
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 3, June 2020, pp. 3216~3226

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i3.pp3216-3226  3216

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

An efficient resource sharing technique for multi-tenant

databases

Pallavi G. B.1, P. Jayarekha2
1Department of Computer Science and Engineering, BMS College of Engineering, India

2Department of Information Science and Engineering, BMS College of Engineering, India

Article Info ABSTRACT

Article history:

Received Mar 27, 2019

Revised Nov 9, 2019

Accepted Nov 23, 2019

Multi-tenancy is a key component of Software as a Service (SaaS) paradigm.

Multi-tenant software has gained a lot of attention in academics, research and

business arena. They provide scalability and economic benefits for both

cloud service providers and tenants by sharing same resources and

infrastructure in isolation of shared databases, network and computing

resources with Service level agreement (SLA) compliances. In a multitenant

scenario, active tenants compete for resources in order to access the database.

If one tenant blocks up the resources, the performance of all the other tenants

may be restricted and a fair sharing of the resources may be compromised.

The performance of tenants must not be affected by resource-intensive

activities and volatile workloads of other tenants. Moreover, the prime goal

of providers is to accomplish low cost of operation, satisfying specific

schemas/SLAs of each tenant. Consequently, there is a need to design and

develop effective and dynamic resource sharing algorithms which can handle

above mentioned issues. This work presents a model referred as Multi-

Tenant Dynamic Resource Scheduling Model (MTDRSM) embracing

a query classification and worker sorting technique enabling efficient and

dynamic resource sharing among tenants. The experiments show significant

performance improvement over existing model.

Keywords:

Cloud computing

Mult-itenancy

Resource management

SLA

TPC-C

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Pallavi G. B.,

Department of Computer Science and Engineering,

BMS College of Engineering,

VTU, Bangalore, India.

Email: pallavi.cse@bmsce.ac.in

1. INTRODUCTION

Cloud computing currently is an emerging and most promising technology, on which varied

research has been carried by various communities [1]. It has been adopted by various organization and IT

industries to build and deploy custom made application in various fields as genetic science, healthcare and so

on. Cloud technologies is driven by economies of scale by providing large scale distributed computing

infrastructure in which resource such as computing power, storage, platform etc. and services are provided on

demand through internet [2], The service offered by cloud technologies are broadly classified into three

categories. They are Infrastructure as a service (IaaS), Platform as a service (PaaS) and Software as a service

(SaaS). While IaaS providers offer various hardware computational needs, PaaS providers offer frameworks

and programming languages required to develop software/applications and SaaS providers offer a full-

fledged ready to use application as a service. SaaS is an attractive offer for software companies as they can

use various applications without the need to purchase and maintain them on their own infrastructure.

Also, service provider achieves full economy of scale by hosting such SaaS application using a multitenant

model where tenant refer to an organization/company.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Advanced Engineering and Science

https://core.ac.uk/display/329118294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Int J Elec & Comp Eng ISSN: 2088-8708 

An efficient resource sharing technique for multi-tenant databases (Pallavi G. B.)

3217

Multitenancy is one of the key concerns in SaaS. It refers to a principle in software architecture,

which is the ability to enable SaaS application to serve multiple tenants using a single service instance.

Multitenancy invariably occurs at the database layer of the SaaS application [3] referred to as Multi-tenant

Data Management System (MTDBMS) where multiple tenants are consolidated on to the data tier resource

while at the same time isolating them among one another as if they were running on physically segregated

resources. Many organizations export their data to third party MTDBMS in order to provision data

management services. A MTDBMS may isolate tenants in a shared database system - by dedicated databases

(shared machine approach), - by shared databases and separate tables or schemas (shared process approach)

or by an association of each dataset in a shared table with the appropriate tenant (shared table approach) [4].

Identification of records for a particular tenant is done based on a unique tenant id [5]. However, one of

the major challenges posed by multitenant applications is effective utilization of resources [6]. Each tenant is

statically assigned an equal amount of resource. This may lead to inefficient utilization of resources when

there are fewer or more loads of queries on databases than expected and is therefore undesirable in

a multitenant system. Moreover, service providers must also meet the criteria of Service Level Agreement

(SLA) [7] of tenants.

