
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Combatting Advanced Persistent Threat via Causality Inference Combatting Advanced Persistent Threat via Causality Inference

and Program Analysis and Program Analysis

Yonghwi Kwon
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Kwon, Yonghwi, "Combatting Advanced Persistent Threat via Causality Inference and Program Analysis"
(2018). Open Access Dissertations. 1989.
https://docs.lib.purdue.edu/open_access_dissertations/1989

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1989?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1989&utm_medium=PDF&utm_campaign=PDFCoverPages

COMBATTING ADVANCED PERSISTENT THREAT VIA CAUSALITY INFERENCE

AND PROGRAM ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yonghwi Kwon

In Partial Fulfllment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Aniket Kate

Department of Computer Science

Dr. Ninghui Li

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu by Dr. William J. Gorman

Head of the Departmental Graduate Program

iii

To my beloved family members

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Professor Xiangyu Zhang for his invalu-

able guidance and generous support throughout my PhD. Research discussions that we had

for 6 years enlightened me and formed me as a decent computer scientist. From very de-

tailed technical discussions to high-level research directions, he taught and infuenced me

very much. I have learned how to scientifcally and systematically analyze problems and

construct fundamental solutions through his invaluable training. Also, I am deeply grate-

ful to my co-advisor Professor Dongyan Xu for his generous guidance and support for my

PhD. He provided me a number of valuable opportunities and guidance in presenting and

communicating research ideas. He taught and showed me the importance of conveying

intuitions in addition to details of research projects. He was always very supportive of my

career and helped me to have more experience outside of the lab. I am deeply grateful to

my advisor and co-advisor for allowing me to gain various invaluable lessons I could not

have without them.

In addition, I would like to sincerely thank my committee members: Professor Aniket

Kate and Professor Ninghui Li for serving committee members of my dissertation and

providing many insightful comments to improve the dissertation. Their suggestions also

helped me frame my research in a more accessible way so that it would appeal to a broader

audience.

I would like to acknowledge my collaborators and friends. First, Professor Kyu Hyung

Lee helped and taught me in various ways throughout my PhD. I have learned a lot about

how to develop research topics and projects. I will remember the time we spent on research

discussions. Dr. Yunhui Zheng inspired me and showed how to be a strong and independent

researcher. In particular, he showed me how to collaborate with others. He has been always

supportive, resourceful, and sincere. I also thank Professor Brendan Saltaformmagio for

being my best friend throughout my PhD. I will remember the great time we had in Chicago

v

and New Orleans. Spending 6 years in the small college town of Indiana would be diffcult

without my great lab mates: Weihang Wang, Fei Wang, Dohyeong Kim, I Luk Kim, Chung-

hwan Kim, Zhongshu Gu, Taegyu Kim, and Wei You. I learned a lot from them throughout

projects and discussions. I feel very fortunate that I had a chance to get to know them. Last

but not least, I would like to thank Kristine Johnson for being a great friend throughout my

PhD and providing the best brownies.

More importantly, I would like to thank my parents, Sejung Kwon and Aeran Kim,

unconditionally support me and my PhD. They taught me to stay positive and focused when

negative rules. They patiently waited for me to fnish my degrees and always support me

without any doubt. Their unconditional support and love helped me get through whenever

I got frustrated.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Dissertation Statement . 2
1.2 Contributions . 2
1.3 Dissertation Organization . 3
1.4 Dissertation Overview . 3

1.4.1 Conducting Faithful Counter-factual Causality 4
1.4.2 Model-based Causality Inference for Practical Attack Provenance . . 5
1.4.3 Corrupting Malicious Payloads via Input Perturbation 6

2 LDX : CAUSALITY INFERENCE BY LIGHTWEIGHT DUAL EXECUTION . . 8
2.1 Introduction . 8
2.2 Counterfactual Causality . 12
2.3 Overview and Illustrative Example . 14
2.4 Basic Design . 17

2.4.1 Counter Computation . 18
2.4.2 Dual Execution Facilitated by Counter Numbers 20

2.5 Handling Loops . 22
2.6 Handling Indirect Function Calls . 27
2.7 Handling Concurrency and Library Calls 27
2.8 Evaluation . 30

2.8.1 Performance . 31
2.8.2 Effectiveness of Dual Execution 33
2.8.3 Effectiveness of Causality Inference 33
2.8.4 Case Studies . 36

2.9 Related Work . 37

3 MCI : MODELING-BASED CAUSALITY INFERENCE IN AUDIT LOGGING
FOR ATTACK INVESTIGATION . 39
3.1 Introduction . 39
3.2 Background and Motivation . 42

vii

Page
3.2.1 Motivating Example . 43
3.2.2 Existing Approaches and Limitations 44
3.2.3 Goals and Our Approach . 49
3.2.4 MCI on Motivating Example . 50

3.3 Problem Defnition . 52
3.3.1 Defnitions . 52
3.3.2 Problem Statement . 54
3.3.3 Technical Challenges: Complexity and Ambiguity 55

3.4 System Design . 59
3.4.1 Model Construction . 59
3.4.2 Trace Parsing with Models . 62

3.5 Evaluation . 69
3.5.1 Model Construction . 72
3.5.2 System-wide Causality Inference 74
3.5.3 Case Studies . 76

3.6 Related Work . 81
3.7 Discussion . 82

4 A2C : SELF DESTRUCTING EXPLOIT EXECUTIONS VIA INPUT PER-
TURBATION . 85
4.1 Introduction . 85
4.2 System Overview . 88
4.3 Illustrative Example . 91
4.4 Design . 93

4.4.1 Decoding Frontier Computation via Constraint Solving. 93
4.4.2 Static Analysis to Compute Decoding and Encoding Sets 98
4.4.3 Static Analysis Phase . 99
4.4.4 Runtime . 107

4.5 Threat Model . 108
4.6 Evaluation . 109

4.6.1 Performance . 111
4.6.2 Effectiveness . 113
4.6.3 Case Studies . 116

4.7 Related Work . 122

5 CONCLUSION . 124

REFERENCES . 126

VITA . 142

viii

LIST OF TABLES

Table Page

2.1 Benchmarks and Instrumentation . 29

2.2 Dual Execution Effectiveness . 32

2.3 Comparison with Dynamic Tainting . 34

2.4 Effectiveness for Concurrent Programs . 35

3.1 Comparison of Causality Analysis Approaches 48

3.2 Details on Model Construction . 69

3.3 Results for System-wide Causality Inference 73

3.4 Comparison with BEEP . 75

3.5 Evaluation on Long Running Executions . 80

4.1 Abstract Interpretation Rules . 102

4.2 Evaluation Results for Analysis . 110

4.3 Evaluation Results for Attack Prevention 110

4.4 Results for Decoding Frontier Computation 116

ix

LIST OF FIGURES

Figure Page

2.1 Examples to illustrate the comparison of counterfactual causality and program
dependences . 12

2.2 Illustrative example . 14

2.3 Syscall traces and the synchronization action sequence by LDX for the example
in Fig. 2.2 . 15

2.4 Loop example . 23

2.5 Syscalls and the sequence of synchronizations by LDX 26

2.6 Normalized overhead of LDX . 31

2.7 Case study on 403.gcc . 36

3.1 Overview of MCI’s off-line causality inference 43

3.2 Motivating example: Insider theft breaches 44

3.3 Information fow through a table look-up in GPG 47

3.4 MCI on the motivating example . 52

3.5 Defnition of causal model . 53

3.6 Defnition of syscall trace . 54

3.7 Regular model from ping [88] . 56

3.8 Context-free model from procps [89] . 56

3.9 Context-sensitive model from raft [90] . 57

3.10 Ambiguity problem . 58

3.11 Example program . 60

3.12 Causally dependent system calls from LDX 60

3.13 Symbolized system calls . 61

3.14 Constructed model from the example . 62

3.15 Example for segmented parsing . 63

x

Figure Page

3.16 Trace preprocessing . 64

3.17 Causal graphs generated from BEEP and MCI for the camoufaged FTP server
case . 78

3.18 Context-free model from zipsplit . 79

3.19 Causal graphs for the zipsplit case . 80

4.1 Overall procedure of A2C . 88

4.2 Decoding frontiers . 89

4.3 Original and instrumented programs of demonstrative example 92

4.4 Uncontrollable operations due to type widening in 464.h264ref 95

4.5 Uncontrollable operations in 429.mcf program 96

4.6 Controllable operations in 456.hmmer program 98

4.7 Language . 99

4.8 Defnitions for abstract interpretation rules 100

4.9 An example of context sensitive code . 103

4.10 An example of the iterative interpretation procedure on unrtf 104

4.11 Normalized overhead on programs in Table 4.2 112

4.12 Normalized overhead on SPEC CPU2006 programs 113

4.13 Different types of decoding frontiers . 114

4.14 Integer overfow in mupdf . 118

4.15 Stack buffer overfow in unrtf . 119

4.16 English shellcode example . 120

4.17 Buffer overrun in structure . 121

xi

CC

ABBREVIATIONS

API Application Program Interface

APT Advanced Persistent Threat

AST Abstract Syntax Tree

ASLR Address Space Layout Randomization

Counterfactual Causality

CFG Control Flow Graph

CFI Control Flow Integrity

CG Causal Graph

CLOC C lines of source code

CPU Central Processing Unit

CSS Cascading Style Sheets

DARPA Defense Advanced Research Projects Agency

DOM Document Object Model

DPI Deep Packet Inspection

DE Decoding and Encoding

DF Decoding Frontier

DU Defnition-Use

ETW Event Tracing for Windows

FP False positive

FN False negative

GB Gigabyte

HB Happens-before

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

xii

IR Intermediate Representation

IRC Internet Relay Chat

IT Information Technology

JS JavaScript

LLVM The LLVM compiler infrastructure project which is a collection of

modular and reusable compiler and toolchain technologies

Max-SAT Maximum Satisfability Problem

OS Operating System

PC Program Counter

ROP Return Oriented Programming

SAT Satisfable

SMT Satisfability Modulo Theories

TB Terabyte

TC Transparent Computing Project (by DARPA)

UI User Interface

UNSAT Unsatisfable

URI Uniform Resource Identifer

URL Uniform Resource Locator

XML EXtensible Markup Language

Z3 An SMT Solver by Microsoft

xiii

ABSTRACT

Yonghwi, Kwon PhD, Purdue University, August 2018. Combatting Advanced Persistent
Threat via Causality Inference and Program Analysis. Major Professors: Xiangyu Zhang
and Dongyan Xu.

Cyber attackers are becoming more and more sophisticated. In particular, Advanced

Persistent Threat (APT) is a new class of attack that targets a specifc organization and

compromises systems over a long time without being detected. Over the years, we have

seen notorious examples of APTs including Stuxnet which disrupted Iranian nuclear cen-

trifuges and data breaches affecting millions of users. Investigating APT is challenging as

it occurs over an extended period of time and the attack process is highly sophisticated and

stealthy. Also, preventing APTs is diffcult due to ever-expanding attack vectors.

In this dissertation, we present proposals for dealing with challenges in attack inves-

tigation. Specifcally, we present LDX which conducts precise counter-factual causality

inference to determine dependencies between system calls (e.g., between input and output

system calls) and allows investigators to determine the origin of an attack (e.g., receiving

a spam email) and the propagation path of the attack, and assess the consequences of the

attack. LDX is four times more accurate and two orders of magnitude faster than state-

of-the-art taint analysis techniques. Moreover, we then present a practical model-based

causality inference system, MCI, which achieves precise and accurate causality inference

without requiring any modifcation or instrumentation in end-user systems.

Second, we show a general protection system against a wide spectrum of attack vec-

tors and methods. Specifcally, we present A2C that prevents a wide range of attacks by

randomizing inputs such that any malicious payloads contained in the inputs are corrupted.

The protection provided by A2C is both general (e.g., against various attack vectors) and

practical (7% runtime overhead).

1

1 INTRODUCTION

Cyber attackers are becoming more and more sophisticated. In particular, Advanced Per-

sistent Threat or APT is a special kind of attacks that leverages most stealthy and advanced

attack methods. They lurk in victim systems for a long time (e.g., from weeks to months)

without being detected while exfltrating secrets and/or disrupting systems. We have seen

many high-profle APT attacks including STUXNET which targets the most dangerous in-

frastructure, nuclear plants, and compromised more than hundreds of thousands of sys-

tems through multiple steps. It lurked in the systems for years while silently updating,

installing backdoors, and exfltrating information. It was commented that the attack could

have caused a nuclear disaster more catastrophic than Chernobyl. Unfortunately, combat-

ting APT attacks is particularly diffcult because (1) the attacks happen for a long time

hence even tracking and understanding what attackers did is challenging and (2) they lever-

age zero-day vulnerabilities which are not disclosed hence proactive prevention of APT is

challenging.

This dissertation presents fundamental approaches that systematically prevent and an-

alyze APT attacks. Specifcally, we analyze state-of-the-art attack prevention and analysis

techniques and identifes advantages and disadvantages. To this end, we realize the origi-

nal concept of counter-factual causality which was frst introduced by David Hume in the

18th century can be effective in APT attack investigation and existing techniques are ap-

proximations of the counter-factual causality. In addition, we identify that existing attack

prevention approaches are mostly attack-vector specifc hence they are often ineffective in

preventing zero-day exploits. As a result, we develop a novel causality inference technique

that can precisely identify causal relationships between processes, fles, and network ad-

dresses. Also, we develop a novel attack vector agnostic exploit injection attack prevention

technique to thwarts zero-day exploits. By leveraging those fundamental techniques, we

2

can achieve the complete protection and analysis of APT attacks which happen over a long

time and leverage stealthy techniques.

In particular, this dissertation includes (1) LDX [1], a novel counter-factual causality

inference, which strictly follows the original defnition of counter-factual causality frst in-

troduced by David Hume in 18th century, (2) MCI [2], a novel model-based causality infer-

ence technique built on top of LDX, that infers causality for enterprise systems without any

instrumentation and modifcation of underlying systems such as kernel, and (3) A2C [3],

a novel exploit injection attack prevention technique, that can prevent zero-day exploits

which is not known hence existing attack vector specifc techniques cannot prevent.

1.1 Dissertation Statement

Accurate attack investigation and general protection against advanced and sophisticated

attacks can be achieved by leveraging causality inference and fundamental weaknesses of

the attacks.

1.2 Contributions

The contributions of this dissertation are as follows:

• We develop a practical causality inference system, LDX [1] that can conduct a faithful

counterfactual causality inference to determine dependencies between system calls

(e.g., between input and output system calls) and allow investigators to determine the

origin of an attack (e.g., receiving a spam email) and assess the consequences of the

attack. LDX is 4 times more accurate and 2 orders of magnitude faster (6% runtime

overhead) than state-of-the-art taint analysis techniques.

• Expanding beyond LDX, we have proposed a model-based causality inference sys-

tem, MCI [2]. MCI is practical as it does not require any modifcation or instrumen-

tation to end-user systems, and it is more accurate and precise (0.1% FP/FN) than

3

the previous state-of-the-art technique BEEP [4] which does require instrumentation

(12.8% FP/0.3% FN).

• We have designed a novel software protection system, A2C [3], that prevents a wide

range of attacks by randomizing inputs such that any malicious payloads contained

in the inputs are corrupted. The protection provided by A2C is both general (e.g.,

against various attack vectors including buffer-overfow, integer-overfow, use-after-

free, type-confusion, and ROP) and practical (7% runtime overhead).

1.3 Dissertation Organization

This dissertation includes three fundamental primitives for the investigation and preven-

tion of advanced cyber-attacks: LDX which proposes a novel causality inference technique

(Chapter 2), MCI which develops a novel model-based causality inference technique for

enterprise environment (Chapter 3), and A2C which is an attack vector agnostic exploit

injection attack prevention technique (Chapter 4).

1.4 Dissertation Overview

Prior to my work, the two most widely used state-of-the-art techniques for attack inves-

tigation were taint analysis and audit-logging. Taint analysis tracks program dependencies

by monitoring the data propagation of individual instructions. Audit-logging focuses on de-

pendencies between syscalls exposed through explicit syscall arguments (e.g., fle handles).

For example, they consider syscalls on the same fle or within the same process causally

related. Unfortunately, taint analysis suffers from signifcant performance overhead as it

needs to monitor every instruction. Moreover, both taint analysis and audit-logging are

inaccurate as taint analysis has diffculty handling control dependencies and the assump-

tions made in audit-logging (e.g., all output syscalls are causally related to all input syscalls

within a process) are too coarse-grained, leading to a large number of bogus dependencies.

4

Counter-factual causality, frst introduced in the 18th century by David Hume [5], can

be used to describe the desired causal analysis in an attack investigation. Specifcally, given

two events, a latter event is causally dependent on a preceding event if changes at the

preceding event lead to state differences in the latter event. To this end, we realized that the

limitations of taint analysis and audit-logging stem from their imprecise approximations

of counter-factual causality. My research pioneered building techniques that implement

precise counter-factual causality for cyber attack investigation.

In addition, to build general protection against ever-evolving cyber attacks, my research

breaks a common critical step of most attacks: malicious payload injection and execution.

In particular, we exploit a fundamental characteristic of malicious payloads: they are de-

signed with strict semantic assumptions about the execution environment (e.g., platform or

architecture), hence they are particularly brittle to any mutation.

1.4.1 Conducting Faithful Counter-factual Causality

We take a fundamental approach: adapting the original counter-factual causality con-

cept in the context of program and program execution. LDX [1] conducts faithful counter-

factual causality inference on computer systems via dual execution. Specifcally, it runs

two executions in parallel — the original execution and its mutated version with mutations

on input syscalls. Then, it observes differences at output syscalls. Any difference indicates

causality between the mutated input syscalls and the output syscalls. Due to the mutation

LDX introduces, the mutated execution may take a different path, leading to a different

sequence of executed syscalls, when compared with the original execution. Hence, a fun-

damental challenge of LDX is to align the two executions so that they can be compared

at the same execution point, because comparing executions at misaligned points leads to

incorrect causality (i.e., FP/FN). To this end, we designed a novel runtime counter derived

from program structure. The counter is not a simple logic timestamp, but rather denotes

execution points by ensuring an important key property: The counter value indicates the

relative progress of executions, meaning that an execution with a larger counter value must

5

be ahead of another execution with a smaller counter value with respect to program struc-

ture. The counter facilitates alignment of two executions, enabling precise and effcient

causality inference. Evaluation on a large set of real-world applications, including Apache

web server, shows that LDX is 4 times more accurate and 2 orders of magnitude faster than

state-of-the-art taint analysis techniques.

1.4.2 Model-based Causality Inference for Practical Attack Provenance

The primary hindrance of existing techniques, including LDX, for attack provenance is

their requirement of changing end-user systems such as program instrumentation and kernel

modifcation. In contrast, existing automata-based techniques do not require instrumenta-

tion. They work by identifying program behaviors (e.g., fle downloading) from a concrete

log (e.g., a syscall log). They construct automata that represent the behaviors. Then, they

parse a log generated from an execution with the automata to determine whether the be-

haviors are exhibited in the log. However, they do not take dependencies into account; for

instance, they may detect two behaviors that are “download a fle” and “send a message,”

while the causal relationship between these two behaviors is not exposed.

MCI [2] is a model-based causality inference technique for attack provenance that di-

rectly works on syscall logs without requiring any end-user program instrumentation or

kernel modifcation. For each program, it uses LDX to acquire precise causal models for a

set of primitive operations (e.g., opening a fle). A causal model is a sequence of syscalls

annotated with inter-dependencies (causality) between the syscalls within the model, where

some of the inter-dependencies are caused by memory operations and hence implicit at the

syscall level. During deployment, MCI parses the existing audit-logs into concrete model

instances to derive causality. To this end, parsing syscall logs with causal models with

implicit dependency information leads to two prominent challenges: language complexity

and ambiguity. First, to express complex inter-dependencies annotated in causal models,

expressive grammar is required while more expressive grammar describes more complex

language (e.g., context-free or context-sensitive) and hence leads to higher cost in pars-

6

ing. Second, some syscalls can be parsed by multiple models that share common parts

(e.g., common prefxes). In such cases, it is diffcult to decide which model is the right

one. As different causalities are derived from different models, the ambiguity problem may

lead to incorrect causality (i.e., FP/FN). To solve these challenges, we designed a novel

model parsing algorithm called segmented parsing that can handle multiple model com-

plexity levels (e.g., regular, context-free, and context-sensitive) and substantially mitigate

the ambiguity problem by leveraging explicit dependencies that can be directly derived

from the log (e.g., dependencies caused by fle handles). Specifcally, MCI frst obtains a

model skeleton of each causal model. A model skeleton consists of syscalls with explicit

dependencies. The skeleton partitions a model into model segments that can be described

and parsed by automata. Without requiring any changes to end-user systems, MCI recovers

causality with close to 0% FP/FN for most applications (the worst case: 8.3% FP and 5.2%

FN). More importantly, causal models have composability such that models for primitive

operations can be composed together to describe complex system-wide attack behaviors.

For example, primitive models for “Edit”, “Copy”, “Paste”, and “Save” can compose a new

model that represents a complex user behavior “Edit→Copy→Edit→Paste→Edit→Save”

(e.g., potential information exfltration). Evaluation on attack cases created by security

professionals in the DARPA TC program shows that attack causal graphs generated by MCI

are more precise than those generated by the previous state-of-the-art system BEEP [4] that

requires instrumentation.

1.4.3 Corrupting Malicious Payloads via Input Perturbation

A2C [3] exploits the brittleness of malicious payloads to provide general protection.

It corrupts malicious payloads by encoding all inputs from untrusted sources at runtime.

However, the encoding may break program execution on benign inputs as well. To assure

that the program continues to function correctly when benign inputs are provided, We de-

veloped a static analysis technique that identifes all the places that read and process inputs

and selectively inserts decoding logic at some of those places. Specifcally, decoding only

7

occurs when the use of the inputs cannot be exploited. For instance, when inputs in a byte

array are copied to an integer array, each byte of the inputs is padded with 3 zero bytes (as

an integer is 4 bytes on 32-bit machines) before it is stored into the integer array. Construct-

ing a meaningful payload with 3 zero bytes in every four bytes is extremely diffcult, if not

impossible. To this end, we proposed a novel constraint solving algorithm which identifes

operations that make inputs no longer exploitable, such as the copy operation from a byte

array to an integer array. The operations essentially divide the state space of a program into

exploitable and post-exploitable sub-spaces because the program state before the operation

is exploitable, but no longer so after the operations. Therefore, A2C decodes the mutated

values only when they are transmitted from the exploitable space to the post-exploitable

space. Notably, the exploitable space is much smaller than the post-exploitable space —

making A2C highly effcient. A2C successfully achieves general protection for a large

set of real-world programs, including Apache web server against a variety of attacks (e.g.,

heap spraying, use-after-free, buffer-overfow, integer-overfow, and type-confusion) with

low overhead (6.94%).

8

2 LDX : CAUSALITY INFERENCE BY LIGHTWEIGHT DUAL EXECUTION

Causality inference, such as dynamic taint anslysis, has many applications (e.g., informa-

tion leak detection). It determines whether an event e is causally dependent on a preceding

event c during execution. We develop a new causality inference engine LDX. Given an

execution, it spawns a slave execution, in which it mutates c and observes whether any

change is induced at e. To preclude non-determinism, LDX couples the executions by shar-

ing syscall outcomes. To handle path differences induced by the perturbation, we develop a

novel on-the-fy execution alignment scheme that maintains a counter to refect the progress

of execution. The scheme relies on program analysis and compiler transformation. LDX

can effectively detect information leak and security attacks with an average overhead of

6.08% while running the master and the slave concurrently on seperate CPUs, much lower

than existing systems that require instruction level monitoring. Furthermore, it has much

better accuracy in causality inference.

2.1 Introduction

Causality inference during program execution determines whether an event is causally

dependent on a preceding event. Such events could be system level events (e.g., input/output

syscalls) or individual instruction executions. A version of causality inference, dynamic

tainting, is widely used to detect information leak, namely, sensitive information is unde-

sirably disclosed to untrusted entities, and runtime attacks, in which exploit inputs subvert

critical execution state such as stack and heap [6–10].

Most existing causality inference techniques are based on program dependences, espe-

cially data dependences. There is data dependence between two events if the former event

defnes a variable and the later event uses it. These techniques have a few limitations. First,

they have diffculty in handling control dependence. There is control dependence between

9

a predicate and an instruction if the predicate directly determines whether the instruction

executes. The challenge lies in that control dependences sometimes lead to strong causality,

but some other times lead to very weak causality that cannot be exploited by attackers and

hence should not be considered. Most existing solutions [11–13] rely on detecting syntactic

patterns of control dependences and hence are incomplete. Second, existing techniques are

expensive (e.g., a few times slow-down [8]), as memory accesses need to be instrumented

to detect data dependences. Third, the complexity in implementation is high. Dependence

tracking logic needs to be defned for each instruction, which is error-prone for complex

instruction sets. Instrumenting third party libraries, various languages and their runtimes,

is very challenging.

We observe that these limitations root at tracking causality by monitoring program de-

pendencies. We propose to directly infer causality based on its defntion. In [14], coun-

terfactual causality was defned as follows. An event e is causally dependent on an earlier

event c if and only if the absence of c also leads to the absence of e. Program dependence

tracking in some sense just approximates counterfactural causality. Our technique works

as follows. It perturbs the program state at c (the source) and then observes whether there

is any change at e (the sink). There are a number of challenges. (1) We need at least

two executions to infer causality. Thus, we must prune the differences caused by non-

determinism such as different external event orders. (2) Meaningful comparison of states

across executions requires execution alignment. Due to perturbation, the event e may occur

at different locations. Naive approaches such as using program counters hardly work due

to path differences [15]. (3) The second execution is not a simple replay of the frst one, as

the perturbation may cause path differences and then input/output syscall differences. (4)

Ideally, the two executions should proceed in parallel. Otherwise, the execution time is at

least doubled.

The core of our technique is a novel runtime engine LDX, which stands for Lightweight

Dual eXecution. Its execution model is similar to Dual Execution (DualEx) [16]. Given

an original execution (the master), a new execution (the slave) is derived by mutating the

source(s). Later, by comparing the output buffer contents of the two executions at the

10

sink(s), we can determine if the sink(s) are causally dependent on the source(s). The mas-

ter and the slave are coupled and run concurrently. The slave tries to reuse syscall and

nondeterministic instruction outcomes (e.g., rdtsc) from the master to avoid nondeter-

minism. To avoid side effects, the slave often ignores output syscalls. Since perturbation

may cause path differences and hence syscall differences, an on-the-fy execution alignment

scheme is necessary. DualEx has a very expensive alignment scheme based on Execution

Indexing [15]. The slow-down reported in [16] is three orders of magnitude. In contrast,

LDX features a novel lightweight on-the-fy alignment scheme that maintains a counter that

refects the progress of execution. The counter is computed in such a sophisticated way

that an execution with a larger counter value must be ahead of another with a smaller one.

The slave blocks if it reaches a syscall earlier than the master. If different paths are taken

in the executions, the scheme can detect them and instructs the executions to perform their

syscalls independently. It also allows the executions to realign by ensuring that they have

the same counter value at the join point of the different paths. Without such fne-grained

alignment, when the slave encounters a syscall different from that in the master, it cannot

decide if the master is running behind (so that it can simply wait) or the two are taking

different paths so that the syscall will never happen in the master.

Our contributions are summarized in the following.

• We study the limitations of program dependence based causality and propose coun-

terfactual causality instead.

• We develop a lightweight dual execution engine that enables practical counterfactual

causality inference.

• We develop a novel scheme that computes a counter cost-effectively at runtime using

simple arithmetic operations. The counter values from multiple executions indicate

their relative progress, facilitating runtime alignment. The scheme handles language

features such as loops, recursion, and indirect calls.

• Our evaluation shows that LDX outperforms existing program dependence based

dynamic tainting systems LIBDFT [8] and TAINTGRIND [17]. In the effectiveness

11

aspect, LIBDFT and TAINTGRIND can only detect 31.47% and 20% of the true in-

formation leak cases and attacks detected by LDX. Also, LDX does not report any

false warnings. In the effciency aspect, the overhead of LDX is 6.08% to the origi-

nal execution while it requires running the master and the slave concurrently on two

separate CPUs. In contrast, the other two cause a few times slowdown although they

do not require the additional CPU and memory. Note that the counter scheme allows

aligning and continuing executions in the presence of path differences, which makes

LDX superior to TIGHTLIP [18], which often terminates when it detects misaligned

syscalls.

Limitations. LDX requires access to source code. Specifcally, the target application

should be compiled with LLVM because our analysis and instrumentation techniques are

implemented in a LLVM pass. LDX occupies more resources than a single execution. In

the worst case scenario, it may double the resource consumption on memory, processor,

and external resources such as fles on disk. Our performance evaluations assume that the

machine has enough capacity to accomodate such resource duplication. In practice, if the

slave and the master executions are coupled most of the time, only the processor and mem-

ory consumptions are doubled because the slave can shares most external I/Os with the

master. LDX may have false positives. For example, low level data races that are not pro-

tected by any locks may induce non-deterministic state differences and eventually lead to

undesirable output differences. However, for shared memory accesses protected by locks,

LDX ensures the same synchronization order across the master and the slave. Furthermore,

heap addresses are non-deterministic across the two runs, if heap pointer values are emitted

as part of the output, LDX reports causality even though the two pointers may be seman-

tically equivalent. However, In our experience, pointer values are rarely printed as part of

the outputs at sink points.

LDX may also have false negatives. The current implementation may not capture

causality through covert channels. For example, information can be disclosed through exe-

cution time and fle metadata (e.g. last accessed time). We will leave it to our future work.

12

Furthermore, program execution may run into extremal conditions (e.g., running out of

disk/memory space), the current implementation of LDX does not handle such conditions.

2.2 Counterfactual Causality

Counterfactual causality (CC) [14, 19] is the earliest and the most widely used defni-

tion of causality: an event e is causally dependent on an event c if and only if, if c were not

to occur, e would not occur. Later, researchers also introduce the notion of causal strength:

c is a strong cause if and only if it is the necessary and suffcient condition of e [20–22].

Otherwise, c is a weak cause.

We adapt the defnition in the context of program and program execution as follows.

Given an execution, we say a variable y at an execution point j is causally dependent on

a variable x at an earlier point i, if and only if mutating x at i will cause change of y at j.

The causality is strong if and only if any change to x must lead to some change of y. We

call this causality a one-to-one mapping. The causality is weak if multiple x values lead

to the same y value. We call it a many-to-one mapping. The strength of the causality is

determined by how many x values map to the same y.

Figure 2.1.: Examples to illustrate the comparison of counterfactual causality and program
dependences. Arrows denote strong causalities between x at the sink and s at the source.

Most existing causality inference techniques including dynamic tainting are based on

tracking program dependences, especially data dependencies. Two events are causally re-

lated if there is a dependence path between them during execution. As we discussed in

13

Section 3.1, these techniques have inherent limitations because program dependences are

merely approximation of CC. Next, we discuss the relation between CC and dynamic pro-

gram dependences to motivate our design.

(1) Most Data Dependences Are Essentially Strong CCs. Consider Fig. 2.1 (a). There is a

strong CC between s at the source (line 1) and x at the sink (line 4) as any change to s leads

to some change at the sink, and there is a data dependence path 4 → 3 → 1 between the

two. Other data dependences have similar characteristics, which implies that conventional

dynamic tainting (based on data dependence) tracks strong CCs. On the other hand, if there

is a technique that infers all strong CCs, it must subsume dynamic tainting.

(2) Control Dependences Induce Both Strong and Weak CCs. In Fig. 2.1 (b), assume the

true branch is taken and x = 1. We can infer that s must be 10; there is strong causality

between x and s. This strong CC is induced by the control dependence 14→13, together

with data dependences 15 → 14 and 13 → 11. If control dependence is not tracked (like

in most existing dynamic tainting techniques), the CC is missed. However in many cases,

control dependences only lead to weak CC. In case (c), assume s = 50 and hence x = 1.

There is a dependence path 25 → 24 → 23 → 21 if control dependence 24 → 23 is tracked.

However, the casuality between x at 25 and s at 21 is weak as many values of s lead to

the same x = 1. Such weak causality is very diffcult for the attacker to exploit. For

example with x = 1, the adversary can hardly infer s’s value, even with the knowledge

of the program. Moreover in code injection attacks, the attacker can hardly manipulate the

sink (e.g. function return address) by changing the source. According to [23], if control

dependences are not tracked, 80% strong CCs are missed; if all control dependences are

tracked, strong CCs are never missed but 45% of the detected causalities are weak. In

some large programs, an output event is causally dependent on almost all inputs with 90%

of them being weak causalities that cannot be exploited. In summary, control dependences

are a poor approximation of strong CCs.

(3) Tracking both Data and Control Dependences May Still Miss Strong CCs. Fig. 2.1 (d)

presents such a case. Assume s = 10 and hence the else branch is executed. As such, x is

not updated. However, the fact that x is not updated (and hence has the value of 0) allows

14

main () {

1. read(stdin, &name, &title,

 &salary, &age);

2. fout=open(✁);

3. if (title==STAFF)

4. raise=SRaise(�staff.std✂,salary);

5. else if (title==MANAGER){

6. raise=MRaise(name,salary,age);

7. read(stdin, &dept);

8. raise+=BONUS[dept];

9. } else ...

10. sprintf (buf, �✁✂, &name, &raise);

11. send(socket, buf);

 }

SRaise(standard, salary) {

12. FILE fin=open(standard,...);

13. read (fin, &rate);

14. return salary*rate;

 }

MRaise(name,salary,age) {

15. raise=SRaise(�mngr.std✂,salary);

16. if (salary>C1 && age==JUNIOR)

17. write(fout,&name);

18. return raise;

 }

3. if (title==S..)

4. raise=SRaise(✁);
5. if (title==M)

10. sprint(buf, ✁);

1. read(✁);

6. MRaise(✁);

2. fout=open(✁)

7. read(✁);

8. raise=...;

9. ...

11. send (✁)

Entry

cnt++

cnt++

cnt++

12. fin=open(✁);

13. read(✁)

Entry

cnt++

cnt++

14. return

15. raise= SRaise();

Entry

cnt++

16. if (salary...)

