to the structure

of the program which carries important information to understand its behavior. We have

repeated the experiment mentioned in [34] and we have found that the key contributors that

lead to the classification are not from bytes which representing virus code, rather, they are

from structural binary or string constants.

17

Table 2.2: Top 8-Gram

Benign
0000000000000000

0404040404040404

2000200020002000

0020002000200020

4040404040404040

ffffffffffffffff

cccccccccc8bff55

cccccccc8bff558b

cccccc8bff558bec

2020202020202020

Virus
0000000000000000

9090909090909090

5858585858585858

cccccccccccccccc

2a2a2a2a2a2a2a2a

2121212121212121

4142434441424344

4441424344414243

4344414243444142

4243444142434441

Table 2.2 lists top ten 8-Grams from both benign and malicious dataset. In the top

benign 8-Grams, the first six are only structural bytes which have nothing to do with in-

structions. Seventh to ninth 8-Grams are partial instructions and partial structural bytes.

Actually all three 8-Grams contain the same instruction sequences. This instruction se-

quences repeat three times with a slightly different window. The tenth 8-Gram contains

only string information. Binary “20” represents space in ASCII.

In the top virus 8-Grams, second and third 8-Gram could be instructions. “90” is

“nop”and “58” is “pop ax” in 80x86 instruction set. However, they are just “boring” in-

structions. The primary reason for virus writers to use these instructions is padding rather

than doing real stuff. Fifth to tenth 8-Grams are string information.

We examine many top N-Grams, and we find that most top N-Grams are not instructions.

They are either structural bytes or string information. Even if there are a few instructions,

most of them are “boring” instructions, such as “nop”, rather than critical instructions.

Most instruction N-Grams are actually the same instruction sequences repeated for many

times with a slightly different window.

Since structural binary and string constants are not essential components to a virus,

N-Gram detection mechanisms which are primarily based on these features can be evaded.

18

Ye et al [35] uses the imported functions inside import table of an executable as main

criteria to detect viruses. They derive association rules by mining the combination of im-

ported functions for both virus and benign software. The major problem of this approach is

the ignorance of the virus codes which do not rely on import table entries. Many virus codes

load dynamic linked libraries dynamically and do not put Win32 API entries into import

table of the executable.

Another set of static approaches focus on higher level features which are constructed on

top of assembly code. Christodorescu et al [36] use template matching against assembly code

to detect known malicious behavior such as self-modification. In [37], the authors propose

to use control graph extracted from assembly code and then use graph comparing algorithm

to match it against known virus control graphs. Kinder et al [38] is also based on assembly

code. The authors first identify temporal dependencies among different instructions. Then

they generalize the dependencies into a formal specification. They present the specification

for CopySelf and ExecOpened behavior. Using a model checking algorithm, they can check

if a specific executable contains such temporal dependencies. Siddiqui et al [39] uses opcode

N-Gram based on disassembly code. This paper put more focus on statistical manipulation.

These approaches seem to be promising. The problem is that disassembling executable

code itself is a hard problem. The difficulty comes from two sources.

First, virus writers use some packers [40] to transform their binary code. Some virus

even pack its code several times to make it even harder to unpack. IDA-Pro [41] equipped

with a Universal PE Unpacker Plug-in [42] deals with packed code. This approach is fast,

however, to use this plug-in, user need to know the original entry point of the binary code.

This approach is specific to deal with certain packed code. Two other groups [43,44] describe

general frameworks to reveal unpacked code. The problem of both approaches are the poor

performance. Due to single step debugging mode, the execution is several magnitudes slower.

Further more, this method makes unpacking some binary code virtually impossible.

19

Second, even if the program is not packed, disassembling is sometime still hard. The

problem is the control flow transfer destination obfustication, which makes it hard to deter-

mine the starting point for each new block. This problem is addressed by [45,46,47,48,49].

The authors give some heuristics to relieve the problem. However, no general solution has

been yet proposed for this problem.

Besides static analysis, dynamic approaches have also been used in virus research. Most

of current approaches are based on system calls collected from runtime.

TTAnalyze [50] is a tool to execute an unknown executable inside a virtual machine. It

captures all system calls and parameters of each system call to a log file. An expert can

check the log file to find any malicious behavior manually.

Sung A.H.et al [51] propose to collect API call sequences from assembly code and compare

these sequences to known malicious API call sequences.

Steven A. Hofmeyr et al [52] propose one of the very first data mining approaches using

dynamic system call. They build an N-Gram system call sequences database for benign

programs. For every unknown executable, they obtain system call sequences N-Grams and

compare it with the database, if they cannot find a similar N-Gram, then the detection

system triggers alert.

In [53], the authors propose several data mining approaches based on system call N-Gram

as well. They try to build a benign and malicious system call N-Gram database, and obtain

rules from this database. For unknown system call trace, they calculate a score based on the

count of benign N-Gram and malicious N-Gram. In the same paper, they also propose an

approach to use first (n-1) system calls inside N-Gram as features to predict the nth system

call. The average violation score determines the nature of the unknown executable.

In [54], the authors also use system call N-Gram. They compare three approaches based

on simple N-Gram frequency, data mining and hidden Markov model (HMM) approach, and

conclude that though HMM is slow, it usually leads to the most accurate model.

20

In [55], the authors run virus executables inside a virtual machine, collecting operating

system call sequences of that program. The authors intend to cluster viruses into groups. The

authors use k-medoid clustering algorithm to group the viruses, and use Levenshtein distance

to calculate the distance between operating system call sequences of different runtime traces.

Christodorescu et al [56] examines into dynamic system calls and their arguments. The

arguments among different system calls reveal def-use, ordering, value dependent relationship

between dependency among system calls. System calls form chains and loops based on these

relationship. The authors then compute contrast subgraph by excluding benign behavior

from the dependency graph to generate virus template to detect a family of viruses.

Another research area to detect malicious software dynamically is to detect the anomaly

behavior of the victim software. Victim software should conform to its design specification

unless the software is compromised. Chari et al [57] proposes a policy driven anomaly de-

tection system. The policy used in this paper is per program based and derived manually.

Provos [58] also uses a rule based per program policy. The authors look into the parameters

used by each system call, and based on the value of parameters, permitting or denying the

system call. The policy is derived automatically by a learning process. However, the learning

algorithm is very basic. Bailey et al [59] cluster malware uses a higher level abstraction in-

stead of system calls. They use normalized compression distance (NCD) to measure distance

between two individual malware instances, then use a hierarchical clustering algorithm to

group malware.

Another approach is to derive the policy rule from static analysis [60]. The authors derive

system call policy from source code of the executable. They build non-deterministic finite

automaton(NDFA), non-deterministic pushdown automaton(NDPDA) and digraph model

out of the source code and deploy a runtime monitor system to check the conformance of

each system call.

Rabek et al [61] does not require source code. They disassemble the code and extract

address and the name of the system call. Comparing to [60], it is simpler and more general,

21

but the false negative rate is higher. In [62], policy is built from dynamic trace. The policy

is represented by an automaton. The state of the automaton is the address of the caller and

the transition of the automaton is system call. Each program will need one such automaton.

Feng et al [63] uses a similar dynamic approach to build policy. They use the whole stack

information instead of address to make the policy more specific. More specific policy means

a lower false negative rate. In [64], the authors construct a control flow graph (CFG) from

the dynamic trace. They claim that the CFG derived dynamically is as good as CFG derived

from statical analysis. Chaturvedi et al [65] also derives policy from dynamic trace. However,

their focus is to learn the system call arguments rather than control flow information.

Some other approaches are based on dynamic taint analysis [66]. The idea is to keep

track of suspicious memory section inside program. Misuse of these memory section triggers

the warning. Egele et al [67] keep track of sensitive data by using dynamic taint. If the

software manage to send sensitive information out, then it is suspected to be a spyware.

Besides data dependency, [68] also tries control flow dependency. They use Qemu [69]to

explore multiple path execution. For every conditional branch based on input data, they

create a snapshot, add constraint then do a depth first exploration. After one branch has

been fully explored, they restore the state to previous snapshot, change the condition value

to explore next branch.

All those researches show the efforts and achievements in unknown program classification

and analysis.

22

CHAPTER 3: DYNAMIC EXECUTION MONITOR

3.1 Overview

Our detection algorithm is based on dynamic instruction sequences. Dynamic instruc-

tion sequences collection requires running the benign or malicious code. However, running

malicious code is potentially destructive. Running program inside a virtual machine such

as VMware [70] protects the computer from being infected directly. For virus researchers,

running a program inside a virtual machine is a norm; However, most end user computers do

not have virtual machine software installed and it is not realistic to ask end user to run an

unknown program inside a virtual machine just to capture dynamic instruction sequences.

To this end, we develop a protection mechanism called dynamic execution monitor and run

the program within it. The main functionality for our dynamic execution monitor is to

capture the instruction sequences of an arbitrary executable without destroying end user’s

computer. This dynamic execution monitor is run from the user computer and it provides

control mechanism after execution of each instruction.

Figure 3.1 shows dynamic execution monitor we have built. The protection is provided

by a sandbox to ensure malicious behavior is contained. The sandbox hooks potentially

destructive Win32 API functions. Instead of simply ignoring the function and returning

failure to the caller, for most functions, we return success and invoke the function in a

restrictive way to elicit more malicious behavior. For example, when a program requests a

file handler with read/write permission, we return success and give the handler with read

permission only. In this way, we can elicit malicious behavior as much as possible. Some

viruses would stop execution if they detect failure of a particular system call.

We capture dynamic instruction sequences or system call depending on backend we are

using.

23

Figure 3.1: Dynamic Instruction Sequence Capturing System

Dynamic instruction sequences are captured by our program debugger. We will put the

unknown program running under single instruction execution mode. At single instruction

execution mode, it is possible to log the current instruction into instruction sequences log

file.

We have two different backend for the monitor.

In dynamic instruction sequences backend, we embed the code to organize the code into

logic assembly (See chapter 4), and then simplify it into abstract assembly. Also we have c4.5

and support vector machine code built into our monitor. Once we have abstract assembly,

we will invoke c4.5 or support vector machine classifier to make an intelligent guess whether

the unknown executable is malicious or not.

In system call backend, we construct structural system call diagram based on captured

system calls. We then generate smart signature and use the smart signature to determine

the nature of the unknown program.

24

3.2 Malicious Behavior Sandbox

The first goal of our dynamic execution monitor is to build a sandbox and run the

unknown executable inside the sandbox to contain potentially malicious behavior.

Malicious behavior can be either permanent or temporary. Permanent effect persists even

if the user restarts his or her computer. Permanent effect of a malicious code is achieved by

modifying the content of end user’s hard disk. This can be achieved by:

(i) Modify system executables or dynamic linked libraries (DLLs)

(ii) Modify frequently used application executables or dynamic linked libraries

(iii) Leave executable modules in the end user’s computer, and modify the registry entry

to point to that executable module

(iv) Change system settings, such as system clock, computer names, etc

These compromises can be achieved by the following types of Win32 APIs:

(i) File manipulation API

(ii) Registry manipulation API

(iii) System administration API

If a Win32 API is read only, we consider it safe. If a Win32 API is able to modify,

create or delete entries, we need to take action to prevent the permanent effect on end user’s

computer.

Temporary effect of a malicious code is the compromise of end user’s memory. Once the

end user restarts his or her computer, the malicious behavior disappears. However, during

the up time of the infected computer, some severe consequences may already happen. These

include:

25

(i) Send out packets to predefined site to launch DDos attack

(ii) Send out private information on the end user’s computer to malicious users

(iii) Send out infectious packets to compromise other computers

(iv) Send or receive packets to or from other computers on behalf of the malicious user

These kinds of malicious effects can be contained by restraining the packets sent by the

host computer.

Some malicious software do not compromise the victim computer directly. Instead, it

injects malicious code into an innocent process of the system, and let the victim process do

all the malicious work. This makes the malicious software more stealthy in that it diverts

the malicious behavior to the process we are not focusing on.

According to [71], there are three ways to inject code into another process. They are:

(i) Install a system wide remote hook by invoking “SetWindowsHookEx”

(ii) Create a remote thread and force the remote thread to load a malicious dynamic linked

library, the initialization code of that dynamic linked library will lead to the execution

of the injected code

(iii) Inject code into remote process by invoking “WriteProcessMemory”, and then create

a remote thread to execute the injected code

To prevent this type of attack, we need to restrict the invocation of the following Win32

APIs:

(i) SetWindowsHookEx

(ii) WriteProcessMemory

(iii) CreateRemoteThread

26

Another consequence of malicious code is disrupting the normal operation of the victim

computer. However, compare to the above consequences, this temporary effect is relatively

minor and insignificant. Containing all malicious behavior is impossible because some ma-

licious behavior is hard to be distinguished from normal operations without human intel-

ligence. So the focus of our monitor is to contain permanent or severe malicious behavior

only, not all malicious behavior. Containing all malicious behavior is costly and impossible.

Currently, our monitor only protects one process and does not provide protection to

processes launched by that process. To make sure we do not launch a malicious process, we

do not allow process creation API for the executable process under protection for the time

being.

3.3 Elicit Malicious Behaviors

By skipping the potentially destructive Win32 APIs, we can ensure most permanent

or severe malicious behaviors are contained. However, the ultimate goal for our dynamic

execution monitor is to capture the instruction sequences and analyze the malicious patterns.

For a good programming practice, programmers need to verify the return value and output

parameters of each Win32 API invocation. For most Win32 APIs, the return value is boolean

and indicates whether the Win32 API is successful or not. If the return value or output

parameters indicate that there is an error during the API invocation, the program will

usually divert from the normal execution flow and handle the exception. However, for our

purpose, we are more interested in normal execution flow of an executable rather than the

exception handling. So simply skipping the potentially destructive Win32 API and throwing

an error to the invoking program does not serve our purpose; hence, for most potentially

destructive Win32 APIs, we skip the action but return a success to the caller. The invoking

program sees the success of the Win32 API and continues the normal execution. Further,

for some Win32 APIs which have output parameters, we set it to a typical value if possible.