There are several dire consequence for both tenant and service provider such as inefficiency in data

centre and revenue, limited cloud applicability and unpredictable application performance [8]. However these

issues are behind the scope of this paper. In state-of-art single tenant database system, the two aspects of

performance analysis are server hardware for operating the database and workload. However with

multi-tenancy, since different tenant access the same database at different rates, workloads and complexities,

vendors need to keep a check on performance attainment of each tenant. As a result, optimal resource

utilization becomes a key requirement for the service providers. This paper explores resource management

architecture composed of architecture and scheduling strategies to address multitenancy issues, particularly

sharing of resources among tenants in order to compute intensive queries and scalability for workflow

execution. To provide scalability, the MT-DBMS should run on low cost commodity hardware and scale out

to a many servers to provide service to large consumers.

Workflow scheduling is a process of identifying and managing the execution of certain task on

a distributed network. It allocates certain amount of appropriate resource to a task and completes the task

within user’s defined deadline or objective time. Developing an efficient scheduling model will aid in

improve the overall system performance. Scheduling distributed task is considered to be NP-hard

problem [9], as a result no optimal solution is found within polynomial time. To achieve near optimal

scheduling many heuristic scheduling has been presented. However, these techniques are not suitable for

scheduling workflow in multi-tenant cloud computing environments. To address this issue, the authors

of [10] presented an efficient workflow scheduling where a proof-of-concept experiment of real-world

scientific workflow applications has been performed to demonstrate the scalability of the scheduling

algorithm, which verifies the effectiveness of the proposed solution. However they did not consider

the impact of resource failure and dynamic SLA requirement of Tenants. Moreover, efficient resource

allocation and load balancing technique is required, because there is uncertainty in resource and load which

changes over time. Request for resources changes over time and the resource itself undergo several changes

(i.e. resource can join or leave a network).These dynamic uncertainties might lead to performance bottleneck.

This work presents a dynamic scheduling technique for Multi-Tenant SaaS cloud environment

overcoming the above challenges. Firstly, architecture of the proposed Multi-Tenant Database System is

presented. Secondly for dynamic scheduling, the query (load) and resource information is collected according

to Memory, I/O and CPU. Thirdly the query and resource are divided into three queues according to

Memory, I/O and CPU intensive. Lastly, the scheduler utilizes the overall resource available and schedule to

resource with lighter loads. This aid in balancing the load and make full use of idle instances. The paper is

organized as follows: In section 2, a study of related work is been carried out. A simple multitenant database

architecture and related algorithms and flowcharts are discussed in section 3. Experimental set up and results

are discussed in section 4. Finally, section 5 concludes the paper.

2. RESEARCH METHODOLODY

The issues pertaining to scheduling task on multiple workers has been widely studied in distributed,

parallel, grid and cluster computing and in recent year the same kind of study is been carried out considering

virtual workers on cloud environment. The techniques adopted by these models differ from characteristic of

workload, resources, performance metric and scheduling in multiagent architecture [11]. All these

methodologies are designed based on Heuristic Algorithm, Meta-Heuristic Algorithm, Scientific Workflows

Execution, Deadline-aware Scheduling and Multi-tenant SaaS Applications, which is extensively researched

in the presented work.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3216 - 3226

3218

Heuristic Algorithm: Many existing approaches have considered heuristic methods for clustering,

task duplication and scheduling. Few examples are: In [12] Jing-Chiou Liou et al, presented a task clustering

algorithm with no duplication namely CASS-II. They compared their algorithm with DSC in terms of both

speed and solution quality. In [13] R. Bajaj and D. P. Agrawal presented task duplication based scheduling

mechanism for heterogeneous network (TANH). In [14], a Heterogeneous Earliest finish time (HEFT)

scheduling technique for single work flow was presented by H. Topcuoglu, S. Hariri, and M. Y.Wu and

in [15] H. M. Fard, et al., presented a multi-objective heuristic scheduling for grid and cloud environment.

However these models are not suitable for multi-tenant cloud environment, due to unpredictable

performance (throughput). Since some tenant may opt for best effort behavior [16] and some may prefer

performance isolation.

Meta-Heuristic Algorithm: To minimize workflow execution cost in cloud environment, the authors

in [17, 18] have adopted particle swarm optimization (PSO) based scheduling technique and in [19]

an optimization of genetic algorithm (GA), Ant colony optimization (ACO) and PSO has been implemented.

In [20] H. M. Fard et al., has implemented a dynamic scheduling and pricing model for single query for

multi-cloud platform and has compared with traditional model multi-objective evolutionary algorithms, i.e.,

NSGA-II and SPEA2. These entire models are designed to optimize in grid environment and induce

computing overhead. Hence these models are not suitable for large workflow application.