17. write(✁)

18. return...

cnt++

cnt++

cnt+=4cnt+=2

(a) Program (b) Control Flow Graphs and Instrumentation

main() SRaise()

MRaise()

0

1

2

2

4#

2

5##

2

6

6

6

7

0

1

2

2

0

2#

2

3

3

Figure 2.2.: Illustrative example. The code along control fow edges represents instrumentation.
#cnt+=2 inside SRaise(); ##cnt+=3 in MRaise().

the adversary to infer s = 10. It is a strong CC: any change to s makes x have a different

value. Unfortunately, such strong CC cannot be detected by tracking program dependences

as line 37 is only data dependent on line 32 as the true branch is not executed. More cases

are omitted due to the space limitations. They can be found in our technical report [24].

The above discussion suggests that program dependences are a poor approximation of

strong CCs. Hence, we propose LDX, a cost-effective technique that allows us to directly

infer strong CCs, strictly following the defnition.

2.3 Overview and Illustrative Example

We use an example to illustrate LDX. Here we are interested in information leak detec-

tion. We mutate the secret inputs. If output differences are observed at the sinks, there are

strong CCs between the sinks and the secret inputs, and hence leaks.

15

Specifcally, given the master execution, LDX creates a slave and runs the two concur-

rently in a closely coupled fashion. The master interacts with the environment and records

its syscall outcomes. In most cases, the slave does not interact with the environment, but

reuses the master’s syscall outcomes, to eliminate state differences caused by nondetermin-

istic factors such as external event orders. The slave mutates the sources, which potentially

leads to path differences and hence syscall differences. A novel feature of LDX is to toler-

ate syscall differences in a cost-effective manner. It maintains a counter for each execution

that indicates the progress. Execution points (across runs) with the same counter value and

the same PC are guaranteed to align (in terms of control fow). An execution with a larger

counter value is ahead of another with a smaller value. Aligned syscalls can share their

outcomes; if the slave encounters a syscall with a counter larger than that in the master,

the slave blocks until the master catches up; if the slave encounters an input syscall that

does not have an alignment in the master, it will execute the syscall independently. The

counter is computed as follows. It is incremented by 1 at each syscall. When two execu-

tions take different branches of a predicate –since the branches may have different numbers

of syscalls– the values added to the counter may be different. The technique compensates

the counter in the branch that has a smaller increment so that the counter must have the

same value when the join point of the branches is reached. As such, the executions are

re-synchronized.

Figure 2.3.: Syscall traces and the synchronization action sequence by LDX for the example in
Fig. 2.2 with title the secret. The shaded entries are aligned.

16

Example. Consider the program in Fig. 2.2 (a). It reads information of an employee,

computes his/her raise and sends it to a remote site. If the employee is a regular staff,

function SRaise() is called to compute the raise (line 4). If he/she is a manager, function

MRaise() is called (line 6). Moreover, the program reads the department information to

compute the bonus for the manager. Finally (lines 10 and 11), the name and the raise are

reported to a remote site. SRaise() opens and reads a contract fle that describes the rate

of raise. MRaise() calls SRaise() to compute the basic raise, using a different contract

fle. Furthermore, it saves all the junior managers with a salary higher than C1 to a local

fle.

The control fow graphs (CFGs) and their instrumentation for counter computation (i.e.

code along CFG edges) are shown in Fig. 2.2 (b). The number beside a node denotes the

counter value at the node, computed by the instrumentation starting from the function entry.

It can be intuitively considered as the maximum number of syscalls encountered along a

path from the entry to the node. In SRaise(), the counter is incremented twice along edges

Entry → 12 and 12 → 13 before the two syscalls. The total increment is hence 2, as shown

beside the exit node. In MRaise(), the counter value of line 15 is 2, although the edge

is not instrumented. This is because of the increments inside SRaise(). The true branch

of line 16 has an increment of 1 due to the write syscall. To ensure identical counter

values at the join point, the false branch (i.e., edge 16 → 18) is compensated with +1. As a

result, the total increment of MRaise() is 3 along any path. Similarly in main(), the path

3 → 5 → 6 → 7 → 8 → 10 has an increment of 4, due to the three syscalls inside MRaise()

and the syscall at line 7. As such, we compensate the edges 4 → 10 and 9 → 10 by +2 and

+4, respectively.

Assume title=STAFF is the secret. In the slave, it is mutated to MANAGER. Also as-

sume age=JUNIOR. Fig. 2.3 shows the syscall sequences of the two executions and the

corresponding counter values. The frst two entries are the syscalls at lines 1 and 2 in both

executions, and they align due to the same counter value. Hence, the slave copies the syscall

results from the master. The two executions diverge at line 3 and different syscalls are en-

countered. In particular, the master executes two syscalls inside SRaise() and the slave

17

executes the two syscalls inside SRaise() in a different context, followed by the write at

line 17 and the read at 7. Since these syscalls do not align, both the master and the slave

execute them separately. Assume the master fnishes its (true) branch frst and continues

to the send syscall at line 11. At this time, the counter is 7 in the master and larger than

the slave’s. The master blocks until the slave’s counter also reaches 7, at which the two

syscalls (at line 11) align again. Since the syscall is a sink, LDX compares the outputs and

identifes differences. It hence reports a leak. Note that even though there is no direct data

fow from title to raise, the value of raise still leaks the secret title through control

dependences. Many existing techniques cannot detect such causality. �

One may notice in Fig. 2.3 that the third and the fourth syscalls in both executions

have the same counter. In fact, both are syscalls in SRaise(). To recognize syscalls

that are different but have the same counter value and the same PC, LDX compares their

parameters.

Fixed versus Dynamically Computed Counter values. One may also be curious that

why LDX does not assign a fxed counter value to each syscall. This is because a function

may be invoked under different contexts such that the counter value computed for a syscall

inside the function may vary.

Use of LDX. LDX is fully automated during production runs. It has a predefned confg-

uration of sources (e.g., socket receives) and sinks (e.g., fle writes). The user can also

choose to annotate the sources and sinks in the code during instrumentation. At runtime,

all the specifed sources are mutated. If output differences are observed at any sink, LDX

considers that there is strong causality between the sink and some source(s) and reports an

exception. It does not require running multiple times for individual sources.

2.4 Basic Design

The basic design consists of two components. The frst is for counter computation and

the second is for synchronizing the executions and sharing syscall results. For now, we

18

assume programs do not have loops, recursion, or indirect calls. They are discussed in later

sections (loops/recursion in Section 2.5 and indirect calls in Section 2.6).

2.4.1 Counter Computation

In LDX, each execution maintains a counter to allow progress comparison across runs.

The basic idea of counter computation is to ensure that the current counter value represents

the maximum number of syscalls along a path from the beginning of the program to the

current execution point. If the program does not have any loops, recursion, or indirect

calls, such a number can be uniquely computed. Hence, our instrumentation compensates

the paths other than the one that has the maximum number of syscalls, by incrementing the

counter, to make sure the counter must have the same value (i.e. the maximum number of

syscalls) along any path. Intuitively, when the two executions take different branches of a

predicate, the counter computation ensures that they align when the branches join again,

because the counter will have the same value regardless of the branch taken.

The instrumentation procedure is presented in Algorithm 1. It consists of two func-

tions: INSTRUMENTPROG() that instruments the program and INSTRUMENTFUNC() that

instruments a function. INSTRUMENTPROG() instruments functions in the reverse topo-

logical order. As such, when a function is instrumented, all its callees must have been

instrumented. In INSTRUMENTFUNC(), cnt[n] contains the number of maximum syscalls

along a path from the function entry to n. In lines 6-7, cnt[] is initialized to 0. Then in

the loop from lines 8-16, the algorithm traverses the CFG nodes in the topological order

and computes cnt[]. In particular, cnt[n] is frst set to the maximum of cnt[p] for all its

predecessors p (line 9). It is further incremented by one if n is a syscall (lines 10-11).

Then for any incoming edge p → n, the algorithm instruments it with a counter increment

of cnt[n] − cnt[p], ensuring the counter value must be cnt[n] along all edges (lines 12-14).

After that, if n denotes a function call to Fx, cnt[n] is incremented by the counter of the func-

tion FCNT [Fx], which denotes the maximum number of syscalls that can happen inside Fx

along any path (line 15-16). Note that this increment does not cause any instrumentation on

19

Algorithm 1 Basic counter instrumentation algorithm
Input: The CFGs of the m functions of a program P, denoted as hN1,E1i, ..., hNm,Emi
Output: Instrumented CFGs
1: function INSTRUMENTPROG
2: for hNi,Eii in reverse topological order of the call graph do
3: INSTRUMENTFUNC (hNi,Eii)
4: end for
5: end function

Input: The CFG of a function F , denoted as hN,Ei
Output: The instrumented CFG
6: function INSTRUMENTFUNC
7: for each node n ∈ N do
8: cnt[n] ← 0
9: end for

10: for node n ∈ N in topological order do
11: cnt[n] ← maxp→n∈E (cnt[p])
12: if n is a syscall then
13: cnt[n] ← cnt[n]+ 1
14: end if
15: for each edge p → n ∈ E do
16: if cnt[p] =6 cnt[n] then
17: instrument p → n with “cnt+=”·cnt[n] − cnt[p]
18: end if
19: end for
20: if n is a call to user function Fx then
21: cnt[n] ← cnt[n]+ FCNT [Fx]
22: end if
23: end for
24: FCNT [F] ← cnt[exit node of F]
25: end function

20

n because the increment denoted by FCNT [Fx] is realized inside Fx. At the end, FCNT [F]

is set to the computed counter value for the exit node. It will be used in counter computation

in the callers of F .

Example. In Fig. 2.2, the algorithm frst instruments SRaise(). The cnt[] values are

showed beside the nodes. Observe that cnt[12] = 1 and cnt[13] = 2, which lead to the

instrumentation on entry → 12 and 12 → 13. FCNT [SRaise] = cnt[14] = 2. MRaise()

is instrumented next. Due to FCNT [SRaise], cnt[15] = 2. Note that node 15 is not

instrumented. Node 18 has two predecessors and thus cnt[18] = max(cnt[17],cnt[16]) = 3,

which entails the instrumentation on 16 → 18. At last, function main() is instrumented.

cnt[10] = max (cnt[8],cnt[4],cnt[9]) = cnt[8] = 6, causing the instrumentation on 4 → 10

and 9 → 10. �

Algorithm 2 Syscall wrapper for master
Input: Syscall id sys id and parameters args.
Output: Syscall return value.
Defnition: Qm the syscall outcome queue maintained by the master; Os the latest sink syscall by the slave;

cntm and cnts the local counters in master and slave, respectively; readym the counter value in master
exposed to the slave; similarly, readys the counter value in the slave exposed to the master.

1: function SYSCALLWRAPPER(sys id, args)
2: if sys id denotes a sink syscall then
3: while cntm > readys do
4: {}
5: end while
6: if cntm < readys ∨ Os.sys id =6 sys id ∨ Os.args =6 args then
7: report causality
8: end if
9: end if

10: r ← SYSCALL (sys id, args)
11: Qm.enq(hcntm, sys id, args, ri)
12: readym ← cntm
13: return r
14: end function

2.4.2 Dual Execution Facilitated by Counter Numbers

To support dual execution, LDX intercepts syscalls to perform synchronization and

syscall outcome sharing. In the master, when a syscall is encountered, if it is not a sink,

LDX executes the syscall and saves the outcome for potential reuse by the slave. Otherwise,

21

it waits for the slave to reach the same sink so that their parameters can be compared. In

the slave, upon a syscall, it frst checks whether it is ahead of the master. If so, it waits until

the master fnishes the corresponding syscall so that it can copy the master’s result. If the

corresponding syscall does not appear in the master (due to path differences), which can be

detected by the counter scheme, the slave executes the syscall.

Execution Control in the Master. Algorithm 2 shows the controller of the master. It is im-

plemented as a syscall wrapper. Each syscall in the master must go through the controller.

Inside the controller, cntm and cnts denote the current counter values in the master and the

slave, respectively. They are local to their execution and invisible to the other execution.

It also uses two shared variables readym and readys to facilitate synchronization. They are

assigned the values of cntm and cnts when the master and the slave are ready to disclose the

effects of the current syscall to the other party.

Lines 2-6 handle a sink syscall. At line 3, the master spins until the slave catches up.

Note that the value of readys is the same as cnts when the state of the slave’s syscall denoted

by cnts becomes visible. There are four possible cases after the master gets out of the spin

loop.

(1) cntm < readys. This happens when there is not a syscall denoted by the value of cntm

in the slave. For example in Fig. 2.2, assume the master takes the false branch at line 3 and

is now at line 7 with cntm = 6 while the slave takes the true branch and now it just returns

from the call to SRaise() at line 4 with cnts = readys = 4. Assume we make line 7 a sink.

Then the master will wait at line 7. However, the next time readys is updated (in the slave)

is at line 11, at which readys = 7, larger than cntm = 6.

(2) cntm ≡ readys but the syscall in the slave represented by readys is different from the

sink syscall in the master. This is due to path differences.

(3) cntm ≡ readys and both the master and the slave align at the same sink syscall. However,

their arguments are different.

(4) The counters, syscalls, and arguments are all identical.

The frst three cases denote causality between the source and the sink, suggesting leak

or exploit. The last case is benign. In the frst two cases, there is causality because the sink

22

(in the master) disappears in the slave with the input perturbation. The three comparisons

at line 5 correspond to the frst three cases, respectively.

If the current syscall is not a sink, lines 7-8 in the algorithm perform the real syscall

and enqueue the syscall and its outcome, which may be reused by the slave. At last (line

9), readym is set up-to-date, indicating the syscall outcome for cntm is ready (for the slave).

Execution control in the slave is similar. Details can be found in our technical re-

port [24].

Syscall Handling. LDX’s policy of handling syscalls is similar to that in dual execution

(DualEx) [16]. For most input/output syscalls, the slave simply reuses the master’s syscall

outcome if their alignments in the master can be found. Otherwise, it executes the syscall.

To avoid undesirable interference, the slave may need to construct its own copy of the

system state before executing the syscall. For example, before the slave executes a fle

read, the fle needs to be cloned, opened, and then seeked to the right position. Some

special syscalls are always executed independently such as process creation. Since the

policy is not our contribution, we refer the interested reader to [16].

Dual Execution Model Comparison between LDX and DualEx [16]. Similar to LDX,

DualEx also has the master and the slave. However, its synchronization and alignment

control is through a third process called the monitor. Both the master and the slave simply

send their executed instructions to the monitor, which builds a tree-like execution structure

representation called index and aligns the executions based on their indices. The monitor

also determines if a process needs to be blocked, achieving lockstep synchronization. As

such, its overhead is very high (i.e., 3 orders of magnitude). In contrast, LDX is much more

lightweight. It is based on counter values and uses spinning to achieve synchronization.

2.5 Handling Loops

The basic design assumes programs without loops. Handling loops is challenging be-

cause the number of iterations for a loop is unknown at compile time. The master and the

slave may iterate different numbers of times due to the perturbation at sources, leading to

23

open

read

read

write

recv

send

recv

read

read

open

send

write

recv

read

read

open

send

write

Figure 2.4.: Loop example

different increments to the counters and hence diffculty in alignment. Our solution is to

synchronize two corresponding loops at the iteration level. In particular, it aligns the ith

iteration of the master with the ith iteration of the slave by synchronizing at the backedges,

i.e. the edge from the end of the loop body back to the loop head. It is analogous to having

a barrier at the end of each iteration. Along the backedge, LDX also resets the counter to

the value before it entered the loop. Doing so, the value of the counter is bounded and does

not grow with the number of iterations. If an execution gets out of the loop, its counter is

incremented by the maximum number of syscalls along any path inside the loop. As such,

a counter value beyond the loop is larger than any counter values within the loop, correctly

indicating that the execution beyond the loop is ahead of the one in the loop.

Algorithm 3 presents the instrumentation algorithm for a function with loops. It trans-

forms the CFG to an acyclic graph by removing loop edges. As such, the cnt[] values in

the acyclic graph are statically computable. The computed cnt[] values are then leveraged

to construct the instrumentation, including that for the original loop edges. Particularly,

24

Algorithm 3 Counter instrumentation with loops
Input: The CFG of a function F , denoted as hN,Ei
Output: The instrumented CFG
1: function INSTRUMENTFUNCWITHLOOP
2: for each back edge t → h ∈ E do
3: Let h → n be the exit edge of the loop
4: E ← E −{t → h, h → n} . Remove loop exit and back edges
5: E ← E ∪{t → n} . Add dummy edge
6: end for
7: INSTRUMENTFUNC(hN,Ei)
8: remove all dummy edges and their instrumentation
9: restore all the removed edges in the original CFG

10: for each original back edge e : t → h do
11: instrument e with “sync();cnt− =”·cnt[t] − cnt[h]
12: end for
13: for each original loop exit edge e : h → n do
14: instrument e with “cnt+=”·cnt[n] − cnt[h]
15: end for
16: end function

25

the algorithm frst removes all the backedges and the loop exit edges (line 2-5). A loop

exit edge is from the loop head h to the next statement n beyond the loop. A dummy edge

is inserted from the end of the loop body t to the next statement n beyond the loop. Our

discussion focuses on for and while loops, do-while loops can be similarly handled.

At line 6, the acyclic graph is instrumented through INSTRUMENTFUNC(). After that,

the dummy edges and their instrumentation are removed as they do not denote real control

fow (line 7). The backedges and loop exit edges are then restored. Lines 9-10 instrument

the backedges. For a backedge t → h, the instrumentation frst calls a barrier function

sync(), which is similar to lines 3-4 in Algorithm 2, to synchronize with the backedge of

the same iteration in the other execution. It then resets the counter to the value at h such

that the counter increment of the next iteration has a fresh start. Lines 11-12 instrument the

loop exit edges. For a loop exit h → n, the instrumentation increments the counter by the

difference between cnt[n] and cnt[h]. Intuitively, it raises the counter to the value of cnt[n].

Example. Fig. 2.4 (a) shows a loop example. There are two loops: the i loop and the j

loop. Their iteration numbers are determined by the inputs from line 2. Figure (b) shows

the transformed CFG and part of the instrumentation generated by INSTRUMENTFUNC() in

the basic design. Observe that the backedges 8 → 5 and 12 → 3, the loop exit edges 3 → 13

and 5 → 9 are removed. Dummy edges 8 → 9 and 12 → 13 are added. They do not represent

real control fow, but allow cnt[9] to be computed as cnt[8]+ 1 and cnt[13] = cnt[12]+ 1.

Figure (c) shows the instrumentation for backedges and loop exit edges. Note that the CFG

in (c) is the original CFG. The backedge 8 → 5 is instrumented with the call to the barrier

function and the decrement of the counter by cnt[8] −cnt[5] = 1. The loop exit edge 5 → 9

is instrumented with the counter increment of cnt[9] − cnt[5] = 2, which makes the counter

value of node 9 always larger than those within loop j. The instrumentation for loop i is

similar.

Fig. 2.5 shows the dual execution when the loop bounds n and m are the sources. As-

sume the master executes with n = 1 and m = 2 and the slave executes with n = 2 and m = 1.

Along the syscall sequences, we also show the loop iterations to facilitate understanding.

The frst three syscalls (up to inside the frst iteration of j) align in the two executions.

26

m s

s

m

m

m s

m

Figure 2.5.: Syscalls and the sequence of synchronizations by LDX for the example in Fig. 2.4
with n and m the sources. The shaded entries are aligned. The indentation shows the loop nesting.

At A , the two executions are synchronized and counters are reset to 2. However at B ,

the slave exits loop j while the master continues to the second iteration of j. As such,

the slave’s counter becomes 4, which blocks its execution. At C , the master fnishes the

second iteration of j and its counter is reset to 2. At D , the master also exits loop j and

its counter is incremented to 4, which aligns the two syscalls at line 9. At E , the two

runs are synchronized at the backedge of loop i and their counters are reset to 2 due to

the instrumentation on 12 → 3. At F , the master exits the i loop; its counter becomes 5

due to the instrumentation on 3 → 13, which blocks its execution as the master needs the

parameters of the send() from the slave to infer causality. In contrast, the slave executes

the remaining i iteration before it reaches the aligned sink (line 13). �

Recursive functions are handled similarly. Also note that we only need to instrument

loops that include syscalls. Hot loops are usually computation intensive and should not

have syscalls. Therefore, they are unlikely to be instrumented.

27

2.6 Handling Indirect Function Calls

The challenge for handling indirect calls is that the call targets are usually unknown at

compile time. As a result, we cannot use the counter values in the callee(s) to compute

those in the caller. To handle indirect calls, LDX saves a copy of the current counter to the

stack when an indirect call is encountered, and resets the counter to 0 such that the two

executions start a fresh alignment from the indirect call site. When the executions return

from the indirect call, the counter value is restored. As such, we do not need to know the

precise counter increment inside the indirect call to support alignment in the caller. LDX

supports components that cannot be instrumented such as third party libraries and dynamic

loaded libraries by synchronizing at their interface. Longjmp and setjmp are ignored

during the CFG analysis. They are supported at runtime by saving a copy of the counter

stack at the setjmp which will be restored upon the longjmp. Moreover, an artifcial sink

is inserted before the longjmp so that if one process longjmps but the other does not, LDX

reports exception. More details can be found in [24].

2.7 Handling Concurrency and Library Calls

LDX supports real concurrency, which is completely different from DualExec [16].

Threads have their own counters. Threads in the master and the slave are paired up. LDX

treats pthread library calls as syscalls. The two executions hence synchronize on those calls

and share the outcomes of lock acquisitions and releases. Note that sharing synchroniza-

tion outcomes induces very similar thread schedules in the two executions. However, path

differences may lead to synchronization differences which may in turn lead to deadlocks in

LDX if not handled properly. We taint locks that have encountered differences and avoid

sharing synchronization outcomes for those locks. Moreover, low-level data races that are

not protected by any locks may induce non-deterministic state differences, leading to false

positives in strong CC inference. In Section 4.6, our experiment shows that false posi-

tives rarely happen (for the programs we consider). Intuitively, non-determinism during

computation may not lead to non-determinism at the sinks.

28

Light-weight Resource Tainting. In our current implementation, a fle/directory is con-

sidered a resource. Taint metadata is associated with each resource. When an operation

for a resource is misaligned, the resource is tainted to indicate state differences so that any

future syscalls on the resource cannot be coupled. When a tainted resource is accessed by

the other execution, LDX will create a copy of the related resource(s) so that the master

and the slave operate on their own copies, without causing interference. For example, if the

master creates a directory while the slave does not, the directory is tainted. When the slave

tries to access the directory later, it gets into the de-coupled mode. The slave’s syscall will

be performed on a clone of the parent directory without the created directory. Similarly, if

a fle is renamed or removed from a directory in one execution but not the other, the fle is

tainted. Any following acceses to the fle lead to de-coupled execution.

Handling Library Calls. Regarding local fle outputs, the slave does not perform any

outputs to the disk if they are aligned. Instead, it skips the calls or buffer the output values

for causality inference if local fle outputs are considered sinks. The slave ignores its own

signals and receives its signals from the master. Upon a signal, LDX allows the slave to

execute the signal handler. Handler invocations are handled similar to indirect calls. Note

that the slave may invoke system calls to cause different signals or events such as creating

threads or processes different from the master. LDX buffers such different system calls and

all the system calls caused by such signals and events for causality inference. The threads

and processes unique to either execution run in the de-coupled mode.

Handling UI Library Calls. LDX is intended to be transparent to the user. Hence, it is un-

desirable to have two (almost identical) user interfaces. Therefore, LDX allows the master

to handle all the UI library calls as usual. The slave does not have its own interface. It tries

to reuse the UI library call outcomes from the master as much as possible. Misaligned UI

library calls, if they are input related, return random values to the slave. Misaligned output

UI calls are ignored, or buffered for causality inference if the outputs are considered sinks.

29

Table 2.1.: Benchmarks and Instrumentation

Program LOC Instrumented instances Syscalls Max Dyn. Cnt. Mutated
inputsInst. / Loop / Recur. / FPTR Sinks/Total Cnt. Value Stack∗

400.perlbench 128K 5540 (1.56%) / 10233 / 634 / 852 4 / 62 72K 3392 2.91/7 Perl source
401.bzip2 5739 43 (0.24%) / 360 / 0 / 57 4 / 10 7 4.5 0/1 Input data
403.gcc 385K 791 (0.07%) / 45702 / 2928 / 463 3 / 31 424 96.1 0.11/5 C source
429.mcf 1579 27 (1.32%) / 44 / 1 / 0 3 / 11 8 4.3 0/0 Input data
445.gobmk 157K 235 (0.22%) / 7910 / 74 / 47 3 / 15 37 1.7 1.68/4 Input data
456.hmmer 20K 1762 (3.59%) / 1611 / 11 / 13 4 / 25 281 83.2 0/1 Input/args.
458.sjeng 10K 26 (0.13%) / 978 / 10 / 1 4 / 12 6 2.7 0.07/1 Input data
462.libquantum 2611 52 (1.08%) / 153 / 11 / 0 3 / 17 8 1 0/0 Arguments
464.h264ref 36K 102 (0.09%) / 1994 / 38 / 362 4 / 20 101 26.4 0.26/2 Confguration
471.omnetpp 26K 121 (0.09%) / 6102 / 46 / 838 2 / 22 20 4.5 2.3/6 Confguration
473.astar 4285 56 (0.47%) / 224 / 0 / 1 1 / 18 51 32.8 0.12/1 Confguration
483.xalancbmk 266K 116 (0.01%) / 28381 / 312 / 10265 5 / 25 5 1.5 1.34/9 Input XML

Firefox 14M 83 (0.01%) / 21 / 0 / 9 3 / 26 71 41.2 0.09/1 nsIURI objects
lynx 204K 13157 (6.92%) / 6799 / 109 / 1179 6 / 132 15M 578K 0.3/6 Cookie/packets
nginx 287K 4672 (4.27%) / 1541 / 21 / 850 6 / 110 518 17.9 3.8/7 Confguration
tnftp 152K 2452 (6.31%) / 1093 / 17 / 210 8 / 125 5878 2623 0.01/1 Arguments
sysstat 29K 811 (6.94%) / 271 / 0 / 1 3 / 47 365 70.7 0.01/1 Func. returns

gif2png 16K 246 (7.76%) / 62 / 0 / 0 7 / 36 76 18.2 0/0 Input image
mp3info 9252 205 (8.34%) / 91 / 0 / 0 3 / 31 88 6.4 0/0 Input mp3
prozilla 13K 1116 (8.19%) / 285 / 0 / 14 5 / 67 5680 713 0/0 Packet
yopsweb 1961 282 (5.93%) / 97 / 0 / 1 4 / 44 24 3.7 0/1 Packet
ngircd 66K 1052 (6.70%) / 417 / 24 / 1031 4 / 62 2863 1524 0/1 Packet
gocr 54K 2801 (5.48%) / 2581 / 4 / 2 3 / 24 23K 2182 0/1 Input image

Apache 208K 640 (0.61%) / 2700 / 23 / 183 6 / 126 89 43.7 1.56/4 Input HTML
pbzip2 4527 735 (6.74%) / 226 / 0 / 3 4 / 49 1997 578.83 0/0 Input data
pigz 5766 996 (5.85%) / 434 / 2 / 15 6 / 54 9288 432.82 0.99/1 Input data
axel 2583 342 (8.24%) / 162 / 1 / 3 6 / 35 271 73.66 0/0 Packet
x264 98K 2071 (1.30%) / 2218 / 1 / 2295 8 / 49 881 76.58 15K/18K Input video
* It shows avg/max

30

2.8 Evaluation

LDX is implemented in LLVM 3.4. We evaluate its runtime performance, the capability

of handling misaligned syscalls, and the effectiveness of causality inference with two ap-

plications: information leak detection and attack detection. Experiments are on a machine

with Intel i7-4770 3.4GHz CPU (4 cores), 8GB RAM, and 32-bit LinuxMint 17.

Benchmark Programs. We used 28 programs as shown in Table 2.1. They include four

different subsets: SPECINT2006 (the frst 12); the network and system related set for

information leak detection (the next 5), the vulnerable program set for attack detection (the

next 6), and the concurrency set (the last 5) for evaluation of concurrency control. The

detailed introduction of these programs can be found in [24].

Instrumentation Details. Table 2.1 shows the instrumentation details. Columns 3-6 de-

scribe the numbers of instrumented instructions (and their percentage), instrumented loops,

instrumented recursive functions, and instrumented indirect calls. The next two columns

show the number of sinks and syscalls instrumented. For programs that have network con-

nections, we use the outgoing networking syscalls as sinks. For other programs, we treat

the local fle outputs as sinks. The “max cnt.” column shows the maximum counter value

in a program. It denotes the largest number of syscalls along some static program path. For

firefox, we were not able to instrument the whole program as LLVM failed to generate

the whole program bitcode (supposedly larger than 600MB). We identifed the source fles

for event processing and the JS engine and only instrumented those. The resulted object

fles are then linked with the rest.

We have a few observations. (1) We have some large and complex programs such

as lynx, 403.gcc, and apache. (2) The percentage of instrumented instructions is low

(3.44% on average). (3) Some programs (e.g., 403.gcc and 400.perlbench) have a large

number of recursive functions and indirect calls. LDX handles all of them.

The last column of Table 2.1 shows the source mutations. For the SPEC and net-

work/system programs, we mutate the data fles and the confguration fles. For the vul-

nerable program set, we mutate the inputs from untrusted sources and detect whether dif-

31

0%

5%

10%

15%

20%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

p
b

zi
p

2

n
g

in
x

tn
ft

p

g
if

2
p

n
g

p
ro

zi
ll

a

y
o

p
sw

e
b

n
g

ir
cd

g
o

cr

a
p

a
ch

e

p
ig

z

a
xe

l

x2
6

4

G
e

o
.

m
e

a
n

 (
S

P
E

C
)

M
e

a
n

 (
S

P
E

C
)

G
e

o
.

m
e

a
n

 (
A

ll
)

M
e

a
n

 (
A

ll
)

4.4%/4.7%

6.21% / 6.73%

4.45% / 4.70%

5.70% / 6.08% Without mutation (Perfectly align)

With mutation (Diff. syscalls)

Figure 2.6.: Normalized overhead of LDX

ferences are observed at function return addresses (for buffer overfow attacks) and at pa-

rameters of memory management functions (for integer overfow attacks). We perform

off-by-one mutations. In order to avoid invalid mutations, we only mutate data felds, not

magic values or structure related values.

2.8.1 Performance

We study the performance of LDX using SPECINT2006 and programs that are not

interactive and have non-trivial execution time. For server programs such as nginx and

apache, we run the server and send 10,000 requests, and then measure the throughtput. For

web servers such as apache, we use ApacheBench to provide the requests. Firefox and

lynx are omitted because they are interactive. Sysstat and mp3info are also excluded as

their running time is trivial (<0.01sec). We use the reference inputs for SPEC. We run each

program twice. In the frst run, we do not mutate the input so that the master and the slave

perfectly align. The overhead is thus for counter maintenance and syscall outcome sharing.

In the second run, the master and the slave execute with different inputs. Since they can take

different paths and have different syscalls, the overhead includes that for synchronization

and realignment. The results are shown in Fig. 2.6. The baseline is the native execution

time for the uninstrumented programs with the original inputs. The geometric means of the

32

overhead are 4.45% and 4.7%, while the arithmetic means are 5.7% and 6.08%. Observe

that the overhead of LDX is very low. We have also measured the overhead of LIBDFT [8],

one of the state-of-the-art dynamic tainting implementations that works by instruction level

monitoring. Its slow-down over native executions is roughly 6X on average. LDX is also

three orders of magnitude faster than dual execution [16].

Another observation is that the input differences and hence the syscall differences do

not cause much additional overhead. As we will show later, the syscall differences are not

trivial. This is because our alignment scheme allows the misaligned syscalls to execute

separately and concurrently. The “dyn. cnt.” columns in Table 2.1 show the runtime

characteristics of the counter values. Observe that the average counter values are much

smaller than the maximum values (column 9). The maximum depth of the stack is also

small, meaning that we rarely encounter nesting indirect calls.

Table 2.2.: Dual Execution Effectiveness

Program Input 1 / Input 2 # of syscall diffs
LDX TightLip Input 1 Input 2

lynx O / X O / O 1801 (4.13%) 1272 (3.0%)
nginx O / X O / O 202 (13.92%) 181 (13.02%)
tnftp O / X O / O 2443 (19.19%) 381 (15.74%)
sysstat O / X O / O 53 (7.42%) 58 (19.21%)
gcc O / X O / O 38161 (24.99%) 3590 (3.11%)
xalancbmk O / X O / O 102 (2.60%) 91 (2.32%)
gobmk O / X O / O 345 (1.68%) 114 (0.55%)
perlbench O / X O / O 17 (7.08%) 11 (4.58%)
bzip2 O / X O / O 53 (54.63%) 49 (50.51%)
mcf O / X O / O 20 (0.01%) 17 (0.01%)
sjeng O / X O / O 729 (45.45%) 132 (8.22%)
h264ref O / X O / O 141 (31.68%) 12 (2.69%)
hmmer O / - O / - 2 (0.03%) -
libquantum O / - O / - 1 (12.5%) -
omnetpp O / - O / - 0 -
astar O / - O / - 11 (73.33%) -

33

2.8.2 Effectiveness of Dual Execution

In this experiment, we answer the question why we need to align the master and the

slave. The experiment is in the context of detecting information leak. For each program,

we construct two input mutations with the following goal: one input mutation leads to

sink differences (and hence leakage) and the other does not. Both mutations may trigger

syscall differences. We also compare LDX with TIGHTLIP, which does not align execu-

tions and often has to terminate at syscall differences, reporting leakage. Table 2.2 presents

the results. Symbol ‘O’ denotes that leakage is reported and ‘X’ denotes normal termina-

tion without any warning. The last two columns show the syscall differences before the

sink difference and their percentage over the total number of dynamic syscalls. We have

the following observations. (1) LDX correctly identifes that one input mutation causes

leakage while the other one does not (except for the last four cases), whereas TIGHTLIP

reports leakage for both input mutations. Note that a lot of syscall differences are not out-

put related. (2) The syscall differences caused by input mutations are not trivial and are

sometimes substantial. LDX can properly handle all such differences. (3) For numerical

computation oriented programs (i.e., the last four in the table), we were not able to con-

struct the input mutation that does not cause leakage as any input mutation always leads to

sink differences.

