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ABSTRACT 

Yonghwi, Kwon PhD, Purdue University, August 2018. Combatting Advanced Persistent 
Threat via Causality Inference and Program Analysis. Major Professors: Xiangyu Zhang 
and Dongyan Xu. 

Cyber attackers are becoming more and more sophisticated. In particular, Advanced 

Persistent Threat (APT) is a new class of attack that targets a specifc organization and 

compromises systems over a long time without being detected. Over the years, we have 

seen notorious examples of APTs including Stuxnet which disrupted Iranian nuclear cen-

trifuges and data breaches affecting millions of users. Investigating APT is challenging as 

it occurs over an extended period of time and the attack process is highly sophisticated and 

stealthy. Also, preventing APTs is diffcult due to ever-expanding attack vectors. 

In this dissertation, we present proposals for dealing with challenges in attack inves-

tigation. Specifcally, we present LDX which conducts precise counter-factual causality 

inference to determine dependencies between system calls (e.g., between input and output 

system calls) and allows investigators to determine the origin of an attack (e.g., receiving 

a spam email) and the propagation path of the attack, and assess the consequences of the 

attack. LDX is four times more accurate and two orders of magnitude faster than state-

of-the-art taint analysis techniques. Moreover, we then present a practical model-based 

causality inference system, MCI, which achieves precise and accurate causality inference 

without requiring any modifcation or instrumentation in end-user systems. 

Second, we show a general protection system against a wide spectrum of attack vec-

tors and methods. Specifcally, we present A2C that prevents a wide range of attacks by 

randomizing inputs such that any malicious payloads contained in the inputs are corrupted. 

The protection provided by A2C is both general (e.g., against various attack vectors) and 

practical (7% runtime overhead). 
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1 INTRODUCTION 

Cyber attackers are becoming more and more sophisticated. In particular, Advanced Per-

sistent Threat or APT is a special kind of attacks that leverages most stealthy and advanced 

attack methods. They lurk in victim systems for a long time (e.g., from weeks to months) 

without being detected while exfltrating secrets and/or disrupting systems. We have seen 

many high-profle APT attacks including STUXNET which targets the most dangerous in-

frastructure, nuclear plants, and compromised more than hundreds of thousands of sys-

tems through multiple steps. It lurked in the systems for years while silently updating, 

installing backdoors, and exfltrating information. It was commented that the attack could 

have caused a nuclear disaster more catastrophic than Chernobyl. Unfortunately, combat-

ting APT attacks is particularly diffcult because (1) the attacks happen for a long time 

hence even tracking and understanding what attackers did is challenging and (2) they lever-

age zero-day vulnerabilities which are not disclosed hence proactive prevention of APT is 

challenging. 

This dissertation presents fundamental approaches that systematically prevent and an-

alyze APT attacks. Specifcally, we analyze state-of-the-art attack prevention and analysis 

techniques and identifes advantages and disadvantages. To this end, we realize the origi-

nal concept of counter-factual causality which was frst introduced by David Hume in the 

18th century can be effective in APT attack investigation and existing techniques are ap-

proximations of the counter-factual causality. In addition, we identify that existing attack 

prevention approaches are mostly attack-vector specifc hence they are often ineffective in 

preventing zero-day exploits. As a result, we develop a novel causality inference technique 

that can precisely identify causal relationships between processes, fles, and network ad-

dresses. Also, we develop a novel attack vector agnostic exploit injection attack prevention 

technique to thwarts zero-day exploits. By leveraging those fundamental techniques, we 
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can achieve the complete protection and analysis of APT attacks which happen over a long 

time and leverage stealthy techniques. 

In particular, this dissertation includes (1) LDX [1], a novel counter-factual causality 

inference, which strictly follows the original defnition of counter-factual causality frst in-

troduced by David Hume in 18th century, (2) MCI [2], a novel model-based causality infer-

ence technique built on top of LDX, that infers causality for enterprise systems without any 

instrumentation and modifcation of underlying systems such as kernel, and (3) A2C [3], 

a novel exploit injection attack prevention technique, that can prevent zero-day exploits 

which is not known hence existing attack vector specifc techniques cannot prevent. 

1.1 Dissertation Statement 

Accurate attack investigation and general protection against advanced and sophisticated 

attacks can be achieved by leveraging causality inference and fundamental weaknesses of 

the attacks. 

1.2 Contributions 

The contributions of this dissertation are as follows: 

• We develop a practical causality inference system, LDX [1] that can conduct a faithful 

counterfactual causality inference to determine dependencies between system calls 

(e.g., between input and output system calls) and allow investigators to determine the 

origin of an attack (e.g., receiving a spam email) and assess the consequences of the 

attack. LDX is 4 times more accurate and 2 orders of magnitude faster (6% runtime 

overhead) than state-of-the-art taint analysis techniques. 

• Expanding beyond LDX, we have proposed a model-based causality inference sys-

tem, MCI [2]. MCI is practical as it does not require any modifcation or instrumen-

tation to end-user systems, and it is more accurate and precise (0.1% FP/FN) than 
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the previous state-of-the-art technique BEEP [4] which does require instrumentation 

(12.8% FP/0.3% FN). 

• We have designed a novel software protection system, A2C [3], that prevents a wide 

range of attacks by randomizing inputs such that any malicious payloads contained 

in the inputs are corrupted. The protection provided by A2C is both general (e.g., 

against various attack vectors including buffer-overfow, integer-overfow, use-after-

free, type-confusion, and ROP) and practical (7% runtime overhead). 

1.3 Dissertation Organization 

This dissertation includes three fundamental primitives for the investigation and preven-

tion of advanced cyber-attacks: LDX which proposes a novel causality inference technique 

(Chapter 2), MCI which develops a novel model-based causality inference technique for 

enterprise environment (Chapter 3), and A2C which is an attack vector agnostic exploit 

injection attack prevention technique (Chapter 4). 

1.4 Dissertation Overview 

Prior to my work, the two most widely used state-of-the-art techniques for attack inves-

tigation were taint analysis and audit-logging. Taint analysis tracks program dependencies 

by monitoring the data propagation of individual instructions. Audit-logging focuses on de-

pendencies between syscalls exposed through explicit syscall arguments (e.g., fle handles). 

For example, they consider syscalls on the same fle or within the same process causally 

related. Unfortunately, taint analysis suffers from signifcant performance overhead as it 

needs to monitor every instruction. Moreover, both taint analysis and audit-logging are 

inaccurate as taint analysis has diffculty handling control dependencies and the assump-

tions made in audit-logging (e.g., all output syscalls are causally related to all input syscalls 

within a process) are too coarse-grained, leading to a large number of bogus dependencies. 
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Counter-factual causality, frst introduced in the 18th century by David Hume [5], can 

be used to describe the desired causal analysis in an attack investigation. Specifcally, given 

two events, a latter event is causally dependent on a preceding event if changes at the 

preceding event lead to state differences in the latter event. To this end, we realized that the 

limitations of taint analysis and audit-logging stem from their imprecise approximations 

of counter-factual causality. My research pioneered building techniques that implement 

precise counter-factual causality for cyber attack investigation. 

In addition, to build general protection against ever-evolving cyber attacks, my research 

breaks a common critical step of most attacks: malicious payload injection and execution. 

In particular, we exploit a fundamental characteristic of malicious payloads: they are de-

signed with strict semantic assumptions about the execution environment (e.g., platform or 

architecture), hence they are particularly brittle to any mutation. 

1.4.1 Conducting Faithful Counter-factual Causality 

We take a fundamental approach: adapting the original counter-factual causality con-

cept in the context of program and program execution. LDX [1] conducts faithful counter-

factual causality inference on computer systems via dual execution. Specifcally, it runs 

two executions in parallel — the original execution and its mutated version with mutations 

on input syscalls. Then, it observes differences at output syscalls. Any difference indicates 

causality between the mutated input syscalls and the output syscalls. Due to the mutation 

LDX introduces, the mutated execution may take a different path, leading to a different 

sequence of executed syscalls, when compared with the original execution. Hence, a fun-

damental challenge of LDX is to align the two executions so that they can be compared 

at the same execution point, because comparing executions at misaligned points leads to 

incorrect causality (i.e., FP/FN). To this end, we designed a novel runtime counter derived 

from program structure. The counter is not a simple logic timestamp, but rather denotes 

execution points by ensuring an important key property: The counter value indicates the 

relative progress of executions, meaning that an execution with a larger counter value must 
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be ahead of another execution with a smaller counter value with respect to program struc-

ture. The counter facilitates alignment of two executions, enabling precise and effcient 

causality inference. Evaluation on a large set of real-world applications, including Apache 

web server, shows that LDX is 4 times more accurate and 2 orders of magnitude faster than 

state-of-the-art taint analysis techniques. 

1.4.2 Model-based Causality Inference for Practical Attack Provenance 

The primary hindrance of existing techniques, including LDX, for attack provenance is 

their requirement of changing end-user systems such as program instrumentation and kernel 

modifcation. In contrast, existing automata-based techniques do not require instrumenta-

tion. They work by identifying program behaviors (e.g., fle downloading) from a concrete 

log (e.g., a syscall log). They construct automata that represent the behaviors. Then, they 

parse a log generated from an execution with the automata to determine whether the be-

haviors are exhibited in the log. However, they do not take dependencies into account; for 

instance, they may detect two behaviors that are “download a fle” and “send a message,” 

while the causal relationship between these two behaviors is not exposed. 

MCI [2] is a model-based causality inference technique for attack provenance that di-

rectly works on syscall logs without requiring any end-user program instrumentation or 

kernel modifcation. For each program, it uses LDX to acquire precise causal models for a 

set of primitive operations (e.g., opening a fle). A causal model is a sequence of syscalls 

annotated with inter-dependencies (causality) between the syscalls within the model, where 

some of the inter-dependencies are caused by memory operations and hence implicit at the 

syscall level. During deployment, MCI parses the existing audit-logs into concrete model 

instances to derive causality. To this end, parsing syscall logs with causal models with 

implicit dependency information leads to two prominent challenges: language complexity 

and ambiguity. First, to express complex inter-dependencies annotated in causal models, 

expressive grammar is required while more expressive grammar describes more complex 

language (e.g., context-free or context-sensitive) and hence leads to higher cost in pars-
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ing. Second, some syscalls can be parsed by multiple models that share common parts 

(e.g., common prefxes). In such cases, it is diffcult to decide which model is the right 

one. As different causalities are derived from different models, the ambiguity problem may 

lead to incorrect causality (i.e., FP/FN). To solve these challenges, we designed a novel 

model parsing algorithm called segmented parsing that can handle multiple model com-

plexity levels (e.g., regular, context-free, and context-sensitive) and substantially mitigate 

the ambiguity problem by leveraging explicit dependencies that can be directly derived 

from the log (e.g., dependencies caused by fle handles). Specifcally, MCI frst obtains a 

model skeleton of each causal model. A model skeleton consists of syscalls with explicit 

dependencies. The skeleton partitions a model into model segments that can be described 

and parsed by automata. Without requiring any changes to end-user systems, MCI recovers 

causality with close to 0% FP/FN for most applications (the worst case: 8.3% FP and 5.2% 

FN). More importantly, causal models have composability such that models for primitive 

operations can be composed together to describe complex system-wide attack behaviors. 

For example, primitive models for “Edit”, “Copy”, “Paste”, and “Save” can compose a new 

model that represents a complex user behavior “Edit→Copy→Edit→Paste→Edit→Save” 

(e.g., potential information exfltration). Evaluation on attack cases created by security 

professionals in the DARPA TC program shows that attack causal graphs generated by MCI 

are more precise than those generated by the previous state-of-the-art system BEEP [4] that 

requires instrumentation. 

1.4.3 Corrupting Malicious Payloads via Input Perturbation 

A2C [3] exploits the brittleness of malicious payloads to provide general protection. 

It corrupts malicious payloads by encoding all inputs from untrusted sources at runtime. 

However, the encoding may break program execution on benign inputs as well. To assure 

that the program continues to function correctly when benign inputs are provided, We de-

veloped a static analysis technique that identifes all the places that read and process inputs 

and selectively inserts decoding logic at some of those places. Specifcally, decoding only 
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occurs when the use of the inputs cannot be exploited. For instance, when inputs in a byte 

array are copied to an integer array, each byte of the inputs is padded with 3 zero bytes (as 

an integer is 4 bytes on 32-bit machines) before it is stored into the integer array. Construct-

ing a meaningful payload with 3 zero bytes in every four bytes is extremely diffcult, if not 

impossible. To this end, we proposed a novel constraint solving algorithm which identifes 

operations that make inputs no longer exploitable, such as the copy operation from a byte 

array to an integer array. The operations essentially divide the state space of a program into 

exploitable and post-exploitable sub-spaces because the program state before the operation 

is exploitable, but no longer so after the operations. Therefore, A2C decodes the mutated 

values only when they are transmitted from the exploitable space to the post-exploitable 

space. Notably, the exploitable space is much smaller than the post-exploitable space — 

making A2C highly effcient. A2C successfully achieves general protection for a large 

set of real-world programs, including Apache web server against a variety of attacks (e.g., 

heap spraying, use-after-free, buffer-overfow, integer-overfow, and type-confusion) with 

low overhead (6.94%). 
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2 LDX : CAUSALITY INFERENCE BY LIGHTWEIGHT DUAL EXECUTION 

Causality inference, such as dynamic taint anslysis, has many applications (e.g., informa-

tion leak detection). It determines whether an event e is causally dependent on a preceding 

event c during execution. We develop a new causality inference engine LDX. Given an 

execution, it spawns a slave execution, in which it mutates c and observes whether any 

change is induced at e. To preclude non-determinism, LDX couples the executions by shar-

ing syscall outcomes. To handle path differences induced by the perturbation, we develop a 

novel on-the-fy execution alignment scheme that maintains a counter to refect the progress 

of execution. The scheme relies on program analysis and compiler transformation. LDX 

can effectively detect information leak and security attacks with an average overhead of 

6.08% while running the master and the slave concurrently on seperate CPUs, much lower 

than existing systems that require instruction level monitoring. Furthermore, it has much 

better accuracy in causality inference. 

2.1 Introduction 

Causality inference during program execution determines whether an event is causally 

dependent on a preceding event. Such events could be system level events (e.g., input/output 

syscalls) or individual instruction executions. A version of causality inference, dynamic 

tainting, is widely used to detect information leak, namely, sensitive information is unde-

sirably disclosed to untrusted entities, and runtime attacks, in which exploit inputs subvert 

critical execution state such as stack and heap [6–10]. 

Most existing causality inference techniques are based on program dependences, espe-

cially data dependences. There is data dependence between two events if the former event 

defnes a variable and the later event uses it. These techniques have a few limitations. First, 

they have diffculty in handling control dependence. There is control dependence between 
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a predicate and an instruction if the predicate directly determines whether the instruction 

executes. The challenge lies in that control dependences sometimes lead to strong causality, 

but some other times lead to very weak causality that cannot be exploited by attackers and 

hence should not be considered. Most existing solutions [11–13] rely on detecting syntactic 

patterns of control dependences and hence are incomplete. Second, existing techniques are 

expensive (e.g., a few times slow-down [8]), as memory accesses need to be instrumented 

to detect data dependences. Third, the complexity in implementation is high. Dependence 

tracking logic needs to be defned for each instruction, which is error-prone for complex 

instruction sets. Instrumenting third party libraries, various languages and their runtimes, 

is very challenging. 

We observe that these limitations root at tracking causality by monitoring program de-

pendencies. We propose to directly infer causality based on its defntion. In [14], coun-

terfactual causality was defned as follows. An event e is causally dependent on an earlier 

event c if and only if the absence of c also leads to the absence of e. Program dependence 

tracking in some sense just approximates counterfactural causality. Our technique works 

as follows. It perturbs the program state at c (the source) and then observes whether there 

is any change at e (the sink). There are a number of challenges. (1) We need at least 

two executions to infer causality. Thus, we must prune the differences caused by non-

determinism such as different external event orders. (2) Meaningful comparison of states 

across executions requires execution alignment. Due to perturbation, the event e may occur 

at different locations. Naive approaches such as using program counters hardly work due 

to path differences [15]. (3) The second execution is not a simple replay of the frst one, as 

the perturbation may cause path differences and then input/output syscall differences. (4) 

Ideally, the two executions should proceed in parallel. Otherwise, the execution time is at 

least doubled. 

The core of our technique is a novel runtime engine LDX, which stands for Lightweight 

Dual eXecution. Its execution model is similar to Dual Execution (DualEx) [16]. Given 

an original execution (the master), a new execution (the slave) is derived by mutating the 

source(s). Later, by comparing the output buffer contents of the two executions at the 
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sink(s), we can determine if the sink(s) are causally dependent on the source(s). The mas-

ter and the slave are coupled and run concurrently. The slave tries to reuse syscall and 

nondeterministic instruction outcomes (e.g., rdtsc) from the master to avoid nondeter-

minism. To avoid side effects, the slave often ignores output syscalls. Since perturbation 

may cause path differences and hence syscall differences, an on-the-fy execution alignment 

scheme is necessary. DualEx has a very expensive alignment scheme based on Execution 

Indexing [15]. The slow-down reported in [16] is three orders of magnitude. In contrast, 

LDX features a novel lightweight on-the-fy alignment scheme that maintains a counter that 

refects the progress of execution. The counter is computed in such a sophisticated way 

that an execution with a larger counter value must be ahead of another with a smaller one. 

The slave blocks if it reaches a syscall earlier than the master. If different paths are taken 

in the executions, the scheme can detect them and instructs the executions to perform their 

syscalls independently. It also allows the executions to realign by ensuring that they have 

the same counter value at the join point of the different paths. Without such fne-grained 

alignment, when the slave encounters a syscall different from that in the master, it cannot 

decide if the master is running behind (so that it can simply wait) or the two are taking 

different paths so that the syscall will never happen in the master. 

Our contributions are summarized in the following. 

• We study the limitations of program dependence based causality and propose coun-

terfactual causality instead. 

• We develop a lightweight dual execution engine that enables practical counterfactual 

causality inference. 

• We develop a novel scheme that computes a counter cost-effectively at runtime using 

simple arithmetic operations. The counter values from multiple executions indicate 

their relative progress, facilitating runtime alignment. The scheme handles language 

features such as loops, recursion, and indirect calls. 

• Our evaluation shows that LDX outperforms existing program dependence based 

dynamic tainting systems LIBDFT [8] and TAINTGRIND [17]. In the effectiveness 
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aspect, LIBDFT and TAINTGRIND can only detect 31.47% and 20% of the true in-

formation leak cases and attacks detected by LDX. Also, LDX does not report any 

false warnings. In the effciency aspect, the overhead of LDX is 6.08% to the origi-

nal execution while it requires running the master and the slave concurrently on two 

separate CPUs. In contrast, the other two cause a few times slowdown although they 

do not require the additional CPU and memory. Note that the counter scheme allows 

aligning and continuing executions in the presence of path differences, which makes 

LDX superior to TIGHTLIP [18], which often terminates when it detects misaligned 

syscalls. 

Limitations. LDX requires access to source code. Specifcally, the target application 

should be compiled with LLVM because our analysis and instrumentation techniques are 

implemented in a LLVM pass. LDX occupies more resources than a single execution. In 

the worst case scenario, it may double the resource consumption on memory, processor, 

and external resources such as fles on disk. Our performance evaluations assume that the 

machine has enough capacity to accomodate such resource duplication. In practice, if the 

slave and the master executions are coupled most of the time, only the processor and mem-

ory consumptions are doubled because the slave can shares most external I/Os with the 

master. LDX may have false positives. For example, low level data races that are not pro-

tected by any locks may induce non-deterministic state differences and eventually lead to 

undesirable output differences. However, for shared memory accesses protected by locks, 

LDX ensures the same synchronization order across the master and the slave. Furthermore, 

heap addresses are non-deterministic across the two runs, if heap pointer values are emitted 

as part of the output, LDX reports causality even though the two pointers may be seman-

tically equivalent. However, In our experience, pointer values are rarely printed as part of 

the outputs at sink points. 

LDX may also have false negatives. The current implementation may not capture 

causality through covert channels. For example, information can be disclosed through exe-

cution time and fle metadata (e.g. last accessed time). We will leave it to our future work. 
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Furthermore, program execution may run into extremal conditions (e.g., running out of 

disk/memory space), the current implementation of LDX does not handle such conditions. 

2.2 Counterfactual Causality 

Counterfactual causality (CC) [14, 19] is the earliest and the most widely used defni-

tion of causality: an event e is causally dependent on an event c if and only if, if c were not 

to occur, e would not occur. Later, researchers also introduce the notion of causal strength: 

c is a strong cause if and only if it is the necessary and suffcient condition of e [20–22]. 

Otherwise, c is a weak cause. 

We adapt the defnition in the context of program and program execution as follows. 

Given an execution, we say a variable y at an execution point j is causally dependent on 

a variable x at an earlier point i, if and only if mutating x at i will cause change of y at j. 

The causality is strong if and only if any change to x must lead to some change of y. We 

call this causality a one-to-one mapping. The causality is weak if multiple x values lead 

to the same y value. We call it a many-to-one mapping. The strength of the causality is 

determined by how many x values map to the same y. 

Figure 2.1.: Examples to illustrate the comparison of counterfactual causality and program 
dependences. Arrows denote strong causalities between x at the sink and s at the source. 

Most existing causality inference techniques including dynamic tainting are based on 

tracking program dependences, especially data dependencies. Two events are causally re-

lated if there is a dependence path between them during execution. As we discussed in 
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Section 3.1, these techniques have inherent limitations because program dependences are 

merely approximation of CC. Next, we discuss the relation between CC and dynamic pro-

gram dependences to motivate our design. 

(1) Most Data Dependences Are Essentially Strong CCs. Consider Fig. 2.1 (a). There is a 

strong CC between s at the source (line 1) and x at the sink (line 4) as any change to s leads 

to some change at the sink, and there is a data dependence path 4 → 3 → 1 between the 

two. Other data dependences have similar characteristics, which implies that conventional 

dynamic tainting (based on data dependence) tracks strong CCs. On the other hand, if there 

is a technique that infers all strong CCs, it must subsume dynamic tainting. 

(2) Control Dependences Induce Both Strong and Weak CCs. In Fig. 2.1 (b), assume the 

true branch is taken and x = 1. We can infer that s must be 10; there is strong causality 

between x and s. This strong CC is induced by the control dependence 14→13, together 

with data dependences 15 → 14 and 13 → 11. If control dependence is not tracked (like 

in most existing dynamic tainting techniques), the CC is missed. However in many cases, 

control dependences only lead to weak CC. In case (c), assume s = 50 and hence x = 1. 

There is a dependence path 25 → 24 → 23 → 21 if control dependence 24 → 23 is tracked. 

However, the casuality between x at 25 and s at 21 is weak as many values of s lead to 

the same x = 1. Such weak causality is very diffcult for the attacker to exploit. For 

example with x = 1, the adversary can hardly infer s’s value, even with the knowledge 

of the program. Moreover in code injection attacks, the attacker can hardly manipulate the 

sink (e.g. function return address) by changing the source. According to [23], if control 

dependences are not tracked, 80% strong CCs are missed; if all control dependences are 

tracked, strong CCs are never missed but 45% of the detected causalities are weak. In 

some large programs, an output event is causally dependent on almost all inputs with 90% 

of them being weak causalities that cannot be exploited. In summary, control dependences 

are a poor approximation of strong CCs. 

(3) Tracking both Data and Control Dependences May Still Miss Strong CCs. Fig. 2.1 (d) 

presents such a case. Assume s = 10 and hence the else branch is executed. As such, x is 

not updated. However, the fact that x is not updated (and hence has the value of 0) allows 
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main ( ) {

1.   read(stdin, &name, &title, 

           &salary, &age);

2.   fout=open(✁);

3.   if (title==STAFF) 

4.      raise=SRaise(�staff.std✂,salary);

5.   else if (title==MANAGER){

6.      raise=MRaise(name,salary,age);

7.      read(stdin, &dept);

8.      raise+=BONUS[dept];

9.   } else ...

10. sprintf (buf, �✁✂, &name, &raise);  

11. send(socket, buf);

 }

SRaise(standard, salary) {

12.   FILE fin=open(standard,...);

13.   read (fin, &rate);

14.   return salary*rate;

 }

MRaise(name,salary,age) {

15.   raise=SRaise(�mngr.std✂,salary);

16.   if (salary>C1 && age==JUNIOR) 

17.      write(fout,&name);

18.   return raise;

 }    

3.  if (title==S..)

4. raise=SRaise(✁);
5. if (title==M )

10. sprint(buf, ✁ );

1. read( ✁ );

6. MRaise( ✁ );

2. fout=open(✁)

7. read( ✁ );

8. raise=...;

9. ...

11. send (✁)

Entry

cnt++

cnt++

cnt++

12. fin=open( ✁ );

13. read(✁)

Entry

cnt++

cnt++

14. return

15. raise= SRaise();

Entry

cnt++

16.  if (salary...)

17. write(✁)

18. return...

cnt++

cnt++

cnt+=4cnt+=2

(a) Program (b) Control Flow Graphs and Instrumentation

main( ) SRaise( )

MRaise( )
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1

2

2
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Figure 2.2.: Illustrative example. The code along control fow edges represents instrumentation. 
#cnt+=2 inside SRaise(); ##cnt+=3 in MRaise(). 

the adversary to infer s = 10. It is a strong CC: any change to s makes x have a different 

value. Unfortunately, such strong CC cannot be detected by tracking program dependences 

as line 37 is only data dependent on line 32 as the true branch is not executed. More cases 

are omitted due to the space limitations. They can be found in our technical report [24]. 

The above discussion suggests that program dependences are a poor approximation of 

strong CCs. Hence, we propose LDX, a cost-effective technique that allows us to directly 

infer strong CCs, strictly following the defnition. 

2.3 Overview and Illustrative Example 

We use an example to illustrate LDX. Here we are interested in information leak detec-

tion. We mutate the secret inputs. If output differences are observed at the sinks, there are 

strong CCs between the sinks and the secret inputs, and hence leaks. 



15 

Specifcally, given the master execution, LDX creates a slave and runs the two concur-

rently in a closely coupled fashion. The master interacts with the environment and records 

its syscall outcomes. In most cases, the slave does not interact with the environment, but 

reuses the master’s syscall outcomes, to eliminate state differences caused by nondetermin-

istic factors such as external event orders. The slave mutates the sources, which potentially 

leads to path differences and hence syscall differences. A novel feature of LDX is to toler-

ate syscall differences in a cost-effective manner. It maintains a counter for each execution 

that indicates the progress. Execution points (across runs) with the same counter value and 

the same PC are guaranteed to align (in terms of control fow). An execution with a larger 

counter value is ahead of another with a smaller value. Aligned syscalls can share their 

outcomes; if the slave encounters a syscall with a counter larger than that in the master, 

the slave blocks until the master catches up; if the slave encounters an input syscall that 

does not have an alignment in the master, it will execute the syscall independently. The 

counter is computed as follows. It is incremented by 1 at each syscall. When two execu-

tions take different branches of a predicate –since the branches may have different numbers 

of syscalls– the values added to the counter may be different. The technique compensates 

the counter in the branch that has a smaller increment so that the counter must have the 

same value when the join point of the branches is reached. As such, the executions are 

re-synchronized. 

Figure 2.3.: Syscall traces and the synchronization action sequence by LDX for the example in 
Fig. 2.2 with title the secret. The shaded entries are aligned. 
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Example. Consider the program in Fig. 2.2 (a). It reads information of an employee, 

computes his/her raise and sends it to a remote site. If the employee is a regular staff, 

function SRaise() is called to compute the raise (line 4). If he/she is a manager, function 

MRaise() is called (line 6). Moreover, the program reads the department information to 

compute the bonus for the manager. Finally (lines 10 and 11), the name and the raise are 

reported to a remote site. SRaise() opens and reads a contract fle that describes the rate 

of raise. MRaise() calls SRaise() to compute the basic raise, using a different contract 

fle. Furthermore, it saves all the junior managers with a salary higher than C1 to a local 

fle. 

The control fow graphs (CFGs) and their instrumentation for counter computation (i.e. 

code along CFG edges) are shown in Fig. 2.2 (b). The number beside a node denotes the 

counter value at the node, computed by the instrumentation starting from the function entry. 

It can be intuitively considered as the maximum number of syscalls encountered along a 

path from the entry to the node. In SRaise(), the counter is incremented twice along edges 

Entry → 12 and 12 → 13 before the two syscalls. The total increment is hence 2, as shown 

beside the exit node. In MRaise(), the counter value of line 15 is 2, although the edge 

is not instrumented. This is because of the increments inside SRaise(). The true branch 

of line 16 has an increment of 1 due to the write syscall. To ensure identical counter 

values at the join point, the false branch (i.e., edge 16 → 18) is compensated with +1. As a 

result, the total increment of MRaise() is 3 along any path. Similarly in main(), the path 

3 → 5 → 6 → 7 → 8 → 10 has an increment of 4, due to the three syscalls inside MRaise() 

and the syscall at line 7. As such, we compensate the edges 4 → 10 and 9 → 10 by +2 and 

+4, respectively. 

