
Association for Information Systems
AIS Electronic Library (AISeL)
UK Academy for Information Systems Conference
Proceedings 2014 UK Academy for Information Systems

Spring 4-9-2014

A Review Of Multi-Tenant Database And Factors
That Influence Its Adoption.
Olumuyiwa Matthew
University of Wolverhampton, o.o.matthew@wlv.ac.uk

Carl Dudley
University of Wolverhampton, carl.dudley@wlv.ac.uk

Robert Moreton
University of Wolverhampton, r.moreton@wlv.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ukais2014

This material is brought to you by the UK Academy for Information Systems at AIS Electronic Library (AISeL). It has been accepted for inclusion in
UK Academy for Information Systems Conference Proceedings 2014 by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

Recommended Citation
Matthew, Olumuyiwa; Dudley, Carl; and Moreton, Robert, "A Review Of Multi-Tenant Database And Factors That Influence Its
Adoption." (2014). UK Academy for Information Systems Conference Proceedings 2014. 22.
http://aisel.aisnet.org/ukais2014/22

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2014?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2014?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2014?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ukais2014/22?utm_source=aisel.aisnet.org%2Fukais2014%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


1 
 

A REVIEW OF MULTI-TENANT 

DATABASE AND FACTORS THAT 

INFLUENCE ITS ADOPTION 

Olumuyiwa  Matthew* 

Carl Dudley** 

Robert Moreton*** 

*MSc in Information Technology Management, MCPN, AMBCS,                          

The University of Wolverhampton, United Kingdom.  

Email: o.o.matthew@wlv.ac.uk 

**Oracle Professor in Database Technology University of Wolverhampton, UK.  

UK Oracle User Group Official, oracle ACE Director 

Email: carl.dudley@wlv.ac.uk 

***Emeritus Professor in IT from university of Wolverhampton, UK. 

Email: r.moreton@wlv.ac.uk 

 

Abstract   

A Multi-tenant database (MTD) is a way of deploying a Database as a Service (DaaS). This is gaining 

momentum with significant increase in the number of organizations ready to take advantage of the technology. 

A multi-tenant database refers to a principle where a single instance of a Database Management System 

(DBMS) runs on a server, serving multiple clients organizations (tenants). This is a database which provides 

database support to a number of separate and distinct groups of users or tenants. This concept spreads the cost 

of hardware, software and other services to a large number of tenants, therefore significantly reducing per 

tenant cost. Three different approaches of implementing multi-tenant database have been identified. These 

methods have been shown to be increasingly better at pooling resources and also processing administrative 

operations in bulk. This paper reports the requirement of multi-tenant databases, challenges of implementing 

MTD, database migration for elasticity in MTD and factors influencing the choice of models in MTD. An 

insightful discussion is presented in this paper by grouping these factors into four categories. This shows that 

the degree of tenancy is an influence to the approach to be adopted and the capital and operational expenditure 

are greatly reduced in comparison with an on-premises solution 

Keywords: Multi-tenant, Database, Service, Tenant, Models. 
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1. INTRODUCTION 

Deploying Database as a Service (DaaS) is gaining momentum with a significant increase in 

the number of organizations ready to take advantage of the technology. This architecture will 

reduce the cost incurred in the development and deployment of an on-premises database 

system both in hardware and software required for such a system. Multi-tenancy is a familiar 

word that comes from the real world of estate building. An estate building will provide a 

multi-tenant housing service to any number of tenants (Banville and Holzel 2012). This could 

be an individual, couple, family and groups of different sizes. Similarly, a multitenant 

database is one which provides database support to a number of isolated and different groups 

of users. The concept of multi-tenancy was developed from the service providing technology 

known as Software as a Service (SaaS). SaaS is a form of cloud computing that involves 

offering software services in an on-line and on-demand fashion with the internet as the 

delivery mechanism (Walraven et al 2014). Software as a Service constitutes a fast-growing 

business model for the sales of software that is based on the principle of outsourcing. With 

SaaS, a service provider hosts an application or software on its infrastructure and delivers it 

as a service to several organizations. An organization, also referred to as a tenant, subscribes 

for the service and accesses it across the Internet through standard web technology. (Schiller 

et al 2011 p117) 

 

A multi-tenant database refers to a principle where a single instance of the Database 

management system (DBMS) runs on a server, serving multiple client organisations (tenants). 