Scientific Workflows Execution: In [21] the authors have studied the performance and cost involved

in computing in public cloud environment. They showed that amazon EC2 is not suitable for I/O intensive

application (NASA HPC cluster) due lack of parallel heterogeneous computing platform. To improve system

performance the authors of [22] presorted locality aware scheduling. However evaluation on dynamic real

world workload is not carried out. Similarly D. Yuan et al, in [23] presented a data placement strategy in

scientific cloud workflows by adopting k-mean clustering.

Deadline-aware Scheduling: The authors of [24] have studied dynamic resource allocation for

adaptive application on cloud platform. They adopted Q-learning based learning model to meet the user

define deadline for particular application requirement. A grid based scheduling model for deadline constraint

weather forecasting system and a heuristic model to meet deadline for scientific application workflow has

been presented in [25, 26] respectively. In [27] S. Abrishami et al. presented scheduling strategies for

single workflow instance for IaaS cloud platform. However none of these models considered multi-tenant

cloud environment.

Multi-tenant SaaS Applications: Many approaches have been presented for multi-tenant SaaS

applications. A two-tier multitenant architecture has been presented in [28]. A model to determine optimal

allocation policy and a resource allocation model for SaaS applications has been presented in [29, 30]

respectively. In [31] S. Walraven et al. presented an adaptive middleware design for efficient multi-tenant

SaaS applications. The authors in [32] highlighted the problem of traditional CPU sharing approach for

Database as a service (DAAS) scenario and have proposed an effective and efficient CPU sharing technique.

They have focused on fine-grained reservation of CPU without static allocation. The work also supports on

demand resource availability. However sharing of CPU reduces the system cost but at the same time it

reduces the system performance as well. In [33] Vivek Narasayya et al. proposed a reservation technique

called SQLVM of key resources in a database system such as CPU, I/O, and memory. The authors claim that

unlike a traditional VM, a SQLVM is much more lightweight as its only goal is to provide resource isolation

across tenants. In [34], Ying Hua Zhou et al has introduced a DB2MMT (massive multi-tenant database

platform) high level architecture. The author has addressed key technical challenges, including resource,

tenant and offering management, monitoring, scalability and security. They have compared the economics of

DB2MMT and traditional solution with precise data showing acceptable performance.

To conclude, extensive survey and the study of related work showcase that scheduling and load

balancing plays an important role in improving the performance of multi-tenant cloud architecture. Many

approaches adopt various heuristic, Meta heuristic, clustering and optimization techniques to classify user

quires and resource classification. All these approaches are time consuming processes, induce computation

overhead and are and may not be applicable for dynamic workflow provisioning. To overcome these

challenges, we present an efficient scheduling technique for multi-Tenant cloud architecture that fully utilizes

the system resources with SLA guarantee.

3. ARCHITECTURE OF MULTI-TENANT DATABASE SYSTEM

3.1. Modelling of multi-tenant system

An overall architecture of Multi-tenant database system is presented in Figure 1. The Tenant

Manager maintains the service level agreement received from the tenants. These SLA based tenant

requirement is considered for designing a multitenant system and maintaining the system QoS (Latency).

Int J Elec & Comp Eng ISSN: 2088-8708 

An efficient resource sharing technique for multi-tenant databases (Pallavi G. B.)

3219

The other input to Tenant Manager is the tenant configuration file where tenant specific settings are

established. Tenants request for the task execution or data base accessing. Tenant Manager checks the load

and schedules the tenant as per availability of the workers based on SLA constraint of the corresponding

tenant. Workers execute the task. DB connector is used for establishing the connection between database

server and Tenant Manager. The type of database sharing approach used is the schema based multi-tenancy

approach. A dynamic resource scheduling system for assigning jobs is introduced in the next section.

Figure 1. Architecture of multi-tenant database system

3.2. Multi-tenant dynamic resource scheduling model

The objective of proposed dynamic resource scheduling system is that the Memory, I/O and CPU

usage do not conflict each other in order to improve scheduling performance and utilizing resource

efficiently. Let’s consider a case where some query execution requires less I/O or Memory resources,

but it might require higher CPU resource to complete the task. This scenario can be effectively solved by

proposed dynamic scheduling system, and moreover effective load balancing approach aid in better

utilization of idle instances.

The scheduling system comprises of three modules

Tenant Task Manager(TTM) Global Tenant Manager(GTM) Dynamic Scheduler

3.2.1. System model

Architecture of system framework is presented in Figure 2. The Tenant Task Manager (TTM)

manages the task/query requested by the tenant. Simultaneously it also processes these request.

