
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2014

Integrating Multiple Data Views for Improved
Malware Analysis
Blake Anderson

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Anderson, Blake. "Integrating Multiple Data Views for Improved Malware Analysis." (2014). https://digitalrepository.unm.edu/
cs_etds/39

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/39?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/39?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Blake Anderson

Computer Science

Jedidiah Crandall

Terran Lane

Stephanie Forrest

Joshua Neil

Niall Adams

Integrating Multiple Data Views for
Improved Malware Analysis

by

Blake Harrell Anderson

B.S., Rhodes College, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2014

c©2014, Blake Harrell Anderson

iii

Dedication

To caffeine (and my family, friends, and teachers)

iv

Acknowledgments

While developing the material in this dissertation, I have had the pleasure of meeting a
lot of very talented individuals. My first semester at UNM I started as a teaching assistant
for Terran Lane, and later became one of his research assistants and advisees. He helped
guide me through the art and science of machine learning, and was also there for me on a
personal level when things seemed hopeless. I owe a lot of my development as a research
scientist to him.

When I came to Los Alamos, I started working on the malware problem with the Ad-
vanced Computing Solutions group under my mentor Joshua Neil. His support throughout
my time at Los Alamos has been invaluable. Daniel Quist, the resident malware expert when
I arrived, also had an important role steering the early work of the dissertation. He provided
the majority of the malware samples used, as well as the dynamic tracing infrastructure that
helped to motivate a lot of this work. Curtis Hash wrote the CodeVision framework allowing
for the classification portion of this dissertation to be operationalized. I would also like to
thank Curtis Storlie who provided great feedback on all of the methods.

When Terran left UNM for Google, I had to find a new dissertation chair to help me
finish the last stages of my PhD. Jedidiah Crandall was gracious enough to fill that role,
and I am incredibly thankful for him taking the time to help me navigate the final stages
of bureaucracy. I would also like to thank my talented committee. Jedidiah Crandall, Niall
Adams, Stephanie Forrest, Terran Lane, and Joshua Neil have all provided inspiration and
meaningful feedback allowing this dissertation to become a much stronger piece of work.

v

Integrating Multiple Data Views for
Improved Malware Analysis

by

Blake Harrell Anderson

B.S., Rhodes College, 2006

Ph.D., Computer Science, University of New Mexico, 2014

Abstract

Malicious software (malware) has become a prominent fixture in computing. There have

been many methods developed over the years to combat the spread of malware, but these

methods have inevitably been met with countermeasures. For instance, signature-based

malware detection gave rise to polymorphic viruses. This “arms race” will undoubtedly

continue for the foreseeable future as the incentives to develop novel malware continue to

outweigh the costs.

In this dissertation, I describe analysis frameworks for three important problems related

to malware: classification, clustering, and phylogenetic reconstruction. The important com-

ponent of my methods is that they all take into account multiple views of malware. Typically,

analysis has been performed in either the static domain (e.g. the byte information of the

executable) or the dynamic domain (e.g. system call traces). This dissertation develops

frameworks that can easily incorporate well-studied views from both domains, as well as

any new views that may become popular in the future. The only restriction that must be

met is that a positive semidefinite similarity (kernel) matrix must be defined on the view, a

restriction that is easily met in practice.

vi

While the classification problem can be solved with well known multiple kernel learning

techniques, the clustering and phylogenetic problems required the development of novel

machine learning methods, which I present in this dissertation. It is important to note that

although these methods were developed in the context of the malware problem, they are

applicable to a wide variety of domains.

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Overview of the Malware Problem . 3

1.2 Malware Domain Contributions . 4

1.3 Machine Learning Contributions . 5

1.4 Organization of this Dissertation . 6

2 Background and Related Work 7

2.1 Security Background and Related Work . 7

2.1.1 Data Representations . 7

2.1.2 Data Views . 8

2.1.3 Malware Classification . 10

2.1.4 Combining Information . 11

viii

Contents

2.1.5 Malware Clustering . 12

2.1.6 Malware Phylogenetics . 13

2.2 Machine Learning Background and Related Work 13

2.2.1 Multiview Clustering . 13

2.2.2 Multiview Graphical Lasso . 15

3 The Markov Chain Data Representation 16

3.1 Markov Chains for Malware . 18

3.2 Constructing the Similarity Matrix . 20

3.2.1 Algebra on Kernels . 22

3.3 Classifying Malware . 23

3.4 Experimental Setup . 24

3.4.1 Data/Environment . 24

3.4.2 Data Collection . 25

3.4.3 Other Methods . 26

3.4.4 Selecting the k eigenvectors . 27

3.5 Results . 28

3.5.1 Benign versus Malware . 28

3.5.2 Netbull versus Malware . 31

3.5.3 Timing Results . 32

3.6 Conclusion . 33

ix

Contents

4 Malware Classification: Bridging the Static/Dynamic Gap 34

4.1 The Deficiencies of Individual Views for the Malware Problem 36

4.1.1 Static Data Views . 36

4.1.2 Dynamic Data Views . 37

4.2 Integrating Multiple Views for Improved Performance 37

4.2.1 Data Views . 37

4.2.2 Multiple Kernel Learning . 41

4.3 Experimental Setup . 48

4.4 Results . 48

4.5 Conclusion . 59

5 Multiple Kernel Learning Clustering 61

5.1 MKL Clustering Algorithm . 63

5.1.1 Practical Concerns . 68

5.2 Experimental Setup . 69

5.2.1 UCI Datasets . 69

5.2.2 Malware Dataset . 70

5.2.3 Competing Methods . 71

5.3 Results . 72

5.4 Conclusion . 74

5.4.1 Future Work . 75

x

Contents

6 Malware Phylogenetics 76

6.1 Distance-Based Phylogenetic Reconstruction 78

6.2 Graphical Lasso for Phylogenetic Reconstruction 78

6.2.1 Overview of Graphical Lasso . 80

6.2.2 Modifying Graphical Lasso for Multiple Views 81

6.2.3 Leveraging Clusters in Graphical Lasso 82

6.2.4 Forcing Directionality . 85

6.2.5 Data . 86

6.2.6 Results . 88

7 Conclusions 93

7.1 Discussion . 93

7.2 Future Work . 95

Appendices 97

A Multiple Kernel Learning Clustering Proofs 98

A.1 Finding Ai for the Unnormalized Laplacian 98

A.2 Finding Ai for the Normalized Laplacian . 99

B Ground Truth Phylogenetic Networks 100

B.1 Bagle . 101

B.2 Mytob . 102

xi

Contents

B.3 Koobface . 103

B.4 NetworkMiner . 104

B.5 Mineserver . 105

C Computational Complexity of the Methods 106

C.1 Complexity of the SVM . 106

C.2 Complexity of the Multiview SVM . 107

C.3 Complexity of the Multiview Clustering . 107

C.4 Complexity of the Multiview Graphical Lasso 108

D Gaining Access to the Code/Data 109

xii

List of Figures

3.1 Markov chain data representation for programs 18

3.2 Eigenstructure of the Markov chain graphs 21

3.3 Classification accuracy with varying eigenvectors 27

3.4 Kernel heatmap for benign vs malware . 29

3.5 Netbull virus kernel heatmap . 30

4.1 An example of a control flow graph demonstrating jumps. 39

4.2 Markov chain data representation for programs. 42

4.3 Kernel heatmap for individual data views 43

4.4 Kernel heatmap for combined data views 44

4.5 Architecture diagram for the MKL algorithm. 47

4.6 ROC curves for MKL classification results 50

4.7 Accuracy vs time to classify for MKL Classification 53

5.1 An example of clustering malware. 62

5.2 Architecture diagram for the MKL clustering algorithm. 66

xiii

List of Figures

6.1 Example of a phylogenetic graph. 77

6.2 Difference between phylogenetic graph and hierarchical clustering 79

6.3 NetworkMiner MKL glasso results with and without clustering. 83

6.4 Ground truth for bagle worm phylogenetic graph 86

6.5 Precision/Recall Example . 89

6.6 Comparison between mineserver ground truth and the network found 92

B.1 The ground truth phylogeny for the bagle worm. 101

B.2 The ground truth phylogeny for the mytob worm. 102

B.3 The ground truth phylogeny for the koobface worm. 103

B.4 The ground truth phylogeny for the Networkminer program. 104

B.5 The ground truth phylogeny for the mineserver program. 105

xiv

List of Tables

3.1 Classification results: malware vs benign 28

3.2 Classification results: netbull vs other malware 30

3.3 Timing results for specific steps . 32

4.1 Summary of the file information statistics 41

4.2 MKL classification results: malware vs benign 49

4.3 MKL classification results: AUC values . 49

4.4 MKL weights for each view . 52

4.5 MKL classification results: timing . 54

4.6 MKL classification results: large validation set 55

4.7 Effect of packers on MKL classification results 57

4.8 Effect of entropy on MKL classification results 57

4.9 Effect of tracing program on computed kernel values 59

5.1 UCI Datasets . 69

5.2 Malware Families. 70

xv

List of Tables

5.3 Adjusted Rand Index . 73

5.4 Time to perform optimization, in seconds 74

6.1 Family variants . 87

6.2 Cophenetic correlation coefficients . 90

6.3 Phylogenetic graph reconstruction results 91

xvi

Chapter 1

Introduction

In the second quarter of 2013, McAfee labs catalogued more than 18.5 million new malware

samples [76]. Despite the fact that the majority of this new malware is being created through

polymorphism and code obfuscation techniques [67], and thus is similar to known malware, it

is still not detected by signature-based antivirus programs [25,84]. To meet these challenges,

machine learning techniques have been developed that can learn a generalized description

of malware and apply this knowledge to classify/cluster new, unseen instances of malware

[1, 11,65,67].

This dissertation is concerned with representing malicious code in a way that allows

classifying and clustering algorithms to be more robust against code obfuscation techniques.

I approach this problem in two ways. The first is to find a new data representation which

can better capture the information within a given data view, e.g. the dynamic instruction

trace or byte sequences of the binary, allowing for a more accurate classification or clustering

system. The second approach is to use multiple data views. Different data views provide

complementary information about the true nature of a program, but no one data view

contains all of this information. By looking at multiple views of a program, such as the

dynamic trace and the binary, the program’s true intentions become more clear. In this

1

Chapter 1. Introduction

dissertation, I show that the multiview paradigm does increase the performance on several

important problems.

Given the data views and the data representation, I develop and apply machine learning

algorithms to solve three important problems in the malware domain: classification, clus-

tering, and phylogenetic reconstruction. To classify new instances as malicious or benign,

I begin by defining a kernel [22], a positive semi-definite matrix where each entry in the

matrix is a measure of similarity between a pair of instances in the dataset, one matrix for

each data view. I then use multiple kernel learning [9,101] to find the weights of each kernel,

create a linear combination of the kernels, and finally use a support vector machine [22] to

perform classification.

Many researchers have used k-means or hierarchical clustering algorithms to group mal-

ware together that exhibit similar functionality. I extend this research by introducing a

novel multiple kernel learning algorithm based on a clustering objective function. With

my method, I can combine multiple data views in a way that is relevant to the clustering

problem.

I also approach clustering in a different way which allows for better attribution of the

malware and allows reverse engineers to more quickly understand how a given piece of mal-

ware has evolved from known examples of malware. I develop a novel extension to graphical

lasso [39] which uses multiple views to find a graph where the nodes are instances of mal-

ware, and the edges correspond to ancestor/descendant relationships between the malware

instances. Graphical lasso starts with the covariance matrices of the data views, which I have

found to be good discriminators, and finds a sparse precision matrix defining the conditional

independencies in the phylogenetic graph of the given malware samples.

2

Chapter 1. Introduction

1.1 Overview of the Malware Problem

Malicious programs generally try to achieve one of two goals. The first goal is simply to earn

money for the author or sponsoring organization. This can be done by gathering personally

identifiable information (PII) from compromised computers or setting up a botnet to ransom

corporations with the threat of a distributed denial of service attack (DDoS) [34]. A second

goal is data exfiltration, which can be motivated either by economic or intelligence reasons.

In either case, there are large incentives for malware authors to continue to develop new

threats.

To detect malicious programs, most corporations and home users make use of some

type of antivirus program. Many of the current antivirus programs rely on a signature-

based approach to classify programs as being either malicious or benign. Signature-based

approaches are popular due to their low false positive rates and low computational complexity

on the end host, both of which are appealing for daily use. Unfortunately, these schemes can

be easily defeated by simple code obfuscation techniques [25, 100]. As polymorphic viruses

became more prevalent, non-signature based methods became more attractive [1, 67, 72].

Furthermore, traditional antivirus has little hope of detecting advanced 0-day malware, as

this malware has not been previously seen in the wild and will therefore lack a signature.

While detection is the first component of malware analysis, it is more informative to ask

several questions that go beyond the simple yes/no answer afforded by a good classification

system:

1. What family does the malware belong to?

2. What functionality does the malware posses?

3. What group can the malware’s creation be attributed to?

These questions become increasingly important in the context of responding to a malware

3

Chapter 1. Introduction

incident. A reverse engineer is someone who is assigned the task of understanding and

responding to a malware infection, and it is crucial to leverage any previous information

gained from reverse engineering samples from the same family or lineage. This decreases the

reverse engineering time, and allows for a faster response.

1.2 Malware Domain Contributions

There has been a great deal of work applying machine learning techniques to the malware

domain, attempting to solve problems such as classification, clustering, and phylogenetics [11,

45,66]. The main drawback to many of the previous approaches is that they rely on a single

view of the data. Common views of malware data include the disassembled instructions, the

bytes in the binary, and the dynamic instructions gathered while the program is executed.

Malware writers have great incentives to hide malware from regular users as well as reverse

engineers, who are tasked with understanding the malware’s functionality and responding

with appropriate actions (e.g. creating a signature for antivirus software). The longer a new

piece of malware can remain undetected, the more successful it will be.

Because malware can obfuscate itself in many views, in this dissertation I demonstrate a

new multiview paradigm for malware analysis. The central thesis is that although malware

can easily obfuscate itself in one or more views, obfuscating all views while maintaining

malicious intent is significantly more difficult. I extend this multiview paradigm to three

important malware problems: classification, clustering, and phylogenetic reconstruction.

In addition to the multiview paradigm for malware research, an important, pragmatic

contribution of this dissertation is a new malware classifier that is not based on signatures,

but rather fuses several data views using multiple kernel learning to arrive at a more robust

classifier. The views are both static, that is, based on information that does not require the

program to be executed, and dynamic, based on information collected while the program is

running.

4

Chapter 1. Introduction

1.3 Machine Learning Contributions

The machine learning contributions of this dissertation center around extending the tech-

niques of spectral clustering and graphical lasso (glasso) to incorporate multiple views of

the data without the need for a priori information about the views. These extensions were

motivated by the malware domain, where the importance of individual views is not known

a priori and often changes when presented with a new dataset. However, the method can

easily be applied to any domain where multiple views are available. For instance, multiview

clustering could be used in the context of webpages where multiple views are derived from

the webpage itself and the connections to other webpages [14].

Spectral clustering is a popular method for clustering [74], and I have extended this

framework to naturally incorporate multiple views of data. Spectral clustering revolves

around the following optimization problem:

min
U∈Rn×k

tr(UTLU) (1.1)

s.t. UTU = I

where L is defined to be the Lapacian, L = D − K. K is the adjacency matrix of the

data and D is a diagonal matrix of the degrees of each node in K. I begin by defining the

multiview Laplacian, L(β) =
∑M

i βiDi−
∑M

i βiKi, and extend the optimization framework

of spectral clustering to use the multiview Laplacian:

min
U∈Rn×k

tr(UTL(β)U) (1.2)

s.t. UTU = I

I demonstrate this methodology on both the unnormalized and normalized Laplacians. A

detailed description of this method is described in Chapter 5.

Graphical lasso is an algorithm for finding a sparse inverse covariance matrix [39]. This

inverse covariance matrix, or precision matrix, is a Gaussian graphical model where the

5

Chapter 1. Introduction

features are nodes and edges represent conditional dependencies [123]. In the work presented

in this dissertation, the nodes are malware samples, and the edges can be thought of as

ancestor/descendant relationships between the samples. Typically, graphical lasso has solved

the following single view problem:

max
Θ
{log(det(Θ))− tr(KΘ)− ||Θ ◦ P ||1} (1.3)

where K is the sample covariance matrix and P provides regularization to the entries in Θ

under the l1 norm. In Chapter 6, I show how to solve the follow multiview glasso problem:

min
Θ,β

{
M∑
i=1

βitr(KiΘ)− log(det(Θ)) + ||Θ ◦ P ||1

}
(1.4)

In this work, I use glasso to infer a phylogenetic graph of a given set of malware samples.

In this context, a phylogenetic graph is a directed acyclic graph, where the node set is the

malware samples and the edges represent evolutionary relationships such as “parent of”.

1.4 Organization of this Dissertation

Chapter 2 reviews the background and related work. Chapter 3 explains the data represen-

tation used to model many of views used throughout this dissertation and gives a case study

of this data representation with respect to the dynamic instruction trace view. In Chapter 4,

I describe the deficiencies of using single views within the context of the malware problem,

and I illustrate the need to incorporate multiple views for improved malware classification.

Chapter 5 demonstrates the multiview framework for the spectral clustering problem and,

Chapter 6 gives the details of the multiview graphical lasso problem. Finally, in Chapter 7,

I conclude and give some directions for future research.

6

Chapter 2

Background and Related Work

This chapter highlights the background and related work that is relevant to this dissertation.

As this dissertation has both security and machine learning facets, this chapter will highlight

relevant related work within both fields. Sections 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, and 2.1.6

deal with security topics. Sections 2.2.1 and 2.2.2 highlight machine learning topics.

2.1 Security Background and Related Work

2.1.1 Data Representations

The n-gram representation was one of the earliest used for malware detection, and it has had

great success at detecting obfuscated and polymorphic viruses [31, 48, 61, 66, 89, 90]. Given

some sequence-based data, an n-gram is a contiguous region of length n that is contained

within the sequence. To construct a feature vector using n-grams, first collect all consecutive

token sequences of length n and sort them based on some criteria such as most frequently

occurring n-grams or n-grams with the most information gain [66]. Then initialize the feature

vector of length L with the number of times each of the top-L n-grams occurs in the program.

7

Chapter 2. Background and Related Work

My method is related to n-grams in the sense that I use 2-grams to condition the transition

probabilities for a Markov chain. The important distinction that my work makes is to use

the transition probabilities instead of the 2-grams as the base data representation and to

define graph kernels on the Markov chains.

The data transformation that I use, program trace to Markov chain, is similar to the

Markov n-gram approach by Shafiq et al. [95,117]. Here, Shafiq et al. perform their analysis

on static files such as MP3s, executable files, and compressed ZIP files and try to find an

discriminative distribution of entropy for non-infected files. They set up a first order Markov

chain between the bytes in their file, and compute the entropy using:

R =
n∑
i=0

πiH(xi) (2.1)

whereH(xi) is the entropy of row i in the transition probability matrix and π is the stationary

distribution. A histogram is generated from this information and normalized to obtain a

distribution, which approaches the Gaussian distribution as the number of sampled entropies

increases due to the central limit theorem [95]. A threshold of 5 standard deviations from

the mean is used to classify files as containing malware.

Data representations using n-grams are appropriate for sequence-based data, but mal-

ware, and more generally programs, have a very rich structure that cannot always be viewed

as a sequence. For instance, the control flow graph of a program visualizes the code blocks

and the jumps inherent in any non-trivial program. This type of data requires a general

graph data representation [25].

2.1.2 Data Views

A view of malware is a feature set gathered from a specific analysis technique, such as the

instructions taken from the disassembled programs. Malware analysis has been an active

field of research in part due to the wealth of data views that are available to researchers.

8

Chapter 2. Background and Related Work

These data views can generally be broken into two categories: static views and dynamic

views. Each category has its own inherent set of strengths and weaknesses and, as I show

later, can be combined to arrive at a superior description of what it means to be malicious.

Static Data Views

Static data views have a number of advantages in terms of computation because there is no

need to devote hardware to run the executable. For this reason, the majority of signature-

based antivirus software in use today uses the static representation. Antivirus software

usually bases its analysis on strings of bytes that are extracted from a repository of malicious

executables. Similarly, machine learning methods have used all of the bytes in the executable

as their data [65, 89, 106]. The main disadvantage to this data view is its vulnerability to

obfuscation techniques such as polymorphism that randomly reorder sections of the code

making analysis of the binary less reliable [67].

The disassembled data has been another popular view in the literature [15, 96]. The

disassembly is produced by programs such as IDA Pro [52] or objdump [82]. Unfortunately,

some malware authors have been able to thwart attempts to disassemble their code by

including encrypted packers [113], limiting the static trace to that of the unpacking code.

When the code can be disassembled, control flow graphs (CFG) can be constructed and

these CFGs have been heavily studied in the literature [21, 25, 41, 67]. CFGs model the

disassembled program as a series of basic blocks with edges that correspond to jumps in the

control flow of the program (by returns, branches, etc.).

Portable Executable (PE) header information has also been used for static malware anal-

ysis [94]. The PE header contains a variety of information including the import address

table, which provides the names of external libraries that the program references. Finally,

statistics on the raw binary, such as size and entropy [75], have been used as static data

views.

9

Chapter 2. Background and Related Work

Dynamic Data Views

Dynamic data views have proved to be an invaluable resource to analysts trying to study

encrypted and/or packed instances of malware. Some of the earliest work focused on col-

lecting system calls from the monitored process [48]. In addition to system calls, tools have

been developed that support the collection of assembly instructions that have been executed

[35,73].