Multi-tenant database is one which provides database support to a number of separate and 

distinct groups of users, also referred to as tenants. A tenant is simply any logically defined 

group of users that requires access to its own set of data. This definition was substantiated by  

Bezemer et al (2010 p1) as an architectural pattern in which a single instance of the software 

is run on the service provider’s infrastructure, and multiple tenants access the same instance. 

This concept provides the ability of a system to provide database management services to 

different users or customers without causing interference with each other’s processes. This 

reduces the effort made in production and the cost incurred in the development. 

 

 In a multi-tenant enabled service environment, user requests from different organizations and 

companies (tenants) are served concurrently by one or more hosted application instances and 

databases based on a scalable, shared hardware and software infrastructure (Gao et al 2011 
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p324). Such a database system must be able to maintain or even increase its performance or 

efficiency level under larger operational demands. This multi-tenant database system is a new 

technology that can be implemented in both host based and cloud based environments.  

 

Today many companies want to outsource their data to a third party which hosts a multi-

tenant database system to provide data management service. Each company is called a tenant. 

The multi-tenant data management system spreads the cost of hardware, software and 

professional services to a large number of tenants and thus significantly reduces per- tenant 

cost by increasing the scale. Thus the multi-tenant database system provides excellent 

performance, low-space requirement and good scalability (Ni et al 2012 p2199). With multi-

tenancy, there is no need for customers having separated on site systems for their personal 

applications since such services and resources could be rendered to them through a service 

provider at a much more reduced cost. 

A single instance of the software running on a single server will serve multiple client 

organisations (tenants), this is a principle also used in software architecture and is also 

referred to as multi-tenancy. Multi tenancy can minimize Hardware/Software costs and 

human costs per tenant. Multi-tenant database system has been exploited to store, manage, 

and retrieve data of tenants. A service provider hosts the multi-tenant database system and 

each tenant subscribes to the services by doing necessary configuration, loading data to the 

data centre, and then interacts with the services through a standard method, e.g., Web 

Services. Thus, the cost of ownership of database applications and the maintenance costs are 

transferred from the individual tenant to the service provider.  (Ying et al 2011). 

In this paper, we present past researchers’ works in relation with multi-tenancy in database. 

And factors that influence the choice of MTD are highlighted to illustrate a background 

insight into the concept. The paper is organised as follows; section 2 reviews the literature on 

MTDs. while section 3 explores the factors influencing the choice of MTD. The detailed 

discussion of the re-grouped factors are presented in section 4. Conclusions are provided in 

the last section. 

2. RELATED WORKS 

  

With multi-tenancy features, SaaS providers can considerably ease operations and reduce 

delivery costs with a large number of tenants. As illustrated by Gao et al (2011 p324) that in a 

multi-tenant enabled service environment, one or more hosted application instances and 
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databases service the request from different organisations and companies concurrently on a 

scalable, shared hardware and software infrastructures. 

 

 

Tenants    A    B    C   D    E     F   G   H….. 
Application 

Instance 

  
Database 

 
 

 

Figure 2 - A Multi-Tenant Enabled Service Environment. 

 

Gao et al (2011) focus on the database layer of multi-tenancy as the most important and 

challenging part of SaaS application, looking at cost effective database sharing model and 

also on data security isolation among tenants must be guaranteed irrespective of the sharing 

model. The fact that different tenants with different service level demands and customization 

needs will further make this multi-tenancy adoption a constraint in practice. Gao et al came 

up with a cost-effective, secure, customizable, scalable, and non-intrusive multi-tenant 

database which will accelerate the migration and development of SaaS. 

 

This Multi-tenancy architecture was also put forward by Walraven et al (2014 p2) as an 

architecture that can be applied at various levels of the software stack: at the infrastructure 

level (i.e. virtualization), at the OS and middleware level, and even at the application level.   

Banville and Holzel (2012 p2) also explained multi-tenancy and categorized them based on 

isolation and sharing of resources. There are four basic classes as shown in figure 3: isolated, 

infrastructure, application and shared tenancy. In isolated tenancy, each tenant has its own 

instance of the application running with its own instance of database, as well as its own 

infrastructure to support the deployment (Banville and Holzel 2012 p3). In infrastructure 

A B C 

D E F A B C G H 

D E F G H 
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tenancy, each tenant has its own instance of the application running with its own instance of 

database while they all share the same infrastructure. In this kind of multi-tenancy, each 

tenant has different application and different database but all on the same infrastructure. In 

application tenancy, each tenant has its own instance of database while at the application and 

infrastructure level they all run on the same platform. 