27

For example, Win32 API “WriteFile” has an output value for the actual bytes written, we

set it to the bytes to write. This gives the calling program the impression that all bytes

are written successfully. It is possible that the program will eventually fail because of the

skipped action of that Win32 API, but before that, we are able to capture more instruction

sequences than otherwise.

The return value of some Win32 APIs are system handles. These Win32 APIs include

CreateFileMapping, CreateFile, OpenFileMapping, etc. If these Win32 APIs fail, the return

values are NULL. To elicit malicious behavior, we do not return NULL to the invoking

program. Instead, we create or open a restrictive system handle. That is, no matter what

access the program requests, we only create or open a read only system handle if possible.

The invoking program will get a valid handle and continue normal processing. The API for

consequent manipulations of the system handle are also contained. So unless the invoking

program depends on the actual consequences of that Win32 API, the executable will continue

its normal execution flow.

Some program will check whether it is running inside a debugger. If it is, the program

takes a different execution path to avoid being analyzed. One of the easiest and most

popular approach is to invoke “IsDebuggerPresent” Win32 API. To make sure that in this

case, the program is able to take the normal execution path, we always answer “no” to

“IsDebuggerPresent” Win32 API.

3.4 API Protection Policy

We provide protection to satisfy above mentioned requirements in our sandbox. However,

we have another constraint. Currently, our sandbox only provide protection to the executable

module and also dynamic linked libraries with static binding. Dynamic bound DLLs are not

protected for the time being. To make sure that the executable is well protected by our

sandbox, we also modify the behavior of “LoadLibrary” and “GetProcAddress”. When a

28

program invoke “LoadLibrary”, we do not actually load the dynamic linked library, instead,

we return a fake module handle. “GetProcAddress” will recognize the fake handle and return

a fake function pointer. The invocation of the fake function pointer will fail, but before that,

we may be able to capture a lot more instruction sequences. However, the inability to protect

Win32 API inside dynamic bound DLLs is a constraint and we plan to improve it in our

future work.

Based on the discussion above, our sandbox manipulates the executions of the following

categories of Win32 APIs.

(i) File/directory/registry manipulation API

(ii) Remote process/thread/memory manipulation

(iii) LoadLibrary/GetProcAddress

(iv) System administration API (system clock, etc)

(v) Packet sending

Table 3.1 lists all the functions we manipulate. For most of these Win32 APIs, we simply

skip the action and return success to the invoking program. Some Win32 APIs need special

treatment as we mentioned above. Those functions are underlined in the table.

3.5 Implementation

Windows system calls are invoked through several dynamic linked libraries. The most

important libraries include “kernel32.dll”, “user32.dll”, “advapi32.dll” and “winsock.dll”.

“kernel32.dll” contains core operating system functions such as process management, mem-

ory management and io management. “advapi32.dll” is a supplement to “kernel32.dll” and

it contains new functionality such as registry management API. “user32.dll” contains GUI

related functionality and “winsock.dll” contains WinSock API.

29

Table 3.1: Intercepted Functions

CopyFile CopyFileEx CopyMetaFile
CreateDirectory CreateDirectoryEx CreateFileMapping

CreateFile CreateProcess CreateRemoteThread
DeleteFile GetProcAddress IsDebuggerPresent

LoadLibrary LoadLibraryEx MoveFile
MoveFileEx OpenFile OpenFileMapping

RemoveDirectory SetEndOfFile SetFileAttributes
SetFilePointer SetFileTime SetSystemTime
SetupComm WSAConnect WSASend
WSASendTo WriteFile WriteFileEx

WritePrivateProfileSection WritePrivateProfileString WritePrivateProfileStruct
WriteProcessMemory WriteProfileSection WriteProfileString

send sendto RegOpenKeyEx
RegCreateKeyEx RegDeleteKey RegDeleteKeyEx
RegDeleteValue RegLoadKey RegOpenCurrentUser

RegOpenUserClassesRoot RegReplaceKey RegRestoreKey
RegSaveKey RegSaveKeyEx RegSetValueEx

These dynamic linked libraries are Win32 specific and are well documented. The APIs

are consistent as Windows operating system evolves. However, Win32 is only one of the

subsystems Windows operating system provides. Internally, these dynamic linked libraries

are merely a wrap over the underlying system functions. The shared underlying module for

all subsystems is “ntdll.dll”. Intercepting “ntdll.dll” will protect all subsystems of Windows

operating system. Intercepting “ntdll.dll” is possible, however, “ntdll.dll” is undocumented

and its API changes constantly even for a minor upgrade for Windows.

Most operating system functions have to be performed in kernel mode. So in most of

time, “ntdll.dll” acts as a gateway to the kernel code. Kernel code is accessed by invoking

“Sysenter/Syscall” instruction or “int 2E” interrupt. Kernel code to serve Win32 APIs is

provided by the module “ntoskrnl.exe”.

Figure 3.2 illustrates architecture of Windows system.

30

Figure 3.2: Win32 Architecture

There are a couple of ways to hook customized code into the Win32 APIs. The first

approach is to intercept higher level Win32 API calls. These APIs are documented and

consistent through different versions of Windows.

The second approach is to intercept “ntdll.dll”. The upside is that some malicious soft-

ware invokes APIs in “ntdll.dll” directly to bypass higher level Win32 API hooks. If that

happens, “ntdll.dll” hook is still effective. The downside is that “ntdll.dll” is undocumented

and changes fast. It makes it hard to write the hook code and the code requires lots of

maintenance as the operating system evolves.

It is also possible to hook kernel code. The key is the service descriptor tables structure

defined by Windows operating system. It is a mapping from dispatch ID to the entry point

of service code. Changing entry point in the service descriptor divert the regular execution

of a service code. User can put their own logic into the existing operating system code. The

problem is the same with “ntdll.dll” approach, that is, no documentation and complicated

code maintenance.

31

Figure 3.3: Trampoline

We choose to use high level Win32 API interception in our experiment. We use Microsoft

detour library [72] to implement our protection mechanism. Detour is a library freely avail-

able from Microsoft Research. Detour hook arbitrary user code onto Win32 API call. It

provide API call to modify the first several instructions of the target function with a “jmp”

instruction. “jmp” instruction diverts the execution flow to the user supplied code. However,

the replaced instructions of the target function are not lost. They are saved by Detour to

a newly appended section of the executable code. Inside the user supplied code, the user

can optionally invoke the original version of the system call through a trampoline function.

Figure 3.3 illustrates the structure of a trampoline function.

3.6 Instruction Capturing

To capture the dynamic instruction sequences of an unknown program, we create process

of the program and put it in single instruction execution mode. Our monitor system will

capture debug events and log the instructions executed by the unknown program.

To focus on the behavior of the unknown program module, we only capture the binary

code of the module itself and ignore instructions inside dynamic linked library modules.

32

Since we do not capture instruction sequences inside dynamic linked library modules, we

do not need to put the processor into single instruction execution mode while it is running

the code from dynamic linked library modules. Before the control flow returns to the main

executable, we do not need to capture any instruction sequences. We shall let the code

run in full speed. To achieve this, we monitor the control flow of the executable while it is

running under our debugger. Once it invokes a dynamic system call to other module, we put

a break point on the next instruction in the executable module, and then put the process

out of single step debugging mode. Once the control flow comes back, it stops at the break

point and we can put it into single step debugging mode again.

The speed of instruction sequences capturing depends on how much time our monitor

is actually capturing instruction sequences. During external dynamic library calls, which

include Win32 API call and user supplied external functions, our monitor do not capture

instruction sequences. However, the speed to capture instruction sequences is much more

consistent than the speed to capture system calls. Usually the monitor system can capture

about 6,000 instruction sequences on our computer. We also put a time limit on our monitor.

The monitored executable stops execution anyway after 10 seconds even if it cannot capture

enough instruction sequences.

This approach is very similar to the popular debugging tool OllyDbg [73]. The “instruc-

tion trace” functionality provided by OllyDbg is able to generate runtime instruction trace

in the same form as our monitor. The speed of instruction capturing is similar. However,

comparing to use OllyDbg directly, our dynamic instruction monitor has two advantages:

(i) Our monitor captures the instructions in a more controlled way. We can have an up

bound for the instructions we are planning to capture. We also have a timeout limit

to stop the instruction sequences capturing to make sure the instruction capturing

process is finished within an acceptable amount of time

33

Figure 3.4: Captured Instruction Sequences

(ii) Our monitor runs under the sandbox and potential malicious behavior of the unknown

executable is contained

Figure 3.4 illustrates the captured instruction sequences of an executable.

Once we capture the binary codes, we then disassemble the binary code. From the

assembly code, we can capture instruction sequences we need.

3.7 Backend

From the captured dynamic instruction sequences, we further process it in our backend.

For dynamic instruction sequences backend, further processing include:

(i) Reorganize the dynamic instruction sequences into logic assembly

(ii) Simplify logic assembly into abstract assembly

(iii) Extract top instruction associations from abstract assembly

(iv) Apply classification model on extracted features and make predication. We use either

C4.5 decision tree or support vector machine classifiers

34

Details of these steps will be elaborated in chapter 4.

For structural system call diagram backend, further processing include:

(i) Construct structural system call diagram

(ii) Generate smart signature based on modularized system call blocks

(iii) Use the smart signature to determine the nature of unknown program

Details of structural system call diagram can be found in chapter 5

3.8 Limitation

There are several limitations exist in our system.

(i) Some malicious program will invoke the underlying operating system native API in

ntdll.dll or invoke interrupt 2e (or SysEnter/SysCall, on newer versions of Windows)

directly, which is not protected by our system.

(ii) Only one execution path will be explored during one invocation of the monitored

executable

(iii) Only initial part of the executable is considered

For 1, we are trying to relieve it by hooking the kernel code instead of high level Win32

API. Problem 2 and 3 are common in all dynamic virus detection approaches. Dynamic

approaches alone can hardly solve these problems. We shall explore the possibilities to use

both dynamic approaches and static approaches to find a solution.

35

CHAPTER 4: DETECTING WIN32 VIRUSES USING
DYNAMIC INSTRUCTION SEQUENCES

In this chapter, we present a novel approach to detect unknown virus using dynamic

instruction sequences mining techniques. We collect runtime instruction sequences from

unknown executables and organize instruction sequences into basic blocks. We extract in-

struction sequence patterns based on three types of instruction associations within derived

basic blocks. Following a data mining process, we perform feature extraction, feature selec-

tion and then build a classification model to learn instruction association patterns from both

benign and malicious dataset automatically. By applying this classification model, we can

predict the nature of an unknown program. We also build a program monitor which is able

to capture runtime instruction sequences of an arbitrary program. The monitor utilizes the

derived classification model to make an intelligent guess based on the information extracted

from instruction sequences to decide whether the tested program is benign or malicious. Our

result shows that our approach is accurate, reliable and efficient.

We start with system overview in 4.1, logic assembly in 4.2, the concept of instruct

association in 4.3, data mining process in 4.4, performance analysis in 4.5, our experimental

results in 4.7, comparison with other approaches in 4.8, an analysis tool to provide a shell

to this approaches in 4.9.

4.1 SYSTEM OVERVIEW

Figure 4.1 shows the overview of our system. It includes both training process and the

decision process. We have already discussed dynamic instruction collection process before.

So start from dynamic instruction sequences, the training process derives logic assembly and

abstract assembly. From abstract assembly, we can derive our feature vector. Through our

feature selection and modeling process, we can build our classification model. On the end user

36

Figure 4.1: System Overview

side, we install a monitoring system which will run unknown program under our protection

mechanism. Based on the captured dynamic instruction sequences we run a decision process

which derives logic assembly and abstract assembly, collects all the required features of the

classification model, and uses these features to make our decision by the classification model.

Every classification model includes model parameters, feature set, and classifier. On the

end user’s computer, models are constantly updated through an automatic update process.

Latest models are built using the up to date virus and benign dataset to maintain the

quality of the classification model. End user also has the ability to change preferred model

through a GUI, see Figure 4.2. In this dialog, 10 best models are sorted on accuracy (over

testing dataset). The user can see how many instructions the model collects (n), what type

of instruction association does it use (IAType), what is the classifier (model), how many

features does it use (feature), what is false positive rate (fpr) and false negative rate (fnr).

37

Figure 4.2: Model Selector

4.2 LOGIC ASSEMBLY

Our dynamic instruction capturing system captures execution log at a rate around 6,000

instructions per second on our computer. For some executables requiring interaction, we use

the most straightforward way, such as typing “enter” key in a command line application or

press “Ok” button in a GUI application to respond.

In a conventional disassembler, assembly instructions are organized into basic blocks. A

basic block is a sequence of instructions without any jump targets in the middle. Usually

disassembler will generate a label for each basic block automatically. However, execution log

generated by our system is simply a chronological record of all instructions executed. The

instructions do not group into basic blocks and there are no labels. We believe that basic

blocks capture the structure of instruction sequences and thus we process the instruction

traces and organize them into basic blocks. We call the resulting assembly code “logic

assembly”.

Compared with assembly code, dynamic captured instruction sequences may have in-

complete code coverage. This fact implies the following consequences about logic assembly

code:

38

(i) Some basic blocks may be completely missing

(ii) Some basic blocks may contain less instructions

(iii) Some jump targets may be missing, which makes two basic blocks merge together

Despite these differences, logic assembly carries as much structural information of a

program as possible.

We design the algorithm to construct logic assembly from runtime instructions trace.

