1,017 research outputs found

    Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive

    Get PDF
    Customization is a widely adopted practice on enterprise software applications such as Enterprise resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their enterprise software product on the premises of a customer, which is then often customized for different specific needs of the customer. When enterprise applications are moving to the cloud as mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces new challenges because a customer no longer has an exclusive control to the application. To empower businesses with specific requirements on top of the shared standard SaaS, vendors need a novel approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive. The paper clarifies the key concepts related to the problem of multi-tenant customization, and describes a design with a reference architecture and high-level principles. We also discuss the key technical challenges and the feasible solutions to implement this architecture. Our microservice-based customization solution is promising to meet the general customization requirements, and achieves a balance between isolation, assimilation and economy of scale

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    Evaluating the effect of multi-tenancy patterns in containerized cloud-hosted content management system

    Get PDF
    Multi-tenancy in cloud computing describes the extent to which resources can be shared while guaranteeing isolation among components (tenants) using these resources. There are three multi-tenancy patterns: shared, tenant-isolated and dedicated component patterns. These patterns have not previously been formally specified. In order to create a precise definition and verify each pattern, we formally specify each pattern using the Z language. To validate the interpretation of our formal description, We empirically evaluate each pattern using the data-tier of a cloud hosted distributed content management application, WordPress, deployed in a Docker container. Experimental results show that the dedicated pattern successfully managed larger numbers of tenants with fewer unhandled request errors. The shared and tenant isolated patterns exhibited larger number of unhandled request errors when the number of tenants increased. We present a selection algorithm to choose suitable multi-tenancy pattern for cloud deployment of content management system

    A Review Of Multi-Tenant Database And Factors That Influence Its Adoption.

    Get PDF
    A Multi-tenant database (MTD) is a way of deploying a Database as a Service (DaaS). This is gaining momentum with significant increase in the number of organizations ready to take advantage of the technology. A multi-tenant database refers to a principle where a single instance of a Database Management System (DBMS) runs on a server, serving multiple clients organizations (tenants). This is a database which provides database support to a number of separate and distinct groups of users or tenants. This concept spreads the cost of hardware, software and other services to a large number of tenants, therefore significantly reducing per tenant cost. Three different approaches of implementing multi-tenant database have been identified. These methods have been shown to be increasingly better at pooling resources and also processing administrative operations in bulk. This paper reports the requirement of multi-tenant databases, challenges of implementing MTD, database migration for elasticity in MTD and factors influencing the choice of models in MTD. An insightful discussion is presented in this paper by grouping these factors into four categories. This shows that the degree of tenancy is an influence to the approach to be adopted and the capital and operational expenditure are greatly reduced in comparison with an on-premises solutio

    Implementing a maintainable and secure tenancy model

    Get PDF
    Software-as-a-Service is a popular software delivery model that provides subscription-based services for customers. In this thesis, we identify key aspects of implementing a maintainable and secure tenancy model through analyzing research literature and focusing on a case study. We also study whether it is beneficial to change a single-tenant implementation to a multi-tenant implementation in terms of maintainability and security. We research common tenancy models and security issues in SaaS products. Based on these, we set out to analyze a case study product, identifying potential problems in its single-tenant implementation. We then decide on changing said model, and show the process of implementing a new hybrid model. Finally, we present validation methods on measuring the effectiveness of such implementation. We identified data security and isolation, efficiency and performance, administrative manageability, scalability and profitability to be the most important quality aspects to consider when choosing a maintainable and secure tenancy model. We also recognize that it is beneficial to change from a single-tenant implementation to a multi-tenant implementation in terms of these aspects

    Cloud Multi-Tenancy: Issues and Developments

    Get PDF
    Cloud Computing (CC) is a computational paradigm that provides pay-per use services to customers from a pool of networked computing resources that are provided on demand. Customers therefore does not need to worry about infrastructure or storage. Cloud Service Providers (CSP) make custom built applications available to customers online. Also, organisations and enterprises can build and deploy applications based on platforms provided by the Cloud service provider. Scalable storage and computing resources is also made available to consumers on the Clouds at a cost. Cloud Computing takes virtualization a step further through the use of virtual machines, it allows several customers share the same physical machine. In addition, it is possible for numerous customers to share applications provided by a CSP; this sharing model is known as multi-tenancy. Though Multi-tenancy has its drawbacks but however, it is highly desirable based on its cost efficiency. This paper presents the comprehensive study of existing literatures on relevant issues and development relating to cloud multitenancy using reliable methods. This study examines recent trends in the area of cloud multi-tenancy and provides a guide for future research. The analyses of this comprehensive study was based on the following questions relating to recent study in multi-tenancy which are: what is the current trend and development in cloud multi-tenancy? Existing publications were analyzed in this area including journals, conferences, white papers and publications in reputable magazines. The expected result at the end of this review is the identification of trends in cloud multi-tenancy. This will be of benefit to prospective cloud users and even cloud providers

    An efficient resource sharing technique for multi-tenant databases

    Get PDF
    Multi-tenancy is one of the key components of cloud computing environment. Multi-tenant database system in SaaS (Software as a Service) has gained a lot of attention in academics, research and business arena. These database systems provide scalability and economic benefits for both cloud service providers and customers(organizations/companies referred as tenants) by sharing same resources and infrastructure in isolation of shared databases, network and computing resources with Service level agreement (SLA) compliances. In a multitenant scenario, active tenants compete for resources in order to access the database. If one tenant blocks up the resources, the performance of all the other tenants may be restricted and a fair sharing of the resources may be compromised. The performance of tenants must not be affected by resource-intensive activities and volatile workloads of other tenants. Moreover, the prime goal of providers is to accomplish low cost of operation, satisfying specific schemas/SLAs of each tenant. Consequently, there is a need to design and develop effective and dynamic resource sharing algorithms which can handle above mentioned issues. This work presents a model embracing a query classification and worker sorting technique to efficiently share I/O, CPU and Memory thus enhancing dynamic resource sharing and improvising the utilization of idle instances proficiently. The model is referred as Multi-Tenant Dynamic Resource Scheduling Model (MTDRSM) .The MTDRSM support workload execution of different benchmark such as TPC-C(Transaction Processing Performance Council), YCSB(The Yahoo! Cloud Serving Benchmark)etc. and on different database such as MySQL, Oracle, H2 database etc. Experiments are conducted for different benchmarks with and without SLA compliances to evaluate the performance of MTDRSM in terms of latency and throughput achieved. The experiments show significant performance improvement over existing Mute Bench model in terms of latency and throughput

    Event-based Customization of Multi-tenant SaaS Using Microservices

    Get PDF
    Popular enterprise software such as ERP, CRM is now being made available on the Cloud in the multi-tenant Software as a Service (SaaS) model. The added values come from the ability of vendors to enable customer-specific business advantage for every different tenant who uses the same main enterprise software product. Software vendors need novel customization solutions for Cloud-based multi-tenant SaaS. In this paper, we present an event-based approach in a non-intrusive customization framework that can enable customization for multi-tenant SaaS and address the problem of too many API calls to the main software product. The experimental results on Microsoft’s eShopOnContainers show that our approach can empower an event bus with the ability to customize the flow of processing events, and integrate with tenant-specific microservices for customization. We have shown how our approach makes sure of tenant-isolation, which is crucial in practice for SaaS vendors. This direction can also reduce the number of API calls to the main software product, even when every tenant has different customization services.publishedVersio
    • …
    corecore