Assume title=STAFF is the secret. In the slave, it is mutated to MANAGER. Also as-

sume age=JUNIOR. Fig. 2.3 shows the syscall sequences of the two executions and the 

corresponding counter values. The frst two entries are the syscalls at lines 1 and 2 in both 

executions, and they align due to the same counter value. Hence, the slave copies the syscall 

results from the master. The two executions diverge at line 3 and different syscalls are en-

countered. In particular, the master executes two syscalls inside SRaise() and the slave 
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executes the two syscalls inside SRaise() in a different context, followed by the write at 

line 17 and the read at 7. Since these syscalls do not align, both the master and the slave 

execute them separately. Assume the master fnishes its (true) branch frst and continues 

to the send syscall at line 11. At this time, the counter is 7 in the master and larger than 

the slave’s. The master blocks until the slave’s counter also reaches 7, at which the two 

syscalls (at line 11) align again. Since the syscall is a sink, LDX compares the outputs and 

identifes differences. It hence reports a leak. Note that even though there is no direct data 

fow from title to raise, the value of raise still leaks the secret title through control 

dependences. Many existing techniques cannot detect such causality. � 

One may notice in Fig. 2.3 that the third and the fourth syscalls in both executions 

have the same counter. In fact, both are syscalls in SRaise(). To recognize syscalls 

that are different but have the same counter value and the same PC, LDX compares their 

parameters. 

Fixed versus Dynamically Computed Counter values. One may also be curious that 

why LDX does not assign a fxed counter value to each syscall. This is because a function 

may be invoked under different contexts such that the counter value computed for a syscall 

inside the function may vary. 

Use of LDX. LDX is fully automated during production runs. It has a predefned confg-

uration of sources (e.g., socket receives) and sinks (e.g., fle writes). The user can also 

choose to annotate the sources and sinks in the code during instrumentation. At runtime, 

all the specifed sources are mutated. If output differences are observed at any sink, LDX 

considers that there is strong causality between the sink and some source(s) and reports an 

exception. It does not require running multiple times for individual sources. 

2.4 Basic Design 

The basic design consists of two components. The frst is for counter computation and 

the second is for synchronizing the executions and sharing syscall results. For now, we 
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assume programs do not have loops, recursion, or indirect calls. They are discussed in later 

sections (loops/recursion in Section 2.5 and indirect calls in Section 2.6). 

2.4.1 Counter Computation 

In LDX, each execution maintains a counter to allow progress comparison across runs. 

The basic idea of counter computation is to ensure that the current counter value represents 

the maximum number of syscalls along a path from the beginning of the program to the 

current execution point. If the program does not have any loops, recursion, or indirect 

calls, such a number can be uniquely computed. Hence, our instrumentation compensates 

the paths other than the one that has the maximum number of syscalls, by incrementing the 

counter, to make sure the counter must have the same value (i.e. the maximum number of 

syscalls) along any path. Intuitively, when the two executions take different branches of a 

predicate, the counter computation ensures that they align when the branches join again, 

because the counter will have the same value regardless of the branch taken. 

The instrumentation procedure is presented in Algorithm 1. It consists of two func-

tions: INSTRUMENTPROG() that instruments the program and INSTRUMENTFUNC() that 

instruments a function. INSTRUMENTPROG() instruments functions in the reverse topo-

logical order. As such, when a function is instrumented, all its callees must have been 

instrumented. In INSTRUMENTFUNC(), cnt[n] contains the number of maximum syscalls 

along a path from the function entry to n. In lines 6-7, cnt[] is initialized to 0. Then in 

the loop from lines 8-16, the algorithm traverses the CFG nodes in the topological order 

and computes cnt[]. In particular, cnt[n] is frst set to the maximum of cnt[p] for all its 

predecessors p (line 9). It is further incremented by one if n is a syscall (lines 10-11). 

Then for any incoming edge p → n, the algorithm instruments it with a counter increment 

of cnt[n] − cnt[p], ensuring the counter value must be cnt[n] along all edges (lines 12-14). 

After that, if n denotes a function call to Fx, cnt[n] is incremented by the counter of the func-

tion FCNT [Fx], which denotes the maximum number of syscalls that can happen inside Fx 

along any path (line 15-16). Note that this increment does not cause any instrumentation on 
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Algorithm 1 Basic counter instrumentation algorithm 
Input: The CFGs of the m functions of a program P, denoted as hN1,E1i, ..., hNm,Emi 
Output: Instrumented CFGs 
1: function INSTRUMENTPROG 
2: for hNi,Eii in reverse topological order of the call graph do 
3: INSTRUMENTFUNC (hNi,Eii) 
4: end for 
5: end function 

Input: The CFG of a function F , denoted as hN,Ei 
Output: The instrumented CFG 
6: function INSTRUMENTFUNC 
7: for each node n ∈ N do 
8: cnt[n] ← 0 
9: end for 

10: for node n ∈ N in topological order do 
11: cnt[n] ← maxp→n∈E (cnt[p]) 
12: if n is a syscall then 
13: cnt[n] ← cnt[n]+ 1 
14: end if 
15: for each edge p → n ∈ E do 
16: if cnt[p] =6 cnt[n] then 
17: instrument p → n with “cnt+=”·cnt[n] − cnt[p] 
18: end if 
19: end for 
20: if n is a call to user function Fx then 
21: cnt[n] ← cnt[n]+ FCNT [Fx] 
22: end if 
23: end for 
24: FCNT [F ] ← cnt[exit node of F ] 
25: end function 
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n because the increment denoted by FCNT [Fx] is realized inside Fx. At the end, FCNT [F ] 

is set to the computed counter value for the exit node. It will be used in counter computation 

in the callers of F . 

Example. In Fig. 2.2, the algorithm frst instruments SRaise(). The cnt[] values are 

showed beside the nodes. Observe that cnt[12] = 1 and cnt[13] = 2, which lead to the 

instrumentation on entry → 12 and 12 → 13. FCNT [SRaise] = cnt[14] = 2. MRaise() 

is instrumented next. Due to FCNT [SRaise], cnt[15] = 2. Note that node 15 is not 

instrumented. Node 18 has two predecessors and thus cnt[18] = max(cnt[17],cnt[16]) = 3, 

which entails the instrumentation on 16 → 18. At last, function main() is instrumented. 

cnt[10] = max (cnt[8],cnt[4],cnt[9]) = cnt[8] = 6, causing the instrumentation on 4 → 10 

and 9 → 10. � 

Algorithm 2 Syscall wrapper for master 
Input: Syscall id sys id and parameters args. 
Output: Syscall return value. 
Defnition: Qm the syscall outcome queue maintained by the master; Os the latest sink syscall by the slave; 

cntm and cnts the local counters in master and slave, respectively; readym the counter value in master 
exposed to the slave; similarly, readys the counter value in the slave exposed to the master. 

1: function SYSCALLWRAPPER(sys id, args) 
2: if sys id denotes a sink syscall then 
3: while cntm > readys do 
4: {}
5: end while 
6: if cntm < readys ∨ Os.sys id =6 sys id ∨ Os.args =6 args then 
7: report causality 
8: end if 
9: end if 

10: r ← SYSCALL (sys id, args) 
11: Qm.enq(hcntm, sys id, args, ri) 
12: readym ← cntm 
13: return r 
14: end function 

2.4.2 Dual Execution Facilitated by Counter Numbers 

To support dual execution, LDX intercepts syscalls to perform synchronization and 

syscall outcome sharing. In the master, when a syscall is encountered, if it is not a sink, 

LDX executes the syscall and saves the outcome for potential reuse by the slave. Otherwise, 
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it waits for the slave to reach the same sink so that their parameters can be compared. In 

the slave, upon a syscall, it frst checks whether it is ahead of the master. If so, it waits until 

the master fnishes the corresponding syscall so that it can copy the master’s result. If the 

corresponding syscall does not appear in the master (due to path differences), which can be 

detected by the counter scheme, the slave executes the syscall. 

Execution Control in the Master. Algorithm 2 shows the controller of the master. It is im-

plemented as a syscall wrapper. Each syscall in the master must go through the controller. 

Inside the controller, cntm and cnts denote the current counter values in the master and the 

slave, respectively. They are local to their execution and invisible to the other execution. 

It also uses two shared variables readym and readys to facilitate synchronization. They are 

assigned the values of cntm and cnts when the master and the slave are ready to disclose the 

effects of the current syscall to the other party. 

Lines 2-6 handle a sink syscall. At line 3, the master spins until the slave catches up. 

Note that the value of readys is the same as cnts when the state of the slave’s syscall denoted 

by cnts becomes visible. There are four possible cases after the master gets out of the spin 

loop. 

(1) cntm < readys. This happens when there is not a syscall denoted by the value of cntm 

in the slave. For example in Fig. 2.2, assume the master takes the false branch at line 3 and 

is now at line 7 with cntm = 6 while the slave takes the true branch and now it just returns 

from the call to SRaise() at line 4 with cnts = readys = 4. Assume we make line 7 a sink. 

Then the master will wait at line 7. However, the next time readys is updated (in the slave) 

is at line 11, at which readys = 7, larger than cntm = 6. 

(2) cntm ≡ readys but the syscall in the slave represented by readys is different from the 

sink syscall in the master. This is due to path differences. 

(3) cntm ≡ readys and both the master and the slave align at the same sink syscall. However, 

their arguments are different. 

(4) The counters, syscalls, and arguments are all identical. 

The frst three cases denote causality between the source and the sink, suggesting leak 

or exploit. The last case is benign. In the frst two cases, there is causality because the sink 
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(in the master) disappears in the slave with the input perturbation. The three comparisons 

at line 5 correspond to the frst three cases, respectively. 

If the current syscall is not a sink, lines 7-8 in the algorithm perform the real syscall 

and enqueue the syscall and its outcome, which may be reused by the slave. At last (line 

9), readym is set up-to-date, indicating the syscall outcome for cntm is ready (for the slave). 

Execution control in the slave is similar. Details can be found in our technical re-

port [24]. 

Syscall Handling. LDX’s policy of handling syscalls is similar to that in dual execution 

(DualEx) [16]. For most input/output syscalls, the slave simply reuses the master’s syscall 

outcome if their alignments in the master can be found. Otherwise, it executes the syscall. 

To avoid undesirable interference, the slave may need to construct its own copy of the 

system state before executing the syscall. For example, before the slave executes a fle 

read, the fle needs to be cloned, opened, and then seeked to the right position. Some 

special syscalls are always executed independently such as process creation. Since the 

policy is not our contribution, we refer the interested reader to [16]. 

Dual Execution Model Comparison between LDX and DualEx [16]. Similar to LDX, 

DualEx also has the master and the slave. However, its synchronization and alignment 

control is through a third process called the monitor. Both the master and the slave simply 

send their executed instructions to the monitor, which builds a tree-like execution structure 

representation called index and aligns the executions based on their indices. The monitor 

also determines if a process needs to be blocked, achieving lockstep synchronization. As 

such, its overhead is very high (i.e., 3 orders of magnitude). In contrast, LDX is much more 

lightweight. It is based on counter values and uses spinning to achieve synchronization. 

2.5 Handling Loops 

The basic design assumes programs without loops. Handling loops is challenging be-

cause the number of iterations for a loop is unknown at compile time. The master and the 

slave may iterate different numbers of times due to the perturbation at sources, leading to 
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Figure 2.4.: Loop example 

different increments to the counters and hence diffculty in alignment. Our solution is to 

synchronize two corresponding loops at the iteration level. In particular, it aligns the ith 

iteration of the master with the ith iteration of the slave by synchronizing at the backedges, 

i.e. the edge from the end of the loop body back to the loop head. It is analogous to having 

a barrier at the end of each iteration. Along the backedge, LDX also resets the counter to 

the value before it entered the loop. Doing so, the value of the counter is bounded and does 

not grow with the number of iterations. If an execution gets out of the loop, its counter is 

incremented by the maximum number of syscalls along any path inside the loop. As such, 

a counter value beyond the loop is larger than any counter values within the loop, correctly 

indicating that the execution beyond the loop is ahead of the one in the loop. 

Algorithm 3 presents the instrumentation algorithm for a function with loops. It trans-

forms the CFG to an acyclic graph by removing loop edges. As such, the cnt[] values in 

the acyclic graph are statically computable. The computed cnt[] values are then leveraged 

to construct the instrumentation, including that for the original loop edges. Particularly, 
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Algorithm 3 Counter instrumentation with loops 
Input: The CFG of a function F , denoted as hN,Ei 
Output: The instrumented CFG 
1: function INSTRUMENTFUNCWITHLOOP 
2: for each back edge t → h ∈ E do 
3: Let h → n be the exit edge of the loop 
4: E ← E −{t → h, h → n} . Remove loop exit and back edges 
5: E ← E ∪{t → n} . Add dummy edge 
6: end for 
7: INSTRUMENTFUNC(hN,Ei) 
8: remove all dummy edges and their instrumentation 
9: restore all the removed edges in the original CFG 

10: for each original back edge e : t → h do 
11: instrument e with “sync();cnt− =”·cnt[t] − cnt[h] 
12: end for 
13: for each original loop exit edge e : h → n do 
14: instrument e with “cnt+=”·cnt[n] − cnt[h] 
15: end for 
16: end function 
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the algorithm frst removes all the backedges and the loop exit edges (line 2-5). A loop 

exit edge is from the loop head h to the next statement n beyond the loop. A dummy edge 

is inserted from the end of the loop body t to the next statement n beyond the loop. Our 

discussion focuses on for and while loops, do-while loops can be similarly handled. 

At line 6, the acyclic graph is instrumented through INSTRUMENTFUNC(). After that, 

the dummy edges and their instrumentation are removed as they do not denote real control 

fow (line 7). The backedges and loop exit edges are then restored. Lines 9-10 instrument 

the backedges. For a backedge t → h, the instrumentation frst calls a barrier function 

sync(), which is similar to lines 3-4 in Algorithm 2, to synchronize with the backedge of 

the same iteration in the other execution. It then resets the counter to the value at h such 

that the counter increment of the next iteration has a fresh start. Lines 11-12 instrument the 

loop exit edges. For a loop exit h → n, the instrumentation increments the counter by the 

difference between cnt[n] and cnt[h]. Intuitively, it raises the counter to the value of cnt[n]. 

Example. Fig. 2.4 (a) shows a loop example. There are two loops: the i loop and the j 

loop. Their iteration numbers are determined by the inputs from line 2. Figure (b) shows 

the transformed CFG and part of the instrumentation generated by INSTRUMENTFUNC() in 

the basic design. Observe that the backedges 8 → 5 and 12 → 3, the loop exit edges 3 → 13 

and 5 → 9 are removed. Dummy edges 8 → 9 and 12 → 13 are added. They do not represent 

real control fow, but allow cnt[9] to be computed as cnt[8]+ 1 and cnt[13] = cnt[12]+ 1. 

Figure (c) shows the instrumentation for backedges and loop exit edges. Note that the CFG 

in (c) is the original CFG. The backedge 8 → 5 is instrumented with the call to the barrier 

function and the decrement of the counter by cnt[8] −cnt[5] = 1. The loop exit edge 5 → 9 

is instrumented with the counter increment of cnt[9] − cnt[5] = 2, which makes the counter 

value of node 9 always larger than those within loop j. The instrumentation for loop i is 

similar. 

Fig. 2.5 shows the dual execution when the loop bounds n and m are the sources. As-

sume the master executes with n = 1 and m = 2 and the slave executes with n = 2 and m = 1. 

Along the syscall sequences, we also show the loop iterations to facilitate understanding. 

The frst three syscalls (up to inside the frst iteration of j) align in the two executions. 
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Figure 2.5.: Syscalls and the sequence of synchronizations by LDX for the example in Fig. 2.4 
with n and m the sources. The shaded entries are aligned. The indentation shows the loop nesting. 

At A , the two executions are synchronized and counters are reset to 2. However at B , 

the slave exits loop j while the master continues to the second iteration of j. As such, 

the slave’s counter becomes 4, which blocks its execution. At C , the master fnishes the 

second iteration of j and its counter is reset to 2. At D , the master also exits loop j and 

its counter is incremented to 4, which aligns the two syscalls at line 9. At E , the two 

runs are synchronized at the backedge of loop i and their counters are reset to 2 due to 

the instrumentation on 12 → 3. At F , the master exits the i loop; its counter becomes 5 

due to the instrumentation on 3 → 13, which blocks its execution as the master needs the 

parameters of the send() from the slave to infer causality. In contrast, the slave executes 

the remaining i iteration before it reaches the aligned sink (line 13). � 

Recursive functions are handled similarly. Also note that we only need to instrument 

loops that include syscalls. Hot loops are usually computation intensive and should not 

have syscalls. Therefore, they are unlikely to be instrumented. 
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2.6 Handling Indirect Function Calls 

The challenge for handling indirect calls is that the call targets are usually unknown at 

compile time. As a result, we cannot use the counter values in the callee(s) to compute 

those in the caller. To handle indirect calls, LDX saves a copy of the current counter to the 

stack when an indirect call is encountered, and resets the counter to 0 such that the two 

executions start a fresh alignment from the indirect call site. When the executions return 

from the indirect call, the counter value is restored. As such, we do not need to know the 

precise counter increment inside the indirect call to support alignment in the caller. LDX 

supports components that cannot be instrumented such as third party libraries and dynamic 

loaded libraries by synchronizing at their interface. Longjmp and setjmp are ignored 

during the CFG analysis. They are supported at runtime by saving a copy of the counter 

stack at the setjmp which will be restored upon the longjmp. Moreover, an artifcial sink 

is inserted before the longjmp so that if one process longjmps but the other does not, LDX 

reports exception. More details can be found in [24]. 

2.7 Handling Concurrency and Library Calls 

LDX supports real concurrency, which is completely different from DualExec [16]. 

Threads have their own counters. Threads in the master and the slave are paired up. LDX 

treats pthread library calls as syscalls. The two executions hence synchronize on those calls 

and share the outcomes of lock acquisitions and releases. Note that sharing synchroniza-

tion outcomes induces very similar thread schedules in the two executions. However, path 

differences may lead to synchronization differences which may in turn lead to deadlocks in 

LDX if not handled properly. We taint locks that have encountered differences and avoid 

sharing synchronization outcomes for those locks. Moreover, low-level data races that are 

not protected by any locks may induce non-deterministic state differences, leading to false 

positives in strong CC inference. In Section 4.6, our experiment shows that false posi-

tives rarely happen (for the programs we consider). Intuitively, non-determinism during 

computation may not lead to non-determinism at the sinks. 
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Light-weight Resource Tainting. In our current implementation, a fle/directory is con-

sidered a resource. Taint metadata is associated with each resource. When an operation 

for a resource is misaligned, the resource is tainted to indicate state differences so that any 

future syscalls on the resource cannot be coupled. When a tainted resource is accessed by 

the other execution, LDX will create a copy of the related resource(s) so that the master 

and the slave operate on their own copies, without causing interference. For example, if the 

master creates a directory while the slave does not, the directory is tainted. When the slave 

tries to access the directory later, it gets into the de-coupled mode. The slave’s syscall will 

be performed on a clone of the parent directory without the created directory. Similarly, if 

a fle is renamed or removed from a directory in one execution but not the other, the fle is 

tainted. Any following acceses to the fle lead to de-coupled execution. 

Handling Library Calls. Regarding local fle outputs, the slave does not perform any 

outputs to the disk if they are aligned. Instead, it skips the calls or buffer the output values 

for causality inference if local fle outputs are considered sinks. The slave ignores its own 

signals and receives its signals from the master. Upon a signal, LDX allows the slave to 

execute the signal handler. Handler invocations are handled similar to indirect calls. Note 

that the slave may invoke system calls to cause different signals or events such as creating 

threads or processes different from the master. LDX buffers such different system calls and 

all the system calls caused by such signals and events for causality inference. The threads 

and processes unique to either execution run in the de-coupled mode. 

Handling UI Library Calls. LDX is intended to be transparent to the user. Hence, it is un-

desirable to have two (almost identical) user interfaces. Therefore, LDX allows the master 

to handle all the UI library calls as usual. The slave does not have its own interface. It tries 

to reuse the UI library call outcomes from the master as much as possible. Misaligned UI 

library calls, if they are input related, return random values to the slave. Misaligned output 

UI calls are ignored, or buffered for causality inference if the outputs are considered sinks. 
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Table 2.1.: Benchmarks and Instrumentation 

Program LOC Instrumented instances Syscalls Max Dyn. Cnt. Mutated 
inputsInst. / Loop / Recur. / FPTR Sinks/Total Cnt. Value Stack∗ 

400.perlbench 128K 5540 (1.56%) / 10233 / 634 / 852 4 / 62 72K 3392 2.91/7 Perl source 
401.bzip2 5739 43 (0.24%) / 360 / 0 / 57 4 / 10 7 4.5 0/1 Input data 
403.gcc 385K 791 (0.07%) / 45702 / 2928 / 463 3 / 31 424 96.1 0.11/5 C source 
429.mcf 1579 27 (1.32%) / 44 / 1 / 0 3 / 11 8 4.3 0/0 Input data 
445.gobmk 157K 235 (0.22%) / 7910 / 74 / 47 3 / 15 37 1.7 1.68/4 Input data 
456.hmmer 20K 1762 (3.59%) / 1611 / 11 / 13 4 / 25 281 83.2 0/1 Input/args. 
458.sjeng 10K 26 (0.13%) / 978 / 10 / 1 4 / 12 6 2.7 0.07/1 Input data 
462.libquantum 2611 52 (1.08%) / 153 / 11 / 0 3 / 17 8 1 0/0 Arguments 
464.h264ref 36K 102 (0.09%) / 1994 / 38 / 362 4 / 20 101 26.4 0.26/2 Confguration 
471.omnetpp 26K 121 (0.09%) / 6102 / 46 / 838 2 / 22 20 4.5 2.3/6 Confguration 
473.astar 4285 56 (0.47%) / 224 / 0 / 1 1 / 18 51 32.8 0.12/1 Confguration 
483.xalancbmk 266K 116 (0.01%) / 28381 / 312 / 10265 5 / 25 5 1.5 1.34/9 Input XML 

Firefox 14M 83 (0.01%) / 21 / 0 / 9 3 / 26 71 41.2 0.09/1 nsIURI objects 
lynx 204K 13157 (6.92%) / 6799 / 109 / 1179 6 / 132 15M 578K 0.3/6 Cookie/packets 
nginx 287K 4672 (4.27%) / 1541 / 21 / 850 6 / 110 518 17.9 3.8/7 Confguration 
tnftp 152K 2452 (6.31%) / 1093 / 17 / 210 8 / 125 5878 2623 0.01/1 Arguments 
sysstat 29K 811 (6.94%) / 271 / 0 / 1 3 / 47 365 70.7 0.01/1 Func. returns 

gif2png 16K 246 (7.76%) / 62 / 0 / 0 7 / 36 76 18.2 0/0 Input image 
mp3info 9252 205 (8.34%) / 91 / 0 / 0 3 / 31 88 6.4 0/0 Input mp3 
prozilla 13K 1116 (8.19%) / 285 / 0 / 14 5 / 67 5680 713 0/0 Packet 
yopsweb 1961 282 (5.93%) / 97 / 0 / 1 4 / 44 24 3.7 0/1 Packet 
ngircd 66K 1052 (6.70%) / 417 / 24 / 1031 4 / 62 2863 1524 0/1 Packet 
gocr 54K 2801 (5.48%) / 2581 / 4 / 2 3 / 24 23K 2182 0/1 Input image 

Apache 208K 640 (0.61%) / 2700 / 23 / 183 6 / 126 89 43.7 1.56/4 Input HTML 
pbzip2 4527 735 (6.74%) / 226 / 0 / 3 4 / 49 1997 578.83 0/0 Input data 
pigz 5766 996 (5.85%) / 434 / 2 / 15 6 / 54 9288 432.82 0.99/1 Input data 
axel 2583 342 (8.24%) / 162 / 1 / 3 6 / 35 271 73.66 0/0 Packet 
x264 98K 2071 (1.30%) / 2218 / 1 / 2295 8 / 49 881 76.58 15K/18K Input video 
* It shows avg/max 
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2.8 Evaluation 

LDX is implemented in LLVM 3.4. We evaluate its runtime performance, the capability 

of handling misaligned syscalls, and the effectiveness of causality inference with two ap-

plications: information leak detection and attack detection. Experiments are on a machine 

with Intel i7-4770 3.4GHz CPU (4 cores), 8GB RAM, and 32-bit LinuxMint 17. 

Benchmark Programs. We used 28 programs as shown in Table 2.1. They include four 

different subsets: SPECINT2006 (the frst 12); the network and system related set for 

information leak detection (the next 5), the vulnerable program set for attack detection (the 

next 6), and the concurrency set (the last 5) for evaluation of concurrency control. The 

detailed introduction of these programs can be found in [24]. 

Instrumentation Details. Table 2.1 shows the instrumentation details. Columns 3-6 de-

scribe the numbers of instrumented instructions (and their percentage), instrumented loops, 

instrumented recursive functions, and instrumented indirect calls. The next two columns 

show the number of sinks and syscalls instrumented. For programs that have network con-

nections, we use the outgoing networking syscalls as sinks. For other programs, we treat 

the local fle outputs as sinks. The “max cnt.” column shows the maximum counter value 

in a program. It denotes the largest number of syscalls along some static program path. For 

firefox, we were not able to instrument the whole program as LLVM failed to generate 

the whole program bitcode (supposedly larger than 600MB). We identifed the source fles 

for event processing and the JS engine and only instrumented those. The resulted object 

fles are then linked with the rest. 

We have a few observations. (1) We have some large and complex programs such 

as lynx, 403.gcc, and apache. (2) The percentage of instrumented instructions is low 

(3.44% on average). (3) Some programs (e.g., 403.gcc and 400.perlbench) have a large 

number of recursive functions and indirect calls. LDX handles all of them. 

The last column of Table 2.1 shows the source mutations. For the SPEC and net-

work/system programs, we mutate the data fles and the confguration fles. For the vul-

nerable program set, we mutate the inputs from untrusted sources and detect whether dif-



31 

0%

5%

10%

15%

20%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

p
b

zi
p

2

n
g

in
x

tn
ft

p

g
if

2
p

n
g

p
ro

zi
ll

a

y
o

p
sw

e
b

n
g

ir
cd

g
o

cr

a
p

a
ch

e

p
ig

z

a
xe

l

x2
6

4

G
e

o
. 

m
e

a
n

 (
S

P
E

C
)

M
e

a
n

 (
S

P
E

C
)

G
e

o
. 

m
e

a
n

 (
A

ll
)

M
e

a
n

 (
A

ll
)

4.4%/4.7% 

6.21% / 6.73% 

4.45% / 4.70% 

5.70% / 6.08% Without mutation (Perfectly align) 

With mutation (Diff. syscalls) 

Figure 2.6.: Normalized overhead of LDX 

ferences are observed at function return addresses (for buffer overfow attacks) and at pa-

rameters of memory management functions (for integer overfow attacks). We perform 

off-by-one mutations. In order to avoid invalid mutations, we only mutate data felds, not 

magic values or structure related values. 

2.8.1 Performance 

We study the performance of LDX using SPECINT2006 and programs that are not 

interactive and have non-trivial execution time. For server programs such as nginx and 

apache, we run the server and send 10,000 requests, and then measure the throughtput. For 

web servers such as apache, we use ApacheBench to provide the requests. Firefox and 

lynx are omitted because they are interactive. Sysstat and mp3info are also excluded as 

their running time is trivial (<0.01sec). We use the reference inputs for SPEC. We run each 

program twice. In the frst run, we do not mutate the input so that the master and the slave 

perfectly align. The overhead is thus for counter maintenance and syscall outcome sharing. 

In the second run, the master and the slave execute with different inputs. Since they can take 

different paths and have different syscalls, the overhead includes that for synchronization 

and realignment. The results are shown in Fig. 2.6. The baseline is the native execution 

time for the uninstrumented programs with the original inputs. The geometric means of the 
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overhead are 4.45% and 4.7%, while the arithmetic means are 5.7% and 6.08%. Observe 

that the overhead of LDX is very low. We have also measured the overhead of LIBDFT [8], 

one of the state-of-the-art dynamic tainting implementations that works by instruction level 

monitoring. Its slow-down over native executions is roughly 6X on average. LDX is also 

three orders of magnitude faster than dual execution [16]. 

Another observation is that the input differences and hence the syscall differences do 

not cause much additional overhead. As we will show later, the syscall differences are not 

trivial. This is because our alignment scheme allows the misaligned syscalls to execute 

separately and concurrently. The “dyn. cnt.” columns in Table 2.1 show the runtime 

characteristics of the counter values. Observe that the average counter values are much 

smaller than the maximum values (column 9). The maximum depth of the stack is also 

small, meaning that we rarely encounter nesting indirect calls. 