The algorithm consists of three steps and we describe below:

(i) Sort all instructions in the execution log on their virtual addresses. Repeated code

fragments will be ignored

(ii) Scan all jump instructions. If the address of an instruction is a destination of control

flow transfer instruction (conditional or unconditional), or the previous instruction is

a control flow transfer instruction, we mark it as the beginning of a new basic block

(iii) Output sorted instructions and generate labels if applicable

We further prove that instructions inside a basic block are consecutive. Here consecutive

means there is no hole inside address space representing the binary code of the basic block.

If not, suppose there is a gap between adjacent instruction i1 and i2 inside the same basic

block, then there must be a control flow transfer instruction j leads to i2, and j must be right

before i2. So j should be in our chronicle instruction log as well. We will generate a new

label for instruction i2. Then i1 and i2 should be in different basic blocks. This contradicts

our initial assumption.

Each instruction usually consists of operation code (opcode) and operands. Some instruc-

tion sets such as 80x86 also have instruction prefix to represent repetition, condition, etc. We

pay attention to the opcode and ignore the operands and prefix since the opcode represents

the behavior of the program. The resulting assembly code is called abstract assembly [74].

39

Figure 4.3: Logic Assembly and Abstract Assembly

Figure 4.3 shows an example of logic assembly and abstract assembly. Figure 4.3.a is

the original instruction sequences captured by our system. We remove duplicated code from

line 7 to line 14, and generate label for jump destination line 3. Figure 4.3.b is the logic

assembly we generated. We further omit the operands and keep only opcode, and we finally

get abstract assembly as in figure 4.3.c.

40

Figure 4.4: Different Incarnations

One merit of using dynamic instruction sequences is that dynamic instruction sequences

expose some type of self-modifying behavior. If a program modifies its code at runtime, we

observe two different instructions at the same virtual address in runtime trace. A program

may even modify its own code more than once. We devise a mechanism to capture this

behavior while constructing logic assembly.

We associate an incarnation number for each virtual address we have seen in the dynamic

instruction sequences. Initial incarnation number is 1. Each time we see an instruction at

the a virtual address, we compare this instruction with the one we have seen before at

that virtual address, if there is any. If the instruction changes, we increment the incarnation

number. Subsequent jump instruction will mark the beginning of a basic block on the newest

incarnation. We treat instructions of different incarnations as different code segments, and

generate basic blocks separately. Figure 4.4 illustrates this process. In this way we keep the

behavior of any historical invocations even if the code is later overwritten by newly generated

code.

41

4.3 INSTRUCTION ASSOCIATIONS

With abstract assembly we are interested in finding relationship among instructions

within each basic block. We believe the way instruction sequences group together within

each block carries the information of the behavior of an executable.

The instruction sequences we are interested in are not limited to consecutive and ordered

sequences. Virus writers frequently change the order of instructions and insert irrelevant

instructions manually to create a new virus variation. Further, metamorphic viruses [3]

automatically change the order of sequences and insert garbage among useful instructions

to make new virus copies. The resulting virus variation still exhibits the malicious behavior.

However, any detection mechanism based on consecutive and ordered sequences such as

N-Gram could be fooled.

We have two considerations to obtain the relationship among instructions. First, whether

the order of instructions matters or not; Second, whether the instructions should be consec-

utive or not. Based on these two criteria, we use three methods to collect features.

(i) The order of the sequences is not considered and there could be instructions in between

(ii) The order of instructions is considered. However, it is not necessary for instruction

episodes to be consecutive

(iii) The instructions are both ordered and consecutive

We call these “Type 1”, “Type 2” and “Type 3” instruction associations. “Type 3”

instruction association is similar to N-Gram. “Type 2” instruction association can deal with

garbage insertion. “Type 1” instruction association can deal with both garbage insertion

and code reordering.

Figure 4.5 illustrates different types of instruction associations of length 2 we have ob-

tained on an instruction sequences consisting of 4 instructions.

42

Figure 4.5: Example for instruction associations of length 2

4.4 DATA MINING

4.4.1 Process Overview

The overall data mining process can be divided into 7 steps. They are:

(i) Run executable inside a virtual machine, obtain instruction sequences from our system

(ii) Construct logic assembly

(iii) Generate abstract assembly

(iv) Feature selection

(v) Generating training dataset and testing dataset

(vi) Build classification models

(vii) Evaluation

This process is illustrated in Figure 4.6.

43

Figure 4.6: Data Mining Process

4.4.2 Feature Selection

Here we describe step iv which is feature selection in detail. The features for our classi-

fier are instruction associations. To select appropriate instruction associations, we use the

following two criteria:

(i) The instruction associations should be frequent in the training dataset consisting of

both benign and malicious executables. If it occurs very rarely, we would rather con-

sider this instruction association is a noise and not use it as our feature

(ii) The instruction associations should be an indicator of benign or malicious code; In

other words, it should be abundant in benign code and rare in malicious code, or vice

versa

To satisfy the first criteria, we only extract frequent instruction associations from training

dataset. Only frequent instruction associations will be considered as our feature.

We use a variation of Apriori algorithm [75] to generate all three types of frequent in-

struction associations from abstract assembly.

The basic idea of the Apriori algorithm in our experiment is to generate candidate in-

struction combinations of particular size and then scan the whole file to count these to see

44

Figure 4.7: Apriori Algorithm

if they are frequent enough [7]. One observation is that if one instruction combination is

frequent, then all its subsets must be frequent. First, all 1-instruction will be counted. If the

percentage of lines containing such instruction exceeds the minimum support, we will mark

it frequent. All 2-instructions candidates will be generated based on frequent 1-instruction.

Only the 2-instructions whose 1-instruction subset is frequent will be considered as a can-

didate. Another round of file scan will be needed and all 2-instructions candidates will be

counted. This process continues until no longer candidates are generated as shown in figure

4.7.

Although there exist algorithms to optimize Apriori algorithm [76], the optimization is

only applicable to type 1 instruction association. Besides, this step only occurs at training

time. We believe optimizing decision process is more critical because it will run on each end

user computer under protection. Training, however, only need to be done on some specific

server computers.

One parameter of Apriori algorithm is “minimum support”. It is the minimal frequency

of frequent associations among all data. More specifically, it is the minimum percentage of

45

basic blocks that contains the instruction sequences in our case. We have done experiments

on different support level as described in section 4.7.

To satisfy the second criteria, we define the term contrast:

Contrast(Fi) =

Bcount(Fi)+ε
Mcount(Fi)+ε Bcount(Fi) ≥ Mcount(Fi)

countM(Fi)+ε
Bcount(Fi)+ε Bcount(Fi) < Mcount(Fi)

.

BCount (Fi) normalized count of Fi in benign instruction file
MCount (Fi) normalized count of Fi in malicious instruction file

ε a small constant to avoid error when the denominator is 0

In this formula, normalized count is the frequency of that instruction sequences divided

by the total number of basic blocks in abstract assembly. We use a slightly larger benign

code dataset than malicious code dataset. The use of normalization will factor out the effect

of unequal dataset size.

We select top L features as our feature set. For one executable in training dataset,

we count the number of basic blocks containing the feature, normalized by the number of

basic blocks of that executable. We process every executable in our training dataset, and

eventually we generate the input for our classifier.

4.4.3 Classification

We use two classifiers in our experiments: decision tree and Support Vector Machine.

4.4.3.1 Decision Tree

Decision tree is a classification algorithm that is constructed by recursively splitting the

dataset into parts. Each such split is determined by the result of the statistical test of

all possible splits among all attributes inside the tree node. This statistical test can be

Gini, entropy gain or Chi-square test. The decision tree keeps growing as more splits are

46

performed until a specific stop rule is satisfied. Typical stop rules include minimum record

number inside a tree node, maximum depth of the tree, and purity of the records in a node.

After growing a full tree, an additional process called postpruning can be used to simplify

the decision tree. During postpruning, some splits are removed while others are retained.

Postpruning can reduce overfitting problem. Each leaf node is then tagged with majority

class of its records and complete the construction of the decision tree.

Once a decision tree is built, it is used for classification of a new record. When a record

of an unknown class comes in, it is classified through a sequence of nodes from the tree root

down to the leaf node. Then, it is labeled by the class the leaf node represents. Depending

on the choice of split criteria, stop rules, postpruning strategies, and some other properties,

there are several variations of decision trees such as ID3 [77], C4.5 [78], CART [79], and

CHAID [80].

C4.5 is a popular decision tree package based on ID3. It uses entropy gain as its splitting

criteria. The splitting will stop only when all records within a node is of the same class or

a node is too small. After C4.5 tree has fully grown, there is a pruning process. C4.5 takes

both discreet and continuous features.

We use Quinlan’s c4.5 decision tree [78] as our decision tree implementation.

4.4.3.2 Support Vector Machine

Support vector machine (SVM) [81, 82] receives attention since its advent. It is consid-

ered to be one of the most stable and accurate classifiers. SVM is essentially a mathematical

optimization problem which has originated from the linear discriminant problem, see fig-

ure 4.8.a. There are two approaches for finding the optimal linear discriminant in a linear

separable case. The first approach is to find the best plane bisects closest points in the

convex hull, see figure 4.8.b and the second approach is to find the best plane maximizes the

margin, see figure 4.8.c.

47

Figure 4.8: Support Vector Machine

The optimization method works even in a linear inseparable case. In convex hull ap-

proach, the convex hull will shrink to make two classes linear separable, see figure 4.8.d. In

maximum margin approach, we allow some errors for the margin (soft margin), that means,

some data may not obey the discriminant. We will calculate the total error term of these

data, the smaller the error term, the better the discriminant, see figure 4.8.e.

SVM extends this simple linear case. The idea is, if two classes are inseparable in two

dimensions such as figure 4.8.a, SVM can use a mapping, which is called kernel function,

to map two dimension data into a higher dimension. The two classes may be separable in

higher dimension. Even if it is still inseparable, the error term may be much smaller.

We use libSVM [83] package in our experiments. It is based on SMO (Sequential Minimal

Optimization) [84], which is regarded as one of the best implementations for SVM. libSVM

takes both categorical and continuous features. It is a C implementation of SVM on Unix.

48

4.4.3.3 Other Classifier

We also tested some other classifiers such as random forests [85]. We do not detect

any classifier has clear advantage over others in the measure of accuracy. One reason leads

us to use C4.5 and SVM in our experiment is that both classifiers are efficient to make

decision. The performance of decision making process is the key to our system performance

(See Section 4.5). Recently, we did some preliminary experiments on TreeNet [86]. we see

improvements by using this new classifier. We need to more extensive experiment using

TreeNet in our future work.

4.4.4 N-folds Cross Validation

Cross validation [87] is a method to generate relatively fair performance measurements

from the dataset. It first divides the whole dataset randomly into n equal size folds. Every

time we use n-1 folds as training dataset and use the remaining 1 fold as testing dataset.

This process is repeated n times. Every fold is selected as testing dataset once. The overall

performance is calculated by averaging all n results. The result of N-folds cross validation

is more accurate than simple training dataset / testing dataset approach. This approach is

especially useful for a small dataset. It keeps most data as training dataset, resulting in a

more accurate classification model. By averaging n results, this approach does not suffer the

randomness caused by a small testing dataset.

4.4.5 Ensemble Model

One approach to improve the classification accuracy is using an ensemble model which is

a combination of several different models. Usually a majority vote will be performed and the

winner decides the final classification of the unknown case. Compare to a single classifier,

ensemble model is more robust and resistant to overfitting. However, it takes more time

49

to build and apply an ensemble model since it will build several classifiers rather than one.

Bagging [88] and boosting [89] are two most popular ensemble models.

4.4.6 Performance Measurement

In this thesis, performance of the classification models are measured by three criteria.

They are accuracy, false positive rate and false negative rate. In a two-category classification

problem, the classification result will be one of the following cases:

(i) true and classified as true (True Positive)

(ii) false but classified as true (False Positive)

(iii) false and classified as false (True Negative)

(iv) true but classified as false (False Negative)

And (All cases) = (True Positive) + (False Positive) + (True Negative) + (False Nega-

tive).

Here are the definition of accuracy, false positive rate (FPR) and false negative rate

(FNR) respectively:

Accuracy = (TruePositive)+(TrueNegative)
All

FPR = FalsePositive
(TruePositive)+(FalsePositive)

FNR = FalseNegative
(TrueNegative)+(FalseNegative)

False positive rate is the proportion of benign executables that were erroneously reported

as being malicious. On contrary, false negative rate is the proportion of malicious executables

that were erroneously identified as benign.

In short, accuracy is the overall accuracy in testing dataset, false positive rate is the

accuracy among all positive case, false negative rate is the accuracy among all negative case.

50

4.5 PERFORMANCE ANALYSIS

In this section, we focus on average performance in measure of speed when applying the

classification model on the end user computer. The performance to process one unknown

executable is determined by the following factors:

(i) Capturing instruction sequences

(ii) Generating logic assembly

(iii) Counting the occurrence of instruction associations in feature set to generate feature

vector

(iv) Applying classification model

Unlike system calls, instruction sequences are generated fast and at a relative stable rate.

On our test computer, we generate an average of 6,000 instruction sequences in 1 second

inside our system. That is enough for the input for our classifier. This is one advantage over

system call approach, which takes more time to collect enough traces.

However, instruction sequences collection rate is not really stable. We could spend much

more time than average to capture enough instruction sequences. For example, some system

calls will block the process so we cannot capture any instructions for this program module

during system call. Some program will wait for user’s response to continue executing. To

solve this problem, we also specify a time limit on instruction capturing. We will stop

capturing instruction sequences and continue to the next step when a timeout occurs.