The processed requests are further divided into separate queues based on the tenant requirement of Memory,

I/O and CPU for computation or searching of data. Meanwhile, the Local Worker Manager (LWM) monitors

the worker load and updates the information to the Global Tenant Manager (GTM). GTM sorts the available

workers based on CPU, I/O and Memory for processing task. Dynamic scheduler works between Tenant

Task Manager and Global Tenant Manager. Scheduler takes the request task queue from Tenant Task

Manager and information from the Global Tenant Manager and schedules the task based on best compatible

value for both Global Tenant Manager and Tenant Task Manager.

3.2.2. System parameters

Let us consider 𝑇 tenants, 𝐻 workers and 𝑀 number of query requests. 𝐻 Workers are represented as

𝑊 = {𝑤1, 𝑤2, 𝑤3 …a, 𝑤𝑥, …, 𝑤𝐻} and 𝑀 queries are represented as{𝑄1, 𝑄2, 𝑄3, …, 𝑄𝑥, …, 𝑄𝑀}.

The workers in cloud environment represent a set of virtual machines which are threads in our

experiments. Each thread’s computing capability is defined by its parameter such as Memory, I/O and CPU

(i.e. 𝐿𝑥 = (𝐷𝑥, 𝑉𝑥) where 𝑅𝑥 defines Memory usage, 𝐷𝑥 defines I/O waiting time and 𝑉𝑥 defines CPU

utilization respectively). The GTM periodically collects and updates this information from LWM.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3216 - 3226

3220

Figure 2. Architecture of multi-tenant dynamic resource scheduling model

3.2.3. Query classifier

Initially, the tenant task manager collects tenant submitted query along with the resource required

information to process the query and SLA requirement. The query specifies query size Sy, required CPU Vy,

memory Ry ,time required for the execution By [This information is obtained from config file for each tenant

shown in Figure 1]. The information is gathered in order to cater the queries demanding diversified resources.

Henceforth, a query requested by tenant y is represented as Qy = (Ry, Vy, Sy, By).The TTM further

determines the I/O required as:

Dy =
Sy

Vy
 (1)

The I/O usage is directly dependent on the query size and CPU capability and is therefore computed

by the rate of 𝑆𝑦 and 𝑉𝑦. Further, the received queries are classified and queued up. In order to classify

the received query, the cloud resource parameters (system parameters in our case) Rk, Dk and Vkof Memory,

I/O and CPU are defined. Then, for each query Qy, weights of R, D and V are computed by its value Ry, Dy

and Vy and Rk, Dk and Vk. The maximum of these three weights are considered as query group Qyg.

If Qyg = D, the query is portioned into queue of I/O intensive, if 𝑄𝑦𝑔 = 𝑉, the query is portioned into queues

of CPU intensive and so on. In the proposed model the queries in these three queues are equal to the total

number of queries (i.e. each one of three queues makes up only one part of all queries).

Qyg = max(R, D, V) = (
Ry

Rk
⁄ ,

Dy

Dk
⁄ ,

Vy

Vk
⁄) . (2)

Finally, total M queries which are partitioned into three queries are represented as 𝐿𝑄𝐷, 𝐿𝑄𝑉

and 𝐿𝑄𝑅 of 𝑖 I/O intensive, 𝑗 CPU intensive and 𝑀 − 𝑗 − 𝑖 Memory intensive respectively by the query

group 𝑄𝑦𝑔.

LQD = {Qj+1, Qj+2, Qj+3, … , QyD, … , Qj+i} (3)

LQV = {Q1, Q2, Q3, … , QyV, … , Qj} (4)

LQR = {Qj+i+1, Qj+i+2, Qj+i+3, … , QyR, … , QM−j−i}. (5)

A detailed diagram is shown in Figure 3.

Int J Elec & Comp Eng ISSN: 2088-8708 

An efficient resource sharing technique for multi-tenant databases (Pallavi G. B.)

3221

Figure 3. Query classification technique

3.2.4. Worker sorting technique

The worker in cloud environment consists of set of virtual machine (threads). Each virtual machine

computing capability is defined by its parameter such as Memory, I/O and CPU (i.e. Lx = (Rx, Dx, Vx).

This parameter defines, Memory usage, I/O waiting time and CPU utilization. The GTM periodically collects

and updates this information from LWM. LWM gathers Memory usage, I/O waiting period and CPU

utilization information from local workers either periodically defined by user or when 50% of the task is

completed in a particular thread. LWM transmits this information to the GTM. Next, GTM sorts these

workers from small to large considering Memory, I/O and CPU resources and forms queues 𝐿𝑅, 𝐿𝐷 and 𝐿𝑉

respectively i.e., LR holds the workers in the increasing order of their memory capacity, LD holds

the workers in the increasing order of their I/O capacity and LV holds the same workers in the increasing

order of CPU available respectively.