Memory taint analysis is the process of checking that values such as jump addresses,

registers, or code supplied input is generated by the correct source and not by a malicious

program [29]. The BitBlaze framework [99] has components to monitor programs to deter-

mine if the integrity of its memory is maintained. Similar to static views, these dynamic

views also have drawbacks. Malware authors have recently begun implementing code to

check if their program is being monitored, and if it is, the program will either start execut-

ing benign instructions or move to a dormant state. These safeguards severely reduce the

effectiveness of dynamic views [64]. Another disadvantage of dynamic data views are that

they require significantly more resources in order to collect the data.

2.1.3 Malware Classification

The best known malware classification schemes are signature-based antivirus programs. To

test whether a program is malicious or not, the antivirus program compares strings of bytes

in its signature database to those found in the tested program, either by exact methods

or approximate string matching [107]. This method is fast and has a low number of false

positives, features that appeal to users. The major drawback to this approach is that it does

not generalize well to malware instances that do not have a signature in its database. And

given that malware authors have access to the antivirus programs, they can adjust how the

polymorphic engines change the code to avoid detection by fuzzy heuristics.

10

Chapter 2. Background and Related Work

To meet these challenges, several researchers began to develop less strict measures to

detect malicious code. The general approach taken was to adopt one of the data views

mentioned in the previous section, transform the data into a more convenient form, such as

n-grams, and finally, to apply a common machine learning algorithm (decision trees, support

vector machines, etc.) to that data. These methods saw dramatic improvements over classic

signature-based approaches in terms of classification accuracy, typically as much as 15-20%,

but at the expense of an increased number of false positives [65, 89, 106]. I improve on this

approach by going beyond a single data view. I combine multiple views of the data, each

with their own strengths and weaknesses, into a unified framework, typically gaining an

improvement of 5-10% in classification accuracy.

Another method of malware classification uses deterministic finite automata (DFA) to

create sequential models of system calls [24,54]. The states in the DFA represent the internal

state of the malware at a given time; symbols are the system calls; the transition function

describes the sequence of system calls malware executes; the initial state is the beginning

of the analysis; and the accepting states correspond to a detection of malicious activity

[54]. Although DFAs are a valuable modeling tool in the malware context, I will restrict my

attention in this dissertation to kernel-based methods and not consider them further.

2.1.4 Combining Information

Not all malware classification research has depended only on a single view of the program.

Menahem et al. have combined different features of static files, including byte n-grams and

imported DLLs, to build a series of classifiers based on various machine learning algorithms.

They then use an ensemble learning algorithm to combine the results of the individual learn-

ers. As I will demonstrate, the lack of dynamic information severely hinders this approach.

There has been some research into combining static and dynamic features for the cluster-

ing problem. In [72], Leita et al. use the Anubis framework [4] to capture different aspects

11

Chapter 2. Background and Related Work

of malware such as exploits, payloads, and behavioral features to then build different clus-

terings. Then they explore the relationships between the different clusterings. In contrast

to that work, I base my analysis on different classes of data for both the dynamic and static

views. [72] uses 17 static features for the exploit/payload/malware clusters, whereas I com-

pare the Markov chain graphs based on the binary and disassembled information, control

flow graphs, and other file information statistics. The behavioral features of Anubis focus on

modifications to the Windows registry and file system, or interactions with other processes.

My dynamic analysis is based on the Markov chain graphs derived from the dynamic in-

structions and system calls performed. It is important to note that the framework I propose

is general enough to include the data views of [72] once an appropriate kernel is defined.

Finally, I combine the information of the data views using a multiple kernel learning frame-

work to build a single kernel describing the data, whereas the individual clusterings found

in [72] are based solely on their respective data views.

2.1.5 Malware Clustering

There has been a rising interest in learning how to cluster malware so that researchers

can gain insight into the current threat landscape [11, 56, 70, 91]. Because the majority of

new viruses are derived from, or are composites of, established viruses, this information

would enable faster responses and allow researchers to understand the new virus much more

quickly. Much of the work in this field has again been based on a single data view and

has used k-means or hierarchical clustering algorithms. In [11], Bayer et al. use behavioral

characteristics of a program, such as manipulated registry keys or files, to build a feature set

and then use an agglomerative hierarchical clustering algorithm to produce the clustering.

Karim et al. [56] use n-perms (n-grams without an order restriction) on the binary program

with an agglomerative hierarchical clustering algorithm. My work differs from the previous

approaches by incorporating multiple data views to learn the clusterings, and using the

Markov chain data representation.

12

Chapter 2. Background and Related Work

2.1.6 Malware Phylogenetics

A phylogeny is a graph or tree that demonstrates evolutionary relationships within a popula-

tion. Inferring accurate phylogenies for malware is beginning to be addressed in the research

literature [33, 45, 46, 53, 116]. The ability to understand the lineage of a malware family in

an automated way has several key benefits, the main being that it allows analysts respond

quickly by leveraging information gained from having previously reverse engineered samples

which are similar to the new sample. For example, when a malware analyst receives a new

malware instance, she can save an enormous amount of time in dissecting and identifying it

if a phyolgentic analysis can tell her that its a variant of Bagle [109]. Another important

benefit for the security community is attribution: the ability to attribute the creation of

malware to a known entity.

Within the malware literature, most work has centered around creating phylogenetic

trees. For instance, in [116], Wagener et al. create a similarity matrix based on the system

calls executed by the samples, and then use an agglomerative hierarchical clustering method

to find the phylogenetic tree. Graph-pruning techniques have also been used [45] to find a

tree. Gupta et al. begin with a fully connected similarity graph and incoming edges that are

below a certain threshold are pruned for each node. All the remaining incoming edges are

then pruned if their combined weight is less than a predefined threshold. In [45], malware

similarity is based on text-based features gathered from McAfee’s threat library database.

2.2 Machine Learning Background and Related Work

2.2.1 Multiview Clustering

Multiple kernel learning (MKL) has had a long history with many successful results [9, 62,

101]. The common theme of the majority of the work is that it is based on a modified

13

Chapter 2. Background and Related Work

support vector machine with a classification-based objective function. My work deviates

from this trend by finding a linear combination of kernels that explicitly optimizes a spectral

clustering-based objective function. I have empirically shown that the weights resulting from

this framework lead to better clustering results on several benchmark datasets as well as on

a real-world malware dataset compared to state-of-the-art methods [68].

Both the pair-wise and centroid co-regularization schemes [68] I compare against have

similar goals to my method: given multiple data views, find a feature space embedding that

can be used in a clustering algorithm. My method differs in that it does not require a priori

information about which data views are more informative. The pair-wise method finds

multiple embeddings, and although each distinct embedding found contains information

from the other views, one must choose which embedding to base the clustering on. The

centroid method is more similar to my method as it finds a single embedding, but it relies

on an external weight vector whereas my algorithm explicitly solves for the weight vector

describing the importance of each view.

In [126], Zhou and Burges treat each view as a graph and define a random walk with the

graph. They also extend the normalized cut problem of spectral clustering [74] to include

multiple views. They combine the graphs by modifying the random walk to have a small

probability of jumping to a different view. If the stationary probability mass of a subset of

vertices (common among all views) is high, while leaving that subset in any given view is

low, then this subset of vertices is considered a cluster. In their work they used α to denote

the probability of jumping to a different view. This parameter is set before the algorithm

runs by using a uniform distribution. Assuming that some views are more informative than

others, one would want to have the majority of their random walk occur in those views,

and therefore not having a uniform α. α is related to the weight vector I use, except that

my model finds the importance of the different views with respect to a spectral clustering

objective function.

14

Chapter 2. Background and Related Work

2.2.2 Multiview Graphical Lasso

While there has not been any work done on a multiview graphical lasso that finds a single

precision matrix, there has been some work that uses transfer learning [32, 44]. In the

problem posed by Danaher et al., the goal is to find several Gaussian graphical models

where the underlying data is drawn from related distributions. The canonical example for

this class of methods is learning gene regulation networks for cancer and normal tissue.

Both types of tissue share many edges in the network so one would want to leverage all

the data possible, but these networks also have significant differences. This goal can be

accomplished by adding an additional L1 penalty to penalize the difference between the two

learned Gaussian graphical models.

The main difference between the fused graphical lasso and my proposed approach is that

I will find a single Gaussian graphical model conditioned on multiple views of the data. The

fused graphical lasso will find multiple Gaussian graphical models, where a hyperparameter

controls the amount of transfer learning between the different models.

15

Chapter 3

The Markov Chain Data

Representation

Many current antivirus programs rely on signatures to classify programs as either malicious

or benign. Signature-based approaches are popular due to the belief that they have a low false

positive rate and low computational complexity on the end host, both of which are appealing

for daily usage. Unfortunately, these schemes are easily defeated by simple code obfuscation

techniques and 0-day attacks [25]. With the ease of code obfuscation and polymorphic viruses

becoming more prevalent, other methods are becoming more attractive.

To combat these issues, several researchers began to look at more robust methods to

detect malicious code. These methods generally revolve around n-gram analysis of the static

binary or dynamic trace of the malicious program [31, 89, 90, 105]. These methods have

shown great promise in detecting zero-day malware, but there are drawbacks. The two

parameters generally associated with n-gram models are n, the length of the subsequences

being analyzed, and L, the number of n-grams to analyze. For larger values of n and L,

there is a much more expressive feature space that should be able to discriminate between

malware and benign software more precisely. But with these larger values of n and L, the

16

Chapter 3. The Markov Chain Data Representation

curse of dimensionality is faced: the feature space becomes too large and there is not enough

data to properly learn the model parameters. With smaller values of n and L, the feature

space becomes too small and discriminatory power is lost.

The data representation developed in this chapter avoids the need to specify n and L.

Instead, I model the data as a Markov chain represented by a weighted, directed graph. The

instructions of the program are represented as vertices, and the weights of the edges are the

transition probabilities of the Markov chain, which are estimated using a given data view.

The novel contribution is constructing a similarity, or kernel, matrix between the Markov

chain graphs and using this matrix to perform classification. I use two distinct measures of

similarity to construct the kernel matrix: a local measure comparing corresponding edges

in each graph and a global measure which compares aspects of the graphs’ topologies. This

combination allows me to compare the Markov chain graphs using very different criteria, both

local and global in nature, in a unified framework. Once the kernel matrix is constructed, I

use support vector machines to perform the classification.

This chapter shows that the Markov chain data representation outperforms n-gram and

signature-based methods on the two-class classification problem of malware versus benign

programs. To examine this problem, I use a dataset with 1615 samples of malware and

615 samples of benign software. I also show that the algorithm can correctly discriminate

between instances of the Netbull virus and other families of viruses. For these results, I

use 13 samples of the Netbull virus, each with a different packer, and a random subsample

consisting of 97 samples of unrelated malware. This result helps to validate the use of this

data representation in a malware clustering/phylogenetic setting, as it shows the power of

this method in classifying different examples of viruses.

17

Chapter 3. The Markov Chain Data Representation

mov esi, 0x0040C000
lea edi, [esi-0xB000]
push edi
or ebp, 0xFF
or ebp, 0xFF
jmp 0x00419532
mov ebx, [esi]
mov ebx, [esi]
sub esi, 0xFC
adc ebx, ebx
jc 0x00419528
... ...

push

or

. 2

mov .3

lea

.6

sub

.1 .4

.3

jmp

. 2 5

.1

adc

.6

jc

. 7

. 2

Figure 3.1: The left table shows an example of the trace data collected. A hypothetical
resulting graph representing a fragment of the Markov chain is shown on the right. In a real
Markov chain graph, the probabilities on all of the out-going edges would sum to 1.

3.1 Markov Chains for Malware

As an illustrative example, I focus on the dynamic trace data (collected according to Section

3.4.2), although this representation is suitable for any sequence-based data view. The dy-

namic trace data are the instructions the program executes, typically in a virtual machine to

reduce the risk of contamination. Given an instruction trace P , I am interested in finding a

new representation, P ′, such that I can make unified comparisons in graph space while still

capturing the sequential nature of the data. I achieved this by transforming the dynamic

trace data into a Markov chain which I represent as a weighted, directed graph. A graph,

G = 〈V,E〉, is composed of two sets, V and E. The elements of V are called vertices and the

elements of E are called edges. In this representation, the edge weight, eij, between vertices

i and j corresponds to the transition probability from state i to state j in the Markov chain,

hence, I require the edge weights for edges originating at vi to sum to 1,
∑

i j eij = 1. I use

an n×n (n = |V |) adjacency matrix to represent the graph, where each entry in the matrix,

aij = eij [63].

18

Chapter 3. The Markov Chain Data Representation

The nodes of the graph are the instructions the program executes. To find the edges

of the graph, I first scan the instruction trace, keeping counts for each pair of successive

instructions. After filling in the adjacency matrix with these values, I normalize the matrix

such that all of the non-zero rows sum to one. This process of estimating the transition

probabilities ensures a well-formed Markov chain. Figure 3.1 shows a snippet of trace data

with a resulting fragment of a hypothetical instruction trace graph. The Markov chain graph

can be summarized as G = 〈V,E〉, where

• V is the vertex set composed of unique instructions,

• E is the weighted edge set where the weights correspond to the transition probabilities

and are estimated from the data.

The constructed graphs approximate the pathways of execution of the program, and by

using graph kernels (Section 3.2), the local and global structure of these pathways can be

exploited. Also, unlike n-gram methods where one must choose the top-L n-grams to use,

doing the comparisons in graph space allows my methods to use more of the information

contained in the instruction trace.

I experimented with another method for creating the instruction trace graphs, using a

more expressive vertex set. In this method, I did not discard the arguments to the instruc-

tions but rather constructed vertices in the form 〈operator, operand, operand〉 where the

operator is the instruction, and the operands are either null, or one of three types: reg-

ister, memory, or dereference. This resulted in graphs with vertex sets of roughly 3,000

instructions. I did not use this representation due to poor initial performance with respect

to accuracy and speed. I suspect this performance is a result of there not being enough

trace data to accurately estimate the transition probabilities, similar to using a second-order

Markov chain.

19

Chapter 3. The Markov Chain Data Representation

3.2 Constructing the Similarity Matrix

I use graph kernels [57] to compare the instruction trace graphs. A kernel, K(x,x′), is a gen-

eralized inner product and can be thought of as a measure of similarity between two objects

[92]. The power of kernels lies in their ability to compute the inner product between two

objects in a possibly much higher dimensional feature space, without explicitly constructing

the feature space. A kernel, K : X ×X → R, is defined as:

K(x,x′) = 〈φ(x), φ(x′)〉 (3.1)

where 〈·, ·〉 is the dot product and φ(·) is the projection of the input object into feature

space. A well-defined kernel must satisfy two properties: it must be symmetric (for all x and

y ∈ X: K(x,y) = K(y,x)) and positive-semidefinite (for any x1, . . . , xn ∈ X and c ∈ Rn:∑n
i=1

∑n
j=1 cicjK(xi, xj) ≥ 0). Kernels are appealing in a classification setting due to the

kernel trick [92], which replaces inner products with kernel evaluations. The kernel trick uses

the kernel function to perform a non-linear projection of the data into a higher dimensional

space, where linear classification in this higher dimensional space is equivalent to non-linear

classification in the original input space.

My approach makes use of two types of kernels: a Gaussian kernel and a spectral kernel.

The notions of similarity that these two kernels capture are quite distinct, and I found that

they complement each other very well. The Gaussian kernel is defined by:

KG(x,x′) = σ2e−
1

2λ2

∑
i,j(xij−x′ij)2 (3.2)

where x and x′ are the weighted adjacency matrices of the Markov chains with the weights

being the transition probabilities, σ and λ are the hyperparameters of the kernel function

(determined through cross-validation), and
∑

i,j sums the squared distance between corre-

sponding edges in the weighted adjacency matrices. This kernel searches for local similarities

between the adjacency matrices. The motivation behind this kernel is that two different

classes of programs should have different pathways of execution, which would result in a low

similarity score.

20

Chapter 3. The Markov Chain Data Representation

X

20
40

60
80

100
120

140

Y

20
40

60
80

100
120

140

Z

0.5

0.0

0.5

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

(a) Benign Software

X

20
40

60
80

100
120

140

Y

20
40

60
80

100
120

140

Z

0.5

0.0

0.5

0.30

0.15

0.00

0.15

0.30

0.45

0.60

(b) Malware

Figure 3.2: The eigenstructure of the Markov chain graph from two program traces. An
example of benign software is shown in (a) and an example of malware is shown in (b).

I also use a kernel based on spectral techniques [26]. These methods use the eigenvectors

of the graph Laplacian to infer global properties about the graph. The weighted graph

Laplacian is a |V | × |V | matrix defined as:

L =


1− evv

dv
if u = v, and dv 6= 0,

− euv√
dudv

if u and v are adjacent,

0 otherwise.

(3.3)

where euv is the weight between vertices u and v, and dv is the degree of v. I take the

eigenvectors associated with non-zero eigenvalues of L, φ(L), as the new set of features. These

eigenvectors encode global information about the graph’s smoothness, diameter, number of

components and stationary distribution among other things. With this information, the

second kernel is constructed by using a Gaussian kernel on the eigenvectors:

KS(x,x′) = σ2e−
1

2λ2

∑
k ||φk(L(x))−φk(L(x′))||2 (3.4)

where φk(L(x)) and φk(L(x′)) are the eigenvectors associated with the weighted Laplacian

of the adjacency matrices, L(x) and L(x′).

To give some intuition behind the spectral kernel, Figure 3.2 plots the eigenvectors of

21

Chapter 3. The Markov Chain Data Representation

the graph Laplacian for an example of benign software and an example of malware. The

diagonal ridge in each figure represents all of the unused instructions in the trace, which are

disconnected components in the graph. To construct KS, only the top-k eigenvectors are

used and this ridge information is discarded. The decision to use only the top-k eigenvectors

is defended in Section 3.4.4. The interesting information of the graph, the actual program

flow contained in the largest connected component, is found in the spikes and valleys at the

bottom of Figures 3.2a and 3.2b. The eigenvectors of the Laplacian can be thought of as

a Fourier basis for the graph [26]. Comparing these harmonic oscillations, encoded by the

eigenvectors, between different types of software provides discrimination between structural

features of the graph such as strongly connected components and cycles.

3.2.1 Algebra on Kernels

If two kernels, K1 and K2, are valid, then K = K1+K2 is also a valid kernel [16]. This algebra

on kernels allows for the elegant combination of kernels that measure different aspects of the

input data, and it is the object of study in multiple kernel learning [9,101]. The final kernel

is a weighted combination of KG and KS:

KC = µKG + (1− µ)KS (3.5)

where 0 ≤ µ ≤ 1. A convex combination of kernels, where µi ≥ 0 and
∑

i µi = 1 for

some weight vector µ, also forms a valid kernel. Within the context of this chapter, µ is

found using a cross-validation search where the candidate µ’s are restricted to be in the

range [.05, .95] with a step size of .05. Although more advanced techniques to search for

the parameters of multiple kernel learning exist [101], I found this simple approach to be

sufficient for the combination of these two kernels. With more than two kernels, grid search

becomes significantly more complex making other alternatives more efficient.

22

Chapter 3. The Markov Chain Data Representation

3.3 Classifying Malware

I use support vector machines [22] to perform the classification. Support vector machines

search for a hyperplane in the feature space that separates the points of the two classes with

a maximal margin [22]. The hyperplane that is found by the SVM is a linear combination

of the data instances, xi, with weights, αi. It is important to note that only points close to

the hyperplane will have non-zero α’s. These points are called support vectors. Therefore,

the goal in learning SVMs is to find the weight vector, α, describing each data instance’s

contribution to the hyperplane. Using quadratic programming, the following optimization

problem can be efficiently solved:

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉

)
(3.6)

subject to the constraints:

n∑
i=1

αiyi = 0 (3.7)

0 ≤ αi ≤ C (3.8)

In Equation 3.6, yi is the class label of instance xi, and 〈·, ·〉 is the Euclidean dot product.

Equation 3.7 constrains the hyperplane to go through the origin. Equation 3.8 constrains the

α’s to be non-negative and less than some constant C. C allows for soft-margins, meaning

that some of the examples may fall between the margins. This helps prevent over-fitting

the training data and allows for better generalization accuracy. The weight vector for the

hyperplane is then defined to be:

w =
∑
i

αiyixi (3.9)

With this current setup, only linear hyperplanes are possible in the d-dimensional space

defined by the feature vectors of x. By using the kernel trick, the data instances can be

projected into a higher dimensional space and a linear hyperplane can be found in that

23

Chapter 3. The Markov Chain Data Representation

space, which would be equivalent to a non-linear hyperplane in the original d-dimensional

space. The new optimization problem is:

max
α

(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj)

)
(3.10)

Equation 3.6 and Equation 3.10 are identical with the exception that the dot product, 〈·, ·〉,

has been replaced with the kernel function k(·, ·).

Given α found in Equation 3.10, the decision function is defined as:

f(x) = sgn

(
n∑
i

αiyik(x,xi)

)
(3.11)

which returns class +1 if the summation is ≥ 0, and class -1 if the summation is < 0. The

number of kernel computations in Equation 3.11 is decreased because many of the α’s are

zero.

3.4 Experimental Setup

3.4.1 Data/Environment

To perform the experiments, I used a machine with quad Xeon X5570s running at 2.93GHz

with 24GB of memory. The dataset is composed of two distinct groups which is used to

answer two main questions:

1. What is the false and true positive performance when classifying benign versus malware

samples?

2. Can the proposed method discriminate the Netbull virus, with different packers, from

other malware samples?

24

Chapter 3. The Markov Chain Data Representation

To answer the first question, I collected 1615 instances of malware and 615 instances of

benign software, as described in Section 3.4.2. To answer the second question, I used 13

instances of the Netbull virus with different packers, such as UPX [113] and ASprotect [5],

and compared against a random subsample of 97 instances of malware.