Generating logic assembly consists of three phases. In the first phase, we need to sort

the instruction sequences according to their virtual address. This could take up to O(nlogn)

to finish, in which n is the number of instructions captured. In the second phase, we mark

jump destination using one linear scan of all instructions, which takes O(n). Maintaining

different incarnations requires a memory map to remember the instruction and incarnation

51

of each virtual address. Every instruction takes linear time to check this memory map, so

this additional task will not increase the order of the overall processing time. Finally, we

traverse the sorted instruction list to output basic blocks, which takes O(n). So the overall

time complexity in logic assembly generation is O(nlogn).

Generating features vector requires counting the frequency of L features. Suppose one

basic block contains average k instructions, thus we have average n/k basic blocks. For every

basic block, we will do a search for each one of L features.

Different types of instruction association require different approaches to search inside a

basic block. For type 1 instruction association, we use an occurrence bit for every instruction

in the association, if all bit is on, then the basic block contains that instruction association.

For type 2, we construct a finite state machine (FSM), and scan the basic block from the

beginning. If we encounter an instruction matching the state in FSM, we change the state

of FSM, and begin matching the next instruction. For type 3, it is similar to a substring

search. All these three types of search requires one linear scan of the basic block, makes the

average complexity O(k).

We can calculate the processing time of feature vector generation as the product of the

above factors. So this step takes (search time per feature per basic block)* (feature number)

* (basic block number) = O(n/k*k*L) = O(nL).

The time complexity to apply a classifier is a property of that specific classifier.

For C4.5 decision tree, the applying time complexity is proportional to the depth of the

tree [78], which is a constant at the decision time. SVM takes O(L) time to apply the model

on a specific feature vector [90].

Based on the discussion above, we conclude that the average time complexity to process

an unknown executable is bounded by max (O(nlogn), O(nL)), in which L is the number of

features.

52

In our experiment, to process instructions captured in 1 second, for which n≤6000, the

calculation time is usually less than 3 seconds. This suggests that this approach can be used

in practice.

4.6 Dataset

Due to the prevailing dominance of Win32 viruses today, we use Win32 viruses as our

virus dataset. We collect 267 Win32 viruses from VX heaven [91].

We also choose 368 benign executables which consist of Windows system executables,

commercial executables and open source executables. These executables have similar average

size and variation as the malicious dataset.

Some viruses fail to execute fully and we can only collect less than 10 dynamic instruc-

tions. We exclude these viruses from our dataset due to lack of enough information for

further processing. By manually analyzing these viruses, we found that these viruses quit

early due to failure to identify or execute some system functions. This is usually due to

the virus author making false assumption about the operating system which is not present

in the destination system. For example, Win32.Alcaul.b is trying to write to a read only

page at 5th instruction. While it is possible in earlier version of Windows, current version of

Windows correct the problem and this operation is no longer possible. The virus code quit

quickly due to access violation. All such viruses we have encountered are not actually pre-

senting malicious behavior before they quit and thus would not destroy end user computer.

So we believe ignoring these viruses in our system would not cause a big problem.

In one experiment, we try to use IDA Pro [41] to get a assembly code from each binary

executable. Our study shows that a non-negligible amount of binary executables cannot

be fully disassembled. Only around 50% of malicious executables can be fully disassembled

and more than 10% of them cannot be disassembled at all; that means the disassembler

recognizes no identifiable instructions in the binary executable at all. For benign executables,

53

Table 4.1: Dataset Statistics
Benign Virus

Number 368 267
Average Binary Size 126k 38k

STDEV(size) 319k 75k
Average Assembly Lines 20495 5717

STDEV(lines) 30566 18677

around 90% executables can be fully disassembled. In those cases, further disassembly can

be achieved manually. However, manual disassembly requires advanced skills and is time

consuming. This result justifies our choice of using dynamic approach in favor of static

approach.

The dataset is publicly available at http://www.cs.ucf.edu/~daijy/instructionsequence_

dataset.zip

Table 4.1 lists key statistics for our dataset.

4.7 EXPERIMENTAL RESULTS

4.7.1 Methodology

We use 5-fold cross-validation [7] to evaluate the performance in our experiments. We

randomly divide the dataset into 5 subsamples of the same size. We then repeat the cross-

validation process 5 times. Every time we use one subsample as testing dataset and all other

subsamples as training dataset. Our result is the average of all 5 runs.

In out experiment, we use accuracy on testing dataset as our main criteria in evaluation

of the performance of classification models. However, we also calculate false positive rate

and false negative rate. We believe in a virus detection mechanism, low false negative rate

is more vital than low false positive rate. It is wise to be more cautious against those

suspicious unknown executables. High false positive rate certainly make things inconvenient

54

http://www.cs.ucf.edu/~daijy/instructionsequence_dataset.zip
http://www.cs.ucf.edu/~daijy/instructionsequence_dataset.zip

for the user, but high false negative rate will destroy a user’s computer, which is more

harmful.

4.7.2 Parameter Selection

There are five primary parameters in our classifier, they are:

(i) Instruction association type IA (type 1, 2 or 3)

(ii) Support level of frequent instruction association (S), we experiment with 0.003, 0.005,

0.01

(iii) Number of features (L), we try 10, 20, 50, 100, 200, 300. At some support level, some

instruction association types generate relatively fewer number of available features. For

example, at support lever 0.01, only 23 type 1 instruction associations are frequent. In

that case, we use up to the maximum available features

(iv) Type of classifier (C), we compare C4.5 decision tree and SVM (Support Vector Ma-

chine)

(v) Number of instruction captured (N). We try 1000, 2000, 4000, 6000, 8000

Table 4.2 list top 10 configurations we get along with training and testing accuracy.

Table 4.3 is their according false positive rate and false negative rate.

The result shows that support level 0.01 is clearly superior to others. That shows that

frequent patterns are more important than infrequent patterns.

Instruction association type 1 and 2 outperform type 3. That is an interesting result

which could serve to justify our approach over traditional N-Gram based approach in that

N-Gram checks consecutive and ordered sequence only.

The performance of SVM is a little bit better than C4.5 in our top 10 list. The average

testing accuracy of SVM in top 10 models is 0.911 compared with 0.906 of C4.5.

55

Figure 4.9: Effect of L

Figure 4.9 shows the effect of number of feature L vs average accuracy among all models.

Generally, more features give more accurate result. However, the margin is small after

L>100. Larger feature number implies longer processing time for monitor system. Usually

200-300 features are optimal.

The effect of number of instructions captured N is not quite clear yet. We further

calculate average accuracy at different N in Figure 4.10. We see that generally accuracy

increases when we use a large N. However, the difference becomes very small when N>2000,

especially for testing dataset. That justifies that when we use the initial part of instructions,

we can capture the behavior of the unknown executable. One interesting phenomenon is

when N=2000, we get some really good result. Half of our top 10 models use 2000 instruction

sequences. That means in some settings, first 2000 instructions already capture the character

of the executable, further instructions might only give noise.

4.7.3 Outlier Analysis

We are interested to see if there are some common properties shared by those viruses that

fail to be correctly classified by our model. We do expect that those misclassified samples

56

Figure 4.10: Effect of N

Table 4.2: Top 10 Configurations

Model# IA S L C N Accuracy
1 2 0.01 300 SVM 4000 0.954/0.919
2 2 0.01 300 SVM 2000 0.954/0.918
3 2 0.01 300 SVM 6000 0.955/0.914
4 2 0.005 300 C45 2000 0.937/0.910
5 2 0.01 200 SVM 6000 0.948/0.909
6 1 0.01 100 C45 6000 0.938/0.906
7 2 0.01 200 C45 4000 0.934/0.906
8 2 0.01 200 SVM 2000 0.949/0.904
9 2 0.01 300 SVM 2000 0.947/0.904
10 1 0.01 100 C45 2000 0.915/0.903

IA: Instruction Association type
S: Support
L: Number of features
C: Classifier
N: Number of dynamic instructions
Accuracy: Accuracy in training set / testing set

57

Table 4.3: FPR/FNR for top 10 models

Model# FPR FNR
1 0.074/0.096 0.025/0.068
2 0.074/0.118 0.027/0.056
3 0.072/0.114 0.027/0.066
4 0.094/0.126 0.041/0.065
5 0.085/0.126 0.028/0.063
6 0.120/0.131 0.015/0.067
7 0.102/0.131 0.038/0.068
8 0.084/0.130 0.028/0.071
9 0.089/0.121 0.028/0.076
10 0.145/0.151 0.038/0.055

FPR: False Positive Rate for training set / testing set
FNR: False Negative Rate for training set / testing set

are “hard” viruses, such as packed, polymorphic or metamorphic viruses. However, to our

surprise, we cannot identify any shared patterns for those failed samples. Table 4.4 lists

misclassified virus samples by our top models. For a concrete example, in Win32.HLLW

virus family, we have 23 virus samples, 1 is misclassified. In Win32.HLLP virus family,

we have 27 virus samples, 3 are misclassified. None of these virus samples are packed,

polymorphic or metamorphic.

4.7.4 Decision Process

Table 4.5 shows typical processing time to process one unknown program in seconds

on our test computer. The test computer has a typical configuration of recent personal

computer with 1 AMD Turion 1.58G CPU and 1G memory. “Log” is the time to capture

necessary instruction sequences. “Assembly” is the time to construct logic assembly and

then get abstract assembly. “Feature” is the time to extract feature vector. “Model” is

the time needed to apply the classifier. Table 4.6 is normalized execution time divided into

different components.

58

Table 4.4: Misclassified Sample

Virus.Win32.Ruff.4859
Virus.Win32.Evol.c

Virus.Win32.Elkern.c
Virus.Win32.Cabanas.Release

Virus.Win32.Henky.504
Virus.Win32.HLLW.Myset.b

Virus.Win32.Gaybar
Virus.Win32.HLLO.Rozak.a

Virus.Win32.Resur.b
Virus.Win32.ZMist

Virus.Win32.Chiton.p
Virus.Win32.Evyl.d
Virus.Win32.Delikon

Virus.Win32.HLLP.Xinfect.i
Virus.Win32.HLLP.Vedex.b
Virus.Win32.InvictusDLL.b
Virus.Win32.HLLP.Gezad
Virus.Win32.Kaze.3228

Virus.Win32.Seppuku.1606
Virus.Win32.Mystery.2560
Virus.Win32.Redemption.a

Virus.Win32.Ditto.1539
Virus.Win32.Refer.2939

Virus.Win32.Lash.b

Some programs could take much longer time to collect enough instruction sequences

because of some long system calls or some function requires user interaction. We have a

hard limit on “log” time which is 3s.

Other time components are relatively stable. SVM model takes significantly more time

than C4.5.

The overall processing time is usually under 3 seconds.

We also tested the capacity of our malicious behavior protection system. We run all

267 malicious programs from our dataset inside our monitor system. None of them present

59

Table 4.5: Typical Runtime for Monitor System

Model# Total Log Assembly Feature Model
1 1.79 0.25 0.06 0.37 1.12
2 1.66 0.22 0.03 0.13 1.28
3 2.86 0.34 0.08 1.24 1.20
4 0.34 0.15 0.03 0.14 0.02
5 2.29 0.36 0.09 0.85 1.02
6 0.45 0.35 0.08 0.02 0.01
7 0.56 0.27 0.05 0.23 0.01
8 1.29 0.18 0.03 0.10 0.99
9 1.44 0.27 0.03 0.13 1.01
10 0.23 0.19 0.07 0.01 0.01

Table 4.6: Normalized Runtime for Monitor System

Model# NLog NAssembly NFeature NModel
1 0.06 0.015 0.031 0.37
2 0.11 0.015 0.021 0.42
3 0.06 0.013 0.069 0.40
4 0.08 0.015 0.023 /
5 0.06 0.015 0.071 0.51
6 0.06 0.013 0.003 /
7 0.07 0.013 0.029 /
8 0.09 0.015 0.025 0.50
9 0.14 0.015 0.022 0.50

NLog = Log Time / 1000 Instructions
NAssembly = Assembly Time / 1000 Instructions
NFeature = Feature Selection Time / (100 Features * 1000 Instructions)
NModel = SVM Classification Time / 100 Features

obvious malicious behavior. Although our protection scheme is not complete as discussed in

chapter 3, most viruses are well guarded by our system.

4.7.5 Ensemble Model

Ensemble model is a meta-model which applies several models simultaneously, and takes

the majority decision as the decision of the ensemble model. We use top 3, 5, 10 models to

build our ensemble model. Table 4.7 shows our result.

60

Table 4.7: Performance of Ensemble Models
Model Numbers Accuracy FPR FNR

3 0.943/0.908 0.093/0.151 0.031/0.045
5 0.943/0.908 0.089/0.137 0.035/0.058
10 0.947/0.917 0.088/0.161 0.028/0.016

We do not see improvement for the result of ensemble model. Further, ensemble model

takes much more time to make decision on the monitor system. So we decide not to use

ensemble models in our system.

4.8 Comparison Study

To evaluate the performance of dynamic instruction sequences approach, we experiment

on a serial of approaches to find out the effectiveness of our dynamic instruction sequences

approach.

4.8.1 Simple Heuristics Approach

Simple heuristic features refer to the feature set extracted from Win32 PE head or strings

inside executable body.

[6] illustrates many heuristics to detect structural anomaly of Win32 viruses. In our

experiment, we use the following features:

(i) Entry point locates in the last section

(ii) Suspicious section name

(iii) Suspicious section characteristics

(iv) Inconsistent size calculation

(v) Suspicious imports by ordinal

61

(vi) Critical function imports

(vii) Corrupt relocation table

(viii) Occupation rate of last block in sections (if over 10%)

In our experiment, we uses the presence of each of such feature as our boolean feature.

Since we only have 8 features, we do not perform feature selection. Like dynamic instruction

approach, we use 5-folds cross validation approach to get our result and report accuracy,

false positive and false negative on both training and testing dataset.

4.8.2 NGram Approach

N-Gram refers to consecutive binary sequences of fixed size inside binary code.

In our experiment, we repeat the experiment in [34] on our dataset, and compare the

result of N-Gram with our approach.