Table 2.2.: Dual Execution Effectiveness 

Program Input 1 / Input 2 # of syscall diffs 
LDX TightLip Input 1 Input 2 

lynx O / X O / O 1801 (4.13%) 1272 (3.0%) 
nginx O / X O / O 202 (13.92%) 181 (13.02%) 
tnftp O / X O / O 2443 (19.19%) 381 (15.74%) 
sysstat O / X O / O 53 (7.42%) 58 (19.21%) 
gcc O / X O / O 38161 (24.99%) 3590 (3.11%) 
xalancbmk O / X O / O 102 (2.60%) 91 (2.32%) 
gobmk O / X O / O 345 (1.68%) 114 (0.55%) 
perlbench O / X O / O 17 (7.08%) 11 (4.58%) 
bzip2 O / X O / O 53 (54.63%) 49 (50.51%) 
mcf O / X O / O 20 (0.01%) 17 (0.01%) 
sjeng O / X O / O 729 (45.45%) 132 (8.22%) 
h264ref O / X O / O 141 (31.68%) 12 (2.69%) 
hmmer O / - O / - 2 (0.03%) -
libquantum O / - O / - 1 (12.5%) -
omnetpp O / - O / - 0 -
astar O / - O / - 11 (73.33%) -
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2.8.2 Effectiveness of Dual Execution 

In this experiment, we answer the question why we need to align the master and the 

slave. The experiment is in the context of detecting information leak. For each program, 

we construct two input mutations with the following goal: one input mutation leads to 

sink differences (and hence leakage) and the other does not. Both mutations may trigger 

syscall differences. We also compare LDX with TIGHTLIP, which does not align execu-

tions and often has to terminate at syscall differences, reporting leakage. Table 2.2 presents 

the results. Symbol ‘O’ denotes that leakage is reported and ‘X’ denotes normal termina-

tion without any warning. The last two columns show the syscall differences before the 

sink difference and their percentage over the total number of dynamic syscalls. We have 

the following observations. (1) LDX correctly identifes that one input mutation causes 

leakage while the other one does not (except for the last four cases), whereas TIGHTLIP 

reports leakage for both input mutations. Note that a lot of syscall differences are not out-

put related. (2) The syscall differences caused by input mutations are not trivial and are 

sometimes substantial. LDX can properly handle all such differences. (3) For numerical 

computation oriented programs (i.e., the last four in the table), we were not able to con-

struct the input mutation that does not cause leakage as any input mutation always leads to 

sink differences. 

2.8.3 Effectiveness of Causality Inference 

Comparison with Dynamic Tainting. We frst compare LDX with TAINTGRIND [17] 

and LIBDFT [8] 1. We compare the number of tainted sinks for all the benchmarks. For 

the set of programs with vulnerabilities, their sinks include function returns and memory 

management library calls. The results are shown in Table 2.3. The three columns in the 

middle report the number of tainted sinks. The last column shows the total number of sinks 

encountered during execution. 

1We have tried DECAF (formerly TEMU), but encountered build problems. 
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Table 2.3.: Comparison with Dynamic Tainting 

Program # of tainted sinks Total # 
of sinks LDX TAINTGRIND LIBDFT 

gcc 3 0 0 146 
perlbench 1 0 0 5 
bzip2 7 0 0 20 
mcf 12 4 3 36 
gobmk 68 39 39 84 
hmmer 17 4 4 29 
sjeng 83 8 6 112 
libquantum 4 2 2 7 
h264ref 28 3 3 37 
omnetpp 24 4 2 52 
astar 16 3 3 53 
xalancbmk 45 21 0 419 
lynx 5 3 1 8 
nginx 10 5 0 22 
tnftp 5 2 0 32 
sysstat 6 3 0 12 
gif2png 1 1 1 7 
mp3info 1 1 1 8 
prozilla 1 1 1 100799 
yopsweb 1 1 0 41 
ngircd 1 1 1 597 
gocr 1 1 1 5 
total 340 107 68 -

We have the following observations. (1) The tainted sinks reported by TAINTGRIND 

and LIBDFT and are only 31.47% and 20% of those reported by LDX. This is because 

the other two are based on tracking data dependences. As we discussed in Section 2.2, 

data dependences are essentially strong causalities. Hence, LDX can detect what the other 

two detect. In addition, LDX can detect strong causalities induced by control dependences. 

We have validated that all the sinks reported by LDX have one-to-one mappings with the 

tainted inputs (i.e., no false positives). (2) The tainted sinks reported by TAINTGRIND are 

a superset of those reported by LIBDFT. Further inspection shows that LIBDFT does not 

correctly model taint propagation for some library calls. This indeed illustrates a practical 

challenge for instruction tracking based causality inference, which is to correctly model 

taint behavior for the large number of instructions and libraries. The last six rows show the 
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results for the vulnerable program set. Observe that LDX can detect the attacks by correctly 

inferring the causality between the untrusted inputs and the critical execution points. 

Effectiveness for Concurrent Programs. LDX supports real concurrency by sharing the 

thread schedule as much as possible between the two executions (Section 2.7). However, 

low level races may introduce non-deterministic state differences, leading to false positives 

in causality inference. In this experiment, we collect 5 concurrent programs. For each 

program, we mutate the input and dual execute it 100 times. We used the standard inputs 

provided with the programs. As shown in column 3 of Table 2.4, the number of tainted 

sinks rarely changes, whereas syscall differences do change (column 2) due to low level 

races. However, the syscall difference changes are not substantial because LDX was able 

to enforce the same schedule for most cases. This supports the effectiveness of the concur-

rency control of LDX (for the programs we consider). The tainted sink changes for x264 are 

caused by the execution statistics report (e.g., the bits processed per sec.). Although LDX 

forces the master and the slave to share the same schedule and the same timestamps, the 

number of bits processed per unit time is non-deterministic across tests and beyond control. 

The tainted sink changes for axel are because the program makes Internet connections in 

each run, which are non-deterministic. 

Table 2.4.: Effectiveness for Concurrent Programs 

Program # of syscall diffs 
(Min/Max/Std. Dev.) 

# of tainted sinks 
(Min/Max/Std. Dev.) 

Apache 114 / 123 / 1.66 39 / 39 / 0 
pbzip2 288 / 332 / 11.59 8 / 8 / 0 
pigz 490 / 546 / 18.50 14/ 14 / 0 
axel 1173 / 1252 / 25.39 813 / 834 / 6.5 
x264 854 / 1211 / 89.38 350 / 353 / 0.3 

Input Mutation. LDX performs off-by-one mutation on sources, which must detect any 

strong CCs as proved in [24]. However in some rare cases it may also detect weak causal-

ities. We conduct an experiment to study different mutation strategies. We observe that 

other strategies do not supercede off-by-one. Details can be found in [24]. 
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File 1: ngx_auto_config.h

1   #ifndef NGX_HAVE_POLL

2   #define NGX_HAVE_POLL 1

3   #endif

File 2: ngx_auto_config.h

4   #if (NGX_HAVE_POLL)

5   #include <poll.h>

6   #endif

7   #if (__FreeBSD__) && ✁

8   #include <sys/param.h>

     ...

Layout of output file

Common parts

Parts depend on poll.h and 

NGX_HAVE_POLL

Common parts

Input files to gcc

Cnt  Master

71  fd1 = open( file1 );

81  fxstat( fd1, ✁ );

101  read( fd1, ✁ );

72  fd2 = open( file2 );

82  fxstat( fd2, ✁ );

102  read( fd2, ✁ );

2161  fprintf( ✁ );

2171  _IO_putc( ✁ );

Cnt  Slave

71  fd1 = open( file1 );

81  fxstat( fd1, ✁ );

101  read( fd1, ✁ );

2161  fprintf( ✁ );

2171  _IO_putc( ✁ );

216i  fprintf( ✁ );

 _IO_putc( ✁ );

216j  fprintf( ✁ );

217j  _IO_putc( ✁ );

2181  fputs( ✁ );

2311  fprintf( ✁ );

2181  fputs( ✁ );

2311  fprintf( ✁ );

✁ ✁ 

✁ ✁ 

Data flow 

detected

File 3: cpplib.c

465      do_define (pfile) {

                ✁ 

472          pfile node.value = ( � ); // define a value

                ...

476      }

            ✁

1323    do_if (pfile) {

               ...

1326       int skip = 1;

               ...

1329          skip = ( pfile node.value == 0 );

1331       pfile state.skipping = skip;

1332    }

gcc preprocessor sourceLDX executions

Data flow

node.value ✂ Input Explicit

skip ✂ (node.value == 0); Implicit

472

1329

state.skipping ✂  skip; Explicit1331

Data flow 

detected

217i

Figure 2.7.: Case study on 403.gcc. Input fles on the left; relevant gcc code on the right; 
dual execution in the middle. 

2.8.4 Case Studies 

403.gcc. In this study, we use the source code of nginx as input. Fig. 2.7 shows part of 

input code on the left. We specify the confguration NGX HAVE POLL as the source. The 

master has NGX HAVE POLL defned but the slave does not. As such, the master includes 

poll.h while the slave does not. This corresponds to 72, 82, and 102 (Fig. 2.7) occurring 

in the master but not in the slave. Later on, both executions re-align at 2161 and run in the 

coupled mode. In fact, 216 and 217 are in an output loop that emits the preprocessed code. 

Due to the earlier differences, the preprocessed code is different. The differences manifest 

as parameter differences during executions of 216i, 217i in the master and 216 j, 217 j in 

the slave. The leak is reported. Note that the causality is strong as one can infer from the 

preprocessed code the value of NGX HAVE POLL. 

Other tools such as LIBDFT and TAINTGRIND are not able to detect the causality as it 

is induced by control dependences, Fig. 2.7 shows the relevant gcc code on the right. At 

line 472, gcc reads the value of NGX HAVE POLL and stores it. Later, when the preproces-

sor reaches the “#if NGX HAVE POLL” statement inside do if(), it reads the stored value 

and compares it with 0. The outcome is stored to skip at line 1329. Then, the variable is 

copied to pfile->state.skipping (line 1331), which later determines if the code block 

guarded by the if statement should be skipped or not. Note that although there are data de-
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pendences 472 → 1329 and 1329 → 1331, the connection between pfile->node->value 

and skip at line 1329 is control dependence, which breaks the taint propagation in LIBDFT 

and TAINTGRIND. 

Firefox. In this case, we detect information leak in a firefox extension ShowIP 1.2rc5 

that displays the IP of current page. It sends the current url to a remote server. LDX in-

struments the event handling component and part of the JS engine in firefox to align JS 

code block executions that correspond to page loading and user event handling. It success-

fully detects the leak whereas TAINTGRIND and LIBDFT fail because the leak goes through 

control dependences. Details can be found in [24]. 

2.9 Related Work 

Dual Execution. LDX is closely related to dual execution [16]. The main differences 

are the following. (1) LDX is very lightweight (6.08% overhead) whereas [16] relies 

on the expensive execution indexing [15], causing 3 orders of magnitude slowdown. (2) 

LDX allows threads to execute concurrently whereas [16] does not. (3) The applications 

are different. The low overhead of LDX makes it a plausible causality inference engine 

in practice. (4) Their dual execution models are different as explained in Section 2.4.2. 

TIGHTLIP [18] also uses the master-and-slave execution model to detect inforamtion leak. 

It uses a window to tolerate syscall differences. The simple approach can hardly handle 

nontrivial differences. 

Execution Replication and Replay. Execution replication has been widely studied [25– 

33]. The premise is similar to n-version programming [34], which runs different implemen-

tations of the same service specifcation in parallel. Then, voting is used to produce a com-

mon result tolerating occasional faults. There are many security applications [18,35–38] of 

execution replication by detecting differences among replicas. There are also works in ex-

ecution replay [39–47]. In contrast, LDX align different paths during execution. RAIL [48] 

re-runs applications with previous inputs to identify information disclosure after a vulner-

ability is fxed. To handle state divergence between the original and replay executions, it 
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requires developers to annotate the program. DORA [49] is a replay system that records 

execution beforehand to replay with a modifed version of the application. Instead, LDX 

runs two executions of an application with input perturbation to infer causality at real-time. 

LDX focuses on aligning two executions accurately using a counter algorithm, while [49] 

relies on heuristics to tolerate non-determinism. 

Dynamic Taint Tracking. Most dynamic tainting techniques [6–10, 50] work by tracking 

instruction execution and hence are expensive. They have diffculty handling control de-

pendences [11]. Some have limited support by detecting patterns [12] or handling special 

dependences [23]. In particular, [50] identifes and handles a subset of important control 

dependencies using several heuristics. LDX provides a solution to such problems by detect-

ing strong CC based on the defnition of causality instead of program dependencies. Ap-

proaches for quantifying information fow [11,51–53] aim to precisely ascertain fgures like 

the number of sensitive bits of information that an attacker may infer, the number of attack 

attempts required, or strategies for identifying secrets. Hardware based solutions [54–57] 

have been proposed to speed up or improve accuracy of taint analysis. 

Secure Multiple Execution (SME). SME [58–60] splits an execution into multiple ones 

for different security levels: the low execution does the public outputs and the high execu-

tion does the confdential outputs. SME can enforce the non-interference policy. It blocks 

or terminates when the two executions diverge, which is intended for non-interference. In 

comparison, LDX focuses on causality inference and tolerates execution divergence. 

Statistical Fault Localization (SFL). Recent approaches in SFL [61–63] use causal in-

ference methodology in order to mitigate biases such as confoundings. In particular, sus-

piciousness scores that guide to locate faults can be distorted by such biases, producing 

inaccurate results. They run a program over a set of inputs repeatedly to identify the causal 

effect of a statement on program failures. Such causal effect is then used to improve the per-

formance and accuracy of SFL by reducing confounding bias. Instead, LDX infers causality 

by running multiple executions concurrently while tolerating execution divergence caused 

by the input purturbation. 
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3 MCI : MODELING-BASED CAUSALITY INFERENCE IN AUDIT LOGGING 

FOR ATTACK INVESTIGATION 

In this chapter, we develop a model-based causality inference technique for audit logging 

that does not require any application instrumentation or kernel modifcation. It leverages 

a recent dynamic analysis, dual execution (LDX), that can infer precise causality between 

system calls but unfortunately requires doubling the resource consumption such as CPU 

time and memory consumption. For each application, we use LDX to acquire precise causal 

models for a set of primitive operations. Each model is a sequence of system calls that 

have inter-dependences, some of them caused by memory operations and hence implicit 

at the system call level. These models are described by a language that supports various 

complexity such as regular, context-free, and even context-sensitive. In production run, a 

novel parser is deployed to parse audit logs (without any enhancement) to model instances 

and hence derive causality. Our evaluation on a set of real-world programs shows that the 

technique is highly effective. The generated models can recover causality with 0% false-

positives (FP) and false-negatives (FN) for most programs and only 8.3% FP and 5.2% 

FN in the worst cases. The models also feature excellent composibility, meaning that the 

models derived from primitive operations can be composed together to describe causality 

for large and complex real world missions. Applying our technique to attack investigation 

shows that the system-wide attack causal graphs are highly precise and concise, having 

better quality than the state-of-the-art. 

3.1 Introduction 

Cyber-attacks are becoming increasingly targeted and sophisticated [64]. A special 

kind of these attacks, called Advanced Persistent Threat (APT), can infltrate into target 

systems in stages and reside inert for a long time to remain undetected. It is important 
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to trace back attack steps and understand how an attack unfolds [65]. In the mean time, 

identifying the entry point of the attack and understanding the damage to the victim can 

be critical to recovering the victim system from the intrusion and also preventing future 

compromises. 

Causality analysis techniques [46, 47, 66–68] are widely used in attack investigation. 

They analyze audit logs generated by operating system level audit logging tools (e.g., Linux 

Audit [69], Event Tracing for Windows [70], and DTrace [71]) and correlate system events, 

e.g., system calls (syscalls) to identify causal relations between system subjects (e.g., pro-

cesses) and system objects (e.g., fles, network sockets). Such capability is particularly 

important in cyber-attack investigation where causality of malicious events reveals attack 

provenance. For example, when an attacker exploits vulnerabilities and executes malicious 

payloads, causality analysis can identify such vulnerable interfaces including input chan-

nels that accept malicious inputs from the user or the network. Moreover, given a set of 

malicious or suspicious events, it can identify all the events that are causally related to 

the given set of events. Essentially, these events depict the source of the attack and/or the 

damage induced by the attacker. However, syscall based analysis has a major limitation: 

dependence explosion [4]. For a long-running process, an output event (e.g., creating a 

malicious fle) is assumed to be causally related to all the preceding input events (e.g., fle 

read and network receive). This conservative assumption causes signifcant false causal 

relations. 

Some recent works [4, 72–74] focus on collecting enhanced information at run-time 

to avoid dependence explosion and enable accurate attack investigation. For instance, 

BEEP [4] and ProTracer [72] train and instrument long-running applications to capture 

information of fne-grained execution units in addition to syscalls. MPI [74] asks the user 

to annotate important data structures in applications’ source code to enable semantic aware 

execution partitioning. Additionally, Bates at el. [75] propose a general provenance-aware 

framework called Linux Provenance Module (LPM) that allows users to defne custom 

provenance rules. The major hindrance of these techniques in practice is their require-
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ments of changing end-user systems, such as instrumenting user applications, installing 

new runtime support, kernel modules, and even changing the kernel itself. 

Taint analysis [8, 17, 76] is another approach that can track causal relations (e.g., in-

formation fow) between system components (e.g., memory objects, fles, and network 

sockets). However, whole system tainting is too computationally expensive (over 3x slow 

down [77, 78]) to be deployed on production systems. Additionally most taint analysis 

techniques cannot handle implicit fow, resulting in false-negatives. 

In this chapter, we propose MCI, a novel causality inference technique on audit logs. 

Our technique does not require any changes on the end-user system, nor any special opera-

tions during system execution. The end-user only needs to turn on the audit logger shipped 

with the operating system (e.g., Linux Audit, Event Tracing for Windows, and DTrace). If 

the user detects a security incident, she only needs to provide the syscall log and program 

binaries from the victim system (or a disk image) to a forensic expert. 

In off-line attack investigation, which is often done by the forensic expert, MCI pre-

cisely infers causality from a given system call log by constructing causal models and 

parsing the log with the models. Fig. 3.1 shows a high level overview of how MCI works. 

MCI consists of two phases: (1) causality annotated model generation, and (2) model pars-

ing. First, MCI generates causal models by leveraging LDX [1] which is a dual-execution 

based system that can infer causality by mutating input syscalls and then observing out-

put changes. In this phase, MCI takes two inputs: a program binary and typical workloads. 

MCI’s model constructor automatically runs LDX and analyzes its results to construct mod-

els. Models are expressive and capable of representing fne-grained dependencies including 

invisible at the syscall level (e.g., dependencies induced by memory operations). The mod-

els can be pre-generated (for widely used applications) or generated on demand after an 

incident. Second, during investigation MCI identifes causal relations between events in a 

given syscall log collected from a victim system by parsing the log with the models. The 

derived precise dependencies are critical for attack investigation. 
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In summary, we make the following contributions: 

• We propose a novel technique for precise causality inference that directly works on 

audit logs without requiring any changes or setup on end-user systems. We only 

require program binaries and the audit log from the victim system after the incident. 

• We perform a comparative study using a real-world example to illustrate the merits 

and limitations of existing approaches. 

• We propose to leverage LDX [1] to identify fne-grained causality from program 

execution. Using the generated causality information, we construct causal models 

annotated with fne-grained dependencies. We study the model complexity needed 

to describe causalities in audit logging. 

• We develop a novel model parsing algorithm that can handle multiple model com-

plexity levels and substantially mitigate the ambiguity problem inherent in model-

based parsing. 

• We perform thorough evaluation of MCI on a set of real-world applications. The 

results show that the generated models can recover causality with close to 0% FP and 

FN for most applications and the worst FP rate 8.3% and the worst FN rate 5.2%. 

Model construction and model parsing have reasonable overhead and scale to week-

long and even month-long workloads. Applying MCI to attack investigation shows 

that our models have very nice composibility such that small models can be com-

posed together to describe complex system-wide attack behaviors. Our attack causal 

graphs are even more precise than those generated by a state-of-the-art system [4]. 

3.2 Background and Motivation 

In this section, we use an insider information leak attack case to illustrate the limitations 

of existing attack provenance analysis techniques, and then to motivate our work. 
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Figure 3.1.: Overview of MCI’s off-line causality inference. Audit Logs and Program 
Binaries are provided from the end-user, workloads and input specifcations are generated 
by an attack investigator (e.g., a forensic expert), and other components are automatically 
generated by MCI. 

3.2.1 Motivating Example 

We use a data exfltration of confdential company data by an employee. Insider attacks 

are the dominant reason for data breach incidents in 2016 [79, 80]. 

Assume John is a project manager who has access to confdential data. John was 

bribed by a competitor company and attempts to breach some confdential data. However, 

John’s company forbids copying data to removable media such as USB stick. Furthermore, 

the company inspects all incoming/outgoing network traffc via deep packet inspection 

(DPI) [81–83] to prevent exfltration of confdential data and to block malicious network 

traffc from outside. To bypass the packet inspection, John decides to use the GPG encryp-

tion algorithm [84] to encrypt data before sending it. 

GnuPG Vim plug-in. To use GPG encryption, John installed a Vim plug-in GnuPG [85], 

which enables transparent editing of gpg encrypted fles. When he opens a fle encrypted by 

gpg [84] which is an encryption utility supported by most operating systems with the GNU 

library (e.g., Linux, FreeBSD, and MacOS), the GnuPG plug-in automatically decrypts and 

passes the decrypted data to Vim so that the user can edit the contents of the encrypted fle. 

The plug-in automatically encrypts the contents when the user saves the gpg fle. 

Attack Scenario. John uses Vim equipped with the GnuPG plug-in to open three confden-

tial fles, data1, data2, and data3. He also opens out.gpg in order to store confdential data 

in an encrypted format. Then he copies a few lines from data2 using the Vim command 



44 

‘v’ to select characters and ‘y’ to copy them to the clipboard buffer (i.e., Vim’s default 

register). Then he fnds out the information in data3 is more up-to-date. He thus copies 

lines from data3 that overwrite the contents from data2. Later, he pastes the copied lines to 

out.gpg, saves the fle in an encrypted format and terminates Vim. Note that, when he saves 

out.gpg, the GnuPG plug-in actually creates a new fle (inode:8) and renames it to out.gpg 

so that the original out.gpg fle (inode:4) is replaced by a new fle (inode:8). Observe that 

the inode numbers of the original out.gpg fle and the new fle are different. Finally, he 

sends the encrypted out.gpg to a server outside the enterprise network. 

This data breach incident is later detected, and a forensic analysis team starts to inves-

tigate the incident. Now, we introduce existing causal analysis based forensic techniques 

and discuss how they work on this attack. 

data1 data2 data3 
out.gpg 

(inode:4) 

vim

out.gpg
(inode:8)

/tmp/.X11-unix

gpg
(pid:1)

/tmp/tmpfile

2

(a) Linux Audit: System Call Analysis

(b) BEEP: Fine-grained Analysis

data3 out.gpg
(inode:4)
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out.gpg
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gpg
 (pid:1)

/tmp/tmpfile

(c) TaintGrind: Taint Analysis
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Figure 3.2.: Motivating example: Insider theft breaches confdential data using Vim and 
GPG 

. 

3.2.2 Existing Approaches and Limitations 

System Call based Analysis. Most causal analysis techniques use syscall logging tools 

to record important system events at runtime and then analyze recorded events to identify 

causal relations between system subjects (e.g., process) and system objects (e.g., fle or net-

work socket). Syscall logging tools are shipped with most operating systems. For example, 

Linux Audit [69] is a default package in Linux and MacOS distributions, DTrace [71] is 

available in FreeBSD, and Event Tracing for Windows (ETW) [70] comes with Windows. 
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Syscall based analysis has been studied in a number of works [46, 47, 66–68]. For in-

stance, BackTracker [66] and Taser [46] propose backward and forward analysis techniques 

in order to analyze syscall logs and construct causal graphs for effective attack investiga-

tion. The constructed causal graphs show system subjects and objects that involved in 

attacks, and their causal relations. 

Fig. 3.2-(a) shows a provenance graph generated from the syscall log collected during 

the data breach incident discussed in the previous section. To understand the incident in 

detail, a security analyst frst identifes the out.gpg fle (inode:8) which contains confdential 

data. Then the analyst fnds the system components that are causally related to the fle from 

the graph in the backward direction (time-wise). Observe that it was Vim that wrote the fle 

( 111111 ). Before that, Vim read /tmp/tmpfle ( 101010 ) which was written by “gpg” ( 999 ). The “gpg” 

process (pid:2) was forked by Vim ( 888 ). Before the fork, the Vim process reads /tmp/tmpfle 

( 777 ) which was written by another “gpg” process (pid:1) ( 666 ). “gpg” previously read the 

original out.gpg fle with a different inode number (inode:4) ( 5 ) and the “gpg” process 

(pid:1) was forked by Vim ( 444 ) as well. There are also other fles that Vim read, including 

data3 ( 333 ), data2 ( 222 ), and data1 ( 111 ). 

Note that Fig. 3.2-(a) contains many false dependencies such as dependencies between 

the Vim process and fles data1, data2, and /tmp/.X11-unix which is a socket for XWindow. 

The coarse-granularity of processes leads to this false dependency problem as it simply 

considers an output event is dependent on all the preceding input events in the process. 

Execution Unit based Analysis. False dependencies in syscall based analysis are a major 

obstacle for attack investigation as it often causes the dependency explosion problem [4], 

which is a problem of having an excessive number of dependencies, with most of them 

being bogus. It makes investigation challenging, often leading to wrong conclusions. To 

address the problem, BEEP [4] and ProTracer [72] propose to divide a long-running pro-

cess to autonomous execution units. In this way, an output event is only dependent on the 

preceding input events within the same execution unit. BEEP and ProTracer also detect 

inter-unit dependencies introduced via memory objects. ProTracer is a variant of BEEP 

that can signifcantly reduce runtime and space overhead while the effectiveness of attack 
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analysis remains the same because they share the same mechanism to partition a long pro-

cess. 

Unfortunately, BEEP and ProTracer require complex binary program analysis in order 

to instrument a target application for execution partitioning at runtime. To detect the inter-

unit dependencies, they need to identify memory dependencies across units by analyzing 

training runs, and instrument the target program to monitor the relevant memory accesses 

in production runs. Note that identifying all relevant memory accesses that induce de-

pendencies across execution units in complex binary programs via training is challenging. 

Missing memory accesses in training leads to false-negatives in attack investigation. They 

also generate a large number of additional syscalls to denote unit boundaries and memory 

accesses, increasing the storage pressure. 

In addition, while BEEP can prune out some false dependencies as shown in Fig. 3.2-

(b) (e.g., between data1 and Vim) by leveraging fne-grained execution units, there are 

still false dependencies such as those involving data2 and /tmp/.X11-unit. This is because, 

in this example, BEEP considers each fle read/write event as a separate unit and detects 

dependencies between units through memory objects. For example, BEEP considers units 

that read data2 ( 222 ) and data3 ( 333 ) are causally related to a unit that writes out.gpg ( 111111 ) as 

texts from data2 and data3 are copied into a buffer for copy-and-paste in Vim. However, 

the cross-unit dependency between the unit with data2 ( 222 ) and another unit with out.gpg 

( 111111 ) is bogus because the contents copied from data2 are not pasted to out.gpg. The 

bogus dependency is introduced because BEEP simply detects memory read and memory 

write events with a same memory address without checking if there is true information 

fow between the two. In short, while BEEP can narrow down the scope of investigation, 

there are still unnecessary fles and events in the graph. 

Taint Analysis. Taint analysis techniques [8, 17, 76] track information fow between a set 

of system components (e.g., fle, memory, and network), called taint sources, to another set 

of system components, called taint sinks. Given a set of input related system components to 

track, taint analysis keeps track of how data from the specifed input components are con-

sumed and propagated by individual instructions that operate on the data, in order to iden-
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tify how they impact other system components. However, most taint tracking approaches 

including the state-of-the-art tools such as TaintGrind [17] and libdft [8] are expensive as 

they monitor each instruction to track information fow. Furthermore, they are often not 

able to track implicit fows caused by control dependencies, introducing false-negatives. 