3.4.2 Data Collection

The data collection technique uses the Ether analysis framework [35] to extract data from a

Windows XP system. The Ether system was chosen as it guarantees some level of protection

against hardware based virtual machine detection. The main protection mechanisms that

need to be overcome are debugger and virtual machine detection, timing attacks, and host

system modifications. Each of these violate the fundamental tenet that the analyzed system

must not be altered in any manner. The end result of instruction tracing is a list of the

in-order executed instructions. These instructions provide the input to the algorithm.

To analyze the data, I begin by copying the executable to the Ether analysis system.

Then an instantiation of a Windows virtual machine is started, and after successful boot,

the file is copied onto the virtual machine. Then, the Ether portion of Xen is invoked and the

malware is started. The sample is allowed to run for five minutes, which has been shown to

be sufficient [87]. It should be noted that the 5-minute heuristic does not take into account

execution-stalling malware. With as much as 33% of malware exhibiting execution-stalling

behavior [64], dynamic analysis by itself is not sufficient. This will be addressed in Chapter

4.

I found 160 unique instructions across all of the dynamic traces collected. These instruc-

tions are the vertices of the Markov chains. The representation ignores operands used with

the 160 instructions. By ignoring operands, I remove sensitivity to register allocation and

other compiler artifacts. It is important to note that rarely did the instruction traces make

use of all 160 unique instructions, and therefore, the adjacency matrices of the instruction

25

Chapter 3. The Markov Chain Data Representation

trace graphs contain some rows of zeros. The decision to incorporate unused instructions in

the model allowed for a consistent vertex set between all instruction trace graphs, and thus

allowing for uniform comparisons in graph space.

3.4.3 Other Methods

To determine the validity of the Markov chain data representation, I compared it to a

standard n-gram model [66] and 9 leading antivirus software programs that use signature-

based methods. For the standard n-gram model, I chose the top-L n-grams to use by

computing the information gain as suggested in [66]:

IG(j) =
∑

vj∈{0,1}

∑
yi∈Y

P̂ (vj, yi) log
P̂ (vj, yi)

P̂ (vj)P̂ (yi)
(3.12)

where vj represents whether the jth n-gram exists or not, P̂ (vj, yi) is the percentage of

data instances with class label yi and value vj, P̂ (vj) is the percentage of instances with

value vj, and P̂ (yi) is the percentage of instances with class label yi. The intuition with the

information gain criteria is that one should choose n-grams that are either highly correlated

with the malware class or the benign class, but not both. Once the list of n-grams is sorted

based on their information gain, the top-L are selected to train the classification algorithm.

It is important to note that I used n-grams derived from the same dynamic traces on which

the Markov chain representations were based and not on static information contained in the

binary.

To find the best choices for the parameters n and L for the standard n-gram model,

I varied n from 2 to 6 and L from 500 to 3,000 in increments of 500. For each choice of

parameters, I ran both a support vector machine, with a linear kernel, Gaussian kernel, and

d-order polynomial (2 ≤ d ≤ 9) kernel, and a k-nearest neighbor classifier (1 ≤ k ≤ 9), with

the feature vector consisting of the top-L n-grams. I present the top-5 performing parameter

combinations for the n-gram model.

26

Chapter 3. The Markov Chain Data Representation

0 5 10 15 20 25 30
Number of Eigenvectors, k

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

Figure 3.3: Classification accuracy of 50 instances of malware versus 10 instances of benign
software as the number of eigenvectors are varied, k, of the spectral kernel. Results are
averaged over 10 runs with the error bars being one standard deviation.

I also present the top-5 performing antivirus programs in the results. These are BitDe-

fender [18], Kaspersky [58], Avira [8], F-Secure [40], and F-prot [37]. These results were

gathered in September, 2010 with the currently up-to-date signature databases.

3.4.4 Selecting the k eigenvectors

To find the appropriate k, the number of eigenvectors used to classify the program traces

in Equation 3.4, I performed a series of tests on an independent dataset of 50 malware

program traces and 10 benign traces where I adjusted k using values ranging from 1 to 30.

To reduce computation, I choose the smallest possible k that still maintains discriminatory

power relative to classification accuracy.

Figure 3.3 shows the results of choosing k averaged over 10 runs with the error bars

showing one standard deviation. The decreasing performance as k is increased is expected

because as more eigenvectors are chosen, the feature space begins to overfit the training

27

Chapter 3. The Markov Chain Data Representation

Method Accuracy (%) FPs FNs AUC
Gaussian Kernel 95.70% 44 52 .9845
Spectral Kernel 90.99% 80 121 .9524
Combined Kernel 96.41% 47 33 .9874
n-gram (n=3, L=2500, SVM=3-poly) 82.15% 300 98 .9212
n-gram (n=4, L=2000, SVM=3-poly) 81.17% 327 93 .9018
n-gram (n=2, L=1000, 4-NN) 80.63% 325 107 .8922
n-gram (n=2, L=1500, SVM=2-poly) 79.82% 339 111 .8889
n-gram (n=4, L=1500, SVM=Gauss) 79.42% 354 105 .8991
BitDefender 73.32% 0 595 N/A
Kaspersky 53.86% 1 1028 N/A
Avira 49.60% 0 1196 N/A
F-Secure 43.27% 1 1264 N/A
F-Prot 42.96% 1 1271 N/A

Table 3.1: The classification accuracy of 615 instances of benign software versus 1615 in-
stances of malware. Best performing method is bolded. The top 5 parameter choices for
the n-gram model are presented as well as the top-5 performing signature-based antivirus
programs. FP = false positive, FN = false negative, AUC = area under the ROC curve,
Accuracy = TP+TN/(# of samples)

data, which results in lower accuracy on the test set. Given these results, I set k = 9 to

maximize classification accuracy for the next experiments. Alternatively, k could be selected

using cross-validation on a validation dataset for each experiment.

3.5 Results

3.5.1 Benign versus Malware

I now explore the validity of the multiple kernel learning method as an alternative to n-

gram and signature-based virus detection methods. Table 3.1 presents the results of the

three different kernels and the n-gram methods using 10-fold cross-validation. The top-

5 performing antivirus programs are also presented. For the n-gram methods, I used the

28

Chapter 3. The Markov Chain Data Representation

0 20 40 60 80 100

0

20

40

60

80

100

(a) Gaussian Kernel
0 20 40 60 80 100

0

20

40

60

80

100

(b) Spectral Kernel
0 20 40 60 80 100

0

20

40

60

80

100

(c) Combined Kernel

Figure 3.4: The heat maps of the kernel (similarity) matrix for benign software versus
malware. Benign programs are the first 19 instances in the top left. Warmer colors represent
higher measures of similarity. The smaller block in the upper left of each figure is the benign
software and the larger lower right is the malware. The axes are the indices of the samples.

same parameters as discussed in the previous section. The best results with respect to

overall accuracy for the n-grams were achieved when n = 4, L = 1000 and a support vector

machine with a second order polynomial kernel was used. It is interesting that three antivirus

programs, as well as the methods based on the Markov chain data representation, labeled

the same benign executable as being malicious. This could be a result of a noisy dataset or

a bad signature.

Both machine learning approaches, graph kernels and n-grams, were able to easily out-

perform the standard antivirus programs with respect to overall accuracy. However, it should

be noted that antivirus programs operate under the assumption of a “wild list” [28], meaning

that the signature database will only contain signatures that the antivirus company believes

to be currently propagating in the wild. The malware that was tested was collected over a

6 month period 6 months prior to the results presented in Table 3.1. It is very possible that

these antivirus programs had signatures of a larger percentage of the data, and then pruned

these signatures as they were no longer circulating in the wild.

Despite n-grams outperforming the antivirus programs, the Markov chain data represen-

tation still provided a significant improvement over n-gram methods. These results reinforce

the hypothesis that learning with the Markov chain graphs improves accuracy. Table 3.1 also

29

Chapter 3. The Markov Chain Data Representation

Method Accuracy (%) FPs FNs AUC
Gaussian Kernel 99.09% 1 0 .9965
Spectral Kernel 96.36% 4 0 .9344
Combined Kernel 100.00% 0 0 1.00
n-gram (n=4, L=1000, SVM=2-poly) 94.55% 5 1 .8776
n-gram (n=4, L=2500, SVM=Gauss) 93.64% 6 1 .8215
n-gram (n=6, L=2500, SVM=2-poly) 92.73% 6 2 .8432
n-gram (n=3, L=1000, SVM=2-poly) 89.09% 12 0 .6173
n-gram (n=2, L=500, 3-NN) 88.18% 12 1 .6334

Table 3.2: The classification accuracy of 13 instances of the Netbull virus with different
packers versus 97 instances of malware. Best performing method is bolded.

0 20 40 60 80 100

0

20

40

60

80

100

(a) Gaussian Kernel
0 20 40 60 80 100

0

20

40

60

80

100

(b) Spectral Kernel
0 20 40 60 80 100

0

20

40

60

80

100

(c) Combined Kernel

Figure 3.5: The heat maps of the kernel matrix for the Netbull virus with different packers
versus malware. Netbull are the first 13 instances in the top left.

illustrates that a combined kernel, which uses the local and global structural information

about the Markov chain graph as discussed in Section 3.2, improves performance over the

standalone kernels.

Figure 3.4 shows the heat maps (the values for the similarity matrix) for the 3 kernels

I tested against. For visual purposes, I only show kernel values for 19 benign samples and

97 malware samples. The program traces that are more similar will have warmer colors.

The block structure seen in this figure indicates that these kernels are able to discriminate

between the two classes of software.

30

Chapter 3. The Markov Chain Data Representation

With the current dataset, I have more examples of malware than I do benign software.

This is a by-product of the availability of the benign trace data. This data skew might

contribute to the false-positives found in both my method and the n-gram methods. In a

production setting, a more diverse and extensive set of benign trace data would be needed

to alleviate this problem.

3.5.2 Netbull versus Malware

The second set of experiments evaluates the performance of these algorithms with respect

to their ability to differentiate between different types of malware. This is an important

question as I will use this methodology in a clustering/phylogenetics setting in later chapters.

This dataset was composed of 13 instances of the Netbull virus with different packers and

a random subsample of 97 instances of malicious code from the main malware dataset. I

limited the number of other families of viruses to 97 due to the effects of data skew. The

results are summarized in Table 3.2.

These results are promising because the method using the combined kernel can correctly

classify all instances of the Netbull virus despite this being a very skewed dataset. The

n-gram methods were less successful on this task. After the top-3 parameter choices for the

n-grams, these models quickly devolved into predicting the majority class for all instances.

This is a known problem in machine learning algorithms [23].

The kernels for this dataset are displayed in Figure 3.5 and have a similar block structure

to Figure 3.4. This is important because it validates the approach’s ability to distinguish

between somewhat similar pieces of malware. These results also validate my choice of data

representation and associated kernels in a kernel-based clustering environment [74].

31

Chapter 3. The Markov Chain Data Representation

Component Time
Gaussian Kernel 147.91 ± 9.54
Spectral Kernel 550.55 ± 32.90
SVM Optimization 0.16 ± 0.05
Classifying New Instance 0.54 ± 0.07
Total Offline 698.45 ± 57.44
Total Online 0.54 ± 0.07

Table 3.3: Timing results for the computation time for each step of the method. All results
are in seconds with one standard deviation given.

3.5.3 Timing Results

In this section I explore the computation time for the proposed method. As stated previ-

ously, there are two main components to this approach; computing the graph kernels and

performing the support vector machine optimization (Equations 3.5 and 3.10), which can be

done offline, and the classification of a new instance (Equation 3.11), which is done online.

I used the dataset composed of 1,615 samples of malicious programs and 615 samples of

benign programs.

As Table 3.3 illustrates, the majority of the method’s time is spent computing the kernel

matrices. It took 698.45 seconds to compute the full kernel matrices. However, this com-

putation can be performed offline once, so it will not slow down a production system. The

online component of classifying a new instance took 0.54 seconds as shown in Table 3.3. The

majority of this time is spent computing the kernel values between the new instance and the

labeled training data as described in Equation 3.11.

The number of kernel computations is decreased due to the support vector machine

finding a sparse set of support vectors. The PyML implementation of the SVM typically

found ∼350 support vectors. There are other forms of support vector machines [55] that

search for sparser solutions, which would speed up this online component by reducing the

number of support vectors, and thus the number of kernel computations. The complexity

32

Chapter 3. The Markov Chain Data Representation

analysis in included in Appendix C.1.

3.6 Conclusion

With the advent of polymorphic code and obfuscated viruses, signature-based malware de-

tection is becoming outdated [25]. To combat this, many researchers have began drawing

ideas from machine learning to create more flexible detection algorithms. Many of these

approaches have centered around using n-gram based statistics to classify new instances as

being either benign or malware.

The Markov chain data representation presented in this chapter extends the n-gram

methodology by using 2-grams to condition the transition probabilities of a Markov chain,

and then treats that Markov chain as a graph. Treating the Markov chain as a graph allows

the use of graph kernels to construct a similarity matrix between instances in the training

set. I use two distinct measures of similarity to construct the kernel matrix: a Gaussian

kernel, which measures local similarity between the graphs’ edges, and a spectral kernel,

which measures global similarity between the graphs. Given the kernel matrix, I can then

train a support vector machine to perform classification on unlabeled samples.

I demonstrated the performance of the Markov chain data representation on two prob-

lems. The first investigated whether the method could properly discriminate between in-

stances of malware and benign software. I showed that with the combined kernel my method

was able to outperform n-gram and signature-based methods, while maintaining a low false

positive rate. The second problem tested whether the method could discriminate between

different types of malware. I compared the Netbull virus with different packers to a set

of other instances of malware. The method was able to perfectly classify these instances.

This result is promising for using these kernels in a clustering setting, which would allow

researchers to more quickly understand the dynamics of a new virus.

33

Chapter 4

Malware Classification: Bridging the

Static/Dynamic Gap

While classifying malicious programs based on dynamic instruction traces has shown great

promise, there are several limitations to relying on a single view of the data. As I will

mention in Section 4.1.2, the collection of dynamic information can be detected by the

malicious program. When a sufficiently sophisticated malicious program has detected that

it is being traced or being run in a virtual machine, it will then either stall its execution or

perform benign activities, causing a great deal of confusion for the reverse engineer in charge

of the analysis. In this case, the reverse engineer would fall back to purely static techniques.

The novel contribution of this chapter is to show how to combine different data views

using multiple kernel learning [101] to arrive at a new classification system that integrates

all of the available information about a program into a unified framework [2]. The key

insight of my approach is that each data view provides complementary information about

the true nature of a program, but no one view contains all of this information. I aim

to construct a classification system that contains all aspects of a program’s true intended

behavior. I begin by defining a kernel, a positive semi-definite matrix where each entry in

34

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

the matrix is a measure of similarity between a pair of instances in the dataset, for each data

view. I then use multiple kernel learning [9, 101] to find the weights of each kernel, create a

linear combination of the kernels, and finally use a support vector machine [22] to perform

classification.

This framework is particularly appealing for three reasons. First, it combines both static

and dynamic features in a way that allows the learning algorithm to take advantage of both

simultaneously. Second, it is extendable in the sense that future data views could be easily

added to the model without complicating the final result. Finally, the method presented in

this chapter is highly parallelizable: computing the kernel values for testing new malware can

be carried out in parallel, the implication being that larger datasets can easily be handled.

I present my results on a dataset composed of 776 benign programs and 780 malicious

programs. In addition to this dataset, I test the methods on a separate validation dataset

composed of 20,936 malicious samples. For each program I collect six data views: the static

binary, the disassembled binary file, the control flow graph from the disassembled binary

file, a dynamic instruction trace, a dynamic system call trace, and a file information feature

vector composed of information gathered from all of the previous data views. For the binary

file, disassembled file, and two dynamic traces, I build kernels based on the Markov chain

graphs; for the control flow graph, I use a graphlet kernel [97]; and for the file information

feature vector, I use a standard Gaussian kernel as explained in Section 4.1.2.

I show that integrating multiple data views increases overall classification performance

with regard to accuracy, receiver operating characteristic (ROC) curves, and area under the

ROC curve (AUC). I also provide results examining the efficacy of each individual data view

with regard to different metrics, including the time from receiving the sample to making

a classification decision. I report kernel combinations (in addition to the combination of

all six data views) which can achieve reasonably high performance if time and computing

resources are at a premium. I also demonstrate some of the pitfalls of the dynamic and static

methodologies, such as, static data views struggling with packed instances. Instances whose

35

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

entropies deviated from the mean also caused problems, where in the dataset used the mean

of malware was 7.52 and the mean of benign was 6.34,

4.1 The Deficiencies of Individual Views for the Mal-

ware Problem

As mentioned in the introduction to this chapter, malware authors have developed methods

to obfuscate their malware. The typical story is a back-and-forth between malware authors

and malware analysts: the analysts find a new way to detect malware, and the malware

authors respond by creating protection mechanisms to avoid this detection. In the following

sections, I give some example. The two main classes of data used by analysts are static,

data that does not require the program to be executed, and dynamic, data that needs to be

executed (in most cases in a virtual machine to reduce the chance of contamination). There

have been many protections put in place to hinder analysis in both of these views, making

either unreliable by itself.

4.1.1 Static Data Views

Encrypted malware was one of the first techniques employed by malware authors [121].

This was originally used to avoid signature detection by generating different encryption keys

when the malware was copied, thus creating unique binaries at each step of the infection.

Encrypted malware cannot be easily reverse engineered, making many static views unreliable.

For instance, disassembling the code would result in the disassembly of the decrypting code,

but not the actual malicious code.

36

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

4.1.2 Dynamic Data Views

Once reverse engineers realized that static views of the code could be easily compromised,

they turned their attention to dynamic analysis. For safety reasons, during analysis malicious

code is normally run in a virtual machine behind a firewall to prevent further propagation.

Malware authors responded to these methods by developing execution-stalling techniques

[64]. Execution-stalling prevents the malware from running for some prescribed amount of

time, assuming that the reverse engineers will give up after some relatively short period of

time. A slightly more advanced method of execution-stalling looks at where the malware is

being run, halting if it detects it is being run from a virtual machine with the assumption

being that only malware analysts would run programs within a virtual machine. This type

of defense may become less common as virtual machines become more prevalent.

4.2 Integrating Multiple Views for Improved Perfor-

mance

In this section, I highlight the six data views I have chosen to use in my model. It is important

to note that while these views have all been well-studied in the literature [1, 15, 48, 65, 67],

they are by no means a complete survey of the literature. The methods reviewed in Section

4.2.2 can be easily extended to take advantage of any additional views that an analyst has

at his or her disposal.

4.2.1 Data Views

I aim to cover some of the most popular data views that have been used for malware classifi-

cation in the literature. These data views also try to capture many of the different views of a

program in the hopes that, while a malicious executable can disguise itself in some views, dis-

37

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

guising itself in every view while maintaining malicious intent will prove to be substantially

more difficult. I use three static data views: the binary file, the disassembled binary, and the

control flow graph of the disassembled binary. I use two dynamic data views: the dynamic

instruction trace and the dynamic system call trace. Finally, I use a file information data

view, which contains seven statistics that provide a summary of the previous data views.

Binary. I use the raw byte information contained in the binary executable to construct my

first data view. There is a long history of using this type of data to classify malware [65,106].

Generally, the bytes are used in an n-gram framework to construct a feature vector that is

then given to some machine learning classification algorithm (i.e. boosted decision trees [65]).

In contrast to these methods, I use 2-grams to condition a Markov chain and then perform

classification in graph space as explained in Section 4.2.2. In the Markov chain, the byte

values (0-255) correspond to different vertices in the graph, and the transition probabilities

are estimated by the frequencies of the 2-grams.

Disassembled. The opcodes of the disassembled program have also been used to generate

malware detection schemes [15, 96]. To generate the disassembled code, I use IDA Pro [52].

Once I have the disassembled code, I build a Markov chain similar to the way the Markov

chain for the binary files was built. Instead of the byte values being the vertices in the

graph, I use the disassembled instructions for the vertices in the graph. Unfortunately, the

number of unique instructions found in the disassembled files (∼1200) resulted in very large

Markov chains that overfitted the data resulting in poor initial performance. This is in part

due to the curse of dimensionality [16]: the feature space becomes too large and there is

not enough data to properly learn the model parameters. Furthermore, some instructions

perform identical or very similar tasks, resulting in many transitions that are identical yet

treated as distinct. To combat this, I used several categorizations, each with increasing

complexity. The coarsest categorization contained eight categories (math, logic, privileged,

branch, memory, stack, nop, and other). The other categorizations had 34, 68, 77, 86, 154,

38

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Mov
Add
Push
Push
Add
Jne

Mov
Push
Push
Call

Dec
Push
Push
Mul
Jge

Pop
Inc
Jmp

Sub
Push
Mov
Jmp

Figure 4.1: An example of a control flow graph demonstrating jumps.

and 172 categories. I found the categorization with 86 categories to perform the best. This

categorization had separate categories for most of the initial 8086/8088 instructions as well

as categories for some extended instruction sets such as SSE and MMX. Further research

into an optimal categorization that better represents program behavior is currently being

considered and is discussed in Section 7.2.

Control Flow Graph. The use of control flow graphs has become a popular means to

perform malware classification [25, 67]. A control flow graph is a graph representation that

models all of the paths of execution that a program might take during its lifetime (Figure

4.1). In the graph, the vertices are the basic blocks, sequential code without branches or

jump targets, of the program, and the edges represent the jumps in control flow of the

39

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

program. One of the advantages of this representation is that it has been shown to be

very difficult for a polymorphic virus to create a semantically similar version of itself while

modifying its control flow graph enough to avoid detection [67]. To compute the similarity

between different control flow graphs, I use a simplified kernel based on previous work in the

literature [67]. This kernel works by counting similarly shaped subgraphs of a certain size,

and is explained in detail in Section 4.2.2.