 

Finally, shared tenancy has a scenario where all tenants run on the same instance of 

application, database and infrastructure. This approach is said to be the purest approach of 

multi-tenancy approaches where everything is been shared (Banville and Holzel 2012 p3). 

As we move further to the right side of the figure 3, the sharedness of tenancy in each 

paradigm increases (Banville and Holzel 2012 p3). This means that as you move further to 

the right side of the diagram, the degree of sharing of the resources increases, taking it to a 

point where all the required resources are shared. 

 

 

 

Figure 3 - The multi-tenancy continuum  

 

There are some advantages and disadvantages noted by Banville and Holzel (2012 p3) 

concerning each of the approaches in figure 3. For example, if a tenant requires a customized 

version of the application and/or the database schema or has special infrastructure 

requirements, then isolated tenancy is the ideal approach. However, as the number of isolated 

tenancy deployments increases, the cost of maintaining them also increases. An application 
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provider maintaining an isolated tenancy deployment for an increasing number of tenants will 

have to invest considerably more time and effort to deploy code changes or carry out 

database maintenance for all of those tenants. 

 

Also shared tenancy has a comparative reduction in maintenance cost due to one instance of 

application, database and infrastructure that is shared by all the tenants. It is easy to change 

code, maintenance is a straightforward and less costly than with isolated tenancy. Isolated 

tenancy has a high level of scalability due to the ease with which additional tenants can be 

added to the deployment. While shared tenancy has disadvantages of making it difficult to 

customize a particular tenant’s code, customize schema, or provide any type of specialized 

service to a particular tenant. Tenants in a shared tenancy configuration may also have 

increased concerns over data security since their data is stored together on the same database 

instance (Banville and Holzel 2012 p3).  

 

Walraven et al (2014) focuses on the application-level multi-tenancy which is reported to 

achieve the highest degree of resource sharing between tenants. Walraven et al also says that 

end users from different tenants are simultaneously served by a single application instance on 

top of the shared infrastructure. There is a crucial disadvantage of inherent limitations in 

variability when compared with infrastructure-level and middleware –level multi-tenancy. 

And only requirements that are common to all tenants are satisfied, no support for different 

and varying requirement of the different tenants. This increase amount of variations and an 

increasing amount of tenant – specific configuration has led to two essential challenges 

related to development and customization of multi-tenant applications identified by Walraven 

et al (2014 p3). There are; 

1.  SaaS providers need to be able to manage and reuse the different configurations and 

software variations in an efficient way, without compromising scalability; e.g. by 

avoiding additional over-head when provisioning new tenants. 

2. Part of realizing the scalability benefits of SaaS is achieved by self-service: shifting 

some of the configuration efforts to the tenant side, e.g. by allowing the tenant to 

manage his tenant-specific requirements and by automating the run-time con-

figuration process. Therefore, tenants require additional support to manage the 

configuration in a tenant-driven customization approach. 
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2.1 MULTI-TENANT DATABASE IMPLEMENTATION 

Multi-tenant database architecture is very important for service providers who base their 

platform on SaaS. This helps in meeting up with the demands of customers or tenants on that 

platform of the provider. Multi-Tenants database architecture is very useful when one 

instance of database is serving to multiple clients. Only one set of hardware resources is 

needed to fulfil the requirements of all users. Multi-tenant is based on subscriber model, so 

user has freedom to avail the facility as per business requirement or can turnoff. 

 

Jacobs and Aulbach (2007 p2) identified three different approaches in implementing multi-

tenant databases which are: shared machine, shared process, and shared table. These 

approaches are increasingly better at pooling resources and executing administrative 

operations in bulk. However they increasingly break down the isolation between customers, 

weakening security and increasing contention for resources. Grund et al (2008 p2) make 

comparison based on the three approaches of Jacobs and Aulbach (2007), it states that in the 

shared machine approach, each tenants get their own database and resource sharing is done 

on machine level. In the shared process approach, the tenants share the same physical 

database process but own different databases. This allows better resource pooling between 

the tenants but still creates a lot overhead because the schemas need to be maintained 

separately for all tenants. The last approach is the shared table approach. Using shared tables 

the application schema is created once and the different tenants are mapped directly into this 

schema using different schema mapping techniques. 