 LR = {W1, W2, W3, … , WyR, … , WH} (6)

 LD = {W1, W2, W3, … , WyD, … , WH} (7)

 LV = {W1, W2, W3, … , WyV, … , WH} (8)

All the workers are sorted rather than classifying, due to size and resources dynamics. As a result,

these three queues are composed of workers with all the resources, unlike the queries queue. Consequently,

the proposed model comprises of two types of queues. The query queues representing Memory, I/O and CPU

intensive queries and the worker queues, which are formed by sorting Memory, I/O and CPU load from

small too big.

3.2.5. Dynamic scheduling approach

Lastly, the scheduler assigns query (based on its type,weight and SLA)from queues of Tenant

Manager to workers sorted by GTM. i.e., based on weight (CPU) assigned to a query say q1 a high or low

CPU utilization worker is allocated. If a query has less weight, then it is assigned a worker with less

processing power and for higher weight query a worker with high processing power is assigned.A query

q2(memory or i/o intensive) in accordance with its weight can be assigned to a worker which is already

executing another query if it has enough resource to handle the query and also SLA of the query is met.

If neither fails a new worker is assigned to query q2.

Besides, for maximizing resource utilization, the query is assigned to a worker with less load

(i.e. assigning query corresponding to its type and load). For example, the Memory, I/O and CPU intensive

queries are assigned to worker with low Memory, I/O and CPU usage respectively. Moreover, the scheduler

will assign each query from each queue to a different available worker for simultaneous execution. This aids

in reducing the load and enhance system efficiency.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3216 - 3226

3222

3.2.6. Dynamic scheduling approach

If the number of workers are more than the requested number of queries then based on requirement

the scheduler will assign the query to the worker maintaining the load. However if requested number of

queries are more than the available workers, then queries needs to be assigned in group as shown in Figure 4.

It makes one batch of queries from sub queries, queues it as g=M/G, where G represents the number of

queues created. Remaining M-g queries will be considered in next group. If M-g>H then the process of

grouping the queries is continued otherwise workers are assigned to queries on a regular basis. This process

is repeated until execution of last query. In this approach each worker is assigned with one task and usages of

CPU, memory and IO are all maintained. Tenant query execution is also faster yielding to high system

performance and throughput.

3.2.7. Dynamic scheduling adaptivity method

If the number of workers are more than the requested number of queries then based on requirement

the scheduler will assign the query to the worker maintaining the load. However if requested number of

queries are more than the available workers, then queries needs to be assigned in group as shown in Figure 4.

It makes one batch of queries from sub queries, queues it as g=M/G , where G represents the number of

queues created. Remaining M-g queries will be considered in next group. If M-g>H then the process of

grouping the queries is continued otherwise workers are assigned to queries on a regular basis. This process

is repeated until execution of last query. In this approach each worker is assigned with one task and usages of

CPU, memory and IO are all maintained. Tenant query execution is also faster yielding to high system

performance and throughput.

Figure 4. Flowchart of dynamic scheduling adaptivity method

4. EXPERIMENTAL RESULT AND ANALYSIS

We have conducted several experiments to evaluate the performance of proposed model over

existing Mute Bench approach [4] in terms of latency and throughput (transaction per seconds). For

experiment evaluation OLTP and YCSB benchmark is used. The Mute Bench model is designed using java

framework in which the authors have attempted to upgrade OLTP-Bench into a Multi-Tenant Database

Benchmark Framework. In the presented work, we have incorporated proposed Multi-Tenant Dynamic

Resource Scheduler Model (MTDRSM) into [4]. We further extended model [4] to support workload

execution for different benchmarks and multi-tenant workload execution on different database such as

MySQL, Oracle, and H2DB etc. by using Hibernate framework.

The MTDRSM is developed using JAVA programming language on eclipse neon framework.

The system environment used for workload execution is I-5, 3.2 GHz, quad core Intel class processor with 16

GB RAM. We have considered workload execution of TPCC and YCSB benchmark on H2 database.

The workload execution is carried out for both with and without SLA compliances. Each tenant is given a set

Int J Elec & Comp Eng ISSN: 2088-8708 

An efficient resource sharing technique for multi-tenant databases (Pallavi G. B.)

3223

of worker (threads) for workload execution. The number of worker is varied as 10, 20 and 50. The tenant ID

is incremented by 3 (i.e. for 10, 20 and 50 worker there are 4, 7 and 17 tenants, respectively) and 6 tenant per

execution is considered. Each tenant executes its workload with unlimited data rate. The OLTP and YCSB

workload mix is composed of 25% read record and 15% for each other transaction types.