Dynamic Instruction Traces. Due to the limits of static analysis discussed in Section

4.1.1, I chose to include two dynamic data views, the instruction traces and the system call

traces collected over a five minute run using the KVM virtual machine [69] and the Intel Pin

program [73]. Dynamic instructions traces are known to produce highly accurate malware

classification results [1,31]. Similar to the disassembled data, I used the same categorization

of 86 categories and constructed the Markov chain in the same manner.

Dynamic System Call Traces. System call traces have been another popular dynamic

data view [12, 48, 93]. Over the 1556 traces, I recorded 2460 unique system calls. I used

the Markov chain graph representation, and like the disassembled instruction set, found

that treating each unique system call as a vertex in the Markov chain led to poor initial

performance. I therefore grouped the system calls into 94 categories where each category

represents semantically similar groups of system calls, such as painting to the screen, writing

to files, or cryptographic functions.

Miscellaneous File Information. For this data view, I collected seven pieces of informa-

tion about the various data views described previously. This data is summarized in Table

4.1. I look at the entropy and the size of the binary file. Similar to previous work on entropy

[75, 95], I found the average entropy of the benign files in the dataset to be 6.34 and the

average entropy of the malicious files in the dataset to be 7.52. I also have a binary feature

to look at whether the binary executable has a recognizable packer such as UPX [113] or

Armadillo [112]. To find whether a file was packed or not, I used the PEID signature method

40

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Statistic Malware Benign
Entropy 7.52 6.34
Binary Size 0.799 2.678
Packed 47.56% 19.59%
Num Vertices (CFG) 5,829.69 10,938.85
Num Edges (CFG) 7,189.58 13,929.40
Num Static Instrs 50,982 72,845
Num Dynamic Instrs 7,814,452 2,936,335

Table 4.1: Summary of the file information statistics used: the average entropy, average
size of the binary (in megabytes), average number of vertices and edges in the control flow
graph, the average number of instructions in the disassembled files, and the average number
of instructions/system calls in the dynamic traces. The percentage of files known to packed
is also given.

[86]. For the disassembled binary feature, I took the number of instructions found in the

disassembled file. I also use the number of edges and the number of vertices in the control

flow graph. Finally, I took the sum of the number of dynamic instructions and dynamic

system calls as the last feature.

4.2.2 Multiple Kernel Learning

In this section, I first describe how I transform the six data views of Section 4.2.1 into more

convenient representations. I then show how it is possible to define kernels, or similarity

measures, that are able to accurately compare these data views in their new representations.

Finally, I describe a method of multiple kernel learning that finds a linear combination of

these kernels which can then be used in a support vector machine setting.

Data Representations. The six canonical data views described in Section 4.2.1 can be

grouped into three sets. The miscellaneous file information that I collect can be represented

as a simple feature vector of length seven where each of the seven statistics corresponds to

41

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

mov esi, 0x0040C000
lea edi, [esi-0xB000]
push edi
or ebp, 0xFF
or ebp, 0xFF
jmp 0x00419532
mov ebx, [esi]
mov ebx, [esi]
sub esi, 0xFC
adc ebx, ebx
jc 0x00419528
... ...

push

or

. 2

mov .3

lea

.6

sub

.1 .4

.3

jmp

. 2 5

.1

adc

.6

jc

. 7

. 2

Figure 4.2: The left table shows an example of the trace data collected. A hypothetical
graph representing a fragment of the Markov chain derived from the trace is shown on the
right. In a real Markov chain graph, all of the out-going edges would sum to 1.

a feature. The control flow graphs are represented in the same way as the standard in the

literature [25, 67], where the basic blocks are nodes in a graph and directed edges represent

the control flow between different blocks. For the third set, the raw binary, disassembled

binary, dynamic instruction trace, and dynamic system call trace, I use the Markov chain

representation described in Chapter 3 and illustrated in Figure 4.2.

Kernels.

As described in Section 3.1, a kernel, K(x,x′), is a generalized inner product and can

be thought of as a measure of similarity between two objects [92]. For the Markov chain

representations and the file information feature vector, I use a standard squared exponential

kernel:

KSE(x,x′) = σ2e−
1

2λ2

∑
i(xi−x′i)2 (4.1)

where xi represents one of the seven features for the file information data view, or a transition

probability for the Markov chain representations. σ and λ are the hyperparameters of the

42

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Binary SE

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) File Info SE

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) CFG 4-graphlet

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Dynamic Instruction SE

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Static Instruction SE

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) System Call SE

Figure 4.3: Heatmaps for the six individual kernels. The first 780 samples (the top left block
in the heatmaps) are the malware samples and the second 776 samples (the bottom right
block) are the benign samples. The off diagonal blocks are the similarities between malware
and benign samples.

kernel function (estimated through cross-validation), and
∑

i,j sums the squared distance

between the corresponding features.

For the control flow graph data view, I attempted to find a kernel that closely matched

previous work in the literature [67]. Although the approach I chose does not take the

instruction information of the basic blocks into account, I selected the graphlet kernel due

to its computational efficiency [97]. A k-graphlet is defined as a subgraph, of a graph G,

with the number of nodes of the subgraph equal to k. If ~fG is a a feature vector, where

each feature is the number of times a unique graphlet of size k occurs in G, the normalized

43

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.4: Heatmap for all six kernels combined with the weights found using multiple
kernel learning.

probability vector is:

~DG =
~fG

of all graphlets of size k in G
(4.2)

and the graphlet kernel is defined as:

Kg(G,G
′) = ~DT

G
~DG′ (4.3)

I experimented with graphlets of size k ∈ {3, 4, 5} and found k = 4 to be optimal with

respect to both classification accuracy and AUC.

Figure 4.3 shows the heatmaps for the six individual kernels and Figure 4.4 shows the

heatmap of the combined kernel with the weights of the individual kernels being found using

multiple kernel learning (see Equation 4.8). The block structure observed in these figures is

interesting because it shows that the kernels and data views I selected are able to discriminate

between malware and benign samples. This is apparent in Figure 4.4 where the top left block

(the similarity between the malware samples) has very high values compared with the rest

of the image.

44

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

A set of M valid kernels, K1, K2, . . ., KM , and some vector β where βi ≥ 0 ∀i and∑
i βi = 1, can be combined into a valid kernel Kcomb [16],

Kcomb =
M∑

1≤i≤M

βiKi (4.4)

This algebra on kernels allows us to combine kernels that measure very different aspects

of the input data, or even different views of the data, and it is studied by multiple kernel

learning [9, 101].

Multiple Kernel Learning. The goal of classical kernel-based learning with support vector

machines is to learn the weight vector, α, describing each data instance’s contribution to the

hyperplane that separates the points of the two classes with a maximal margin [22] and can

be found with the following optimization problem:

min
α

(
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)−
n∑
i=1

αi

)
︸ ︷︷ ︸

Sk(α)

(4.5)

subject to the constraints:

n∑
i=1

αiyi = 0 (4.6)

0 ≤ αi ≤ C

where yi is the class label of instance xi. Equation 4.6 constrains the α’s to be non-negative

and less than some constant C. C allows for soft-margins, meaning that some of the examples

may fall between the margins. This helps prevent over-fitting the training data and allows

for better generalization accuracy [22].

With multiple kernel learning, each individual kernel’s contribution, β, must also be

found such that:

Kcomb(xi,xj) =
M∑
k=1

βkKk(xi,xj) (4.7)

45

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

is a convex combination of M kernels with βk ≥ 0, where each kernel, Kk, uses a distinct set

of features [101]. In the current case, each distinct set of features is a different view of the

data (Section 4.2.1). The general outline of the algorithm is to first combine the kernels with

βk = 1/M , find α, and then iteratively continue optimizing for β and α until convergence.

Complexity analysis is given in Appendix C.2.

To solve for β, assuming a fixed set of support vectors (α), the following semi-infinite

linear program has been proposed [101]:

max θ (4.8)

w.r.t. θ ∈ R, β ∈ RK

subject to the constraints:

0 ≤ β (4.9)

∑
k

βk = 1

M∑
k=1

βkSk(α) ≥ θ

for all α ∈ RN with 0 ≤ α ≤ 1C and
∑

i yiαi = 0, and where Sk(α) is defined in Equation

4.5. M is the number of kernels to be combined. This is a semi-infinite linear program

because all of the constraints in Equation 4.9 are linear, and there are infinitely many of

them, one for each α ∈ RN satisfying 0 ≤ α ≤ 1C and
∑

i yiαi = 0 [47]. θ cannot go to

∞ because of the constraint
∑M

k=1 βkSk(α) ≥ θ. Finding the maximal theta corresponds to

finding a saddle-point of the following min-max optimization problem:

max
β

min
α

M∑
k=1

βkSk(α) (4.10)

If α is the optimal solution, then θ =
∑M

k=1 βkSk(α) would be minimal satisfying Equation

4.9 for all α. More details on θ can be found in [103].

46

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Dataset

 View 1

 View 2

 View n

MKL Classification

…

Output: Class Labels

 Kernel 1

 Kernel 2

 Kernel n

Figure 4.5: Architecture diagram for the MKL algorithm.

To find solutions for α and β, an iterative algorithm was proposed that first uses a

standard support vector machine algorithm to find α (Equation 4.5), then fixes α to the

solution, and solves Equation 4.8 to find β. Although this algorithm is known to converge,

there are no known convergence rates [47]. Therefore, the following stopping criterion was

proposed [101]:

εt+1 ≥ εt :=

∣∣∣∣∣1−
∑M

k=1 β
t
kSk(α

t)

θt

∣∣∣∣∣ (4.11)

This method of multiple kernel learning has been found to be very efficient. Solving for

α and β with as many as one million examples and twenty kernels has been shown to take

just over an hour [101]. It is important to note that this optimization problem only needs

to be solved once, as the support vectors (α) and kernel weights (β) can be used to classify

all of the newly collected data. A general architecture diagram of this method is given in

47

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Figure 4.5.

4.3 Experimental Setup

In this section, I present my results on a dataset composed of 1,556 samples, 780 malicious

programs and 776 benign programs. I also present results on a separate dataset composed

of 20,936 malicious samples.

The metrics I use to quantify the results are classification accuracy (TPs+TNs/(# of

samples)), receiver operating characteristic (ROC) curves [16], area under the ROC curve

(AUC) [20], and the average time it takes to classify a new instance. I look at three com-

bination strategies: just static views, just dynamic views, and a combination with all six of

the data views. I compare the combined kernel method against methods based on a single

data view. I conclude this section with some interesting observations based on these results.

To perform the experiments, I used a machine with quad Xeon X5570s running at

2.93GHz with 24GB of memory. To perform the multiple kernel learning, I used the modular

Python interface of the Shogun Machine Learning Toolbox [102].

4.4 Results

Accuracy. Table 4.2 presents results for the individual kernels as well as the combined

kernels using 10-fold cross validation. The three best performing antivirus programs (out

of 11 that I had available licenses) are also shown. For the antivirus program results, it is

important to emphasize that the malicious dataset was not composed of zero-day malware,

but rather malware that is at least 9 months to one year old. Despite this, the worst

performing data view based on the file information feature vector still had ∼6% better

48

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Method Acc (%) FPs FNs AUC
All Six Data Views 98.07% 16 14 .9978
Three Static Views 96.14% 36 24 .9934
Two Dynamic Views 88.75% 88 87 .9509
Binary 88.11% 93 92 .9437
Disassembled Binary 89.97% 71 85 .9483
CFG (4-graphlets) 88.05% 88 98 .9361
Dynamic Instructions 87.34% 92 105 .9335
Dynamic System Call 87.08% 88 113 .9368
File Information 84.83% 126 110 .9111
Avira 78.46% 4 331 n/a
BitDefender 75.26% 7 378 n/a
Kaspersky 71.79% 0 439 n/a

Table 4.2: The classification accuracy, number of false positives and false negatives, and
the full AUC values for 776 instances of benign software versus 780 instances of malware.
Statistically significant winners are bolded.

Method .01 .05 .1 .25 .5 Full AUC
All Six Data Views .9467 .9867 .9933 1.0 1.0 .9978
Three Static Views .9224 .9634 .9812 1.0 1.0 .9934
Two Dynamic Views .5000 .8487 .8882 .9605 .9803 .9509
Binary .5369 .7919 .8523 .9262 .9597 .9437
Disassembled Binary .5574 .7347 .8699 .9628 .9878 .9483
CFG (4-graphlets) .4182 .6814 .8724 .9378 .9675 .9361
Dynamic Instructions .3401 .6395 .7211 .9116 .9796 .9335
Dynamic System Call .5266 .7337 .8580 .9586 .9763 .9368
File Information .0946 .4527 .7703 .9054 .9730 .9111

Table 4.3: AUC values for the full ROC curve as well as values for five different false positive
rates: .01, .05, .1, .25, and .5. The combined kernel composed of all six data views performs
the best at all values.

classification accuracy than the best antivirus program. All but one of the false positives

found by the antivirus programs were actually confirmed to be true positives as discussed

later in this section.

49

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

0.0 0.2 0.4 0.6 0.8
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

iti
ve

 ra
te

six kernel (.9978)
static (.9934)
dynamic (.9509)
binary SE (.9437)
file info SE (.9111)
sys call SE (.9368)
static instr SE (.9483)
dynamic isntr SE (.9335)
cfg 4-graphlet (.9361)

(a) Full ROC Image

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
false positive rate

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

tr
ue

 p
os

iti
ve

 ra
te

six kernel (.9978)
static (.9934)
dynamic (.9509)
binary SE (.9437)
file info SE (.9111)
sys call SE (.9368)
static instr SE (.9483)
dynamic isntr SE (.9335)
cfg 4-graphlet (.9361)

(b) Zoomed ROC Image

Figure 4.6: ROC curves for all six individual kernels, a kernel based on the three static views,
a kernel based on the two dynamic views, and the combined kernel composed of all six data
views. It is easy to see that the kernel based on all six data views performs significantly
better than the other kernels. The full AUC values for the kernels are are listed in legend in
parenthesis.

50

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

The best performing method was the combined kernel that used all six data views and

achieved an accuracy of 98.07%. Although the static views also performed very well (96.14%),

adding dynamic information improved overall performance with respect to accuracy and false

positives. All of the single data views achieved between 84% to 89% accuracy with the single

data view winner being the disassembled binary at 89.97%.

ROC Curves / AUC Values. To analyze the different data views with respect to different

false positive thresholds, I looked at the ROC curves and various ROC points representing

different false positive rates. Figure 4.6 plots all the ROC curves together (including the

combined kernels) along with a zoomed version of the curve. Figure 4.6 (b) is particularly

informative as the combined kernel, which includes all six data views, clearly performs better

than any single data view or the two other combined kernels for all false positive rates. If

there are certain time and/or other resource constraints, Figure 4.6 (b) also shows that

reasonably high results can be achieved by just using the kernel based on the three static

views which is valuable in time-sensitive environments.

Table 4.3 displays the full AUC value, as well as the AUC values for five different false

positive rates: 0.01, 0.05, 0.1, 0.25, and 0.5. By integrating all six data views, an AUC

value of .9467 can be achieved with a .01 false positive rate, significantly higher than any

other kernel based on a single data view, which adds support for the power of my approach

and multiple kernel learning in general. The file information data view performs the worst

with respect to this metric, and as I explain at the end of this section, I expect this is due

to misclassifying a large percentage of files that are packed and/or have abnormal entropy

values.

Learned Kernel Weights. The kernel weights learned from Equation 4.8 are an interesting

way to look at how informative different data views are with respect to the classification

accuracy. The weights I found for the different data views are shown in Table 4.4. It is

interesting to note that the weights are not representative of how well the single data view

51

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Data View All Views Static Views Dyn Views
Binary .2248 .2671 N/A
Disassembled .2576 .3284 N/A
CFG .1559 .4046 N/A
Dyn Instrs .3299 N/A .5817
System Calls 0.0 N/A .4183
File Info .0319 N/A N/A

Table 4.4: The kernel weights learned from Equation 4.8 for the different kernel combinations
examined.

does at classification. For example, the dynamic instruction view has the highest kernel

weight among the weights for all six views, but in these experiments, the binary, disassembled

and CFG all individually have higher accuracy than the dynamic instruction view.

Speed. Due to the fact that computing the kernel for each dataset, finding the kernel weights

for the combined kernels, and finding the support vectors for the support vector machine

are all essentially O(1) operations (all of these calculations need only to be performed once,

offline), I will focus the analysis of the timing results on the average amount of time it takes

to classify a new instance. The time to find the kernel weights and support vectors for the

kernel composed of all six data views, averaged over 10 runs, was only 0.86 seconds.

Given a new program instance to classify, there are two or three steps to be performed,

depending on whether a dynamic data view is used:

1. Run the instance in a virtual machine keeping a log of the instructions and system

calls the program performs.

2. Transform the data view into the appropriate data representation.

3. Classify the transformed data instance according to Equation 3.11.

In the timing results, I allow five minutes to collect the dynamic trace data. Transforming

52

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

300 301 302 303 304 305

six kernel (.9807)
all static (.9614)
all dynamic (.8875)
binary (.8811)
static instructions (.8997)
cfg 4-graphlet (.8805)
dynamic instructions (.8734)
dynamic syscalls (.8708)
file info (.8483)

0.0 0.5 1.0 1.5 2.0 2.5

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Time (seconds)

Figure 4.7: Plot demonstrating the trade-off between accuracy and time to classify. Time
is in seconds and the x-axis is the time it takes to first collect the dynamic trace (for the
dynamic data views), transform the data instance into its representation, and finally classify
the instance.

the data to its appropriate representation could mean several different things for each of the

different data views. For instance, the data might have to be disassembled, the 2-grams

in the disassembled data found, and finally the Markov chain built; the control flow graph

might have to be built and the number of graphlets with a specific structure found; in the

case of the file information data view, the statistics of Table 4.1 will have to be collected;

etc.

53

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Method Trace Data Transformation Classify Total
All Six Data Views 300.0s 3.12s 0.21s 303.52s
Three Static Views n/a 1.18s 0.13s 2.03s
Two Dynamic Views 300.0s 1.94s 0.06s 302.53s
Binary n/a 0.26s 0.05s 0.31s
Disassembled Binary n/a 0.63s 0.05s 0.68s
CFG (4-graphlets) n/a 0.97s 0.06s 1.03s
Dynamic Instructions 300.0s 1.10s 0.04s 301.15s
Dynamic System Call 300.0s 0.82s 0.01s 300.83s
File Information 300.0s 1.41s 0.01s 301.41s

Table 4.5: The average time it takes from receiving the raw data until a classification decision.
This time includes running the program for the dynamic views (5 minutes is allowed for the
tracing), transforming the data to the appropriate representation (which includes the time to
disassemble the code, collecting all of the 2-grams from the trace files, building the Markov
chains, etc.), and finally computing the class from the decision function of Equation 3.11.

The timing results, which are broken down into the three stages, are presented in Table

4.5 and are pictorially featured in Figure 4.7. These results were averaged over the entire

dataset. Classifying an instance takes very little time, and the only real bottleneck is the

time to collect the dynamic trace. The combined kernel composed of the three static views

is especially impressive as it has great performance and it takes only 2.03 seconds on average

to transform the data and make a classification decision. Using the combined kernel based

on the static data views, assuming 2.03 seconds per data instance, it would be possible to

classify up to 42,561 new samples each day. Again, the methods presented in this chapter

are highly parallelizable, and these methods will scale with more computational resources

because the kernel computations for classifying a new program instance can all be done in

parallel.

Testing on a Large Malware Sample. As explained earlier in this section, obtaining

a large benign dataset is difficult. On the other hand, besides the 780 malicious programs

discussed earlier, I had an additional 20,936 malware samples at my disposal from the Los

54

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Method Accuracy (%)
All Six Data Views 97.97%
Three Static Views 95.27%
Two Dynamic Views 91.57%
Binary 86.76%
Disassembled Binary 88.23%
Control Flow Graph (4-graphlets) 85.92%
Dynamic Instructions 88.42%
Dynamic System Call 86.38%
File Information 84.46%
BitDefender 57.55%
Avira 56.01%
Kaspersky 55.32%

Table 4.6: The classification accuracy on a validation dataset consisting on 20,936 malicious
samples.

Alamos National Laboratory repository. I am treating this data as a validation set to test

the generalization accuracy of my methods. I first train on all of the 1,556 samples (780

malicious and 776 benign), find the β’s and α’s, and finally classify the held out 20,936

malicious samples as either benign or malicious according to Equation 3.11.

The results for this experiment are shown in Table 4.6. The classification accuracies are

similar to those of previous section with the exception that the signature-based antivirus

programs do worse. This is due to the fact that in the original dataset, these methods

would always get close to 100% accuracy on the benign samples giving a positive skew to

their results because they had very few false positives on this dataset. As with the previous

results, by combining data views in the multiple kernel learning framework, I was able to

achieve a large increase in classification accuracy. The results presented in Table 4.6 suggest

that these methods would generalize very well to larger datasets given that they performed

well on this validation set.

Observations. A well-known problem in any supervised machine learning setting is the

55

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

integrity of the training dataset. In training the classifier, I assumed that the labeled benign

samples in the dataset were actually benign. This was reasonable as the executables were

taken from clean installations of commercial software. To test this hypothesis, I ran the

classifier based on the combined kernel, with all six data views, using 10-fold cross validation

50 times and counted how many times a data instance was classified incorrectly. I found 19

data instances that were consistently misclassified, 8 which were labeled as malicious and

11 which were labeled as benign. 5 of the 11 benign samples were found to actually be

malicious using VirusTotal [114]. It is interesting that this method was able to reduce the

original 1,556 instance dataset to a manageable size of 19 suspicious samples, making closer

manual inspection of these files more manageable. Note that I did not correct the dataset

for the experiments in this chapter, and these 5 files are still considered false positives in the

previous results.