2.8.3 Effectiveness of Causality Inference

Comparison with Dynamic Tainting. We frst compare LDX with TAINTGRIND [17]

and LIBDFT [8] 1. We compare the number of tainted sinks for all the benchmarks. For

the set of programs with vulnerabilities, their sinks include function returns and memory

management library calls. The results are shown in Table 2.3. The three columns in the

middle report the number of tainted sinks. The last column shows the total number of sinks

encountered during execution.

1We have tried DECAF (formerly TEMU), but encountered build problems.

34

Table 2.3.: Comparison with Dynamic Tainting

Program # of tainted sinks Total #
of sinks LDX TAINTGRIND LIBDFT

gcc 3 0 0 146
perlbench 1 0 0 5
bzip2 7 0 0 20
mcf 12 4 3 36
gobmk 68 39 39 84
hmmer 17 4 4 29
sjeng 83 8 6 112
libquantum 4 2 2 7
h264ref 28 3 3 37
omnetpp 24 4 2 52
astar 16 3 3 53
xalancbmk 45 21 0 419
lynx 5 3 1 8
nginx 10 5 0 22
tnftp 5 2 0 32
sysstat 6 3 0 12
gif2png 1 1 1 7
mp3info 1 1 1 8
prozilla 1 1 1 100799
yopsweb 1 1 0 41
ngircd 1 1 1 597
gocr 1 1 1 5
total 340 107 68 -

We have the following observations. (1) The tainted sinks reported by TAINTGRIND

and LIBDFT and are only 31.47% and 20% of those reported by LDX. This is because

the other two are based on tracking data dependences. As we discussed in Section 2.2,

data dependences are essentially strong causalities. Hence, LDX can detect what the other

two detect. In addition, LDX can detect strong causalities induced by control dependences.

We have validated that all the sinks reported by LDX have one-to-one mappings with the

tainted inputs (i.e., no false positives). (2) The tainted sinks reported by TAINTGRIND are

a superset of those reported by LIBDFT. Further inspection shows that LIBDFT does not

correctly model taint propagation for some library calls. This indeed illustrates a practical

challenge for instruction tracking based causality inference, which is to correctly model

taint behavior for the large number of instructions and libraries. The last six rows show the

35

results for the vulnerable program set. Observe that LDX can detect the attacks by correctly

inferring the causality between the untrusted inputs and the critical execution points.

Effectiveness for Concurrent Programs. LDX supports real concurrency by sharing the

thread schedule as much as possible between the two executions (Section 2.7). However,

low level races may introduce non-deterministic state differences, leading to false positives

in causality inference. In this experiment, we collect 5 concurrent programs. For each

program, we mutate the input and dual execute it 100 times. We used the standard inputs

provided with the programs. As shown in column 3 of Table 2.4, the number of tainted

sinks rarely changes, whereas syscall differences do change (column 2) due to low level

races. However, the syscall difference changes are not substantial because LDX was able

to enforce the same schedule for most cases. This supports the effectiveness of the concur-

rency control of LDX (for the programs we consider). The tainted sink changes for x264 are

caused by the execution statistics report (e.g., the bits processed per sec.). Although LDX

forces the master and the slave to share the same schedule and the same timestamps, the

number of bits processed per unit time is non-deterministic across tests and beyond control.

The tainted sink changes for axel are because the program makes Internet connections in

each run, which are non-deterministic.

Table 2.4.: Effectiveness for Concurrent Programs

Program # of syscall diffs
(Min/Max/Std. Dev.)

of tainted sinks
(Min/Max/Std. Dev.)

Apache 114 / 123 / 1.66 39 / 39 / 0
pbzip2 288 / 332 / 11.59 8 / 8 / 0
pigz 490 / 546 / 18.50 14/ 14 / 0
axel 1173 / 1252 / 25.39 813 / 834 / 6.5
x264 854 / 1211 / 89.38 350 / 353 / 0.3

Input Mutation. LDX performs off-by-one mutation on sources, which must detect any

strong CCs as proved in [24]. However in some rare cases it may also detect weak causal-

ities. We conduct an experiment to study different mutation strategies. We observe that

other strategies do not supercede off-by-one. Details can be found in [24].

36

File 1: ngx_auto_config.h

1 #ifndef NGX_HAVE_POLL

2 #define NGX_HAVE_POLL 1

3 #endif

File 2: ngx_auto_config.h

4 #if (NGX_HAVE_POLL)

5 #include <poll.h>

6 #endif

7 #if (__FreeBSD__) && ✁

8 #include <sys/param.h>

 ...

Layout of output file

Common parts

Parts depend on poll.h and

NGX_HAVE_POLL

Common parts

Input files to gcc

Cnt Master

71 fd1 = open(file1);

81 fxstat(fd1, ✁);

101 read(fd1, ✁);

72 fd2 = open(file2);

82 fxstat(fd2, ✁);

102 read(fd2, ✁);

2161 fprintf(✁);

2171 _IO_putc(✁);

Cnt Slave

71 fd1 = open(file1);

81 fxstat(fd1, ✁);

101 read(fd1, ✁);

2161 fprintf(✁);

2171 _IO_putc(✁);

216i fprintf(✁);

 _IO_putc(✁);

216j fprintf(✁);

217j _IO_putc(✁);

2181 fputs(✁);

2311 fprintf(✁);

2181 fputs(✁);

2311 fprintf(✁);

✁ ✁

✁ ✁

Data flow

detected

File 3: cpplib.c

465 do_define (pfile) {

 ✁

472 pfile node.value = (�); // define a value

 ...

476 }

 ✁

1323 do_if (pfile) {

 ...

1326 int skip = 1;

 ...

1329 skip = (pfile node.value == 0);

1331 pfile state.skipping = skip;

1332 }

gcc preprocessor sourceLDX executions

Data flow

node.value ✂ Input Explicit

skip ✂ (node.value == 0); Implicit

472

1329

state.skipping ✂ skip; Explicit1331

Data flow

detected

217i

Figure 2.7.: Case study on 403.gcc. Input fles on the left; relevant gcc code on the right;
dual execution in the middle.

2.8.4 Case Studies

403.gcc. In this study, we use the source code of nginx as input. Fig. 2.7 shows part of

input code on the left. We specify the confguration NGX HAVE POLL as the source. The

master has NGX HAVE POLL defned but the slave does not. As such, the master includes

poll.h while the slave does not. This corresponds to 72, 82, and 102 (Fig. 2.7) occurring

in the master but not in the slave. Later on, both executions re-align at 2161 and run in the

coupled mode. In fact, 216 and 217 are in an output loop that emits the preprocessed code.

Due to the earlier differences, the preprocessed code is different. The differences manifest

as parameter differences during executions of 216i, 217i in the master and 216 j, 217 j in

the slave. The leak is reported. Note that the causality is strong as one can infer from the

preprocessed code the value of NGX HAVE POLL.

Other tools such as LIBDFT and TAINTGRIND are not able to detect the causality as it

is induced by control dependences, Fig. 2.7 shows the relevant gcc code on the right. At

line 472, gcc reads the value of NGX HAVE POLL and stores it. Later, when the preproces-

sor reaches the “#if NGX HAVE POLL” statement inside do if(), it reads the stored value

and compares it with 0. The outcome is stored to skip at line 1329. Then, the variable is

copied to pfile->state.skipping (line 1331), which later determines if the code block

guarded by the if statement should be skipped or not. Note that although there are data de-

37

pendences 472 → 1329 and 1329 → 1331, the connection between pfile->node->value

and skip at line 1329 is control dependence, which breaks the taint propagation in LIBDFT

and TAINTGRIND.

Firefox. In this case, we detect information leak in a firefox extension ShowIP 1.2rc5

that displays the IP of current page. It sends the current url to a remote server. LDX in-

struments the event handling component and part of the JS engine in firefox to align JS

code block executions that correspond to page loading and user event handling. It success-

fully detects the leak whereas TAINTGRIND and LIBDFT fail because the leak goes through

control dependences. Details can be found in [24].

2.9 Related Work

Dual Execution. LDX is closely related to dual execution [16]. The main differences

are the following. (1) LDX is very lightweight (6.08% overhead) whereas [16] relies

on the expensive execution indexing [15], causing 3 orders of magnitude slowdown. (2)

LDX allows threads to execute concurrently whereas [16] does not. (3) The applications

are different. The low overhead of LDX makes it a plausible causality inference engine

in practice. (4) Their dual execution models are different as explained in Section 2.4.2.

TIGHTLIP [18] also uses the master-and-slave execution model to detect inforamtion leak.

It uses a window to tolerate syscall differences. The simple approach can hardly handle

nontrivial differences.

Execution Replication and Replay. Execution replication has been widely studied [25–

33]. The premise is similar to n-version programming [34], which runs different implemen-

tations of the same service specifcation in parallel. Then, voting is used to produce a com-

mon result tolerating occasional faults. There are many security applications [18,35–38] of

execution replication by detecting differences among replicas. There are also works in ex-

ecution replay [39–47]. In contrast, LDX align different paths during execution. RAIL [48]

re-runs applications with previous inputs to identify information disclosure after a vulner-

ability is fxed. To handle state divergence between the original and replay executions, it

38

requires developers to annotate the program. DORA [49] is a replay system that records

execution beforehand to replay with a modifed version of the application. Instead, LDX

runs two executions of an application with input perturbation to infer causality at real-time.

LDX focuses on aligning two executions accurately using a counter algorithm, while [49]

relies on heuristics to tolerate non-determinism.

Dynamic Taint Tracking. Most dynamic tainting techniques [6–10, 50] work by tracking

instruction execution and hence are expensive. They have diffculty handling control de-

pendences [11]. Some have limited support by detecting patterns [12] or handling special

dependences [23]. In particular, [50] identifes and handles a subset of important control

dependencies using several heuristics. LDX provides a solution to such problems by detect-

ing strong CC based on the defnition of causality instead of program dependencies. Ap-

proaches for quantifying information fow [11,51–53] aim to precisely ascertain fgures like

the number of sensitive bits of information that an attacker may infer, the number of attack

attempts required, or strategies for identifying secrets. Hardware based solutions [54–57]

have been proposed to speed up or improve accuracy of taint analysis.

Secure Multiple Execution (SME). SME [58–60] splits an execution into multiple ones

for different security levels: the low execution does the public outputs and the high execu-

tion does the confdential outputs. SME can enforce the non-interference policy. It blocks

or terminates when the two executions diverge, which is intended for non-interference. In

comparison, LDX focuses on causality inference and tolerates execution divergence.

Statistical Fault Localization (SFL). Recent approaches in SFL [61–63] use causal in-

ference methodology in order to mitigate biases such as confoundings. In particular, sus-

piciousness scores that guide to locate faults can be distorted by such biases, producing

inaccurate results. They run a program over a set of inputs repeatedly to identify the causal

effect of a statement on program failures. Such causal effect is then used to improve the per-

formance and accuracy of SFL by reducing confounding bias. Instead, LDX infers causality

by running multiple executions concurrently while tolerating execution divergence caused

by the input purturbation.

39

3 MCI : MODELING-BASED CAUSALITY INFERENCE IN AUDIT LOGGING

FOR ATTACK INVESTIGATION

In this chapter, we develop a model-based causality inference technique for audit logging

that does not require any application instrumentation or kernel modifcation. It leverages

a recent dynamic analysis, dual execution (LDX), that can infer precise causality between

system calls but unfortunately requires doubling the resource consumption such as CPU

time and memory consumption. For each application, we use LDX to acquire precise causal

models for a set of primitive operations. Each model is a sequence of system calls that

have inter-dependences, some of them caused by memory operations and hence implicit

at the system call level. These models are described by a language that supports various

complexity such as regular, context-free, and even context-sensitive. In production run, a

novel parser is deployed to parse audit logs (without any enhancement) to model instances

and hence derive causality. Our evaluation on a set of real-world programs shows that the

technique is highly effective. The generated models can recover causality with 0% false-

positives (FP) and false-negatives (FN) for most programs and only 8.3% FP and 5.2%

FN in the worst cases. The models also feature excellent composibility, meaning that the

models derived from primitive operations can be composed together to describe causality

for large and complex real world missions. Applying our technique to attack investigation

shows that the system-wide attack causal graphs are highly precise and concise, having

better quality than the state-of-the-art.

3.1 Introduction

Cyber-attacks are becoming increasingly targeted and sophisticated [64]. A special

kind of these attacks, called Advanced Persistent Threat (APT), can infltrate into target

systems in stages and reside inert for a long time to remain undetected. It is important

40

to trace back attack steps and understand how an attack unfolds [65]. In the mean time,

identifying the entry point of the attack and understanding the damage to the victim can

be critical to recovering the victim system from the intrusion and also preventing future

compromises.

Causality analysis techniques [46, 47, 66–68] are widely used in attack investigation.

They analyze audit logs generated by operating system level audit logging tools (e.g., Linux

Audit [69], Event Tracing for Windows [70], and DTrace [71]) and correlate system events,

e.g., system calls (syscalls) to identify causal relations between system subjects (e.g., pro-

cesses) and system objects (e.g., fles, network sockets). Such capability is particularly

important in cyber-attack investigation where causality of malicious events reveals attack

provenance. For example, when an attacker exploits vulnerabilities and executes malicious

payloads, causality analysis can identify such vulnerable interfaces including input chan-

nels that accept malicious inputs from the user or the network. Moreover, given a set of

malicious or suspicious events, it can identify all the events that are causally related to

the given set of events. Essentially, these events depict the source of the attack and/or the

damage induced by the attacker. However, syscall based analysis has a major limitation:

dependence explosion [4]. For a long-running process, an output event (e.g., creating a

malicious fle) is assumed to be causally related to all the preceding input events (e.g., fle

read and network receive). This conservative assumption causes signifcant false causal

relations.

Some recent works [4, 72–74] focus on collecting enhanced information at run-time

to avoid dependence explosion and enable accurate attack investigation. For instance,

BEEP [4] and ProTracer [72] train and instrument long-running applications to capture

information of fne-grained execution units in addition to syscalls. MPI [74] asks the user

to annotate important data structures in applications’ source code to enable semantic aware

execution partitioning. Additionally, Bates at el. [75] propose a general provenance-aware

framework called Linux Provenance Module (LPM) that allows users to defne custom

provenance rules. The major hindrance of these techniques in practice is their require-

41

ments of changing end-user systems, such as instrumenting user applications, installing

new runtime support, kernel modules, and even changing the kernel itself.

Taint analysis [8, 17, 76] is another approach that can track causal relations (e.g., in-

formation fow) between system components (e.g., memory objects, fles, and network

sockets). However, whole system tainting is too computationally expensive (over 3x slow

down [77, 78]) to be deployed on production systems. Additionally most taint analysis

techniques cannot handle implicit fow, resulting in false-negatives.

In this chapter, we propose MCI, a novel causality inference technique on audit logs.

Our technique does not require any changes on the end-user system, nor any special opera-

tions during system execution. The end-user only needs to turn on the audit logger shipped

with the operating system (e.g., Linux Audit, Event Tracing for Windows, and DTrace). If

the user detects a security incident, she only needs to provide the syscall log and program

binaries from the victim system (or a disk image) to a forensic expert.

In off-line attack investigation, which is often done by the forensic expert, MCI pre-

cisely infers causality from a given system call log by constructing causal models and

parsing the log with the models. Fig. 3.1 shows a high level overview of how MCI works.

MCI consists of two phases: (1) causality annotated model generation, and (2) model pars-

ing. First, MCI generates causal models by leveraging LDX [1] which is a dual-execution

based system that can infer causality by mutating input syscalls and then observing out-

put changes. In this phase, MCI takes two inputs: a program binary and typical workloads.

MCI’s model constructor automatically runs LDX and analyzes its results to construct mod-

els. Models are expressive and capable of representing fne-grained dependencies including

invisible at the syscall level (e.g., dependencies induced by memory operations). The mod-

els can be pre-generated (for widely used applications) or generated on demand after an

incident. Second, during investigation MCI identifes causal relations between events in a

given syscall log collected from a victim system by parsing the log with the models. The

derived precise dependencies are critical for attack investigation.

42

In summary, we make the following contributions:

• We propose a novel technique for precise causality inference that directly works on

audit logs without requiring any changes or setup on end-user systems. We only

require program binaries and the audit log from the victim system after the incident.

• We perform a comparative study using a real-world example to illustrate the merits

and limitations of existing approaches.

• We propose to leverage LDX [1] to identify fne-grained causality from program

execution. Using the generated causality information, we construct causal models

annotated with fne-grained dependencies. We study the model complexity needed

to describe causalities in audit logging.

• We develop a novel model parsing algorithm that can handle multiple model com-

plexity levels and substantially mitigate the ambiguity problem inherent in model-

based parsing.

• We perform thorough evaluation of MCI on a set of real-world applications. The

results show that the generated models can recover causality with close to 0% FP and

FN for most applications and the worst FP rate 8.3% and the worst FN rate 5.2%.

Model construction and model parsing have reasonable overhead and scale to week-

long and even month-long workloads. Applying MCI to attack investigation shows

that our models have very nice composibility such that small models can be com-

posed together to describe complex system-wide attack behaviors. Our attack causal

graphs are even more precise than those generated by a state-of-the-art system [4].

3.2 Background and Motivation

In this section, we use an insider information leak attack case to illustrate the limitations

of existing attack provenance analysis techniques, and then to motivate our work.

43

Program
Binary

Typical
workloads

Input Spec.

Causality
Inference Engine

Model
Constructor

Causal
Models

Segmented Parser

Context
Constraint

Checker

Audit Logs

Causality Annotated Model Generation Model Parsing

Recognized
Causality

Recognized
Models

Figure 3.1.: Overview of MCI’s off-line causality inference. Audit Logs and Program
Binaries are provided from the end-user, workloads and input specifcations are generated
by an attack investigator (e.g., a forensic expert), and other components are automatically
generated by MCI.

3.2.1 Motivating Example

We use a data exfltration of confdential company data by an employee. Insider attacks

are the dominant reason for data breach incidents in 2016 [79, 80].

Assume John is a project manager who has access to confdential data. John was

bribed by a competitor company and attempts to breach some confdential data. However,

John’s company forbids copying data to removable media such as USB stick. Furthermore,

the company inspects all incoming/outgoing network traffc via deep packet inspection

(DPI) [81–83] to prevent exfltration of confdential data and to block malicious network

traffc from outside. To bypass the packet inspection, John decides to use the GPG encryp-

tion algorithm [84] to encrypt data before sending it.

GnuPG Vim plug-in. To use GPG encryption, John installed a Vim plug-in GnuPG [85],

which enables transparent editing of gpg encrypted fles. When he opens a fle encrypted by

gpg [84] which is an encryption utility supported by most operating systems with the GNU

library (e.g., Linux, FreeBSD, and MacOS), the GnuPG plug-in automatically decrypts and

passes the decrypted data to Vim so that the user can edit the contents of the encrypted fle.

The plug-in automatically encrypts the contents when the user saves the gpg fle.

Attack Scenario. John uses Vim equipped with the GnuPG plug-in to open three confden-

tial fles, data1, data2, and data3. He also opens out.gpg in order to store confdential data

in an encrypted format. Then he copies a few lines from data2 using the Vim command

44

‘v’ to select characters and ‘y’ to copy them to the clipboard buffer (i.e., Vim’s default

register). Then he fnds out the information in data3 is more up-to-date. He thus copies

lines from data3 that overwrite the contents from data2. Later, he pastes the copied lines to

out.gpg, saves the fle in an encrypted format and terminates Vim. Note that, when he saves

out.gpg, the GnuPG plug-in actually creates a new fle (inode:8) and renames it to out.gpg

so that the original out.gpg fle (inode:4) is replaced by a new fle (inode:8). Observe that

the inode numbers of the original out.gpg fle and the new fle are different. Finally, he

sends the encrypted out.gpg to a server outside the enterprise network.

This data breach incident is later detected, and a forensic analysis team starts to inves-

tigate the incident. Now, we introduce existing causal analysis based forensic techniques

and discuss how they work on this attack.

data1 data2 data3
out.gpg

(inode:4)

vim

out.gpg
(inode:8)

/tmp/.X11-unix

gpg
(pid:1)

/tmp/tmpfile

2

(a) Linux Audit: System Call Analysis

(b) BEEP: Fine-grained Analysis

data3 out.gpg
(inode:4)

vim

out.gpg
(inode:8)

gpg
 (pid:1)

/tmp/tmpfile

(c) TaintGrind: Taint Analysis

vim

out.gpg
(inode:8)

gpg
(pid:2)

/tmp/tmpfile

(d) LDX: Causality Inference

1 3 5

4

6

11

1

24

1

2
3

4

5,89
7,10 3

gpg
(pid:2)

9

8

gpg
 (pid:2)

6

7

Figure 3.2.: Motivating example: Insider theft breaches confdential data using Vim and
GPG

.

3.2.2 Existing Approaches and Limitations

System Call based Analysis. Most causal analysis techniques use syscall logging tools

to record important system events at runtime and then analyze recorded events to identify

causal relations between system subjects (e.g., process) and system objects (e.g., fle or net-

work socket). Syscall logging tools are shipped with most operating systems. For example,

Linux Audit [69] is a default package in Linux and MacOS distributions, DTrace [71] is

available in FreeBSD, and Event Tracing for Windows (ETW) [70] comes with Windows.

55

45

Syscall based analysis has been studied in a number of works [46, 47, 66–68]. For in-

stance, BackTracker [66] and Taser [46] propose backward and forward analysis techniques

in order to analyze syscall logs and construct causal graphs for effective attack investiga-

tion. The constructed causal graphs show system subjects and objects that involved in

attacks, and their causal relations.

Fig. 3.2-(a) shows a provenance graph generated from the syscall log collected during

the data breach incident discussed in the previous section. To understand the incident in

detail, a security analyst frst identifes the out.gpg fle (inode:8) which contains confdential

data. Then the analyst fnds the system components that are causally related to the fle from

the graph in the backward direction (time-wise). Observe that it was Vim that wrote the fle

(111111). Before that, Vim read /tmp/tmpfle (101010) which was written by “gpg” (999). The “gpg”

process (pid:2) was forked by Vim (888). Before the fork, the Vim process reads /tmp/tmpfle

(777) which was written by another “gpg” process (pid:1) (666). “gpg” previously read the

original out.gpg fle with a different inode number (inode:4) (5) and the “gpg” process

(pid:1) was forked by Vim (444) as well. There are also other fles that Vim read, including

data3 (333), data2 (222), and data1 (111).

Note that Fig. 3.2-(a) contains many false dependencies such as dependencies between

the Vim process and fles data1, data2, and /tmp/.X11-unix which is a socket for XWindow.

The coarse-granularity of processes leads to this false dependency problem as it simply

considers an output event is dependent on all the preceding input events in the process.

Execution Unit based Analysis. False dependencies in syscall based analysis are a major

obstacle for attack investigation as it often causes the dependency explosion problem [4],

which is a problem of having an excessive number of dependencies, with most of them

being bogus. It makes investigation challenging, often leading to wrong conclusions. To

address the problem, BEEP [4] and ProTracer [72] propose to divide a long-running pro-

cess to autonomous execution units. In this way, an output event is only dependent on the

preceding input events within the same execution unit. BEEP and ProTracer also detect

inter-unit dependencies introduced via memory objects. ProTracer is a variant of BEEP

that can signifcantly reduce runtime and space overhead while the effectiveness of attack

46

analysis remains the same because they share the same mechanism to partition a long pro-

cess.

Unfortunately, BEEP and ProTracer require complex binary program analysis in order

to instrument a target application for execution partitioning at runtime. To detect the inter-

unit dependencies, they need to identify memory dependencies across units by analyzing

training runs, and instrument the target program to monitor the relevant memory accesses

in production runs. Note that identifying all relevant memory accesses that induce de-

pendencies across execution units in complex binary programs via training is challenging.

Missing memory accesses in training leads to false-negatives in attack investigation. They

also generate a large number of additional syscalls to denote unit boundaries and memory

accesses, increasing the storage pressure.

In addition, while BEEP can prune out some false dependencies as shown in Fig. 3.2-

(b) (e.g., between data1 and Vim) by leveraging fne-grained execution units, there are

still false dependencies such as those involving data2 and /tmp/.X11-unit. This is because,

in this example, BEEP considers each fle read/write event as a separate unit and detects

dependencies between units through memory objects. For example, BEEP considers units

that read data2 (222) and data3 (333) are causally related to a unit that writes out.gpg (111111) as

texts from data2 and data3 are copied into a buffer for copy-and-paste in Vim. However,

the cross-unit dependency between the unit with data2 (222) and another unit with out.gpg

(111111) is bogus because the contents copied from data2 are not pasted to out.gpg. The

bogus dependency is introduced because BEEP simply detects memory read and memory

write events with a same memory address without checking if there is true information

fow between the two. In short, while BEEP can narrow down the scope of investigation,

there are still unnecessary fles and events in the graph.

Taint Analysis. Taint analysis techniques [8, 17, 76] track information fow between a set

of system components (e.g., fle, memory, and network), called taint sources, to another set

of system components, called taint sinks. Given a set of input related system components to

track, taint analysis keeps track of how data from the specifed input components are con-

sumed and propagated by individual instructions that operate on the data, in order to iden-

47

tify how they impact other system components. However, most taint tracking approaches

including the state-of-the-art tools such as TaintGrind [17] and libdft [8] are expensive as

they monitor each instruction to track information fow. Furthermore, they are often not

able to track implicit fows caused by control dependencies, introducing false-negatives.

To illustrate the merits and limitation of taint analysis techniques, we use a state-of-the-

art open source tool, TaintGrind, to analyze the aforementioned incident. Fig. 3.2-(c) shows

the result from TaintGrind. In this example, TaintGrind fails to identify the dependency

between the data3 and /tmp/tmpfle. Note that the most important part of the attack (i.e.,

the leaked confdential data) is not revealed in the attack investigation due to the missing

dependency.

 int tripledes_ecb_crypt(..., const byte* from, ...) {
 ...
 work = from ^ *subkey++;
 to ^= sbox8[work & 0x3f];
 to ^= sbox6[(work>>8) & 0x3f];
 to ^= sbox4[(work>>16) & 0x3f];
 to ^= sbox2[(work>>24) & 0x3f];
 ...
 }

1
2
3
4
5
6
7
8
9

Figure 3.3.: Information fow through a table look-up in GPG

We investigate the case in depth, and fnd that GPG decrypts values through a table

lookup operation. Unfortunately, TaintGrind is not able to handle information fow through

the table lookup, resulting in missing dependencies. Fig. 3.3 shows a code snippet extracted

from GPG. Specifcally, the function argument from contains an piece of encrypted text. At

line 3, the encrypted text is used to calculate the value of work, and TaintGrind success-

fully propagates taint information to the variable. However, at lines 4-7, work is used to

look-up a table sbox2-8, and TaintGrind loses track of taint information at this point be-

cause it does not handle information fow via array indexing. Note that most taint analysis

techniques do not track information fow through array indexing to avoid the over-tainting

problem. Specifcally, the over-tainting problem often leads to an excessive number of taint

tags, resulting in false-positives. Hence, most taint analysis tools decide not to track such

48

information fow. In addition to table look-up, explicit data fows through computations

(e.g., bitwise and arithmetic) and implicit data fows caused by control dependency are of-

ten disregarded to avoid the over-tainting problem. Moreover, the signifcant overhead of

taint analysis prohibits its application in practical forensic analysis that requires always-on

monitoring to capture attacks in-the-wild.

Causality Inference. Recently, Kwon et al. propose a light-weight causality inference

technique LDX [1] using a dynamic analysis called dual execution. For a given original ex-

ecution, LDX derives a slave execution in which it mutates values of input source(s). It then

compares the corresponding outputs from the original execution and the slave execution to

determine whether the outputs are causally dependent on the source(s). Specifcally, if the

two executions have different values for an output, LDX considers that the output is causally

dependent on the mutated input source(s). To address execution path divergence caused by

input perturbation, LDX leverages its novel on-the-fy execution alignment scheme. Unlike

dynamic taint analysis techniques (e.g., TaintGrind [17] and libdft [8]), LDX can detect

explicit and implicit information fow and has much lower runtime overhead (about 6%).

Fig. 3.2-(d) shows the graph generated by LDX. Note that it contains only the objects

and events related to the attack, without any false dependences. While LDX produces

concise and accurate graphs, it requires the dual-execution framework available on the

end-user system which doubles the consumption of computational resources (e.g., CPU

and memory).

Table 3.1.: Comparison of Causality Analysis Approaches

Syscall Analysis
[46, 66, 67]

Fine-grained Analysis Taint Analysis
[8, 17, 76]

Causality
Inference: LDX [1]

MCI
BEEP [4]/ProTracer [72] MPI [74] WinLog [73]

Space overhead Low Mid Low Low High Low Low
Runtime overhead Low Low Low Low High Low Low
Resource overhead Low Low Low Low High Mid Low
False-positive High Mid Low Mid Low Low Low
False-negative Low Low Low Low Low-Mid Low Low
Granularity Coarse Mid Fine Mid Fine Fine Fine
End-user requirements None Training/instrumentation Code annotation None Tainting framework Dual-execution framework None

49

3.2.3 Goals and Our Approach

Table 3.1 presents merits and limitations of existing causality analysis approaches. In

summary, syscall analysis techniques suffer from high false-positive rates due to depen-

dence explosion. While BEEP and ProTracer mitigate the dependence explosion problem,

they require complex static, dynamic binary analysis and instrumentation and incur non-

trivial space overhead. MPI is effcient and effective, but requires access to source code

and domain knowledge for annotation. Taint analysis techniques generally incur signif-

cant runtime and space overhead and suffer from the over-/under-tainting problems. LDX

requires the dual-execution framework in production run that doubles computational re-

source consumption.

Our Goal. The goal of this chapter is to provide a causality analysis technique with the

same accuracy as LDX, but does not require any changes of end-user systems, such as in-

strumenting user applications, modifying the kernel or installing special runtime. Specif-

cally, the end-user only needs to turn on the default audit logging tool that comes with their

system, such as Linux Audit, Event Tracing for Windows, and DTrace to collect syscall

logs. Upon a security incident, MCI can generate precise causal graphs from the raw log

to explain attack causality and assess system damages. We believe such a design would

substantially improve applicability.

Our Approach. As shown in Fig. 3.1, the key idea of MCI is to use causal models to

parse raw logs to derive precise causality information. Specifcally, in the offine phase,

we use LDX [1] as the causality inference engine to construct models for the applications

that will be deployed on an end-user system. A causal model is essentially a sequence

of inter-dependent syscalls and their causal relations. Such causalities/dependencies can

be induced by system objects, called explicit dependencies, as they can be determined by

analyzing syscalls alone, or induced by memory operations and control dependences, called

implicit dependences, which are not visible by analyzing syscall events. Note that LDX can

detect both explicit and implicit dependencies.

50

During deployment, given a syscall log collected from the incident, MCI can precisely

infer causality between events in the log by parsing the log using the pre-generated models.

3.2.4 MCI on Motivating Example

We demonstrate the effectiveness of MCI on investigating the incident. Assume the

causal models of applications have been derived offine. Note that generating models does

not require any particular expert knowledge on target programs, but rather the typical user

level workloads. Model generation is a one-time effort such that models generated for a

program can be used for all installations of the program.

Fig. 3.4-(a), (b), (c), (d), and (e) show the graphical representations of some models

from Vim. A node is denoted by a letter which represents a syscall, with a superscript (∗)

representing a sequence of syscalls. A subscript represents the (symbolic) system object

(e.g., fle or socket) operated by the syscall. For example, model (a) is for the behavior

of opening and decrypting a gpg fle. Specifcally, as shown in the legend in Fig. 3.4, the

frst node of (a) rα indicates a read syscall on α which is stdin. Note that each model

has its own legend for the subscript. The frst node is a syscall that causes the entire

behavior. Intuitively, the model represents reading from a command line that loads a gpg

fle. The second node, sβ , represents a stat syscall on a fle β (output fle). The GnuPG

plug-in uses a temporary fle to store decrypted contents and then informs Vim to open.

Subscript β symbolizes the temporary fle which contains decrypted contents. The second

node essentially checks whether the fle exists. After that it loads a key fle to prepare
∗decryption which is represented as a third node (rγ). Then, it checks (stat) the output fle

again (s ∗
β). Finally, the ffth node (r

δ
∗) represents reading a gpg fle which is an encrypted

fle. The sixth node (wβ) indicates that the decrypted contents are written onto the output

fle (β). Then, the GnuPG plug-in sends a notifcation to Vim via a pipe which is shown in

the last node (wε). Note that symbols in subscript (e.g. α , β) can be instantiated to any

concrete fle handler during parsing. The same subscript β in sβ and the later nodes s ∗
β

and wβ dictate that these syscalls must operate on the same fle. The third and ffth nodes

51

are denoted by a superscript ∗ , representing a sequence of read system calls (read∗) on

different fles γ and δ .

The directed edges between nodes represent the causality/dependency between syscalls,

with the solid and dotted edges representing the explicit and implicit dependencies, respec-

tively. For example, in (a), there are explicit dependences from sβ to wβ and implicit

dependencies from rγ
∗ and r

δ
∗ . The implicit dependencies are caused by memory operations

that copy values from a crypto key fle (γ) to encrypted contents δ that are detected and

modeled by MCI.

Fig. 3.4-(f) illustrates a syscall log collected during the incident by the default Linux

Audit tool [69]. Given the syscall log and the models, MCI automatically parses the log and

hence derives the corresponding dependencies. Each box in (f) denotes a model instance

with the letter annotated on the box representing the model id. Note that we use different

background colors for boxes to represent nodes belong to different models. We omit the

dependences in the model instances for readability. For readability, we use superscripts to

denote event timestamps.