We select top k features as usual. For each feature, we will find out the presence of that

feature in both training and testing dataset. We also use C4.5 decision tree and support

vector machine as our classifier. We report accuracy, false positive rate and false negative

rate as well.

4.8.3 Static Assembly Approach

Static approaches are based on the features derived from static analysis. Some approaches

are based on assembly code derived by disassembling the executable binary [39]. Other

approaches are based on higher level structure based on assembly code such as control flow

graph (CFG) [37]. However, disassembling binary code itself is a hard problem and no

general solution has been discovered yet [45].

The reason for the failures in disassembling can be classified into two folds.

62

(i) Encrypted and polymorphic virus can not be disassembled by conventional disassem-

bler. Each of these viruses encrypts virus body in binary file and the encrypted code

is not directly runnable. After Windows loader loads the virus into memory, execution

starts with a special part of code called decryptor. Decryptor is usually small and

not encrypted. The decryptor code will modify the memory image and restore virus

body to runnable code. Usually encryption key changes every time so that virus body

does not remain the same and thus makes signature based detection ineffective. The

difference between encrypted virus and polymorphic virus is that encrypted virus uses

a constant decryptor and polymorphic virus mutates the descriptor. Disassembler an-

alyzes the binary code statically, so it can not disassemble the virus body except for

the loader

(ii) Current disassembler uses linear sweep or recursive traversal techniques which are

inherently limited

Linear sweep disassembles binary codes into instructions byte by byte. An instruction

may consist up to 13 bytes. Linear sweep assumes the code is consecutive, there is no hole

in the between even if the previous instruction is a control flow transfer instruction. In

reality, especially in malicious code, there could be a hole after some control flow transfer

instructions, thus defeat linear sweep.

Recursive traversal try to find the destination of each transfer control instruction at first,

then perform linear sweep for each block. Even if there is a hole after the control flow transfer

instruction, the assembler still works because it does not assume that the next instruction

is the starting point of the next block. However, not all start point can be easily extracted.

Some control flow transfer instructions do not use an address constant as parameter, instead,

they use value inside a variable. The value inside a variable cannot be derived statically.

Current disassembler use some heuristics to guess the destination address of the control flow

transfer instruction. However, in many cases, this approach fails. Figure 4.11 shows an

63

Figure 4.11: Wrong Assembly Code

Figure 4.12: Correct Assembly Code

example of such case IDAPro fail to disassemble. The correct form should be figure 4.12.

The first instruction is a “call” instruction and its destination is “loc 401121+1”, which refers

to “00401122”. Ideally, disassembler starts disassembling a new function from “00401122”.

However, IDAPro is not clever enough to do the calculation and only makes a simple guess

that “00401121” is the destination address. The content in “00401121” is “00”, which is

the opcode of “add” instruction. IDAPro interpret it as an “add” instruction and treat the

bytes following it as its operands. Actually, the following byte “8B” should be interpreted as

opcode. Now everything is messed up. In these cases, further disassembling can be achieved

manually in IDAPro. In the example, we can manually tell IDAPro that “00401122” is the

function start address. However, manual disassembling requires advanced skills and is time

consuming.

Some other approaches [45, 47] have also been proposed to alleviate this problem. How-

ever, none of current approaches solve the problem completely.

Although our feature is based on assembly code, the disassembility is not the key to

our approach. If an executable cannot be fully disassembled, we extract fewer instruction

64

Figure 4.13: From Assembly to Abstract Assembly

sequences or no instruction sequences at all. Our process will still work even in these cases.

The disassembility becomes a heuristics in our approach.

We first disassemble the binary code into assembly code. The assembly code breaks into

natural blocks. The start point of each block is associated with a disassembler-generated

label. Usually it is a destination of a control flow instruction elsewhere in the program. For

each block, we generate a line with a sequence of instruction operation codes inside the block

as shown in Figure 4.13. The result is similar to the abstract assembly we get in dynamic

instruction sequence approach.

If an executable cannot be fully disassembled, we extract fewer sequences or no sequences

at all. Our process will still work even in these cases.

Once we get the abstract assembly, we use the same approach to extract features, select

top features and then collect the accuracy, false positive rate and false negative rate for both

training dataset and testing dataset.

65

Table 4.8: Performance of Simple Heuristic Features

Accuracy FPR FNR
C4.5 0.900/0.897 0.026/0.234 0.028/0.248
SVM 0.906/0.853 0.022/0.225 0.017/0.233

Table 4.9: Performance of NGram (C4.5)

N Accuracy FPR FNR
8 0.986/0.882 0.009/0.111 0.021/0.127
10 0.981/0.896 0.007/0.082 0.035/0.135
12 0.978/0.909 0.005/0.065 0.046/0.127
14 0.981/0.917 0.009/0.054 0.003/0.123
16 0.973/0.909 0.007/0.054 0.055/0.142
18 0.976/0.906 0.009/0.084 0.044/0.108

4.8.4 Comparison Result

Table 4.8 lists the experimental result for simple heuristic features. C4.5 decision tree

performs better than support vector machine in this experiment. The accuracy over testing

dataset is 89.7%.

Table 4.9 and table 4.10 shows the experimental result of NGram features using C4.5

and SVM classifier respectively. The best performance of NGram features is achieved when

N equals to 14, using c4.5 classifier. This is in par with dynamic instruction sequences

approach. That shows NGram approach is still effective to detect current virus. However,

as we discuss before, NGram approach does not directly use instruction information of a

program. So it may not be able to capture the most important characteristic of a malicious

software.

Figure 4.14 and figure 4.15 shows the training accuracy and testing accuracy for both

C4.5 decision tree and support vector machine classifiers. From the diagram, we can see

testing accuracy of c4.5 decision tree improves when N increases from 8 to 14. After that,

66

Table 4.10: Performance of NGram (SVM)

N Accuracy FPR FNR
8 0.958/0.896 0.019/0.065 0.073/0.158
10 0.957/0.904 0.018/0.060 0.078/0.146
12 0.961/0.901 0.012/0.062 0.076/0.150
14 0.961/0.904 0.013/0.051 0.075/0.157
16 0.954/0.899 0.018/0.051 0.085/0.169
18 0.957/0.904 0.017/0.052 0.077/0.157

Figure 4.14: Experimental Result for NGram (C4.5)

the testing accuracy begins to drop. For support vector machine, testing accuracy increases

first and then fluctuates when N ¿ 10. A large N does not imply a better performance.

Table 4.11 shows top 10 models using static assembly features. The best models is

achieved when support level is 0.005, feature size is 300 and instruction association type is 2.

The accuracy over testing dataset for this model is 87.5%. This is much worse than dynamic

instruction sequences features. Table 4.12 shows the false positive rate and false negative

rate for top 10 models based on static assembly features. Most of them have a higher false

negative rate than false positive rate. As we have already discussed in 4.7, low false negative

67

Figure 4.15: Experimental Result for NGram (SVM)

Table 4.11: Top 10 static models

Model# IA S L C Accuracy
1 2 0.005 300 SVM 0.951/0.875
2 1 0.01 300 SVM 0.961/0.869
3 3 0.003 76 C45 0.895/0.863
4 2 0.01 300 SVM 0.961/0.861
5 2 0.01 200 SVM 0.959/0.861
6 1 0.01 200 SVM 0.942/0.853
7 2 0.003 300 SVM 0.936/0.851
8 2 0.005 100 SVM 0.942/0.849
9 1 0.003 200 C45 0.951/0.849
10 2 0.005 200 SVM 0.950/0.847

IA: Instruction Association type
S: Support
L: Number of features
C: Classifier
N: Number of dynamic instructions
Accuracy: Accuracy in training set / testing set

rate is more important than low false positive rate in real practice. It is not the case in static

assembly features approach.

68

Table 4.12: FPR/FNR for top 10 static models

Model# FPR FNR
1 0.022/0.078 0.091/0.209
2 0.014/0.075 0.077/0.229
3 0.170/0.206 0.036/0.066
4 0.020/0.096 0.067/0.207
5 0.019/0.104 0.076/0.194
6 0.040/0.123 0.083/0.184
7 0.045/0.107 0.094/0.216
8 0.041/0.127 0.083/0.187
9 0.058/0.139 0.040/0.175
10 0.025/0.118 0.088/0.210

FPR: False Positive Rate for training set / testing set
FNR: False Negative Rate for training set / testing set

For all the feature sets we are comparing, simple heuristics approach and static assembly

approaches performs much worse than dynamic instruction sequences features. NGram and

dynamic instruction sequences feature achieve similar detection rate.

False negative rate for simple heuristics features, NGram features and static assembly

features are higher than false positive rate, which is not desirable for a malicious software

detection system. Dynamic instruction sequences approach instead, has a lower false negative

rate.

Dynamic instruction sequences utilize the information of instructions of a program. In-

structions capture the most important characteristic of a program. Simple heuristic feature

checks program header only. NGram feature mostly relies on program header information

and string information, which is easier to be evaded by advanced malicious software.

Based on the above analysis, we conclude that dynamic instruction sequences features is

more desirable than other three approaches we are comparing.

69

4.9 Malicious Software Analysis Toolkit

our malici analysis is to analyze the executable code without actually executing the code.

Popular static analyzing approaches include PE head analysis, assembly analysis and higher

level analysis. Existing static analyzing tool include PE head viewer and disassembler.

A set of tools [92, 93, 94] can extract PE head information [25, 26] and present it to the

user. These tools print out all the information of the PE head in a list form on screen which

include PE head, data dictionary, section table, import address table (IAT), import table

and export table. However, these tools only list all the information and do not try to show

how these information locates inside an executable binary. In virus detection, the location of

these information is very important. For example, Entry point is a very important heuristics

to detect virus. Many virus codes will modify the original entry point of the victim. And

the fact that entry point points to the last section is suspicious. We need a way to visualize

the entry point within the executable and sections.

Several dissemblers [41, 92] are available for static analysis. All these dissemblers try to

disassemble the binary code globally. The techniques they are using are based either on

linear sweep or recursive traversal. However, neither solution is perfect. In many cases, we

cannot get complete assembly code automatically. IDA Pro provide manual control over

the disassembly code. You can manually adjust the assembly code if observing anything

wrong or incomplete. However, manual disassembling requires experience and quite time

consuming.

We try to build a different type of static analysis tool and focus on the visualization of

the static analysis process. We call this tool PEAnatomy. The center piece of our analyzer is

the binary representation of the executable to be analyzing. To visualize the executable, we

mark different parts of the executable with different colors. The head part of an executable

include Dos head, PE head (include data dictionary) and section table. After that, we have

70

Figure 4.16: PE Anatomy Snapshot 1

a couple of sections. The entry point, import table, export table and IAT are located in

regular sections and are clearly marked as well.

For disassembling, we provide a visualized linear sweep disassembler. The difference

between our disassembler and other disassembler is that our disassembler is not focus on the

entire executable. Instead, using our visualized GUI, users can find the binary section they

are interested in, and invoke the disassembler easily with a click and drag.

Figure 4.16 and figure 4.17 show two snapshots of PEAnatomy. Figure 4.16 shows a

binary code and the right pane shows the information list of selected component. Here

the selected component is PE head. PEAnatomy is able to show information of different

structures within the binary code, include section table, import table, export table, IAT,

etc. Figure 4.17 shows the disassembling feature of PEAnatomy. By selecting a section of

binary code, we can view the according assembly code on the fly in the right pane.

Some other functions current under development are:

71

Figure 4.17: PE Anatomy Snapshot 2

(i) Read binary code from memory in addition to binary file. Some worms do not have a

file trace and we need to analyze them from the bytes inside memory

(ii) Mark address constant. Address constants are double word inside the binary and the

value of the binary is within the range of address space of the executable. Address

constant is likely to be a destination of control flow transfer instruction. [45] uses

address constants to construct its disassembler. Marking address constant inside a

binary file helps us to understand the code

(iii) Consistency check. Check the consistency of the PE head listed in [6]. Mark any

inconsistency

(iv) Byte profile

72

(v) Instruction sequence check. We integrate our dynamic instruction sequence approach

into PEAnatomy. We can use the result of dynamic instruction sequence check as a

criteria

73

CHAPTER 5: DETECTING MALICIOUS SOFTWARE
FAMILY USING STRUCTURAL SYSTEM CALL DIAGRAM

5.1 Introduction

In this section, we present a utilization of dynamic system call trace on a family of mali-

cious software. Captured system call contains information which determines some function

of the malicious software. Using our developed visualization tool, we are able to visualize

the system call trace of an executable in a way very similar to control flow graph and hence

observe the similarities and differences of a family of malicious software. As a concrete ap-

plication, we construct smart signature to detect a family of malicious software using system

call signature. By using our visualization tool, we can manually derive the signature to

detect malicious code family. Also, we design a way to automatically generate system call

signature of the malicious software family. We do not require an exact match for a system

call signature. We use a profile hidden Markov model (PHMM) to describe a system call

signature and score it against unknown software to determine the nature of the unknown

executable.

There are two categories of malicious software analysis approaches, static approaches and

dynamic approaches.

Static approaches check executable binaries or assembly codes without actually executing

the unknown program. Based on assembly code, some advanced techniques have been tried

to construct higher level structure such as control flow graph (CFG) [37] and template [36]

to help security expert to analyze the malicious software.

Dynamic approaches require actual execution of the software being analyzed. Current

techniques include debugger [73] and system call capturer [50]. However, no analysis has

been proposed on system call trace only.

74

Analyzing system call trace directly is not easy. System call trace contains repetitions

and does not break into blocks. System call trace contains important information about the

structure of the executable being analyzed. We use this information to construct a graph

similar to the control flow graph.

There are several components we capture with system call trace.