Traditional static analysis techniques have been shown to be insufficient given the rise

of newer malware obfuscation techniques [79]. Due to these limitations, I chose to include

dynamic data views to improve malware classification despite the time constraints these data

collection methods impose. To further analyze the pitfalls of the static data views, I again

ran the combined kernel with all six data views, a kernel with all of the static data views, a

kernel with all of the dynamic data views, and the six separate kernels, one for each of the six

different data views 50 times, keeping track of the files that were consistently misclassified

with respect to each kernel. In each of the 50 runs, 10-fold cross-validation was performed

with a random split.

Table 4.7 shows the percentage of files consistently misclassified which were packed. The

kernel based on the binary data had significant problems classifying packed benign instances,

as one would expect, with 43.75% of the false positives being packed (only 19.59% of all

benign instances in the training data were packed). On the other hand, using dynamic data

views, the percentage of false positives that was packed is the same as the packed percentage

of the training data, which suggests that the kernels based on these data views were not

56

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Method Benign Malicious
All Six Data Views 0.00% 70.00%
Three Static Views 20.00% 36.84%
Two Dynamic Views 18.75% 45.95%
Binary 43.75% 43.14%
Disassembled Binary 10.20% 53.85%
CFG (4-graphlets) 13.89% 55.10%
Dynamic Instructions 20.00% 38.24%
Dynamic System Call 21.62% 32.56%
File Information 28.09% 34.31%
Full Dataset Average 19.59% 47.56%

Table 4.7: Percentage of files that were packed and misclassified over all 50 runs with the
different kernels. Note the average percentage of packed files in the entire dataset is 19.59%
and 47.56% for benign and malicious files, respectively.

Method Benign Malicious
All Six Data Views 7.43 6.77
Three Static Views 7.41 6.91
Two Dynamic Views 6.26 7.50
Binary 7.42 7.01
Disassembled Binary 6.15 7.58
CFG (4-graphlets) 6.12 7.66
Dynamic Instructions 6.29 7.57
Dynamic System Call 6.41 7.55
File Information 7.77 5.98
Full Dataset Average 6.34 7.52

Table 4.8: Average entropy of files misclassified over all 50 runs with the different kernels.
Note that the average entropies over the entire dataset are 6.34 and 7.52 for benign and
malicious files respectively.

deceived by the packer. Although dynamic traces of packed files also have an unpacking

“footprint,” it has been shown that 5 minutes for a dynamic trace is enough time for a

significant number of the instructions to represent the true behavior of the program [87].

57

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Table 4.8 shows the average entropy of files that were consistently misclassified. The link

between entropy and files being packed is well-known [75], therefore similar results to Table

4.7 are seen. Again, the two dynamic views’ classification accuracies seem to be independent

of the entropy as the average entropy of the files they misclassify corresponds to the average

entropy of the entire dataset. Also, much like the previous results, the binary data view had

problems with classifying instances whose entropies differed significantly from the norm. As

expected, the file information data view had the most problems with entropy (remember

that entropy is one of the seven features for this view), with average entropy of misclassified

benign and malicious files being 7.77 (average in dataset: 6.34) and 5.98 (average in dataset:

7.52), respectively.

Having a dynamic tracing tool that is able to evade detection from the program being

traced is essential to get an accurate picture of how the program actually behaves in the wild.

Unfortunately, some malware can detect if it is being run in a virtual environment and/or

being traced [12]. I chose the Intel Pin program [73] because it allowed the collection of both

instructions and system calls simultaneously, is stable, and is currently being supported by

Intel. Unfortunately, it does not make an effort to be a transparent tracing tool like the

Ether framework [35]. The dynamic instruction data view’s classification accuracy in this

Chapter is lower than that reported in the literature [1,31], and I suspect that this is in part

due to Intel Pin not being transparent and the malware altering its own behavior.

To test this hypothesis, I looked at 8 malicious data instances that were consistently

misclassified (over 50 runs) by the kernel based on the dynamic instruction data view. I first

collected the dynamic traces with both Intel Pin and Ether and then computed the kernel

values between the resulting Markov chains of these traces. These results are displayed in

Table 4.9. Note that a kernel value of zero represents completely orthogonal behavior between

the two traces (no instruction transitions in common) and a kernel value of one represents

exactly the same program behavior between the two traces, which would be highly unlikely

even if the same tracing tool was used for both samples (a kernel value of 0 is also highly

58

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

Malware Sample K(Tracepin,Traceether)
sample0 .9010
sample1 .8392
sample2 .8171
sample3 .7719
sample4 .6424
sample5 .5864
sample6 .5399
sample7 .3725

Table 4.9: The kernel values between two Markov chains of the same program’s dynamic
instruction trace, one trace run with Intel Pin, and one trace run with the Ether framework.
The kernel values were computed using Equation 4.1.

unlikely for obvious reasons). Although this is a coarse measure as to whether the program

alters its behavior, it does give some useful information as to why these instances could have

been classified incorrectly. The lower values of sample4, sample5, sample6, and sample7 are

particularly interesting and suggest that their dynamic instruction traces are substantially

different under the different tracing tools.

4.5 Conclusion

In this chapter I have shown that significant benefits, with respect to both classification

accuracy and number of false positives, can be gained when malware researchers use all

of the information about executables that are available to perform classification, and not

just a single data view. I was able to achieve an accuracy of 98.07% on a dataset of 780

malware and 776 benign instances. I showed that while I had 16 false positives in this

dataset, several of these were later confirmed to be true positives. The ROC curve analysis

showed significant increases in performance when the data views were combined, and also

that acceptable performance can be achieved with just static views in a resource constrained

59

Chapter 4. Malware Classification: Bridging the Static/Dynamic Gap

environment.

I demonstrated several interesting observations about the results, illustrating some of the

pitfalls of both static analysis and dynamic analysis techniques. Namely that static data

views have problems classifying instances that are packed and/or have abnormal entropy

values. I also gave some support to the importance of having a dynamic tracing tool that is

capable of evading detection from the malware so that a truly representative sample of how

the malware actually behaves in the wild can be collected.

An important distinction should be made about the target audience of this line of re-

search, namely, that it is not intended to be used in a home computing environment. Sig-

nificant computational resources need to be devoted to collect the different views. A use

case would be first collect a program to be analyzed, either through user submissions or live

data feeds (e.g. harvesting email attachments). Then, send this file to a cluster of machines

devoted to collecting dynamic traces and other appropriate views. Finally, send the final

classification score to your incidence response team for further action.

60

Chapter 5

Multiple Kernel Learning Clustering

Accurately classifying executables as malicious or benign is only the first step towards mit-

igating an attack. Clustering malicious programs has become an important next step for

decreasing the response time of a computer security incident. The majority of new malware

is created through simple modifications of older instances, such as adding some new func-

tionality or slightly modifying the code base to avoid detection [124]. Typically, a reverse

engineer is assigned to understand the capabilities of a new instance of malware and how to

mitigate the damage it has caused. Being able to assign the unknown instance to a known

family of malicious programs, as illustrated in Figure 5.1, allows the reverse engineer to

apply techniques learned from reverse engineering previously seen instances of this family,

greatly reducing the time it takes to develop an appropriate response.

Similar to the previous chapters, I begin by defining a kernel, a general measure of

similarity, for each view and wish to find a linear combination of these kernels that can

be used in a spectral clustering framework. Although well-established methods have been

proposed to solve the multiple kernel learning problem in a classification setting [9,62,101],

multiple kernel learning with a clustering objective function has had far less exposure.

In this work, I propose a novel solution to the multiple kernel learning (MKL) problem

61

Chapter 5. Multiple Kernel Learning Clustering

bagle.A

bagle.B

bagle.C

rbot.A

unknown

rbot.C

rbot.D

koobface.A

koobface.B

koobface.C

Figure 5.1: An example of clustering malware.

based on a spectral clustering objective function [74]. I show how to modify the unnormalized

and the normalized Laplacians [26], which have both been used with success in spectral

clustering, so that they can explicitly take the multiple views of a dataset into account. A

spectral clustering objective function was chosen for its ability to take advantage of kernel

matrices and for its superior results on a wide range of clustering problems [74, 118, 122].

I show how this new objective function can be formulated as an equivalent semidefinite

program and efficiently solved using off-the-shelf interior point methods [3].

The primary benefit of the proposed approach is its ability to cluster instances based

on multiple views with no a priori information as to which view is the most informative,

something that is needed for some earlier attempts at clustering with multiple views [68,126].

62

Chapter 5. Multiple Kernel Learning Clustering

Another important benefit is that the kernel weight vector found can be viewed as a way to

rank the importance of the individual views. Some forms of data collection are expensive,

e.g. collecting dynamic traces requires a large amount of resources and real-time. It would

be useful to determine the value of each view and focus resources on collecting the views

that seem to contribute the most to the clustering problem.

I use a variety of datasets to demonstrate the efficacy of the proposed methods, includ-

ing several datasets taken from the UCI machine learning repository [38]. In addition to

the UCI datasets, I have a dataset composed of 606 malicious executables separated into

12 distinct malicious families. Families consist of malware with a common codebase and

inherited functionality. For example, there are unique instances of the Bagle family which

is associated with mass-mailing spam and unique instances of the koobface family which is

famously linked to gathering login information and sending unwanted Facebook messages. I

compare the proposed method to several baselines: the best single view, simple kernel addi-

tion, multiple kernel learning based on a classification objective function, and two recently

proposed methods using co-regularized spectral clustering [68]. The adjusted Rand index

[49] is used to quantify the results.

5.1 MKL Clustering Algorithm

Let the multiple view dataset be denoted by D = D1∪· · ·∪DM where there exist M distinct

views, and each view is composed of n feature vectors, one for each data instance. In all of

the work that follows, I begin by defining a kernel on each view. As stated in the previous

chapter, the goal of multiple kernel learning is to find an optimal weight vector, β, for the

linear combination of kernels,
∑M

k βkKk, such that βk ≥ 0 and
∑M

k βk = 1. In the spectral

clustering framework presented here, each kernel matrix is treated as a weighted adjacency

matrix.

Typically, multiple kernel learning algorithms have been developed to extend the support

63

Chapter 5. Multiple Kernel Learning Clustering

vector machine (SVM) optimization problem [101]:

max
β∈Rk

min
α∈Rn

M∑
k=1

βkSk(α) (5.1)

s.t. β ≥ 0

M∑
k

βk = 1

n∑
i=1

αiyi = 0

for all α ∈ Rn with 0 ≤ α ≤ 1C, where C allows for soft margins [22], and where

Sk(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKk(xi,xj)−
n∑
i=1

αi (5.2)

Equation 5.2 is the classic support vector machine optimization problem for a single kernel,

Kk(·, ·). Equation 5.1 constructs a maximum-margin hyperplane separating two classes with

respect to both the support vectors, α, and the kernel weights, β.

While the kernel weights found with Equation 5.1 are optimal for a classification setting,

it is not clear that they are optimal for the clustering domain. Furthermore, it is unrealistic

to have labeled data for all domains, making Equation 5.1 unusable. This section describes

an optimization framework that modifies the spectral clustering objective function to take

multiple views into account. I begin by defining the spectral clustering problem with a

single view, then go on to show how to extend spectral clustering to take multiple views

into account for both the unnormalized and normalized Laplacian. Finally, I show how to

state the optimization problem as a semidefinite program and outline an algorithm to find

the optimal β’s.

Given an adjacency matrix K and a diagonal matrix D with entries dii =
∑

j kij, spectral

clustering finds an approximation to the relaxed mincut problem for graphs, optimizing

RatioCut [74] by using the unnormalized graph Laplacian:

Lun = D −K (5.3)

64

Chapter 5. Multiple Kernel Learning Clustering

and optimizing normalized cut [74] by using the normalized graph Laplacian:

Lnorm = I −D−1K (5.4)

The goal is to find an indicator matrix associating each vertex in the graph to a partition

of the graph. The relaxed version of mincut that spectral clustering solves allows entries of

the indicator matrix to be real-valued with the following formulation:

min
U∈Rn×k

tr(UTLU) (5.5)

s.t. UTU = I

where U can be directly solved for as the top k eigenvectors associated with the smallest

non-zero eigenvalues of L. With U found, a clustering algorithm such as k-means can be run

with the rows of U serving as the features.

To extend Equation 5.5 to take multiple views of the data into account, Equations 5.3

and 5.4 need to be modified to use the multiple view version of the unnormalized Laplacian:

Lun(β) =
M∑
i

βiDi −
M∑
i

βiKi (5.6)

and the multiple view version of the normalized Laplacian:

Lnorm(β) = I −

(
M∑
i

βiDi

)−1(M∑
i

βiKi

)
(5.7)

The problem is to now find β such that Equation 5.5 is minimized:

min
U∈Rn×k

tr(UTL(β)U) (5.8)

s.t. UTU = I

To solve for both U and β, I propose an iterative algorithm. Assuming no a priori

information as to which view is more informative, I begin by initializing βi = 1/M . U is

65

Chapter 5. Multiple Kernel Learning Clustering

Figure 5.2: Architecture diagram for the MKL clustering algorithm.

then found through an eigendecomposition as is standard with spectral clustering. With an

initial U , β can be found with a semidefinite program.

Using the identity that the trace function is equivalent to the sum of the eigenvalues of a

matrix, tr(A) =
∑

i λi, and the relationship between the eigenvalues and the singular values

for a matrix, σi =
√
λi, the optimal β vector with respect to Equation 5.8 given U can be

solved for with the following semidefinite program:

min ||A(β)||∗ +
1

2
βTCβ (5.9)

s.t. Gβ � h

66

Chapter 5. Multiple Kernel Learning Clustering

where

G =



−1 0 · · ·

0
. . . 0

... 0 −1

· · · 1 · · ·

· · · −1 · · ·


(5.10)

and

h = [0 1 − 1]T (5.11)

The top negative identity matrix of G and 0 vector in h enforce non-negative β’s while

the last two constraints force the β’s to sum to one. || · ||∗ is the nuclear norm defined as∑n
i=1 σi where the σi’s are the singular values of the matrix. The quadratic regularization

term smooths the β vector according to the diagonal matrix C.

A(β) in Equation 5.9 is a linear combination of matrices, A(β) =
∑M

i=1 βiAi, which is

built by manipulating Equations 5.6 and 5.7. Ai serves as a proxy for the objective of

Equation 5.8, and a linear combination of the Ai’s is able to be used due to the linearity of

the trace function. For the unnormalized case:

Ai = UT (Di −Ki)U (5.12)

and for the normalized case:

Ai = UT

−Ki

(
M∑
j

βjDj

)−1
U (5.13)

The derivations for Equations 5.12 and 5.13 are given in Appendices A.1 and A.2. The βj’s

of Equation 5.13 and the U matrix are the values found in the previous iteration.

Algorithm 1 outlines my framework for finding the optimal kernel weights for multiple

kernel learning with a clustering objective function. The final steps of the algorithm follow

the spectral clustering framework, but using the multiple view Laplacian, L(β), in place of

the standard, single-view Laplacian. Figure 5.2 gives a pictorial overview of the process.

67

Chapter 5. Multiple Kernel Learning Clustering

Algorithm 1 Multiple kernel learning clustering algorithm, iteratively finds optimal β and

U , and then performs spectral clustering.

Require: initial β

U ← solve Equation 5.8

score ← tr(UTL(β)U)

while score is decreasing do

β ← min ||A(β)||∗ + 1
2
βTCβ

s.t. Gβ � h

U ← minU∈Rn×k tr(UTL(β)U)

s.t. UTU = I

score ← tr(UTL(β)U)

end while

construct L(β)

find Un×k with Equation 5.8

Let xi ∈ Rk be the new feature vector corresponding to

the ith row of U

Ck ← k-means with x as the new feature space

return Clusters, Ck

5.1.1 Practical Concerns

Typically, β in Algorithm 1 would be initialized to reflect expert assumptions as to which

data views are a priori the most informative. Because it is not realistic to have expert

knowledge in all applications, in all of the results I present, I set each initial βi = 1/M where

M is the number of views.

The new feature space constructed by spectral clustering consists of a Un×k matrix, where

the columns are eigenvectors and the rows correspond to the new feature vectors, one for

each instance in the dataset. Choosing an appropriate k is application dependent and often

68

Chapter 5. Multiple Kernel Learning Clustering

Name Num Instances Num Attributes Num Classes
iris 150 4 3
wine 178 13 3
wdbc 569 32 2
ecoli 336 8 8
glass 214 10 6

Table 5.1: UCI Datasets

relies on heuristics [74]. I use the heuristic k = blog(n)c where n is the number of instances

in the dataset. This heuristic has been shown to work well on a variety of datasets [74].

The regularization term in Equation 5.9 depends on C, which controls how sparse the

algorithm will make the weight vectors of the solution, with higher values resulting in a less

sparse solution. In all of the experiments presented in this chapter, I set C = I · 0.1.

5.2 Experimental Setup

5.2.1 UCI Datasets

I first compare my methods on several datasets taken from the UCI machine learning repos-

itory [38]. These datasets are given in Table 5.1 with the number of instances, attributes,

and classes. Because none of these datasets naturally has multiple views, several synthetic

views were created by defining different types of kernels, as well as kernels with different

parameter values. The first kernel used was the Gaussian kernel:

KG(x,x′) = e−
λ
2

∑
i(xi−x′i)2 (5.14)

I created three artificial views using this kernel for each UCI dataset by adjusting λ by

different orders of magnitude (i.e. for the iris dataset I used values of 1.0, 0.1, and 0.01). A

69

Chapter 5. Multiple Kernel Learning Clustering

Family Name Number of Instances
bagle 49
bifrose 61
hupigon 76
koobface 31
ldpinch 44
lmir 69
rbot 11
sdbot 26
swizzor 76
vundo 56
zbot 43
zlob 64

Table 5.2: Malware Families.

polynomial kernel was also used:

KP (x,x′) = (αx · x′)p (5.15)

where p ∈ {1, 2, 3}. This gives a total of six synthetic views for each of the UCI dataset.

5.2.2 Malware Dataset

The dataset which motivated this work is based on 606 samples of malicious programs

separated into 12 distinct families, as labeled from antivirus vendors, and was collected over

a 6 month period beginning in August 2011. The family names and the number of instances

from each family are listed in Table 5.2.

Six distinct views of malware were used as described in the previous chapters, and include

the binary bytes, disassembled instructions, the control flow graph, dynamic instructions,

system calls, and a general file information feature vector.

Four of the six data views are sequence-based. The sequences are used to condition the

70

Chapter 5. Multiple Kernel Learning Clustering

transition probabilities of a Markov chain as shown in Figure 4.2 and described in Chapter

3. For each of the data views based on the Markov chain representation, I use a Gaussian

kernel (Equation 5.14) with x being the entries in the transition probability matrix of the

given instance. Although more advanced graph kernels exist, I found this simple kernel to

perform the best under most circumstances. I refer the reader to Chapter 4 for an in-depth

description on computing kernels for each of the six views.

5.2.3 Competing Methods

The previously described method finds a weight vector, β, such that Equation 5.8 is min-

imized. The baseline methods I compare to include the most informative view, i.e., {βi =

1, βj 6=i = 0}. For my experiments I looked at every available view and only report the view

with the best results. I also use a uniform combined kernel where {∀i|βi = 1/M}. The final

method compared against that revolves around finding β is based on classic multiple kernel

learning with a classification objective function [101]. To perform this optimization, I used

the SHOGUN machine learning toolbox [102].

While I propose first combining the multiple views according to the weight vector β, and

then finding the spectral embedding, U , used in the k-means step, other recent work has

proposed a co-regularization scheme to combine kernels [68]. The first method proposed in

[68] used pair-wise regularization:

min
Ui∈Rn×k

tr

(
UT
i

(
Li + λ

M∑
j 6=i

UjU
T
j

)
Ui

)
(5.16)

s.t. UT
i Ui = I

Each Ui is initialized by solving the spectral clustering objective function for that specific

view. After initialization of the single views, Equation 5.16 is repeatedly solved for Ui,

71

Chapter 5. Multiple Kernel Learning Clustering

holding all other Uj constant. After convergence, choosing which view to use for k-means is

still an open question and often relies on a priori information. In my experiments, I clustered

on all views and report the best results.

The second co-regularized spectral clustering algorithm presented is the centroid method

[68]:

min
U∗∈Rn×k

tr

(
UT
∗

(
M∑
i

λiUiU
T
i

)
U∗

)
(5.17)

s.t. UT
∗ U∗ = I

Like the pair-wise method, the centroid method is an iterative algorithm, first initializing Ui

according to the Laplacian for the ith view, and then solving Equation 5.17 for U∗. Then, at

the beginning of each iteration, it solves for Ui, i = 1, . . . ,M , with the modified Laplacian,

Li + λiU∗U
T
∗ before solving for the updated U∗.

Unlike the pair-wise co-regularization, the centroid method finds a single feature space

embedding, U∗. Although a single embedding is found, a priori information about the impor-

tance of the views is still explicit in Equation 5.17 as λi. In my experiments, I used several

values for λi, including the uniform 1 vector, the classic MKL weights, and the weights

found with both my unnormalized and normalized approaches. Only the results for the best

performing weights are reported.