4.1. SLA and SLA breach

In the Query Qy = (Ky, Vy, Ry, Ty), if the first three parameters represent query size, CPU utilization

and memory that the tenant applies to use, then Ty is the SLA breach of the query. These parameters come

from the Tenant task manager and are submitted by tenants. If the query Qyfail to meet Ty defined by tenant

to its service provider, then the SLA is considered to be breached. The SLA is measured as follows:

Query retrieval time is calculated

 qRetrieval =
∑(qy−w+qy−processed)

H
 (9)

where qy−w is the waiting time, qy−processed is the processing or query completion time and H is total

number of queries. Check if qRetrieval> Ty. If yes query is breached.

4.2. Latency performance evaluation

In Figure 5 the latency performance considering different worker without SLA compliances is

shown. It is seen from graph the MTDRSM performs better than MuTeBench in term of latency performance

considering varied worker. The MTDRSM reduce latency by 23.87%, 11.82% and 46.63% considering 10,

20 and 50 worker respectively, over MuTeBench. An average latency reduction of 27.44% is achieved by

MTDRSM over MuTeBench. Similarly, In Figure 6 the latency performance considering different worker

with SLA compliances is shown. It is seen from graph the MTDRSM performs better than MuTeBench in

term of latency performance considering varied worker. The MTDRSM reduce latency by 23.08%, 11.7%

and 45.83% considering 10, 20 and 50 worker respectively, over MuTeBench. An average latency reduction

of 28.2% is achieved by MTDRSM over MuTeBench. It is seen from Figure 5 and Figure 6 that provisioning

SLA to tenant induces a slight overhead in latency performance.

Figure 5. Average latency achieved for varied

worker without SLA

Figure 6. Average latency achieved for varied

worker with SLA

4.3. Throughput (transaction per second evaluation) performance evaluation

Tables 1 and 2 describes the transaction status without and with SLA respectively. The transaction

status is composed of following type:

- Completed transaction: this shows the transaction is successfully completed,

- Aborted transaction: this show the transaction is aborted by user/system,

- Rejected transaction: this shows the transaction is rejected due to wrong information entered (.i.e. non-

existent account number) during transaction and

- Unexpected error: this is due to unexpected scenario such as server/network down.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3216 - 3226

3224

It is seen from Tables 1 and 2, MTDRSM achieves high number of transaction per second (TPS) as

compared to MuTeBench. In Figure 7 the throughput performance considering different workers without

SLA compliances is shown. It is seen from graph the MTDRSM performs better than MuTeBench.

The MTDRSM improves throughput by 5.87%, 3.03% and 2.63% considering 10, 20 and 50 worker

respectively, over MuTeBench. An average throughput improvement of 3.84% is achieved by MTDRSM

over MuTeBench. Similarly, in Figure 8 the throughput performance considering different worker with SLA

compliances is shown. It is seen from graph the MTDRSM performs better than MuTeBench in terms of

throughput performance considering varied worker. The MTDRSM improves throughput by 7.24%, 7.4%

and 7.1% considering 10, 20 and 50 worker respectively, over MuTeBench. An average throughput

improvement of 7.25% is achieved by MTDRSM over MuTeBench. It is seen from Figure 7 and Figure 8

that provisioning SLA to tenant induces an overhead in throughput performance of MuTeBench, where us

MTDRSM is efficient when provisioning SLA to tenant.

Table 1. Transaction status without SLA
Transaction Status without SLA

Number of

worker

Completed Transaction Aborted Transaction Rejected Transaction Unexpected error

MuTeBench MTDRSM MuTeBench MTDRSM MuTeBench MTDRSM MuTeBench MTDRSM

10 6711 6849 10 7 74911 79901 31 5

20 13203 13288 11 8 149122 154134 59 45

50 10507 12873 9 7 148255 151225 116 102

Table 2. Transaction status with SLA
Transaction Status with SLA

Number of

worker
Completed Transaction Aborted Transaction Rejected Transaction Unexpected error

MuTeBench MTDRSM MuTeBench MTDRSM MuTeBench MTDRSM MuTeBench MTDRSM
10 10799 12894 12 8 144222 154264 37 21
20 10906 13108 10 8 142508 152592 64 50
50 11062 12960 8 8 140554 150260 39 27