The model instances essentially tell us that the user frst opened a gpg fle (i.e., out.gpg)

by model (a), opened and copied a fle (i.e., data2) without pasting by model (b), and

opened, copied, and pasted another fle (i.e., data3) by model (c). Observe that there are

events that belong to multiple models, which allow us to determine causality across models

and hence compose the whole attack path. For instance, event s11 belongs to both models 5

(c) and (d) (i.e., the node in the two boxes in blue and green), suggesting that the contents

from data3 are copied to the previous gpg fle. The subscript 5 corresponds to fle viminfo

that is used to indicates the state of editing. Note that model (c) does not have explicit de-

pendencies with other models. Hence, without model (d), causality between model (c) and

other models is diffcult to reveal. After a few editing operations by model (d), the user

fnally saved the contents to a new gpg fle by model (e). The event s11 belonging to mod-5

els (c) and (d) indicates that the new gpg fle contains information from data3 (confdential

data). Note that the matched instance of model (b) does not have any overlapping nodes

with other model instances nor explicit dependencies, and hence no causal relations with

52

others. This indicates that data2 is not involved in the incident. The fnal causal graph is

shown Fig. 3.2-(d), which is accurate and concise, without any missing or bogus depen-

dencies.

... w5 ... s5 ... s6 w6 ... r0 ... r1 w7 ...

(f) System call trace

(b) Mb: Open à Copy

sβ sγ uδ rγ wε

(a) Ma: Open a gpg file

sβ rγ sβ rδ wβ wε

(c) Mc: Open à Copy à Paste

(e) Me: Save a gpg file

sβ rγ sβ rδ wβ sε

sβ sγ wδ rγ wε sζ sε

s3 r0 s4 ...

(d) Md: Edit

sγ wγ sδ

s1 ... r2 w1 ... r0

*

Ma Mb Mc Me

* * * ** *

* * * *

rα rα

rαsβ

rα

r0 r0

α: stdin, β: output (temp) file,
γ: key file, δ: gpg file, ε: pipe to Vim

α: stdin, β: opened file, γ: swap file,
δ: temp swap file, ε: viminfo file

α: stdin, β: opened file, γ: swap file,
δ: temp swap file, ε: viminfo file, ζ: config file

α: stdin, β: viminfo file,
γ: swap file, δ: current file

α: stdin, β: output (encrypted) file,
γ: key file, δ: input file, ε: pipe to Vim

sσ: stat(σ), wσ: write(σ), rσ: read(σ),
uσ: unlink(σ), rσ: read(σ)*, sσ: stat(σ)*

Legend

* *

0: stdin, 1: temp file (containing decrypted contents), 2: org. gpg file (gpg.out), 3: data2 file, 4: data3 file, 5: viminfo file, 6: swap file for the temp (1), 7: new gpg file

...

rα

s1

Md
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MeMdMcMa Mb

Model boundaries

Figure 3.4.: MCI on the motivating example

3.3 Problem Defnition

In this section, we introduce a number of formal defnitions and the problem statement

for MCI.

3.3.1 Defnitions

Causal Model. Fig. 3.5 shows defnitions for a causal model. Specifcally, SysName rep-

resents syscall names such as open and read. Repetition indicates how many times a term or

node repeats. It could be a constant number, a variable such as n or m, or ∗ representing any

number of repetition. Variables are needed to to denote repetition constraints across syscall

events. ResourceSymbol represents a symbol for a resource handler that a system call oper-

ates on (e.g., fle handler). A Term is a sequence of Nodes that could be annotated with the

number of repetitions. A node N is a syscall annotated with a set of parameters denoted by

SymbolicResource. A symbolic resource can be instantiated to different concrete resources

53

during parsing. Two nodes with the same symbolic resource indicates that they have ex-

plicit dependency. An Edge denotes dependency/causality between two nodes Nfrom and

Nto. Finally, a causal model is defned as a 3-tuple < T, P(E)implicit, P(E)explicit > where T

is a sequence of terms, P(E)implicit is the set of implicit dependency edges and P(E)explicit

is the set of explicit dependency edges. The defnitions of two kinds of edges can be found

in Sec. 3.2.

SyscallName SysName ::= open | read | write | ...
Repetition R ::= 1 | 2 | 3 | ... | n | m | ∗
SymbolicResource S ::= {α, β , γ, ...}

Term T ::= N | NT | (T)R

Node N ::= SysNameP(S)
Edge E ::= < Nfrom, Nto >
Model M ::= < T, P(E)implicit, P(E)explicit >

Figure 3.5.: Defnition of causal model

For example, the model in Fig. 3.4 (a) can be represented as follows. First, T can be rep-

resented by a sequence: readα ,statβ ,read∗ γ ,stat∗
β ,read

δ
∗ ,writeβ ,writeε . Implicit dependen-

cies (dotted edges below nodes) are denoted as follows: {hread∗ γ ,read∗
δ i, hread

δ
∗ ,writeβ i,

hread∗
δ ,writeε i}. Explicit dependencies (solid edges above nodes) are the following: {

hstatβ ,stat∗
β i, hstatβ ,writeβ i }. Observe the nodes in an explicit edge have the same re-

source symbol, indicating that they operate on the same resource. In this chapter, we will

use the more concise graphical representations when possible.

Syscall Trace. As shown in Fig. 3.6, a system call trace T is a sequence of trace entries

TE where a trace entry is a system call name annotated with a set of ConcreteResource that

represents concrete resource handlers, and a number N that represent an index of TE in T .

Note that it does not contain any dependency information. The frst 6 entries in Fig. 3.4 (f)

are represented as TE = (read1
0,stat1

2 , ...,read3
2,write1

4 , ...). Note that the subscripts repre-

sent concrete resource handlers and the superscripts represents indexes.

54

ConcreteResource C ::= N
TraceEntry TE ::= SysNameN

P(C)

SyscallTrace T ::= TE

Figure 3.6.: Defnition of syscall trace

3.3.2 Problem Statement

We aim to infer fne-grained causality from a syscall trace by parsing it with models.

This procedure can be formally defned as a function of T and P(M):

T × P(M) 7→ (TE 7→ P(N × M))

Specifcally, given a syscall trace T and a set of models P(M), the function generates

a mapping, in which a trace entry is mapped to a set of nodes N in model M. It is a set

because a trace entry can be present in multiple models as shown in the motivation example

in Sec. 3.2. With the mapping, the dependencies between trace entries can be derived from

the dependencies between the matched nodes in the models. For example, parsing the

trace in Fig. 3.4 (f) using the models in (a)-(d) generates the following mapping. The

frst 4 events are mapped to model (a): (read1
0 7→< readα ,Ma >),(stat21 7→< statβ ,Ma >

),(read3
2 7→< read

δ
∗ ,Ma >),(write4

1 7→< writeβ ,Ma >). Moreover, stat11 belongs to two 5

models, resulting in two mappings: (stat11 7→< statε ,Mc >),(stat11 7→< statβ ,Md >). It5 5

entails the following concrete dependency edges < read3
2,write4

1 > (from model edge <

read∗
δ ,writeβ > in (a)) and < stat5

12 ,stat14 > (from model edge < statβ ,stat
δ
∗ > in (d)). 1

The frst edge indicates implicit dependency between the original gpg fle (out.gpg) and a

temp fle containing its decrypted contents, and the second edge implies that the copy and

paste action is related to the temp fle containing the decrypted contents of the original gpg

fle (out.gpg). Such dependency edges lead to a causal graph as that in Fig. 3.2-(d).

The mapping may not be total, depending on the comprehensiveness of the models. An

important feature of MCI is model composibility, meaning that a complex behavior can be

composed by multiple models sharing some common nodes. For instance, a complex user

behavior in Vim such as “open fle, edit, copy, edit, paste, save, reopen” can be decomposed

55

to multiple primitive models. As such, the number of models needed for regular workload

is limited as shown in Sec. 4.6.

The key challenge of MCI lies in parsing the trace that does not contain any dependen-

cies with models that contain dependency information, which entails solving two prominent

technical problems discussed next.

3.3.3 Technical Challenges: Complexity and Ambiguity

Language Complexity

According to our defnition, a trace is a string in the trace language that does not contain

dependency information, our problem is essentially to parse the string to various model in-

stances. In the following, we use the classic language theory to understand the complexity

of our problem. Note that although it seems that we could consider models as graphs and

leverage the sub-graph isomorphism theory to understand our problem, there are places that

can hardly be formulated in the graph theory. For instance, our trace is not a graph because

it does not have implicit dependency information. Furthermore, our model may have con-

straints among the numbers of event repetitions (e.g., the number of close matches with

the number of open while the number of repetitions may vary). Such constraints can hardly

be represented in graphs.

The classical Chomsky hierarchy [86, 87] defnes four classes of languages character-

ized by the expressive power of their defning grammars: regular, context-free, context-

sensitive, and recursively enumerable. More expressive grammar can describe more com-

plex language but requires higher cost in parsing. We study some of representative causal

model types observed in real-world programs. For each type, we show a sample gram-

mar and discuss the complexity of the grammar as well as scalability of the corresponding

parser.

Regular Model. Fig. 3.7 shows a model from ping [88], representing a behavior “resolv-

ing a network address, sending a packet, and receiving a response.”

56

g∅ soβ swβ slβ srβ

gσ: gethostbyname(σ)
soσ: socket(σ), slσ: select(σ),
swσ: sendto(σ), srσ: read(σ),
α: stdin, β: network socket,

∅: empty set

LegendExplicit

Implicit

rα

Figure 3.7.: Regular model from ping [88]

Observe that the explicit dependencies (solid edges) are caused by the socket (β). The

implicit dependencies (dotted edges) are introduced because gethostbyname() decides

whether to execute socket() and sendto() meaning that they have control dependences.

In particular, if gethostbyname() returns an error, the program immediately terminates.

Also, sendto() is dependent on the return value of gethostname() (e.g., IP address) as

the ping program composes and sends Internet Control Message Protocol (ICMP) packets

that contain the returned IP address. Such dependencies are not visible at the syscall level.

Note that in any model, the frst node, which is always an input syscall, has dependencies

leading to all other nodes. Recall that a model is acquired from LDX that mutates an input

syscall and observes changes at output syscalls (e.g., the frst node in Fig. 3.7 is a syscall

that reads an option from the command line that leads to all the other syscalls in the model).

The model in Fig. 3.7 can be simplifed by a regular grammar (e.g., regular expression)

which is the simplest one in Chomsky hierarchy. A regular language parser has very good

scalability. From our experience, most models (53 out of 56 models in our evaluation) fall

into this type.

oβ rβ cβ wn oδ rδ cδ wn
oσ: open(σ), rσ: read(σ),

wσ: write(σ), cσ: close(σ),
α: stdin, β: /proc/mounts,

γ: stdout, δ: /proc/*

Legend
m

n

Explicit Dep.

Implicit Dep.

rα γ γ

Figure 3.8.: Context-free model from procps [89]

Context-free Model. There are cases that the models need to be context-free. Fig. 3.8

shows such a model extracted from procps [89]. The model represents “retrieving fle

57

system information.” It frst reads a fle that contains information about the list of fle

systems. It then uses an outer loop to emit the information for individual fle systems. For

each fle system, an inner loop is used to collect information about the fle system from

multiple places (e.g., different disks).

As shown in Fig. 3.8, three symbols from the 2nd to the 4th (oβ , rβ , cβ) have explicit

dependencies due to the fle containing the list of fle systems (β). The 5th symbol wn
γ is to

emit the header information for each fle system, causing the implicit dependency between

the 3rd symbol rβ and the 5th . The superscript n denotes that there are n fle systems. The

6th , 7th , and 8th symbols (oδ , rδ and cδ) form a term, corresponding to the inner loop that

reads m places to collect information for the n fle systems. Note that m may not equal

to n as multiple fles may be accessed in order to collect information for a fle system.

After that, the 9th symbol wn
γ emits the collected information for the n fle systems. Note

that the number of writes in the 5th and the 9th symbols need to be identical (n times).

The constraints on the numbers render the model cannot be transformed to an automaton

that handles a regular language. It is essentially context-free. The parser for a context-

free language requires some push-down mechanism, incurring higher complexity. We have

encountered 2 context-free models in our evaluation.

rα srβ
n

swγ
m cβ

n cγ
m

rσ: read(σ), srσ: recv(σ),
swσ: write(σ), cσ: close(σ),

α: socket for comm.,
β: socket for read,
γ: socket for write

Legend

n
m

Figure 3.9.: Context-sensitive model from raft [90]

Context-sensitive Model. In some rare cases, even context-free models are not suff-

ciently expressive. Fig. 3.9 shows a model from [91] which is a distributed voting applica-

tion that implements the Raft consensus protocol [90]. The program can exchange network

messages between different number of users to get a consensus. The model describes a

58

voting procedure. Specifcally, it receives network messages from n users (n iterations

of read()), and sends network messages to m users (m iterations of write()). Later, it

closes the sockets for n users and then m users. The crossing-constraints between m and n

n(r2 , cn) and (wm , cm) require a context-sensitive language. However, a parser for a context-

sensitive language is prohibitively expensive in general (PSPACE complexity [92]). We

have not encountered any models more complex than context-sensitive languages. The var-

ious language complexities pose a prominent challenge: since syscall events belonging to

multiple models interleave and are often distant from each other, we cannot know which

model an event belongs to until reaching the end of the model. As such, we do not know

which complexity class shall be used to parse individual events. As we will show later,

we develop a uniform parsing algorithm for multiple complexity classes that leverages the

special characteristics of causal models.

Ambiguity

The strings (of syscalls) parsed by multiple models may share common parts (e.g.,

common prefxes). In the worst case, multiple models may accept the same string, although

we have not encountered such cases for models within the same application. As a result

during trace parsing, given a syscall, there may be multiple models that it can be attributed

to and MCI does not know which model(s) are the right ones. We call it the ambiguity

problem.

rα wβ

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(a) Trace

(c) Model
(d) Possible Matchings

M1: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M2: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M3: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M4: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M5: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

...

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(b) Ground-truth

rσ: read(σ),
wσ: write(σ)

Legend

Explicit Dep.

Figure 3.10.: Ambiguity problem

59

For instance, consider a trace, the ground-truth causality of the trace, and a model

shown in Fig. 3.10-(a), (b), and (c), respectively. Observe that the model has a socket read

followed by a fle write. The two have implicit dependency but not explicit dependency

visible at the syscall level. The three boxes in Fig. 3.10-(b) denote the three real model

instances.

When the model is used to parse the trace, due to the lack of dependencies between

the two syscalls in the model, there are many possible matchings as shown in Fig. 3.10-

(d). Note that except M1, the other matchings are incorrect even though they all appear

possible at the syscall level. In practice, such incorrect matchings introduce false causalities

which hinder attack investigation. Moreover, ambiguity may cause excessive performance

overhead because MCI has to maintain numerous model instances at runtime. The root

cause of the problem is that the trace does not have suffcient information. Hence, we

develop a method that leverages explicit dependences to mitigate the problem. Details can

be found in Sec. 3.4.2.

3.4 System Design

MCI consists of two phases: model construction and model parsing. The former is

offine and the latter is meant to be deployed for production run.

3.4.1 Model Construction

Given an application, the forensic analyst provides a set of regular workloads. The

application is executed on the LDX system with the workloads. The dependences detected

by LDX, including explicit and implicit dependences, are annotated on the syscall events

in the audit logs. The annotated logs are analyzed to extract inter-dependent subsequences,

which are further symbolized (i.e., replacing concrete resource handlers with symbolic

ones). The sequences of symbolic syscalls with dependences constitute our causal models.

In the following, we use a program snippet in Fig. 3.11 to illustrate how MCI constructs

causal models. It frst reads a network message (line 1) and encrypts the received message

60

(line 2). Later, it stores the encrypted message to a local fle (line 3) and sends a notifcation

to a GUI component (line 5).

 while((len = read(socket, buf, 1024)) != -1) {
 ebuf = encrypt(buf);
 write(file, ebuf, 4096);
 }
 sendmsg(wnd, “Update: ” + ebuf ...);

1
2
3
4
5

Figure 3.11.: Example program

Dependencies Identifcation by LDX

The program is executed with a typical workload on LDX [1] to collect a system call

log T . To identify dependencies, LDX mutates the value of input syscall read() in the

slave execution. By contrasting the values of the following syscalls (e.g., the write() and

sendmsg()) in the two executions, LDX identifes all the dependencies between syscalls.

1
2
3
4
5
6

Figure 3.12.: Causally dependent system calls from LDX

Fig. 3.12 shows the output generated by LDX. It includes two read()s (lines 3 and

5), one write() (line 4) and one sendmsg() (line 6) which are causally dependent on the

source (i.e., read() at line 2). More specifcally, the write() at line 4 and sendmsg() at

line 6 are (implicitly) dependent on the source by variables buf and ebuf, and the read()s

at lines 2 and 4 are explicitly dependent on the source due to the socket handler 0x11.

61

The generated sequence of syscalls includes all the syscalls causally dependent on the

source (line 3). We hence leverage them as a sample of the model. Note that LDX also

returns dependences between syscalls inside the sequence such as the dependence between

lines 3 and 4.

Symbolization

The collected sequence of syscalls cannot be directly used as a model due to the con-

crete arguments. For instance, in Fig. 3.12, syscalls have concrete values (e.g., handlers

0x11 and 0x12) which may differ across executions. Hence, we symbolize concretes val-

ues in syscalls by replacing with symbols (e.g., α and β). For instance, if two syscalls

share the same argument, they are assigned the same symbol.

If the application supports repeated workload, there must be repetitions in the syscalls

that need to be modeled (such as n and m in Fig. 3.5). To do so, MCI duplicates the

workload a few times and feeds the new workloads to LDX again. Subsequences that have

a constant number of repetitions across workloads are annotated with the constant. Those

that have varying numbers of repetitions across workloads are annotated with ‘*’. If there

are correlations between the repetition numbers of multiple subsequences (inside the same

model), variables n/m are used to model the number of repetition, such as the previous

example Fig. 3.8 in Sec. 3.3.3.

SUCCESS = read(fd1 /* file handle*/, *, *);
SUCCESS = write(fd2 /* file handle*/, *, *);
FAILURE = read(fd1 /* file handle*/, *, *);
SUCCESS = sendmsg(*, *, *);

1
2
3
4

Figure 3.13.: Symbolized system calls

Fig. 3.13 shows a symbolized log. For example, 0x11 in read() in Fig. 3.12 is replaced

by a new symbol fd1 and 0x12 in write() in Fig. 3.12 is generalized to another symbol

fd2. 0x11 in the second read() is replaced by the previously assigned symbol fd1 as it

62

already appeared before. Moreover, as shown in Fig. 3.13, all concrete return values are

symbolized as either SUCCESS or FAILURE. They are part of the models in our system

although our formal defnitions did not describe them for brevity. The constructed model

is shown in Fig. 3.14. The formal model construction algorithm is elided due to the space

limitations.

rα wβ rα sγ

Implicit Dep.

Explicit Dep. * rσ: read(σ), wσ: write(σ),
sσ: sendmsg(σ),
α: socket(fd1),

β: file (fd2), γ: window

Legend

Figure 3.14.: Constructed model from the example

3.4.2 Trace Parsing with Models

In this section, we describe how MCI parses an audit log with models. As we described

in Sec. 3.3.3, if we simply consider an audit log as a string of the trace language, we need

to consider three language classes in the Chomsky hierarchy, namely, regular, context-free,

and context-sensitive languages. Recursively enumerable languages are never encountered

in our experience. A more expressive language requires more expensive parser. For in-

stance, context-free language can describe almost all causal models we have encountered

but context free parsers have a time complexity of n3 where n is the length of a string

(the number of events in audit log in our case), thus they are too expensive to handle real-

world logs that can grow in the pace of gigabytes per day [93] (corresponding to millions

of events). Context-sensitive parsers have even higher computational complexity. Further-

more, our parser needs to be able to substantially mitigate the ambiguity problem in which

MCI does not know which models an event should be attributed to.

Segmented Parsing. Our proposal is not to consider a trace as a simple string, but rather a

sequence of symbols with explicit inter-dependences. Note that explicit dependences can be

63

directly derived from the trace. The basic idea is hence to leverage explicit dependences to

partition the sequence of terms/nodes in a model into segments, delimited by terms/nodes

that are involved in some explicit dependences. Therefore, all the terms/nodes inside each

segment are a string in some regular language. The essence is to leverage explicit depen-

dences to reduce language complexity. During parsing, we frst recognize (from the trace)

the explicit dependences that match those of the model. These dependences partition the

trace into sub-traces. Then automata are used to recognize model segment instances from

the sub-traces. Since string parsing is only carried out within small sub-traces instead of

the lengthy whole trace, ambiguity can be substantially suppressed. We call the technique

segmented parsing.

rα sβ rγ sδ wε wα rζ oδ

rσ: read(σ), sσ: stat(σ), wσ: write(σ), oσ: open(σ), α, β, γ, δ, ε, ζ: different files
Legend

Figure 3.15.: Example for segmented parsing

Next, we use an example to illustrate the basic idea and then explain the algorithm.

Fig. 3.15 shows a sample model. Observe that there are explicit dependences between the

1st and the 6th nodes (rα and wα), and between the 4th and the 8th nodes (sδ

The sequence of terms/nodes involved in explicit dependences form the model skeleton.

In our example, it is rα - The skeleton partitions the model into sub-models.

A sub-model is a sub-sequence of nodes/terms of the model that are delimited by explicit

dependences but themselves do not have any explicit dependences. In Fig. 3.15, three sub-

models are obtained as follows: - rγsβ delimited by rα and sδ , wε delimited by sδ and

delimited by wα and oδ .

and oδ).

wα , and rζ

During parsing, we frst fnd instances of the model skeleton. For each skeleton in-

stance, we try to identify instances of sub-models within the trace ranges determined by

sδ -wα - oδ .

64

the skeleton instance. Any mismatch in any sub-model indicates this is not a correct model

instance and the corresponding data structures are discarded. In our example, we frst locate

in the trace, and then look for the instances of the possible positions of rα , sδ , wα , oδ

rγ- in between the positions of rα and sδ , and so on. Partitioning a model to a skele-

ton and a set of sub-models is straightforward. Details are hence elided. Given a trace, to

facilitate segmented parsing, we extract a number of trace indexes, each containing all the

nodes related to the same system object (e.g., a fle) and the position of the nodes in the

raw trace. These indexes allow our parser to quickly locate skeleton instances in the trace.

Fig. 3.16 shows an example of index extraction from a trace. Observe that all the nodes in

an index have explicit dependences.

sβ

oα rβ wα rβ rα wβ cα

(a) Trace Annotated with Explicit Dependencies

oα wα rα cα rβ rβ wβ

(b) Indexes for each resource

Index 1 Index 2

oσ: open(σ), rσ: read(σ), wσ: write(σ), cσ: close(σ),
α: File 1, β: File 2

Legend

Figure 3.16.: Trace preprocessing

Algorithms. The parsing procedure consists of three major steps. The frst one is to pre-

process trace to extract indexes, which has been intuitively explained before. The second

step is to locate skeleton instances in the trace and the third is to parse sub-models. In the

following, we explain the algorithmic details of steps two and three.

The algorithm of locating skeleton instances is shown in Alg. 4. It takes the trace T , the

indexes I that can be accessed by the concrete resource id (e.g., fle handler), and a model

skeleton S, and identifes all the possible instances of the skeleton. The result is stored in

P. Each instance is a pair hmap,seqi with map projecting each symbolic resource (e.g., α

65

Algorithm 4 Locating Skeletons
Input: trace T , indexes I, model skeleton S
Output: a set of skeleton instances P, each consisting of a mapping that maps a symbolic resource to a concrete one, and a sequence
of positions

1: procedure LOCATESKELETON(T , I, S)
2: for all node Nα ∈ S do
3: if P ≡ {} then
4: P ← {h{α → h}, ii | for all T [i] = Nh}
5: else
6: for all hmap,seqi ∈ P do
7: Let the last position in seq be i
8: if map[α] =6 nil then
9: pos ← fndbeyond(N,i,I[map[α]])
10: if pos =6 −1 then
11: seq ← seq · pos
12: else
13: P.remove(hmap,seqi)
14: end if
15: else // scan all indexes to fnd Nh syscalls that are beyond i
16: ... // and instantiate α to h.
17: end if
18: end for
19: end if
20: end for
21: return P
22: end procedure

Algorithm 5 Model Parsing
Input: trace T , skeleton instances P, sub-models S
Output: the concrete syscall entries that correspond to the sub-models in the temporal order

1: procedure PARSESUBMODELS(T , P, S)
2: for all hmap,seqi ∈ P do
3: for i from 0 to |S|− 1 do
4: instance[i] ← parse(T [seq[i], seq[i + 1]], S[i])
5: end for
6: if all instance[0 − (|S|− 1)] are not nil then
7: if none of the concrete syscalls in instance[0(−|S|− 1)] share the same resource id then
8: output instance[0 − (|S|− 1)]
9: end if
10: end if
11: end for
12: end procedure

66

and β) in the skeleton to some concrete handler and seq storing the trace positions of the

individual nodes in the skeleton. To simplify our discussion, we assume the skeleton does

not have repetitive nodes or terms. The algorithm can be easily extended to handle such

cases.

The main procedure iterates over each node Nα in the skeleton (line 2) with N the

syscall and α the symbolic resource. For the frst node (indicated by an empty result set

P), the algorithm considers each syscall of the same type N, in the form of Nh at location i

in the trace, may start an instance of the skeleton, and hence instantiates α to the concrete

handler h and records its position i (lines 3 and 4). If Nα is not the frst node, the algorithm

iterates over all the skeleton candidates in P in the inner loop (lines 6-18) to check if it can

fnd a matching of the node for these candidates. If not, the skeleton candidate is invalid

and hence discarded. Specifcally, for each skeleton candidate denoted as hmap,seqi, line

7 identifes the trace position of latest node i. This is needed as the algorithm looks for

the match of Nα in trace entries beyond position i. The condition at line 8 separates the

processing to two cases with the true branch denoting the case that α has been instantiated

before, that is, a node of the same symbolic resource was matched before (e.g., wα in

Fig. 3.15), the else branch otherwise (e.g., sδ in Fig. 3.15). In the frst case (lines 9-11), the

algorithm looks up the index of the concrete handler associated with α , i.e., I[map[α]], to

fnd a concrete syscall N beyond position i (line 9). If such a syscall is found, we consider

the algorithm has found a match and the new position pos is appended to seq (line 11).

Otherwise, the skeleton candidate is not valid and removed (line 13). Here, we have another

simplifcation for ease of explanation. Line 9 may return multiple positions in practice

while in the algorithm we assume it only returns one. The extension is straightforward.

In the else branch, the node has a new symbolic resource, the algorithm has to go

through all indexes to fnd all instances of N and instantiate the symbolic resource accord-

ingly. This may lead to the expansion of the candidate set P. Details are elided. To reduce

search space, we use time window and other syscall arguments to limit scopes.

Given a set of skeleton instances for a model M, Alg. 5 parses the sub-models of M.

In particular, the outer loop (lines 2-11) iterates over all the skeleton candidates identifed

67

in the previous step. If matches can be found for all sub-models regarding a skeleton

instance, the matches are emitted. Otherwise, it is not a legitimate instance and discarded.

Specifcally, the inner loop in lines 3 and 4 iterates over individual sub-models in order.

In the ith iteration, it uses automata to parse sub-model S[i] in the trace range identifed

by the ith segment identifed by the skeleton candidate, which is from seq[i] to seq[i + 1]

(line 4). Automata based parsing is standard and elided. After such parsing, line 6 checks

if we have found matches for all sub-models. If so, line 7 further checks that none of the

concrete syscall entries that are matched with some node in a sub-model do not share the

same resource (and hence have explicit dependences). This is because the model specifes

that there are not explicit dependences between the corresponding nodes. Line 8 outputs

the parsing results.

Handling Threaded Programs. Threading does not pose additional challenges to MCI

in most cases because syscalls from different threads have different process ids so that

models can be constructed independently for separate threads. Explicit dependences across

threads can be easily captured by analyzing audit logs. Some programs such as Apache and

Firefox use in-memory data structures (e.g., work queues) to communicate across threads,

causing implicit dependences. However, it is highly complex to model and parse behaviors

across threads due to non-deterministic thread interleavings. We observe that these data

structures are usually protected by synchronizations, which are visible at the syscall level,

and the synchronizations should follow the nature of the data structures, such as frst-in-

frst-out for queues. Hence, MCI constructs models for individual threads including the

dispatching thread and worker threads. The models include the synchronization behaviors.

It then leverages the FIFO pattern to match nodes across threads. It works nicely for most

of the programs we consider except transmission, whose synchronization is not visible

at the system level (Sec. 4.6).

68

3.5 Evaluation

In this section, we evaluate MCI with a set of real-world programs in order to answer

the following research questions.

RQ 1. How many models are required to infer causality for these programs in production

runs (Sec. 3.5.1), and how much efforts are required to construct models? (Sec. 3.5.1)

RQ 2. How effective is MCI for system wide causality inference including multiple long-

running programs and various activities? (Sec. 3.5.2)

RQ 3. How effective is MCI for realistic attack investigation? (Sec. 3.5.3)

RQ 4. Is MCI scalable on large workloads for long-running programs? (Sec. 3.5.3)

Table 3.2.: Details on Model Construction

Program Model Description Size1 2Dexp
3Dimp Lang.4

Firefox

Tab Open/Switch/Close 7/9/5 2/2/1 3/4/3 Reg.

Load a URI 12 2 4 Reg.

Download (Save) 15 3 5 Reg.

Click a link 9 2 3 Reg.

Apache
HTTP(S) resp. 17 (21)5 3 (4)5 8 (11)5 Reg.

CGI resp. 26 (33)5 4 (5)5 11 (14)5 Reg.

Lighttpd
HTTP(S) resp. 8 (11)5 2 (3)5 4 (6)5 Reg.

CGI resp. 16 (19)5 3 (4)5 7 (9)5 Reg.

nginx
HTTP(S) resp. 14 (17)5 3 (4)5 6 (9)5 Reg.

CGI resp. 21 (24)5 4 (5)5 8 (11)5 Reg.

Continued on next page

69

Table 3.2: Details on Model Construction (cont.)

Program

CUPS

Model Description

Add printers

Size1

6

2Dexp

1

3Dimp

3

Lang.4

Reg.

Remove printers 5 1 3 Reg.

Modify printers 6 1 3 Reg.

Print a doc. 7 2 4 Reg.

vim

Open 8 1 5 Reg.

Edit 10 1 4 Reg.

Save 13 2 4 Reg.

Save As

Copy and Paste

15

14

3

3

6

6

Reg.

Reg.

Copy 11 1 5 Reg.

Plug-in (gpg) 21 2 6 Reg.

elinks

Browse 11 3 6 Reg.

Save 6 2 5 Reg.

Upload 7 2 5 Reg.

alpine

Send emails 10 2 6 Reg.

Send fles 13 3 7 Reg.

Download emails 9 2 6 Reg.

Download fles 11 2 5 Reg.

Open a link 8 2 4 Reg.

zip
Compress fle(s) 16 8 5 C.F.

Use encryption 6 4 3 Reg.

Continued on next page

70

Table 3.2: Details on Model Construction (cont.)

Program Model Description Size1 2Dexp
3Dimp Lang.4

transmission

Download 17 4 8 Reg.

Add a torrent fle 6 3 3 Reg.

Add a magnet 12 3 7 Reg.

proftpd/

lftp/yafc

Login 5/4/6 1/1/2 4/3/4 Reg.

Create directory 4/4/4 2/2/2 3/3/3 Reg.

Delete directory 3/4/4 1/2/2 3/3/3 Reg.

List directory 3/3/3 1/1/1 3/3/3 Reg.

Upload 7/8/18 2/2/3 5/5/9 Reg.

Download 6/7/16 2/2/4 5/6/9 Reg.

wget Download (HTTP(S)) 7 (15)5 2 (4)5 5 (8)5 Reg.

ping
Option -f 6 2 5 Reg.

Option -r 5 2 5 Reg.

procps Get fle system info. 6 3 4 C.F.

raft [91]
Voting 5 2 6 C.S.

Leader Election 7 2 7 Reg.

Average - 10.2 2.4 5.4 -

1: # of nodes in a model. 2: # of explicit dependencies (edges) in a model.

3: # of implicit dependencies (edges) in a model. 4: Language Class of a model.

5: for HTTPS.

Experiment Setup. We evaluate our approach on 17 real-world programs. Table 3.2 shows

the programs and models we constructed. Note that 15 out of the 17 programs (except

zip and Vim) are network related which is a popular channel for cyber-attacks. For each

program, we construct models offine. We use typical workloads briefy described in the

second column of Table 3.2. Specifcally, if there are available test inputs for a program, we

use them as the typical workloads. Otherwise, we construct inputs by inspecting program

71

manuals and identifying options and commands that can trigger different functionalities,

such as for proftpd, CUPS, and zip.

3.5.1 Model Construction

Table 3.2 shows the constructed models for each program. Columns 1 and 2 show

programs and model description. Column Size shows the number of nodes in each model.

The numbers in/out parentheses are for the same behaviors with/without HTTPS. The next

two columns show the number of explicit and implicit dependencies in each model. The

last column (Lang.) shows the language class of each model (Regular (Reg.), Context-free

(C.F.), or Context-Sensitive (C.S.)).

We have the following observations from the results. First, the size of model is rel-

atively small (on average 10.2 nodes) and there are on average 2.4 explicit dependencies

(more than 4 nodes) for each model. The strong presence of explicit dependencies allows

MCI to perform segmented parsing effectively. Second, we observe three language com-

plexity classes and most models fall into the regular class. It supports our design choice of

integrating regular parsers (i.e., automata) with explicit dependency tracking.

of Models Required

The constructed models listed in Table 3.2 are suffcient to infer causality for logs from

realistic scenarios described in Sec. 3.5.3 including the motivation example in Sec. 3.2.

The number of models for each program ranges from 3 to 12 which is fairly small and not

diffcult to obtain in practice. We observe that the primary reason why MCI is effective with

a small number of models is model composibility, namely, primitive models can be used to

compose complex behaviors. For instance, models for “Edit” and “Save” can compose a

new model “Edit and Save”.

72

Efforts on Model Construction

To construct models, a program is executed repeatedly on LDX. The number of runs

required to construct a model depends on the number of events in the model. Specifcally,

we frst run a program with a workload on LDX to identify all the events causally dependent

on the workload. Note that the detected events constitute the bulk of the model. Assume

there are n such events (nodes). For each node in the model, MCI mutates the value of

the corresponding syscall to determine dependencies on the node inside the model. To

fgure out the repetition factors of the node (Sec. 4.4), MCI runs k times for the node, each

execution repeats the workload for different times. In total, we run a program (k ∗ n)+ 1

times to construct a model. In our experiments, k = 10. On average, the machine time

to construct a model, including LDX execution time and model extraction time, takes 4

minutes (253 seconds).