5.3 Results

Table 5.3 displays my results in terms of the adjusted Rand index [49] on both the UCI

datasets and the malware dataset consisting of 606 malware instances from 12 distinct ma-

licious families. Although each dataset had labels attached to it, the labels were only used

to compute the adjusted Rand index and to compute the weights for the classification-based

MKL algorithm. Neither my proposed algorithm nor the competing methods of [68] make

72

Chapter 5. Multiple Kernel Learning Clustering

SDP SDP Best Uniform Classic Centroid Pair-wise
unnorm norm View Combination MKL

Malware .8747 .8768 .8174 .8381 .8531 .8702 .8477
iris .8923 .9414 .8030 .8343 .8236 .9124 .8687

wine .4137 .4331 .3744 .4035 .3813 .4249 .3924
wdbc .5072 .5941 .4510 .4863 .5019 .5463 .4913
ecoli .6981 .7285 .6368 .6866 .7086 .7342 .6701
glass .2737 .2941 .2318 .2438 .2613 .2705 .2318

Table 5.3: Adjusted Rand Index

use of these labels. My algorithm based on the normalized Laplacian performed the best on

4 out of the 5 UCI datasets, but not on the ecoli dataset, where the centroid method was

the overall winner. As stated previously, this method needs a priori information describing

which views of the data are more informative, with this information being encoded in the

λi’s of Equation 5.17. The λ values for the ecoli dataset that performed the best were the

β’s found with the presented normalized Laplacian approach.

The multiple kernel learning algorithms based on the unnormalized and normalized Lapla-

cians have superior performance compared to all other methods on the malware dataset. I

observed that the instances that were clustered incorrectly were very similar to the other

malicious programs in that cluster. For instance, the Lmir and Hupigon trojans had some

crossover in the clusters found, but both have many components related to keylogging and

password stealing, implying that their views are similar. Likewise, the rbot and sdbot mal-

ware had some misplaced instances, but they both share a common lineage. sdbot is derived

from the agobot family, and rbot is derived from sdbot. Both have irc command and control

functionality with the distinction that sdbot is more focused on DDoS attacks and rbot has

more keylogging features. Thus, although they were technically incorrect, their clustering

could still provide useful information to reverse engineers.

Table 5.4 lists the time taken in seconds to perform the optimization. For my methods, as

well as multiple kernel learning based on a classification objective function, this means finding

73

Chapter 5. Multiple Kernel Learning Clustering

SDP unnormalized SDP normalized Classic MKL Centroid Pair-wise

Malware 5.2363 5.8886 3.8057 14.1613 11.2255
iris 0.5322 0.8390 0.4861 2.5610 1.4104

wine 0.9268 1.0301 0.6810 3.2838 2.5101
wdbc 4.7849 5.0183 3.3595 12.1373 10.9162
ecoli 4.0267 4.7754 2.1583 7.7050 6.7499
glass 1.4543 1.7962 0.7340 3.4259 2.3781

Table 5.4: Time to perform optimization, in seconds

the weight vector, β, and the feature space embedding, U , of the Laplacian associated with

the combined kernel. For the pair-wise and centroid methods, this means finding the Uv’s

and U∗ of Equation 5.16 and Equation 5.17. Although classic MKL is the fastest algorithm

on all applications, the presented methods are faster than the competing multiview clustering

algorithms. In Section 5.4.1, I mention several ideas that could greatly decrease the runtime

of my methods and improve the scalability of my methods.

5.4 Conclusion

In this chapter, I presented a novel multiple kernel learning method which is based on

a clustering objective function. Specifically, I incorporated multiple views into the spectral

clustering objective function, and showed how to optimize the multiple kernel learning weight

vector using a semidefinite program. This algorithm iteratively finds the weight vector which

is optimal with respect to the spectral clustering objective function which computes the

feature space embedding used in the k-means algorithm.

I developed these techniques for use in malware clustering, which has become an impor-

tant problem for the rapid response of a malware incident. Malicious programs are a natural

fit for multiple kernel learning methods as they contain many, well researched views such as

dynamic traces, binary data, the disassembled file, and the control flow graph. I have shown

74

Chapter 5. Multiple Kernel Learning Clustering

that this method has superior performance compared to several baseline methods as well as

two state-of-the-art multiple view spectral clustering algorithms.

5.4.1 Future Work

Because the proliferation of malware has drastically increased over the years, the scalability of

any proposed method is very important. The eigendecomposition, which must be performed

during each iteration of the algorithm to get U ∈ Rn×k, has a näıve runtime of O(n3)

and becomes prohibitive for larger datasets. For the purposes of the presented algorithm,

only the top-k eigenvectors need to be acquired, which has been shown to be efficiently

computable by a decentralized algorithm [60]. Having a distributed means to computing the

top-k eigenvectors would greatly increase the scalability of this method.

Antivirus vendors have a constant incoming supply of malware, and models that can

incrementally cluster these instances would be very advantageous. There has been some

work on incremental spectral clustering techniques. In [81], the authors show how to update

the eigenvectors used for clustering in the event of the addition or deletion of an instance.

This is important for several reasons, namely avoiding the computation of recomputing all of

the eigenvectors. Also, newer instances of malware are constantly being collected and older

instances of malware become less relevant to the current malicious landscape and should be

pruned from the dataset. An interesting direction for future research would be to extend

their work to take multiple data views into account.

75

Chapter 6

Malware Phylogenetics

When beginning the process of understanding a new, previously unseen sample of malware,

it is advantageous to leverage the information gained from reverse engineering previously

seen members of that instance’s family because techniques learned from related instances

can often be applied to a new program instance. A malware family is a group of related

malware instances which share a common codebase and exhibit similar functionality (e.g.

different branches in a software repository). Unlike Chapter 5 where the goal was to find

clusters representing the families, this chapter focuses on extracting a more detailed picture

about the relationships between the malware instances within a given family.

In contrast to Figure 5.1, Figure 6.1 exhibits the proposed output of the ideal phylogenetic

algorithm. This figure clearly shows the evolution of the bagle virus [59] as a directed graph.

The information presented in Figure 6.1 is invaluable for a reverse engineer tasked with

understanding specific instances within a malware family as well as the general evolution of

the family. A key problem in developing an appropriate response to a new malware infection

is that of attribution: determining the author or organization behind the malware. The

creation of a phylogenetic graph is a critical first step in malware attribution.

In this chapter I describe a method based on the graphical lasso that finds a Gaussian

76

Chapter 6. Malware Phylogenetics

Bagle.a

Bagle.b

Bagle.d

Bagle.g

Bagle.eBagle.n

Bagle.o

Bagle.q

Bagle.i

Bagle.j

Figure 6.1: An example of creating a phylogenetic graph for the bagle worm.

graphical model where the malware instances are represented as nodes, and the evolutionary

relationships are represented as edges. I present a novel extension to a standard algorithm

that shows how to incorporate multiple views of the data. Finally, I mention several heuristics

to force directionality within the Gaussian graphical model, allowing analysts to see exactly

how the family has evolved.

77

Chapter 6. Malware Phylogenetics

6.1 Distance-Based Phylogenetic Reconstruction

Computing phylogenetic trees has been an active area of research within the malware do-

main, where the trees are constructed by common techniques motivated from biology [56,72].

Although maximum-likelihood phylogenetic methods [51] are popular in the biology commu-

nity [43,50], their computational complexity poses severe limitations in the malware domain.

Given a multiple sequence alignment [36] and a specific phylogenetic tree, the likelihood for

each character in the alignment must be computed. With n sequences and s states, the

computational complexity of computing the likelihood for the ith state is O(sn−2) [51]. This

is expensive yet tractable when considering data such as DNA where there are only 4 states

(A,G,T,C), but in the malware domain where the assembly instructions are the states, s is

typically in the hundreds. In addition to the computational complexity, there exists non-

sequence-based data such as the control flow graph, which is not suited to sequence-based

analysis. The control flow graph still contains important information about malware phy-

logeny, which we would not want to discard. Therefore, I only compare my proposed method

to distance-based methods, where the previously defined kernels can be easily adapted.

6.2 Graphical Lasso for Phylogenetic Reconstruction

Most malware phylogeny techniques in the literature rely on bifurcating tree-based ap-

proaches [33,46,53,116]. The shortcoming of these methods is that they do not give ancestral

relationships to the data. I pose a new problem: attribution-based phylogenetic reconstruc-

tion where the goal is to find a graph, G = 〈V,E〉. The vertices of the graph, V , are

the instances of malware and the directed edges of the graph, E, represent phylogenetic

relationships between the data such as “child of” or “parent of”.

In Figure 6.2, I show the difference between the output of the two approaches. Both

approaches contain valuable information, but I argue that the information on Figure 6.2

78

Chapter 6. Malware Phylogenetics

00
26

fc

00
48

71

00
52

1d

un
in

s0

tz
ch

an

un
fe

ed

to
ga

c.

to
ol

s.

to
ur

.e

tra
ce

r

ts
cu

pg

ts
ad

m
i

un
in

st

00
01

99

00
0d

66

00
21

97

00
0f

d5

00
33

74

00
09

ca

00
60

0d

0

5

10

15

20

(a) Typical Hierarchical Clustering

togac 000199

000d66 002197 000fd5

0026fc

004871 00521d

unins0

tzchan

tools

unfeed

toure tracer tscupg

003374 0009ca tsadmi uninst

00600d

(b) Phylogenetic Reconstruction

Figure 6.2: The difference between the two proposed clustering approaches on the same
underlying data set. The typical hierarchical clustering that has been done in the past is
shown in (a), and an example of the output of the proposed attribution-based phylogenetic
reconstruction method is shown in (b).

79

Chapter 6. Malware Phylogenetics

(b) is more helpful from a reverse engineering standpoint. The main advantage of the new

approach is that the graph from attribution-based phylogenetic reconstruction explicitly

states the phylogenetic relationships between instances of malware. For a reverse engineer,

knowing that an instance of malware is similar to known malware, say from the same family,

rapidly speeds up the reverse engineering process as the analyst will have a general idea

of the mechanisms used by the sample. It is more informative to know the set of parents

from which a given sample’s functionality is derived. Malware having multiple parents is

becoming increasingly common [45]. Having malware which is a composite of several other

samples is becoming more widespread as malware authors are beginning to use standard

software engineering practices, thus making the reuse of code more prevalent.

6.2.1 Overview of Graphical Lasso

The solution I propose is unsupervised and based on the graphical lasso (glasso) [39], which

estimates the phylogenetic graph by finding a sparse precision matrix based on the combined

kernel matrix. Glasso maximizes the Gaussian log-likelihood with respect to the precision

matrix, Θ = Σ−1, of the true covariance (kernel) matrix, Σ:

max
Θ
{log(det(Θ))− tr(KΘ)− ||Θ ◦ P ||1} (6.1)

where K is the sample covariance matrix, which in this case means the kernel matrix for a

given view of malware. || · ||1 is the classic L1 norm used in standard lasso, P is a matrix

penalizing specific edges of the precision matrix, and ◦ is the Hadamard product. There

have been several efficient algorithms developed to solve Equation 6.1 that I take advantage

of in this work [10,39].

By finding the precision matrix with an L1 penalty, I am seeking a sparse graph that

captures the conditional independencies of the true covariance matrix. For instance, if there

exists three examples of malware with a direct lineage (xc is derived from xb, xb is derived

from xa), then the näıve approach of creating links between similar examples would create a

80

Chapter 6. Malware Phylogenetics

completely connected graph between these samples. This would not be unreasonable as they

are all similar. The strength of glasso is that it leverages the precision matrix to discover

that xc and xa are conditionally independent given xb, which would omit the edge between

xc and xa.

6.2.2 Modifying Graphical Lasso for Multiple Views

Equation 6.1 solves the problem of finding a Gaussian graphical model for a single view. The

obfuscation techniques of malware make this an insufficient solution as individual views can

often be unreliable as shown in Chapter 4. Instead, the following multiview problem should

be solved:

max
Θ,β

{
log(det(Θ))− tr

(
M∑
i=1

(βiKi) Θ

)
− ||Θ ◦ P ||1 − λ||β||2

}
(6.2)

Using the linearity of the trace function and rearranging terms:

min
Θ,β

{
M∑
i=1

βitr(KiΘ)− log(det(Θ)) + ||Θ ◦ P ||1 + λ||β||2

}
(6.3)

s.t.
∑
i

βi = 1

∀iβi ≥ 0

The algorithm I employ is based on alternating projections, first finding the optimal Θ

while holding β fixed and then finding the optimal β while holding Θ fixed. As I mentioned

previously, there are many efficient algorithms to solve for the optimal Θ [10,39]. To solve for

the optimal β assuming a fixed Θ, I first note that −log(det(Θ)) + ||Θ ◦ P ||1 is independent

of β and can therefore be ignored in the optimization of β leaving us with:

min
β

{
M∑
i=1

βitr(KiΘ)

}
(6.4)

81

Chapter 6. Malware Phylogenetics

Algorithm 2 Multiple View Graphical Lasso, iteratively finds optimal β and Θ, return Θ.

Require: initial β

score0 ← log(det(Θ))− tr
(∑M

i=1 (βiKi) Θ
)
− ||Θ ◦ P ||1

while scoret < scoret−1 do

ai = tr(KiΘ)

β ← min aTβ + 1
2
βTCβ

s.t. Gβ � h

K ←
∑M

i=1 βiKi

Θ← maxΘ{log(det(Θ))− tr(KΘ)− ||Θ ◦ P ||1}

scoret ← log(det(Θ))− tr
(∑M

i=1 (βiKi) Θ
)
− ||Θ ◦ P ||1

end while

return precision matrix, Θ

If I let ai = tr(KiΘ), this problem can be stated as a quadratic program [19] allowing for

the use of many efficient algorithms:

min
β

aTβ +
1

2
βTCβ (6.5)

s.t. Gβ � h

where the simplex constraint forces β to sum to 1 and be non-negative, and 1
2
βTCβ removes

the incentive of having βi = 1, βj 6=i = 0. In the case of the degenerate solution, βi = 1, βj 6=i =

0, this procedure reduces to a feature selector basing all further optimizations on the one

best view. Intuitively, a more robust solution would make use of all available information. I

defend this intuitive claim in Section 6.2.6. Algorithm 2 outlines the procedure for finding

the optimal precision matrix, Θ, when given multiple views of the data.

6.2.3 Leveraging Clusters in Graphical Lasso

While Algorithm 2 solves Equation 6.3, I found that the uniform penalization of the

82

Chapter 6. Malware Phylogenetics

V0.89

V0.88

v0.9

V1.0

V1.3 V1.2

V1.4

V1.1

v0.86

v0.85v0.84v0.83

v0.8

v0.81 v0.82v0.78

v0.77v0.75 v0.76v0.74v0.71

(a) MKL glasso without clustering.

v0.75

v0.74

v0.71

v0.76 v0.77

V1.1

v1.0

V1.3

V1.2

v0.9

v0.89v0.88

V1.4

v0.82

v0.84

v0.85

v0.86

v0.78

v0.8

v0.81

v0.83

(b) MKL glasso with clustering.

Figure 6.3: NetworkMiner MKL glasso results with and without clustering.

83

Chapter 6. Malware Phylogenetics

Algorithm 3 Multiple View Graphical Lasso, iteratively finds optimal β and Θ, return Θ.

Leverages cluster information to have different penalization throughout the precision matrix

Require: initial β

clusters, C ← Algorithm 1

for ck ∈ C do

ρ← (
∑|ck|

i,j Ki,j)/|ck|2

Θk ←perform Algorithm 2 with penalization ρ on cluster ck

end for

K ′ ← compute inter-cluster similarity matrix

ΘC ← perform Algorithm 2 with K ′

return precision matrices, ΘC , Θk

L1-norm led to an interesting phenomenon, namely, the resulting precision matrix was glob-

ally sparse with a small subset of the nodes being highly connected. This suggests that a

uniform penalty is not appropriate for this problem. Figure 6.3 highlights the advantages of

performing a clustering pre-processing step. In Figure 6.3a, many of the different versions

of NetworkMiner [80] are unconnected, effectively giving the analyst no information as to

their evolution. On the other hand, Figure 6.3b shows how clustering the instances can be

a huge advantage. Once similar versions of the program are clustered together, penalizing

the L1-norm uniformly within that cluster becomes more appropriate.

Leveraging clusters in the multiview graphical lasso is straightforward. First, the clusters,

C = c1, . . . , cn, are found using Algorithm 1 of Chapter 5. Then, the multiview graphical

lasso (Algorithm 2) is applied to each cluster, adjusting the penalty term appropriately.

To adjust the penalty, I used a heuristic, (
∑|ck|

i,j Ki,j)/|ck|2, which effectively penalizes self-

similar clusters heavily, allowing those clusters to be more sparse. Finally, I create a new set

of similarity matrices, but instead of measuring the similarity between different instances in

the dataset, this similarity matrix measures similarity between the different clusters. This

matrix is simply created by taking the average similarity between every x ∈ ci and y ∈

84

Chapter 6. Malware Phylogenetics

cj. Performing the multiview glasso on these matrices finds the conditional independences

between the different clusters. Algorithm 3 details the procedure.

6.2.4 Forcing Directionality

The major drawback to the graphical lasso approach is that it does not find directed graphs,

but rather finds an undirected Gaussian graphical model. Because of this, it cannot identify

parent/child relationships, meaning that when a link between xa and xb is found, there is no

information as to whether xb is the child of xa or vice-versa. I have experimented with several

heuristics to determine the directionality of the edges in the Gaussian graphical model.

The first method, and seemingly the most accurate, is contained within the portable

executable (PE) header information. Here, there is a 32-bit value that contains the time and

date the PE file was compiled as seconds since January 1st, 1970 00:00:00. Unfortunately,

malware authors often obfuscate this field, either setting it to all 0’s, or even worse, setting

it to a seemingly legitimate, but inaccurate date. As a reference point for the prevelance of

this type of defense, the Bagle malware dataset had 9 out of 25 samples where this field was

obfuscated.

In the case where directionality cannot be reliably inferred from the PE header timestamp,

I fallback to using entropy, under the assumption that as programs evolve, they become more

complex. This has been shown to be a reasonable metric in the software engineering literature

[71]. While this is undoubtedly not correct for all programs, it has proven to be a somewhat

reliable last resort. In addition, it seems to be a more robust measure of a program’s evolution

compared to the intuitive measure of a program’s size. For both Algorithms 2 and 3, this

method of forcing directionality can be considered a post-processing step on the precision

matrices, Θ.

85

Chapter 6. Malware Phylogenetics

Bagle.dx

Bagle.du

Bagle.ds

Bagle.dr

Bagle.dq

Bagle.cb

Bagle.bjBagle.aa

Bagle.k

Bagle.f

Bagle.h

Bagle.g

Bagle.e

Bagle.yBagle.af

Bagle.p

Bagle.r

Bagle.q

Bagle.o

Bagle.n

Bagle.j

Bagle.i

Bagle.a

Bagle.b

Bagle.d

Figure 6.4: The ground truth phylogeny for the bagle worm.

6.2.5 Data

To be able to accurately quantify my results, I must have access to ground truth, more

precisely, the true phylogenetic graph of the program. As one can imagine, this is a very

difficult, time-consuming process. Fortunately, it is made easier for some benign programs as

their subversion or github repositories can be used to gather this information. Unfortunately,

malware authors do not typically use these tools in an open setting, making the phylogenetic

graphs of malware much more difficult to obtain. To understand the evolution of a malware

family, I elicited the help of several experts at Los Alamos National Laboratory that are a

part of the computer security incident response team. These experts used several sources of

86

Chapter 6. Malware Phylogenetics

Dataset Variants
Mytob a, b, c, f, j, n, t, v, x, ar, au, aw, bf, bi, ef, eg, ej, jb, ja, jd
Koobface a, b, d, e, g, h, k, q, t, y, z, ab, ad, af, ai, ak, ba, bc, bn
Bagle a, b, d, e, f, g, h, i, j, k, n, o, p, q, r, y, aa, af, bj, cb, dq, dr, ds, du, dx
NetworkMiner .71, .74, .75, .76, .77, .78, .8, .81, .82, .83, .84, .85, .86, .88, .89, .9, 1.0,

1.1, 1.2, 1.3, 1.4
Mineserver 05e8b7ae002496a810c68dda2d9783a9e3c2a013

0e290772a2e387be832d587596f983a4cf4c8b1f

20c721a331d411b193c20ab917b877cc50756dea

306bf349f9a4297b2cee4373f6b38c5b2dc18c6b

3761930a9cc5e9a2e2fd7d7ac0ab8bc961ff6f64

387585fd85761ddab76032c86cf425c452a23bc5

6bf36f39020acd3b4765ac7d6e98b77e2be0c33f

7120ec0443c43a722c68c833405742350d17d93a

97bab2ea91a303de3b1545d388fae576300acd47

a6ac3e47b3f4b2ad22b56b5f21effc73838f9538

bc932c828f94406c46db979d01a09f3e55e16fad

d9088e55d618954f0f467cb1e5d60d7c171e50ad

f694a73d1dc360c008bf8ccefa1b8afbf75cdc3e

Table 6.1: The variants used for each family. For the malicious families, the variants are
labels a → z, aa → az, etc. in order of first detection in the wild. NetworkMiner uses the
official version numbers supplied by the authors, and Mineserver uses the sha1, which is
searchable from the github repository.

information to come up with an informed graph depicting the evolution of malware, such as

the time the malware was first seen in the wild, the compile-time timestamp, the functionality

of the sample, and the obfuscation methods employed by the sample. While the phylogenetic

graphs the domain experts have manually found are by no means 100% accurate, they do

provide a reasonable baseline in a setting where ground truth is not available.