To illustrate the merits and limitation of taint analysis techniques, we use a state-of-the-

art open source tool, TaintGrind, to analyze the aforementioned incident. Fig. 3.2-(c) shows 

the result from TaintGrind. In this example, TaintGrind fails to identify the dependency 

between the data3 and /tmp/tmpfle. Note that the most important part of the attack (i.e., 

the leaked confdential data) is not revealed in the attack investigation due to the missing 

dependency. 

  int tripledes_ecb_crypt(..., const byte* from, ...) {
    ...
    work = from ^ *subkey++;
    to ^= sbox8[  work   & 0x3f ];
    to ^= sbox6[ (work>>8)  & 0x3f ];
    to ^= sbox4[ (work>>16) & 0x3f ];
    to ^= sbox2[ (work>>24) & 0x3f ];
    ...
  }

1
2
3
4
5
6
7
8
9

Figure 3.3.: Information fow through a table look-up in GPG 

We investigate the case in depth, and fnd that GPG decrypts values through a table 

lookup operation. Unfortunately, TaintGrind is not able to handle information fow through 

the table lookup, resulting in missing dependencies. Fig. 3.3 shows a code snippet extracted 

from GPG. Specifcally, the function argument from contains an piece of encrypted text. At 

line 3, the encrypted text is used to calculate the value of work, and TaintGrind success-

fully propagates taint information to the variable. However, at lines 4-7, work is used to 

look-up a table sbox2-8, and TaintGrind loses track of taint information at this point be-

cause it does not handle information fow via array indexing. Note that most taint analysis 

techniques do not track information fow through array indexing to avoid the over-tainting 

problem. Specifcally, the over-tainting problem often leads to an excessive number of taint 

tags, resulting in false-positives. Hence, most taint analysis tools decide not to track such 
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information fow. In addition to table look-up, explicit data fows through computations 

(e.g., bitwise and arithmetic) and implicit data fows caused by control dependency are of-

ten disregarded to avoid the over-tainting problem. Moreover, the signifcant overhead of 

taint analysis prohibits its application in practical forensic analysis that requires always-on 

monitoring to capture attacks in-the-wild. 

Causality Inference. Recently, Kwon et al. propose a light-weight causality inference 

technique LDX [1] using a dynamic analysis called dual execution. For a given original ex-

ecution, LDX derives a slave execution in which it mutates values of input source(s). It then 

compares the corresponding outputs from the original execution and the slave execution to 

determine whether the outputs are causally dependent on the source(s). Specifcally, if the 

two executions have different values for an output, LDX considers that the output is causally 

dependent on the mutated input source(s). To address execution path divergence caused by 

input perturbation, LDX leverages its novel on-the-fy execution alignment scheme. Unlike 

dynamic taint analysis techniques (e.g., TaintGrind [17] and libdft [8]), LDX can detect 

explicit and implicit information fow and has much lower runtime overhead (about 6%). 

Fig. 3.2-(d) shows the graph generated by LDX. Note that it contains only the objects 

and events related to the attack, without any false dependences. While LDX produces 

concise and accurate graphs, it requires the dual-execution framework available on the 

end-user system which doubles the consumption of computational resources (e.g., CPU 

and memory). 

Table 3.1.: Comparison of Causality Analysis Approaches 

Syscall Analysis 
[46, 66, 67] 

Fine-grained Analysis Taint Analysis 
[8, 17, 76] 

Causality 
Inference: LDX [1] 

MCI 
BEEP [4]/ProTracer [72] MPI [74] WinLog [73] 

Space overhead Low Mid Low Low High Low Low 
Runtime overhead Low Low Low Low High Low Low 
Resource overhead Low Low Low Low High Mid Low 
False-positive High Mid Low Mid Low Low Low 
False-negative Low Low Low Low Low-Mid Low Low 
Granularity Coarse Mid Fine Mid Fine Fine Fine 
End-user requirements None Training/instrumentation Code annotation None Tainting framework Dual-execution framework None 
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3.2.3 Goals and Our Approach 

Table 3.1 presents merits and limitations of existing causality analysis approaches. In 

summary, syscall analysis techniques suffer from high false-positive rates due to depen-

dence explosion. While BEEP and ProTracer mitigate the dependence explosion problem, 

they require complex static, dynamic binary analysis and instrumentation and incur non-

trivial space overhead. MPI is effcient and effective, but requires access to source code 

and domain knowledge for annotation. Taint analysis techniques generally incur signif-

cant runtime and space overhead and suffer from the over-/under-tainting problems. LDX 

requires the dual-execution framework in production run that doubles computational re-

source consumption. 

Our Goal. The goal of this chapter is to provide a causality analysis technique with the 

same accuracy as LDX, but does not require any changes of end-user systems, such as in-

strumenting user applications, modifying the kernel or installing special runtime. Specif-

cally, the end-user only needs to turn on the default audit logging tool that comes with their 

system, such as Linux Audit, Event Tracing for Windows, and DTrace to collect syscall 

logs. Upon a security incident, MCI can generate precise causal graphs from the raw log 

to explain attack causality and assess system damages. We believe such a design would 

substantially improve applicability. 

Our Approach. As shown in Fig. 3.1, the key idea of MCI is to use causal models to 

parse raw logs to derive precise causality information. Specifcally, in the offine phase, 

we use LDX [1] as the causality inference engine to construct models for the applications 

that will be deployed on an end-user system. A causal model is essentially a sequence 

of inter-dependent syscalls and their causal relations. Such causalities/dependencies can 

be induced by system objects, called explicit dependencies, as they can be determined by 

analyzing syscalls alone, or induced by memory operations and control dependences, called 

implicit dependences, which are not visible by analyzing syscall events. Note that LDX can 

detect both explicit and implicit dependencies. 
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During deployment, given a syscall log collected from the incident, MCI can precisely 

infer causality between events in the log by parsing the log using the pre-generated models. 

3.2.4 MCI on Motivating Example 

We demonstrate the effectiveness of MCI on investigating the incident. Assume the 

causal models of applications have been derived offine. Note that generating models does 

not require any particular expert knowledge on target programs, but rather the typical user 

level workloads. Model generation is a one-time effort such that models generated for a 

program can be used for all installations of the program. 

Fig. 3.4-(a), (b), (c), (d), and (e) show the graphical representations of some models 

from Vim. A node is denoted by a letter which represents a syscall, with a superscript (∗) 

representing a sequence of syscalls. A subscript represents the (symbolic) system object 

(e.g., fle or socket) operated by the syscall. For example, model (a) is for the behavior 

of opening and decrypting a gpg fle. Specifcally, as shown in the legend in Fig. 3.4, the 

frst node of (a) rα indicates a read syscall on α which is stdin. Note that each model 

has its own legend for the subscript. The frst node is a syscall that causes the entire 

behavior. Intuitively, the model represents reading from a command line that loads a gpg 

fle. The second node, sβ , represents a stat syscall on a fle β (output fle). The GnuPG 

plug-in uses a temporary fle to store decrypted contents and then informs Vim to open. 

Subscript β symbolizes the temporary fle which contains decrypted contents. The second 

node essentially checks whether the fle exists. After that it loads a key fle to prepare 
∗decryption which is represented as a third node (rγ ). Then, it checks (stat) the output fle 

again (s ∗ 
β ). Finally, the ffth node (r

δ 
∗ ) represents reading a gpg fle which is an encrypted 

fle. The sixth node (wβ ) indicates that the decrypted contents are written onto the output 

fle (β ). Then, the GnuPG plug-in sends a notifcation to Vim via a pipe which is shown in 

the last node (wε ). Note that symbols in subscript (e.g. α , β ) can be instantiated to any 

concrete fle handler during parsing. The same subscript β in sβ and the later nodes s ∗ 
β 

and wβ dictate that these syscalls must operate on the same fle. The third and ffth nodes 



51 

are denoted by a superscript ∗ , representing a sequence of read system calls (read∗) on 

different fles γ and δ . 

The directed edges between nodes represent the causality/dependency between syscalls, 

with the solid and dotted edges representing the explicit and implicit dependencies, respec-

tively. For example, in (a), there are explicit dependences from sβ to wβ and implicit 

dependencies from rγ 
∗ and r

δ 
∗ . The implicit dependencies are caused by memory operations 

that copy values from a crypto key fle (γ) to encrypted contents δ that are detected and 

modeled by MCI. 

Fig. 3.4-(f) illustrates a syscall log collected during the incident by the default Linux 

Audit tool [69]. Given the syscall log and the models, MCI automatically parses the log and 

hence derives the corresponding dependencies. Each box in (f) denotes a model instance 

with the letter annotated on the box representing the model id. Note that we use different 

background colors for boxes to represent nodes belong to different models. We omit the 

dependences in the model instances for readability. For readability, we use superscripts to 

denote event timestamps. 

The model instances essentially tell us that the user frst opened a gpg fle (i.e., out.gpg) 

by model (a), opened and copied a fle (i.e., data2) without pasting by model (b), and 

opened, copied, and pasted another fle (i.e., data3) by model (c). Observe that there are 

events that belong to multiple models, which allow us to determine causality across models 

and hence compose the whole attack path. For instance, event s11 belongs to both models 5 

(c) and (d) (i.e., the node in the two boxes in blue and green), suggesting that the contents 

from data3 are copied to the previous gpg fle. The subscript 5 corresponds to fle viminfo 

that is used to indicates the state of editing. Note that model (c) does not have explicit de-

pendencies with other models. Hence, without model (d), causality between model (c) and 

other models is diffcult to reveal. After a few editing operations by model (d), the user 

fnally saved the contents to a new gpg fle by model (e). The event s11 belonging to mod-5 

els (c) and (d) indicates that the new gpg fle contains information from data3 (confdential 

data). Note that the matched instance of model (b) does not have any overlapping nodes 

with other model instances nor explicit dependencies, and hence no causal relations with 
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others. This indicates that data2 is not involved in the incident. The fnal causal graph is 

shown Fig. 3.2-(d), which is accurate and concise, without any missing or bogus depen-

dencies. 

... w5 ... s5 ... s6 w6 ... r0 ... r1 w7 ...

(f) System call trace

(b) Mb: Open à Copy

sβ sγ uδ rγ wε

(a) Ma: Open a gpg file

sβ rγ sβ rδ wβ wε

(c) Mc: Open à Copy à Paste

(e) Me: Save a gpg file

sβ rγ sβ rδ wβ sε

sβ sγ wδ rγ wε sζ sε

s3 ... ... r0 s4 ...

(d) Md: Edit

sγ wγ sδ

s1 ... r2 w1 ... r0

*

Ma Mb Mc Me

* * * ** *

* * * *

rα rα

rαsβ

rα

r0 r0

α: stdin, β: output (temp) file, 
γ: key file, δ: gpg file, ε: pipe to Vim

α: stdin, β: opened file, γ: swap file, 
δ: temp swap file, ε: viminfo file

α: stdin, β: opened file, γ: swap file, 
δ: temp swap file, ε: viminfo file, ζ: config file

α: stdin, β: viminfo file, 
γ: swap file, δ: current file

α: stdin, β: output (encrypted) file, 
γ: key file, δ: input file, ε: pipe to Vim

sσ: stat(σ), wσ: write(σ), rσ: read(σ), 
uσ: unlink(σ), rσ: read(σ)*, sσ: stat(σ)*

Legend

* *

0: stdin, 1: temp file (containing decrypted contents), 2: org. gpg file (gpg.out), 3: data2 file, 4: data3 file, 5: viminfo file, 6: swap file for the temp (1), 7: new gpg file

...

rα

s1

Md
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MeMdMcMa Mb

Model boundaries

Figure 3.4.: MCI on the motivating example 

3.3 Problem Defnition 

In this section, we introduce a number of formal defnitions and the problem statement 

for MCI. 

3.3.1 Defnitions 

Causal Model. Fig. 3.5 shows defnitions for a causal model. Specifcally, SysName rep-

resents syscall names such as open and read. Repetition indicates how many times a term or 

node repeats. It could be a constant number, a variable such as n or m, or ∗ representing any 

number of repetition. Variables are needed to to denote repetition constraints across syscall 

events. ResourceSymbol represents a symbol for a resource handler that a system call oper-

ates on (e.g., fle handler). A Term is a sequence of Nodes that could be annotated with the 

number of repetitions. A node N is a syscall annotated with a set of parameters denoted by 

SymbolicResource. A symbolic resource can be instantiated to different concrete resources 
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during parsing. Two nodes with the same symbolic resource indicates that they have ex-

plicit dependency. An Edge denotes dependency/causality between two nodes Nfrom and 

Nto. Finally, a causal model is defned as a 3-tuple < T, P(E)implicit, P(E)explicit > where T 

is a sequence of terms, P(E)implicit is the set of implicit dependency edges and P(E)explicit 

is the set of explicit dependency edges. The defnitions of two kinds of edges can be found 

in Sec. 3.2. 

SyscallName SysName ::= open | read | write | ... 
Repetition R ::= 1 | 2 | 3 | ... | n | m | ∗ 
SymbolicResource S ::= {α, β , γ, ...} 

Term T ::= N | NT | (T)R 

Node N ::= SysNameP(S) 
Edge E ::= < Nfrom, Nto > 
Model M ::= < T, P(E)implicit, P(E)explicit > 

Figure 3.5.: Defnition of causal model 

For example, the model in Fig. 3.4 (a) can be represented as follows. First, T can be rep-

resented by a sequence: readα ,statβ ,read∗ γ ,stat∗ 
β ,read

δ 
∗ ,writeβ ,writeε . Implicit dependen-

cies (dotted edges below nodes) are denoted as follows: {hread∗ γ ,read∗ 
δ i, hread

δ 
∗ ,writeβ i, 

hread∗ 
δ ,writeε i}. Explicit dependencies (solid edges above nodes) are the following: { 

hstatβ ,stat∗ 
β i, hstatβ ,writeβ i }. Observe the nodes in an explicit edge have the same re-

source symbol, indicating that they operate on the same resource. In this chapter, we will 

use the more concise graphical representations when possible. 

Syscall Trace. As shown in Fig. 3.6, a system call trace T is a sequence of trace entries 

TE where a trace entry is a system call name annotated with a set of ConcreteResource that 

represents concrete resource handlers, and a number N that represent an index of TE in T . 

Note that it does not contain any dependency information. The frst 6 entries in Fig. 3.4 (f) 

are represented as TE = (read1
0,stat1

2 , ...,read3
2,write1

4 , ...). Note that the subscripts repre-

sent concrete resource handlers and the superscripts represents indexes. 
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ConcreteResource C ::= N 
TraceEntry TE ::= SysNameN 

P(C) 

SyscallTrace T ::= TE 

Figure 3.6.: Defnition of syscall trace 

3.3.2 Problem Statement 

We aim to infer fne-grained causality from a syscall trace by parsing it with models. 

This procedure can be formally defned as a function of T and P(M): 

T × P(M) 7→ (TE 7→ P(N × M)) 

Specifcally, given a syscall trace T and a set of models P(M), the function generates 

a mapping, in which a trace entry is mapped to a set of nodes N in model M. It is a set 

because a trace entry can be present in multiple models as shown in the motivation example 

in Sec. 3.2. With the mapping, the dependencies between trace entries can be derived from 

the dependencies between the matched nodes in the models. For example, parsing the 

trace in Fig. 3.4 (f) using the models in (a)-(d) generates the following mapping. The 

frst 4 events are mapped to model (a): (read1
0 7→< readα ,Ma >),(stat21 7→< statβ ,Ma > 

),(read3
2 7→< read

δ 
∗ ,Ma >),(write4

1 7→< writeβ ,Ma >). Moreover, stat11 belongs to two 5 

models, resulting in two mappings: (stat11 7→< statε ,Mc >),(stat11 7→< statβ ,Md >). It5 5 

entails the following concrete dependency edges < read3
2,write4

1 > (from model edge < 

read∗ 
δ ,writeβ > in (a) ) and < stat5

12 ,stat14 > (from model edge < statβ ,stat
δ 
∗ > in (d)). 1 

The frst edge indicates implicit dependency between the original gpg fle (out.gpg) and a 

temp fle containing its decrypted contents, and the second edge implies that the copy and 

paste action is related to the temp fle containing the decrypted contents of the original gpg 

fle (out.gpg). Such dependency edges lead to a causal graph as that in Fig. 3.2-(d). 

The mapping may not be total, depending on the comprehensiveness of the models. An 

important feature of MCI is model composibility, meaning that a complex behavior can be 

composed by multiple models sharing some common nodes. For instance, a complex user 

behavior in Vim such as “open fle, edit, copy, edit, paste, save, reopen” can be decomposed 
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to multiple primitive models. As such, the number of models needed for regular workload 

is limited as shown in Sec. 4.6. 

The key challenge of MCI lies in parsing the trace that does not contain any dependen-

cies with models that contain dependency information, which entails solving two prominent 

technical problems discussed next. 

3.3.3 Technical Challenges: Complexity and Ambiguity 

Language Complexity 

According to our defnition, a trace is a string in the trace language that does not contain 

dependency information, our problem is essentially to parse the string to various model in-

stances. In the following, we use the classic language theory to understand the complexity 

of our problem. Note that although it seems that we could consider models as graphs and 

leverage the sub-graph isomorphism theory to understand our problem, there are places that 

can hardly be formulated in the graph theory. For instance, our trace is not a graph because 

it does not have implicit dependency information. Furthermore, our model may have con-

straints among the numbers of event repetitions (e.g., the number of close matches with 

the number of open while the number of repetitions may vary). Such constraints can hardly 

be represented in graphs. 

The classical Chomsky hierarchy [86, 87] defnes four classes of languages character-

ized by the expressive power of their defning grammars: regular, context-free, context-

sensitive, and recursively enumerable. More expressive grammar can describe more com-

plex language but requires higher cost in parsing. We study some of representative causal 

model types observed in real-world programs. For each type, we show a sample gram-

mar and discuss the complexity of the grammar as well as scalability of the corresponding 

parser. 

Regular Model. Fig. 3.7 shows a model from ping [88], representing a behavior “resolv-

ing a network address, sending a packet, and receiving a response.” 
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g∅ soβ swβ slβ srβ

gσ: gethostbyname(σ)
soσ: socket(σ), slσ: select(σ), 
swσ: sendto(σ), srσ: read(σ),
α: stdin, β: network socket,

∅: empty set

LegendExplicit

Implicit

rα

Figure 3.7.: Regular model from ping [88] 

Observe that the explicit dependencies (solid edges) are caused by the socket (β ). The 

implicit dependencies (dotted edges) are introduced because gethostbyname() decides 

whether to execute socket() and sendto() meaning that they have control dependences. 

In particular, if gethostbyname() returns an error, the program immediately terminates. 

Also, sendto() is dependent on the return value of gethostname() (e.g., IP address) as 

the ping program composes and sends Internet Control Message Protocol (ICMP) packets 

that contain the returned IP address. Such dependencies are not visible at the syscall level. 

Note that in any model, the frst node, which is always an input syscall, has dependencies 

leading to all other nodes. Recall that a model is acquired from LDX that mutates an input 

syscall and observes changes at output syscalls (e.g., the frst node in Fig. 3.7 is a syscall 

that reads an option from the command line that leads to all the other syscalls in the model). 

The model in Fig. 3.7 can be simplifed by a regular grammar (e.g., regular expression) 

which is the simplest one in Chomsky hierarchy. A regular language parser has very good 

scalability. From our experience, most models (53 out of 56 models in our evaluation) fall 

into this type. 

oβ rβ cβ wn oδ rδ cδ wn
oσ: open(σ), rσ: read(σ), 

wσ: write(σ), cσ: close(σ),
α: stdin, β: /proc/mounts,

γ: stdout, δ: /proc/*

Legend
m

n

Explicit Dep.

Implicit Dep.

rα γ γ

Figure 3.8.: Context-free model from procps [89] 

Context-free Model. There are cases that the models need to be context-free. Fig. 3.8 

shows such a model extracted from procps [89]. The model represents “retrieving fle 
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system information.” It frst reads a fle that contains information about the list of fle 

systems. It then uses an outer loop to emit the information for individual fle systems. For 

each fle system, an inner loop is used to collect information about the fle system from 

multiple places (e.g., different disks). 

As shown in Fig. 3.8, three symbols from the 2nd to the 4th (oβ , rβ , cβ ) have explicit 

dependencies due to the fle containing the list of fle systems (β ). The 5th symbol wn 
γ is to 

emit the header information for each fle system, causing the implicit dependency between 

the 3rd symbol rβ and the 5th . The superscript n denotes that there are n fle systems. The 

6th , 7th , and 8th symbols (oδ , rδ and cδ ) form a term, corresponding to the inner loop that 

reads m places to collect information for the n fle systems. Note that m may not equal 

to n as multiple fles may be accessed in order to collect information for a fle system. 

After that, the 9th symbol wn 
γ emits the collected information for the n fle systems. Note 

that the number of writes in the 5th and the 9th symbols need to be identical (n times). 

The constraints on the numbers render the model cannot be transformed to an automaton 

that handles a regular language. It is essentially context-free. The parser for a context-

free language requires some push-down mechanism, incurring higher complexity. We have 

encountered 2 context-free models in our evaluation. 

rα srβ
n

swγ
m cβ

n cγ
m

rσ: read(σ), srσ: recv(σ),
swσ: write(σ), cσ: close(σ),

α: socket for comm., 
β: socket for read, 
γ: socket for write

Legend

n
m

Figure 3.9.: Context-sensitive model from raft [90] 

Context-sensitive Model. In some rare cases, even context-free models are not suff-

ciently expressive. Fig. 3.9 shows a model from [91] which is a distributed voting applica-

tion that implements the Raft consensus protocol [90]. The program can exchange network 

messages between different number of users to get a consensus. The model describes a 
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voting procedure. Specifcally, it receives network messages from n users (n iterations 

of read()), and sends network messages to m users (m iterations of write()). Later, it 

closes the sockets for n users and then m users. The crossing-constraints between m and n 

n( r2 , cn ) and ( wm , cm ) require a context-sensitive language. However, a parser for a context-

sensitive language is prohibitively expensive in general (PSPACE complexity [92]). We 

have not encountered any models more complex than context-sensitive languages. The var-

ious language complexities pose a prominent challenge: since syscall events belonging to 

multiple models interleave and are often distant from each other, we cannot know which 

model an event belongs to until reaching the end of the model. As such, we do not know 

which complexity class shall be used to parse individual events. As we will show later, 

we develop a uniform parsing algorithm for multiple complexity classes that leverages the 

special characteristics of causal models. 

Ambiguity 

The strings (of syscalls) parsed by multiple models may share common parts (e.g., 

common prefxes). In the worst case, multiple models may accept the same string, although 

we have not encountered such cases for models within the same application. As a result 

during trace parsing, given a syscall, there may be multiple models that it can be attributed 

to and MCI does not know which model(s) are the right ones. We call it the ambiguity 

problem. 

rα wβ

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(a) Trace

(c) Model
(d) Possible Matchings 

M1: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M2: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M3: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M4: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...
M5: r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

...

..., r1, w2, w3, r4, r5, w6, w3, r7, w8, ...

(b) Ground-truth

rσ: read(σ),
wσ: write(σ)

Legend

Explicit Dep.

Figure 3.10.: Ambiguity problem 
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For instance, consider a trace, the ground-truth causality of the trace, and a model 

shown in Fig. 3.10-(a), (b), and (c), respectively. Observe that the model has a socket read 

followed by a fle write. The two have implicit dependency but not explicit dependency 

visible at the syscall level. The three boxes in Fig. 3.10-(b) denote the three real model 

instances. 

When the model is used to parse the trace, due to the lack of dependencies between 

the two syscalls in the model, there are many possible matchings as shown in Fig. 3.10-

(d). Note that except M1, the other matchings are incorrect even though they all appear 

possible at the syscall level. In practice, such incorrect matchings introduce false causalities 

which hinder attack investigation. Moreover, ambiguity may cause excessive performance 

overhead because MCI has to maintain numerous model instances at runtime. The root 

cause of the problem is that the trace does not have suffcient information. Hence, we 

develop a method that leverages explicit dependences to mitigate the problem. Details can 

be found in Sec. 3.4.2. 

3.4 System Design 

MCI consists of two phases: model construction and model parsing. The former is 

offine and the latter is meant to be deployed for production run. 

3.4.1 Model Construction 

Given an application, the forensic analyst provides a set of regular workloads. The 

application is executed on the LDX system with the workloads. The dependences detected 

by LDX, including explicit and implicit dependences, are annotated on the syscall events 

in the audit logs. The annotated logs are analyzed to extract inter-dependent subsequences, 

which are further symbolized (i.e., replacing concrete resource handlers with symbolic 

ones). The sequences of symbolic syscalls with dependences constitute our causal models. 

In the following, we use a program snippet in Fig. 3.11 to illustrate how MCI constructs 

causal models. It frst reads a network message (line 1) and encrypts the received message 
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(line 2). Later, it stores the encrypted message to a local fle (line 3) and sends a notifcation 

to a GUI component (line 5). 

  while( (len = read(socket, buf, 1024)) != -1 ) {
     ebuf = encrypt(buf);
     write( file, ebuf, 4096 );
  }
  sendmsg( wnd, “Update: ” + ebuf ... );

1
2
3
4
5

Figure 3.11.: Example program 

Dependencies Identifcation by LDX 

The program is executed with a typical workload on LDX [1] to collect a system call 

log T . To identify dependencies, LDX mutates the value of input syscall read() in the 

slave execution. By contrasting the values of the following syscalls (e.g., the write() and 

sendmsg()) in the two executions, LDX identifes all the dependencies between syscalls. 

1
2
3
4
5
6

Figure 3.12.: Causally dependent system calls from LDX 

Fig. 3.12 shows the output generated by LDX. It includes two read()s (lines 3 and 

5), one write() (line 4) and one sendmsg() (line 6) which are causally dependent on the 

source (i.e., read() at line 2). More specifcally, the write() at line 4 and sendmsg() at 

line 6 are (implicitly) dependent on the source by variables buf and ebuf, and the read()s 

at lines 2 and 4 are explicitly dependent on the source due to the socket handler 0x11. 
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The generated sequence of syscalls includes all the syscalls causally dependent on the 

source (line 3). We hence leverage them as a sample of the model. Note that LDX also 

returns dependences between syscalls inside the sequence such as the dependence between 

lines 3 and 4. 

Symbolization 

The collected sequence of syscalls cannot be directly used as a model due to the con-

crete arguments. For instance, in Fig. 3.12, syscalls have concrete values (e.g., handlers 

0x11 and 0x12) which may differ across executions. Hence, we symbolize concretes val-

ues in syscalls by replacing with symbols (e.g., α and β ). For instance, if two syscalls 

share the same argument, they are assigned the same symbol. 

If the application supports repeated workload, there must be repetitions in the syscalls 

that need to be modeled (such as n and m in Fig. 3.5). To do so, MCI duplicates the 

workload a few times and feeds the new workloads to LDX again. Subsequences that have 

a constant number of repetitions across workloads are annotated with the constant. Those 

that have varying numbers of repetitions across workloads are annotated with ‘*’. If there 

are correlations between the repetition numbers of multiple subsequences (inside the same 

model), variables n/m are used to model the number of repetition, such as the previous 

example Fig. 3.8 in Sec. 3.3.3. 

SUCCESS = read( fd1 /* file handle*/, *, * );
SUCCESS = write( fd2  /* file handle*/, *, * );
FAILURE = read( fd1  /* file handle*/, *, * );
SUCCESS = sendmsg( *, *, * );

1
2
3
4

Figure 3.13.: Symbolized system calls 

Fig. 3.13 shows a symbolized log. For example, 0x11 in read() in Fig. 3.12 is replaced 

by a new symbol fd1 and 0x12 in write() in Fig. 3.12 is generalized to another symbol 

fd2. 0x11 in the second read() is replaced by the previously assigned symbol fd1 as it 
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already appeared before. Moreover, as shown in Fig. 3.13, all concrete return values are 

symbolized as either SUCCESS or FAILURE. They are part of the models in our system 

although our formal defnitions did not describe them for brevity. The constructed model 

is shown in Fig. 3.14. The formal model construction algorithm is elided due to the space 

limitations. 

rα wβ rα sγ

Implicit Dep.

Explicit Dep. * rσ: read(σ), wσ: write(σ), 
sσ: sendmsg(σ),
α: socket(fd1), 

β: file (fd2), γ: window

Legend

Figure 3.14.: Constructed model from the example 

3.4.2 Trace Parsing with Models 

In this section, we describe how MCI parses an audit log with models. As we described 

in Sec. 3.3.3, if we simply consider an audit log as a string of the trace language, we need 

to consider three language classes in the Chomsky hierarchy, namely, regular, context-free, 

and context-sensitive languages. Recursively enumerable languages are never encountered 

in our experience. A more expressive language requires more expensive parser. For in-

stance, context-free language can describe almost all causal models we have encountered 

but context free parsers have a time complexity of n3 where n is the length of a string 

(the number of events in audit log in our case), thus they are too expensive to handle real-

world logs that can grow in the pace of gigabytes per day [93] (corresponding to millions 

of events). Context-sensitive parsers have even higher computational complexity. Further-

more, our parser needs to be able to substantially mitigate the ambiguity problem in which 

MCI does not know which models an event should be attributed to. 

Segmented Parsing. Our proposal is not to consider a trace as a simple string, but rather a 

sequence of symbols with explicit inter-dependences. Note that explicit dependences can be 
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directly derived from the trace. The basic idea is hence to leverage explicit dependences to 

partition the sequence of terms/nodes in a model into segments, delimited by terms/nodes 

that are involved in some explicit dependences. Therefore, all the terms/nodes inside each 

segment are a string in some regular language. The essence is to leverage explicit depen-

dences to reduce language complexity. During parsing, we frst recognize (from the trace) 

the explicit dependences that match those of the model. These dependences partition the 

trace into sub-traces. Then automata are used to recognize model segment instances from 

the sub-traces. Since string parsing is only carried out within small sub-traces instead of 

the lengthy whole trace, ambiguity can be substantially suppressed. We call the technique 

segmented parsing. 

rα sβ rγ sδ wε wα rζ oδ

rσ: read(σ), sσ: stat(σ), wσ: write(σ), oσ: open(σ), α, β, γ, δ, ε, ζ: different files
Legend

Figure 3.15.: Example for segmented parsing 

Next, we use an example to illustrate the basic idea and then explain the algorithm. 