Figure 7. Throughput achieved for varied worker

without SLA

Figure 8. Throughput achieved for varied worker

with SLA

5. CONCLUSION

Multitenant database management on cloud environment has attained huge interest among various

organizations, due to scalability and cost benefits. The wide survey carried out shows the existing scheduling

technique suffers due to NP-Hard problem. Therefore an efficient scheduling and load balancing mechanism

is required for dynamic resource allocation. Here we presented query classification and worker sorting

technique for dynamic resource allocation and handling idle instance efficiently. Experiments are conducted

to evaluate the performance of MTDRSM in terms of latency and throughput with and without SLA

compliances. The experiments are conducted considering varied tenant, worker and workload such as TPCC

and YCSB benchmarks. The experimental outcome shows the MTDRS reduces average latency of 27.44%

Int J Elec & Comp Eng ISSN: 2088-8708 

An efficient resource sharing technique for multi-tenant databases (Pallavi G. B.)

3225

and 28.2% over Mute Bench without and with SLA compliance respectively. The MTDRSM improves

average throughput by 3.84% and 7.25% over Mute Bench without and with SLA compliance respectively.

The overall result achieved shows that when SLA is given to tenant there incur an overhead for Mute Bench

model, as a result affect the performance of throughput and induce latency for tenant. This shows

the efficiency of handling idle instance by MTDRSM model. The overall result achieved shows that

the MTDRSM can provision SLA without incurring latency to tenants and performs significantly better than

Mute Bench. Provisioning security to database access in multi-tenant cloud environment is a critical factor in

increasing wide adoption. The future work would consider provisioning security to multi-tenant cloud

SaaS environment.

ACKNOWLEDGEMENTS

The authors would like to acknowledge and thank Technical Education Quality Improvement

Program [TEQIP] Phase 3, BMS College of Engineering, Basavanagudi, Bangalore.

REFERENCES
[1] B. P. Rimal and E. Choi, “A service-oriented taxonomical spectrum, cloudy challenges and opportunities of cloud

computing,” in International Journal of Communication Systems, vol. 25, no. 6, pp. 796–819, Jun. 2012.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-degree compared,” 2008 Grid

Computing Environments Workshop, Austin, TX, pp. 1-10, 2008.

[3] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger, “Multi-tenant databases for

software as a service: Schema-mapping techniques,” In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pp. 1195–1206, Jun. 2008.

[4] Andreas Gobel, “MuTeBench: Turning OLTP-Bench into a Multi-Tenancy Database Benchmark Framework,”

The fifth International Conference on Cloud Computing, GRIDs and Virtualization, pp. 84-47, 2014

[5] Li heng, Yang dan, and Zhang xiaohong, “Survey on multi-tenant data architecture for saas,” IJCSI International

Journal of Computer Science Issues, vol. 9, issue 6, no. 3, Nov. 2012.

[6] Cor-Paul Bezemer, Andy Zaidman, “Multi-Tenant SaaS Applications: Maintenance Dream or Nightmare?,”

IWPSE-EVOL '10: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and International

Workshop on Principles of Software Evolution (IWPSE), pp. 88-92, Sep. 2010.

[7] Archana Bhaskar and Rajeev Ranjan, “Optimized memory model for hadoop map reduce framework,”

in International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4396-4407, Oct. 2019.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacenter networks,” in ACM

SIGCOMM Computer Communication Review, pp. 242–253, Aug. 2011.

[9] Toan Phan Thanh, Loc Nguyen The, Said Elnaffar, Cuong Nguyen Doan, Huu Dang Quoc, “An Effective PSO-

inspired Algorithm for Workflow Scheduling,” International Journal of Electrical and Computer Engineering

(IJECE), vol. 8, no. 5, pp. 3852-3859, Oct. 2018.

[10] B. P. Rimal and M. Maier, “Workflow Scheduling in Multi-Tenant Cloud Computing Environments,” in IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 290-304, Jan. 2017.

[11] F. S. Hsieh and J. B. Lin, “A dynamic scheme for scheduling complex tasks in manufacturing systems based on

collaboration of agents,” in Applied Intelligence, vol. 41, no. 2, pp. 366–382, Sep. 2014.

[12] J.-C. Liou and M. A. Palis, “An efficient task clustering heuristic for scheduling DAGs on multiprocessors,”

in Proc., Resource Management, Symp. of Parallel and Distrib. Processing, pp. 152–156, 1996.

[13] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,” in IEEE

Transactions on Parallel and Distributed Systems, vol. 15, no. 2, pp. 107-118, Feb. 2004.

[14] H. Topcuoglu, S. Hariri, M. Y. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous

computing,” in IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-274, Mar. 2002.