I use three malicious programs: Mytob, Koobface, and Bagle. These samples were ob-

tained from VX Heaven [115]. The specific variants used are listed in Table 6.1. Mytob is a

mass-mailing worm that seeks a user’s address book to then send itself to all of that user’s

contacts [111]. Several variations also have the ability to exploit network vulnerabilities to

87

Chapter 6. Malware Phylogenetics

spread without the need of its internal SMTP engine. The Koobface worm spreads through

social networking sites with the intent of installing software for a botnet [110]. This worm

updates a user’s status with a link to some type of external media content, that is actually

another copy of the worm. Bagle is another mass-mailing worm, that creates a botnet [109].

It has the ability to download external content, as well as spread through file-sharing net-

works, such as Kazaa, by placing a copy of itself in the “share” folder. The expert derived

ground truth phylogeny of the bagle worm is shown in Figure 6.4, with all ground truth

phylogenies being shown in Appendix B.

In addition to the malicious programs, I validate my methods on two benign programs,

NetworkMiner and Mineserver, due to the ground truth for these graphs being more readily

available. NetworkMiner is a network forensics anaylsis tool specializing in packet sniffing

and parsing PCAP files [80]. Mineserver is a way to host worlds in the popular Minecraft

game [78].

6.2.6 Results

Table 6.3 lists all the results for the 5 datasets previously described with respect to precision,

recall, and F-norm. Figure 6.5 shows a hypothetical ground truth graph with a hypothetical

reconstructed graph. In this example, the precision would be 2/4 as 2 of the 4 reconstructed

edges are true positives with respect to the ground truth, and the recall would be 2/3 as

the reconstructed graph contains 2 out of the 3 true edges with respect to the ground truth.

The Frobenius norm, or F-norm, between 2 matrices is defined as:

||A−B||F =

√∑
i

∑
j

(Aij −Bij)2 (6.6)

which I compute by taking the Frobenius norm between the reconstructed graph and the

ground truth graph. I compare my multiview glasso + clustering approach to my multiview

glasso approach and regular glasso with and without the clustering preprocessor for both

88

Chapter 6. Malware Phylogenetics

Figure 6.5: On the left is a hypothetical ground truth graph and on the right is a hypothetical
reconstructed graph. In this example the precision would 2/4 and the recall would be 2/3.

the best single view and a uniform combination of views. I also compare my approach to

the Gupta algorithm [45] and a simple baseline, the minimum spanning tree.

As Table 6.3 demonstrates, the proposed method performs well on a variety of datasets,

both malicious and benign. The Gupta algorithm performs well with respect to precision, and

even out-performs my algorithm on the mineserver dataset, but this is mainly because it finds

sparser graphs, where precision will naturally be higher. The mineserver dataset is interesting

for two reasons: the ground truth is known with absolute certainty, and merges and branches

are present. Both of these cases are present in most real-word software engineering projects

including malware. Figure 6.6 shows the ground truth as well as the graph acquired with

the multiview glasso + clustering method. As the figure demonstrates, I was able to recover

the majority of the branches and merges, and can recover most of the evolutionary flow of

the program.

The cophenetic correlation coefficient is a measure of how well a hierarchical clustering

algorithm models the original distances. In this setting, the distances are based on the

89

Chapter 6. Malware Phylogenetics

Hierarchical Clustering MKLGlasso+Clust
networkminer .3749 .5361
mineserver .4432 .6886
bagle .1167 .1733
mytob .1098 .3808
koobface .1424 .2463

Table 6.2: Cophenetic correlation coefficients comparing hierarchical clustering to my pro-
posed approach.

translated kernel values, between the data points [98], and is given by:

c =

∑
i<j(x(i, j)− x)(t(i, j)− t)√[∑

i<j(x(i, j)− x)2
] [∑

i<j(t(i, j)− t)2
] (6.7)

In Equation 6.7, t(i, j) is the distance between i and j by the model found, t is the average

distance between all instances found by the model, x(i, j) is the ground truth distance

between i and j, and x is an average of the ground truth distance between all instances.

Table 6.2 compares the cophenetic correlation coefficient between the MKL glasso +

clustering method I have presented and the UPGMA hierarchical clustering algorithm [125]

that has been typically used in this domain [56,72]. This table was included for completeness

to compare to hierarchical clustering methods, and these results should not be taken out of

context. While my method outperforms hierarchical clustering, this is mainly because it is

not restricted to dendrogram structures (i.e. bifurcating trees) [125], but rather have a much

more expressive model space.

90

Chapter 6. Malware Phylogenetics

Dataset Method F-norm Precision Recall

NetworkMiner

MKLGlasso+Clust 4.5826 .4857 .85
MKLGlasso 5.5678 .3514 .65
Glasso-Best View 6.0 .2895 .55
Glasso-Best View+Clust 5.3852 .3902 .80
Glasso-Uniform Comb 6.1644 .3043 .70
Glasso-Uniform Comb+Clust 5.0 .4360 .85
Gupta 5.0 .3810 .40
Minimum Spanning Tree 5.6569 .35 .70

MineServer

MKLGlasso+Clust 4.0 0.7222 0.8125
MKLGlasso 5.4772 0.5833 0.2188
Glasso-Best View 5.8242 0.4118 0.1935
Glasso-Best View+Clust 4.8134 0.4510 0.3871
Glasso-Uniform Comb 5.6711 0.4314 0.1875
Glasso-Uniform Comb+Clust 4.4655 0.4902 0.4194
Gupta 4.7958 0.8462 0.3438
Minimum Spanning Tree 7.4833 0.0 0.0

Bagle

MKLGlasso+Clust 5.7446 0.20 0.3333
MKLGlasso 9.5394 0.0964 0.125
Glasso-Best View 10.7731 0.0704 0.1176
Glasso-Best View+Clust 5.5813 0.1480 .0909
Glasso-Uniform Comb 10.2921 0.0812 0.0980
Glasso-Uniform Comb+Clust 9.6476 .1351 .1220
Gupta 6.5574 0.12 0.125
Minimum Spanning Tree 8.3667 0.0208 0.0417

Mytob

MKLGlasso+Clust 7.9373 0.1563 0.5263
MKLGlasso 8.5348 0.0988 0.2258
Glasso-Best View 8.7388 0.0864 0.1935
Glasso-Best View+Clust 8.2184 0.1282 0.2903
Glasso-Uniform Comb 10.2766 0.0617 0.1951
Glasso-Uniform Comb+Clust 8.8117 0.1081 0.2683
Gupta 6.0828 0.05 0.0526
Minimum Spanning Tree 7.2801 0.0526 0.1053

Koobface

MKLGlasso+Clust 5.2915 0.5812 0.5
MKLGlasso 5.3852 0.2917 0.3889
Glasso-Best View 6.8551 0.2391 0.3171
Glasso-Best View+Clust 6.0427 0.2821 0.3235
Glasso-Uniform Comb 6.6043 0.2195 0.2927
Glasso-Uniform Comb+Clust 5.9486 0.3023 0.3636
Gupta 5.9161 0.3158 0.3333
Minimum Spanning Tree 7.2111 0.0278 0.0556

Table 6.3: Phylogenetic graph reconstruction results in terms of F-norm, Precision, and
Recall.

91

Chapter 6. Malware Phylogenetics

20c7

3761

d908

a6ac

05e8

6bf3

97ba

3875

7120

306b

f694bc93

0e29

(a) Ground truth

306b

7120

20c7

d908

3761

a6ac

0e29

05e8

6bf3

97ba

bc93

3875 f694

(b) MKL Glasso+Clustering

Figure 6.6: Comparison between mineserver ground truth and the network identified by
Algorithm 3

92

Chapter 7

Conclusions

The primary thesis of this dissertation is that incorporating multiple views of malware pro-

vides a significant benefit compared to looking at only a single view for classification, clus-

tering, and phylogenetic reconstruction. Multiple views of data can be used to increase the

performance of machine learning algorithms for a variety of fields, but it is particularly im-

portant in the malware context because any single view is susceptible to a fixed obfuscation

strategy. While it is easy to make a single malware view unreliable, it is much harder to

obfuscate against all views simultaneously. I have shown that multiple views do indeed im-

prove performance for a variety of tasks including classification, clustering, and phylogenetic

graph reconstruction. To enable this analysis, I also developed a number of machine learning

algorithms that can exploit multiple data views.

7.1 Discussion

Finding a data representation that worked well with the sequence-based data derived from

the malware was the first step of this research. In Chapter 3 I presented the Markov chain

data representation. I showed how to define a kernel, or similarity function, on these Markov

93

Chapter 7. Conclusions

chains that can capture similarity on both the local and global structure of the Markov

chains. I modeled the dynamic instruction traces as Markov chains and the results presented

demonstrated that this representation was superior to that of the n-gram representation,

which had been extensively used in the malware literature.

Once I established the data representation, I then showed the importance of combin-

ing multiple views of the malware samples. The first problem I approached was that of

classification. Fortunately, there is a rich history of multiple view learning in the machine

learning literature. I was able to apply existing multiple kernel learning algorithms to solve

the multiview classification problem for malware, and I presented results that supported my

hypothesis that combining multiple views of malware would increase classification accuracy.

When analyzing malware, a simple yes/no answer is a good start, but knowing the

relationships between a new sample and previously seen samples is much more informative.

The ability to group malware samples into similar families has the potential to drastically

reduce the time to reverse engineer samples. For instance, members from the computer

security incidence response team at Los Alamos National Laboratory can spend several

weeks analyzing a new sample of malware. But, they can analyze a sample from a known

family, in which they have had previous experience reverse engineering, within several hours

to several days. I investigated this clustering problem in Chapter 5. Unlike the classification

problem, I had to develop novel machine learning algorithms to solve the multiple view

clustering problem. Earlier work required a priori information about the weights of the

views, which can be time-consuming to gather in the malware domain. These weights could

also drastically change between datasets. I showed that my multiview clustering approach

is superior to previous approaches used in the malware domain. I also showed that these

methods outperform competing methods on several machine learning benchmark datasets.

Finally, I presented my work on malware phylogenetics in Chapter 6. This line of re-

search will both help reverse engineers understand the evolution of malware they are currently

studying and help them attribute malware instances to known authors. I created a novel

94

Chapter 7. Conclusions

extension to graphical lasso to allow phylogenetic analysis from multiple views with no a

priori information on the importance of the individual views. Again I showed that incorpo-

rating multiple views of the data increased performance of the system on several datasets,

both benign and malicious.

There is a constant “arms race” between the people developing malicious code and those

detecting and understanding it. In this dissertation, I have introduced the multiview frame-

work for several important analysis problems, while developing novel machine learning al-

gorithms, applicable to fields outside of malware, when appropriate. I have shown how the

methods of this dissertation have succeeded despite the constant use of advanced obfuscation

techniques within the malware datasets. Moving toward a multiview analysis framework is

one way to raise the bar for malware authors, forcing them to devote more time and resources

into developing solutions that avoid detection.

7.2 Future Work

A theme throughout this dissertation was that of helping malware analysts do their job more

effectively. They are under severe time constraints to understand the malware’s functional-

ity and respond appropriately. The tools developed in the previous chapters will give the

analysts a significant head start, but there are future research avenues that could provide

further help.

Understanding the functions of a given piece of malware is a tedious process that can

last anywhere from a day to months, depending on the malware’s complexity. This process

usually requires the analyst to hand label different sections of the function call graph and

to slowly connect the “dots” into a picture of the malware’s logic. This provides an exciting

area to apply and extend the methods described in this dissertation.

This problem can be posed as a multi-class classification problem, where the labels would

95

Chapter 7. Conclusions

be the function the subroutine performs (e.g. data exfiltration), instead of the normal

labeling of benign vs malware. Two problems arise in this formulation: a data problem and

a methodology problem. First, getting a labeled dataset would require hundreds, or even

thousands, of hours from a skilled reverse engineer. And second, the Markov chain data

representation may have to be adjusted to account for a significantly shorter sequence of

instructions. For instance, the program instruction traces used throughout this dissertation

typically had several million instructions, whereas functions within a program typically have

several hundred.

In addition to new science directions, there are some interesting engineering applications

for the research already completed. It would be interesting to implement the phylogenetic

graph reconstruction presented in Chapter 6 within a system that classifies malware. This

would allow for a much deeper understanding of the network’s threat landscape, and would

allow the analysts tasked with attribution to do their jobs more efficiently.

96

Appendices

A Multiple Kernel Learning Clustering Proofs 97

B Ground Truth Phylogenetic Networks 99

C Computational Complexity of the Methods 105

D Gaining Access to the Code/Data 108

97

Appendix A

Multiple Kernel Learning Clustering

Proofs

A.1 Finding Ai for the Unnormalized Laplacian

The multiple views version of the unnormalized Laplacian is defined as:

Lun(β) =
M∑
i

βiDi −
M∑
i

βiKi

Plugging the unnormalized Laplacian into Equation 5.8:

tr

(
UT

(
M∑
i

βiDi −
M∑
i

βiKi

)
U

)

By rearranging terms:

= tr

(
UT

(
M∑
i

βi(Di −Ki)

)
U

)

= tr

(
M∑
i

βiU
T (Di −Ki)U

)

98

Appendix A. Multiple Kernel Learning Clustering Proofs

Using the linearity of the trace function:

= tr
(
β0U

T (D0 −K0)U
)

+ · · ·+ tr
(
βMU

T (DM −KM)U
)

Finally, define Ai = UT (Di −Ki)U .

A.2 Finding Ai for the Normalized Laplacian

The multiple views version of the normalized Laplacian is defined as:

Lnorm(β) = I −

(
M∑
i

βiDi

)−1(M∑
i

βiKi

)

Again, plugging the normalized Laplacian into Equation 5.8:

tr

UT

I −(M∑
i

βiDi

)−1(M∑
i

βiKi

)U



= tr(UT IU)− tr

UT

(
M∑
i

βiDi

)−1(M∑
i

βiKi

)
U


Note that tr(UT IU) = γ is a constant and rearrange terms:

= γ − tr

UT

 M∑
i

βiKi

(
M∑
j

βjDj

)−1
U

 (A.1)

By commuting the negative sign to inside the trace function, Ai for the normalized case

is now defined as:

Ai = UT

−Ki

(
M∑
j

βjDj

)−1
U

99

Appendix B

Ground Truth Phylogenetic Networks

100

Appendix B. Ground Truth Phylogenetic Networks

Bagle.dx

Bagle.du

Bagle.ds

Bagle.dr

Bagle.dq

Bagle.cb

Bagle.bjBagle.aa

Bagle.k

Bagle.f

Bagle.h

Bagle.g

Bagle.e

Bagle.yBagle.af

Bagle.p

Bagle.r

Bagle.q

Bagle.o

Bagle.n

Bagle.j

Bagle.i

Bagle.a

Bagle.b

Bagle.d

Figure B.1: The ground truth phylogeny for the bagle worm.

B.1 Bagle

Bagle is a mass-mailing worm, that also creates a botnet [109]. It has the ability to download

external content, as well as spread through file-sharing networks, such as Kazaa, by placing

a copy of itself in the “share” folder. The specific variants used are highlighted in Table 6.1.

101

Appendix B. Ground Truth Phylogenetic Networks

Mytob.a

Mytob.jMytob.bf Mytob.n

Mytob.fMytob.cMytob.b

Mytob.tMytob.bi

Mytob.jd

Mytob.ja

Mytob.jb

Mytob.eg

Mytob.ej

Mytob.ef Mytob.v

Mytob.x

Mytob.ar Mytob.au

Mytob.aw

Figure B.2: The ground truth phylogeny for the mytob worm.

B.2 Mytob

Mytob is a mass-mailing worm that seeks a user’s address book to then send itself to all

of that user’s contacts [111]. Several variations also have the ability to exploit network

vulnerabilities to spread without the need of it’s internal SMTP engine. The specific variants

used are highlighted in Table 6.1.

102

Appendix B. Ground Truth Phylogenetic Networks

Koobface.b Koobface.h

Koobface.e

Koobface.q

Koobface.d

Koobface.bc

Koobface.ak

Koobface.t

Koobface.a

Koobface.bn

Koobface.k

Koobface.y

Koobface.ab

Koobface.ad

Koobface.af

Koobface.ai

Koobface.g

Koobface.z

Koobface.ba

Figure B.3: The ground truth phylogeny for the koobface worm.

B.3 Koobface

The Koobface worm spreads through social networking sites with the intent of installing

software for a botnet [110]. This worm updates a user’s status with a link to some type

of external media content, that is actually another copy of the worm. The specific variants

used are highlighted in Table 6.1.

103

Appendix B. Ground Truth Phylogenetic Networks

 1.4

0.71

0.83

0.82

0.81

0.8

0.78

0.77

0.76

0.75

0.74

0.84

1.3

1.2

1.1

1.0

0.9

0.89

0.88

0.86

0.85

Figure B.4: The ground truth phylogeny for the Networkminer program.

B.4 NetworkMiner

NetworkMiner is a network forensics anaylsis tool specializing in packet sniffing and pars-

ing PCAP files. The NetworkMinder ground truth phylogeny was taken from its public

subversion repository [80]. The specific variants used are highlighted in Table 6.1.

104

Appendix B. Ground Truth Phylogenetic Networks

20c7

3761

d908

a6ac

05e8

6bf3

97ba

3875

7120

306b

f694bc93

0e29

Figure B.5: The ground truth phylogeny for the mineserver program.

B.5 Mineserver

Mineserver is a way to host worlds in the popular Minecraft game. The Mineserver ground

truth was sampled from its github repository [78]. The specific variants used are highlighted

in Table 6.1.

105

Appendix C

Computational Complexity of the

Methods

C.1 Complexity of the SVM

The computational complexity of the support vector machine needs to broken down into

two phases: training and testing. To begin the training, a kernel must first be defined. The

kernels that I have used are explained in Section 3.2. In the case of the Markov chain data

representation with n samples and a node set V , computing the Gaussian kernel (Equation

3.2) is O(n2 · |V |2). For the spectral kernel (Equation 3.4) computing the top-k eigenvectors

of Laplacian has O(k · |V |2) complexity bringing the total computational complexity of this

kernel to O(n2k · |V |+ k · |V |2). Training of the support vector machine can be in O(n · |α|)

where |α| is the number of support vectors found [85] bringing the total computational

complexity for the training of the combined kernel of Chapter 3 to O(n2 · |V |2 + n2k · |V |+

k · |V |2 + n · |α|).

Given a new sample, a kernel function, and the support vectors (α) given from the training

step, the sample can be classified with Equation 3.11. This function has computational

106

Appendix C. Computational Complexity of the Methods

complexity of O(|α| · (k · |V |2 + |V |2)) for the combined kernel approach of Chapter 3.

Empirical timings for these methods are given in Table 3.3

C.2 Complexity of the Multiview SVM

The computational complexity for the multiple kernel learning support vector machine is

composed of two parts: one to calculate the β vector and one for the α vector. Computing

α given β has the same complexity of normal SVM training and is explained in Appendix

C.1. Computing β has been shown to have complexity O(|αt|3 ·M |) where |αt| is the number

of non-zero support vectors at iteration t and M is the number of views [88]. Furthermore,

this algorithm has been shown to converge in O(log(M)/ε2) iterations where ε is related to

the stopping criteria (see Equation 4.11) [101]. Therefore, the training complexity for M

views with a Gaussian kernel on the Markov chains would be O(
∑M

i (n2 · |Vi|2)+log(M)/ε2 ·

(|αt|3 ·M |))

The testing phase of the multiview SVM is the same as the single SVM with more kernels

and the complexity for a Gaussian kernel on each view isO(|α|·(
∑M

i |Vi|2)). Empirical timing

results for the Multiview SVM can be found in Table 4.5 and Figure 4.7.

C.3 Complexity of the Multiview Clustering

The multiview clustering algorithm of Chapter 5 is an iterative algorithm, and while there

is no formal convergence proof, I will note that the algorithm converged within 10 iterations

in all of the experiments. The algorithm is composed of two main parts: computing the

spectral clustering objective function to get U (Equation 5.8) and computing a semidefinite

program to find β (Equation 5.9). Computing Equation 5.8 can be done in O(n3) time where

n is the number of samples [74]. Equation 5.9 has a computational complexity of O(n6) in

107

Appendix C. Computational Complexity of the Methods

the worst case but has been shown to be O(n3) in the average case [17].

Empirical times to compute the optimization for the multiview clustering algorithms

based on the normalized and unnormalized Laplacian are presented in Table 5.4.

C.4 Complexity of the Multiview Graphical Lasso

Similar to the multiview clustering algorithm, the multiview graphical lasso algorithm is an

iterative algorithm with two main components. First, graphical lasso is solved given some β

vector specifying the weights of each view. Graphical lasso has a computational complexity of

O(n3) where n is the number of samples [119]. Next, β is updated with a quadratic program,

which has a computational complexity O(n3) where n is again the number of samples [120].

This algorithm converged within 15 iterations for all datasets presented in Chapter 6.

108

Appendix D

Gaining Access to the Code/Data

Access to the code/data referenced herein is restricted. If you are an employee or a contractor

to the U.S. Government and are a U.S. citizen, you may be able to obtain access to the data.

Furthermore, Industrial and University partners with an active CRADA agreement with

LANS, LLC and U.S. citizenship may also be able to obtain access to the data. To do so,

please send an email to cyber@lanl.gov.

In Chapter 3, the support vector machine was trained using PyML [13]. For the results

of Chapter 3, I compared against 9 leading antivirus products: BitDefender [18], Kaspersky

[58], Avira [8], F-Secure [40], F-prot [37], Symantec [108], ClamAV [27], McAfee [77], and

AVG [7]. These results were gathered in September 2010 with the most current signature

databases.