Table 3.3.: Results for System-wide Causality Inference

Program # of
events

of
causality

of matched
models FP FN

Firefox 2,313 M 11 M 549 K 8.3% 3.2%
Apache 296 M 6.6 M 435 K 0% 0%
Lighttpd 125 M 3.3 M 275 K 0% 0%
nginx 187 M 3.8 M 246 K 0% 0%
proftpd 49 M 2.1 M 179 K 0% 0%
CUPS 25 M 918 K 88 K 0% 0.8%
vim 43 M 4 M 219 K 0% 0%
elinks 38 M 3.6 M 145 K 0% 0%
alpine 116 M 4.7 M 231 K 0% 0.3%
zip 5 M 634 K 36 K 0% 0%
transmission 250 M 6.9 M 479 K 3.8% 5.2%
lftp 11 M 438 K 54 K 0% 0%
yafc 9 M 616 K 43 K 0% 0%
wget 627 K 71 K 5.4 K 0% 0%
ping 2.4 k 1.3 K 241 0% 0%
procps 4 M 1 M 176 K 0% 0%

73

3.5.2 System-wide Causality Inference

In this experiment, we apply MCI to infer causality on a system wide syscall trace

collected for the system execution of a week, to demonstrate the effectiveness of causality

inference for realistic programs with production runs. The trace includes syscall logs from

multiple programs including those in Table 3.2. Specifcally, we enable Linux Audit and

use the programs in Table 3.2 with typical workloads for a week. Given the collected trace,

we identify all the inputs that appear in the trace (e.g., fle reads, command line arguments,

user interactions). Then, we build a forward causal graph from each input, i.e., identifying

all other syscalls depending on the input, using MCI and compare it with the ground truth

by LDX. During the experiment, we record all inputs used for the programs. Then, we re-

execute the program with the recorded inputs to reproduce the same execution. To do so,

we develop a lightweight record and replay system similar to ODR [94]. LDX is run on top

of the replay system to derive the ground truth. Note that due to the limitation of the replay

system, the replayed execution may differ from the original execution. Such differences

are counted as false-positives/negatives for conservativeness.

The collected log consists of syscalls from multiple programs and the size of the log is

around 732 GB (without compression) containing 3707 million events. We frst separate

the log into smaller logs per process.

Table 3.3 shows results of the experiment. The second column shows # of events

(syscalls) in the log for each program. The third and forth columns represent # of de-

pendencies detected and # of models matched by MCI. For the # of dependencies, we

count all those inferred by MCI via matched models and those explicit dependencies across

matched models. The last column shows false-positive and false-negative rates.

For most programs, MCI precisely identifes causality with not measurable false posi-

tives and negatives. There are a few exceptions: Firefox, CUPS, alpine, and transmiss

ions. We manually inspect a subset of these false-positives/negatives and have the follow-

ing observations. Our Firefox models are intended to describe browser behaviors such as

following a hyperlink and opening a tab. However, logs contain a lot of syscalls generated

74

by the page content. Some of them are not much distinguishable from browser-intrinsic

behaviors, leading to mismatches. For CUPS, we identify new behaviors during the exper-

iment which are variations of the existing models. Transmission is a threaded program

with memory based synchronizations that are invisible to MCI. Hence, MCI misses some

thread interdependences via memory.

Table 3.4.: Comparison with BEEP

System subjects System objects Edges FP / FN
BEEP 9.23 33.71 74.21 12.8% / 0.3%
MCI 9.18 25.38 62.87 0.1% / 0.1%

Comparison with BEEP. To evaluate the effectiveness of MCI when compared with

BEEP, we randomly select 100 system objects (e.g., fles or network connections) accessed

in the week-long experiment. For each selected system object, we construct a causal graph

by BEEP and by MCI, and compare the two. Table 3.4 shows the results. First of all, we

observe that MCI has fewer false-positives and false-negatives. Again, we use LDX as the

ground truth. Especially, MCI reduces the false-positive rate signifcantly. We investigate

some of the cases that BEEP introduces false-positives, and fnd that many system objects

accessed in a unit are included in the causal graphs while they are not causally related.

Also, BEEP causes slightly more false-negatives due to missing inter-unit dependencies.

We analyze the cases and fnd that the missing inter-unit dependencies were due to incom-

plete instrumentation caused by the diffculty of binary analysis in BEEP. We also manually

investigate false-positive and false-negative cases from MCI. It turns out they are mostly

caused by concurrent executions in transmission.

Runtime/memory Overhead. We also measure runtime overhead and memory overhead

of MCI. Specifcally, we report how long MCI takes to parse the audit log collected from the

one week experiment which contains 3707 millions events. As we discussed in Sec. 3.4.2,

we preprocess an audit log to extract indexes so that the parser can quickly locate skeleton

instances. We measure the runtime performance and memory consumption of the trace

preprocessor. It takes 4 hours 47 minutes to preprocess (index) the entire log. The prepro-

75

cessor occupies around 2.8 GB of memory on average. The parser frst locates segments of

the traces and launches automata within the identifed segments. We fnd that the parser

spend more time on parsing within the segments. In particular, the parser takes more time

when it parses a wrong segment and eventually fails. Note that we parallelize the parsing

within a segment to exploit multi-core processors. To parse the log, it takes around 4 days

(95 hours 43 minutes), and the parser consumes around 6.2 GB of memory on average. We

consider such one-time efforts reasonable given the huge log size. We leave performance

optimization to our future work.

3.5.3 Case Studies

In this section, we present a few case studies to demonstrate the effectiveness of our

approach in attack investigation.

Phishing email and camoufaged FTP server case

In this case, we use a scenario adapted from attack cases that were created by security

professionals in a DARPA program [95], to demonstrate how MCI can effectively infer

causality in a real-world security incident that happens across multiple programs including

PINE and Firefox.

Attack Scenario. The user regularly uses PINE to send and receive emails. At some point,

the user receives a phishing email, and she opens it, fnds a hyperlink that looks interesting,

and hence clicks the hyperlink. PINE automatically spawns the Firefox browser and

the browser navigates to the given hyperlink. The hyperlink leads her to a web-page that

contains an FTP server program. As she thinks the program is useful, she downloads the

program. Before she closes the Firefox browser, she navigates a few more websites and

downloads other fles as well. Specifcally, she opened 2 more tabs and downloaded 3

more programs.

After she closed the browser, she checked a few more emails and then opened a terminal to

execute the downloaded FTP server program. The FTP server is a camoufaged trojan [96].

76

It normally behaves as a benign FTP server, serving remote FTP requests properly. How-

ever, it contains a backdoor which allows a remote attacker to connect and execute mali-

cious commands on the victim computer. After she ran the trojan FTP server program, it

served tens of benign FTP user requests with hundreds of FTP commands. A few hours

later, the attacker connects to the machine through the backdoor, and modifes an important

fle (e.g., fnancial report). Later, the company identifes that the contents of the important

fle is changed and then hires a forensic expert to investigate the case to identify the origin

of the incident.

Investigation. Given the causal models listed in Table 3.2 and a system-wide trace col-

lected from the user’s system, the forensic expert uses MCI to infer causal relations from

the changed fle. By matching models over the trace, MCI successfully identifes causality

from the initial phishing email to the attacker’s connection in the camoufaged trojan. The

investigator further identifes that the important fle is touched by the FTP server process.

However, the fle operation does not belong to any model instance. Interestingly, this in-

dicates that the fle is not part of regular behaviors, indicating that the FTP server may be

trojaned. The investigator then tries to identify how the FTP server is downloaded and

executed in the system. MCI reveals that a Firefox process downloaded the FTP server

binary via y.y.y.y:80 through “LoadURI” and “Download a fle” models. MCI further iden-

tifes that the Firefox process was launched by a PINE process when the user clicked a

link from an email stored at /var/mail/.../94368.5222 downloaded from x.x.x.x.

We also investigate the same incident with BEEP, and fnd out that a causal graph gen-

erated by BEEP has a number of false-positives. Specifcally, as shown in Fig. 3.17, the

causal graph includes n.n.n.n:53 which is resolving the domain name, several other IP ad-

dresses from the Firefox process, which are from different tabs. Moreover, the causal

graph contains other fles downloaded from other tabs (../fle1 and ../fle2), two more sock-

ets for internal messaging system (unix socket) and XWindow system (/tmp/.X11-unix), as

well as some database fles for storing browsing history (/.../places.sqlite).

In contrast, as MCI leverages accurate models generated by LDX, the graph generated

by MCI is more accurate and precise without bogus dependencies. We also note that BEEP

77

requires training and binary instrumentation on the end-user site while MCI has no require-

ments on the end-user site.

sendmail sendmail

sendmail procmail

x.x.x.x:53935

x.x.x.x:113

n.n.n.n:53

/var/mail/…/94368.5221

pine

bash

firefox
unix socket

/tmp/.X11-unix

y.y.y.y:80

/…/places.sqlite ../file1 /home/…/proftpd

proftpd

z.z.z.z:31337

/home/…/doc../file2 ...

74.125.224.72:80...

pine

bash

firefox

y.y.y.y:80

/home/…/proftpd

proftpd

z.z.z.z:31337

/home/…/doc

sendmail sendmail

sendmail procmail

x.x.x.x:53935 x.x.x.x:113

/var/mail/…/94368.5221

(a) Graph generated from BEEP (b) Graph generated by MCI

Figure 3.17.: Causal graphs generated from BEEP and MCI for the camoufaged FTP server
case

Information Theft via InfoZip (zipsplit)

In this case, we use another insider attack to demonstrate the effectiveness of MCI.

Specifcally, an attacker in this case intentionally uses zipsplit to obstruct the investiga-

tion of the case as it reads and writes multiple input and output fles where dependences

between them are diffcult to capture by existing approaches. We show how MCI can accu-

rately identify the information fow through the program.

Attack Scenario. In this case, an insider tries to leak a secret document to a competitor

company. However, the attacker’s company forces all computer systems to enable audit

logging system to monitor any attempts to exfltrate important information. To avoid be-

ing exposed, he decides to use zipsplit before sending out the secret. Specifcally, he

understands that the zipsplit program can compress n fles into m compressed fles, and

traditional audit logs are able to accurately identify causal relations if an input fle is com-

pressed to a single output fle. Hence, the attacker used zipsplit to compress a secret

document, secret.pdf, as well as two non-secret fles, 1.pdf and 2.pdf, and generates four

output fles, c1.zip−c4.zip. In this example, the secret fle is compressed and distributed

into c1.zip and c2.zip, whereas c3.zip and c4.zip only contain non-secrets. Then he attached

78

all output fles to an email, but before he sent it to the competitor company, he removed

c3.zip and c4.zip from the email and only sent the other two that contain the secret. After

that, he deleted all emails histories and compressed fles.

A few days later, the company found suspicious behaviors from the attacker’s com-

puter. They identifed that the secret document was accessed by zipsplit, and some fles

that may contain the secret were sent out. However, the attacker claimed that the secret

document was mistakenly included in zipsplit and he only sent the zip fles that con-

tain non-secrets. At this point, the company started to investigate the attacker’s machine

to identify the source of outgoing fles. Note that the investigator is not able to inspect the

compressed fles or email history as the attacker already deleted them.

sβ t∅ sγ rε sε t∅ sβ t∅ sθ wθ sε wθ rε wθ nγ

n n

sσ: stat(σ), tσ: time(σ), wσ: write(σ), rσ: read(σ), nσ: rename(σ),
α: stdin, β: current dir, γ: output (compressed) files, ε: input files, θ: temp file

Legend

Explicit

Implicit

sα

Figure 3.18.: Context-free model from zipsplit

Investigation. A forensic expert utilizes MCI to construct causal models for zipsplit and

PINE. A related model for zipsplit is presented in Fig. 3.18, corresponding to the “read

n fles and compress to an output fle” behavior. Note that it is context-free as there are two

groups of nodes (from the 4th to the 6th and from the 12th to the 16th) that have the same

number of repetition. The frst group is for reading the meta information of the n input fles

and the second group is for reading the contents of the fles and write to an output fle.

MCI matches the models over the audit log collected from the attacker’s machine, and

it accurately reveals the causality between the secret document and the outgoing message.

Fig. 3.19-(b) presents a causal graph generated by MCI. It shows that the c1.zip and c2.zip

are derived from secret.pdf, and they are sent out via PINE. In contrast, Fig. 3.19-(a) shows a

79

causal graph generated by BEEP but it contains many false-positives as BEEP was not able

to identify such removed attachments nor causal relations between inputs and outputs of

zipsplit. We manually inspect the program to identify the root cause of false-positives.

It turns out that zipsplit frst compresses input fles into a temporary fle, then splits

it into multiple output fles. Hence, BEEP considers the temporary fle is dependent on

all input fles, and the output fles are dependent on the temporary fle. In other words,

BEEP considers all output fles are dependent on all input fles. Instead, MCI infers precise

causality between each input and output fle via implicit dependencies annotated in the

model.

pine

bash

c1.zip

c2.zip

c3.zip

/home/.../sent-mail

smtpd

postdrop

/.../maildrop/17623.5743

/dev/log

Zipsplit

1.pdf 2.pdf secret.pdf

pine

bash

c2.zip /home/.../sent-mail

smtpd

postdrop

/.../maildrop/17623.5743

Zipsplit

secret.pdf

(a) Graph generated from BEEP

(b) Graph generated by MCI

c4.zip

c1.zip

Figure 3.19.: Causal graphs for the zipsplit case

Table 3.5.: Evaluation on Long Running Executions

Access Log # of req. (unique) Elapsed Time FP / FN
NASA-HTTP [97] 3.4M (36K) 19 hrs 41mins 3.9% / 0.2%
Our institution 5.6M (4.2M) 40 hrs 13mins 1.1% / 0.1%

80

Long running real world applications

In the last experiment, we evaluate MCI on large scale real world workloads. In partic-

ular, we use 2 months of NASA HTTP server access logs obtained from [97] as well as 3

months of our institution’s HTTP server access logs (from Nov. 2015 to Jan. 2016).

To obtain audit logs from the HTTP access logs, we frst emulate the web server envi-

ronment by crawling all the contents of the original servers. Then, we create a script which

connects and accesses the web server according to the access log so that the audit logging

system on our server can regenerate logs for our analysis.

Table 3.5 shows the result. First, our parser takes 19 hours and 40 hours to parse the

logs from [97] and our institution, respectively. Considering the size of the logs, we argue

that our parser is reasonably scalable. For the accuracy test, we have 3.9% and 1.2% false-

positives for the two respective logs. We analyze such cases and fnd that the NASA-HTTP

log includes much more CGI requests than our institution’s log. We fnd that most of the

false-positive cases are from those CGI requests (e.g., PHP) that introduce noises. That is,

some of the CGI behaviors are similar to the server behaviors and hence confuse our parser.

We also have 0.2% and 0.1% false-negative rates. We manually analyze such cases and fnd

out that they are mainly caused by CGI requests and suspicious requests embedding binary

payloads, which crash the web-server during the experiment. Overall, the result shows that

MCI is scalable to identify causality over large scale logs.

3.6 Related Work

Causality Tracking. There exists a line of work in tracking causal dependences for system-

level attack analysis [46,47,66–68,98]. BackTracker [66] and Taser [46] propose backward

and forward analysis techniques to identify the entry point of an attack and to understand

the damage happened to the target system. Recently, a series of works [4, 72, 74] have

proposed to provide accurate and fne-grained attack analysis. Dynamic taint analysis tech-

niques [8, 76, 99] track information fow between taint sources and taint sinks. SME [100]

detects information fows between different security levels by running a program multiple

81

times. LDX [1] proposes a dual execution based causality inference technique. When a user

executes a process, LDX automatically starts a slave execution by mutating input sources. It

identifes causal dependences between input source and outputs by comparing the outputs

from the original and slave executions.

These approaches have limitations, for instance, syscall-based techniques suffer from

imprecisions that cause false-positives and false-negatives, unit-based techniques require

training or instrumentation on the end-user site, and dynamic taint analysis techniques

cause too much runtime overhead. We discussed details of strengths and limitations of

those techniques in Section 3.2 and compare them with MCI.

Program Behavior Modeling. Constructing program models that represent program’s in-

ternal structures (e.g., control fow) or behaviors (e.g., system call invocations) have been

extensively studied, especially in anomaly detection techniques [101–106]. Specifcally,

they train benign program executions to get models which are abstraction of the program

behavior. Then, they use various ways such as DFA [102], FSA [101, 103], push-down

automaton (PDA) [104], hidden Markov models [105], and machine learning [106, 107].

However, their models are mostly control fow models that do not have dependency infor-

mation. Having dependences (acquired from LDX) in our models on one hand allows us to

use models in attack provenance investigation, on the other hand poses a number of new

technical challenges. Due to the diffculty of static binary dependency analysis, generating

precise models using static analysis is highly challenging.

3.7 Discussion

Kernel-level Attack. We trust audit logs collected at the victim system. Most audit logging

systems including Linux Audit and Windows ETW collect and store audit logs at the kernel

level, and a kernel-level attack could disable the logging system or tamper with the log.

One possible solution is to integrate with LPM-Hif [75] that provides stronger security

guarantees.

82

Limitations by LDX [1]. In our off-line analysis, we leverage LDX to construct causal

models, hence, the limitations in LDX are also inherited by MCI. LDX doubles the resource

consumption such as memory, processor and disk storage in order to run a slave execution

along with original execution. However, we argue that the limitations only apply to the

off-line analysis and do not apply the end-user.

Model Coverage. MCI relies on causal models generated by training with typical work-

loads. If an audit log includes behaviors that cannot be composed by the models in the

provided workloads, MCI may not be able to infer causality precisely and could cause

false-positives/negatives. Also, the FPs and FNs caused by missing models may cascade

throughout the remaining MCI’s parsing process. However, the cascading effect is mostly

limited within a unit (e.g., each request in a server program) because MCI nonetheless starts

a new model instance when it encounters an input syscall that matches with the model.

Moreover, we can detect matching failures due to the incomplete models while MCI is

parsing the audit log. For instance, missing models often lead to causal graphs lacking

important I/O related system-objects (e.g., fles/sockets), hence they are a strong indicator.

Then we can enhance the model to resolve the situation by training with more workloads.

Furthermore, we can fall back to a conservative strategy to assume unmatched events have

inter-dependencies.

Although we mitigate the ambiguity problem (Sec. 3.3.3), as some models may not

have enough dependencies to segment traces, ambiguity is still a challenge. We plan to

investigate using irrelevant events as delimiters to further partition the trace and suppress

ambiguity.

Signal and Exception Handler. Signals and exceptions can be delivered to a predefned

handler at anytime, interrupting a normal execution fow. Unfortunately, it is possible that

system calls in the handler may affect our parser. However, we observe that in practice our

models are robust enough to handle the additional system calls caused by such handlers.

This is because system calls invoked in a signal or exception handler are generally distinc-

tive from the system calls in our causal models, hence our parser is able to flter them out.

Moreover, in many programs such as Lighttpd, handlers functions often do not invoke

83

any system call. In the future, we plan to extend MCI to construct proper models for signal

and exception handlers. As such, we can identify handler models from the audit log and

extract them before we apply MCI’s model parsing process.

84

4 A2C : SELF DESTRUCTING EXPLOIT EXECUTIONS VIA INPUT

PERTURBATION

Malicious payload injection attacks have been a serious threat to software for decades. Un-

fortunately, protection against these attacks remains challenging due to the ever increasing

diversity and sophistication of payload injection and triggering mechanisms used by adver-

saries. In this chapter, we develop A2C, a system that provides general protection against

payload injection attacks. A2C is based on the observation that payloads are highly fragile

and thus any mutation would likely break their functionalities. Therefore, A2C mutates

inputs from untrusted sources. Malicious payloads that reside in these inputs are hence

mutated and broken. To assure that the program continues to function correctly when be-

nign inputs are provided, A2C divides the state space into exploitable and post-exploitable

sub-spaces, where the latter is much larger than the former, and decodes the mutated values

only when they are transmitted from the former to the latter. A2C does not rely on any

knowledge of malicious payloads or their injection and triggering mechanisms. Hence, its

protection is general. We evaluate A2C with 30 real-world applications, including apache

on a real-world work-load, and our results show that A2C effectively prevents a variety of

payload injection attacks on these programs with reasonably low overhead (6.94%).

4.1 Introduction

Attacks which exploit software vulnerabilities are among the most prevalent cyber-

security threats to date. This is due, in part, to many complex combinations of potential

attack vectors: Buffer overfow attacks, Return-to-libc attacks [108], ROP [109], Jump-

oriented programming (JOP) [110], and Heap spraying [111, 112] to name just a few. Un-

fortunately, this ever expanding variety of exploit attack vectors has led to a constant “cat

and mouse game” of building defenses as each new attack is released.

85

In light of this, many existing protection mechanisms focus on specifc attack vectors

and become less effective (or even completely ineffective) for others. For example, non-

executable stack and heap have diffculty preventing code reuse (e.g., ROP) attacks because

the executable payload is constructed from the original code of the application. Shell-

code detection techniques are only effective against injection of binary executable code

and are often bypassable [113–116]. Control Flow Integrity [117–120] prevents attacks

which exhibit certain abnormal control fows within a victim program. Further, some de-

fense techniques may entail non-trivial overhead (e.g., [121]) or require hardware support

(e.g., [122]), which affects their application in practice. Based on this trend of attack-

specifc defense, we are motivated to look for an entirely new, more fundamental weakness

of software exploits to provide an attack vector independent protection mechanism.

It turns out that all software exploit attacks invariably have two common characteristics:

First, they all need to inject an exploit payload into the target application. This payload

could be a piece of executable code (shellcode) or information that allows constructing

the malicious instruction sequence at runtime (e.g., a ROP chain that contains the entry

addresses of gadgets). Second, these payloads are famously brittle. Specifcally, exploit

payloads are designed with very strict semantic assumptions about the environment (e.g.,

memory layout, libraries, or known binary instructions) which require each byte of the

payload to be carefully tailored to a victim.

In this chapter, we will show that these invariant characteristics of exploit attacks make

it possible to protect applications from exploit injections independent of the attack vector

they use. Specifcally, we leverage the observation that exploit payloads (regardless of their

attack vector) are so brittle that any mutation would break their execution — i.e., cause the

execution to crash. For example, even simple mutation of x86 shellcode results in invalid

instructions. Similarly, most sequences of ROP addresses no longer form an executable

gadget chain if even a single byte is changed. Secondly, since these exploit payloads must

be injected into a victim application, their behavior eventually diverges from that of the

application’s legitimate inputs. Therefore, we propose that exploit payloads may be easily

disabled via a “shoot frst and ask questions later” policy, whereby all input to a victim

86

program is immediately mutated and only those that are beyond the control of the adversary

are decoded.

Based on the above observations, we have developed the A2C (or “Attack to Crash”)

technique. A2C naturally exploits the brittleness of attack payloads by setting these at-

tacks on track to crash before malicious logic is executed. First, any buffer inputs from

untrusted sources are securely encoded using A2C’s One-Time Dictionary, which varies

for each input buffer to prevent memory disclosure/value guessing based attacks. Since all

the untrusted inputs are mutated, malicious payloads that reside in these inputs are also mu-

tated, resulting in broken payloads which will induce crashes when executed. Later, A2C

must undo the mutation in the buffer inputs, when the program begins using these inputs

to compute new values, so that our mutation does not cause any exceptions for legitimate

input.

Our evaluation shows that A2C is able to protect a variety of applications against a

wide spectrum of exploit attacks regardless of their injection methods, without affecting

the normal functionalities of the program. Further, because A2C requires no knowledge

of the specifc attacks (only leveraging the two invariant characteristics mentioned above)

it may even prevent currently unknown injection attack types in the future. The detailed

threat model considered in this chapter is presented in Section 4.5.

Our contributions are summarized in the following:

• We propose the novel idea of partitioning program state space into the exploitable and

post-exploitable sub-spaces so that we only need to protect the smaller exploitable

sub-space, which is critical to A2C’s effciency and effectiveness.

• We develop a novel constraint solving based approach that can determine the bound-

ary of the two sub-spaces. This serves as the basis to compute the execution points

where the mutation can be safely undone.

• We develop a fow-, context-, and feld-sensitive static analysis to identify the places

at which A2C needs to undo the mutation so that execution on legitimate inputs is

not affected.

87

• We develop an effcient runtime that leverages a One-Time Dictionary, which projects

a value to another unique value. The dictionary varies for each input buffer to pre-

vent memory disclosure based attacks. A2C also features effcient calling context

encoding to support undoing input mutation.

• We develop a prototype A2C. The evaluation results show that A2C effectively

prevents a number of known payload injection attacks with low overhead (6.94%).

4.2 System Overview

Static Analysis Phase

Flow/Context/Field

Sensitive

Static Analysis

Decoding/Encoding

Sets (DE Sets)

Instrumentation Phase

Instrument acc.

the DE Sets

Instrumented

Program

Target(Original)

Program
Runtime Phase

One-time dictionary

based encoding

Instrument Calling

Context Encoding

Decoding Frontier

Computation Phase

Constraint SolverUntrusted input

Specification

Target(Original)

Program

Static

Taint Analysis

Untrusted input

Specification

Target(Original)

Program

Uncontrollable

Operations Set

Figure 4.1.: Overall procedure of A2C

In this section, we present an overview of A2C, which is based on the following two

observations. (1) Most malicious payloads reside in buffers and they only go through copy

operations or simple transformations before the attack is launched. It is very rare for these

payloads to undergo complex transformations in the victim program before being executed.

This is due to the diffculty in controlling the transformations (in the victim program) to

generate meaningful payloads. (2) Malicious payloads are very fragile. Any mutation often

leads to an unsuccessful attack. For example, changing a few bits at the beginning of a

shellcode can easily throw off the sequence of executed instructions, leading to a crash.

88

char Input[...];

Input = read(...);
Input[...] == 'C'; ...

x = (int) Input[...];

x = Input[...] & 1;

x = Input[...] * y / ... ;

 ...

Comparative

Uncontrollable

Transformative

write(Input, ✁); ...

Terminal

Decoding

Frontiers

memcpy(..., Input);

strcpy(✁, Input);

toupper(Input);

iconv(..., Input, ...);

mbtowc(..., Input, ...);

x = Input[...] + 3;

x = Input[...] * 2; ...

Controllable

Transformative

(Copy operations)*

... exit

Exploitable space Post-exploitable space

Figure 4.2.: Decoding frontiers

The overarching idea of A2C is to protect a program from malicious injection attacks

by perturbing or encoding inputs from untrusted sources. However, inputs from untrusted

sources (e.g., packets from remote IPs) are not necessarily malicious. We need to ensure

that our perturbation does not fail executions based on non-exploit inputs. According to

observation (1), we aim to undo the perturbation when the buffer data goes beyond copy

operations/simple transformations and starts being used in benign computation.

In the following, we use the diagram in Fig. 4.2 to illustrate the life cycle of buffer

data and hence the intuition behind A2C. After the buffer data are loaded through input

functions, they may undergo a number of transformations, including copy operations (e.g.,

memcpy() and strcpy()) that copy a buffer to another target buffer, constant table lookup

(e.g., in iconv(), toupper(), mbtowc(), and wctomb()), and simple transformative opera-

tions (e.g., additions with a constant). Then, the buffer data will eventually encounter one

of the following three kinds of operations: (1) Comparative operations, in which elements

in the buffer are used in comparisons; (2) Terminal operations, in which the buffer data are

passed to output library functions (e.g., write(), send(), and printf()); (3) Uncontrollable

transformative operations, in which elements in the buffer undergo transformations that

disallow the attacker to control the values beyond these transformations to construct mean-

ingful payloads. For instance, type widening copies a value of smaller type (e.g., char) to

an array element of larger type (e.g., integer) so that each element in the array is padded

89

with leading 0’s. As such, the resulting byte sequence denoted by the array cannot serve as

a meaningful payload.

We call these three kinds of operations the decoding frontier (DF) because A2C should

undo the perturbation for the buffer elements involved before executing the operations.

Intuitively, we consider the space before the frontier the exploitable space where the ma-

licious payloads are supposed to take effect and without perturbation would successfully

exploit the program. Therefore, we use perturbation to achieve protection in this space.

The space after the frontier is referred to as the post-exploitable space. This is because

controlling the payload becomes infeasible if it has gone through these benign transforma-

tions conducted by the victim program. Therefore, it is safe to undo our perturbation before

the decoding frontier so that benign inputs can be used in computation as usual1. The core

technical challenge for A2C is hence to identify the DF of a subject program and perform

instrumentation accordingly. More discussion about the decoding frontier can be found in

Section 4.4.1.

Another interesting observation that makes our solution feasible is that the exploitable

space is usually much smaller than the post-exploitable space as most computation happens

in the post-exploitable space. As such, the frontier tends to be small and shallow and as

explained above, operations beyond the frontier do not need our attention.

Overall Procedure. Fig. 4.1 shows the complete procedure of A2C. There are four phases:

constraint solving based decoding frontier computation, static analysis for determining en-

coding and decoding places which are a superset of the decoding frontier, instrumentation,

and runtime.

First, we leverage constraint solving to determine the uncontrollable operations. These

operations, together with the comparative and terminal operations, form the decoding fron-

tier. This phase simply marks all the operations on the frontier.

Second, a fow-, context-, and feld-sensitive analysis is applied to determine the places

to instrument. It takes three inputs: the LLVM IR of the program, the decoding frontier

from the frst phase, and the untrusted input specifcation that identifes a set of library
1Here we assume that output library functions are hardened and thus cannot be exploited by the decoded
buffers.

90

functions that read inputs, such as recv() for network inputs and read() for fle streams.

In this phase, A2C produces two outputs. Specifcally, the decoding set is a superset of

the decoding frontier and the encoding set contains the statements to encode (input) values,

such as recv() in network programs. Interestingly, the encoding set may also contain in-

structions that load constant values. Explanations about why we need to encode constants

can be found in Section 4.4.3. The computation of decoding and encoding sets (DE sets

for short) is iterative as new elements on encoding sets may introduce additional decoding

operations.

Third, the instrumentation phase statically instruments the program according to the DE

sets. An important observation is that the decoding frontier is context sensitive. Different

inputs may lead to different calling contexts of a function invocation. The membership of

a statement in the DE set may change with those contexts. As such, upon the execution

of a statement in the DE set, we need to know the current calling context to determine

if the instrumented version or the original version of the statement should be executed.

Therefore, part of the instrumentation phase handles the problem of effciently tracking the

current calling context.

Lastly, the runtime supports execution of the instrumented program. It features encod-

ing based on a One-Time Dictionary, which projects a plaintext value to a unique encoded

value. Different input buffers use different dictionaries to prevent memory exposure based

exploits.

4.3 Illustrative Example

In this section, we use a real-world example to illustrate A2C’s operation. We use the

nginx 1.4.0 web-server as the subject program. It has two known heap buffer overfow

and integer overfow vulnerabilities, which can be triggered by providing crafted HTTP

requests containing malicious payloads. Fig. 4.3 shows two code snippets with part of the

original nginx program on the left and the corresponding instrumented version on the right.

The column in the middle shows how the two code snippets process the request differently.

91

3. Comparing the first 4 bytes ("POST")

2. Comparing the first byte ('P')

 ssize_t ngx_unix_recv(…) {

 …
136: n = recv(c->fd, buf, size, 0); Encode(buf, n);

File: ngx_recv.c

139: for (p = b->pos; p < b->last; p++) {

140: ch = *p;

 …
160: if (Decode(ch, 1) == ' ') {

 ...

179 case 4:

 ...

182: if (ngx_str30_cmp(Decode(m, 4) , 'P','O','S','T')) {

183: r->method = NGX_HTTP_GET;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

ONRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

POST..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

PNRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

Encoding/Decoding a request

1. Encoding a request
 ssize_t ngx_unix_recv(…) {

 …
136: n = recv(c->fd, buf, size, 0);

File: ngx_recv.c

139: for (p = b->pos; p < b->last; p++) {

140: ch = *p;

 …
160: if (ch == ' ') {

 ...

179: case 4:

 ...

182: if (ngx_str30_cmp(m, 'P','O','S','T')) {

183: r->method = NGX_HTTP_POST;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

POST /index.php HTTP/1.1\r\nHost:...

Original Program Instrumented Program

 int ngx_http_do_read_client_request_body(…) {

 …
302: n = c->recv(c, rb->buf->last, size);

File: ngx_http_request_body.c

 int ngx_http_do_read_client_request_body(…) {

 …
302: n = c->recv(c, rb->buf->last, size); Encode(rb->buf->last, n);

 …

File: ngx_http_request_body.c

\x90\x90\x90\x90\x90\x90\x90\x90\x90...

\x89\x89\x89\x89\x89\x89\x89\x89\x89...

4. Injected Code by Heap overflow/spraying

 int ngx_http_request_handler(…) {

 …
2133: r->read_event_handler(r);

File: ngx_http_request.c

call r->read_event_handler (= 0x00b7c010)

call r->read_event_handler (= 0xffb6bf0f)

5. Jump to the injected code int ngx_http_request_handler(…) {

 …
2133: r->read_event_handler(r);

File: ngx_http_request.c

Figure 4.3.: Original and instrumented programs of demonstrative example

First, both programs receive a POST request at Line 136 in ngx recv.c. Since the

request is from an untrusted source, the instrumented program encodes the buffer. For

simplicity of discussion, the encoding here is to subtract 1 from every byte. Encode()

denotes this modifcation. The HTTP request “POST /index.php HTTP/1.1\r\nHost:

...” is hence encoded as “ONRS..hmcdw-ogo.GSSO.0-0..Gnrs9...”. The request is

parsed at Lines 160 and 182 in ngx http parse.c, which contain comparative operations

on some buffer data and are hence part of the decoding frontier. Therefore, the instrumented

program calls Decode() to undo the perturbation so that the program can parse and process

the request correctly. Note that it only decodes a few bytes (of fxed length) at a time so that

the decoded data cannot be run as any meaningful payload. Also observe that the original

buffer remains encoded. This is achieved by only decoding the values after they are loaded

into variables of primitive types (e.g., bytes and words).