Fig. 3.15 shows a sample model. Observe that there are explicit dependences between the 

1st and the 6th nodes ( rα and wα ), and between the 4th and the 8th nodes ( sδ 

The sequence of terms/nodes involved in explicit dependences form the model skeleton. 

In our example, it is rα - The skeleton partitions the model into sub-models. 

A sub-model is a sub-sequence of nodes/terms of the model that are delimited by explicit 

dependences but themselves do not have any explicit dependences. In Fig. 3.15, three sub-

models are obtained as follows: - rγsβ delimited by rα and sδ , wε delimited by sδ and 

delimited by wα and oδ . 

and oδ ). 

wα , and rζ 

During parsing, we frst fnd instances of the model skeleton. For each skeleton in-

stance, we try to identify instances of sub-models within the trace ranges determined by 

sδ -wα - oδ . 
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the skeleton instance. Any mismatch in any sub-model indicates this is not a correct model 

instance and the corresponding data structures are discarded. In our example, we frst locate 

in the trace, and then look for the instances of the possible positions of rα , sδ , wα , oδ 

rγ- in between the positions of rα and sδ , and so on. Partitioning a model to a skele-

ton and a set of sub-models is straightforward. Details are hence elided. Given a trace, to 

facilitate segmented parsing, we extract a number of trace indexes, each containing all the 

nodes related to the same system object (e.g., a fle) and the position of the nodes in the 

raw trace. These indexes allow our parser to quickly locate skeleton instances in the trace. 

Fig. 3.16 shows an example of index extraction from a trace. Observe that all the nodes in 

an index have explicit dependences. 

sβ 

oα rβ wα rβ rα wβ cα

(a) Trace Annotated with Explicit Dependencies

oα wα rα cα rβ rβ wβ

(b) Indexes for each resource

Index 1 Index 2

oσ: open(σ), rσ: read(σ), wσ: write(σ), cσ: close(σ), 
α: File 1, β: File 2

Legend

Figure 3.16.: Trace preprocessing 

Algorithms. The parsing procedure consists of three major steps. The frst one is to pre-

process trace to extract indexes, which has been intuitively explained before. The second 

step is to locate skeleton instances in the trace and the third is to parse sub-models. In the 

following, we explain the algorithmic details of steps two and three. 

The algorithm of locating skeleton instances is shown in Alg. 4. It takes the trace T , the 

indexes I that can be accessed by the concrete resource id (e.g., fle handler), and a model 

skeleton S, and identifes all the possible instances of the skeleton. The result is stored in 

P. Each instance is a pair hmap,seqi with map projecting each symbolic resource (e.g., α 
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Algorithm 4 Locating Skeletons 
Input: trace T , indexes I, model skeleton S 
Output: a set of skeleton instances P, each consisting of a mapping that maps a symbolic resource to a concrete one, and a sequence 
of positions 

1: procedure LOCATESKELETON(T , I, S) 
2: for all node Nα ∈ S do 
3: if P ≡ {} then 
4: P ← {h{α → h}, ii | for all T [i] = Nh}
5: else 
6: for all hmap,seqi ∈ P do 
7: Let the last position in seq be i 
8: if map[α] =6 nil then 
9: pos ← fndbeyond(N,i,I[map[α]]) 
10: if pos =6 −1 then 
11: seq ← seq · pos 
12: else 
13: P.remove(hmap,seqi) 
14: end if 
15: else // scan all indexes to fnd Nh syscalls that are beyond i 
16: ... // and instantiate α to h. 
17: end if 
18: end for 
19: end if 
20: end for 
21: return P 
22: end procedure 

Algorithm 5 Model Parsing 
Input: trace T , skeleton instances P, sub-models S 
Output: the concrete syscall entries that correspond to the sub-models in the temporal order 

1: procedure PARSESUBMODELS(T , P, S) 
2: for all hmap,seqi ∈ P do 
3: for i from 0 to |S|− 1 do 
4: instance[i] ← parse(T [seq[i], seq[i + 1]], S[i]) 
5: end for 
6: if all instance[0 − (|S|− 1)] are not nil then 
7: if none of the concrete syscalls in instance[0(−|S|− 1)] share the same resource id then 
8: output instance[0 − (|S|− 1)] 
9: end if 
10: end if 
11: end for 
12: end procedure 
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and β ) in the skeleton to some concrete handler and seq storing the trace positions of the 

individual nodes in the skeleton. To simplify our discussion, we assume the skeleton does 

not have repetitive nodes or terms. The algorithm can be easily extended to handle such 

cases. 

The main procedure iterates over each node Nα in the skeleton (line 2) with N the 

syscall and α the symbolic resource. For the frst node (indicated by an empty result set 

P), the algorithm considers each syscall of the same type N, in the form of Nh at location i 

in the trace, may start an instance of the skeleton, and hence instantiates α to the concrete 

handler h and records its position i (lines 3 and 4). If Nα is not the frst node, the algorithm 

iterates over all the skeleton candidates in P in the inner loop (lines 6-18) to check if it can 

fnd a matching of the node for these candidates. If not, the skeleton candidate is invalid 

and hence discarded. Specifcally, for each skeleton candidate denoted as hmap,seqi, line 

7 identifes the trace position of latest node i. This is needed as the algorithm looks for 

the match of Nα in trace entries beyond position i. The condition at line 8 separates the 

processing to two cases with the true branch denoting the case that α has been instantiated 

before, that is, a node of the same symbolic resource was matched before (e.g., wα in 

Fig. 3.15), the else branch otherwise (e.g., sδ in Fig. 3.15). In the frst case (lines 9-11), the 

algorithm looks up the index of the concrete handler associated with α , i.e., I[map[α]], to 

fnd a concrete syscall N beyond position i (line 9). If such a syscall is found, we consider 

the algorithm has found a match and the new position pos is appended to seq (line 11). 

Otherwise, the skeleton candidate is not valid and removed (line 13). Here, we have another 

simplifcation for ease of explanation. Line 9 may return multiple positions in practice 

while in the algorithm we assume it only returns one. The extension is straightforward. 

In the else branch, the node has a new symbolic resource, the algorithm has to go 

through all indexes to fnd all instances of N and instantiate the symbolic resource accord-

ingly. This may lead to the expansion of the candidate set P. Details are elided. To reduce 

search space, we use time window and other syscall arguments to limit scopes. 

Given a set of skeleton instances for a model M, Alg. 5 parses the sub-models of M. 

In particular, the outer loop (lines 2-11) iterates over all the skeleton candidates identifed 
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in the previous step. If matches can be found for all sub-models regarding a skeleton 

instance, the matches are emitted. Otherwise, it is not a legitimate instance and discarded. 

Specifcally, the inner loop in lines 3 and 4 iterates over individual sub-models in order. 

In the ith iteration, it uses automata to parse sub-model S[i] in the trace range identifed 

by the ith segment identifed by the skeleton candidate, which is from seq[i] to seq[i + 1] 

(line 4). Automata based parsing is standard and elided. After such parsing, line 6 checks 

if we have found matches for all sub-models. If so, line 7 further checks that none of the 

concrete syscall entries that are matched with some node in a sub-model do not share the 

same resource (and hence have explicit dependences). This is because the model specifes 

that there are not explicit dependences between the corresponding nodes. Line 8 outputs 

the parsing results. 

Handling Threaded Programs. Threading does not pose additional challenges to MCI 

in most cases because syscalls from different threads have different process ids so that 

models can be constructed independently for separate threads. Explicit dependences across 

threads can be easily captured by analyzing audit logs. Some programs such as Apache and 

Firefox use in-memory data structures (e.g., work queues) to communicate across threads, 

causing implicit dependences. However, it is highly complex to model and parse behaviors 

across threads due to non-deterministic thread interleavings. We observe that these data 

structures are usually protected by synchronizations, which are visible at the syscall level, 

and the synchronizations should follow the nature of the data structures, such as frst-in-

frst-out for queues. Hence, MCI constructs models for individual threads including the 

dispatching thread and worker threads. The models include the synchronization behaviors. 

It then leverages the FIFO pattern to match nodes across threads. It works nicely for most 

of the programs we consider except transmission, whose synchronization is not visible 

at the system level (Sec. 4.6). 
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3.5 Evaluation 

In this section, we evaluate MCI with a set of real-world programs in order to answer 

the following research questions. 

RQ 1. How many models are required to infer causality for these programs in production 

runs (Sec. 3.5.1), and how much efforts are required to construct models? (Sec. 3.5.1) 

RQ 2. How effective is MCI for system wide causality inference including multiple long-

running programs and various activities? (Sec. 3.5.2) 

RQ 3. How effective is MCI for realistic attack investigation? (Sec. 3.5.3) 

RQ 4. Is MCI scalable on large workloads for long-running programs? (Sec. 3.5.3) 

Table 3.2.: Details on Model Construction 

Program Model Description Size1 2Dexp 
3Dimp Lang.4 

Firefox 

Tab Open/Switch/Close 7/9/5 2/2/1 3/4/3 Reg. 

Load a URI 12 2 4 Reg. 

Download (Save) 15 3 5 Reg. 

Click a link 9 2 3 Reg. 

Apache 
HTTP(S) resp. 17 (21)5 3 (4)5 8 (11)5 Reg. 

CGI resp. 26 (33)5 4 (5)5 11 (14)5 Reg. 

Lighttpd 
HTTP(S) resp. 8 (11)5 2 (3)5 4 (6)5 Reg. 

CGI resp. 16 (19)5 3 (4)5 7 (9)5 Reg. 

nginx 
HTTP(S) resp. 14 (17)5 3 (4)5 6 (9)5 Reg. 

CGI resp. 21 (24)5 4 (5)5 8 (11)5 Reg. 

Continued on next page 
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Table 3.2: Details on Model Construction (cont.) 

Program 

CUPS 

Model Description 

Add printers 

Size1 

6 

2Dexp 

1 

3Dimp

3 

Lang.4 

Reg. 

Remove printers 5 1 3 Reg. 

Modify printers 6 1 3 Reg. 

Print a doc. 7 2 4 Reg. 

vim 

Open 8 1 5 Reg. 

Edit 10 1 4 Reg. 

Save 13 2 4 Reg. 

Save As 

Copy and Paste 

15 

14 

3 

3 

6 

6 

Reg. 

Reg. 

Copy 11 1 5 Reg. 

Plug-in (gpg) 21 2 6 Reg. 

elinks 

Browse 11 3 6 Reg. 

Save 6 2 5 Reg. 

Upload 7 2 5 Reg. 

alpine 

Send emails 10 2 6 Reg. 

Send fles 13 3 7 Reg. 

Download emails 9 2 6 Reg. 

Download fles 11 2 5 Reg. 

Open a link 8 2 4 Reg. 

zip 
Compress fle(s) 16 8 5 C.F. 

Use encryption 6 4 3 Reg. 

Continued on next page 
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Table 3.2: Details on Model Construction (cont.) 

Program Model Description Size1 2Dexp 
3Dimp Lang.4 

transmission 

Download 17 4 8 Reg. 

Add a torrent fle 6 3 3 Reg. 

Add a magnet 12 3 7 Reg. 

proftpd/ 

lftp/yafc 

Login 5/4/6 1/1/2 4/3/4 Reg. 

Create directory 4/4/4 2/2/2 3/3/3 Reg. 

Delete directory 3/4/4 1/2/2 3/3/3 Reg. 

List directory 3/3/3 1/1/1 3/3/3 Reg. 

Upload 7/8/18 2/2/3 5/5/9 Reg. 

Download 6/7/16 2/2/4 5/6/9 Reg. 

wget Download (HTTP(S)) 7 (15)5 2 (4)5 5 (8)5 Reg. 

ping 
Option -f 6 2 5 Reg. 

Option -r 5 2 5 Reg. 

procps Get fle system info. 6 3 4 C.F. 

raft [91] 
Voting 5 2 6 C.S. 

Leader Election 7 2 7 Reg. 

Average - 10.2 2.4 5.4 -

1: # of nodes in a model. 2: # of explicit dependencies (edges) in a model. 

3: # of implicit dependencies (edges) in a model. 4: Language Class of a model. 

5: for HTTPS. 

Experiment Setup. We evaluate our approach on 17 real-world programs. Table 3.2 shows 

the programs and models we constructed. Note that 15 out of the 17 programs (except 

zip and Vim) are network related which is a popular channel for cyber-attacks. For each 

program, we construct models offine. We use typical workloads briefy described in the 

second column of Table 3.2. Specifcally, if there are available test inputs for a program, we 

use them as the typical workloads. Otherwise, we construct inputs by inspecting program 
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manuals and identifying options and commands that can trigger different functionalities, 

such as for proftpd, CUPS, and zip. 

3.5.1 Model Construction 

Table 3.2 shows the constructed models for each program. Columns 1 and 2 show 

programs and model description. Column Size shows the number of nodes in each model. 

The numbers in/out parentheses are for the same behaviors with/without HTTPS. The next 

two columns show the number of explicit and implicit dependencies in each model. The 

last column (Lang.) shows the language class of each model (Regular (Reg.), Context-free 

(C.F.), or Context-Sensitive (C.S.)). 

We have the following observations from the results. First, the size of model is rel-

atively small (on average 10.2 nodes) and there are on average 2.4 explicit dependencies 

(more than 4 nodes) for each model. The strong presence of explicit dependencies allows 

MCI to perform segmented parsing effectively. Second, we observe three language com-

plexity classes and most models fall into the regular class. It supports our design choice of 

integrating regular parsers (i.e., automata) with explicit dependency tracking. 

# of Models Required 

The constructed models listed in Table 3.2 are suffcient to infer causality for logs from 

realistic scenarios described in Sec. 3.5.3 including the motivation example in Sec. 3.2. 

The number of models for each program ranges from 3 to 12 which is fairly small and not 

diffcult to obtain in practice. We observe that the primary reason why MCI is effective with 

a small number of models is model composibility, namely, primitive models can be used to 

compose complex behaviors. For instance, models for “Edit” and “Save” can compose a 

new model “Edit and Save”. 
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Efforts on Model Construction 

To construct models, a program is executed repeatedly on LDX. The number of runs 

required to construct a model depends on the number of events in the model. Specifcally, 

we frst run a program with a workload on LDX to identify all the events causally dependent 

on the workload. Note that the detected events constitute the bulk of the model. Assume 

there are n such events (nodes). For each node in the model, MCI mutates the value of 

the corresponding syscall to determine dependencies on the node inside the model. To 

fgure out the repetition factors of the node (Sec. 4.4), MCI runs k times for the node, each 

execution repeats the workload for different times. In total, we run a program (k ∗ n)+ 1 

times to construct a model. In our experiments, k = 10. On average, the machine time 

to construct a model, including LDX execution time and model extraction time, takes 4 

minutes (253 seconds). 

Table 3.3.: Results for System-wide Causality Inference 

Program # of 
events 

# of 
causality 

# of matched 
models FP FN 

Firefox 2,313 M 11 M 549 K 8.3% 3.2% 
Apache 296 M 6.6 M 435 K 0% 0% 
Lighttpd 125 M 3.3 M 275 K 0% 0% 
nginx 187 M 3.8 M 246 K 0% 0% 
proftpd 49 M 2.1 M 179 K 0% 0% 
CUPS 25 M 918 K 88 K 0% 0.8% 
vim 43 M 4 M 219 K 0% 0% 
elinks 38 M 3.6 M 145 K 0% 0% 
alpine 116 M 4.7 M 231 K 0% 0.3% 
zip 5 M 634 K 36 K 0% 0% 
transmission 250 M 6.9 M 479 K 3.8% 5.2% 
lftp 11 M 438 K 54 K 0% 0% 
yafc 9 M 616 K 43 K 0% 0% 
wget 627 K 71 K 5.4 K 0% 0% 
ping 2.4 k 1.3 K 241 0% 0% 
procps 4 M 1 M 176 K 0% 0% 
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3.5.2 System-wide Causality Inference 

In this experiment, we apply MCI to infer causality on a system wide syscall trace 

collected for the system execution of a week, to demonstrate the effectiveness of causality 

inference for realistic programs with production runs. The trace includes syscall logs from 

multiple programs including those in Table 3.2. Specifcally, we enable Linux Audit and 

use the programs in Table 3.2 with typical workloads for a week. Given the collected trace, 

we identify all the inputs that appear in the trace (e.g., fle reads, command line arguments, 

user interactions). Then, we build a forward causal graph from each input, i.e., identifying 

all other syscalls depending on the input, using MCI and compare it with the ground truth 

by LDX. During the experiment, we record all inputs used for the programs. Then, we re-

execute the program with the recorded inputs to reproduce the same execution. To do so, 

we develop a lightweight record and replay system similar to ODR [94]. LDX is run on top 

of the replay system to derive the ground truth. Note that due to the limitation of the replay 

system, the replayed execution may differ from the original execution. Such differences 

are counted as false-positives/negatives for conservativeness. 

The collected log consists of syscalls from multiple programs and the size of the log is 

around 732 GB (without compression) containing 3707 million events. We frst separate 

the log into smaller logs per process. 

Table 3.3 shows results of the experiment. The second column shows # of events 

(syscalls) in the log for each program. The third and forth columns represent # of de-

pendencies detected and # of models matched by MCI. For the # of dependencies, we 

count all those inferred by MCI via matched models and those explicit dependencies across 

matched models. The last column shows false-positive and false-negative rates. 

For most programs, MCI precisely identifes causality with not measurable false posi-

tives and negatives. There are a few exceptions: Firefox, CUPS, alpine, and transmiss 

ions. We manually inspect a subset of these false-positives/negatives and have the follow-

ing observations. Our Firefox models are intended to describe browser behaviors such as 

following a hyperlink and opening a tab. However, logs contain a lot of syscalls generated 
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by the page content. Some of them are not much distinguishable from browser-intrinsic 

behaviors, leading to mismatches. For CUPS, we identify new behaviors during the exper-

iment which are variations of the existing models. Transmission is a threaded program 

with memory based synchronizations that are invisible to MCI. Hence, MCI misses some 

thread interdependences via memory. 

Table 3.4.: Comparison with BEEP 

System subjects System objects Edges FP / FN 
BEEP 9.23 33.71 74.21 12.8% / 0.3% 
MCI 9.18 25.38 62.87 0.1% / 0.1% 

Comparison with BEEP. To evaluate the effectiveness of MCI when compared with 

BEEP, we randomly select 100 system objects (e.g., fles or network connections) accessed 

in the week-long experiment. For each selected system object, we construct a causal graph 

by BEEP and by MCI, and compare the two. Table 3.4 shows the results. First of all, we 

observe that MCI has fewer false-positives and false-negatives. Again, we use LDX as the 

ground truth. Especially, MCI reduces the false-positive rate signifcantly. We investigate 

some of the cases that BEEP introduces false-positives, and fnd that many system objects 

accessed in a unit are included in the causal graphs while they are not causally related. 

Also, BEEP causes slightly more false-negatives due to missing inter-unit dependencies. 

We analyze the cases and fnd that the missing inter-unit dependencies were due to incom-

plete instrumentation caused by the diffculty of binary analysis in BEEP. We also manually 

investigate false-positive and false-negative cases from MCI. It turns out they are mostly 

caused by concurrent executions in transmission. 

Runtime/memory Overhead. We also measure runtime overhead and memory overhead 

of MCI. Specifcally, we report how long MCI takes to parse the audit log collected from the 

one week experiment which contains 3707 millions events. As we discussed in Sec. 3.4.2, 

we preprocess an audit log to extract indexes so that the parser can quickly locate skeleton 

instances. We measure the runtime performance and memory consumption of the trace 

preprocessor. It takes 4 hours 47 minutes to preprocess (index) the entire log. The prepro-
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cessor occupies around 2.8 GB of memory on average. The parser frst locates segments of 

the traces and launches automata within the identifed segments. We fnd that the parser 

spend more time on parsing within the segments. In particular, the parser takes more time 

when it parses a wrong segment and eventually fails. Note that we parallelize the parsing 

within a segment to exploit multi-core processors. To parse the log, it takes around 4 days 

(95 hours 43 minutes), and the parser consumes around 6.2 GB of memory on average. We 

consider such one-time efforts reasonable given the huge log size. We leave performance 

optimization to our future work. 

3.5.3 Case Studies 

In this section, we present a few case studies to demonstrate the effectiveness of our 

approach in attack investigation. 

Phishing email and camoufaged FTP server case 

In this case, we use a scenario adapted from attack cases that were created by security 

professionals in a DARPA program [95], to demonstrate how MCI can effectively infer 

causality in a real-world security incident that happens across multiple programs including 

PINE and Firefox. 

Attack Scenario. The user regularly uses PINE to send and receive emails. At some point, 

the user receives a phishing email, and she opens it, fnds a hyperlink that looks interesting, 

and hence clicks the hyperlink. PINE automatically spawns the Firefox browser and 

the browser navigates to the given hyperlink. The hyperlink leads her to a web-page that 

contains an FTP server program. As she thinks the program is useful, she downloads the 

program. Before she closes the Firefox browser, she navigates a few more websites and 

downloads other fles as well. Specifcally, she opened 2 more tabs and downloaded 3 

more programs. 

After she closed the browser, she checked a few more emails and then opened a terminal to 

execute the downloaded FTP server program. The FTP server is a camoufaged trojan [96]. 
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It normally behaves as a benign FTP server, serving remote FTP requests properly. How-

ever, it contains a backdoor which allows a remote attacker to connect and execute mali-

cious commands on the victim computer. After she ran the trojan FTP server program, it 

served tens of benign FTP user requests with hundreds of FTP commands. A few hours 

later, the attacker connects to the machine through the backdoor, and modifes an important 

fle (e.g., fnancial report). Later, the company identifes that the contents of the important 

fle is changed and then hires a forensic expert to investigate the case to identify the origin 

of the incident. 

Investigation. Given the causal models listed in Table 3.2 and a system-wide trace col-

lected from the user’s system, the forensic expert uses MCI to infer causal relations from 

the changed fle. By matching models over the trace, MCI successfully identifes causality 

from the initial phishing email to the attacker’s connection in the camoufaged trojan. The 

investigator further identifes that the important fle is touched by the FTP server process. 

However, the fle operation does not belong to any model instance. Interestingly, this in-

dicates that the fle is not part of regular behaviors, indicating that the FTP server may be 

trojaned. The investigator then tries to identify how the FTP server is downloaded and 

executed in the system. MCI reveals that a Firefox process downloaded the FTP server 

binary via y.y.y.y:80 through “LoadURI” and “Download a fle” models. MCI further iden-

tifes that the Firefox process was launched by a PINE process when the user clicked a 

link from an email stored at /var/mail/.../94368.5222 downloaded from x.x.x.x. 

We also investigate the same incident with BEEP, and fnd out that a causal graph gen-

erated by BEEP has a number of false-positives. Specifcally, as shown in Fig. 3.17, the 

causal graph includes n.n.n.n:53 which is resolving the domain name, several other IP ad-

dresses from the Firefox process, which are from different tabs. Moreover, the causal 

graph contains other fles downloaded from other tabs (../fle1 and ../fle2), two more sock-

ets for internal messaging system (unix socket) and XWindow system (/tmp/.X11-unix), as 

well as some database fles for storing browsing history (/.../places.sqlite). 

In contrast, as MCI leverages accurate models generated by LDX, the graph generated 

by MCI is more accurate and precise without bogus dependencies. We also note that BEEP 
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requires training and binary instrumentation on the end-user site while MCI has no require-

ments on the end-user site. 
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Figure 3.17.: Causal graphs generated from BEEP and MCI for the camoufaged FTP server 
case 

Information Theft via InfoZip (zipsplit) 

In this case, we use another insider attack to demonstrate the effectiveness of MCI. 

Specifcally, an attacker in this case intentionally uses zipsplit to obstruct the investiga-

tion of the case as it reads and writes multiple input and output fles where dependences 

between them are diffcult to capture by existing approaches. We show how MCI can accu-

rately identify the information fow through the program. 

Attack Scenario. In this case, an insider tries to leak a secret document to a competitor 

company. However, the attacker’s company forces all computer systems to enable audit 

logging system to monitor any attempts to exfltrate important information. To avoid be-

ing exposed, he decides to use zipsplit before sending out the secret. Specifcally, he 

understands that the zipsplit program can compress n fles into m compressed fles, and 

traditional audit logs are able to accurately identify causal relations if an input fle is com-

pressed to a single output fle. Hence, the attacker used zipsplit to compress a secret 

document, secret.pdf, as well as two non-secret fles, 1.pdf and 2.pdf, and generates four 

output fles, c1.zip−c4.zip. In this example, the secret fle is compressed and distributed 

into c1.zip and c2.zip, whereas c3.zip and c4.zip only contain non-secrets. Then he attached 
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all output fles to an email, but before he sent it to the competitor company, he removed 

c3.zip and c4.zip from the email and only sent the other two that contain the secret. After 

that, he deleted all emails histories and compressed fles. 

A few days later, the company found suspicious behaviors from the attacker’s com-

puter. They identifed that the secret document was accessed by zipsplit, and some fles 

that may contain the secret were sent out. However, the attacker claimed that the secret 

document was mistakenly included in zipsplit and he only sent the zip fles that con-

tain non-secrets. At this point, the company started to investigate the attacker’s machine 

to identify the source of outgoing fles. Note that the investigator is not able to inspect the 

compressed fles or email history as the attacker already deleted them. 

sβ t∅ sγ rε sε t∅ sβ t∅ sθ wθ sε wθ rε wθ nγ

n n

sσ: stat(σ), tσ: time(σ), wσ: write(σ), rσ: read(σ), nσ: rename(σ), 
α: stdin, β: current dir, γ: output (compressed) files,  ε: input files, θ: temp file

Legend

Explicit

Implicit

sα

Figure 3.18.: Context-free model from zipsplit 

Investigation. A forensic expert utilizes MCI to construct causal models for zipsplit and 

PINE. A related model for zipsplit is presented in Fig. 3.18, corresponding to the “read 

n fles and compress to an output fle” behavior. Note that it is context-free as there are two 

groups of nodes (from the 4th to the 6th and from the 12th to the 16th) that have the same 

number of repetition. The frst group is for reading the meta information of the n input fles 

and the second group is for reading the contents of the fles and write to an output fle. 

MCI matches the models over the audit log collected from the attacker’s machine, and 

it accurately reveals the causality between the secret document and the outgoing message. 

Fig. 3.19-(b) presents a causal graph generated by MCI. It shows that the c1.zip and c2.zip 

are derived from secret.pdf, and they are sent out via PINE. In contrast, Fig. 3.19-(a) shows a 
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causal graph generated by BEEP but it contains many false-positives as BEEP was not able 

to identify such removed attachments nor causal relations between inputs and outputs of 

zipsplit. We manually inspect the program to identify the root cause of false-positives. 

It turns out that zipsplit frst compresses input fles into a temporary fle, then splits 

it into multiple output fles. Hence, BEEP considers the temporary fle is dependent on 

all input fles, and the output fles are dependent on the temporary fle. In other words, 

BEEP considers all output fles are dependent on all input fles. Instead, MCI infers precise 

causality between each input and output fle via implicit dependencies annotated in the 

model. 
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Figure 3.19.: Causal graphs for the zipsplit case 

Table 3.5.: Evaluation on Long Running Executions 

Access Log # of req. (unique) Elapsed Time FP / FN 
NASA-HTTP [97] 3.4M (36K) 19 hrs 41mins 3.9% / 0.2% 
Our institution 5.6M (4.2M) 40 hrs 13mins 1.1% / 0.1% 
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Long running real world applications 

In the last experiment, we evaluate MCI on large scale real world workloads. In partic-

ular, we use 2 months of NASA HTTP server access logs obtained from [97] as well as 3 

months of our institution’s HTTP server access logs (from Nov. 2015 to Jan. 2016). 

To obtain audit logs from the HTTP access logs, we frst emulate the web server envi-

ronment by crawling all the contents of the original servers. Then, we create a script which 

connects and accesses the web server according to the access log so that the audit logging 

system on our server can regenerate logs for our analysis. 

Table 3.5 shows the result. First, our parser takes 19 hours and 40 hours to parse the 

logs from [97] and our institution, respectively. Considering the size of the logs, we argue 

that our parser is reasonably scalable. For the accuracy test, we have 3.9% and 1.2% false-

positives for the two respective logs. We analyze such cases and fnd that the NASA-HTTP 

log includes much more CGI requests than our institution’s log. We fnd that most of the 

false-positive cases are from those CGI requests (e.g., PHP) that introduce noises. That is, 

some of the CGI behaviors are similar to the server behaviors and hence confuse our parser. 