(i) Return address and stack trace

(ii) Parameters and return value

(iii) Timestamp information

To reveal the structure of a program through system call traces, stack information of

system calls is the most important. First, return address, which is located on top of stack,

reveals the point of invocation of a specific system call. Second, more return addresses on

stack reveal more functions and relations between these functions. Repetitions in the system

call trace are also very important. They reveal sequential, loop and branch structure among

different system calls. The order of system calls inside a block tells which system call comes

first and which comes next. It contains important information as well.

We build a visualization tool to show the control flow graph like structure of the system

calls. We call this a structural system call diagram.

As an application, we view and compare system call blocks between executables come

from the same malicious software family. We find that breaking down system call trace into

a structure has advantages to understand the similarities and differences between different

executables.

By utilizing well defined boundaries among system calls, we use a whole block of system

calls as a signature to detect other malicious software of the same family.

75

We use two approaches to derive system call signature: (1) manual extraction with

the help of our visualizer and (2) automatic extraction by using our automatic system call

signature extraction tool without user intervention.

When malicious software evolves, it is not necessary that all system call sequences inside

a block remain the same. An exact match is too strict. In this paper, we propose a concept

smart signature which allows insertion, deletion and mutation of one or some positions inside

system call signature.

We get a system call block as a signature of the malicious software family through a

manual or automatic process. We build a profile hidden Markov model (PHMM) [95] for the

signature we derive and use it as a smart signature. For an unknown program, we feed each

block into PHMM and get a score. The higher the score, the more similar this block is to

the system call signature. If the unknown program contains a block very similar to system

call signature, we determine it belong to the malicious software family.

5.2 Capturing Dynamic System Call

We choose to use Microsoft Detours library [72] to implement our dynamic system call

capturing system. Detours is a library freely available from Microsoft Research. Detours

hooks arbitrary user code onto Win32 API call. It provides API call to modify the first several

instructions of the target function with a “jmp” instruction. “jmp” diverts the execution

flow of Win32 API to the user supplied code. However, the replaced instructions of the target

function are not lost. It is saved by Detours to a newly appended section of the executable

code. Inside the user supplied codes, the user can optionally invoke the original version of

the system call through a trampoline function. In current Detours implementation, every

application using Detours should include “detoured.dll”, which is easy to be detected by

application. However, “detoured.dll” file is a marker that guides Microsoft technical support

76

Figure 5.1: System Call Trace

personnel and tools by helping them quickly determine that a process has been altered by

the Detours package [72]. It is not a limitation inherent to Detours.

In our implementation, we capture the following information along with the name of

system call:

(i) Return address of the system call and the stack trace information

(ii) Inputs and outputs of system call

(iii) Timestamp of the system call

We capture the system call information before and after the real system call invocation.

Before the invocation, we capture the program stack at the moment of system call invocation,

input parameter and time stamp. After the invocation, we capture return value and output

parameters. Figure 5.1 shows one system call trace we have captured. Every line in figure 5.1

represents a captured system call. It starts with a time stamp, followed by call stacks, and

then the name of system and its parameters.

Stack information refers to the active stack frames of the running program. In figure 5.2.b,

we show stack layout for a typical program. The program itself is listed in figure 5.2.a. Each

time we invoke a function, we first push the return address, which is the address of next

instruction in the calling function, onto the stack. Next we save EBP, which is the frame

point of previous function, in the stack. EBP will be used as frame point of the new function.

77

Figure 5.2: Stack Structure

EBP remains constant during the execution of function body. From the current EBP, we

can infer position of local variable, saved return IP and saved EBP on stack. Especially,

from the current EBP, we can get position of EBP of the calling function. Thus, EBP of all

calling functions form a chain. In figure 5.2, we show the state of stack right after we invoke

“syscall” in the program. From the current EBP, we can get EBP of all invoking functions,

which are funB, funA and main. Because return IP address of the function is right above

saved EBP, we can get return IP address of the function easily. We use the return IP address

as the identification of a function.

However, not all programs are well-behaved especially for some malicious software. Some-

times they do not put function base pointer onto the stack. If this happens, our program

cannot extract correct stack trace information. In this case, we only capture the stack

information up to the point where we can.

5.3 Structural System Call Diagram

The goal to construct a structural system call diagram is to visualize the system call

trace in a natural way. System call trace contains the information about dynamic system

calls of the program. However, system call trace contains repetitions. In our statistics, more

78

than 80% of the contents of the system call trace are simple repetitions. Also, system call

traces are simple chronicle logs and do not break into blocks. This sequential form of system

call is not intuitive for human to read.

Our target diagram is a control flow graph like visual structure. To build a structural

system call diagram, we proceed as follows:

(i) Break sequential system call trace into natural blocks

(ii) Remove repetition

(iii) Connect different blocks with edges which represent the control flow

(iv) For each block, list all system call information

(v) For each edge, calculate the number of times that execution follow this path

5.3.1 Generating Blocks

First, we describe the algorithm to break sequential system call trace into natural blocks.

We divide this process into two steps. First, we divide the system calls into functions. Then

we further break each function into several blocks.

5.3.1.1 Identifying Functions

In section 5.2, we have discussed that calling function of a system call can be identified

by stack trace information. We can get the calling chain from that system call all the way

up to the main function. Our goal here is to identify system calls belonging to the same

function from system call trace.

In figure 5.3.a, we demonstrate two simple functions, funcA and FuncB. FuncB invokes

FuncA and FunA invoke three system calls respectively. If we run FunB, we get a stack

trace of three system calls in figure 5.3.b. Although the immediate return IP of the system

79

Figure 5.3: Identifying Functions

calls are different (A1, A2, A3 in figure 5.3.a), the second level return IP are the same (B

in figure 5.3.a). From this example, we can infer that if the second level return IPs of two

system calls are the same, then they belong to the same function (figure 5.3.c). We use

return IP to identify that function. However, this is not absolutely true. We will discuss

exceptions to this rule later.

On the other hand, return IP is a dynamic concept which is not perfect to describe a

function. Even if the return IPs are different, they could be different invocations of the

same function. Figure 4 shows an example. In this example, we identify two different

functions, B1 and B2. However, FuncA and FuncB are merely two different invocations of

the same function, FuncA. We use a heuristics to address this. If the address spaces of two

different function identified by return ID overlap, then the two functions are the same. This

heuristics cannot address all situations though. We only observed a partial address space of

the function inside system call trace. Even if observed address spaces of two functions do

not overlap, they could be the same function as well.

In sum, here are the criteria we are using to organize system calls into functions:

(i) If two system calls have the same second level return IP, we consider these two system

calls are inside the same function

80

Figure 5.4: Merge Functions

(ii) For any two different function blocks derived by 1, if the address spaces overlap, then

we merge these two function blocks

Now, let us discuss exceptions to rule 1. Some programs use function point variables

in their program. Figure 5.5 shows an example. FuncA1 and FuncA2 are two different

functions. However, by using a function point variable, we invoke FuncA1 and FuncA2 at

the same location. In this case, even second level return IP are the same, we are invoking

different functions.

There is no simple solution to solve these problems. System call trace only contains

partial information of the program structure. We cannot get everything from it.

In addition, system call trace is not perfect. As we have already discussed before, some-

times we cannot get correct program stack. This adds extra complexity and incompleteness

to the problem.

81

Figure 5.5: Functions Point Variables

5.3.1.2 Breaking Functions

To visualize the system call trace and make the structural system call trace graph useful,

the size of the block is very important. If the size of the block is too large, it is hard for

human to read. If it is too small, then we will end up with too many blocks. In the function

level, the number of system calls for each function is irregular. Some function contains many

system calls while other functions do not contain any system call. For a large function, we

need to further split it; for smaller functions, we need to merge them.

The splitting process is based on the repetitions and branches of system calls inside

system call traces. Ideally, one block should consist of sequential instructions and there is

no control flow transfer instructions or control flow transfer destination from outside in the

between. However, there is no explicit control flow transfer instruction in the system call

82

trace. We will use the repetition of the system call to infer the presence of the control flow

transfer instructions.

Here are several observations we shall take advantage of when we traverse through the

system call log one system call by one system call.

(i) If the current system call starts a repetition, then first occurrence of this system call

should start a new block, since it is a destination of a control flow transfer operation

(loop). Because it is a repeated system call, surely we need to remove subsequent

occurrence

(ii) If the repeated segment in the system call trace branches into a block other than the

current block, then we can infer that there is a control flow transfer instruction in the

between. We shall split the current block and the splitting point is right before this

branch

Figure 5.6 illustrates the splitting process. Suppose we have system calls in our trace

shows in figure 5.6.a. From the system call trace, we can infer that there exists a control

flow transfer instruction from GetProcAddr back to LoadLibrary. So we divide this block

into two.

From the system call trace, we can infer that there exists a control flow transfer instruction

from GetProcAddr back to LoadLibrary. So we divide this block into two.

On the contrary, some blocks are too small. We need a reverse process to merge several

blocks into one. The heuristics we use to merge different blocks include:

(i) If a parent function invokes a serial of functions, and all these functions contain small

number of system calls, we can leave parent function and remove all child function and

move all system calls to the parent function.

(ii) Inside a function, at the block level, if a block contains very few system calls, and if

there is only one incoming edge (except for self-loop), and all the set of its downstream

83

Figure 5.6: Splitting into blocks

Figure 5.7: Merge blocks

blocks are the subset of the parent nodes’ downstream blocks, then we can merge the

block into its upstream block and maintain the logic correctness. Figure 4 is a case

which we can merge the block to its upstream block

5.3.2 Constructing Graph

Now we finish dividing the system call trace into blocks, and removing repetition. Fol-

lowing the system call trace, we can add edges to the block according to the execution flow

revealed by the system call trace. We also accumulate the weights of every edge. Every time

control flow follows this edge, we add weights by 1.

84

5.3.3 Generating Block Description

The remaining work is to put the contents inside each block. The questions we need to

answer here are:

(i) What is the order of system calls inside a block

(ii) How to summarize the parameters of each system call

For question 1, we have two ways to order system call:

(i) Sequential order as appeared in system call trace

(ii) Sort the return address of the system call

Since the goal of our structural system call diagram is to visualize the dynamic system

call trace, the sequential order of system calls inside the system call log is more important

and understandable, so we pick the first criteria. The system call appear first in system call

trace will be the first in the block.

Each system call can be invocated several times with different parameters. In our visu-

alizer implementation, we focus on string parameter only. The most important parameters

include filename, directory name, registry key name, function name, etc. If there are differ-

ent invocations for a system call, we list all string parameters. Also, some string parameters

are very long, such as absolute path to a system file. In these cases, we use partial string

instead of full string.

5.4 Structural System Call Visualizer

Based on the approach we discuss in the last section, we have built a structural system

call diagram visualizer based on system call trace. The visualize will first execute the target

85

program, extract system call trace, then build structural system call diagram and present it

to the user.

To avoid excessive waiting time, we only capture system call up to 10 seconds even if the

target program is not finished. Because of this, we cannot capture the complete system call

trace in many cases. However, most malicious software will reveal its malicious behavior in

the beginning part of its execution. We believe 10 seconds is a good compromise between

effectiveness and efficiency.

5.5 Smart System Call Signature

In this section, we present an application of structural system call diagram. We build

a smart signature based on system call trace and use this signature to detect a family of

malicious software.

The prevailing technique in the anti-virus industry is based on signature matching. The

detection mechanism searches for a binary signature pattern that identifies a particular

virus or strain of viruses. However, through constant code rewriting, polymorphism [2]

and metamorphism [3], malicious software writer can create a new variance of the same

malicious software family quickly. The old signature cannot capture the new variance of

malicious software.

Malicious software is able to change its appearance easily. However, the behavior of the

malicious software of the same family is quite similar. Behavior of software is revealed by

a serial of system calls. This is why we use system call as signature to detect malicious

software family.

Structural system call diagram breaks system call traces into natural blocks reflecting

the structure of the program. We use system calls inside a block as signature.

86

Figure 5.8: Profile Hidden Markov Model

In this section, we discuss the profile hidden Markov model (PHMM) [95] and how to

derive the system call signature manually. In next section, we will describe an automatic

process to derive the system call signature.

Using our visualizer, security experts are able to compare the similarities and differences

between different variances of the same malicious software family through structural system

call diagram. They will derive the most prominent block and use this block as a signature.

However, malicious software changes its code for every variation and there may be slight

difference between variations. In this sense, we do not use exact match, instead, we build

a smart signature using PHMM. Our smart signature allows insertion, deletion or mutation

for one or more positions inside system call signature.

PHMM is a specific form of hidden Markov model (HMM) and is widely used in bioin-

formatics for sequence analysis [95]. In simple words, profile hidden Markov model is a

probabilistic model to represent a serial of sequences. For an unknown sequence, we can

use existing PHMM to score it. The result shows the probability that the sequence being

generated by the PHMM.

Figure 5.8 shows a diagram of PHMM. The PHMM starts from start (S) state and ends at

terminal (T) state. The core of PHMM between beginning (B) and ending (E) states consists

of the matching (M) states, insertion (I) states, and deletion (D) states. A matching state

(e.g., M1-M3 in Figure 5.8) represents a fairly stable system call. Each matching state has

a deletion state (e.g., D1-D3 in figure 5.8) associated with it, allowing the deletion of the

matching state (or position). Each matching state except for the last one also has an insertion

87

state (e.g., I1-I2 in figure 5.8) associated with it, allowing the insertion of additional positions

after it. Transitions between I and D states are not allowed. N and C are two special states

to accommodate additional insertions before and after the conserved regions of a family of

sequences, which allows local alignment between a sequence and the PHMM (i.e. matching

a part of a sequence against the core of PHMM between state B and state E). Another

interesting feature of the PHMM is that there is a transition from B to each M state, and

a transition from each M state directly to E state. These transitions make it possible to

match only a part of the model against a sequence, allowing local alignment with respect to

the PHMM. Each M, I, N, C states has an emission probability vector derived from input

sequences. In our case, every state emits a system call of different category with a specific

distribution.