Next, the ngx http do read client request body() function stores the contents

of the request into a different heap buffer. Notice that without A2C this becomes vulnera-

ble to heap spraying attacks which can be further leveraged to launch attacks such as ROP.

Also, the same function has a heap buffer overfow vulnerability that allows overwriting a

92

function pointer, read event handler, which will be called inside ngx http request

handler(). However, since the instrumented program encodes all external requests, the

payload at Line 302 and the address accessed at Line 2133 are mutated. Assume the mali-

cious shellcode contains a sequence of nop instructions (0x90*n) for the nop-sled portion

of a heap spray attack and the malicious address injected is 0x00b7c010. In the instru-

mented program, the nop instructions (0x90*n) are encoded to “0x89*n”, which denotes

a sequence of mov instructions that write to invalid memory locations (e.g. mov ecx,

ecx(-76767677h)). At this point, even though the shellcode is successfully injected, due

to the mutation, it crashes upon execution. Similarly, the injected function pointer at Line

2133 is also broken. Note that if the request is valid, despite it being encoded by the instru-

mented program, it will be decoded at the frontier and will not affect normal execution.

4.4 Design

4.4.1 Decoding Frontier Computation via Constraint Solving.

The frst phase of A2C is to determine the decoding frontier that will be used to identify

the encoding and decoding sets in the next analysis phase. As we will see in the next

section, A2C needs to decode at more places than input related buffers.

According to the defnition in Section 4.2, the decoding frontier consists of three kinds

of operations: comparative, terminal, and uncontrollable. While the identifcation of the

frst two is straightforward, we focus on the third in this section.

We frst defne controllable operations as follows: if valid payloads can be generated

in a memory region (e.g., a buffer) right after a set of operations by manipulating program

inputs, these operations are controllable. An example of a controllable operation is the

toupper() transformation that turns a lower case character into its upper case. Assume an

application transforms a text input buffer A into another buffer B using toupper(). The

attacker can carefully prepare the input so that after the transformation, buffer B contains

the intended payload. It was indeed reported that existing operations in a program could be

leveraged to compute/decode payloads [123].

93

We further formulate the determination of controllable operations as a constraint solv-

ing problem. We consider program inputs as symbolic variables. We further model the

operations that compute the values for a memory region (at a given program point) from

the program inputs as a set of constraints. We then assert the values (of the memory region)

to be some valid payload and query a solver if there is a satisfying (SAT) solution. If so,

one may be able to manipulate the input (e.g., using the SAT solution generated by the

solver) to induce the given payload. While it is diffcult to precisely defne what constitutes

a valid payload, we use the following procedure to determine if operations are controllable.

Procedure to Determine Decoding Frontier. Given a program to protect, A2C identifes

all memory regions larger than or equal to 16 bytes that can be affected by inputs (through a

standard static taint analysis). These regions include buffers, consecutive local variables (on

stack), consecutive global variables (in data section), as well as structures. For example,

four consecutive local integer variables related to inputs constitute a region for testing.

For these regions, A2C creates constraints according to the operations that compute the

values in the regions from program inputs. Other variables that are not related to inputs are

considered as free variables. This makes our analysis a conservative one as free variables

can take any values during constraint solving, whereas in practice these variables may have

various restrictions. After we generate the constraints, we use the Z3 solver [124] to test

whether payloads can be generated through these operations. In particular, we collected

1.4GB binary codes, 200MB shellcode, and 200MB ROP gadgets from Internet [125–129].

We also generate 1.0G random numbers. We further break the data sets down to sequences

based on the size of the region under testing. If the size is unknown, we use 16-byte

sequences. We then assert the values of the region equal to each of these sequences one

by one. If the constraint solver yields SAT, TIMEOUT, or UNKNOWN for any of the

sequences, which implies that an attacker may be able to construct some malicious payload

through the operations, then the operations are considered controllable. If the constraints

are UNSAT for all these sequences, the operations that defne the values of the memory

region are considered uncontrollable.

94

Essence. Intuitively, we use the large pool of binary code and shell code snippets to model

the distribution of executable payloads and the large pool of ROP gadget subsequences

to model the distribution of address-based payloads (for code reuse attacks). We further

use a large set of random number sequences to model the distribution of other arbitrary

payloads. Since we only consider operations uncontrollable when all these sequences yield

UNSAT results, A2C provides strong probabilistic guarantees that the values beyond these

operations are not exploitable.

Note that for complex programs, it may be diffcult to model the entire data fow from

program inputs to the memory region of interest due to various reasons such as unmodeled

library calls and uncertainty of data fow caused by aliasing. A2C leverages backward

slicing, starting from the memory region of interest and traverses backward along data

dependencies until the traversal becomes infeasible (e.g., due to unmodeled library calls).

If program inputs cannot be reached by the traversal, A2C treats the farthest variables that

it can reach as free variables. Note that this yields an over-approximation, which is safe.

The decoding frontier analysis marks all the operations on the decoding frontier. Since the

algorithms in this phase are standard, details are omitted.

In the following, we use a number of examples to facilitate understanding of decoding

frontier.

Uncontrollable Operation Example One. Fig. 4.4 shows a code snippet from 464.h264ref

(i.e., a video decoding program) in SPEC 2006.

// Declarations (Data Types)

1. unsigned int m7[...][...];

2. unsigned short img[...][...];

3. unsigned short mpr[...][...];

 ...

// Transformative Operations

4. for (int x = 0; ...; x++)

5. for (int y = 0; ...; y++)

6. m7[x][y] = img[...][...] - mpr[...][...];

; Constraints for Operations (img - mpr)

7. m7[0,1,2,3] = img[0,1,2,3] - mpr[0,1,2,3] /\

; Constraints for the range of unsigned short

8. 0 <= img[0,1,2,3] /\ 0 <= mpr[0,1,2,3] /\

9. img[0,1,2,3] <= 65535 /\ mpr[0,1,2,3] <= 65535 /\

; Constraints for Payloads (i will select a payload)

10. m7[0,1,2,3] = payload[i, i+1, i+2, i+3]

(a) Code snippet from 464.h264ref (b) Constraints from the code snippet

Figure 4.4.: Uncontrollable operations due to type widening in 464.h264ref

95

Fig. 4.4 (a) shows three arrays m7, img, and mpr with m7 a temporary array that stores

intermediate values during encoding, img holding raw input values and mpr calculated by

the program and not related to inputs. Observe that m7 is an int array whereas the other two

are arrays of short int. Fig. 4.4 (b) shows the constraints generated. Lines 7-9 denote the

constraints representing the operations. Line 7 denotes the subtraction at Line 6. Line 9

denotes the range constraints of img and mpr. We use “0,1,2,3” to represent that the same

constraint applies to four respective elements. Line 9 denotes the payload assertion. We

iterate this test with i from 0 to the number of sequences in our test data set.

The test result shows that the constraints are always UNSAT. This is mainly because the

assignment of short to int (called type widening) requires payloads to have two zero bytes

in every four bytes. As such, Line 6 is on the decoding frontier. Type widening is one of

the major reasons for uncontrollability. Another popular form of type widening is through

bit operations, namely, only a few bits of a word are set. Examples are omitted.

Uncontrollable Operation Example Two. Another common kind of uncontrollable oper-

ation is one that induces intensive correlations between values. For example, Fig. 4.5 (a)

shows a code snippet from 429.mcf in SPEC.

// Declaration (Data Types)

1. typedef struct network{

2. long n, n_trips, max_m, m;

 ...

3. } network_t;

 ...

4. network_t* net;

5. in[2] = read(InputFile);

// Transformative Operations

6. net->n_trips = in[0];

 ...

7. net->n = (in[0]+in[0]+1);

8. net->m = (in[0]+in[0]+in[0]+in[1]);

9. if (...) net->max_m = net-> m;

10. else net->max_m = 0xA10001;

; Constraints for Operations

11. net[0] = (2 * in[0] + 1) /\

12. net[1] = in[0] /\

13. ((net[2] = (3 * in[0] + in[1])) \/

14. (net[2] = 0xA10001)) /\

15. net[3] = (3 * in[0] + in[1]) /\

; Constraints for Payloads

; (i will select a payload to test)

16. net[0] = payload[i] /\

17. net[1] = payload[i+1] /\

18. net[2] = payload[i+2] /\

19. net[3] = payload[i+3]

(a) Code snippet from 429.mcf (b) Constraints from the code snippet

Figure 4.5.: Uncontrollable operations in 429.mcf program

96

Fields n, n trips, max m, and m are consecutive in the structure network and they are

all related to inputs (in[0] and in[1]). As such, A2C needs to test if the operations on

these felds are controllable. The constraints are shown in Fig. 4.5 (b). Observe that the

net→max m (i.e., net[3] in the constraint) and net→m (i.e., net[4]) are identical except

when net→max m has a constant value 0xA10001. The other 8 bytes are also closely

correlated through in[0] and in[1]. Consequently, the solver returns UNSAT for all the

payload tests.

Controllable Operation Examples. Most controllable operations are straightforward,

such as copy operations. Method toupper() is another example of a controllable op-

eration. The solver returns SAT for many payload sequences, such as consecutive 0x90’s,

which represent the NOP instructions (nop-sled) in exploits. A2C also determines unicode

conversion functions (e.g., mbtowc()) as controllable. This is because while unicode con-

version translates an ASCII character to two bytes with an additional byte (0x00), it also

translates two byte characters such as Chinese, Japanese, and Korean characters to two

bytes [130], making payload construction feasible. Our results echo the message conveyed

in [123] that Unicode conversion function can be leveraged to construct payloads. In fact,

all the data conversion/encryption/decryption/encoding via table lookup (e.g., iconv(),

mbtowc(), wctomb(), and Infate (Huffman Coding) Algorithm) are recognized as con-

trollable by A2C.

Interestingly, we also observe that some operations of complex types and perform-

ing complex computations are determined as controllable by our analysis. Consider the

following example that leverages existing foating point operations to construct malicious

payloads. According to the IEEE-754 foating point representation standard, even a very

small foating point value can affect all the 4 bytes of its presentation. For example, a foat-

ing point variable 0.0001 is encoded as 0x38d1b717 in memory. Fig. 4.6 shows FNorm()

in 456.hmmer from SPEC. It frst adds all elements in v into sum using FSum(), and then

each element is divided by the sum if the sum is not 0.0. If the sum is 0.0, all the elements

in v have 1.0 / n where n is the size of v. Note that when there are multiple defnitions

of a variable (e.g., v[x]), A2C disjoins the constraints for these defnitions, which are rep-

97

// Declarations (Data Types)

1. float v[...], sum;

2. int x, n;

// Transformative Operations

3. sum = FSum(v, n);

 // FSum returns a sum of all elements.

4. if (sum != 0.0)

5. for (x = 0; x < n; x++)

6. v[x] /= sum;

7. else

8. for (x = 0; x < n; x++)

9. v[x] = 1. / n;

; Constraints for Operations

10. sum = vold[0] + vold[1] + vold[2] + vold[3] /\

11. (vnew[0] = (vold[0] / sum) or (1.0 / n)) /\

12. (vnew[1] = (vold[1] / sum) or (1.0 / n)) /\

13. (vnew[2] = (vold[2] / sum) or (1.0 / n)) /\

14. (vnew[3] = (vold[3] / sum) or (1.0 / n)) /\

; Constraints for Payloads

; (i will select a payload to test)

15. vnew[0] = payload[i] /\

16. vnew[1] = payload[i+1] /\

17. vnew[2] = payload[i+2] /\

18. vnew[3] = payload[i+3]

(a) Code snippet from 456.hmmer (b) Constraints from the code snippet

Figure 4.6.: Controllable operations in 456.hmmer program

resented in the SSA form. The solver returns SAT for the constraints. The exploit input is

a sequence of values (e.g., −12068,−18966,−14108,−13991, ...) whose binary represen-

tations do not denote any meaningful payload. But they are transformed to a meaningful

payload by the operations in Fig. 4.6. The payload issues a system call through int 0x80

with arguments.

4.4.2 Static Analysis to Compute Decoding and Encoding Sets

In this section, we discuss the second phase, i.e., the computation of decoding and

encoding sets.

Language. A2C works on the Single Static Assignment (SSA) LLVM IR, which is gener-

ated from program source code. To facilitate precise discussion, we introduce a simplifed

language which models the LLVM IR in Fig. 4.7.

Memory loads and stores are denoted by LOAD(xa) and STORE(xa, xv), respectively,

with xa holding the address and xv the value. The address of a feld access is explicitly

computed by x := xbase → f with xbase the base pointer and f the feld. Array accesses can

be considered as a special kind of feld accesses. F(xa) models a call to function F with xa

the actual argument and x f the formal argument. Function return is modeled by ret.

98

Program P ::= s
Stmt s ::= s1; s2

` ` | skip | x := e | x := LOAD(ra) |
STORE` (xa,xv) | F` (xa) | ret ̀ | goto ̀ (`) |
if (x ̀) then goto(` 1) | strcat ̀ (xa1,xa2) |
x := lib` (x1,x2, ...) | x := malloc` (xs) |

` x := φ (y,x1,x2) | input` (xbu f ,xsize)
Operator op ::= + | − | ∗ | / | < | > | == | ...
Expr e ::= x | c | x op c | x1 op x2 | x → f
Var x ::= {x1, x2,x3, ...}
Const c ::= {true, f alse,0,1,2, ...}
Label ` ::= {` 1, ̀ 2, ` 3, ...}

Figure 4.7.: Language

Conditional or loop statements are not directly modeled. Instead we defne jumps using

goto and guarded goto. Conditional and loop statements can be constructed by combin-

ing jumps and guarded jumps. strcat(xa1, xa2) denotes a function that concatenates two

strings. It appends the second string denoted by pointer xa2 to the frst string xa1. We defne

lib(x1,x2, ...) to model library calls. It takes several xn’s as arguments and returns a value

in another variable. Function input(xbu f , xsize) models library calls that read inputs such as

read() and recv(). The x := φ(y,x1,x2) denotes the φ function in SSA that determines

the value of a variable at the joint point of two branches. In particular, if y is true, x := x1

otherwise x := x2. We also explicitly model heap allocation through the malloc() function.

Operator denotes uncontrollable (computed by the previous phase) or comparative op-

erations. Each statement is annotated with a label, which can be intuitively considered as

the line number of the statement in the program.

4.4.3 Static Analysis Phase

We formulate the static analysis as an abstract interpretation process. Intuitively, ab-

stract interpretation can be considered as “executing” the program on the abstract domain

instead of the concrete domain. The abstract domain is specifc to an analysis. In abstract

interpretation, it is often the case that branch outcomes cannot be statically determined.

Therefore, it assumes all branches are possible. In the presence of loops, the interpretation

may go through the loop bodies multiple times until a fx point is reached. If the abstract

domain is well designed, the interpretation procedure is guaranteed to terminate.

99

Addr a ::= ` | x | a. f
PointsTo σ ::= (Addr | Var) ×Context → P(Addr)
Source SRC ::= CONST(`, x) | MARKED(`, x)
TaintStore τ ::= (Addr | Var) ×Context → P(Source)
Context C ::= `
DecodeSet DEC ::= P(< Context,Label,Var >)
EncodeSet ENC ::= P(< Label,Var | Const >)

ChkSrc(`, x) ::=
`if MARKED(` m, xm) ∈ τ (x,C) then

DEC := DEC ∪ {< C, `,x >}
if ({C, `,x} ∈ DEC) then

foreach CONST(` c, c) ∈ τ` (x,C) then
ENC := ENC ∪ {< ` c, c >}

ChkStrcat(`, xa1, xa2) ::=
if ∃a ∈ σ ` (xa1,C), MARKED(` m, xm) ∈ τ` (a,C) then

if ∃b ∈ σ ` (xa2,C), CONST(` c, c) ∈ τ` (b,C) then
ENC := ENC ∪ {< ` c, c >}

if ∃a ∈ σ ` (xa2,C), MARKED(` m,xm) ∈ τ` (a,C) then
if ∃b ∈ σ ` (xa1,C), CONST(` c, c) ∈ τ` (b,C) then

ENC := ENC ∪ {< ` c, c >}

TaintConst(`, x, c) ::=
if {< `,c >∈ ENC} then

τ` (x,C) := {MARKED(`, c)}
else

τ` (x,C) := {CONST(`,c)}

Figure 4.8.: Defnitions for abstract interpretation rules

Before the abstract interpretation, constants are propagated during preprocessing using

an existing LLVM pass (e.g., x1 ∗ x2 is rewritten to x1 ∗ c if x2 is determined to hold a con-

stant c). During the analysis, A2C iteratively goes through program statements following

the control fow and updating the corresponding abstract states (e.g., the decoding set) until

a fx point is reached. Specifcally, A2C taints input buffers from untrusted sources. The

taints are propagated through controllable operations, which may be conducted through li-

brary functions (e.g., memcpy(), toupper(), and iconv()), linear operations (e.g., y = x

and y = 3 ∗ x), and so on. If a tainted value reaches an operation on the decoding frontier

computed in the previous phase, which includes comparative, uncontrollable, and terminal

operations, taint propagation is terminated and the operation is added to the decoding set.

However, the decoding set may be context-sensitive and path-sensitive. To handle such

cases, statements that load constant values may need to be considered as sources and hence

100

encoded. As a result, more statements may be added to the encoding set and the decoding

set.

Defnitions. To facilitate discussion, we introduce a few defnitions in Fig. 4.8. Our anal-

ysis computes four kinds of abstract information: the points-to set, the taint set, and the

encoding and decoding sets. The points-to set σ is a mapping from an abstract address a

(representing some memory location) or a variable x, together with the calling context, to

a set of abstract addresses denoting the memory locations that may be pointed-to by a or

x. Abstract address Addr is denoted by some variable representing an abstract global/stack

array/buffer or a label denoting an abstract heap buffer, followed by a sequence of felds.

Intuitively, one can consider it as the reference path to some abstract memory location. The

role of abstract addresses in our static analysis is similar to that of concrete addresses in

dynamic analysis (e.g., to look up taint values). Since our analysis is context-sensitive and

feld-sensitive, context is part of the mapping and felds are explicitly modeled in abstract

addresses.

Source represents the (taint) source of a value. There are two types of Source: CONST

and MARKED, meaning a constant value and an untrusted input source, respectively. We

use the term MARKED to indicate that a value originates from some input buffer and

has only gone through controllable operations. Hence it is in the exploitable space (Sec-

tion 4.2). Such values shall be in their encoded form at runtime. We track the MARKED

value propagation through our analysis. TaintStore τ stores the (taint) source information

for abstract addresses and variables. Both σ and τ are fow-sensitive, meaning that A2C

computes separate σ and τ for different program locations (i.e., labels). For example, we
` use τ to denote the abstract taint mapping computed at `. It is implicit in the rest of the

chapter for simplicity in discussion.

If MARKED values reach an operation on the decoding frontier, the operation is in-

serted to the DecodeSet DEC. The EncodeSet ENC contains the set of statements at which

the (input) values ought to be encoded. Context C is denoted by a sequence of labels (`’s)

that models a call stack. Each element in the DEC set includes a Context, suggesting that

we decode input buffers depending on the calling context. For example, hC, `,xi ∈ DEC

101

Table 4.1.: Abstract Interpretation Rules

Statement Interpretation Rule Name

input` (xb,xs) foreach a ∈ σ ` (xb,C)
τ` (a,C) := MARKED(`,xb);
ENC := ENC ∪ {h`,xbi};

INPUT

` x := x1
` (x = x1 op c)

σ ` (x,C) := σ ` (x1,C);
τ` (x,C) := τ` (x1,C);S

NON-
DF-OP

` x := LOAD(xa) σ ` (x,C) := σ ` (a,C)∀a∈σ ̀ (xa,C)S
τ` (x,C) := τ` (a,C)∀a∈σ ` (xa,C)

LOAD

STORE(xa,xv) ∀a ∈ σ ` (xa,C) : σ ` (a,C) ∪ := σ ` (xv,C)
∀a ∈ σ ` (xa,C) : τ` (a,C) ∪ := τ` (xv,C)

STORE

` x := x1 op x2 σ ` (x,C) := ⊥;
ChkSrc(`, x1); ChkSrc(`, x2);

DF-OP

` x := x1 → f σ ` (x,C) := {a · f | ∀a ∈ σ ` (x1,C)} FIELD

x :=
lib` (x1,x2, ..)

for each xi ∈ {x1,x2, ...}
ChkSrc(`, xi);

DF-TERM

` x := c TaintConst(`, x, c); CONST

strcat ̀ (xa1,xa2) ChkStrCat(`, xa1, xa2); STRCAT

F` (xa) C0 := C; C := C · ̀ ;
// x f formal arg
σ ` (x f ,C) := σ ` (xa,C0);
τ` (x f ,C) := τ` (xa,C0);
foreach buffer var y ∈ F :

σ ` (y,C) = {y};

CALL

ret C := C − last(C); RET

x := φ ` (y,x1,x2) σ ` (x,C) := σ ` (x1,C) ∪ σ ` (x2,C);
τ` (x,C) := τ` (x1,C) ∪ τ` (x2,C);

PHI

x := malloc` (xs) σ ` (x,C) := `; HEAP

suggests that when the statement denoted by ` is encountered under context C at runtime,

A2C will decode the variable x.

Decoding Set is Context-Sensitive and Path-Sensitive. The membership of a statement

in the decoding set may change with the context. Fig. 4.9 shows an example in ngircd, an

Internet Relay Chat (IRC) daemon program. In this example, we treat all network functions

as untrusted input sources. Thus, the input data from these functions are encoded while

data from fles are not. ngt TrimStr() is a utility function for trimming a string. It is

invoked at different places. For instance, Read Config() calls it with a string from the

confguration fle, which is not encoded. On the other hand, Parse Request() also calls

102

 VOID

 ngt_TrimStr(CHAR *String) {

 . . .

 // String can be either from

 // a configuration file or

 // a network message

40: start = String;

 . . .

46: ptr = strchr(start, '\0') ✁ 1;

47: while(((*ptr == ' ') || (*ptr == 9) ||

 (*ptr == 10) || (*ptr == 13) || �

 . . .

tool/tool.c

 VOID Read_Config(VOID){

 . . .

386: fd = fopen(NGIRCd_ConfFile, "r");

 . . .

441: if(!fgets(str, ..., fd)) break;

442: ngt_TrimStr(str);

conf.c

 Parse_Request(..., CHAR *Request){

 . . . /* Request is a user request

 through network. */

140: ngt_TrimStr(Request);

parse.c

Figure 4.9.: An example of context sensitive code

it, but with a string from the network. The string is encoded this time. Hence, A2C may

or may not decode the value in *ptr at Line 47, depending on the context. Therefore, each

statement in the DEC set is annotated with a context such that decoding is only performed

when the same context is encountered at runtime.

The decoding set is also path-sensitive. Consider the example in Fig. 4.10 (a), which

contains code snippets from unrtf, a program for converting documents in Rich Text For-

mat (RTF) to other formats such as HTML and LaTeX. At 2 and 3 , str may hold a

constant value or a tainted value ch. At 4 and 5 , str is inserted to a hash map. Strings in

the hash map are loaded and used at 6 . Depending on whether 2 or 3 is executed, Line

336 may or may not belong to the decoding set. In other words, if tmp holds a constant

string at 336, it does not need to be decoded. Note that in this case, the context of Line 336

cannot be used to distinguish the different behaviors of the line. We cannot afford to track

paths at runtime either. Hence, our solution is to identify the related constant strings, such

as that at Line 326, and treat them as input sources so that they will be encoded as well. As

a result, the behavior at Line 336 becomes path insensitive, always requiring decoding. �

Abstract Interpretation Rules. The interpretation procedure is formulated by the rules

in Table 4.1, which specify how the abstract information is updated upon each state-

ment. Specifcally, when the program reads data from untrusted input sources through

input(xb,xs) with xb the buffer address and xs the size, the TaintStore of all the abstract

103

 static int read_word (FILE *f) {

 ...

246: ch = getchar(f);

 ✁

266: switch(ch) {

 ✁

323: case '\t':

326: strcpy(str, "\\tab");

327: fprintf (�, str[1]);

 ...

331: case ';':

332: str[0] = ch;

 ...

 }

 ✁

454: word_new (str);

parse.c

 void process_font_table (Word *w) {

 �

 // word_string(w) returns

 // hash[...]✂str stored by word_new

335: tmp = word_string(w2);

336: if(!strncmp("\\f", tmp, 2)) {

 ...

 }

convert.c

ch

ch

str

str[1]

hash[�]✂str

 ...

str

hash[�]✂str

tmp (=hash[...]✂str)

tmp

1-2461

1-2661

2-3261

2-3271

5-1081

 ...

3-3321

5-1081

6-3351

6-3361

(c) Abstraction interpretation state

{M}

{M}

{C}

{C}

{C}

 ...

{M}

{C,M}

{C,M}

{C,M}

 Word* word_new(char *t){

 ✁

108: hash[✁]✂str = my_strdup(t);

 }

word.c

{ch246}

{ch246}

{ch246}

{ch246}

{ch246}

 ...

{ch246}

{ch246}

{ch246}

{ch246, "\\tab"326 }

{}

{ch266}

{ch266}

{ch266}

{ch266}

 ...

{ch266}

{ch266}

{ch266}

{ch266, tmp336}

1

2

3

4

6

5

...

str

str[1]

hash[�]✂str

 ...

str

hash[�]✂str

tmp (=hash[0]✂str)

tmp

...

2-3262

2-3272

5-1082

 ...

3-3322

5-1082

6-3352

6-3362

...

{M}

{M}

{C,M}

 ...

{M}

{C,M}

{C,M}

{C,M}

...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

 ...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

...

{ch266, tmp336}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

 ...

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

(a) unrtf program source (each circled number represents a block index)

 char* word_string (Word* w) {

 ✁

84: t_str = hash[✁]✂str;

 ✁

86: return t_str;

 }

word.c

1st iteration.

DF-OP

STORE

DF-OP

2nd iteration

CONST

DF-TERM

(b) Abstract interpretation path

1 2 4 5 3 4 5 6

...... 3rd iteration

1

Abstract Addr/VarRef. Taint ENC DEC Description

Figure 4.10.: An example of the iterative interpretation procedure on unrtf

memory locations pointed to by xb are set to MARKED (Rule INPUT). Note that using

the context C makes our analysis context sensitive. The encoding set is also updated. Rule

NON-DF-OP describes the interpretation of an operation that is not on the decoding fron-

tier, i.e., controllable operation such as copy. In this case, A2C copies the points-to set

and the abstract taint set. Rule LOAD describes that for a load instruction, the resulting

points-to/taint set is the union of all the points-to/taint sets of all abstract memory locations

pointed-to by the address xa. Similarly, for a store statement, the points-to/taint set of the

value variable xv is added to the points-to/taint set of any abstract memory location pointed

to by xa. A2C only propagates taints for controllable operations. Rules DF-OP handles an

uncontrollable operation or a comparative operation. It frst resets the taint. It then calls

function ChkSrc(`,x) that checks if variable x is tainted as MARKED. If so, the statement

together with the current context and the variable are inserted to the decoding set DEC. The

context and variable information is needed to indicate which variable should be decoded

and under what context. The function further tests if the statement is already in DEC and

the variable is currently tainted as CONST, suggesting that the statement sometimes uses a

value from untrusted input and sometimes uses a constant. This corresponds to the case in

which the decoding set is path sensitive. To eliminate such path sensitivity, A2C adds the

104

source of the constant to ENC, indicating that the source should be tainted as MARKED

in the next round of abstraction interpretation.

Rule DF-TERM handles the other kind of operations in the decoding frontier: the ter-

minal operations.

Rule CONST handles constant assignment, including constant string assignment. It tests

if the constant assignment has been inserted to the ENC set (by Rules DF-OP or DF-TERM),

indicating that the constant should be encoded so that we need to fgure out its decoding

places. In this case, it sets the taint as MARKED, otherwise CONST. Rule STRCAT

handles string concatenations. When a string from an untrusted source is concatenated with

a constant string, we add the constant string to the ENC set to indicate that the string shall

be encoded. Such concatenation happens frequently when a program uses string formatting

functions such as sprintf(). Rule CALL updates the current context. It further propagates

the points-to and taint sets from the actual argument to the formal argument. At the end,

it sets the points-to sets of all the local buffer variables to contain themselves. The RET

rule pops the last entry in the context. The PHI rule specifes that since x takes the value of

either x1 or x2, its abstract sets are the union of those of x1 and x2. A2C does not model path

conditions so that it essentially considers all paths are feasible and computes merged results

along various paths. Rule HEAP describes that we use the label of the allocation statement

to denote the abstract heap region allocated. In addition, the σ and τ entries computed at

a location are also propagated to its control fow successors. The rules are omitted as they

are standard. The abstract interpretation is iterative until a fx point is reached. It is easy to

infer that our analysis must terminate as all the abstract domains are fnite.

Example. Fig. 4.10 shows how the analysis works for unrtf that reads an RTF fle and

transforms it to various formats. Fig. 4.10 (a) shows some code snippets of the program.

The description of them can be found at the beginning of Section 4.4.3. The program is

simplifed and slightly changed from its original version for illustration.

The abstract interpretation procedure is equivalent to traversing the path in Fig. 4.10

(b). The real interpretation order inside A2C is slightly different due to the φ functions

that are omitted for easy explanation, although the outcome is identical. In the path, the

105

two branches of the switch are traversed in two sub-paths: 1 2 4 5 and 1 3 4 5 . They

insert strings to the hash table and the strings are later accessed at 6 .

Fig. 4.10 (c) shows the abstract states computed by A2C in multiple rounds. Each

round follows the path in (b) during interpretation and corresponds to a sub-table in (c).

The frst column shows the block, line and round numbers of each statement. For instance,

2-3261 means Line 326 inside 2 in the frst round of interpretation. Here, we only show

the statements related to our analysis. The next two columns present the abstract address

or variable that each statement accesses and its taint set. C means the CONST type and M

denotes the MARKED type. The next two columns show the contents of ENC and DEC.

The last column presents the rules applied.

First Round. ENC and DEC sets are empty at the beginning. At 1 − 2461, since ch is

loaded from an input source, we add ch246 to ENC to indicate that we should encode ch

at Line 246. Then, ch is used in a comparison at 1 − 2661, thus we add ch266 to DEC,

meaning that we should decode ch at Line 266. For simplicity, we ignore the contexts in

the DEC set. At 2 − 3261, a constant string is copied to str, and part of it is printed at

2− 3271. Since str has a constant taint at this point, it does not need to be decoded. Later

it is stored into the hash table at 5 − 1081. Then, a character from a fle is copied to str at

3 − 3321, and is then stored in the hash table at 5 − 1081. Since A2C cannot distinguish if

the hash table write and the previous write access different (abstract) memory locations, it

unions the two taints so that the hash table is tainted with both CONST and MARKED,

according to Rule STORE.

Later, at 6−3351 and 6−3361, the stored string is loaded and compared with a constant

string “\\f”. According to Rule DF-OP, since Line 336 is comparative and tmp is tainted

with MARKED, it shall be decoded. An entry is hence inserted to the DEC set. Also

according to the second if statement inside ChkSrc(), which is invoked by Rule DF-OP,

the constant string at Line 326 is added to ENC, meaning that the constant string shall be

encoded.

Second and Third Rounds. The second round traverses the same path. At 2 − 3262, the

constant string is MARKED as it is in ENC, meaning that we should track its propagation

106

to fgure out the decoding places (Rule CONST). As a result, str[1] at Line 327 is added

to DEC according to Rule DF-TERM. The rest is similar to the frst round. In the third

round, none of the abstract sets are updated, a fx point is reached. The analysis terminates.

From the fnal ENC and DEC sets, we should encode at Lines 246 and 326, and decode

ch, str[1] and tmp at Lines 266, 327 and 336, respectively. �

4.4.4 Runtime

Supporting Context Sensitivity. Once the analysis phase is fnished, we have the DEC

and ENC sets. Since both DEC and ENC are context sensitive, meaning that decoding

and encoding should be performed only under certain calling contexts, the instrumentation

needs to compare at runtime if the current context matches with that in DEC/ENC in order

to perform decoding/encoding.

A straightforward way to obtain the current context is to perform stack walking. How-

ever, it incurs signifcant overhead. Furthermore, the resulting contexts are verbose and

diffcult to compare. To address the problem, we adopt a precise calling context encoding

algorithm [131]. The algorithm maintains an id which is a unique number for each context.

Given a program and its call graph, the algorithm automatically determines a unique id for

each context. It further instruments the program in such a way that the instrumentation

(at call sites) guarantees to produce the corresponding id when a context is reached. The

instrumentation only requires simple (and low-cost) additions and subtractions before and

after a subset of call sites. Context comparison becomes simple id comparison. Since the

encoding algorithm is not our contribution, details are elided.

Encoding Based on One-Time-Dictionary. Simple encodings such as subtract-by-one

are easy for the adversary to reverse engineer. He/she can prepare the exploit accordingly

so that the exploit inputs become the plain-text payloads after our encoding. To address the

problem, we use one-time-cipher. In particular, A2C has a large number of pre-generated

random one-to-one mappings that project a byte to another unique byte. Whenever the pro-

gram reads inputs from an untrusted source, A2C selects a mapping to encode the buffer.

107

Since the dictionary for each untrusted input buffer is different from others, knowing pre-

vious mappings (e.g., through memory disclosure) does not help in launching subsequent

attacks. More discussion can be found in Section 4.5. Another thing we want to point out is

that A2C mutates every byte from an untrusted sources. As such, none of the instructions

from the original payload can be properly executed.

Using different dictionaries for different buffers requires A2C to track the dictionaries

for individual buffers so that decoding can be properly performed. This is achieved by

adding runtime taint propagation logic for controllable operations in the exploitable space.

For controllable operations that are not simple copies (e.g., y = 3 ∗ x), A2C decodes the

source operand(s), performs the operation, and encodes the resulting operand using the

same mapping. Since the exploitable space is very small, the entailed runtime overhead is

low (see Section 4.6).

4.5 Threat Model

A2C assumes the subject program is benign but the inputs may be malicious. The

user specifes which part of the inputs cannot be trusted such as network inputs and/or

local fle reads. It trusts the kernel. It also trusts that the low level output libraries are

free of vulnerabilities, as it decodes the buffer values before calling these libraries. If

they cannot be trusted, we can mitigate the problem by postponing the decoding to before

output syscalls, which requires instrumenting libraries. Note that we do not trust all library

functions. For example, we do not decode inputs for functions that copy data such as

strcpy and memcpy. In practice, such functions are commonly exploited by attackers

whereas output library functions such as write and send are not.