 

Schiller et al (2011 p118) further explain that these three approaches vary in the degree of 

consolidation and that the Shared Machine approach allows consolidating only a few tenants 

onto one machine due to the large main memory footprint of a database instance. The Shared 

Process approach consumes less main memory per tenant, yet main memory consumption 

increases quite fast with the number of tenants, as each tenant obtains a dedicated schema 

instance. In contrast, the main memory consumption of the Shared Table approach remains 

constant if the number of tenants increases. According to Schiller et al (2011 p118, the shared 

table approach seems promising for a provider that targets the long tail because it offers the 

lowest overhead per tenant and, thus, is suitable for a large number of small tenants, e. g. 

1,000 tenants each having less than 50 MB of data and at most 5 concurrent users. 
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Reinwald (2010) in Elmore et al (2011 p2) came out with an improvement on the 

classification of database multi-tenancy models explored in the past by Jacob and Aulbach 

(2007), from the three to six classifications. Elmore et al (2011 p2) illustrate that these six 

classification were more improved to show different isolation level between tenants that are 

possible in all these models. This classification makes selection of a target model interesting 

and helpful.  

 

Table 1: Multitenant database models, how tenants are isolated, and the corresponding cloud 

computing paradigms. (Elmore et al 2011 p2) 

 

# Sharing Mode Isolation IaaS PaaS SaaS 

1 Shared Hardware VM      

2 Shared VM OS User     

3 Shared OS DB Instance     

4 Shared Instance Database     

5 Shared database Scheme     

6 Shared table Row      

 

 

Elmore et al (2011) analysed the above table of classification by explaining how the six 

classifications can be collapsed into the traditional models of multi-tenancy. The models 

corresponding to rows 1–3 share resources at the level of the same machine with different 

levels of abstractions, i.e., sharing resources at the machine level using multiple Virtual 

Machines (VM Isolation) or sharing the VM by using different user accounts or different 

database installations (OS and DB Instance isolation). There is no database resource sharing. 

Rows 1–3 only share the machine resources and thus correspond to the shared machine model 

in the traditional classification. Based on Elmore et al (2011) the first three classifications can 

be collapsed into the traditional shared machine model since all share resources. Elmore et al 

(2011) also explains that the row 4 and 5 are involve sharing the database process at various 

isolation levels—from sharing only the installation binary (database isolation), to sharing the 

database resources such as the logging infrastructure, the buffer pool, etc. (schema isolation), 

to sharing the same schema and tables (table row level isolation). Rows 4–5 thus span the 

traditional classes of shared process (for rows 4 and 5). Finally Elmore et al (2011) also 
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explains that row 6 is the shared table model that uses a design which allows for extensible 

data models to be defined by a tenant with the actual data stored in single shared table. The 

design often utilizes ‘pivot tables’ to provide rich database functionality such as indexing and 

joins (Aulbach et al (2008) in Elmore et al 2011 p2). 

  

Ni et al (2012 p2199) makes a brief comparison of two state-of-the-art approaches which are 

Independent Tables Shared In-stances (ITSI) and Shared Tables Shared Instances (STSI) to 

design schema. In this comparison ITSI has a poor scalability because there is need for 

maintenance of very large numbers of tables while  STSI achieve very good scalability but 

with a very poor performance and high space. 

In a multi-tenant setting, the degree of multi-tenancy becomes an additional factor that 

impacts performance, both for the overall system and the performance that is experienced by 

each individual tenant. In general, increasing the degree of multi-tenancy decreases per-

tenant performance, but reduces the overall operating cost for the DaaS provider (Lang et al 

2012 p702). 

 

2.2 REQUIREMENT OF MULTI-TENANT DATABASES 

Multi-tenancy can be applied at the database layer of a hosted service, in order to reduce the 

high cost of positioning and operating database. Jacob and Aulbach (2007 p2) said that in 

addition to managing customers’ private data, a multi-tenant database could manage customer 

metadata and shared public data. These metadata should include data like contact 

information, their location and their features. 