We also have 0.2% and 0.1% false-negative rates. We manually analyze such cases and fnd 

out that they are mainly caused by CGI requests and suspicious requests embedding binary 

payloads, which crash the web-server during the experiment. Overall, the result shows that 

MCI is scalable to identify causality over large scale logs. 

3.6 Related Work 

Causality Tracking. There exists a line of work in tracking causal dependences for system-

level attack analysis [46,47,66–68,98]. BackTracker [66] and Taser [46] propose backward 

and forward analysis techniques to identify the entry point of an attack and to understand 

the damage happened to the target system. Recently, a series of works [4, 72, 74] have 

proposed to provide accurate and fne-grained attack analysis. Dynamic taint analysis tech-

niques [8, 76, 99] track information fow between taint sources and taint sinks. SME [100] 

detects information fows between different security levels by running a program multiple 
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times. LDX [1] proposes a dual execution based causality inference technique. When a user 

executes a process, LDX automatically starts a slave execution by mutating input sources. It 

identifes causal dependences between input source and outputs by comparing the outputs 

from the original and slave executions. 

These approaches have limitations, for instance, syscall-based techniques suffer from 

imprecisions that cause false-positives and false-negatives, unit-based techniques require 

training or instrumentation on the end-user site, and dynamic taint analysis techniques 

cause too much runtime overhead. We discussed details of strengths and limitations of 

those techniques in Section 3.2 and compare them with MCI. 

Program Behavior Modeling. Constructing program models that represent program’s in-

ternal structures (e.g., control fow) or behaviors (e.g., system call invocations) have been 

extensively studied, especially in anomaly detection techniques [101–106]. Specifcally, 

they train benign program executions to get models which are abstraction of the program 

behavior. Then, they use various ways such as DFA [102], FSA [101, 103], push-down 

automaton (PDA) [104], hidden Markov models [105], and machine learning [106, 107]. 

However, their models are mostly control fow models that do not have dependency infor-

mation. Having dependences (acquired from LDX) in our models on one hand allows us to 

use models in attack provenance investigation, on the other hand poses a number of new 

technical challenges. Due to the diffculty of static binary dependency analysis, generating 

precise models using static analysis is highly challenging. 

3.7 Discussion 

Kernel-level Attack. We trust audit logs collected at the victim system. Most audit logging 

systems including Linux Audit and Windows ETW collect and store audit logs at the kernel 

level, and a kernel-level attack could disable the logging system or tamper with the log. 

One possible solution is to integrate with LPM-Hif [75] that provides stronger security 

guarantees. 
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Limitations by LDX [1]. In our off-line analysis, we leverage LDX to construct causal 

models, hence, the limitations in LDX are also inherited by MCI. LDX doubles the resource 

consumption such as memory, processor and disk storage in order to run a slave execution 

along with original execution. However, we argue that the limitations only apply to the 

off-line analysis and do not apply the end-user. 

Model Coverage. MCI relies on causal models generated by training with typical work-

loads. If an audit log includes behaviors that cannot be composed by the models in the 

provided workloads, MCI may not be able to infer causality precisely and could cause 

false-positives/negatives. Also, the FPs and FNs caused by missing models may cascade 

throughout the remaining MCI’s parsing process. However, the cascading effect is mostly 

limited within a unit (e.g., each request in a server program) because MCI nonetheless starts 

a new model instance when it encounters an input syscall that matches with the model. 

Moreover, we can detect matching failures due to the incomplete models while MCI is 

parsing the audit log. For instance, missing models often lead to causal graphs lacking 

important I/O related system-objects (e.g., fles/sockets), hence they are a strong indicator. 

Then we can enhance the model to resolve the situation by training with more workloads. 

Furthermore, we can fall back to a conservative strategy to assume unmatched events have 

inter-dependencies. 

Although we mitigate the ambiguity problem (Sec. 3.3.3), as some models may not 

have enough dependencies to segment traces, ambiguity is still a challenge. We plan to 

investigate using irrelevant events as delimiters to further partition the trace and suppress 

ambiguity. 

Signal and Exception Handler. Signals and exceptions can be delivered to a predefned 

handler at anytime, interrupting a normal execution fow. Unfortunately, it is possible that 

system calls in the handler may affect our parser. However, we observe that in practice our 

models are robust enough to handle the additional system calls caused by such handlers. 

This is because system calls invoked in a signal or exception handler are generally distinc-

tive from the system calls in our causal models, hence our parser is able to flter them out. 

Moreover, in many programs such as Lighttpd, handlers functions often do not invoke 
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any system call. In the future, we plan to extend MCI to construct proper models for signal 

and exception handlers. As such, we can identify handler models from the audit log and 

extract them before we apply MCI’s model parsing process. 
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4 A2C : SELF DESTRUCTING EXPLOIT EXECUTIONS VIA INPUT 

PERTURBATION 

Malicious payload injection attacks have been a serious threat to software for decades. Un-

fortunately, protection against these attacks remains challenging due to the ever increasing 

diversity and sophistication of payload injection and triggering mechanisms used by adver-

saries. In this chapter, we develop A2C, a system that provides general protection against 

payload injection attacks. A2C is based on the observation that payloads are highly fragile 

and thus any mutation would likely break their functionalities. Therefore, A2C mutates 

inputs from untrusted sources. Malicious payloads that reside in these inputs are hence 

mutated and broken. To assure that the program continues to function correctly when be-

nign inputs are provided, A2C divides the state space into exploitable and post-exploitable 

sub-spaces, where the latter is much larger than the former, and decodes the mutated values 

only when they are transmitted from the former to the latter. A2C does not rely on any 

knowledge of malicious payloads or their injection and triggering mechanisms. Hence, its 

protection is general. We evaluate A2C with 30 real-world applications, including apache 

on a real-world work-load, and our results show that A2C effectively prevents a variety of 

payload injection attacks on these programs with reasonably low overhead (6.94%). 

4.1 Introduction 

Attacks which exploit software vulnerabilities are among the most prevalent cyber-

security threats to date. This is due, in part, to many complex combinations of potential 

attack vectors: Buffer overfow attacks, Return-to-libc attacks [108], ROP [109], Jump-

oriented programming (JOP) [110], and Heap spraying [111, 112] to name just a few. Un-

fortunately, this ever expanding variety of exploit attack vectors has led to a constant “cat 

and mouse game” of building defenses as each new attack is released. 
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In light of this, many existing protection mechanisms focus on specifc attack vectors 

and become less effective (or even completely ineffective) for others. For example, non-

executable stack and heap have diffculty preventing code reuse (e.g., ROP) attacks because 

the executable payload is constructed from the original code of the application. Shell-

code detection techniques are only effective against injection of binary executable code 

and are often bypassable [113–116]. Control Flow Integrity [117–120] prevents attacks 

which exhibit certain abnormal control fows within a victim program. Further, some de-

fense techniques may entail non-trivial overhead (e.g., [121]) or require hardware support 

(e.g., [122]), which affects their application in practice. Based on this trend of attack-

specifc defense, we are motivated to look for an entirely new, more fundamental weakness 

of software exploits to provide an attack vector independent protection mechanism. 

It turns out that all software exploit attacks invariably have two common characteristics: 

First, they all need to inject an exploit payload into the target application. This payload 

could be a piece of executable code (shellcode) or information that allows constructing 

the malicious instruction sequence at runtime (e.g., a ROP chain that contains the entry 

addresses of gadgets). Second, these payloads are famously brittle. Specifcally, exploit 

payloads are designed with very strict semantic assumptions about the environment (e.g., 

memory layout, libraries, or known binary instructions) which require each byte of the 

payload to be carefully tailored to a victim. 

In this chapter, we will show that these invariant characteristics of exploit attacks make 

it possible to protect applications from exploit injections independent of the attack vector 

they use. Specifcally, we leverage the observation that exploit payloads (regardless of their 

attack vector) are so brittle that any mutation would break their execution — i.e., cause the 

execution to crash. For example, even simple mutation of x86 shellcode results in invalid 

instructions. Similarly, most sequences of ROP addresses no longer form an executable 

gadget chain if even a single byte is changed. Secondly, since these exploit payloads must 

be injected into a victim application, their behavior eventually diverges from that of the 

application’s legitimate inputs. Therefore, we propose that exploit payloads may be easily 

disabled via a “shoot frst and ask questions later” policy, whereby all input to a victim 
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program is immediately mutated and only those that are beyond the control of the adversary 

are decoded. 

Based on the above observations, we have developed the A2C (or “Attack to Crash”) 

technique. A2C naturally exploits the brittleness of attack payloads by setting these at-

tacks on track to crash before malicious logic is executed. First, any buffer inputs from 

untrusted sources are securely encoded using A2C’s One-Time Dictionary, which varies 

for each input buffer to prevent memory disclosure/value guessing based attacks. Since all 

the untrusted inputs are mutated, malicious payloads that reside in these inputs are also mu-

tated, resulting in broken payloads which will induce crashes when executed. Later, A2C 

must undo the mutation in the buffer inputs, when the program begins using these inputs 

to compute new values, so that our mutation does not cause any exceptions for legitimate 

input. 

Our evaluation shows that A2C is able to protect a variety of applications against a 

wide spectrum of exploit attacks regardless of their injection methods, without affecting 

the normal functionalities of the program. Further, because A2C requires no knowledge 

of the specifc attacks (only leveraging the two invariant characteristics mentioned above) 

it may even prevent currently unknown injection attack types in the future. The detailed 

threat model considered in this chapter is presented in Section 4.5. 

Our contributions are summarized in the following: 

• We propose the novel idea of partitioning program state space into the exploitable and 

post-exploitable sub-spaces so that we only need to protect the smaller exploitable 

sub-space, which is critical to A2C’s effciency and effectiveness. 

• We develop a novel constraint solving based approach that can determine the bound-

ary of the two sub-spaces. This serves as the basis to compute the execution points 

where the mutation can be safely undone. 

• We develop a fow-, context-, and feld-sensitive static analysis to identify the places 

at which A2C needs to undo the mutation so that execution on legitimate inputs is 

not affected. 
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• We develop an effcient runtime that leverages a One-Time Dictionary, which projects 

a value to another unique value. The dictionary varies for each input buffer to pre-

vent memory disclosure based attacks. A2C also features effcient calling context 

encoding to support undoing input mutation. 

• We develop a prototype A2C. The evaluation results show that A2C effectively 

prevents a number of known payload injection attacks with low overhead (6.94%). 

4.2 System Overview 
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Figure 4.1.: Overall procedure of A2C 

In this section, we present an overview of A2C, which is based on the following two 

observations. (1) Most malicious payloads reside in buffers and they only go through copy 

operations or simple transformations before the attack is launched. It is very rare for these 

payloads to undergo complex transformations in the victim program before being executed. 

This is due to the diffculty in controlling the transformations (in the victim program) to 

generate meaningful payloads. (2) Malicious payloads are very fragile. Any mutation often 

leads to an unsuccessful attack. For example, changing a few bits at the beginning of a 

shellcode can easily throw off the sequence of executed instructions, leading to a crash. 
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char Input[...];

Input = read(...);
Input[...] == 'C'; ...

x = (int) Input[...];

x = Input[...] & 1;
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Figure 4.2.: Decoding frontiers 

The overarching idea of A2C is to protect a program from malicious injection attacks 

by perturbing or encoding inputs from untrusted sources. However, inputs from untrusted 

sources (e.g., packets from remote IPs) are not necessarily malicious. We need to ensure 

that our perturbation does not fail executions based on non-exploit inputs. According to 

observation (1), we aim to undo the perturbation when the buffer data goes beyond copy 

operations/simple transformations and starts being used in benign computation. 

In the following, we use the diagram in Fig. 4.2 to illustrate the life cycle of buffer 

data and hence the intuition behind A2C. After the buffer data are loaded through input 

functions, they may undergo a number of transformations, including copy operations (e.g., 

memcpy() and strcpy()) that copy a buffer to another target buffer, constant table lookup 

(e.g., in iconv(), toupper(), mbtowc(), and wctomb()), and simple transformative opera-

tions (e.g., additions with a constant). Then, the buffer data will eventually encounter one 

of the following three kinds of operations: (1) Comparative operations, in which elements 

in the buffer are used in comparisons; (2) Terminal operations, in which the buffer data are 

passed to output library functions (e.g., write(), send(), and printf()); (3) Uncontrollable 

transformative operations, in which elements in the buffer undergo transformations that 

disallow the attacker to control the values beyond these transformations to construct mean-

ingful payloads. For instance, type widening copies a value of smaller type (e.g., char) to 

an array element of larger type (e.g., integer) so that each element in the array is padded 
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with leading 0’s. As such, the resulting byte sequence denoted by the array cannot serve as 

a meaningful payload. 

We call these three kinds of operations the decoding frontier (DF) because A2C should 

undo the perturbation for the buffer elements involved before executing the operations. 

Intuitively, we consider the space before the frontier the exploitable space where the ma-

licious payloads are supposed to take effect and without perturbation would successfully 

exploit the program. Therefore, we use perturbation to achieve protection in this space. 

The space after the frontier is referred to as the post-exploitable space. This is because 

controlling the payload becomes infeasible if it has gone through these benign transforma-

tions conducted by the victim program. Therefore, it is safe to undo our perturbation before 

the decoding frontier so that benign inputs can be used in computation as usual1. The core 

technical challenge for A2C is hence to identify the DF of a subject program and perform 

instrumentation accordingly. More discussion about the decoding frontier can be found in 

Section 4.4.1. 

Another interesting observation that makes our solution feasible is that the exploitable 

space is usually much smaller than the post-exploitable space as most computation happens 

in the post-exploitable space. As such, the frontier tends to be small and shallow and as 

explained above, operations beyond the frontier do not need our attention. 

Overall Procedure. Fig. 4.1 shows the complete procedure of A2C. There are four phases: 

constraint solving based decoding frontier computation, static analysis for determining en-

coding and decoding places which are a superset of the decoding frontier, instrumentation, 

and runtime. 

First, we leverage constraint solving to determine the uncontrollable operations. These 

operations, together with the comparative and terminal operations, form the decoding fron-

tier. This phase simply marks all the operations on the frontier. 

Second, a fow-, context-, and feld-sensitive analysis is applied to determine the places 

to instrument. It takes three inputs: the LLVM IR of the program, the decoding frontier 

from the frst phase, and the untrusted input specifcation that identifes a set of library 
1Here we assume that output library functions are hardened and thus cannot be exploited by the decoded 
buffers. 
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functions that read inputs, such as recv() for network inputs and read() for fle streams. 

In this phase, A2C produces two outputs. Specifcally, the decoding set is a superset of 

the decoding frontier and the encoding set contains the statements to encode (input) values, 

such as recv() in network programs. Interestingly, the encoding set may also contain in-

structions that load constant values. Explanations about why we need to encode constants 

can be found in Section 4.4.3. The computation of decoding and encoding sets (DE sets 

for short) is iterative as new elements on encoding sets may introduce additional decoding 

operations. 

Third, the instrumentation phase statically instruments the program according to the DE 

sets. An important observation is that the decoding frontier is context sensitive. Different 

inputs may lead to different calling contexts of a function invocation. The membership of 

a statement in the DE set may change with those contexts. As such, upon the execution 

of a statement in the DE set, we need to know the current calling context to determine 

if the instrumented version or the original version of the statement should be executed. 

Therefore, part of the instrumentation phase handles the problem of effciently tracking the 

current calling context. 

Lastly, the runtime supports execution of the instrumented program. It features encod-

ing based on a One-Time Dictionary, which projects a plaintext value to a unique encoded 

value. Different input buffers use different dictionaries to prevent memory exposure based 

exploits. 

4.3 Illustrative Example 

In this section, we use a real-world example to illustrate A2C’s operation. We use the 

nginx 1.4.0 web-server as the subject program. It has two known heap buffer overfow 

and integer overfow vulnerabilities, which can be triggered by providing crafted HTTP 

requests containing malicious payloads. Fig. 4.3 shows two code snippets with part of the 

original nginx program on the left and the corresponding instrumented version on the right. 

The column in the middle shows how the two code snippets process the request differently. 
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3. Comparing the first 4 bytes ("POST")

2. Comparing the first byte ('P')

         ssize_t   ngx_unix_recv( … ) {

             …
136:      n = recv(c->fd, buf, size, 0); Encode(buf, n);

File: ngx_recv.c

139:  for (p = b->pos; p < b->last; p++) {

140:    ch =   *p;

           …
160:    if (  Decode(ch, 1)  == ' '  ) {

             ...

179       case 4:

               ...

182:        if (  ngx_str30_cmp(  Decode(m, 4)  , 'P','O','S','T')  ) {

183:           r->method = NGX_HTTP_GET;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

ONRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

POST..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

PNRS..hmcdw-ogo.GSSO.0-0 . .Gnrs9...

Encoding/Decoding a request

1. Encoding a request
         ssize_t   ngx_unix_recv( … ) {

             …
136:      n = recv( c->fd,  buf,  size,  0);

File: ngx_recv.c

139:   for (p = b->pos; p < b->last; p++) {

140:     ch = *p;

            …
160:     if (  ch == ' '  ) {

              ...

179:       case 4:

                 ...

182:          if (  ngx_str30_cmp( m, 'P','O','S','T' )  ) {

183:             r->method = NGX_HTTP_POST;

File: ngx_http_parse.c

POST /index.php HTTP/1.1\r\nHost:...

POST /index.php HTTP/1.1\r\nHost:...

Original Program Instrumented Program

        int ngx_http_do_read_client_request_body( … ) {

             …
302:      n = c->recv(c, rb->buf->last, size);

File: ngx_http_request_body.c

        int ngx_http_do_read_client_request_body( … ) {

            …
302:     n = c->recv(c, rb->buf->last, size); Encode(rb->buf->last, n);

            …

File: ngx_http_request_body.c

\x90\x90\x90\x90\x90\x90\x90\x90\x90...

\x89\x89\x89\x89\x89\x89\x89\x89\x89...

4. Injected Code by Heap overflow/spraying

        int ngx_http_request_handler( … ) {

             …
2133:       r->read_event_handler(r);

File: ngx_http_request.c

call r->read_event_handler (= 0x00b7c010)

call r->read_event_handler (= 0xffb6bf0f)

5. Jump to the injected code         int ngx_http_request_handler( … ) {

             …
2133:       r->read_event_handler(r);

File: ngx_http_request.c

Figure 4.3.: Original and instrumented programs of demonstrative example 

First, both programs receive a POST request at Line 136 in ngx recv.c. Since the 

request is from an untrusted source, the instrumented program encodes the buffer. For 

simplicity of discussion, the encoding here is to subtract 1 from every byte. Encode() 

denotes this modifcation. The HTTP request “POST /index.php HTTP/1.1\r\nHost: 

...” is hence encoded as “ONRS..hmcdw-ogo.GSSO.0-0..Gnrs9...”. The request is 

parsed at Lines 160 and 182 in ngx http parse.c, which contain comparative operations 

on some buffer data and are hence part of the decoding frontier. Therefore, the instrumented 

program calls Decode() to undo the perturbation so that the program can parse and process 

the request correctly. Note that it only decodes a few bytes (of fxed length) at a time so that 

the decoded data cannot be run as any meaningful payload. Also observe that the original 

buffer remains encoded. This is achieved by only decoding the values after they are loaded 

into variables of primitive types (e.g., bytes and words). 

Next, the ngx http do read client request body() function stores the contents 

of the request into a different heap buffer. Notice that without A2C this becomes vulnera-

ble to heap spraying attacks which can be further leveraged to launch attacks such as ROP. 

Also, the same function has a heap buffer overfow vulnerability that allows overwriting a 
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function pointer, read event handler, which will be called inside ngx http request 

handler(). However, since the instrumented program encodes all external requests, the 

payload at Line 302 and the address accessed at Line 2133 are mutated. Assume the mali-

cious shellcode contains a sequence of nop instructions (0x90*n) for the nop-sled portion 

of a heap spray attack and the malicious address injected is 0x00b7c010. In the instru-

mented program, the nop instructions (0x90*n) are encoded to “0x89*n”, which denotes 

a sequence of mov instructions that write to invalid memory locations (e.g. mov ecx, 

ecx(-76767677h)). At this point, even though the shellcode is successfully injected, due 

to the mutation, it crashes upon execution. Similarly, the injected function pointer at Line 

2133 is also broken. Note that if the request is valid, despite it being encoded by the instru-

mented program, it will be decoded at the frontier and will not affect normal execution. 

4.4 Design 

4.4.1 Decoding Frontier Computation via Constraint Solving. 

The frst phase of A2C is to determine the decoding frontier that will be used to identify 

the encoding and decoding sets in the next analysis phase. As we will see in the next 

section, A2C needs to decode at more places than input related buffers. 

According to the defnition in Section 4.2, the decoding frontier consists of three kinds 

of operations: comparative, terminal, and uncontrollable. While the identifcation of the 

frst two is straightforward, we focus on the third in this section. 

We frst defne controllable operations as follows: if valid payloads can be generated 

in a memory region (e.g., a buffer) right after a set of operations by manipulating program 

inputs, these operations are controllable. An example of a controllable operation is the 

toupper() transformation that turns a lower case character into its upper case. Assume an 

application transforms a text input buffer A into another buffer B using toupper(). The 

attacker can carefully prepare the input so that after the transformation, buffer B contains 

the intended payload. It was indeed reported that existing operations in a program could be 

leveraged to compute/decode payloads [123]. 
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We further formulate the determination of controllable operations as a constraint solv-

ing problem. We consider program inputs as symbolic variables. We further model the 

operations that compute the values for a memory region (at a given program point) from 

the program inputs as a set of constraints. We then assert the values (of the memory region) 

to be some valid payload and query a solver if there is a satisfying (SAT) solution. If so, 

one may be able to manipulate the input (e.g., using the SAT solution generated by the 

solver) to induce the given payload. While it is diffcult to precisely defne what constitutes 

a valid payload, we use the following procedure to determine if operations are controllable. 

Procedure to Determine Decoding Frontier. Given a program to protect, A2C identifes 

all memory regions larger than or equal to 16 bytes that can be affected by inputs (through a 

standard static taint analysis). These regions include buffers, consecutive local variables (on 

stack), consecutive global variables (in data section), as well as structures. For example, 

four consecutive local integer variables related to inputs constitute a region for testing. 

For these regions, A2C creates constraints according to the operations that compute the 

values in the regions from program inputs. Other variables that are not related to inputs are 

considered as free variables. This makes our analysis a conservative one as free variables 

can take any values during constraint solving, whereas in practice these variables may have 

various restrictions. After we generate the constraints, we use the Z3 solver [124] to test 

whether payloads can be generated through these operations. In particular, we collected 

1.4GB binary codes, 200MB shellcode, and 200MB ROP gadgets from Internet [125–129]. 

We also generate 1.0G random numbers. We further break the data sets down to sequences 

based on the size of the region under testing. If the size is unknown, we use 16-byte 

sequences. We then assert the values of the region equal to each of these sequences one 

by one. If the constraint solver yields SAT, TIMEOUT, or UNKNOWN for any of the 

sequences, which implies that an attacker may be able to construct some malicious payload 

through the operations, then the operations are considered controllable. If the constraints 

are UNSAT for all these sequences, the operations that defne the values of the memory 

region are considered uncontrollable. 
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Essence. Intuitively, we use the large pool of binary code and shell code snippets to model 

the distribution of executable payloads and the large pool of ROP gadget subsequences 

to model the distribution of address-based payloads (for code reuse attacks). We further 

use a large set of random number sequences to model the distribution of other arbitrary 

payloads. Since we only consider operations uncontrollable when all these sequences yield 

UNSAT results, A2C provides strong probabilistic guarantees that the values beyond these 

operations are not exploitable. 

Note that for complex programs, it may be diffcult to model the entire data fow from 

program inputs to the memory region of interest due to various reasons such as unmodeled 

library calls and uncertainty of data fow caused by aliasing. A2C leverages backward 

slicing, starting from the memory region of interest and traverses backward along data 

dependencies until the traversal becomes infeasible (e.g., due to unmodeled library calls). 

If program inputs cannot be reached by the traversal, A2C treats the farthest variables that 

it can reach as free variables. Note that this yields an over-approximation, which is safe. 

The decoding frontier analysis marks all the operations on the decoding frontier. Since the 

algorithms in this phase are standard, details are omitted. 

In the following, we use a number of examples to facilitate understanding of decoding 

frontier. 

Uncontrollable Operation Example One. Fig. 4.4 shows a code snippet from 464.h264ref 

(i.e., a video decoding program) in SPEC 2006. 

// Declarations (Data Types)

1. unsigned int       m7[...][...];

2. unsigned short   img[...][...];

3. unsigned short   mpr[...][...];

    ...

// Transformative Operations

4.  for (int x = 0; ...; x++ ) 

5.    for (int y = 0; ...; y++ )

6.     m7[x][y] = img[...][...] - mpr[...][...];

; Constraints for Operations (img - mpr)

7.   m7[0,1,2,3] = img[0,1,2,3] - mpr[0,1,2,3]             /\ 

; Constraints for the range of unsigned short

8.   0 <= img[0,1,2,3] /\ 0 <= mpr[0,1,2,3]                  /\

9.   img[0,1,2,3] <= 65535 /\  mpr[0,1,2,3] <= 65535 /\ 

; Constraints for Payloads (i will select a payload)

10.  m7[0,1,2,3] = payload[i, i+1, i+2, i+3]

(a) Code snippet from 464.h264ref (b) Constraints from the code snippet

Figure 4.4.: Uncontrollable operations due to type widening in 464.h264ref 
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Fig. 4.4 (a) shows three arrays m7, img, and mpr with m7 a temporary array that stores 

intermediate values during encoding, img holding raw input values and mpr calculated by 

the program and not related to inputs. Observe that m7 is an int array whereas the other two 

are arrays of short int. Fig. 4.4 (b) shows the constraints generated. Lines 7-9 denote the 

constraints representing the operations. Line 7 denotes the subtraction at Line 6. Line 9 

denotes the range constraints of img and mpr. We use “0,1,2,3” to represent that the same 

constraint applies to four respective elements. Line 9 denotes the payload assertion. We 

iterate this test with i from 0 to the number of sequences in our test data set. 

The test result shows that the constraints are always UNSAT. This is mainly because the 

assignment of short to int (called type widening) requires payloads to have two zero bytes 

in every four bytes. As such, Line 6 is on the decoding frontier. Type widening is one of 

the major reasons for uncontrollability. Another popular form of type widening is through 

bit operations, namely, only a few bits of a word are set. Examples are omitted. 

Uncontrollable Operation Example Two. Another common kind of uncontrollable oper-

ation is one that induces intensive correlations between values. For example, Fig. 4.5 (a) 

shows a code snippet from 429.mcf in SPEC. 

// Declaration (Data Types)

1. typedef struct network{

2.   long   n, n_trips, max_m, m;

       ...

3. } network_t;

       ...

4.    network_t* net;

5.    in[2] = read( InputFile );

// Transformative Operations

6.    net->n_trips = in[0];

        ...

7.    net->n = (in[0]+in[0]+1);

8.    net->m = (in[0]+in[0]+in[0]+in[1]);

9.    if ( ... ) net->max_m = net-> m;

10.  else      net->max_m = 0xA10001;

; Constraints for Operations 

11. net[0] = (2 * in[0] + 1)                  /\ 

12. net[1] = in[0]                                 /\ 

13. ( (net[2] = (3 * in[0] + in[1])) \/ 

14.   (net[2] = 0xA10001))                  /\

15. net[3] = (3 * in[0] + in[1])             /\ 

; Constraints for Payloads

; (i will select a payload to test)

16. net[0] = payload[i]         /\ 

17. net[1] = payload[i+1]     /\ 

18. net[2] = payload[i+2]     /\ 

19. net[3] = payload[i+3]   

(a) Code snippet from 429.mcf (b) Constraints from the code snippet

Figure 4.5.: Uncontrollable operations in 429.mcf program 
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Fields n, n trips, max m, and m are consecutive in the structure network and they are 

all related to inputs (in[0] and in[1]). As such, A2C needs to test if the operations on 

these felds are controllable. The constraints are shown in Fig. 4.5 (b). Observe that the 

net→max m (i.e., net[3] in the constraint) and net→m (i.e., net[4]) are identical except 

when net→max m has a constant value 0xA10001. The other 8 bytes are also closely 

correlated through in[0] and in[1]. Consequently, the solver returns UNSAT for all the 

payload tests. 

Controllable Operation Examples. Most controllable operations are straightforward, 

such as copy operations. Method toupper() is another example of a controllable op-

eration. The solver returns SAT for many payload sequences, such as consecutive 0x90’s, 

which represent the NOP instructions (nop-sled) in exploits. A2C also determines unicode 

conversion functions (e.g., mbtowc()) as controllable. This is because while unicode con-

version translates an ASCII character to two bytes with an additional byte (0x00), it also 

translates two byte characters such as Chinese, Japanese, and Korean characters to two 

bytes [130], making payload construction feasible. Our results echo the message conveyed 

in [123] that Unicode conversion function can be leveraged to construct payloads. In fact, 

all the data conversion/encryption/decryption/encoding via table lookup (e.g., iconv(), 

mbtowc(), wctomb(), and Infate (Huffman Coding) Algorithm) are recognized as con-

trollable by A2C. 