A2C aims to protect against payload injection attacks. It cannot handle other attacks

that do not inject payload. It also requires the payload injection go through explicit input

channels, which is true for most attacks. A2C currently only supports C/C++ programs

and hence cannot deal with payload injections for programs in other languages such as

JavaScript, although the idea is general.

108

Attacks In the Post-exploitable Space. A2C leverages constraint solving and a large

pool of payload test cases that models the distribution of valid payloads to determine the

decoding frontier with strong probabilistic guarantees. However, it may still be possible to

construct some payloads via the very limited controllability of those uncontrollable oper-

ations on the decoding frontier. We argue that such payloads will have very limited func-

tionalities. Moreover, we only protect against payloads that are larger or equal to 16 bytes.

While it may be possible to construct payloads smaller than that, we again argue that such

payloads will have very limited functionalities. Note that if a primitive value of four bytes

is related to input, the attacker could inject a four byte payload to that primitive if there

existed one. Protecting against such small payloads is almost impossible and unnecessary.

In practice, we have not seen any examples of these payloads.

Memory Disclosure. Memory disclosure vulnerabilities can reveal memory contents of

a process. Attackers can access memory pages that contain the encoded values and thus

reverse engineer dictionaries. For example, he/she can manipulate the input by providing a

sequence of unique values and then search in the disclosed memory for regions that have a

sequence of unique values of the same length. By contrasting the two, the dictionary can

be revealed. However, since A2C uses different dictionaries for individual input buffers,

disclosing previous dictionaries does not help in subsequent attacks. Since A2C uses a

random dictionary each time, it is really diffcult to guess the next dictionary even knowing

the previous dictionaries (i.e., 1 out N with N the number of pre-generated dictionaries).

We use N = 106 in this chapter.

4.6 Evaluation

A2C is implemented on LLVM [132]. We evaluate A2C on 18 different real world

programs shown in Table 4.2. All the experiments were done on a machine with Intel Core

i7 3.4GHz, 8GB RAM, and 32-bit LinuxMint 17.

We searched exploit-db.com to choose target programs. We tried the listed programs

with reported exploits and selected those which we could reproduce. We have 6 network

https://exploit-db.com

109

Table 4.2.: Evaluation Results for Analysis

Program Size |ENC| |DEC| CS1 CCE2 Analysis Time
DF Comp.3 SA4

mupdf 483K 598 2283 241 172 1h 5m 12m 11s
prozilla 54K 98 754 391 104 9m 49s 2m 43s
stftp 18K 42 144 42 37 6m 51s 1m 58s
yops 9,215 49 153 4 12 24s 13s
nginx 335K 151 1005 37 72 34m 14s 17m 22s
ngircd 119K 123 391 113 249 7m 39s 10m 1s
unrar 99K 36 239 44 164 17m 21s 7m 11s
mcrypt 36K 83 278 40 35 12m 41s 4m 20s
gif2png 16K 32 129 28 22 8m 19s 1m 38s
mp3info 17K 33 91 23 19 6m 9s 2m 17s
fcrackzip 48K 18 37 23 11 8m 17s 2m 58s
chemtool 176K 100 388 27 39 20m 35s 7m 41s
vfu 180K 64 129 49 318 12m 51s 8m 21s
unrtf 25K 31 220 291 178 14m 5s 2m 43s
rarcrack 1,364 7 19 39 9 0s 5s
make 124K 106 719 125 94 31m 14s 1h 40m
Xerces-C 415K 121 1137 102 213 1h 28m 6h 21m
apache 208K 364 1586 98 63 1h 56m 5h 41m
1# of Context Sensitive Statements.
2# of instrumentations for Calling Context Encoding.
3Decoding Frontier Computation Phase. 4Static Analysis Phase

Table 4.3.: Evaluation Results for Attack Prevention

Program # of Inputs
(Mal./Benign)

of
Vulnerabilities

of Payloads
(Shellcode/ROP)

of Crashes
(Mal./Benign)

of ins. exec.
in Payloads

of ROP Gadgets
Exec. in Payloads Precision/Recall

mupdf 10 / 20 1 (CVE-2014-2013) 50 / 50 1000 / 0 3.62 0.1 100% / 100%
mcrypt 10 / 20 21 50 / 50 1000 / 0 3.62 0.18 100% / 100%
sftp 10 / 20 1 (EDB-ID: 9264) 50 / 50 1000 / 0 3.6 0.08 100% / 100%
yops 10 / 20 1 (EDB-ID: 14976) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
nginx 10 / 20 1 (CVE-2013-2028)* 50 / 50 1000 / 0 3.62 0.09 100% / 100%
ngircd 10 / 20 22 50 / 50 1000 / 0 3.62 0.11 100% / 100%
unrar 10 / 20 1 (EDB-ID: 17611) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
prozilla 10 / 20 23 50 / 50 1000 / 0 3.6 0.09 100% / 100%
gif2png 10 / 20 1 (CVE-2009-5018) 50 / 50 1000 / 0 3.62 0.09 100% / 100%
mp3info 10 / 20 1 (CVE-2006-2465) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
fcrackzip 10 / 20 1 (EDB-ID: 14904) 50 / 50 1000 / 0 3.62 0.05 100% / 100%
chemtool 10 / 20 1 (EDB-ID: 36024) 50 / 50 1000 / 0 3.6 0.18 100% / 100%
vfu 10 / 20 1 (EDB-ID: 35450) 50 / 50 1000 / 0 3.61 0.18 100% / 100%
unrtf 10 / 20 1 (CVE-2004-1297) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
rarcrack 10 / 20 24 50 / 50 1000 / 0 3.62 0.05 100% / 100%
make 10 / 20 1 (EDB-ID: 34164) 50 / 50 1000 / 0 3.62 0.18 100% / 100%
Xerces-C 10 / 20 1 (CVE-2015-0252) 50 / 50 1000 / 0 3.62 0.07 100% / 100%
apache# 10 / 20 25 50 / 50 1000 / 0 3.6 0.13 100% / 100%
1(CVE: 2012-4409, 2012-4527) 2(CVE: 2005-0226, 2005-0199) 3(CVE: 2005-0523, 2004-1120)
4(EDB-ID: 15062, 15054) 5(CVE: 2004-0940, 2006-3747) *This CVE includes multiple vulnerabilities #Version 1.3.31

programs, with two client programs: prozilla and stftp, and four server programs:

apache, nginx, yops, and ngircd. We have 12 user applications. mupdf reads and dis-

plays pdf documents. unrar is a decompressor program. mcrypt encrypts and decrypts

fles. gif2png converts gif to png. unrtf converts RTF fles to other formats such as

110

HTML. mp3info reads and modifes meta tags of MP3 fles. rarcrack and fcrackzip

recover passwords of compressed fles (e.g., zip and rar fles) using different strategies.

vfu is a text-mode fle manager. chemtool is a GUI program for drawing chemical struc-

tures. Xerces-C is an XML parser. Among these programs, we have two GUI programs

that require user interactions: mupdf, and chemtool. vfu requires text-based user interac-

tions.

The frst two columns of Table 4.2 show the programs and their size in C source code

lines (CLOC). The third and fourth columns present the number of entries in DEC and

ENC computed by our analysis. They are essentially LLVM IR statements annotated with

contexts. The ffth column shows the number of statements in DEC that behave differently

depending on the context. One such statement has multiple entries in the DEC set (for dif-

ferent contexts). The sixth column represents the number of instrumented IR statements for

calling context encoding. The last two columns show the time spent on computing the de-

coding frontier, and the static analysis for DEC/ENC set computation and instrumentation,

respectively. The overhead of decoding frontier computation includes the running time of

Z3 constraint solver. We use one minute as the timeout threshold. We also avoid testing

identical payload sequences.

From the table, we have the following observations. A2C can handle large and complex

programs such as mupdf and apache. The number of entries in ENC/DEC is small with

respect to the program size. This supports our speculation that the exploitable space is

small. The data in the ffth column also supports that context sensitivity is needed. Finally,

the analysis overhead is acceptable. Some large programs take a few hours. However, we

argue that this is one-time cost.

4.6.1 Performance

Performance for Programs with Vulnerabilities (i.e., those in Table 4.2). To evaluate the

runtime overhead of A2C, we run both the original program and the instrumented version

10 times and take the average. We use large inputs. For example, we use document fles

111

that are larger than 10MB to test fle processing programs unrtf, Xerces-C, and gif2png.

As such, the native executions usually last for more than a few seconds. For the programs

that require user interactions, we force them to quit after they load, process, and render the

inputs, and before they take any user interactions. We manually identify the locations in the

source fles that indicate such status (e.g., before calling a function to change the status bar

to show the input is successfully loaded and rendered) and insert exit() to these locations.

We then measure the overhead for these shortened executions. Note that, this usually leads

to over-approximation of the overhead as our instrumentation largely lies in the initial input

loading and parsing logic.

0%

2%

4%

6%

8%

10% 6.11%

Figure 4.11.: Normalized overhead on programs in Table 4.2

Fig. 4.11 shows the result. The average overhead is 6.11%. In most cases, the overhead

is less then 6%. There are a few exceptions. Programs dedicated to processing and parsing

input fles such as make, Xerces-C, unrtf, and gif2png have relatively higher overhead.

This is because the instrumented statements are being executed throughout the execution.

Also, the programs that require interactions, e.g., mupdf, chemtool, and vfu, have rel-

atively higher overhead. This is because of the way we measure the overhead. apache

has the highest overhead (9.84%) due to the complex structure of input flters that leads to

many constant strings being encoded.

112

0%

2%

4%

6%

8%

10%

12%

14%
8.18%

Figure 4.12.: Normalized overhead on SPEC CPU2006 programs

SPEC CPU2006. We also evaluate the performance of A2C on SPEC CPU2006. We run

both the original and instrumented programs 10 times using the reference inputs. Fig. 4.12

shows the result. The average overhead is 8.18%. 401.perlbench, 403.gcc, and 483.xa

lancbmk have relatively higher overhead because they process inputs intensively. 456.hmm

er has 9.94% overhead as it processes inputs even during the execution of its main algo-

rithm. 429.mcf and 462.libquantum have extremely low overhead, less than 1.5%. This

is because they process inputs once at the very beginning. As such, A2C only needs to

decode at the beginning and the rest of the execution does not cause any overhead. The

average overhead for all 30 programs including programs in Table 4.2 and SPEC CPU2006

is 6.94% and the geometric mean is 5.94%.

4.6.2 Effectiveness

To evaluate the effectiveness of A2C in preventing attacks and allowing benign exe-

cutions, for each program, we prepare 10 exploits and 20 other benign inputs. For each

exploit input, we prepare 100 different malicious payloads, including 50 shellcodes and 50

ROP payloads.

113

The shellcodes are generated from [127], and we use ROP attack creators [128, 129]

to generate 50 different ROP payloads for each vulnerable application. Thus, we have

1,000 attack executions and 20 benign executions for each program. Note that, as shown

in Table 4.3 Column 3, some programs have more than one vulnerability, which require

unique exploit inputs. The table also shows the results. Observe in the ffth column, A2C

successfully crashes all the attacks and allows all the benign inputs to proceed to normal

termination and produce the expected outcomes. The next two columns show the average

number of payload/gadget instructions that got executed before crashing. They are all in

very small numbers. As such, they can hardly cause any damage to the system.

Decoding Frontier (DF) Operation Classifcation. We further analyze the DF operations

for all the subject programs and classify them into a few categories. Fig. 4.13 shows the

results, from which we have the following observations.

0%

20%

40%

60%

80%

100%

Comparative

(63%)

Terminal

(19%)

Uncontrollable transformative

(18%)

Type

Widening

(5%)

Indexing

(3%)

Primitive Type

Conversion

(5%)

Irreversible

Calculation

 (5%)

Figure 4.13.: Different types of decoding frontiers

First, 63% operations on DFs are Comparative Operations. Note that comparative op-

erations are mostly conducted on individual buffer elements (of primitive types), A2C only

decodes the element needed by the operation. The decoded value is dead (e.g., overwrit-

ten) right after the operation. Such DF operations cannot be exploited. Second, 19% DF

operations are Terminal Operations. For a terminal operation, A2C frst copies the original

buffer to a temporary buffer, and then decodes the temporary buffer. Also, after the termi-

nal operation, A2C releases the temporary buffer to minimize the attack window. Third,

we also identify a few kinds of Uncontrollable Transformative Operations. In particular,

114

Type Widening expands each element in a buffer by padding it with some specifc byte(s)

such as 0x00. Note that we use the constraint solver to determine whether each case of type

widening is controllable as not all type widening cases are uncontrollable. In fact, casting

a one-byte data type to a two-byte data type is solvable in many cases. Note that some

binary operations (e.g., multiplication) of values with smaller types yield a value of a large

type. These are not type-widening as the bits in the resulting value are often fully/largely

controllable. Irreversible Calculation means arithmetic transformations that cause inten-

sive correlations among values so that the solver returns UNSAT for all tests. An example

can be found in Section 4.4.1. Primitive type conversion means that a buffer element is

converted to a value of primitive type (e.g., atof()) and this value is not stored to any

array/buffer. Since single primitive values can hardly be exploited to inject payloads due

to the size, decoding is safe. Note that A2C protects consecutive primitive values if they

can form a region larger than 16 bytes. Indexing means that an encoded value is used to

index a non-constant array. It is safe to decode the value because the decoded value is of a

primitive type and soon dies after the operation. The entire buffer is never decoded.

Decoding Frontier (DF) Computation. Table. 4.4 shows the evaluation results of decod-

ing frontier computation. The frst column shows the programs. The next three columns

show the numbers of controllable operations, uncontrollable operations, and their sum, re-

spectively. The last column shows the average number of constraints for each memory

region under test. Recall that if the solver returns SAT, TIMEOUT or UNKNOWN for a

constraint in any payload sequence test, the corresponding operations are considered con-

trollable.

We make the following observations. First, in most cases, there are more UNSAT cases

than SAT cases. This means that most input related computations are not controllable.

There are a few exceptions. gif2png, apache, and chemtool have more SAT cases as our

modeling of the external library calls is not complete and the modeling of foating point

functions is conservative. For example, we assume exp() function can return any posi-

tive foating point values while the parameter of the exp() function may have constraints,

hence it may not be able to produce some foating point values. Note that such a conser-

115

Table 4.4.: Results for Decoding Frontier Computation

Program
of Operations Avg. # of

ConstraintsControllable Uncontrollable Total
mupdf 9 141 150 16.4
Prozilla 4 20 24 15.9
stftp 2 8 10 11.5
yops 0 1 1 8
nginx 4 41 45 17.2
ngircd 2 12 14 14.1
unrar 6 33 39 14.2
mcrypt 4 24 28 18.3
gif2png 13 10 23 16.9
mp3info 4 9 13 15.3
fcrackzip 4 4 8 13.6
chemtool 29 22 51 14.1
vfu 3 25 28 15.5
unrtf 2 22 24 14.5
rarcrack 0 0 0 0
make 9 53 62 15.4
Xerces-C 14 75 89 14.8
apache 145 129 274 17.7
Average 14.1 34.9 49 14.05

vative assumption only causes over-approximation. Second, the total number of operations

for testing is not large (apache has the largest number 274). This is because the control-

lability classifcation for most operations is straightforward (e.g., comparative operations

and copy operations) and hence does not require constraint solving. Third, the average

number of constraints in our tests is not large, suggesting that controllable operations are

often shallow in the data fow, meaning that they are close to program inputs. This supports

our assumption that most computation happens in the post-exploitable space. Note that we

do not need to test controllability of operations if their operands are not controllable.

4.6.3 Case Studies

Running Web Servers on Real-world Traffc. To further evaluate the robustness of A2C,

we run the instrumented web servers on a real-world traffc log. We obtained our institu-

116

tion’s server access log from November 2015 to January 2016. The log contains 5.6 million

requests with 4.2 million unique requests, including some suspicious requests with binary

payloads (about 100 of them). We also randomly inject 300 exploit inputs to the access log.

We ran three servers (apache, nginx, and yops) with these requests. The results show that

the instrumented versions produce the same expected results as the original versions except

for the attacks. All attacks are prevented. The throughput is only reduced by 8.83%, 7.37%,

and 5.49%, respectively.

Code Injection Through Benign Functions and Payload Triggered Through Integer

Overfow. In this case study, we show how a payload can be injected through benign

and non-vulnerable program logic and later triggered by an integer overfow vulnerability.

Such a combination makes it diffcult for traditional defense techniques. Fig. 4.14 shows

code snippets of the victim program, mupdf. First, observe that the xps read dir pa

rt() function reads a fle. It opens a fle at Line 455, then gets the size of fle at Line

458. Later, it reads the fle and puts it into a heap buffer (part->data) at Line 462.

Note that the function xps read dir part() is not vulnerable. But still, the attacker can

provide a crafted xps fle that contains a malicious payload. The payload will be injected

through the normal fle read in the benign function. Thus, most existing protection schemes

including CFI, DFI, ASLR, and boundary checkers cannot prevent such injection. While

malicious payload detection methods can identify the injected shellcode by scanning the

input fle at the fread function, the attacker can use obfuscation techniques to circumvent

such detection.

To trigger the payload, the attacker exploits an integer overfow vulnerability. The in-

teger overfow happens as follows. It reads input from a fle at Line 91 in lex number().

Then the input is propagated to Line 97 where the integer overfow occurs. The program

assumes the input c is between ‘0’ to ‘9’, and converts it into an index (i). At Line 106,

the converted index is stored into buf->i. Later, the index is used to write elements into

a structure (at Lines 176-178 in pdf repair obj stm()). Note that the earlier index is

propagated to variable n which is also used as an index. This integer overfow can be

leveraged to overwrite some critical data felds such as function pointers in order to change

117

control fow of the program to the injected shellcode. Note that the exploit may not be de-

tected by address sanitizers as the attacker can manipulate the offset n to directly overwrite

the target memory addresses that may fall into other legitimate memory regions, without

overwriting the canaries.

In contrast, A2C defeats the attack by breaking its weakest link, which is the injected

payload itself. In particular, A2C mutates the input including the shellcode at the fread in

Line 462. The original shellcode is shown in Fig. 4.14 (a), and the corresponding mutated

shellcode in Fig. 4.14 (b). Observe that the mutated shellcode is broken and not executable.

 static int lex_number (✁) {

 ...

 91: int c = fz_read_byte(f);

 ...

 case RANGE_0_9:

 97: i = 10*i + Decode(c)

 - '0';

 ✁

106: buf->i = i;

pdf/pdf_lex.c

 static void

 pdf_repair_obj_stm (...) {

 ...

172: n = buf.i;

 ✁

 // Triggering the shellcode

176: xref->table[n].ofs = num;

177: xref->table[n].gen = i;

178: xref->table[n].stm_ofs = 0;

pdf/pdf_repair.c

(a) Injected Shellcode (b) Mutated Shellcode

 push 0x2e2e2e62

 mov edi, esp

 xor eax, eax

 ...

 ret 0x84c8

 test

 in eax, dx

 ...

Hex: c2 c8 84 84 84 23 4d 99 ...Hex: 68 62 2e 2e 2e 89 e7 33 ...

 static xps_part* xps_read_dir_part(...) {

 ✁

455: file = fopen(buf, "rb");

 ...

458: fseek(file, 0, SEEK_END);

459: size = ftell(file);

 ...

462: fread(part->data, 1, size, file); // Shellcode Injection

xps/xps_zip.c

Figure 4.14.: Integer overfow in mupdf

Note that A2C does not prevent the integer overfow. Even through it encodes the input

value at Line 91, it decodes the value right before the overfow (at Line 97) because that is

an operation of primitive type. In other words, the attacker can still exploit integer overfow

118

vulnerabilities. However, when the control fow of the program is redirected to the injected

shellcode, the execution crashes almost immediately as the frst instruction of the mutated

shellcode is “ret 0x84c8”, which does not have a valid return address.

One might think the attacker can exploit the integer overfow to direct the control fow

to some buffer in the post-exploitable space. However, as we pointed out in Section 4.5, the

transformations performed by the subject programs are complex enough that the attackers

cannot generate plain-text payloads in the post-exploitable space.

Preventing ROP attacks. As DEP (Data Execution Prevention) becomes more and more

popular, attackers now use ROP to bypass such protection. In this case study, we show how

A2C prevents ROP attacks using an example.

 void process_font_table (...) {

 ...

331: char name[255];

 ✁

341: while (w2) {

342: tmp = word_string(w2);

343: if (tmp &&

 Decode(tmp[0]) != '\\')

344: strcat(name, tmp);

convert.c (a) Injected ROP gadgets

0x804d820 mov ebx,0x0; ret

0x804ec7d mov eax,0x806275c; ret

... ...

Address Instructions

(b) Mutated ROP gadgets

0xa2ae728a Invalid address

0xa2ae46d7 Invalid address

... ...

Address Instructions

Figure 4.15.: Stack buffer overfow in unrtf

Fig. 4.15 shows unrtf which has a stack buffer overfow vulnerability. It can be lever-

aged to inject a malicious payload that allows constructing a ROP gadget chain. The pro-

gram frst gets a user provided string at Line 342. Then, it compares the string with a

constant at Line 343. As it is a comparative operation, A2C decodes the value, allowing

proper comparison. The buffer overfow happens when the program copies the user pro-

vided buffer (tmp) to a local buffer name at Line 344 in process font table(). Observe

that the size of name is only 255. Thus, providing a long enough input to the tmp buffer

will result in a stack overfow.

119

Fig. 4.15 (a) shows the injected ROP payload and the corresponding gadgets. The

address column shows the payload that contains the raw addresses of the ROP gadgets.

The instructions column shows the instructions from the ROP gadgets. Observe that they

all end with a ret instruction. These chains of instructions are essentially the ones that

get executed once the attack is launched. Fig. 4.15 (b) shows the mutated payload. For

demonstration purpose, we use a simple encoding/decoding scheme even though our im-

plementation uses one-time-dictionary. In particular, the mutation is to xor a value with

0xAA. Observe that all the addresses in the original payload are encoded and point to in-

valid addresses. Hence, the attack fails. Note that since A2C prevents attacks by mutating

payloads, the injection methods do not affect our protection.

Preventing English Shellcode. As a counter attack to shellcode detection techniques, Ma-

son et al. proposed an automatic way to generate shellcode which is similar to English

prose [115]. Such technique can be used to avoid existing shellcode identifcation tech-

niques [133–136].

English Shellcode and Mutated English Shellcode

 push esp

 push 0x20657265

 ...

Assembly Opcode ASCII

 54

 68 65 72 65 20

 ...

There is a

majorcenter of

economic activity, ...

 inc dl

 iret

 ...

 fe c2

 cf

 ...

No ASCII character

found

Figure 4.16.: English shellcode example

Fig. 4.16 shows an example of English Shellcode presented in [115]. As shown in the

ASCII column, the shellcode is an English statement. The corresponding assembly instruc-

tions are listed in the frst column. While we are just showing one example, in practice at-

tackers also use other various shellcode obfuscation and compression techniques [137,138]

to avoid shellcode identifcation. A2C mutates all untrusted inputs including shellcodes

as they are part of the inputs. The mutated English Shellcode includes those shaded in

120

Fig. 4.16. For demonstration, we again apply the xor with 0xAA mutation. Observe that

the mutated shellcode is completely different from the original shellcode. While the frst

instruction is executable, it does not help attackers to achieve anything useful. More im-

portantly, the second instruction is iret, which can only be executed in a kernel mode.

Executing iret results in a segmentation fault. One interesting observation is that the frst

a few instructions in the mutated shellcode are often executable. The ffth column of Ta-

ble 4.3 shows the average number of instructions executed in the mutated payload is very

small (<4). It is also important to note that such a few (mutated) instructions do not have

the same semantics as the original malicious logic. They often immediately lead to crashes

and do not cause any damage to the system.

Buffer Overfow In Structure. AddressSanitizer [139] is an important technique to pre-

vent various buffer overfow attacks including heap and stack overfows. It works by plac-

ing canaries before and after a buffer. One of the limitations of the technique is that it

cannot handle buffer overruns within a structure.

 void process(RECORD* p) {

1: fread(p->name, ✁);

2: printf("Name: %s\n",

 Decode(p->name));

3: p->handler(p->privilege);

Program.c

typedef struct tag_RECORD {

 char name[255];

 void (*handler)(int);

 int privilege;

} RECORD;

Program.h

Figure 4.17.: Buffer overrun in structure

Fig. 4.17 shows a buffer overfow vulnerability in a structure. Specifcally, buffer

name in the structure RECORD can affect adjacent data felds including a function pointer

handler. At Line 1, it reads a fle to fll the name buffer. By providing an input string

longer than 255 bytes, it can overwrite handler. Note that A2C mutates the input in

fread at Line 1, the handler is overwritten with a mutated address. Then, the program

calls printf to display the name on the screen. As printf is an external call, A2C de-

codes the input buffer name. Specifcally, in our implementation of the decoding function,

121

when A2C decodes a buffer for a library call, it allocates a new buffer, copies the original

encoded buffer, and then decodes it in the new buffer before passing it. Since A2C does

not decode the original buffer, the injected malicious payload remains mutated. At Line

3, the program calls handler. Although it is overwritten, the function pointer no longer

points to the injected shellcode. Note that the privilege feld can also be overwritten to

launch non-control data attacks [140]. A2C mitigates the attacks by encoding the inputs

from untrusted sources. As a result, the attacker cannot control the overwritten value.

4.7 Related Work

Control-fow Integrity (CFI). Recent advances in control-fow integrity have developed

very robust systems for preventing malicious/abnormal control fows within a victim pro-

gram. These typically monitor execution to enforce pre-determined control fow paths [117–

120,141–146]. In contrast, A2C provides protection by corrupting input payloads, which is

a perspective orthogonal to the enforcement of a program’s legitimate control fow graph.

Therefore, A2C is complementary to and can be deployed alongside CFI, e.g., to pre-

vent exploit injection attacks that may employ indirect calls or not violate control fow

integrity [146–153].

Malicious Payloads Detection. In [133] and [134], researchers proposed analyzing in-

puts to detect malicious payloads with little runtime overhead. However, Fogla at el. [154]

demonstrated that polymorphism techniques can defeat these approaches. Dynamic anal-

ysis using emulation [155, 156] have been proposed to uncover polymorphic payload in-

jection attacks, but they cause non-negligible performance penalty. A2C mutates all input

buffers from untrusted sources and thus is resilient to polymorphism. It does not require

emulation and causes low overhead. Nozzle [157] proposed a novel technique to detect

heap spraying attacks at runtime. It uses runtime interpretation and static analysis to ana-

lyze suspicious objects in the heap. While Nozzle focuses on detecting heap spraying on

JavaScript, A2C takes a more general approach to prevent a wider range of input injection

attacks.

122

Randomization Approaches. Address space layout randomization (ASLR) is one of the

most widely deployed defense mechanism to mitigate payload injection and triggering.

ASLR randomizes the memory layout of a program when the OS loads the binary and dy-

namic libraries. ASLR is already a default defense mechanism in most operating systems

including Linux, MacOS, BSD, and Windows. Address space layout perturbation [158] and

fne-grained randomization techniques [159–164] have been developed to provide higher

entropy. Instruction set randomization [122, 165, 166] aims to change the underlying in-

struction set to prevent executing injected code. However, it was shown recently that

randomization could be evaded by brute-force attacks [108, 167], memory disclosure at-

tacks [168–170], and just-in-time code reuse attacks [171]. In [172], researchers presented

a novel defense technique to mitigate counterfeit object-oriented programming (COOP) at-

tacks [151]. They randomize the layout of the code pointer table and plant booby-traps to

prevent brute-force attacks. Compared to these techniques, A2C provides protection by

working from the input perspective, which is complementary to randomization. Data ran-

domization [121, 173] dynamically decrypts a buffer upon each buffer access and encrypts

it again after the access. It encrypts all buffers including those not related to inputs. It also

uses different keys for various buffers. A2C shares a similar idea of buffer encoding with

data randomization. The differences lie in that A2C focuses on input related buffers; it

encodes only once for each input and decodes only at the decoding frontier. As such, A2C

has relatively lower overhead. PointGuard [174] encrypts pointer values at runtime.

Bounds Checking. Stackguard [175] inserts a secret value (canary) before each return

address and frame pointer. However, it can be defeated through information leak attacks

that reveal a canary value [176, 177]. Compile-time code analysis [178, 179] have been

proposed to detect unsafe array and pointer accesses. However, they often generate many

false positives and focus on specifc kinds of vulnerabilities. Cling [180] and Address-

Sanitizer [139] provide pointer safety to prevent exploiting pointer related bugs such as

use-after-free. However, as shown in our case study, they can hardly handle advanced

attacks [181]. In contrast, A2C aims to break the weakest link of attacks, which is the

payload itself.

123

5 CONCLUSION

As cyber-attacks are becoming more and more persistent and sophisticated, investigating

and preventing advanced cyber-attacks such as APTs is of the utmost importance. In this

dissertation, we present three fundamental primitives for the investigation and prevention

of advanced cyber-attacks. Specifcally, we adopt the original concept of counterfactual

causality in the context of program and program execution in order to precisely infer causal-

ity between system call events. Moreover, we proposed a model-based causality inference

technique that can precisely infer causality without any modifcation on end-user systems.

Finally, we develop a novel attack prevention technique which can prevent unknown zero-

day exploits by perturbing inputs. In other words, we showed that accurate attack investi-

gation and general protection against advanced and sophisticated attacks can be achieved

by leveraging causality inference and fundamental weaknesses of the attacks.

In particular, we present LDX, a causality inference engine by lightweight dual execu-

tion. It features a novel numbering scheme that allows LDX to align executions. LDX can

effectively detect information leak and security attacks. It has much better accuracy than

existing systems. Its overhead is only 6.08% when executing both the master and the slave

concurrently on separate CPUs. This is much lower than systems that work by instruction

level tracing although they do not require the additional CPU and memory.

Second, we propose MCI, a novel causality inference algorithm that directly works on

audit logs provided from commodity systems. MCI does not require any special efforts

(e.g., training, instrumentation, code annotation) or framework (e.g., enhanced logging,

taint tracking) on the end-user. Our off-line analysis precisely infers causality from a given

system call log by constructing causal models and identifying the models in a given audit

log. We implemented a prototype of MCI and our evaluation results show that MCI is

scalable to cope with large scale log from long-running applications. We also demonstrate

that MCI can precisely identify causal relations in realistic attack scenarios.

124

Finally, we describe A2C that provides general protection against a wide spectrum of

payload injection attacks. It mutates all input buffers from untrusted sources to break mali-

cious payloads. To assure the program functions correctly on legitimate inputs, it decodes

them right before they are used to produce new values. A2C automatically identifes such

places at which it needs to decode using a novel constraint solving based approach and a

sophisticated static analysis. Our experiments on a set of real-world programs show that

A2C effectively prevents known payload injection attacks on these programs with reason-

ably low overhead (6.94%).

REFERENCES

125

REFERENCES

[1] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. LDX: Causality inference by
lightweight dual execution. In Proceedings of the 21st International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’16, pages 503–515, New York, NY, USA, 2016. ACM.

[2] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish
Gehani, and Vinod Yegneswaran. MCI: Modeling-based causality inference in audit
logging for attack investigation. In Proceedings of the 25th Annual Network and
Distributed System Security Symposium, NDSS ’18, San Diego, California, USA,
February 18-21, 2018. The Internet Society.

[3] Yonghwi Kwon, Brendan Saltaformaggio, I Luk Kim, Kyu Hyung Lee, Xiangyu
Zhang, and Dongyan Xu. A2C: Self destructing exploit executions via input pertur-
bation. In Proceedings of the 24th Annual Network and Distributed System Security
Symposium, NDSS ’17, San Diego, California, USA, February 26-March 1, 2017.
The Internet Society.

[4] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack prove-
nance via binary-based execution partition. In Proceedings of the 20th Annual Net-
work and Distributed System Security Symposium, NDSS ’13, San Diego, California,
USA, February 24-27, 2013. The Internet Society.

[5] David Hume. Enquiry Concerning Human Understanding. Clarendon Press, 1904.

[6] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. LIFT: A low-overhead practical information fow tracking system for detecting
security attacks. In Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 39, pages 135–148, Washington, DC, USA,
2006. IEEE Computer Society.

[7] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
BitBlaze: A new approach to computer security via binary analysis. In Proceedings
of the 4th International Conference on Information Systems Security, ICISS ’08,
pages 1–25, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. Libdft: Practical dynamic data fow tracking for commodity systems.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, pages 121–132, New York, NY, USA, 2012. ACM.

126

[9] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. In Proceedings of the 2007 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007.
ACM.

[10] Erik Bosman, Asia Slowinska, and Herbert Bos. Minemu: The world’s fastest taint
tracker. In Proceedings of the 14th International Conference on Recent Advances
in Intrusion Detection, RAID ’11, pages 1–20, Berlin, Heidelberg, 2011. Springer-
Verlag.

[11] Stephen McCamant and Michael D. Ernst. Quantitative information fow as network
fow capacity. In Proceedings of the 2008 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’08, pages 193–205, New York,
NY, USA, 2008. ACM.

[12] Min G. Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Ong. DTA++:
Dynamic taint analysis with targeted control-fow propagation. In Proceedings of the
18th Annual Network and Distributed System Security Symposium, NDSS ’11, San
Diego, California, USA, February 6-9, 2011, Washington, DC, USA. The Internet
Society.

[13] Landon P. Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, Ali Razeen, Bi Wu,
and Sai Cheemalapati. SpanDex: Secure password tracking for Android. In Pro-
ceedings of the 23rd Conference on USENIX Security Symposium, USENIX-SS ’14,
pages 481–494, San Diego, CA, August 2014. USENIX Association.

[14] D. Lewis. Counterfactuals. Oxford: Blackwell, 1973.

[15] Bin Xin, William N. Sumner, and Xiangyu Zhang. Effcient program execution
indexing. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages 238–248, New York, NY,
USA, 2008. ACM.