When we score a structural system call block against the PHMM, we will get a log-odds

score. It is the logarithm of the ratio between the probability that the block is generated by

the PHMM and the probability that it is generated randomly.

In our first experiment, we build PHMM from one manually picked system call block.

For every system call inside the block, we assign a matching state. We use a fixed value for

all transition probabilities and emission probabilities for simplicity. The PHMM we built is

able to identify the structural system call block we pick, and the system call block similar

to it, even if there are some insertions, deletions or mutations.

For every unknown program, we first run the program, capture system call traces, and

then generate structural system call diagram for that unknown program. For each block, we

score it using derived PHMM. If we find any block similar to our signature, we consider it a

variance of the malicious software family.

88

5.6 Automatic Smart Signature Generation

Using our visualizer, security experts are able to visualize and analyze system call trace

easier. However, derive a structural system call block signature is still time consuming. To

this end, we designed a mechanism to derive system call signature automatically from a

collection of malicious software from the same family.

Malicious software signature should have the following characters:

(i) It is very rare in benign code

(ii) It exists in many variances in the malicious software family

We design an algorithm to generate system call signature automatically. The input is a

family of malicious software code and a pool of benign software. The algorithm consists of

two separate steps:

(i) We first generate a benign system call block database which consists of all system

call blocks exist inside our benign software pool. To do that, we need to construct

structural system call diagram for every benign code in the pool. After that, we

generate structural system call diagram for every malicious code. For each block inside

structural system call diagram, we build a PHMM and score it against each system

call block in our benign system call block database. If the number of matches exceeds

a threshold, we mark this block as benign and do not use it as malicious software

signature

(ii) The remaining system call blocks of malicious software family are candidates for signa-

ture. Our goal is to find the system call block which exists in most malicious software.

We first construct structural system call diagram for each malicious code, build PHMM

for each system call block. We try to find similar block in other malicious code. So for

each PHMM, we score it against blocks of all other malicious code. If we find a similar

89

block in one malicious code, it means this signature is able to capture that malicious

code. We maintain a counter for each signature candidate. The signature candidate

captures the most number of malicious code is the signature we choose

5.7 Experimental Results

5.7.1 Visualizer

We first use our visualizer to generate structural system call diagram for both benign

and malicious code.

Figure 5.9 shows the structural system call diagram for a benign program “charmap.exe”.

From the diagram, we can see that the executable start with reading profile information,

and then open several Unicode extension files. Instead of reading hundreds of lines of system

call traces, structural system call diagram is much succinct and easier to read.

Figure 5.10 shows a similar structural system call diagram for a malicious program “SD-

Bot.afz”.

5.7.2 Dataset

To experiment on system call signature, we choose two bots families: SDBot and RBot.

Botnet [13] is malicious software characterized by infecting a large number of zombies to form

a malicious network. Each victim computer is called a bot. We choose to use bot code in

our experiment because we can find a large number of variances for each bot family. We find

935 different variances of SDBot and 1249 different variances of RBot from vx heaven [13].

Some of those variances are not runnable on our computer. We use the runnable variances

only as our dataset which include 595 SDBot and 1055 Rbot.

We use commercial antivirus software to scan our malware dataset. Table 5.1 shows the

result virus scanner by three commercial antivirus software. It is no surprise that antivirus

90

Figure 5.9: Structural system call diagram for “charmap.exe”

91

Figure 5.10: Structural system call diagram for “SdBot.afz”

software capture most of the malware samples since they are known malware and be around

for times. None of our samples is missed by all three virus scanners we have tested.

We also randomly pick 878 benign executables which consist of Windows system exe-

cutables, commercial executables and open source executables as our benign dataset.

We report detection rate on the malicious software dataset and the false positive rate on

the benign dataset as the criteria to evaluate the performance of our smart signature.

5.7.3 Manual Signature Generation

We first manually analyze structural system call diagram using our visualizer for SDBot.

By carefully comparing different variances of SDBot instances, we conclude that there is a

92

Table 5.1: Missed Malware by Commercial Antivirus Software

Norton Antivirus 2009 McAfee VirusScan Plus Kaspersky AntiVirus 2009
SDBot SdBot.aig SdBot.aig SdBot.jb

SdBot.dh SdBot.dh
RBot Rbot.abk Rbot.am Rbot.aek

Rbot.ael Rbot.ia
Rbot.gt
Rbot.iw
Rbot.jb
Rbot.yv
Rbot.zf

Figure 5.11: System call signature for SDBot

specific system call pattern for many of variances of SDBot family. We use that block as our

signature. Figure 5.11 shows the signature we get.

Using this system call signature, we are able to capture 222 out of 595 SDBot, or 37.3%

detection rate. The false positive rate for the signature in our benign dataset is 0.9%.

Another interesting finding is that inside the SDBot variances which cannot be captured

by our system call signature, we can still find some other system call patterns. So we

exclude SDBot we have already captured from the dataset, and run our automatic signature

generation tool again. We get a secondary system call signature (Figure 5.12) which is able

to capture another 58 SDBot variance. By using two system call signatures, our detection

rate is 47.1%, and false positive rate is 1.6%.

93

Figure 5.12: Secondary system call signature for SDBot

5.7.4 Automatic Signature Generation

Next, we experiment our automatic system call signature generation tool.

We use 5-fold cross-validation [7] to evaluate the performance in this experiment. We

randomly divide the dataset into 5 subsamples of the same size. We then repeat the cross-

validation process 5 times. Every time we use one subsample as testing dataset and all other

subsamples as training dataset. Our result is the average of all 5 runs. We will generate

smart signature based on the information given by the training dataset and use it to detect

the nature of testing dataset.

The detection rate for SDBot is 37.0% and the false positive rate is 0.9%, very close to

that of manually generated signature.

We also experiment on another bot family, RBot. Use the automatic generated system

call signature, we capture 40.1% variances of RBot, and the false positive rate is 1.0%.

However, not all malicious software families can achieve similar result. We also tested

system call signature on AgoBot, the detection rate is 21.4%. The effectiveness of system

call signature depends on the character of the specific malicious software family. By using

our visualizer, we can get an impression whether or not the specific malicious software family

94

shows a pattern inside system call blocks. If it does, we can extract the signature manually

or use our signature generation tool to extract the signature automatically.

5.8 PERFORMANCE ANALYSIS

In this section, we use the following symbols.

M average size of system call signature
N number of training malwares
B average number of blocks in a structral system call diagram
T average length of system call trace

We discuss two different aspects of system time complexity.

Decision time complexity is the time complexity to determine whether an unknown exe-

cutable is a malware or not based on an existing model. The dominant part for the decision

process is the scoring algorithm of profile hidden Markov model. It is bounded to O(M2T).

To generate system call signature automatically, we first need to generate system call

blocks. By one linear scan, we can organize system calls into different functions, which takes

O(T). We then need to compare each pair of function, if their address spaces overlap, we

merge them. Suppose the average number of functions is F, this process takes O(F2). Merge

and Splitting is performed recursively, however, we put a limit on the number of iterations.

To find a candidate block to split, we need to scan all the blocks for the size exceeding the

threshold, which takes O(B). For each splitting, we need to traverse all the system calls

inside the block which is O(T/B). So the time complexity for splitting is O(c*B*T/B) =

O(T), where c is the limit we put on number of iterations. For merging, it also takes O(B)

to search merge candidate pairs. The actual merge include merging system calls inside both

block, which is O(T/B). So the time complexity for merging is O(c*B*T/B) = O(T) as well.

Adding all above together, we have O(T) +O(F2)+O(T) ≤O(T2) to generate a signature.

95

It takes O(M) to build profile hidden Markov model for that signature using our approach.

Altogether, we have O(B*N) blocks. We will score each block against all other O(B*N)

blocks.

The overall time complexity to generate a system call signature is bounded by O(T2)*

O(M)*O(B*N) *O(B*N) = O(MT2B2N2).

5.9 Conclusion

In this section, we illustrate a structural dynamic system call graph and use it to detect

a family of malicious software automatically. We focus only on the dynamic system call

captured from runtime, and then create a graph structure similar to control flow graph.

Use this structural system call diagram we are able to visualize and analyze an executable

efficiently.

We then use system call block inside structural system call diagram as a natural boundary

and generate system call signature. We use both manual approach and automatic approach

to extract system call signature from a malicious software family. Our experimental result

shows that this system call signature is effective in detecting some variances in a malicious

software family.

Detection rate for system call approach is low, combining system call and dynamic in-

struction sequence may provide a better solution. We will investigate it in our future work.

96

CHAPTER 6: CONCLUSION

In this research, we have built a dynamic execution environment. We can run arbitrary

program inside the dynamic execution environment with control. Based on this dynamic

execution environment, we have proposed two novel malicious code detection approaches:

(i) Mining dynamic instruction sequences to detect Win32 viruses.

(ii) Utilizing structural system call diagram to detect a family of malicious software.

There are limitations in our approaches. The experiments utilize a finite number of

instructions or system calls, hence will not detect any malicious code hooked in the remaining

part of the executable code. In addition, since we follow one possible executable path, it is

possible to miss malicious section of code in our experiment.

97

REFERENCES

[1] “Symantec Global Internet Security Threat Report,” http://www4.symantec.com/Vrt/

wl?tu id=gCGG123913789453640802, July 2009.

[2] Carey Nachenberg, “Computer Virus-Antivirus Coevolution,” Communications of the

ACM, vol. 40, no. 1, pp. 46–51, Jan. 1997.

[3] Peter Szor and Peter Ferrie, “Hunting for Metamorphic,” in 11th International Virus

Bulletin Conference, 2001.

[4] Jeffrey Kephart, William Arnold, “Automatic Extraction of Computer Virus Signa-

tures,” in Virus Bulletin International Conference, 1994.

[5] http://zert.isotf.org, July 2009.

[6] Peter Szor, The Art of Computer Virus Research and Defense. Addison Wesley, 2005.

[7] Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers, Mar. 2006.

[8] http://www.cert.org/advisories/CA-2001-19.html, July 2009.

[9] http://www.f-secure.com/v-descs/klez.shtml, July 2009.

[10] http://www.microsoft.com/technet/security/Bulletin/MS01-020.mspx, July 2009.

[11] http://vil.nai.com/vil/content/v 145625.htm, July 2009.

[12] Greg Hoglund, James Butler, Rootkits: Subverting the Windows Kernel. Addison

Wesley, 2005.

[13] “Bots and Botnet: An Overview,” http://www.sans.org/reading room/whitepapers/

malicious/bots and botnet an overview 1299.

98

http://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802
http://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802
http://zert.isotf.org
http://www.cert.org/advisories/CA-2001-19.html
http://www.f-secure.com/v-descs/klez.shtml
http://www.microsoft.com/technet/security/Bulletin/MS01-020.mspx
http://vil.nai.com/vil/content/v_145625.htm
http://www.sans.org/reading_room/whitepapers/ malicious/bots_and_botnet_an_overview_1299
http://www.sans.org/reading_room/whitepapers/ malicious/bots_and_botnet_an_overview_1299

[14] Anirudh Ramachandran, Nick Feamster, “Understanding the Network-Level Behavior

of Spammers,” in ACM SIGCOMM Computer Communication Review, 2006.

[15] Ryan Vogt, John Aycock, “Attack of the 50 Foot Botnet,” Technical report, Department

of Computer Science, University of Calgary, 2006.

[16] http://www.clamav.net, July 2009.

[17] Arun Lakhotia, Aditya Kapoor, Eric Uday, “Are Metamorphic Viruses Really Invinci-

ble?” in Virus Bulletin, 2004.

[18] Mohamed Chouchane, Arun Lakhotia, “Using Engine Signature to Detect Metamorphic

Malware,” in Proceedings of the 4th ACM workshop on Recurring malcode, 2006.

[19] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane, Arun Lakhotia, “Nor-

malizing Metamorphic Malware Using Term Rewriting,” in Proceedings of the Sixth

IEEE International Workshop on Source Code Analysis and Manipulation, 2006.

[20] Abhishek Karnik, Suchandra Goswami, Ratan Guha, “Detecting Obfuscated Viruses

Using Cosine Similarity Analysis,” in First Asia International Conference on Modelling

and Simulation, 2007, 2007.

[21] David Brumley, James Newsome, Dawn Song, Hao Wang, Somesh Jha, “Towards Au-

tomatic Generation of Vulnerability-Based Signatures,” in 2006 IEEE Symposium on

Security and Privacy, 2006.

[22] Wing Wong, Mark Stamp, “Hunting for Metamorphic Engines,” Journal in Computer

Virology, vol. 2, no. 3, 2006.

[23] Mark Stamp, Srilatha Attaluri, Scott McGhee, “Profile Hidden Markov Models and

Metamorphic Virus Detection,” Journal in Computer Virology, 2008.

99

http://www.clamav.net

[24] Fred Cohen, “Computational Aspects of Computer Viruses,” Computers and Security,

vol. 8, pp. 325–344, 1997.

[25] Matt Pietrek, “An In-Depth Look into the Win32 Portable Executable File Format by

Matt Pietrek (Part I),” http://msdn.microsoft.com/en-us/magazine/cc301805.aspx.

[26] ——, “An In-Depth Look into the Win32 Portable Executable File Format by Matt

Pietrek (Part II),” http://msdn.microsoft.com/en-us/magazine/cc301808.aspx.

[27] http://www.securityfocus.com/infocus/1841, July 2009.

[28] Michael Weber, Matthew Schmid, David Geyer, Michael Shatz, “A Toolkit for Detecting

and Analyzing Malicious Software,” in 18th Annual Computer Security Applications

Conference (ACSAC), 2002.