In Chapter 4, the multiple kernel support vector machine was trained using the Shogun

library [102]. For these results, I compared against 11 leading antivirus products: BitDe-

fender [18], Kaspersky [58], Avira [8], F-Secure [40], F-prot [37], AVG [7], ClamAV [27],

Sophos [104], Symantec [108], McAfee [77], and Avast [6]. These results were gathered in

September 2011 with the most current signature databases.

109

Appendix D. Gaining Access to the Code/Data

The semidefinite program in Chapter 5 and the quadratic program in Chapter 6 were

both solved for by using the CVXOPT python software for convex optimization [30]. The

graphical lasso optimization problem of Chapter 6 was solved by using the glasso R package

[42].

The malware from Chapters 3 and 4 were in part supplied by the Offensive Computing

malware repository [83], with other malware samples and benign samples being supplied by

a LANS, LLC CRADA partner. The malware from Chapter 5 was supplied by a LANS,

LLC CRADA partner. In Chapter 6, the three malicious families, i.e. Mytob, Koobface,

and Bagle, were obtained from VX Heaven [115]. The specific variants used are listed in

Table 6.1. The benign families, i.e. NetworkMiner and Mineserver, are available to download

from sourceforge for NetworkMiner [80] and github for Mineserver [78]. The variants used

are listed in Table 6.1.

110

References

[1] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane, Graph-Based

Malware Detection using Dynamic Analysis, Journal of Computer Virology (2011), 1–12.

[2] Blake Anderson, Curtis Storlie, and Terran Lane, Improving Malware Classification: Bridging

the Static/Dynamic Gap, Proceedings of the Fifth ACM Workshop on Security and Artificial

Intelligence, 2012, pp. 3–14.

[3] , Multiple Kernel Learning Clustering with an Application to Malware, IEEE Twelfth

International Conference on Data Mining, 2012, pp. 804–809.

[4] ANUBIS: A Platform for the Dynamic Analysis of Malware, Accessed 17 September 2013.

http://anubis.iseclab.org/.

[5] ASPack Software, Accessed 17 September 2013. http://www.aspack.com/asprotect.html.

[6] Avast, Accessed 27 February 2014. http://www.avast.com/en-us/index.

[7] AVG, Accessed 27 February 2014. http://www.avg.com/us-en/homepage.

[8] Avira, Accessed 27 February 2014. http://www.avira.com/en/index.

[9] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan, Multiple Kernel Learning,

Conic Duality, and the SMO Algorithm, Proceedings of the Twenty-First International Con-

ference on Machine Learning, 2004.

111

REFERENCES

[10] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont, Model Selection

Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data,

Journal of Machine Learning Research 9 (2008), 485–516.

[11] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and Engin

Kirda, Scalable, Behavior-Based Malware Clustering, ISOC Network and Distributed System

Security Symposium, 2009.

[12] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda, Dynamic Analysis of

Malicious Code, Journal of Computer Virology 2 (2006), 67–77.

[13] Asa Ben-Hur, Pyml: Machine Learning in Python, Accessed 17 September 2013. http://

pyml.sourceforge.net/.

[14] Steffen Bickel and Tobias Scheffer, Multi-View Clustering, Proceedings of the Fourth IEEE

International Conference on Data Mining, 2004, pp. 19–26.

[15] Daniel Bilar, Opcodes as Predictor for Malware, International Journal of Electronic Security

and Digital Forensics 1 (2007), 156–168.

[16] Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[17] Pratik Biswas, Tzu-Chen Lian, Ta-Chung Wang, and Yinyu Ye, Semidefinite Programming

Based Algorithms for Sensor Network Localization, ACM Transactions on Sensor Networks

(TOSN) 2 (2006), no. 2, 188–220.

[18] BitDefender, Accessed 27 February 2014. http://www.bitdefender.com/.

[19] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press,

New York, NY, USA, 2004.

[20] Andrew P Bradley, The Use of the Area Under the ROC Curve in the Evaluation of Machine

Learning Algorithms, Pattern Recognition 30 (1997), no. 7, 1145–1159.

112

REFERENCES

[21] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga, Detecting Self-Mutating Malware

using Control-Flow Graph Matching, Detection of Intrusions and Malware and Vulnerability

Assessment, 2006, pp. 129–143.

[22] Christopher J. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

Data Mining and Knowledge Discovery 2 (1998), 121–167.

[23] Claire Cardie and Nicholas Nowe, Improving Minority Class Prediction using Case-Specific

Feature Weights, Proceedings of the Fourteenth International Conference on Machine Learn-

ing, 1997, pp. 57–65.

[24] Baudouin Le Charlier, Abdelaziz Mounji, Morton Swimmer, and Fachbereich Informatik, Dy-

namic Detection and Classification of Computer Viruses using General Behaviour Patterns,

Proceedings of the Virus Bulletin Conference (1995).

[25] Mihai Christodorescu and Somesh Jha, Static Analysis of Executables to Detect Malicious

Patterns, Proceedings of the Twelfth USENIX Security Symposium, 2003, pp. 169–186.

[26] Fan R. K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathematics,

No. 92), American Mathematical Society, 1997.

[27] ClamAV, Accessed 27 February 2014. http://www.clamav.net/lang/en/.

[28] Jedidiah R Crandall, Roya Ensafi, Stephanie Forrest, Joshua Ladau, and Bilal Shebaro, The

Ecology of Malware, Proceedings of the Workshop on New Security Paradigms, 2009, pp. 99–

106.

[29] Jedidiah R Crandall, S Felix Wu, and Frederic T Chong, Minos: Architectural Support for

Protecting Control Data, ACM Transactions on Architecture and Code Optimization (TACO)

3 (2006), no. 4, 359–389.

[30] Joachim Dahl and Lieven Vandenberghe, Cvxopt: Python Software for Convex Optimization,

Setembro, 2009.

[31] Jianyong Dai, Ratan Guha, and Joohan Lee, Efficient Virus Detection Using Dynamic In-

struction Sequences, Journal of Computers 4 (2009), no. 5.

113

REFERENCES

[32] P. Danaher, P. Wang, and D. M. Witten, The Joint Graphical Lasso for Inverse Covariance

Estimation Across Multiple Classes, ArXiv e-prints (November 2011), available at 1111.0324.

[33] Craig Darmetko, Steven Jilcott, and John Everett, Inferring Accurate Histories of Malware

Evolution from Structural Evidence, The Twenty-Sixth International FLAIRS Conference,

2013.

[34] DDoS Attacks: The Zemra Bot, Accessed 4 February 2014. http://www.symantec.com/

connect/blogs/ddos-attacks-zemra-bot.

[35] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee, Ether: Malware Analysis Via

Hardware Virtualization Extensions, Proceedings of the Fifteenth ACM Conference on Com-

puter and Communications Security, 2008, pp. 51–62.

[36] Robert C Edgar and Serafim Batzoglou, Multiple Sequence Alignment, Current Opinion in

Structural Biology 16 (2006), no. 3, 368 –373.

[37] F-Prot, Accessed 27 February 2014. http://www.f-prot.com/.

[38] A. Frank and A. Asuncion, UCI Machine Learning Repository (2010).

[39] Jerome Friedman, Trevor Hastie, and Robert Tibshirani, Sparse Inverse Covariance Estima-

tion with the Graphical Lasso, Biostatistics 9 (2008), no. 3, 432–441.

[40] F-Secure, Accessed 27 February 2014. http://www.f-secure.com/en/web/home_us/home.

[41] Debin Gao, Michael Reiter, and Dawn Song, BinHunt: Automatically Finding Semantic Dif-

ferences in Binary Programs, Information and Communications Security, 2008, pp. 238–255.

[42] Graphical Lasso R Package, Accessed 28 February 2014. http://statweb.stanford.edu/

~tibs/glasso/.

[43] Stephane Guindon and Olivier Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate

Large Phylogenies by Maximum Likelihood, Systematic Biology 52 (2003), no. 5, 696–704.

[44] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu, Joint Estimation of Multiple

Graphical Models, Biometrika (2011).

114

REFERENCES

[45] Archit Gupta, Pavan Kuppili, Aditya Akella, and Paul Barford, An Empirical Study of Mal-

ware Evolution, First International Communication Systems and Networks and Workshops,

2009, pp. 1–10.

[46] Matthew E Hayes, Simulating Malware Evolution for Evaluating Program Phylogenies, Ph.D.

Thesis, 2008.

[47] Rainer Hettich and Kenneth Kortanek, Semi-Infinite Programming: Theory, Methods, and

Applications, SIAM Review 35 (1993), 380–429.

[48] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji, Intrusion Detection Using Se-

quences of System Calls, Journal of Computer Security 6 (January 1998), no. 3, 151–180.

[49] Lawrence Hubert and Phipps Arabie, Comparing Partitions, Journal of Classification 2

(1985), 193–218.

[50] John P. Huelsenbeck and Keith A. Crandall, Phylogeny Estimation and Hypothesis Testing

Using Maximum Likelihood, Annual Review of Ecology and Systematics 28 (1997), 437–466.

[51] Daniel H. Huson, Regula Rupp, and Celine Scornavacca, Phylogenetic Networks: Concepts,

Algorithms and Applications, Systematic Biology (2011).

[52] IDA Pro, Accessed 17 September 2013. http://www.hex-rays.com/products/ida/index.

shtml.

[53] Dimitris Iliopoulos, Christoph Adami, and Peter Szor, Darwin Inside the Machines: Mal-

ware Evolution and the Consequences for Computer Security, arXiv preprint arXiv:1111.2503

(2011).

[54] Grégoire Jacob, Hervé Debar, and Eric Filiol, Behavioral Detection of Malware: From a

Survey Towards an Established Taxonomy, Journal of Computer Virology 4 (2008), no. 3,

251–266.

[55] Yuh jye Lee and Olvi L. Mangasarian, RSVM: Reduced Support Vector Machines, Data

Mining Institute, Computer Sciences Department, University of Wisconsin, 2001, pp. 00–07.

115

REFERENCES

[56] Md. Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida, Malware Phylogeny Gen-

eration Using Permutations of Code, Journal of Computer Virology 1 (2005), 13–23.

[57] H. Kashima, K. Tsuda, and A. Inokuchi, Kernels for Graphs, MIT Press, 2004.

[58] Kaspersky, Accessed 27 February 2014. http://usa.kaspersky.com/.

[59] Kaspersky Lab Report: The Bagle Botnet, Accessed 17 September 2013. http://www.

securelist.com/en/analysis/162656090/The_Bagle_botnet.

[60] David Kempe and Frank McSherry, A Decentralized Algorithm for Spectral Analysis, Journal

of Computer and System Sciences 74 (2008), no. 1, 70–83.

[61] Jeffrey O. Kephart, Gregory B. Sorkin, William C. Arnold, David M. Chess, Gerald J.

Tesauro, and Steve R. White, Biologically Inspired Defenses Against Computer Viruses, Pro-

ceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995,

pp. 985–996.

[62] Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien, lp-Norm Multiple Kernel

Learning, Journal of Machine Learning Research 12 (2011), 953–997.

[63] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiao-yong

Zhou, and XiaoFeng Wang, Effective and Efficient Malware Detection at the End Host., Pro-

ceedings of the Eighteeth USENIX Security Symposium, 2009, pp. 351–366.

[64] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel, The Power of Procrastination:

Detection and Mitigation of Execution-Stalling Malicious Code, Proceedings of the Eighteenth

ACM Conference on Computer and Communications Security, 2011, pp. 285–296.

[65] J. Zico Kolter and Marcus A. Maloof, Learning to Detect and Classify Malicious Executables

in the Wild, The Journal of Machine Learning Research 7 (2006), 2721–2744.

[66] Jeremy Z. Kolter and Marcus A. Maloof, Learning to Detect Malicious Executables in the

Wild, Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, 2004, pp. 470–478.

116

REFERENCES

[67] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni Vigna,

Polymorphic Worm Detection Using Structural Information of Executables, Recent Advances

in Intrusion Detection, 2006, pp. 207–226.

[68] Abhishek Kumar, Piyush Rai, and Hal Daume III, Co-Regularized Multi-view Spectral Clus-

tering, Advances in Neural Information Processing Systems, 2011, pp. 1413–1421.

[69] KVM, Accessed 17 September 2013. http://www.linux-kvm.org/page/Main_Page.

[70] Gregoire Jacob Lakshmanan Nataraj S. Karthikeyan and B. Manjunath, Malware Images:

Visualization and Automatic Classication, Proceedings of VizSec, 2011.

[71] Manny M Lehman, Laws of Software Evolution Revisited (1996), 108–124.

[72] Corrado Leita, Ulrich Bayer, and Engin Kirda, Exploiting Diverse Observation Perspectives to

Get Insights on the Malware Landscape, IEEE/IFIP International Conference on Dependable

Systems and Networks, 2010, pp. 393–402.

[73] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation, ACM SIGPLAN Conference on Programming

Language Design and Implementation (2005), 190–200.

[74] Ulrike Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing 17 (2007), no. 4,

395–416.

[75] Robert Lyda and James Hamrock, Using Entropy Analysis to Find Encrypted and Packed

Malware, IEEE Security & Privacy 5 (2007), no. 2, 40–45.

[76] McAfee, McAfee Threat Report, Second Quarter, Accessed 17 September 2013. http://www.

mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2013-summary.pdf.

[77] McAfee, Accessed 27 February 2014. http://www.mcafee.com/us/.

[78] Mineserver, Accessed 17 September 2013. https://github.com/fador/mineserver.

117

REFERENCES

[79] Andreas Moser, Christopher Kruegel, and Engin Kirda, Limits of Static Analysis for Malware

Detection, Computer Security Applications Conference, Annual 0 (2007), 421–430.

[80] NetworkMiner, Accessed 17 September 2013. http://sourceforge.net/projects/

networkminer/.

[81] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas Huang, Incremental Spectral

Clustering with Application to Monitoring of Evolving Blog Communities, In SIAM Interna-

tional Conference on Data Mining, 2007.

[82] objdump, Accessed 28 February 2014. http://www.gnu.org/software/binutils/.

[83] Offensive Computing, Accessed 17 September 2013. http://www.offensivecomputing.com/.

[84] Roberto Perdisci, David Dagon, Prahlad Fogla, and Monirul Sharif, Misleading Worm Sig-

nature Generators Using Deliberate Noise Injection, Proceedings of the IEEE Symposium on

Security and Privacy, 2006, pp. 17–31.

[85] John Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector

Machines, Technical Teport MSR-TR-98-14, Microsoft Research (1998).

[86] Portable Executable iDentifier, Accessed 6 October 2011. http://peid.info/.

[87] Daniel Quist, Lorie Liebrock, and Joshua Neil, Improving Antivirus Accuracy with Hypervisor

Assisted Analysis, Journal of Computer Virology (2010), 1–11.

[88] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet, More Efficiency

in Multiple Kernel Learning, Proceedings of the Twenty-Fourth International Conference on

Machine Learning, 2007, pp. 775–782.

[89] Dubba Reddy, Subrat Dash, and Arun Pujari, New Malicious Code Detection Using Variable

Length N-grams, Information Systems Security, 2006, pp. 276–288.

[90] Dubba Reddy and Arun Pujari, N-gram Analysis for Computer Virus Detection, Journal of

Computer Virology 2 (2006), 231–239.

118

REFERENCES

[91] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Dssel, and Pavel Laskov, Learning

and Classification of Malware Behavior, Detection of Intrusions and Malware, and Vulnera-

bility Assessment, 2008, pp. 108–125.

[92] Bernhard Schölkopf and Alexander Johannes Smola, Learning with Kernels, MIT Press, 2002.

[93] R. Sekar, Michael Bender, Dinakar Dhurjati, and Pradeep Bollineni, A Fast Automaton-

Based Method for Detecting Anomalous Program Behaviors, IEEE Symposium on Security

and Privacy, 2001, pp. 144–155.

[94] Yang seo Choi, Ik kyun Kim, Jin tae Oh, and Jae cheol Ryou, PE File Header Analysis-

Based Packed PE File Detection Technique (PHAD), International Symposium on Computer

Science and Its Applications, 2008, pp. 28–31.

[95] M. Shafiq, Syed Khayam, and Muddassar Farooq, Embedded Malware Detection Using Markov

N-grams, Detection of Intrusions and Malware and Vulnerability Assessment, 2008, pp. 88–

107.

[96] Madhu Shankarapani, Subbu Ramamoorthy, Ram Movva, and Srinivas Mukkamala, Malware

Detection Using Assembly and API Call Sequences, Journal of Computer Virology 7 (2010),

no. 2, 1–13.

[97] Nino Shervashidze, S. V. N. Vishwanathan, Tobias H. Petri, Kurt Mehlhorn, and Karsten M.

Borgwardt, Efficient Graphlet Kernels for Large Graph Comparison, Proceedings of the

Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 2009,

pp. 488–495.

[98] Robert Sokal and James Rohlf, The Comparison of Dendrograms by Objective Methods, Taxon

11 (1962), no. 2, 33–40.

[99] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Kang, Zhenkai Liang,

James Newsome, Pongsin Poosankam, and Prateek Saxena, BitBlaze: A New Approach to

Computer Security via Binary Analysis, Information Systems Security, 2008, pp. 1–25.

119

REFERENCES

[100] Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis, and Salvatore J.

Stolfo, On the Infeasibility of Modeling Polymorphic Shellcode, Proceedings of the Fourteenth

ACM Conference on Computer and Communications Security, 2007, pp. 541–551.

[101] Sören Sonnenburg, Gunnar Raetsch, and Christin Schaefer, A General and Efficient Multiple

Kernel Learning Algorithm, Nineteenth Annual Conference on Neural Information Processing

Systems (2005).

[102] Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr,

Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, and Vojtech Franc, The

SHOGUN Machine Learning Toolbox, Journal of Machine Learning Research 11 (2010), 1799–

1802.

[103] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf, Large Scale

Multiple Kernel Learning, Journal of Machine Learning Research 7 (2006), 1531–1565.

[104] Sophos, Accessed 27 February 2014. http://www.sophos.com/en-us.aspx.

[105] Salvatore Stolfo, Ke Wang, and Wei-Jen Li, Towards Stealthy Malware Detection, Malware

Detection, 2007, pp. 231–249.

[106] Salvatore J. Stolfo, Ke Wang, and Wei-Jen Li, Fileprint Analysis for Malware Detection,

ACM Workshop on Recurring/Rapid Malcode, 2005.

[107] Orathai Sukwong, Hyong S Kim, and James C Hoe, Commercial Antivirus Software Effec-

tiveness: An Empirical Study, Computer (2011), 63–70.

[108] Symantec, Accessed 27 February 2014. https://www.symantec.com/index.jsp.

[109] Symantec Bagle Security Report, Accessed 17 September 2013. http://www.symantec.com/

security_response/writeup.jsp?docid=2004-011815-3332-99.

[110] Symantec Koobface Security Report, Accessed 17 September 2013. http://www.symantec.

com/security_response/writeup.jsp?docid=2008-080315-0217-99.

[111] Symantec Mytob Security Report, Accessed 17 September 2013. http://www.symantec.com/

security_response/writeup.jsp?docid=2005-022614-4627-99.

120

REFERENCES

[112] The Silicon Realms Toolworks, Armadillo Software Protection System, Accessed 6 October

2011. http://www.siliconrealms.com/.

[113] UPX: The Ultimate Packer for eXecutables, Accessed 6 October 2011. http://upx.

sourceforge.net/.

[114] Virus Total, Accessed 17 September 2013. http://www.virustotal.com/.

[115] VX Heaven, Accessed 27 February 2014. http://vxheaven.org/.

[116] Grard Wagener, Radu State, and Alexandre Dulaunoy, Malware Behaviour Analysis, Journal

of Computer Virology 4 (2008), no. 4, 279–287.

[117] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter, Detecting Intrusions using

System Calls: Alternative Data Models, Proceedings of the IEEE Symposium on Security and

Privacy, 1999, pp. 133–145.

[118] Scott White and Padhraic Smyth, A Spectral Clustering Approach to Finding Communities

in Graphs, Proceedings of the Fifth SIAM International Conference on Data Mining, 2005,

pp. 76–84.

[119] Daniela M Witten, Jerome H Friedman, and Noah Simon, New Insights and Faster Computa-

tions for the Graphical Lasso, Journal of Computational and Graphical Statistics 20 (2011),

no. 4, 892–900.

[120] Stephen J Wright, Primal-Dual Interior-Point Methods, Vol. 54, SIAM, 1997.

[121] Ilsun You and Kangbin Yim, Malware Obfuscation Techniques: A Brief Survey, International

Conference on Broadband, Wireless Computing, Communication and Applications, 2010,

pp. 297–300.

[122] Stella X Yu and Jianbo Shi, Multiclass Spectral Clustering, Proceedings of the Ninth IEEE

International Conference on Computer Vision, 2003, pp. 313–319.

[123] Ming Yuan and Yi Lin, Model Selection and Estimation in the Gaussian Graphical Model,

Biometrika 94 (2007), no. 1, 19–35.

121

REFERENCES

[124] Qinghua Zhang and D.S. Reeves, MetaAware: Identifying Metamorphic Malware, Twenty-

third Annual Computer Security Applications Conference, 2007.

[125] Ying Zhao and George Karypis, Evaluation of Hierarchical Clustering Algorithms for Doc-

ument Datasets, Proceedings of the Eleventh International Conference on Information and

Knowledge Management, 2002, pp. 515–524.

[126] Dengyong Zhou and Christopher J. C. Burges, Spectral Clustering and Transductive Learning

with Multiple Views, Proceedings of the Twenty-Fourth International Conference on Machine

Learning, 2007, pp. 1159–1166.

122

	University of New Mexico
	UNM Digital Repository
	5-1-2014

	Integrating Multiple Data Views for Improved Malware Analysis
	Blake Anderson
	Recommended Citation

	tmp.1469198166.pdf.sZ4T0