[16] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan
Xu. Dual execution for on the fy fne grained execution comparison. In Proceed-
ings of the 20th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 325–338, New York, NY,
USA, 2015. ACM.

[17] Wei Ming Khoo. Taintgrind. https://github.com/wmkhoo/taintgrind, 2017.

[18] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. Tightlip: Keeping
applications from spilling the beans. In Proceedings of the 4th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI ’07, pages 12–12,
Berkeley, CA, USA, 2007. USENIX Association.

[19] David Hume. Enquiry Concerning Human Understanding. Clarendon Press, 1904.

[20] G. Miller and P. N. Johnson-Laird. Language and perception. Cambridge: Cam-
bridge University Press, 1976.

[21] A. Kushnir and A. Gopnik. Young children infer causal strength from probabilities
and interventions. Psychological Science, 16 (9), pages 678–683, 2005.

https://github.com/wmkhoo/taintgrind

127

[22] P. Cheng. From covariation to causation: A causal power theory. Psychological
Review, 104, pages 367–405, 1997.

[23] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Strict con-
trol dependence and its effect on dynamic information fow analyses. In Proceedings
of the 19th International Symposium on Software Testing and Analysis, ISSTA ’10,
pages 13–24, New York, NY, USA, 2010. ACM.

[24] Lightweight dual-execution engine project website. https://sites.google.
com/site/ldxprj.

[25] Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. In Proceed-
ings of the 10th ACM Symposium on Operating Systems Principles, SOSP ’85, pages
79–86, New York, NY, USA, 1985. ACM.

[26] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron. Active replication
in Delta-4. In Proceedings of the 22nd International Symposium on Fault-Tolerant
Computing, FTCS ’92, pages 28–37, July 1992.

[27] A Tulley and S.K. Shrivastava. Preventing state divergence in replicated distributed
programs. In Proceedings of the 9th Symposium on Reliable Distributed Systems,
SRDS ’90, pages 104–113, Oct 1990.

[28] Dave Black, C. Low, and Santosh K. Shrivastava. The Voltan application pro-
gramming environment for fail-silent processes. Distributed Systems Engineering,
5(2):66–77, 1998.

[29] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Using abstraction to
improve fault tolerance. ACM Transactions on Computing Systems, 21(3):236–269,
August 2003.

[30] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06, pages 158–168,
New York, NY, USA, 2006. ACM.

[31] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tolerating
Byzantine-faults in transaction processing systems using commit barrier scheduling.
In Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 59–72, New York, NY, USA, 2007. ACM.

[32] Byung-Gon Chun, Petros Maniatis, and Scott Shenker. Diverse replication for
single-machine Byzantine-fault tolerance. In Proceedings of the 2008 USENIX An-
nual Technical Conference, ATC ’08, pages 287–292, Berkeley, CA, USA, 2008.
USENIX Association.

[33] Petr Hosek and Cristian Cadar. VARAN the unbelievable: An effcient N-version
execution framework. In Proceedings of the 20th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 339–353, New York, NY, USA, 2015. ACM.

[34] Liming Chen and A Avizienis. N-version programming: A fault-tolerance approach
to rellablllty of software operatlon. In Proceedings of the 25th International Sympo-
sium on Fault-Tolerant Computing, FTCS ’95, pages 113–122, Jun 1995.

https://sites.google.com/site/ldxprj
https://sites.google.com/site/ldxprj

128

[35] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems:
A secretless framework for security through diversity. In Proceedings of the 15th
Conference on USENIX Security Symposium, USENIX-SS ’06, Berkeley, CA, USA,
2006. USENIX Association.

[36] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Diversifed process replic for
defeating memory error exploits. Performance, Computing, and Communications
Conference, 2002. 21st IEEE International, 0:434–441, 2007.

[37] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn.
Archipelago: Trading address space for reliability and security. In Proceedings of
the 13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’08, pages 115–124, New York, NY, USA,
2008. ACM.

[38] J. McDermott, R. Gelinas, and S. Ornstein. Doc, Wyatt, and Virgil: prototyping
storage jamming defenses. In Proceedings of the 13th Annual Computer Security
Applications Conference, ACSAC ’97, pages 265–273, New York, NY, USA, 1997.
ACM.

[39] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight
memory race recording. In Proceedings of the 35th Annual International Symposium
on Computer Architecture, ISCA ’08, pages 265–276, Washington, DC, USA, 2008.
IEEE Computer Society.

[40] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo:
A software-hardware interface for practical deterministic multiprocessor replay. In
Proceedings of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’09, pages 73–84, New
York, NY, USA, 2009. ACM.

[41] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared mem-
ory dependencies using strata. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS ’06, pages 229–240, New York, NY, USA, 2006. ACM.

[42] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. PENELOPE: Weaving
threads to expose atomicity violations. In Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages
37–46, New York, NY, USA, 2010. ACM.

[43] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.
Lee, and Shan Lu. PRES: Probabilistic replay with execution sketching on mul-
tiprocessors. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 177–192, New York, NY, USA, 2009. ACM.

[44] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M.
Chen, Jason Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing sequen-
tial logging and replay. ACM Transactions on Computing Systems, 30(1):3:1–3:24,
February 2012.

129

[45] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich.
Intrusion recovery for database-backed web applications. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 101–114, New
York, NY, USA, 2011. ACM.

[46] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser
intrusion recovery system. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles, SOSP ’05, pages 163–176, New York, NY, USA, 2005. ACM.

[47] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recov-
ery using selective re-execution. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI ’10, pages 89–104, Berkeley,
CA, USA, 2010. USENIX Association.

[48] Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Identifying information disclosure in web applications with retroactive auditing. In
Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, pages 555–569, Broomfeld, CO, USA, October 2014.
USENIX Association.

[49] Nicolas Viennot, Siddharth Nair, and Jason Nieh. Transparent mutable replay for
multicore debugging and patch validation. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 127–138, New York, NY, USA, 2013. ACM.

[50] Mona Attariyan and Jason Flinn. Automating confguration troubleshooting with
dynamic information fow analysis. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI ’10, pages 1–11, Berkeley,
CA, USA, 2010. USENIX Association.

[51] Jonathan Heusser and Pasquale Malacaria. Quantifying information leaks in soft-
ware. In Proceedings of the 26th Annual Computer Security Applications Confer-
ence, ACSAC ’10, pages 261–269, New York, NY, USA, 2010. ACM.

[52] Michael Backes, Boris Kopf, and Andrey Rybalchenko. Automatic discovery and
quantifcation of information leaks. In Proceedings of the 30th IEEE Symposium on
Security and Privacy, SP ’09, pages 141–153, Washington, DC, USA, 2009. IEEE
Computer Society.

[53] Piotr Mardziel, Mario S. Alvim, Michael Hicks, and Michael R. Clarkson. Quanti-
fying information fow for dynamic secrets. In Proceedings of the 2014 IEEE Sym-
posium on Security and Privacy, SP ’14, pages 540–555, Washington, DC, USA,
2014. IEEE Computer Society.

[54] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. Complete information fow tracking from the gates
up. In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’09, pages 109–120,
New York, NY, USA, 2009. ACM.

[55] M. Tiwari, Xun Li, H.M.G. Wassel, F.T. Chong, and T. Sherwood. Execution leases:
A hardware-supported mechanism for enforcing strong non-interference. In Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’09, pages 493–504, Dec 2009.

130

[56] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong, Timo-
thy Sherwood, and Ben Hardekopf. Caisson: A hardware description language for
secure information fow. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’11, pages 109–120,
New York, NY, USA, 2011. ACM.

[57] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben
Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood. Crafting a
usable microkernel, processor, and i/o system with strict and provable information
fow security. In Proceedings of the 38th Annual International Symposium on Com-
puter Architecture, ISCA ’11, pages 189–200, New York, NY, USA, 2011. ACM.

[58] Dominique Devriese and Frank Piessens. Noninterference through secure multi-
execution. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 109–124, Washington, DC, USA, 2010. IEEE Computer Society.

[59] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information
fow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 165–178, New York, NY,
USA, 2012. ACM.

[60] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla. Pre-
venting information leaks through shadow executions. In Proceedings of the 2008
Annual Computer Security Applications Conference, ACSAC ’08, pages 322–331,
Washington, DC, USA, 2008. IEEE Computer Society.

[61] Zhuofu Bai, Gang Shu, and A. Podgurski. NUMFL: Localizing faults in numerical
software using a value-based causal model. In Proceedings of the 8th IEEE Interna-
tional Conference on Software Testing, Verifcation and Validation, ICST ’15, pages
1–10, April 2015.

[62] George K. Baah, Andy Podgurski, and Mary Jean Harrold. Causal inference for
statistical fault localization. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 73–84, New York, NY, USA, 2010.
ACM.

[63] Gang Shu, Boya Sun, A. Podgurski, and Feng Cao. MFL: Method-level fault lo-
calization with causal inference. In Proceedings of the 6th IEEE International Con-
ference on Software Testing, Verifcation, and Validation, ICST ’13, pages 124–133,
March 2013.

[64] Quarterly Threat Report.
https://www.solutionary.com/threat-intelligence/threat-
reports/quarterly-threat-reports/sert-threat-report-q4-2016/.

[65] Trends from the years’s breaches and cyber attacks. https://www.fireeye.com/
current-threats/annual-threat-report/mtrends.html, 2017.

[66] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Transactions on
Computing Systems, 23(1):51–76, February 2005.

[67] Samuel T. King, Zhuoqing Morley Mao, Dominic G. Lucchetti, and Peter M. Chen.
Enriching intrusion alerts through multi-host causality. In Proceedings of the 12th
Annual Network and Distributed System Security Symposium, NDSS ’05, San Diego,
California, USA, February 3-4, 2005. The Internet Society.

https://www.solutionary.com/threat-intelligence/threat-reports/quarterly-threat-reports/sert-threat-report-q4-2016/
https://www.solutionary.com/threat-intelligence/threat-reports/quarterly-threat-reports/sert-threat-report-q4-2016/
https://www.fireeye. com/current-threats/annual-threat-report/mtrends.html
https://www.fireeye. com/current-threats/annual-threat-report/mtrends.html

131

[68] Srinivas Krishnan, Kevin Z. Snow, and Fabian Monrose. Trail of bytes: Effcient
support for forensic analysis. In Proceedings of the 17th ACM SIGSAC Conference
on Computer and Communications Security, CCS ’10, pages 50–60, New York, NY,
USA, 2010. ACM.

[69] Steve Grubb. RedHat Linux Audit.
https://people.redhat.com/sgrubb/audit/.

[70] Microsoft. Event tracing for windows. https://msdn.microsoft.com/en-us/
library/windows/desktop/bb968803(v=vs.85).aspx, 2017.

[71] dtrace.org. DTrace. http://dtrace.org/blogs/, 2017.

[72] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: Towards practical prove-
nance tracing by alternating between logging and tainting. In Proceedings of the
23rd Annual Network and Distributed System Security Symposium, NDSS ’16, San
Diego, California, USA, February 21-24, 2017. The Internet Society.

[73] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,
and Dongyan Xu. Accurate, low cost and instrumentation-free security audit logging
for windows. ACSAC’15.

[74] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. MPI: Multiple perspective attack investigation with semantic aware execution
partitioning. In Proceedings of the 23rd USENIX Conference on Security Sympo-
sium, USENIX SS ’17, pages 829–844, Berkeley, CA, USA, 2017. USENIX Asso-
ciation.

[75] Adam Bates, Dave Tian, Kevin R. B. Butler, and Thomas Moyer. Trustworthy
whole-system provenance for the linux kernel. In Proceedings of the 24th USENIX
Conference on Security Symposium, USENIX SS ’15, pages 319–334, Berkeley, CA,
USA, 2015. USENIX Association.

[76] Kangkook Jee, Georgios Portokalidis, Vasileios P. Kemerlis, Soumyadeep Ghosh,
David I. August, and Angelos D. Keromytis. A general approach for effciently ac-
celerating software-based dynamicdata fow tracking on commodity hardware. In
Proceedings of the 19th Annual Network and Distributed System Security Sympo-
sium, NDSS ’12, San Diego, California, USA, February 5-8, 2012. The Internet
Society.

[77] Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portoka-
lidis. ShadowReplica: Effcient parallelization of dynamic data fow tracking. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’13, pages 235–246, New York, NY, USA, 2013. ACM.

[78] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. TaintPipe:
Pipelined symbolic taint analysis. In Proceedings of the 24th USENIX Conference
on Security Symposium, USENIX SS ’15, pages 65–80, Berkeley, CA, USA, 2015.
USENIX Association.

[79] Insider threat spotlight report, 2016. http://crowdresearchpartners.com/wp-
content/uploads/2016/09/Insider-Threat-Report-2016.pdf.

https://people.redhat.com/sgrubb/audit/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
http://dtrace.org/blogs/
http://crowdresearchpartners.com/wp-content/uploads/2016/09/Insider-Threat-Report-2016.pdf
http://crowdresearchpartners.com/wp-content/uploads/2016/09/Insider-Threat-Report-2016.pdf
https://dtrace.org

132

[80] Ponemon Institute. 2016 cost of data breach study.
https://app.clickdimensions.com/blob/softchoicecom-anjf0/files/
ponemon.pdf.

[81] Shijin Kong, Randy Smith, and Cristian Estan. Effcient signature matching with
multiple alphabet compression tables. In Proceedings of the 4th International Con-
ference on Security and Privacy in Communication Networks, SecureComm ’08,
pages 1–10, New York, NY, USA, 2008. ACM.

[82] Vern Paxson. Bro: A system for detecting network intruders in real-time. Comput.
Netw., 31(23-24), December.

[83] Martin Roesch. Snort. https://www.snort.org/, 2016.

[84] Werner Koch. The GNU privacy guard. https://gnupg.org/, 2017.

[85] Markus Braun. GNUPG vim plugin.
https://github.com/jamessan/vim-gnupg/blob/master/plugin/gnupg.
vim, 2017.

[86] Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2:113–124, September 1956.

[87] Noam Chomsky. On certain formal properties of grammars. Information and Con-
trol, 2:137–167, June 1959.

[88] Mike Muuss. Ping C program. http://ws.edu.isoc.org/materials/src/
ping.c.

[89] Albert Cahalan. procps. http://procps.sourceforge.net/, 2009.

[90] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Annual Technical Conference, ATC ’14,
pages 305–320, Berkeley, CA, USA, 2014. USENIX Association.

[91] Willem. C implementation of the raft. https://github.com/willemt/raft.

[92] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[93] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. LogGC: garbage collecting
audit log. In Proceedings of the 2013 ACM SIGSAC conference on Computer and
communications security, CCS ’13, pages 1005–1016, New York, NY, USA, 2013.
ACM.

[94] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for multicore
debugging. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 193–206, New York, NY, USA, 2009. ACM.

[95] DARPA. Transparent Computing.
https://www.darpa.mil/program/transparent-computing, 2015.

[96] proftpd-1.3.3c-backdoor.
https://www.aldeid.com/wiki/Exploits/proftpd-1.3.3c-backdoor,
2011.

https://app.clickdimensions. com/blob/softchoicecom-anjf0/files/ponemon.pdf
https://app.clickdimensions. com/blob/softchoicecom-anjf0/files/ponemon.pdf
https://www.snort.org/
https://gnupg.org/
https://github.com/jamessan/vim-gnupg/blob/master/plugin/gnupg.vim
https://github.com/jamessan/vim-gnupg/blob/master/plugin/gnupg.vim
http://ws.edu.isoc.org/materials/src/ping.c
http://ws.edu.isoc.org/materials/src/ping.c
http://procps.sourceforge.net/
https://github.com/willemt/raft
https://www.darpa.mil/program/transparent-computing
https://www.aldeid.com/wiki/Exploits/proftpd-1.3.3c-backdoor

133

[97] NASA. NASA-HTTP – two months of HTTP logs from the KSC-NASA WWW
server. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, 1995.

[98] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan
Xu. Dual execution for on the fy fne grained execution comparison. In Proceed-
ings of the 20th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 325–338, New York, NY,
USA, 2015. ACM.

[99] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity software. In
Proceedings of the 12th Annual Network and Distributed System Security Sympo-
sium, NDSS ’05, San Diego, California, USA, February 3-4, 2017. The Internet
Society.

[100] Dominique Devriese and Frank Piessens. Noninterference through secure multi-
execution. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 109–124, Washington, DC, USA, 2010. IEEE Computer Society.

[101] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method
for detecting anomalous program behaviors. In Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, SP ’01, pages 144–159, Washington, DC, USA,
2001. IEEE Computer Society.

[102] Andrew P. Kosoresow and Steven A. Hofmeyr. Intrusion detection via system call
traces. IEEE Softw., 14(5), September.

[103] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call stack information. In Proceedings of the 2003
IEEE Symposium on Security and Privacy, SP ’03, pages 62–, Washington, DC,
USA, 2003. IEEE Computer Society.

[104] David Wagner and Drew Dean. Intrusion detection via static analysis. In Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, SP ’01, pages 156–,
Washington, DC, USA, 2001. IEEE Computer Society.

[105] Xiaokui Shu, Danfeng (Daphne) Yao, Naren Ramakrishnan, and Trent Jaeger. Long-
span program behavior modeling and attack detection. ACM Transactions on Pri-
vacy and Security, 20(4):12:1–12:28, September 2017.

[106] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing stealthy program
attacks buried in extremely long execution paths. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages
401–413, New York, NY, USA, 2015. ACM.

[107] Z. Li and A. Oprea. Operational security log analytics for enterprise breach detec-
tion. In 2016 IEEE Cybersecurity Development (SecDev), pages 15–22, Nov 2016.

[108] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM SIGSAC Conference on Computer and Communications Security,
CCS ’04, pages 298–307, New York, NY, USA, 2004. ACM.

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

134

[109] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions on Infor-
mation System Security, 15(1):2:1–2:34, March 2012.

[110] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented
programming: A new class of code-reuse attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
’11, pages 30–40, New York, NY, USA, 2011. ACM.

[111] Skylined. http://www.edup.tudelft.nl/˜bjwever/advisory_iframe.
html.php.

[112] Yu Ding, Tao Wei, TieLei Wang, Zhenkai Liang, and Wei Zou. Heap taichi: Ex-
ploiting memory allocation granularity in heap-spraying attacks. In Proceedings of
the 26th Annual Computer Security Applications Conference, ACSAC ’10, pages
211–221, New York, NY, USA, 2010. ACM.

[113] K2. ADMmutate documentation. http://www.ktwo.ca/ADMmutate-0.8.4.
tar.gz, 2003.

[114] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer Superbus Von Un-
derduk. Polymorphic shellcode engine using spectrum analysis. http://phrack.
org/issues/61/9.html, 2003.

[115] Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus. English shell-
code. In Proceedings of the 16th ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’09, pages 524–533, New York, NY, USA, 2009. ACM.

[116] Metasploit development team. Metasploit project. http://metasploit.com,
2006.

´[117] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar Er-
lingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-fow in-
tegrity in gcc & llvm. In Proceedings of the 23rd USENIX Conference on Security
Symposium, USENIX SS ’14, pages 941–955, Berkeley, CA, USA, 2014. USENIX
Association.

[118] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. SafeDispatch: Securing C++
virtual calls from memory corruption attacks. In Proceedings of the 21st Annual
Network and Distributed System Security Symposium, NDSS ’14, San Diego, Cali-
fornia, USA, February 23-26, 2014. The Internet Society.

[119] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCa-
mant, Dawn Song, and Wei Zou. Practical control fow integrity and randomization
for binary executables. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP ’13, pages 559–573, Washington, DC, USA, 2013. IEEE Computer
Society.

[120] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent
ROP exploit mitigation using indirect branch tracing. In Proceedings of the 22nd
USENIX Conference on Security, USENIX SS ’13, pages 447–462, Berkeley, CA,
USA, 2013. USENIX Association.

http://www.edup.tudelft.nl/~bjwever/advisory_iframe.html.php
http://www.edup.tudelft.nl/~bjwever/advisory_iframe.html.php
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz
http://phrack.org/issues/61/9.html
http://phrack.org/issues/61/9.html
http://metasploit.com

135

[121] Sandeep Bhatkar and R. Sekar. Data space randomization. In Proceedings of the 5th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, DIMVA ’08, pages 1–22, Berlin, Heidelberg, 2008. Springer-Verlag.

[122] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and Sotiris Ioan-
nidis. Asist: Architectural support for instruction set randomization. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’13, pages 981–992, New York, NY, USA, 2013. ACM.

[123] Chris Anley. Creating arbitrary shellcode in unicode expanded strings,
the “venetian” exploit. https://www.helpnetsecurity.com/dl/articles/
unicodebo.pdf, 2002.

[124] Leonardo De Moura and Nikolaj Bjørner. Z3: An effcient smt solver.
TACAS’08/ETAPS’08, Berlin, Heidelberg. Springer-Verlag.

[125] Exploits database by offensive security. https://www.exploit-db.com/.

[126] Penetration testing software. metasploit. https://www.metasploit.com/.

[127] Jonathan Salwan. Shellcodes database for study cases. http://shell-storm.
org/shellcode/.

[128] Sascha Schirra. Ropper – rop gadget fnder and binary information tool. https:
//scoding.de/ropper/.

[129] Sascha Schirra. ROPgadget – gadgets fnder and auto-roper. http://shell-
storm.org/project/ROPgadget/.

[130] Masaki Suenaga. Evolving shell code. Whitepaper, Symantec Security Response,
Japan, 2006.

[131] William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, and Xiangyu Zhang. Pre-
cise calling context encoding. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 525–534, New
York, NY, USA, 2010. ACM.

[132] The llvm compiler infrastructure. http://llvm.org/.

[133] Thomas Toth and Christopher Kruegel. Accurate buffer overfow detection via ab-
stract payload execution. In Proceedings of the 5th International Conference on
Recent Advances in Intrusion Detection, RAID ’02, pages 274–291, Berlin, Heidel-
berg, 2002. Springer-Verlag.

[134] Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: A
basis for building self-protecting servers. In Proceedings of the 12th ACM SIGSAC
Conference on Computer and Communications Security, CCS ’05, pages 213–222,
New York, NY, USA, 2005. ACM.

[135] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. Com-
prehensive shellcode detection using runtime heuristics. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC ’10, pages 287–296,
New York, NY, USA, 2010. ACM.

https://www.helpnetsecurity.com/dl/articles/unicodebo.pdf
https://www.helpnetsecurity.com/dl/articles/unicodebo.pdf
https://www.exploit-db.com/
https://www.metasploit.com/
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
https://scoding.de/ropper/
https://scoding.de/ropper/
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
http://llvm.org/

136

[136] Ramkumar Chinchani and Eric van den Berg. A fast static analysis approach to
detect exploit code inside network fows. In Proceedings of the 8th International
Conference on Recent Advances in Intrusion Detection, RAID ’05, pages 284–308,
Berlin, Heidelberg, 2006. Springer-Verlag.

[137] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resis-
tance to static disassembly. In Proceedings of the 10th ACM SIGSAC Conference on
Computer and Communications Security, CCS ’03, pages 290–299, New York, NY,
USA, 2003. ACM.

[138] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffn, and Wenke Lee. Impeding
malware analysis using conditional code obfuscation. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium, NDSS ’08, San Diego,
California, USA, February 3-4, 2008. The Internet Society.

[139] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
AddressSanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference, ATC ’12, pages 28–28, Berkeley, CA, USA, 2012.
USENIX Association.

[140] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-
control-data attacks are realistic threats. In Proceedings of the 14th Conference on
USENIX Security Symposium, USENIX-SS ’05, pages 12–12, Berkeley, CA, USA,
2005. USENIX Association.

[141] Pieter Philippaerts, Yves Younan, Stijn Muylle, Frank Piessens, Sven Lachmund,
and Thomas Walter. Code pointer masking: Hardening applications against code
injection attacks. In Proceedings of the 8th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, DIMVA’11, pages 194–
213, Berlin, Heidelberg, 2011. Springer-Verlag.

[142] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks with
control-fow locking. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, ACSAC ’11, pages 353–362, New York, NY, USA, 2011. ACM.

[143] Mingwei Zhang and R. Sekar. Control fow integrity for COTS binaries. In Pro-
ceedings of the 22nd USENIX Conference on Security Symposium, USENIX SS ’13,
pages 337–352, Berkeley, CA, USA, 2013. USENIX Association.

[144] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting violation
of control fow integrity using performance counters. In Proceedings of the 2012
42nd Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN ’12, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Society.

[145] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical context-sensitive
CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 927–940, New York, NY, USA, 2015. ACM.

[146] Ben Niu and Gang Tan. Per-input Control-Flow Integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 914–926, New York, NY, USA, 2015. ACM.

137

[147] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitch-
ing the gadgets: On the ineffectiveness of coarse-grained control-fow integrity pro-
tection. In Proceedings of the 23rd USENIX Conference on Security Symposium,
USENIX SS ’14, pages 401–416, Berkeley, CA, USA, 2014. USENIX Association.

[148] Enes G¨ ¸, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, andoktas
Georgios Portokalidis. Size does matter: Why using gadget-chain length to pre-
vent code-reuse attacks is hard. In Proceedings of the 23rd USENIX Conference on
Security Symposium, USENIX SS ’14, pages 417–432, Berkeley, CA, USA, 2014.
USENIX Association.

[149] Nicholas Carlini and David Wagner. ROP is still dangerous: Breaking modern de-
fenses. In Proceedings of the 23rd USENIX Conference on Security Symposium,
USENIX SS ’14, pages 385–399, Berkeley, CA, USA, 2014. USENIX Association.

[150] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. Evaluating the effectiveness of current
anti-ROP defenses. In Proceedings of the 17th International Conference on Re-
cent Advances in Intrusion Detection, RAID ’14, pages 88–108, Cham, Switzerland,
2014. Springer International Publishing.

[151] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the dif-
fculty of preventing code reuse attacks in c++ applications. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, SP ’15, pages 745–762, Washing-
ton, DC, USA, 2015. IEEE Computer Society.

[152] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Ne-
gro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing
control: On the effectiveness of control-fow integrity under stack attacks. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 952–963, New York, NY, USA, 2015. ACM.

[153] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. Control-fow bending: On the effectiveness of control-fow integrity. In
Proceedings of the 24th USENIX Conference on Security Symposium, USENIX SS
’15, pages 161–176, Berkeley, CA, USA, 2015. USENIX Association.

[154] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee.
Polymorphic blending attacks. In Proceedings of the 15th Conference on USENIX
Security Symposium, USENIX-SS ’06, Berkeley, CA, USA, 2006. USENIX Associ-
ation.

[155] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Emulation-based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the 10th International Conference on Recent Advances in Intrusion De-
tection, RAID ’07, pages 87–106, Berlin, Heidelberg, 2007. Springer-Verlag.

[156] Kevin Z. Snow, Srinivas Krishnan, Fabian Monrose, and Niels Provos. Shellos: En-
abling fast detection and forensic analysis of code injection attacks. In Proceedings
of the 20th USENIX Conference on Security Symposium, USENIX SS ’11, pages
9–9, Berkeley, CA, USA, 2011. USENIX Association.

138

[157] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. Nozzle: A defense
against heap-spraying code injection attacks. In Proceedings of the 18th Conference
on USENIX Security Symposium, USENIX-SS ’09, pages 169–186, Berkeley, CA,
USA, 2009. USENIX Association.

[158] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Ad-
dress space layout permutation (aslp): Towards fne-grained randomization of com-
modity software. In Proceedings of the 22nd Annual Computer Security Applica-
tions Conference, ACSAC ’06, pages 339–348, Washington, DC, USA, 2006. IEEE
Computer Society.

[159] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In Pro-
ceedings of the 2012 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’12, pages 157–168, New York, NY, USA, 2012. ACM.

[160] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomiza-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
pages 601–615, Washington, DC, USA, 2012. IEEE Computer Society.

[161] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. Timely rerandomization for mitigating memory disclosures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS ’15, pages 268–279, New York, NY, USA, 2015. ACM.

[162] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15, pages 763–780, Washington, DC, USA,
2015. IEEE Computer Society.

[163] Yue Chen, Zhi Wang, David Whalley, and Long Lu. Remix: On-demand live ran-
domization. In Proceedings of the 6th ACM Conference on Data and Application
Security and Privacy, CODASPY ’16, pages 50–61, New York, NY, USA, 2016.
ACM.

[164] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. Davidson.
Ilr: Where’d my gadgets go? In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pages 571–585, Washington, DC, USA, 2012. IEEE
Computer Society.

[165] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In Proceedings of the 10th ACM
SIGSAC Conference on Computer and Communications Security, CCS ’03, pages
272–280, New York, NY, USA, 2003. ACM.

[166] Georgios Portokalidis and Angelos D. Keromytis. Fast and practical instruction-set
randomization for commodity systems. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC ’10, pages 41–48, New York, NY, USA,
2010. ACM.

[167] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
Hacking blind. In Proceedings of the 2014 IEEE Symposium on Security and Pri-
vacy, SP ’14, pages 227–242, Washington, DC, USA, 2014. IEEE Computer Society.

139

[168] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good in-
structions go bad: Generalizing return-oriented programming to risc. In Proceedings
of the 15th ACM SIGSAC Conference on Computer and Communications Security,
CCS ’08, pages 27–38, New York, NY, USA, 2008. ACM.

[169] F.J. Serna. CVE-2012-0769, the case of the perfect info leak. http://zhodiac.
hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf.

[170] Byoungyoung Lee, Long Lu, Tielei Wang, Taesoo Kim, and Wenke Lee. From
zygote to morula: Fortifying weakened aslr on android. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, SP ’14, pages 424–439, Washington, DC,
USA, 2014. IEEE Computer Society.

[171] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness
of fne-grained address space layout randomization. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13, pages 574–588, Washington,
DC, USA, 2013. IEEE Computer Society.

[172] Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. It’s a trap: Table randomization and protection against function-reuse attacks.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’15, pages 243–255, New York, NY, USA, 2015. ACM.

[173] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Philippe Martin, and Miguel
Castro. Data randomization. Technical Report MSR-TR-2008-120.

[174] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointguardTM:
Protecting pointers from buffer overfow vulnerabilities. In Proceedings of the 12th
Conference on USENIX Security Symposium, USENIX-SS ’03, pages 7–7, Berkeley,
CA, USA, 2003. USENIX Association.

[175] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: Au-
tomatic adaptive detection and prevention of buffer-overfow attacks. In Proceedings
of the 7th Conference on USENIX Security Symposium, USENIX-SS ’98, pages 5–5,
Berkeley, CA, USA, 1998. USENIX Association.

[176] Gerardo Richarte. Four different tricks to bypass StackShield and StackGuard pro-
tection. 05 2002.

[177] Bulba and Kil3r. Bypassing Stackguard and Stackshield. http://phrack.org/
issues/56/5.html, 2000.

[178] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A frst step
towards automated detection of buffer overrun vulnerabilities. In Proceedings of the
7th Annual Network and Distributed System Security Symposium, NDSS ’00, San
Diego, California, USA, February 3-4, 2000. The Internet Society.

[179] David Larochelle and David Evans. Statically detecting likely buffer overfow vul-
nerabilities. In Proceedings of the 10th Conference on USENIX Security Symposium,
USENIX-SS ’01, Berkeley, CA, USA, 2001. USENIX Association.

http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://phrack.org/issues/56/5.html
http://phrack.org/issues/56/5.html

140

[180] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.
Preventing memory error exploits with wit. In Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy, SP ’08, pages 263–277, Washington, DC, USA,
2008. IEEE Computer Society.

[181] Eric Wimberley. Bypassing AddressSanitizer. https://packetstormsecurity.
com/files/123977/Bypassing-AddressSanitizer.html.

https://packetstormsecurity.com/files/123977/Bypassing-AddressSanitizer.html
https://packetstormsecurity.com/files/123977/Bypassing-AddressSanitizer.html

VITA

141

VITA

Yonghwi Kwon received his B.E. degree in computer engineering from Kunkuk Uni-

versity in 2011. He attended Purdue University from 2012-2018 pursuing his Ph.D. under

the guidance of Prof. Xiangyu Zhang and Prof. Dongyan Xu. He received his M.S. and

Ph.D. degrees in computer science from Purdue University in 2017 and 2018 respectively.

He is broadly interested in solving system security problems via program analysis with

a special focus on attack investigation, software exploit prevention, cross-platform binary

analysis and reverse-engineering. He has been honored with the ASE Best Paper Award

in 2013, ACM SIGSOFT Distinguished Paper Award in 2013, and Maurice H. Halstead

Memorial Award in 2017. In the fall of 2018, he joined the faculty of the University of

Virginia as an Assistant Professor of Computer Science.

	Combatting Advanced Persistent Threat via Causality Inference and Program Analysis
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Dissertation Statement
	Contributions
	Dissertation Organization
	Dissertation Overview
	Conducting Faithful Counter-factual Causality
	Model-based Causality Inference for Practical Attack Provenance
	Corrupting Malicious Payloads via Input Perturbation

	Ldx: Causality Inference by Lightweight Dual Execution
	Introduction
	Counterfactual Causality
	Overview and Illustrative Example
	Basic Design
	Counter Computation
	Dual Execution Facilitated by Counter Numbers

	Handling Loops
	Handling Indirect Function Calls
	Handling Concurrency and Library Calls
	Evaluation
	Performance
	Effectiveness of Dual Execution
	Effectiveness of Causality Inference
	Case Studies

	Related Work

	Mci: Modeling-based Causality Inference in Audit Logging for Attack Investigation
	Introduction
	Background and Motivation
	Motivating Example
	Existing Approaches and Limitations
	Goals and Our Approach
	Mci on Motivating Example

	Problem Definition
	Definitions
	Problem Statement
	Technical Challenges: Complexity and Ambiguity

	System Design
	Model Construction
	Trace Parsing with Models

	Evaluation
	Model Construction
	System-wide Causality Inference
	Case Studies

	Related Work
	Discussion

	A2C: Self Destructing Exploit Executions via Input Perturbation
	Introduction
	System Overview
	Illustrative Example
	Design
	Decoding Frontier Computation via Constraint Solving.
	Static Analysis to Compute Decoding and Encoding Sets
	Static Analysis Phase
	Runtime

	Threat Model
	Evaluation
	Performance
	Effectiveness
	Case Studies

	Related Work

	Conclusion
	REFERENCES
	VITA