[15] H. M. Fard, R. Prodan, J.J.D. Barrionuevo, and T. Fahringer, “A multi-objective approach for workflow scheduling

in heterogeneous environments,” 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (ccgrid 2012), Ottawa, ON, pp. 300-309, 2012.

[16] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and fairness for multi-tenant cloud storage,”

OSDI'12: Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation,

pp. 349–362, Oct. 2012.

[17] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling workflow

applications in cloud computing environments,” 2010 24th IEEE International Conference on Advanced

Information Networking and Applications, Perth, WA, pp. 400-407, 2010.

[18] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioningand scheduling algorithm for scientific

workflows on clouds,” in IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222-235, 2014.

[19] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang, “A market-oriented hierarchical scheduling strategy incloud workflow

systems,” The Journal of Supercomputing, vol. 63, no. 1, pp. 256–293, Jan. 2013.

[20] H.M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic workflow scheduling mechanism for commercial

multicloud environments,” in IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6,

pp. 1203-1212, Jun. 2013.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 : 3216 - 3226

3226

[21] G. Juve, et al., “Scientific workflow applications on amazon EC2,” 2009 5th IEEE International Conference on

E-Science Workshops, Oxford, pp. 59-66, 2009.

[22] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “Bar: An efficient data locality driven task scheduling algorithm for

cloud computing,” 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

Newport Beach, CA, pp. 295-304, 2011.

[23] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scientific cloud workflows,” Future

Generation Computer Systems, vol. 26, no. 8, pp. 1200–1214, Oct. 2010.

[24] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints for adaptive applications in cloud

environments,” in IEEE Transactions on Services Computing, Fourth Quarter, vol. 5, no. 4, pp. 497-511, 2012.

[25] L. Ramakrishnan, et al., “Vgrads: enabling e-science workflows on grids and clouds with fault tolerance,”

Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, OR,

pp. 1-12, 2009.

[26] K. Plankensteiner and R. Prodan, “Meeting soft deadlines in scientific workflows using resubmission impact,”

in IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 5, pp. 890-901, May 2012.

[27] S. Abrishami, M. Naghibzadeh, and D.H.J. Epema, “Deadline constrained workflow scheduling algorithms for

infrastructure as a service clouds,” in Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, Jan. 2013.

[28] W. Tsai, X. Sun, Q. Shao, and G. Qi, “Two-tier multi-tenancy scaling and load balancing,” 2010 IEEE 7th

International Conference on E-Business Engineering, Shanghai, pp. 484-489, 2010.

[29] T. Kwok and A. Mohindra, “Resource calculations with constraints, and placement of tenants and instances

for multi-tenant saas applications,” in International Conference on Service-Oriented Computing, vol. 5364,

pp. 633-648, 2008.

[30] E. Javier, M. Arturo, J. Guillermo, M. Martn, R. Ral, and C. David, “A tenant-based resource allocation model for

scaling softwareas- a-service applications over cloud computing infrastructures,” Future Generation Computer

Systems, vol. 29, no. 1, pp. 273–286, Jan. 2013.

[31] S. Walraven, W. D. Borger, B. Vanbrabant, B. Lagaisse, D. V. Landuyt and W. Joosen, “Adaptive Performance

Isolation Middleware for Multi-tenant SaaS,” 2015 IEEE/ACM 8th International Conference on Utility and Cloud

Computing (UCC), Limassol, pp. 112-121, 2015.

[32] Sudipto Das, Vivek R. Narasayya, Manoj Syamala, “CPU Sharing Techniques for Performance Isolation in

Multitenant Relational Databaseasa Service,” Proceedings of the VLDB Endowment, vol. 7, no. 1, pp. 37-48, 2013.

[33] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Surajit Chaudhuri, “Sqlvm:

Performance isolation in multi-tenant relational database-as-a-service,” In 6th Biennial Conference on Innovative

Data Systems Research, Jan. 2013

[34] Ying Hua Zhou, et al., “Db2mmt: A massive multi-tenant database platform for cloud computing,” 2011 IEEE 8th

International Conference on e-Business Engineering, Beijing, pp. 335-340, 2011.

BIOGRAPHIES OF AUTHORS

Pallavi G. B., working as assistant professor, in the Department of Computer Science and

Engineering, BMS College of Engineering,Bangalore. Pursuing PhD in the field of Cloud

Computing.

Dr. P. Jayarekha., working as Professor, in the Department of Information Science and

Engineering, BMS College of Engineering,Bangalore. Awarded PhD in June 2011in the field of

networks. She has published 35 research papers in referred International Journals and also few in

national and international conferences. She has been actively involved as an expert member in

various committees such as AICTE, NBA.