Interestingly, we also observe that some operations of complex types and perform-

ing complex computations are determined as controllable by our analysis. Consider the 

following example that leverages existing foating point operations to construct malicious 

payloads. According to the IEEE-754 foating point representation standard, even a very 

small foating point value can affect all the 4 bytes of its presentation. For example, a foat-

ing point variable 0.0001 is encoded as 0x38d1b717 in memory. Fig. 4.6 shows FNorm() 

in 456.hmmer from SPEC. It frst adds all elements in v into sum using FSum(), and then 

each element is divided by the sum if the sum is not 0.0. If the sum is 0.0, all the elements 

in v have 1.0 / n where n is the size of v. Note that when there are multiple defnitions 

of a variable (e.g., v[x]), A2C disjoins the constraints for these defnitions, which are rep-
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// Declarations (Data Types)

1. float v[...], sum;

2. int x, n;

// Transformative Operations

3.   sum = FSum(v, n);  

      // FSum returns a sum of all elements.

4.   if (sum != 0.0) 

5.     for (x = 0; x < n; x++)  

6.        v[x] /= sum;

7.  else 

8.     for (x = 0; x < n; x++) 

9.        v[x] = 1. / n;

; Constraints for Operations 

10.  sum = vold[0] + vold[1] + vold[2] + vold[3] /\

11.  (vnew[0] = (vold[0] / sum) or (1.0 / n)) /\

12.  (vnew[1] = (vold[1] / sum) or (1.0 / n)) /\

13.  (vnew[2] = (vold[2] / sum) or (1.0 / n)) /\

14.  (vnew[3] = (vold[3] / sum) or (1.0 / n)) /\

; Constraints for Payloads

; (i will select a payload to test)

15. vnew[0] = payload[i]         /\ 

16. vnew[1] = payload[i+1]     /\ 

17. vnew[2] = payload[i+2]     /\ 

18. vnew[3] = payload[i+3]   

(a) Code snippet from 456.hmmer (b) Constraints from the code snippet

Figure 4.6.: Controllable operations in 456.hmmer program 

resented in the SSA form. The solver returns SAT for the constraints. The exploit input is 

a sequence of values (e.g., −12068,−18966,−14108,−13991, ...) whose binary represen-

tations do not denote any meaningful payload. But they are transformed to a meaningful 

payload by the operations in Fig. 4.6. The payload issues a system call through int 0x80 

with arguments. 

4.4.2 Static Analysis to Compute Decoding and Encoding Sets 

In this section, we discuss the second phase, i.e., the computation of decoding and 

encoding sets. 

Language. A2C works on the Single Static Assignment (SSA) LLVM IR, which is gener-

ated from program source code. To facilitate precise discussion, we introduce a simplifed 

language which models the LLVM IR in Fig. 4.7. 

Memory loads and stores are denoted by LOAD(xa) and STORE(xa, xv), respectively, 

with xa holding the address and xv the value. The address of a feld access is explicitly 

computed by x := xbase → f with xbase the base pointer and f the feld. Array accesses can 

be considered as a special kind of feld accesses. F(xa) models a call to function F with xa 

the actual argument and x f the formal argument. Function return is modeled by ret. 
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Program P ::= s 
Stmt s ::= s1; s2 

` ` | skip | x := e | x := LOAD(ra) |
STORE` (xa,xv) | F` (xa) | ret ̀  | goto ̀  (`) |
if (x ̀  ) then goto(` 1) | strcat ̀  (xa1,xa2) |
x := lib` (x1,x2, ...) | x := malloc` (xs) |

` x := φ (y,x1,x2) | input` (xbu f ,xsize) 
Operator op ::= + | − | ∗ | / | < | > | == | ... 
Expr e ::= x | c | x op c | x1 op x2 | x → f 
Var x ::= {x1, x2,x3, ...}
Const c ::= {true, f alse,0,1,2, ...}
Label ` ::= {` 1, ̀  2, ` 3, ...} 

Figure 4.7.: Language 

Conditional or loop statements are not directly modeled. Instead we defne jumps using 

goto and guarded goto. Conditional and loop statements can be constructed by combin-

ing jumps and guarded jumps. strcat(xa1, xa2) denotes a function that concatenates two 

strings. It appends the second string denoted by pointer xa2 to the frst string xa1. We defne 

lib(x1,x2, ...) to model library calls. It takes several xn’s as arguments and returns a value 

in another variable. Function input(xbu f , xsize) models library calls that read inputs such as 

read() and recv(). The x := φ(y,x1,x2) denotes the φ function in SSA that determines 

the value of a variable at the joint point of two branches. In particular, if y is true, x := x1 

otherwise x := x2. We also explicitly model heap allocation through the malloc() function. 

Operator denotes uncontrollable (computed by the previous phase) or comparative op-

erations. Each statement is annotated with a label, which can be intuitively considered as 

the line number of the statement in the program. 

4.4.3 Static Analysis Phase 

We formulate the static analysis as an abstract interpretation process. Intuitively, ab-

stract interpretation can be considered as “executing” the program on the abstract domain 

instead of the concrete domain. The abstract domain is specifc to an analysis. In abstract 

interpretation, it is often the case that branch outcomes cannot be statically determined. 

Therefore, it assumes all branches are possible. In the presence of loops, the interpretation 

may go through the loop bodies multiple times until a fx point is reached. If the abstract 

domain is well designed, the interpretation procedure is guaranteed to terminate. 
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Addr a ::= ` | x | a. f 
PointsTo σ ::= (Addr | Var) ×Context → P(Addr) 
Source SRC ::= CONST(`, x) | MARKED(`, x) 
TaintStore τ ::= (Addr | Var) ×Context → P(Source) 
Context C ::= ` 
DecodeSet DEC ::= P(< Context,Label,Var >) 
EncodeSet ENC ::= P(< Label,Var | Const >) 

ChkSrc(`, x) ::= 
`if MARKED(` m, xm) ∈ τ (x,C) then 

DEC := DEC ∪ {< C, `,x >}
if ({C, `,x} ∈ DEC) then 

foreach CONST(` c, c) ∈ τ` (x,C) then 
ENC := ENC ∪ {< ` c, c >} 

ChkStrcat(`, xa1, xa2) ::= 
if ∃a ∈ σ ` (xa1,C), MARKED(` m, xm) ∈ τ` (a,C) then 

if ∃b ∈ σ ` (xa2,C), CONST(` c, c) ∈ τ` (b,C) then 
ENC := ENC ∪ {< ` c, c >}

if ∃a ∈ σ ` (xa2,C), MARKED(` m,xm) ∈ τ` (a,C) then 
if ∃b ∈ σ ` (xa1,C), CONST(` c, c) ∈ τ` (b,C) then 

ENC := ENC ∪ {< ` c, c >} 

TaintConst(`, x, c) ::= 
if {< `,c >∈ ENC} then 

τ` (x,C) := {MARKED(`, c)}
else 

τ` (x,C) := {CONST(`,c)} 

Figure 4.8.: Defnitions for abstract interpretation rules 

Before the abstract interpretation, constants are propagated during preprocessing using 

an existing LLVM pass (e.g., x1 ∗ x2 is rewritten to x1 ∗ c if x2 is determined to hold a con-

stant c). During the analysis, A2C iteratively goes through program statements following 

the control fow and updating the corresponding abstract states (e.g., the decoding set) until 

a fx point is reached. Specifcally, A2C taints input buffers from untrusted sources. The 

taints are propagated through controllable operations, which may be conducted through li-

brary functions (e.g., memcpy(), toupper(), and iconv()), linear operations (e.g., y = x 

and y = 3 ∗ x), and so on. If a tainted value reaches an operation on the decoding frontier 

computed in the previous phase, which includes comparative, uncontrollable, and terminal 

operations, taint propagation is terminated and the operation is added to the decoding set. 

However, the decoding set may be context-sensitive and path-sensitive. To handle such 

cases, statements that load constant values may need to be considered as sources and hence 
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encoded. As a result, more statements may be added to the encoding set and the decoding 

set. 

Defnitions. To facilitate discussion, we introduce a few defnitions in Fig. 4.8. Our anal-

ysis computes four kinds of abstract information: the points-to set, the taint set, and the 

encoding and decoding sets. The points-to set σ is a mapping from an abstract address a 

(representing some memory location) or a variable x, together with the calling context, to 

a set of abstract addresses denoting the memory locations that may be pointed-to by a or 

x. Abstract address Addr is denoted by some variable representing an abstract global/stack 

array/buffer or a label denoting an abstract heap buffer, followed by a sequence of felds. 

Intuitively, one can consider it as the reference path to some abstract memory location. The 

role of abstract addresses in our static analysis is similar to that of concrete addresses in 

dynamic analysis (e.g., to look up taint values). Since our analysis is context-sensitive and 

feld-sensitive, context is part of the mapping and felds are explicitly modeled in abstract 

addresses. 

Source represents the (taint) source of a value. There are two types of Source: CONST 

and MARKED, meaning a constant value and an untrusted input source, respectively. We 

use the term MARKED to indicate that a value originates from some input buffer and 

has only gone through controllable operations. Hence it is in the exploitable space (Sec-

tion 4.2). Such values shall be in their encoded form at runtime. We track the MARKED 

value propagation through our analysis. TaintStore τ stores the (taint) source information 

for abstract addresses and variables. Both σ and τ are fow-sensitive, meaning that A2C 

computes separate σ and τ for different program locations (i.e., labels). For example, we 
` use τ to denote the abstract taint mapping computed at `. It is implicit in the rest of the 

chapter for simplicity in discussion. 

If MARKED values reach an operation on the decoding frontier, the operation is in-

serted to the DecodeSet DEC. The EncodeSet ENC contains the set of statements at which 

the (input) values ought to be encoded. Context C is denoted by a sequence of labels (`’s) 

that models a call stack. Each element in the DEC set includes a Context, suggesting that 

we decode input buffers depending on the calling context. For example, hC, `,xi ∈ DEC 
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Table 4.1.: Abstract Interpretation Rules 

Statement Interpretation Rule Name 

input` (xb,xs) foreach a ∈ σ ` (xb,C) 
τ` (a,C) := MARKED(`,xb); 
ENC := ENC ∪ {h`,xbi}; 

INPUT 

` x := x1 
` (x = x1 op c) 

σ ` (x,C) := σ ` (x1,C); 
τ` (x,C) := τ` (x1,C);S 

NON-
DF-OP 

` x := LOAD(xa) σ ` (x,C) := σ ` (a,C)∀a∈σ ̀  (xa,C)S
τ` (x,C) := τ` (a,C)∀a∈σ ` (xa,C) 

LOAD 

STORE(xa,xv) ∀a ∈ σ ` (xa,C) : σ ` (a,C) ∪ := σ ` (xv,C) 
∀a ∈ σ ` (xa,C) : τ` (a,C) ∪ := τ` (xv,C) 

STORE 

` x := x1 op x2 σ ` (x,C) := ⊥; 
ChkSrc(`, x1); ChkSrc(`, x2); 

DF-OP 

` x := x1 → f σ ` (x,C) := {a · f | ∀a ∈ σ ` (x1,C)} FIELD 

x := 
lib` (x1,x2, ..) 

for each xi ∈ {x1,x2, ...}
ChkSrc(`, xi); 

DF-TERM 

` x := c TaintConst(`, x, c); CONST 

strcat ̀ (xa1,xa2) ChkStrCat(`, xa1, xa2); STRCAT 

F` (xa) C0 := C; C := C · ̀ ; 
// x f formal arg 
σ ` (x f ,C) := σ ` (xa,C0); 
τ` (x f ,C) := τ` (xa,C0); 
foreach buffer var y ∈ F : 

σ ` (y,C) = {y}; 

CALL 

ret C := C − last(C); RET 

x := φ ` (y,x1,x2) σ ` (x,C) := σ ` (x1,C) ∪ σ ` (x2,C); 
τ` (x,C) := τ` (x1,C) ∪ τ` (x2,C); 

PHI 

x := malloc` (xs) σ ` (x,C) := `; HEAP 

suggests that when the statement denoted by ` is encountered under context C at runtime, 

A2C will decode the variable x. 

Decoding Set is Context-Sensitive and Path-Sensitive. The membership of a statement 

in the decoding set may change with the context. Fig. 4.9 shows an example in ngircd, an 

Internet Relay Chat (IRC) daemon program. In this example, we treat all network functions 

as untrusted input sources. Thus, the input data from these functions are encoded while 

data from fles are not. ngt TrimStr() is a utility function for trimming a string. It is 

invoked at different places. For instance, Read Config() calls it with a string from the 

confguration fle, which is not encoded. On the other hand, Parse Request() also calls 
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     VOID 

      ngt_TrimStr(CHAR *String) {

       . . .

       // String can be either from 

       // a configuration file or 

       // a network message

40:  start = String;

       . . .

46:  ptr = strchr( start, '\0' ) ✁ 1;

47:  while(((*ptr == ' ') || (*ptr == 9) || 

           (*ptr == 10) || (*ptr == 13) || �

       . . .

tool/tool.c

        VOID Read_Config(VOID){

          . . .    

386:   fd = fopen( NGIRCd_ConfFile, "r" );

          . . . 

441:   if( !fgets( str, ..., fd )) break;

442:   ngt_TrimStr( str );

conf.c

        Parse_Request(..., CHAR *Request){

           . . .        /* Request is a user request 

                             through network. */

140:    ngt_TrimStr( Request ); 

parse.c

Figure 4.9.: An example of context sensitive code 

it, but with a string from the network. The string is encoded this time. Hence, A2C may 

or may not decode the value in *ptr at Line 47, depending on the context. Therefore, each 

statement in the DEC set is annotated with a context such that decoding is only performed 

when the same context is encountered at runtime. 

The decoding set is also path-sensitive. Consider the example in Fig. 4.10 (a), which 

contains code snippets from unrtf, a program for converting documents in Rich Text For-

mat (RTF) to other formats such as HTML and LaTeX. At 2 and 3 , str may hold a 

constant value or a tainted value ch. At 4 and 5 , str is inserted to a hash map. Strings in 

the hash map are loaded and used at 6 . Depending on whether 2 or 3 is executed, Line 

336 may or may not belong to the decoding set. In other words, if tmp holds a constant 

string at 336, it does not need to be decoded. Note that in this case, the context of Line 336 

cannot be used to distinguish the different behaviors of the line. We cannot afford to track 

paths at runtime either. Hence, our solution is to identify the related constant strings, such 

as that at Line 326, and treat them as input sources so that they will be encoded as well. As 

a result, the behavior at Line 336 becomes path insensitive, always requiring decoding. � 

Abstract Interpretation Rules. The interpretation procedure is formulated by the rules 

in Table 4.1, which specify how the abstract information is updated upon each state-

ment. Specifcally, when the program reads data from untrusted input sources through 

input(xb,xs) with xb the buffer address and xs the size, the TaintStore of all the abstract 
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          static int read_word (FILE *f) {

             ...

246:      ch = getchar(f);      

             ✁

266:      switch( ch ) {

               ✁

323:        case  '\t':

326:              strcpy(str, "\\tab");

327:    fprintf (�, str[1]);

                ...  

331:        case  ';':

332:              str[0] = ch;

                ...

           }

            ✁

454:     word_new (str);

parse.c

   void process_font_table (Word *w) {

         �

        // word_string(w) returns 

        // hash[...]✂str stored by word_new

335:  tmp = word_string( w2 ); 

336:  if( !strncmp("\\f", tmp, 2) ) {

              ...

         }

convert.c

ch

ch

str

str[1]

hash[�]✂str  

 ...

str

hash[�]✂str

tmp (=hash[...]✂str)

tmp

1-2461

1-2661

2-3261

2-3271

5-1081

   ...

3-3321

5-1081

6-3351

6-3361

(c) Abstraction interpretation state

{M}

{M}

{C}

{C}

{C}

  ...

{M}

{C,M}

{C,M}

{C,M}

         Word* word_new(char *t){

            ✁

108:      hash[✁]✂str = my_strdup(t);

         }

word.c

{ch246}

{ch246}

{ch246} 

{ch246}

{ch246}

   ...

{ch246}

{ch246}

{ch246}

{ch246, "\\tab"326 }

{}

{ch266}

{ch266}

{ch266}

{ch266}

   ...

{ch266}

{ch266}

{ch266}

{ch266, tmp336}

1

2

3

4

6

5

...

str

str[1]

hash[�]✂str 

 ... 

str

hash[�]✂str  

tmp (=hash[0]✂str)

tmp

...

2-3262

2-3272

5-1082

   ...

3-3322

5-1082

6-3352

6-3362

...

{M}

{M}

{C,M}

  ...

{M}

{C,M}

{C,M}

{C,M}

...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

           ...

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

{ch246, "\\tab"326 }

...

{ch266, tmp336}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

                  ...

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

{ch266, tmp336, str[1]327}

(a) unrtf program source (each circled number represents a block index)

         char* word_string (Word* w) {

            ✁

84:      t_str = hash[✁]✂str;

            ✁

86:      return t_str;

         }

word.c

1st iteration.

DF-OP

STORE

DF-OP

2nd iteration

CONST

DF-TERM

(b) Abstract interpretation path

1 2 4 5 3 4 5 6

...... ... ... ... 3rd iteration

1

Abstract Addr/VarRef. Taint ENC DEC Description

Figure 4.10.: An example of the iterative interpretation procedure on unrtf 

memory locations pointed to by xb are set to MARKED (Rule INPUT). Note that using 

the context C makes our analysis context sensitive. The encoding set is also updated. Rule 

NON-DF-OP describes the interpretation of an operation that is not on the decoding fron-

tier, i.e., controllable operation such as copy. In this case, A2C copies the points-to set 

and the abstract taint set. Rule LOAD describes that for a load instruction, the resulting 

points-to/taint set is the union of all the points-to/taint sets of all abstract memory locations 

pointed-to by the address xa. Similarly, for a store statement, the points-to/taint set of the 

value variable xv is added to the points-to/taint set of any abstract memory location pointed 

to by xa. A2C only propagates taints for controllable operations. Rules DF-OP handles an 

uncontrollable operation or a comparative operation. It frst resets the taint. It then calls 

function ChkSrc(`,x) that checks if variable x is tainted as MARKED. If so, the statement 

together with the current context and the variable are inserted to the decoding set DEC. The 

context and variable information is needed to indicate which variable should be decoded 

and under what context. The function further tests if the statement is already in DEC and 

the variable is currently tainted as CONST, suggesting that the statement sometimes uses a 

value from untrusted input and sometimes uses a constant. This corresponds to the case in 

which the decoding set is path sensitive. To eliminate such path sensitivity, A2C adds the 
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source of the constant to ENC, indicating that the source should be tainted as MARKED 

in the next round of abstraction interpretation. 

Rule DF-TERM handles the other kind of operations in the decoding frontier: the ter-

minal operations. 

Rule CONST handles constant assignment, including constant string assignment. It tests 

if the constant assignment has been inserted to the ENC set (by Rules DF-OP or DF-TERM), 

indicating that the constant should be encoded so that we need to fgure out its decoding 

places. In this case, it sets the taint as MARKED, otherwise CONST. Rule STRCAT 

handles string concatenations. When a string from an untrusted source is concatenated with 

a constant string, we add the constant string to the ENC set to indicate that the string shall 

be encoded. Such concatenation happens frequently when a program uses string formatting 

functions such as sprintf(). Rule CALL updates the current context. It further propagates 

the points-to and taint sets from the actual argument to the formal argument. At the end, 

it sets the points-to sets of all the local buffer variables to contain themselves. The RET 

rule pops the last entry in the context. The PHI rule specifes that since x takes the value of 

either x1 or x2, its abstract sets are the union of those of x1 and x2. A2C does not model path 

conditions so that it essentially considers all paths are feasible and computes merged results 

along various paths. Rule HEAP describes that we use the label of the allocation statement 

to denote the abstract heap region allocated. In addition, the σ and τ entries computed at 

a location are also propagated to its control fow successors. The rules are omitted as they 

are standard. The abstract interpretation is iterative until a fx point is reached. It is easy to 

infer that our analysis must terminate as all the abstract domains are fnite. 

Example. Fig. 4.10 shows how the analysis works for unrtf that reads an RTF fle and 

transforms it to various formats. Fig. 4.10 (a) shows some code snippets of the program. 

The description of them can be found at the beginning of Section 4.4.3. The program is 

simplifed and slightly changed from its original version for illustration. 

The abstract interpretation procedure is equivalent to traversing the path in Fig. 4.10 

(b). The real interpretation order inside A2C is slightly different due to the φ functions 

that are omitted for easy explanation, although the outcome is identical. In the path, the 
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two branches of the switch are traversed in two sub-paths: 1 2 4 5 and 1 3 4 5 . They 

insert strings to the hash table and the strings are later accessed at 6 . 

Fig. 4.10 (c) shows the abstract states computed by A2C in multiple rounds. Each 

round follows the path in (b) during interpretation and corresponds to a sub-table in (c). 

The frst column shows the block, line and round numbers of each statement. For instance, 

2-3261 means Line 326 inside 2 in the frst round of interpretation. Here, we only show 

the statements related to our analysis. The next two columns present the abstract address 

or variable that each statement accesses and its taint set. C means the CONST type and M 

denotes the MARKED type. The next two columns show the contents of ENC and DEC. 

The last column presents the rules applied. 

First Round. ENC and DEC sets are empty at the beginning. At 1 − 2461, since ch is 

loaded from an input source, we add ch246 to ENC to indicate that we should encode ch 

at Line 246. Then, ch is used in a comparison at 1 − 2661, thus we add ch266 to DEC, 

meaning that we should decode ch at Line 266. For simplicity, we ignore the contexts in 

the DEC set. At 2 − 3261, a constant string is copied to str, and part of it is printed at 

2− 3271. Since str has a constant taint at this point, it does not need to be decoded. Later 

it is stored into the hash table at 5 − 1081. Then, a character from a fle is copied to str at 

3 − 3321, and is then stored in the hash table at 5 − 1081. Since A2C cannot distinguish if 

the hash table write and the previous write access different (abstract) memory locations, it 

unions the two taints so that the hash table is tainted with both CONST and MARKED, 

according to Rule STORE. 

Later, at 6−3351 and 6−3361, the stored string is loaded and compared with a constant 

string “\\f”. According to Rule DF-OP, since Line 336 is comparative and tmp is tainted 

with MARKED, it shall be decoded. An entry is hence inserted to the DEC set. Also 

according to the second if statement inside ChkSrc(), which is invoked by Rule DF-OP, 

the constant string at Line 326 is added to ENC, meaning that the constant string shall be 

encoded. 

Second and Third Rounds. The second round traverses the same path. At 2 − 3262, the 

constant string is MARKED as it is in ENC, meaning that we should track its propagation 
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to fgure out the decoding places (Rule CONST). As a result, str[1] at Line 327 is added 

to DEC according to Rule DF-TERM. The rest is similar to the frst round. In the third 

round, none of the abstract sets are updated, a fx point is reached. The analysis terminates. 

From the fnal ENC and DEC sets, we should encode at Lines 246 and 326, and decode 

ch, str[1] and tmp at Lines 266, 327 and 336, respectively. � 

4.4.4 Runtime 

Supporting Context Sensitivity. Once the analysis phase is fnished, we have the DEC 

and ENC sets. Since both DEC and ENC are context sensitive, meaning that decoding 

and encoding should be performed only under certain calling contexts, the instrumentation 

needs to compare at runtime if the current context matches with that in DEC/ENC in order 

to perform decoding/encoding. 

A straightforward way to obtain the current context is to perform stack walking. How-

ever, it incurs signifcant overhead. Furthermore, the resulting contexts are verbose and 

diffcult to compare. To address the problem, we adopt a precise calling context encoding 

algorithm [131]. The algorithm maintains an id which is a unique number for each context. 

Given a program and its call graph, the algorithm automatically determines a unique id for 

each context. It further instruments the program in such a way that the instrumentation 

(at call sites) guarantees to produce the corresponding id when a context is reached. The 

instrumentation only requires simple (and low-cost) additions and subtractions before and 

after a subset of call sites. Context comparison becomes simple id comparison. Since the 

encoding algorithm is not our contribution, details are elided. 

Encoding Based on One-Time-Dictionary. Simple encodings such as subtract-by-one 

are easy for the adversary to reverse engineer. He/she can prepare the exploit accordingly 

so that the exploit inputs become the plain-text payloads after our encoding. To address the 

problem, we use one-time-cipher. In particular, A2C has a large number of pre-generated 

random one-to-one mappings that project a byte to another unique byte. Whenever the pro-

gram reads inputs from an untrusted source, A2C selects a mapping to encode the buffer. 
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Since the dictionary for each untrusted input buffer is different from others, knowing pre-

vious mappings (e.g., through memory disclosure) does not help in launching subsequent 

attacks. More discussion can be found in Section 4.5. Another thing we want to point out is 

that A2C mutates every byte from an untrusted sources. As such, none of the instructions 

from the original payload can be properly executed. 

Using different dictionaries for different buffers requires A2C to track the dictionaries 

for individual buffers so that decoding can be properly performed. This is achieved by 

adding runtime taint propagation logic for controllable operations in the exploitable space. 

For controllable operations that are not simple copies (e.g., y = 3 ∗ x), A2C decodes the 

source operand(s), performs the operation, and encodes the resulting operand using the 

same mapping. Since the exploitable space is very small, the entailed runtime overhead is 

low (see Section 4.6). 

4.5 Threat Model 

A2C assumes the subject program is benign but the inputs may be malicious. The 

user specifes which part of the inputs cannot be trusted such as network inputs and/or 

local fle reads. It trusts the kernel. It also trusts that the low level output libraries are 

free of vulnerabilities, as it decodes the buffer values before calling these libraries. If 

they cannot be trusted, we can mitigate the problem by postponing the decoding to before 

output syscalls, which requires instrumenting libraries. Note that we do not trust all library 

functions. For example, we do not decode inputs for functions that copy data such as 

strcpy and memcpy. In practice, such functions are commonly exploited by attackers 

whereas output library functions such as write and send are not. 

A2C aims to protect against payload injection attacks. It cannot handle other attacks 

that do not inject payload. It also requires the payload injection go through explicit input 

channels, which is true for most attacks. A2C currently only supports C/C++ programs 

and hence cannot deal with payload injections for programs in other languages such as 

JavaScript, although the idea is general. 
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Attacks In the Post-exploitable Space. A2C leverages constraint solving and a large 

pool of payload test cases that models the distribution of valid payloads to determine the 

decoding frontier with strong probabilistic guarantees. However, it may still be possible to 

construct some payloads via the very limited controllability of those uncontrollable oper-

ations on the decoding frontier. We argue that such payloads will have very limited func-

tionalities. Moreover, we only protect against payloads that are larger or equal to 16 bytes. 

While it may be possible to construct payloads smaller than that, we again argue that such 

payloads will have very limited functionalities. Note that if a primitive value of four bytes 

is related to input, the attacker could inject a four byte payload to that primitive if there 

existed one. Protecting against such small payloads is almost impossible and unnecessary. 

In practice, we have not seen any examples of these payloads. 

Memory Disclosure. Memory disclosure vulnerabilities can reveal memory contents of 

a process. Attackers can access memory pages that contain the encoded values and thus 

reverse engineer dictionaries. For example, he/she can manipulate the input by providing a 

sequence of unique values and then search in the disclosed memory for regions that have a 

sequence of unique values of the same length. By contrasting the two, the dictionary can 

be revealed. However, since A2C uses different dictionaries for individual input buffers, 

disclosing previous dictionaries does not help in subsequent attacks. Since A2C uses a 

random dictionary each time, it is really diffcult to guess the next dictionary even knowing 

the previous dictionaries (i.e., 1 out N with N the number of pre-generated dictionaries). 

We use N = 106 in this chapter. 

4.6 Evaluation 

A2C is implemented on LLVM [132]. We evaluate A2C on 18 different real world 

programs shown in Table 4.2. All the experiments were done on a machine with Intel Core 

i7 3.4GHz, 8GB RAM, and 32-bit LinuxMint 17. 