[29] William Arnold, Gerald Tesauro, “Automatically Generated Win32 Heuristic Virus De-

tection,” in Virus Bulletin Conference, Sept. 2000.

[30] InSeon Yoo, “Visualizing Windows Executable Viruses Using Self-Organizing Maps,”

in Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Com-

puter Security, Oct. 2004.

[31] Matthew Schultz, Eleazar Eskin, Erez Zadok, Salvatore Stolfo, “Data Mining Methods

for Detection of New Malicious Executables,” in Proceedings of IEEE Symposium on

Security and Privacy, May 2001.

[32] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, Ray Sweidan, “Detection of New Mali-

cious Code Using N-grams Signatures,” in Proceedings of the Second Annual Conference

on Privacy, Security and Trust (PST’04), Oct. 2004, pp. 193–196.

[33] ——, “N-Gram-based Detection of New Malicious Code,” in Proceeding of the 28th

Annual International Computer Software and Applications Conference (COMPSAC’04),

2004.

100

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
http://www.securityfocus.com/infocus/1841

[34] Jeremy Kolter, and Marcus Maloof, “Learning to Detect Malicious Executables in the

Wild,” in Proceedings of the Tenth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, 2004, pp. 470–478.

[35] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, Qingshan Jiang , “An Intelligent

PE-malware Detection System Based on Association Mining,” Journal in Computer

Virology, vol. 4, no. 4, 2008.

[36] Mihai Christodorescu, Somesh Jha, Sanjit Seshia, Dawn Song, Randal Bryant,

“Semantics-Aware Malware Detection,” in IEEE Symposium on Security and Privacy,

2005.

[37] Mihai Christodorescu, Somesh Jha, “Static Analysis of Executables to Detect Malicious

Patterns,” in 12th Usenix Security Symposium, 2003.

[38] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, Helmut Veith, “Detecting

Malicious Code by Model Checking,” Intrusion and Malware Detection and Vulnerability

Assessment, vol. 3548/2005, pp. 174–187, 2005.

[39] Muazzam Siddiqui, Data Mining Methods for Malware Detection, PhD Dissertation.

University of Central Florida, 2008.

[40] http://upx.sourceforge.net, July 2009.

[41] http://www.datarescue.com.

[42] “Using the Universal PE Unpacker Plug-in included in IDA Pro 4.9 to unpack com-

pressed executables,” http://www.hex-rays.com/idapro/unpack pe/unpacking.pdf.

[43] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, Wenke Lee, “PolyUnpack:

Automating the Hidden-Code Extraction of Unpack-Executing Malware,” in 22nd An-

nual Computer Security Applications Conference (ACSAC06), 2006.

101

http://upx.sourceforge.net
http://www.datarescue.com
http://www.hex-rays.com/idapro/unpack_pe/unpacking.pdf

[44] Min Gyung Kang, Pongsin Poosankam, Heng Yin, “Renovo: A Hidden Code Extractor

for Packed Executables,” in The 5th ACM Workshop on Recurring Malcode (WORM),

2007.

[45] Christopher Kruegel, William Robertson, Fredrik Valeur, Giovanni Vigna, “Static Dis-

assembly of Obfuscated Binaries,” in Proceedings of the 13th conference on USENIX

Security Symposium, 2004.

[46] Cullen Linn, Saumya Debray, “Obfuscation of Executable Code to Improve Resistance

to Static Disassembly,” in Proceedings of the 10th ACM conference on Computer and

communications security, Oct. 2003.

[47] Benjamin Schwarz, Saumya Debray, Gregory Andrews, “Disassembly of Executable

Code Revisited,” in Ninth Working Conference on Reverse Engineering (WCRE 2002),

2003, p. 0045.

[48] Nanda, S., Wei Li, Lap-Chung Lam, Tzi-cker Chiueh, “BIRD: Binary Interpretation

Using Runtime Disassembly,” in International Symposium on Code Generation and

Optimization (CGO2006), 2006.

[49] Aditya Kapoor, “An Approach Towards Disassembly of Malicious Binary Executables,”

Master Thesis, 2004.

[50] Ulrich Bayer, Christopher Kruegel, Engin Kirda, “TTAnalyze: A Tool for Analyzing

Malware,” in EICAR. 15th Annual Conference of the European Institute for Computer

Antivirus Research, 2006.

[51] Andrew Sung, Jianyun Xu, P. Chavez, Srinivas Mukkamala, “Static Analyzer of Vi-

cious Executables (SAVE),” in 20th Annual Computer Security Applications Conference,

2004.

102

[52] Steven Hofmeyr, Stephanie Forrest, Anil Somayaji, “Intrusion Detection Using Se-

quences of System Calls,” Journal of Computer Security, vol. 6, no. 3, 1998.

[53] Wenke Lee and Salvatore Stolfo, “Data Mining Approaches for Intrusion Detection,” in

7th USENIX Security Symposium, 1998.

[54] Warrender, Stephanie Forrest, Barak Pearlmutter, “Detecting Intrusions Using System

Calls: Alternative Data Models,” in Proceedings of the 1999 IEEE Symposium on Se-

curity and Privacy, 1999.

[55] Tony Lee, Jigar Mody, “Behavior Classification,” Microsoft Antivirus team, 2006.

[56] Mihai Christodorescu, Somesh Jha, Christopher Kruegel, “Mining Specifications of Ma-

licious Behavior,” in 6th joint meeting of the European Software Engineering Confer-

ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE 2007), 2007.

[57] Suresh Chari, Pau-Chen Cheng, “BlueBoX: A Policy-Driven, Host-Based Intrusion De-

tection System,” ACM Transactions on Information and System Security (TISSEC),

vol. 6, 2003.

[58] Niels Provos, “Improving Host Security with System Call Policies,” in Proceedings of

the 12th Usenix Security Symposium, 2003.

[59] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian, Jose

Nazario, “Automated classification and analysis of internet malware,” in Proceedings of

the 10th International Symposium on Recent Advances in Intrusion Detection, 2007.

[60] David Wagner, Drew Dean, “Intrusion Detection via Static Analysis,” in 2001 IEEE

Symposium on Security and Privacy, 2001.

103

[61] Jesse C. Rabek, Roger I. Khazan, Scott M. Lewandowski, Robert K. Cunningham,

“Detection of Injected, Dynamically Generated, and Obfuscated Malicious Code,” in

Proceedings of the 2003 ACM workshop on Rapid malcode, 2003.

[62] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, “A Fast Automaton-Based Method for

Detecting Anomalous Program Behaviors,” in 2001 IEEE Symposium on Security and

Privacy, 2001.

[63] Henry Hanping Feng, Oleg Kolesnikov, Prahlad Fogla, Wenke Lee, Weibo Gong,

“Anomaly Detection Using Call Stack Information,” in 2003 IEEE Symposium on Se-

curity and Privacy, 2003.

[64] Debin Gao, Michael Reiter, Dawn Song, “Gray-box Extraction of Execution Graphs

for Anomaly Detection,” in 11th ACM conference on Computer and communications

security, 2004.

[65] Abhishek Chaturvedi, Eep Bhatkar, R. Sekar, “Improving Attack Detection in Host-

Based IDS by Learning Properties of System Call Arguments,” in IEEE Symposium on

Security and Privacy, 2006.

[66] James Newsome, Dawn Song, “Dynamic Taint Analysis for Automatic Detection, Anal-

ysis, and Signature Generation of Exploits on Commodity Software,” in Network and

Distributed System Security Symposium (NDSS), 2005.

[67] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, Dawn Song, “Dynamic

Spyware Analysis,” in USENIX Annual Technical Conference (USENIX 07), 2007.

[68] Andreas Moser, Christopher Kruegel, Engin Kirda, “Exploring Multiple Execution

Paths for Malware Analysis,” in 2007 IEEE Symposium on Security and Privacy, 2007.

[69] http://bellard.org/qemu, July 2009.

104

http://bellard.org/qemu

[70] http://www.vmware.com, July 2009.

[71] http://www.codeproject.com/KB/threads/winspy.aspx, July 2009.

[72] Galen Hunt, Doug Brubacher, “Detours: Binary Interception of Win32 Functions,” in

3rd USENIX Windows NT Symposium, 1999.

[73] http://www.ollydbg.de, July 2009.

[74] Md. Enamul Karim, Andrew Walenstein, Arun Lakhotia, “Malware Phylogeny Gener-

ation using Permutations of Code,” Journal in Computer Virology, vol. 1, no. 1-2, Nov.

2005.

[75] Rakesh Agrawal, Ramakrishnan Srikant, “Fast Algorithms for Mining Association

Rules,” in Proc. 20th Int. Conf. Very Large Data Bases(VLDB), 1994.

[76] Jiawei Han , Jian Pei , Yiwen Yin, “Mining Frequent Patterns Without Candidate

Generation,” in Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, 2000.

[77] John Quinlan, “Induction of Decision Trees,” Machine Learning, 1986.

[78] ——, C4.5:Programs for Machine Learning. Morgan Kaufmann, 1993.

[79] Leo Breiman, Jerome Friedman, Charles Stone, R.A. Olshen , Classification and Re-

gression Trees, 1984.

[80] G.V.Kass, “An Exploratory Technique for Investigating Large Quantities of Categorical

Data,” Applied Statistics, 1980.

[81] John Shawe-Taylor, Nello Cristianini, Support Vector Machines. Cambridge University

Press, 2000.

105

http://www.vmware.com
http://www.codeproject.com/KB/threads/winspy.aspx
http://www.ollydbg.de

[82] Kristin Bennett, Colin Campbell, “Support Vector Machines: Hype or Hallelujah?”

SIGKDD Explorations, no. 2, 2000.

[83] http://www.csie.ntu.edu.tw/∼cjlin/libsvm, July 2009.

[84] John Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support

Vector Machines,” Microsoft Research Technical Report, no. MSR-TR-98-14, 1998.

[85] Leo Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, 2001.

[86] http://www.salford-systems.com/treenet.php, July 2009.

[87] Ron Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection.” Morgan Kaufmann, 1995, pp. 1137–1143.

[88] Leo Breiman, “Bagging Prediction,” Machine Learning, pp. 123–140, 1996.

[89] Yoav Freund, Robert E.Schapire , “A Decision-Theoretic Generalization of Online

Learning and an Application to Boosting,” Journal of Computer and System Sciences,

no. 55, 1997.

[90] Vladimir Vapnik, Statistical Learning Theory. Wiley, 1998.

[91] http://vx.netlux.org, July 2009.

[92] http://www.heaventools.com, July 2009.

[93] http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html, July 2009.

[94] http://support.microsoft.com/kb/177429, July 2009.

[95] Anders Krogh, Michael Brown, Saira Mian, Kimmen Sjolander, David Haussler, “Hid-

den Markov models in Computational Biology: Applications to Protein Modeling,”

Journal of Molecular Biology, vol. 55, pp. 1501–1531, 1994.

106

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.salford-systems.com/treenet.php
http://vx.netlux.org
http://www.heaventools.com
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://support.microsoft.com/kb/177429

	Detecting Malicious Software By Dynamicexecution
	STARS Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Dynamic Instruction Sequences Approach Overview
	1.3 Structural System Call Diagram Approach Overview
	1.4 Dissertation Organization

	CHAPTER 2: BACKGROUND
	2.1 Malicious Software
	2.2 Conventional Malicious Software Detection Techniques
	2.3 Detecting Unknown malicious software
	2.3.1 Heuristics
	2.3.2 Research Domain

	CHAPTER 3: DYNAMIC EXECUTION MONITOR
	3.1 Overview
	3.2 Malicious Behavior Sandbox
	3.3 Elicit Malicious Behaviors
	3.4 API Protection Policy
	3.5 Implementation
	3.6 Instruction Capturing
	3.7 Backend
	3.8 Limitation

	CHAPTER 4: DETECTING WIN32 VIRUSES USING DYNAMIC INSTRUCTION SEQUENCES
	4.1 SYSTEM OVERVIEW
	4.2 LOGIC ASSEMBLY
	4.3 INSTRUCTION ASSOCIATIONS
	4.4 DATA MINING
	4.4.1 Process Overview
	4.4.2 Feature Selection
	4.4.3 Classification
	4.4.3.1 Decision Tree
	4.4.3.2 Support Vector Machine
	4.4.3.3 Other Classifier

	4.4.4 N-folds Cross Validation
	4.4.5 Ensemble Model
	4.4.6 Performance Measurement

	4.5 PERFORMANCE ANALYSIS
	4.6 Dataset
	4.7 EXPERIMENTAL RESULTS
	4.7.1 Methodology
	4.7.2 Parameter Selection
	4.7.3 Outlier Analysis
	4.7.4 Decision Process
	4.7.5 Ensemble Model

	4.8 Comparison Study
	4.8.1 Simple Heuristics Approach
	4.8.2 NGram Approach
	4.8.3 Static Assembly Approach
	4.8.4 Comparison Result

	4.9 Malicious Software Analysis Toolkit

	CHAPTER 5: DETECTING MALICIOUS SOFTWARE FAMILY USING STRUCTURAL SYSTEM CALL DIAGRAM
	5.1 Introduction
	5.2 Capturing Dynamic System Call
	5.3 Structural System Call Diagram
	5.3.1 Generating Blocks
	5.3.1.1 Identifying Functions
	5.3.1.2 Breaking Functions

	5.3.2 Constructing Graph
	5.3.3 Generating Block Description

	5.4 Structural System Call Visualizer
	5.5 Smart System Call Signature
	5.6 Automatic Smart Signature Generation
	5.7 Experimental Results
	5.7.1 Visualizer
	5.7.2 Dataset
	5.7.3 Manual Signature Generation
	5.7.4 Automatic Signature Generation

	5.8 PERFORMANCE ANALYSIS
	5.9 Conclusion

	CHAPTER 6: CONCLUSION
	REFERENCES