We searched exploit-db.com to choose target programs. We tried the listed programs 

with reported exploits and selected those which we could reproduce. We have 6 network 

https://exploit-db.com
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Table 4.2.: Evaluation Results for Analysis 

Program Size |ENC| |DEC| CS1 CCE2 Analysis Time 
DF Comp.3 SA4 

mupdf 483K 598 2283 241 172 1h 5m 12m 11s 
prozilla 54K 98 754 391 104 9m 49s 2m 43s 
stftp 18K 42 144 42 37 6m 51s 1m 58s 
yops 9,215 49 153 4 12 24s 13s 
nginx 335K 151 1005 37 72 34m 14s 17m 22s 
ngircd 119K 123 391 113 249 7m 39s 10m 1s 
unrar 99K 36 239 44 164 17m 21s 7m 11s 
mcrypt 36K 83 278 40 35 12m 41s 4m 20s 
gif2png 16K 32 129 28 22 8m 19s 1m 38s 
mp3info 17K 33 91 23 19 6m 9s 2m 17s 
fcrackzip 48K 18 37 23 11 8m 17s 2m 58s 
chemtool 176K 100 388 27 39 20m 35s 7m 41s 
vfu 180K 64 129 49 318 12m 51s 8m 21s 
unrtf 25K 31 220 291 178 14m 5s 2m 43s 
rarcrack 1,364 7 19 39 9 0s 5s 
make 124K 106 719 125 94 31m 14s 1h 40m 
Xerces-C 415K 121 1137 102 213 1h 28m 6h 21m 
apache 208K 364 1586 98 63 1h 56m 5h 41m 
1# of Context Sensitive Statements. 
2# of instrumentations for Calling Context Encoding. 
3Decoding Frontier Computation Phase. 4Static Analysis Phase 

Table 4.3.: Evaluation Results for Attack Prevention 

Program # of Inputs 
(Mal./Benign) 

# of 
Vulnerabilities 

# of Payloads 
(Shellcode/ROP) 

# of Crashes 
(Mal./Benign) 

# of ins. exec. 
in Payloads 

# of ROP Gadgets 
Exec. in Payloads Precision/Recall 

mupdf 10 / 20 1 (CVE-2014-2013) 50 / 50 1000 / 0 3.62 0.1 100% / 100% 
mcrypt 10 / 20 21 50 / 50 1000 / 0 3.62 0.18 100% / 100% 
sftp 10 / 20 1 (EDB-ID: 9264) 50 / 50 1000 / 0 3.6 0.08 100% / 100% 
yops 10 / 20 1 (EDB-ID: 14976) 50 / 50 1000 / 0 3.62 0.05 100% / 100% 
nginx 10 / 20 1 (CVE-2013-2028)* 50 / 50 1000 / 0 3.62 0.09 100% / 100% 
ngircd 10 / 20 22 50 / 50 1000 / 0 3.62 0.11 100% / 100% 
unrar 10 / 20 1 (EDB-ID: 17611) 50 / 50 1000 / 0 3.62 0.18 100% / 100% 
prozilla 10 / 20 23 50 / 50 1000 / 0 3.6 0.09 100% / 100% 
gif2png 10 / 20 1 (CVE-2009-5018) 50 / 50 1000 / 0 3.62 0.09 100% / 100% 
mp3info 10 / 20 1 (CVE-2006-2465) 50 / 50 1000 / 0 3.62 0.05 100% / 100% 
fcrackzip 10 / 20 1 (EDB-ID: 14904) 50 / 50 1000 / 0 3.62 0.05 100% / 100% 
chemtool 10 / 20 1 (EDB-ID: 36024) 50 / 50 1000 / 0 3.6 0.18 100% / 100% 
vfu 10 / 20 1 (EDB-ID: 35450) 50 / 50 1000 / 0 3.61 0.18 100% / 100% 
unrtf 10 / 20 1 (CVE-2004-1297) 50 / 50 1000 / 0 3.62 0.18 100% / 100% 
rarcrack 10 / 20 24 50 / 50 1000 / 0 3.62 0.05 100% / 100% 
make 10 / 20 1 (EDB-ID: 34164) 50 / 50 1000 / 0 3.62 0.18 100% / 100% 
Xerces-C 10 / 20 1 (CVE-2015-0252) 50 / 50 1000 / 0 3.62 0.07 100% / 100% 
apache# 10 / 20 25 50 / 50 1000 / 0 3.6 0.13 100% / 100% 
1(CVE: 2012-4409, 2012-4527) 2(CVE: 2005-0226, 2005-0199) 3(CVE: 2005-0523, 2004-1120) 
4(EDB-ID: 15062, 15054) 5(CVE: 2004-0940, 2006-3747) *This CVE includes multiple vulnerabilities #Version 1.3.31 

programs, with two client programs: prozilla and stftp, and four server programs: 

apache, nginx, yops, and ngircd. We have 12 user applications. mupdf reads and dis-

plays pdf documents. unrar is a decompressor program. mcrypt encrypts and decrypts 

fles. gif2png converts gif to png. unrtf converts RTF fles to other formats such as 
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HTML. mp3info reads and modifes meta tags of MP3 fles. rarcrack and fcrackzip 

recover passwords of compressed fles (e.g., zip and rar fles) using different strategies. 

vfu is a text-mode fle manager. chemtool is a GUI program for drawing chemical struc-

tures. Xerces-C is an XML parser. Among these programs, we have two GUI programs 

that require user interactions: mupdf, and chemtool. vfu requires text-based user interac-

tions. 

The frst two columns of Table 4.2 show the programs and their size in C source code 

lines (CLOC). The third and fourth columns present the number of entries in DEC and 

ENC computed by our analysis. They are essentially LLVM IR statements annotated with 

contexts. The ffth column shows the number of statements in DEC that behave differently 

depending on the context. One such statement has multiple entries in the DEC set (for dif-

ferent contexts). The sixth column represents the number of instrumented IR statements for 

calling context encoding. The last two columns show the time spent on computing the de-

coding frontier, and the static analysis for DEC/ENC set computation and instrumentation, 

respectively. The overhead of decoding frontier computation includes the running time of 

Z3 constraint solver. We use one minute as the timeout threshold. We also avoid testing 

identical payload sequences. 

From the table, we have the following observations. A2C can handle large and complex 

programs such as mupdf and apache. The number of entries in ENC/DEC is small with 

respect to the program size. This supports our speculation that the exploitable space is 

small. The data in the ffth column also supports that context sensitivity is needed. Finally, 

the analysis overhead is acceptable. Some large programs take a few hours. However, we 

argue that this is one-time cost. 

4.6.1 Performance 

Performance for Programs with Vulnerabilities (i.e., those in Table 4.2). To evaluate the 

runtime overhead of A2C, we run both the original program and the instrumented version 

10 times and take the average. We use large inputs. For example, we use document fles 
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that are larger than 10MB to test fle processing programs unrtf, Xerces-C, and gif2png. 

As such, the native executions usually last for more than a few seconds. For the programs 

that require user interactions, we force them to quit after they load, process, and render the 

inputs, and before they take any user interactions. We manually identify the locations in the 

source fles that indicate such status (e.g., before calling a function to change the status bar 

to show the input is successfully loaded and rendered) and insert exit() to these locations. 

We then measure the overhead for these shortened executions. Note that, this usually leads 

to over-approximation of the overhead as our instrumentation largely lies in the initial input 

loading and parsing logic. 

0%

2%

4%

6%

8%

10% 6.11% 

Figure 4.11.: Normalized overhead on programs in Table 4.2 

Fig. 4.11 shows the result. The average overhead is 6.11%. In most cases, the overhead 

is less then 6%. There are a few exceptions. Programs dedicated to processing and parsing 

input fles such as make, Xerces-C, unrtf, and gif2png have relatively higher overhead. 

This is because the instrumented statements are being executed throughout the execution. 

Also, the programs that require interactions, e.g., mupdf, chemtool, and vfu, have rel-

atively higher overhead. This is because of the way we measure the overhead. apache 

has the highest overhead (9.84%) due to the complex structure of input flters that leads to 

many constant strings being encoded. 
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Figure 4.12.: Normalized overhead on SPEC CPU2006 programs 

SPEC CPU2006. We also evaluate the performance of A2C on SPEC CPU2006. We run 

both the original and instrumented programs 10 times using the reference inputs. Fig. 4.12 

shows the result. The average overhead is 8.18%. 401.perlbench, 403.gcc, and 483.xa 

lancbmk have relatively higher overhead because they process inputs intensively. 456.hmm 

er has 9.94% overhead as it processes inputs even during the execution of its main algo-

rithm. 429.mcf and 462.libquantum have extremely low overhead, less than 1.5%. This 

is because they process inputs once at the very beginning. As such, A2C only needs to 

decode at the beginning and the rest of the execution does not cause any overhead. The 

average overhead for all 30 programs including programs in Table 4.2 and SPEC CPU2006 

is 6.94% and the geometric mean is 5.94%. 

4.6.2 Effectiveness 

To evaluate the effectiveness of A2C in preventing attacks and allowing benign exe-

cutions, for each program, we prepare 10 exploits and 20 other benign inputs. For each 

exploit input, we prepare 100 different malicious payloads, including 50 shellcodes and 50 

ROP payloads. 
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The shellcodes are generated from [127], and we use ROP attack creators [128, 129] 

to generate 50 different ROP payloads for each vulnerable application. Thus, we have 

1,000 attack executions and 20 benign executions for each program. Note that, as shown 

in Table 4.3 Column 3, some programs have more than one vulnerability, which require 

unique exploit inputs. The table also shows the results. Observe in the ffth column, A2C 

successfully crashes all the attacks and allows all the benign inputs to proceed to normal 

termination and produce the expected outcomes. The next two columns show the average 

number of payload/gadget instructions that got executed before crashing. They are all in 

very small numbers. As such, they can hardly cause any damage to the system. 

Decoding Frontier (DF) Operation Classifcation. We further analyze the DF operations 

for all the subject programs and classify them into a few categories. Fig. 4.13 shows the 

results, from which we have the following observations. 
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Figure 4.13.: Different types of decoding frontiers 

First, 63% operations on DFs are Comparative Operations. Note that comparative op-

erations are mostly conducted on individual buffer elements (of primitive types), A2C only 

decodes the element needed by the operation. The decoded value is dead (e.g., overwrit-

ten) right after the operation. Such DF operations cannot be exploited. Second, 19% DF 

operations are Terminal Operations. For a terminal operation, A2C frst copies the original 

buffer to a temporary buffer, and then decodes the temporary buffer. Also, after the termi-

nal operation, A2C releases the temporary buffer to minimize the attack window. Third, 

we also identify a few kinds of Uncontrollable Transformative Operations. In particular, 



114 

Type Widening expands each element in a buffer by padding it with some specifc byte(s) 

such as 0x00. Note that we use the constraint solver to determine whether each case of type 

widening is controllable as not all type widening cases are uncontrollable. In fact, casting 

a one-byte data type to a two-byte data type is solvable in many cases. Note that some 

binary operations (e.g., multiplication) of values with smaller types yield a value of a large 

type. These are not type-widening as the bits in the resulting value are often fully/largely 

controllable. Irreversible Calculation means arithmetic transformations that cause inten-

sive correlations among values so that the solver returns UNSAT for all tests. An example 

can be found in Section 4.4.1. Primitive type conversion means that a buffer element is 

converted to a value of primitive type (e.g., atof()) and this value is not stored to any 

array/buffer. Since single primitive values can hardly be exploited to inject payloads due 

to the size, decoding is safe. Note that A2C protects consecutive primitive values if they 

can form a region larger than 16 bytes. Indexing means that an encoded value is used to 

index a non-constant array. It is safe to decode the value because the decoded value is of a 

primitive type and soon dies after the operation. The entire buffer is never decoded. 

Decoding Frontier (DF) Computation. Table. 4.4 shows the evaluation results of decod-

ing frontier computation. The frst column shows the programs. The next three columns 

show the numbers of controllable operations, uncontrollable operations, and their sum, re-

spectively. The last column shows the average number of constraints for each memory 

region under test. Recall that if the solver returns SAT, TIMEOUT or UNKNOWN for a 

constraint in any payload sequence test, the corresponding operations are considered con-

trollable. 

We make the following observations. First, in most cases, there are more UNSAT cases 

than SAT cases. This means that most input related computations are not controllable. 

There are a few exceptions. gif2png, apache, and chemtool have more SAT cases as our 

modeling of the external library calls is not complete and the modeling of foating point 

functions is conservative. For example, we assume exp() function can return any posi-

tive foating point values while the parameter of the exp() function may have constraints, 

hence it may not be able to produce some foating point values. Note that such a conser-
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Table 4.4.: Results for Decoding Frontier Computation 

Program 
# of Operations Avg. # of 

ConstraintsControllable Uncontrollable Total 
mupdf 9 141 150 16.4 
Prozilla 4 20 24 15.9 
stftp 2 8 10 11.5 
yops 0 1 1 8 
nginx 4 41 45 17.2 
ngircd 2 12 14 14.1 
unrar 6 33 39 14.2 
mcrypt 4 24 28 18.3 
gif2png 13 10 23 16.9 
mp3info 4 9 13 15.3 
fcrackzip 4 4 8 13.6 
chemtool 29 22 51 14.1 
vfu 3 25 28 15.5 
unrtf 2 22 24 14.5 
rarcrack 0 0 0 0 
make 9 53 62 15.4 
Xerces-C 14 75 89 14.8 
apache 145 129 274 17.7 
Average 14.1 34.9 49 14.05 

vative assumption only causes over-approximation. Second, the total number of operations 

for testing is not large (apache has the largest number 274). This is because the control-

lability classifcation for most operations is straightforward (e.g., comparative operations 

and copy operations) and hence does not require constraint solving. Third, the average 

number of constraints in our tests is not large, suggesting that controllable operations are 

often shallow in the data fow, meaning that they are close to program inputs. This supports 

our assumption that most computation happens in the post-exploitable space. Note that we 

do not need to test controllability of operations if their operands are not controllable. 

4.6.3 Case Studies 

Running Web Servers on Real-world Traffc. To further evaluate the robustness of A2C, 

we run the instrumented web servers on a real-world traffc log. We obtained our institu-
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tion’s server access log from November 2015 to January 2016. The log contains 5.6 million 

requests with 4.2 million unique requests, including some suspicious requests with binary 

payloads (about 100 of them). We also randomly inject 300 exploit inputs to the access log. 

We ran three servers (apache, nginx, and yops) with these requests. The results show that 

the instrumented versions produce the same expected results as the original versions except 

for the attacks. All attacks are prevented. The throughput is only reduced by 8.83%, 7.37%, 

and 5.49%, respectively. 

Code Injection Through Benign Functions and Payload Triggered Through Integer 

Overfow. In this case study, we show how a payload can be injected through benign 

and non-vulnerable program logic and later triggered by an integer overfow vulnerability. 

Such a combination makes it diffcult for traditional defense techniques. Fig. 4.14 shows 

code snippets of the victim program, mupdf. First, observe that the xps read dir pa 

rt() function reads a fle. It opens a fle at Line 455, then gets the size of fle at Line 

458. Later, it reads the fle and puts it into a heap buffer (part->data) at Line 462. 

Note that the function xps read dir part() is not vulnerable. But still, the attacker can 

provide a crafted xps fle that contains a malicious payload. The payload will be injected 

through the normal fle read in the benign function. Thus, most existing protection schemes 

including CFI, DFI, ASLR, and boundary checkers cannot prevent such injection. While 

malicious payload detection methods can identify the injected shellcode by scanning the 

input fle at the fread function, the attacker can use obfuscation techniques to circumvent 

such detection. 

To trigger the payload, the attacker exploits an integer overfow vulnerability. The in-

teger overfow happens as follows. It reads input from a fle at Line 91 in lex number(). 

Then the input is propagated to Line 97 where the integer overfow occurs. The program 

assumes the input c is between ‘0’ to ‘9’, and converts it into an index (i). At Line 106, 

the converted index is stored into buf->i. Later, the index is used to write elements into 

a structure (at Lines 176-178 in pdf repair obj stm()). Note that the earlier index is 

propagated to variable n which is also used as an index. This integer overfow can be 

leveraged to overwrite some critical data felds such as function pointers in order to change 
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control fow of the program to the injected shellcode. Note that the exploit may not be de-

tected by address sanitizers as the attacker can manipulate the offset n to directly overwrite 

the target memory addresses that may fall into other legitimate memory regions, without 

overwriting the canaries. 

In contrast, A2C defeats the attack by breaking its weakest link, which is the injected 

payload itself. In particular, A2C mutates the input including the shellcode at the fread in 

Line 462. The original shellcode is shown in Fig. 4.14 (a), and the corresponding mutated 

shellcode in Fig. 4.14 (b). Observe that the mutated shellcode is broken and not executable. 

       static int lex_number (✁) {

           ...

  91:    int c =  fz_read_byte(f);

              ...

              case RANGE_0_9:

  97:         i = 10*i  + Decode( c ) 

                      -  '0';

                ✁

106:        buf->i  = i;

pdf/pdf_lex.c

       static void 

         pdf_repair_obj_stm (...) {

          ...

172:   n = buf.i;

          ✁

         // Triggering the shellcode

176:   xref->table[n].ofs = num;

177:   xref->table[n].gen = i;

178:   xref->table[n].stm_ofs = 0;

pdf/pdf_repair.c

(a) Injected Shellcode (b) Mutated Shellcode

  push    0x2e2e2e62

  mov    edi, esp

  xor      eax, eax

   ... 

  ret       0x84c8

  test

  in        eax, dx

   ... 

Hex: c2 c8 84 84 84 23 4d 99  ...Hex: 68 62 2e 2e 2e 89 e7 33 ...

         static xps_part* xps_read_dir_part(...) {

           ✁

455:    file = fopen(buf, "rb");

           ...

458:       fseek(file, 0, SEEK_END);

459:       size = ftell(file);

              ...

462:       fread(part->data, 1, size, file);    // Shellcode Injection

                

xps/xps_zip.c

Figure 4.14.: Integer overfow in mupdf 

Note that A2C does not prevent the integer overfow. Even through it encodes the input 

value at Line 91, it decodes the value right before the overfow (at Line 97) because that is 

an operation of primitive type. In other words, the attacker can still exploit integer overfow 
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vulnerabilities. However, when the control fow of the program is redirected to the injected 

shellcode, the execution crashes almost immediately as the frst instruction of the mutated 

shellcode is “ret 0x84c8”, which does not have a valid return address. 

One might think the attacker can exploit the integer overfow to direct the control fow 

to some buffer in the post-exploitable space. However, as we pointed out in Section 4.5, the 

transformations performed by the subject programs are complex enough that the attackers 

cannot generate plain-text payloads in the post-exploitable space. 

Preventing ROP attacks. As DEP (Data Execution Prevention) becomes more and more 

popular, attackers now use ROP to bypass such protection. In this case study, we show how 

A2C prevents ROP attacks using an example. 

       void process_font_table (...) {

         ...

331:  char name[255];

          ✁

341:  while (w2) {

342:    tmp = word_string(w2);

343:    if ( tmp && 

                 Decode( tmp[0] ) != '\\' ) 

344:      strcat( name, tmp );

convert.c (a) Injected ROP gadgets

0x804d820 mov ebx,0x0; ret

0x804ec7d mov eax,0x806275c; ret

... ...

Address Instructions

(b) Mutated ROP gadgets

0xa2ae728a Invalid address

0xa2ae46d7 Invalid address

... ...

Address Instructions

Figure 4.15.: Stack buffer overfow in unrtf 

Fig. 4.15 shows unrtf which has a stack buffer overfow vulnerability. It can be lever-

aged to inject a malicious payload that allows constructing a ROP gadget chain. The pro-

gram frst gets a user provided string at Line 342. Then, it compares the string with a 

constant at Line 343. As it is a comparative operation, A2C decodes the value, allowing 

proper comparison. The buffer overfow happens when the program copies the user pro-

vided buffer (tmp) to a local buffer name at Line 344 in process font table(). Observe 

that the size of name is only 255. Thus, providing a long enough input to the tmp buffer 

will result in a stack overfow. 
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Fig. 4.15 (a) shows the injected ROP payload and the corresponding gadgets. The 

address column shows the payload that contains the raw addresses of the ROP gadgets. 

The instructions column shows the instructions from the ROP gadgets. Observe that they 

all end with a ret instruction. These chains of instructions are essentially the ones that 

get executed once the attack is launched. Fig. 4.15 (b) shows the mutated payload. For 

demonstration purpose, we use a simple encoding/decoding scheme even though our im-

plementation uses one-time-dictionary. In particular, the mutation is to xor a value with 

0xAA. Observe that all the addresses in the original payload are encoded and point to in-

valid addresses. Hence, the attack fails. Note that since A2C prevents attacks by mutating 

payloads, the injection methods do not affect our protection. 

Preventing English Shellcode. As a counter attack to shellcode detection techniques, Ma-

son et al. proposed an automatic way to generate shellcode which is similar to English 

prose [115]. Such technique can be used to avoid existing shellcode identifcation tech-

niques [133–136]. 

English Shellcode and Mutated English Shellcode

 push    esp

 push    0x20657265

 ...

Assembly Opcode ASCII

 54

 68 65 72 65 20 

 ...

There is a 

majorcenter of 

economic activity, ...

 inc      dl

 iret

 ...

 fe c2 

 cf 

 ...

No ASCII character 

found

Figure 4.16.: English shellcode example 

Fig. 4.16 shows an example of English Shellcode presented in [115]. As shown in the 

ASCII column, the shellcode is an English statement. The corresponding assembly instruc-

tions are listed in the frst column. While we are just showing one example, in practice at-

tackers also use other various shellcode obfuscation and compression techniques [137,138] 

to avoid shellcode identifcation. A2C mutates all untrusted inputs including shellcodes 

as they are part of the inputs. The mutated English Shellcode includes those shaded in 



120 

Fig. 4.16. For demonstration, we again apply the xor with 0xAA mutation. Observe that 

the mutated shellcode is completely different from the original shellcode. While the frst 

instruction is executable, it does not help attackers to achieve anything useful. More im-

portantly, the second instruction is iret, which can only be executed in a kernel mode. 

Executing iret results in a segmentation fault. One interesting observation is that the frst 

a few instructions in the mutated shellcode are often executable. The ffth column of Ta-

ble 4.3 shows the average number of instructions executed in the mutated payload is very 

small (<4). It is also important to note that such a few (mutated) instructions do not have 

the same semantics as the original malicious logic. They often immediately lead to crashes 

and do not cause any damage to the system. 

Buffer Overfow In Structure. AddressSanitizer [139] is an important technique to pre-

vent various buffer overfow attacks including heap and stack overfows. It works by plac-

ing canaries before and after a buffer. One of the limitations of the technique is that it 

cannot handle buffer overruns within a structure. 

      void process(RECORD* p) {

1:      fread( p->name, ✁ );

2:      printf("Name: %s\n", 

                   Decode( p->name ));

3:      p->handler( p->privilege );

Program.c

typedef struct tag_RECORD {

    char name[255];

    void (*handler)(int); 

    int privilege;

} RECORD;

Program.h

Figure 4.17.: Buffer overrun in structure 

Fig. 4.17 shows a buffer overfow vulnerability in a structure. Specifcally, buffer 

name in the structure RECORD can affect adjacent data felds including a function pointer 

handler. At Line 1, it reads a fle to fll the name buffer. By providing an input string 

longer than 255 bytes, it can overwrite handler. Note that A2C mutates the input in 

fread at Line 1, the handler is overwritten with a mutated address. Then, the program 

calls printf to display the name on the screen. As printf is an external call, A2C de-

codes the input buffer name. Specifcally, in our implementation of the decoding function, 
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when A2C decodes a buffer for a library call, it allocates a new buffer, copies the original 

encoded buffer, and then decodes it in the new buffer before passing it. Since A2C does 

not decode the original buffer, the injected malicious payload remains mutated. At Line 

3, the program calls handler. Although it is overwritten, the function pointer no longer 

points to the injected shellcode. Note that the privilege feld can also be overwritten to 

launch non-control data attacks [140]. A2C mitigates the attacks by encoding the inputs 

from untrusted sources. As a result, the attacker cannot control the overwritten value. 

4.7 Related Work 

Control-fow Integrity (CFI). Recent advances in control-fow integrity have developed 

very robust systems for preventing malicious/abnormal control fows within a victim pro-

gram. These typically monitor execution to enforce pre-determined control fow paths [117– 

120,141–146]. In contrast, A2C provides protection by corrupting input payloads, which is 

a perspective orthogonal to the enforcement of a program’s legitimate control fow graph. 

Therefore, A2C is complementary to and can be deployed alongside CFI, e.g., to pre-

vent exploit injection attacks that may employ indirect calls or not violate control fow 

integrity [146–153]. 

Malicious Payloads Detection. In [133] and [134], researchers proposed analyzing in-

puts to detect malicious payloads with little runtime overhead. However, Fogla at el. [154] 

demonstrated that polymorphism techniques can defeat these approaches. Dynamic anal-

ysis using emulation [155, 156] have been proposed to uncover polymorphic payload in-

jection attacks, but they cause non-negligible performance penalty. A2C mutates all input 

buffers from untrusted sources and thus is resilient to polymorphism. It does not require 

emulation and causes low overhead. Nozzle [157] proposed a novel technique to detect 

heap spraying attacks at runtime. It uses runtime interpretation and static analysis to ana-

lyze suspicious objects in the heap. While Nozzle focuses on detecting heap spraying on 

JavaScript, A2C takes a more general approach to prevent a wider range of input injection 

attacks. 
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Randomization Approaches. Address space layout randomization (ASLR) is one of the 

most widely deployed defense mechanism to mitigate payload injection and triggering. 

ASLR randomizes the memory layout of a program when the OS loads the binary and dy-

namic libraries. ASLR is already a default defense mechanism in most operating systems 

including Linux, MacOS, BSD, and Windows. Address space layout perturbation [158] and 

fne-grained randomization techniques [159–164] have been developed to provide higher 

entropy. Instruction set randomization [122, 165, 166] aims to change the underlying in-

struction set to prevent executing injected code. However, it was shown recently that 

randomization could be evaded by brute-force attacks [108, 167], memory disclosure at-

tacks [168–170], and just-in-time code reuse attacks [171]. In [172], researchers presented 

a novel defense technique to mitigate counterfeit object-oriented programming (COOP) at-

tacks [151]. They randomize the layout of the code pointer table and plant booby-traps to 

prevent brute-force attacks. Compared to these techniques, A2C provides protection by 

working from the input perspective, which is complementary to randomization. Data ran-

domization [121, 173] dynamically decrypts a buffer upon each buffer access and encrypts 

it again after the access. It encrypts all buffers including those not related to inputs. It also 

uses different keys for various buffers. A2C shares a similar idea of buffer encoding with 

data randomization. The differences lie in that A2C focuses on input related buffers; it 

encodes only once for each input and decodes only at the decoding frontier. As such, A2C 

has relatively lower overhead. PointGuard [174] encrypts pointer values at runtime. 

Bounds Checking. Stackguard [175] inserts a secret value (canary) before each return 

address and frame pointer. However, it can be defeated through information leak attacks 

that reveal a canary value [176, 177]. Compile-time code analysis [178, 179] have been 

proposed to detect unsafe array and pointer accesses. However, they often generate many 

false positives and focus on specifc kinds of vulnerabilities. Cling [180] and Address-

Sanitizer [139] provide pointer safety to prevent exploiting pointer related bugs such as 

use-after-free. However, as shown in our case study, they can hardly handle advanced 

attacks [181]. In contrast, A2C aims to break the weakest link of attacks, which is the 

payload itself. 
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5 CONCLUSION 

As cyber-attacks are becoming more and more persistent and sophisticated, investigating 

and preventing advanced cyber-attacks such as APTs is of the utmost importance. In this 

dissertation, we present three fundamental primitives for the investigation and prevention 

of advanced cyber-attacks. Specifcally, we adopt the original concept of counterfactual 

causality in the context of program and program execution in order to precisely infer causal-

ity between system call events. Moreover, we proposed a model-based causality inference 

technique that can precisely infer causality without any modifcation on end-user systems. 

Finally, we develop a novel attack prevention technique which can prevent unknown zero-

day exploits by perturbing inputs. In other words, we showed that accurate attack investi-

gation and general protection against advanced and sophisticated attacks can be achieved 

by leveraging causality inference and fundamental weaknesses of the attacks. 

In particular, we present LDX, a causality inference engine by lightweight dual execu-

tion. It features a novel numbering scheme that allows LDX to align executions. LDX can 

effectively detect information leak and security attacks. It has much better accuracy than 

existing systems. Its overhead is only 6.08% when executing both the master and the slave 

concurrently on separate CPUs. This is much lower than systems that work by instruction 

level tracing although they do not require the additional CPU and memory. 

Second, we propose MCI, a novel causality inference algorithm that directly works on 

audit logs provided from commodity systems. MCI does not require any special efforts 

(e.g., training, instrumentation, code annotation) or framework (e.g., enhanced logging, 

taint tracking) on the end-user. Our off-line analysis precisely infers causality from a given 

system call log by constructing causal models and identifying the models in a given audit 

log. We implemented a prototype of MCI and our evaluation results show that MCI is 

scalable to cope with large scale log from long-running applications. We also demonstrate 

that MCI can precisely identify causal relations in realistic attack scenarios. 
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Finally, we describe A2C that provides general protection against a wide spectrum of 

payload injection attacks. It mutates all input buffers from untrusted sources to break mali-

cious payloads. To assure the program functions correctly on legitimate inputs, it decodes 

them right before they are used to produce new values. A2C automatically identifes such 

places at which it needs to decode using a novel constraint solving based approach and a 

sophisticated static analysis. Our experiments on a set of real-world programs show that 

A2C effectively prevents known payload injection attacks on these programs with reason-

ably low overhead (6.94%). 
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