 

The target application for a hosted service will generally have a base schema that specifies all 

of its standard data. A multi-tenant database should maintain an instance of this base schema 

for each customer. The unified query language should ensure that Data Definition Language 

(DDL) statements for modifying the base schema and Data Manipulation Language (DML) 

statements for transforming existing data within it are applied to all customers in the farm, 

within the context of a rolling upgrade. The ability to perform such operations in bulk on the 

individual databases is essential to minimize downtime during an upgrade (Jacob and 

Aulbach 2007 p2). 
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2.3 CHALLENGES OF IMPLEMENTING MULTI-TENANT DATABASE 

Ying et al (2011 p335) explained some of the challenges associated with multi-tenancy 

database development against the traditional database. The first challenge is the data isolation 

among tenants. Many tenants can share the same database, but the database must ensure the 

data of these tenants are isolated among each other and no one can get their data other than 

themselves. The second challenge is to achieve the economics of scales; the database must 

have the capability of on-demand scale to support large volume of tenants. This means that 

irrespective of growth in number of tenants and their demand on the database, it must be 

capable of meeting the demand. The third challenge is to be transparent to current existing 

application/skill, that is, the cloud developers can easily deploy the existing applications to on 

multi-tenant database without a large of code change, and the developers can create new 

multi-tenant application without using new technical knowledge. The fourth challenge is to 

support different isolations for the same application. This means that the use of different 

application by different tenant should ensure data isolation to each tenant regardless of the 

number of tenants involved.  

 

These same constraint was also mentioned by Fang and Tong (2011 p95) that because of the 

peculiarity need of each tenant, there are problems of; 1, whether the database can afford the 

increase of both data and request accompanied with the growth of tenants.  2, how the 

database can meet the specific needs of one tenant efficiently and safely without affecting the 

others. It seems that the basic challenges associated with this technology since remain the 

same and different models or approaches were proposed to handle each of these challenges 

 

2.4 DATABASE MIGRATION FOR ELASTICITY IN MULTI-TENANT DATABASE             

 

Multi-tenant DBMSs often collocate multiple tenants’ databases on a single server for 

effective resource sharing. Due to the variability in load, elastic load balancing of tenants’ 

data is critical for performance and cost minimization. On demand migration of tenants’ 

databases to distribute load on an elastic cluster of machines is a critical technology for 

elastic load balancing (Das et al 2010 p1). Multi-tenant database (MTD) must be able to 

handle the varying load requirement of each tenant on the database. This might require 
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adding or sometimes reducing resources depending on whether there is load increase or 

reduction. 

Elasticity is the ability to adapt to varying loads by adding more resources when the load 

increases, or consolidating the system to lesser number of nodes as the load decreases; all in a 

live system without disruption in the service (Das et la 2010 p1). Elmore et al (2011 p301) 

explains that elasticity is the ability to scale up to deal with high load while scaling down in 

periods of low load. Therefore elastic load balancing is a supreme feature in the design of a 

modern database management system for a multi-tenant environment. 

Efficient database migration in multi-tenant databases is an integral component to provide 

elastic load balancing. Furthermore, considering the scale of the system and the need to 

minimize the operational cost, the system should be autonomous in dealing with failures and 

varying load conditions. Migration should therefore be a first class notion in the system 

having the same stature as scalability, consistency, fault-tolerance, and functionality (Elmore 

et al 2011 p1). Database migration is a major factor which must be considered in effecting an 

efficient multi-tenant database.  

3 FACTORS INFLUENCING THE CHOICE OF MULTI-TENANT DATABASE 

APPROACHES 

There are several factors that influence the decision to adopt Multi-tenant database. These 

factors also help in determining the most suitable and appropriate approach of Multi-tenants 

database. The use of the system should be one of the influencing factors towards the decision. 

What is the area of usage of the system? Elmore et al (2011 p5) emphasise that the tenant 

application and usage requirements should be the primary consideration in deciding the right 

model of multi-tenant database. Sometimes users (tenants) are not equipped with necessary 

information about this before taking decision on what approach to adopt. Their decision is 

sometimes influenced by what vendors tell them. There is need to examine all these basic 

factors before approaching a service provider in order to make the right decision on this.  

Some of these factors are itemized by Keemti (2010) as follows. 

 Size of tenant database. 

 Number of tenants. 

 Number of users per tenant. 

 Growth rate of tenants. 
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 Growth rate of tenant database. 

 Security. 

 Cost. 

This research will examine each of the above factors as relevant e.g cost of infrastructure, 

management and development, and additionally look at: 

 Flexibility – ability to create multiple tables by tenants. 

 Time- time to build and configure. 

 Regulatory consideration ( UK/EU countries) 

Some of these factors were actually mentioned by different scholars depending on the context 

of their research. It is possible to group them into four major headings as follows: 

 Economic (Time and Cost) consideration. 

 Growth consideration. 

 Security consideration. 

 Regulations consideration. 

 

4 DISCUSSION 

Factors identified above and further grouped into four will be used to discuss how they affect 

the decision to adopt and evaluate the multi-tenant database implementations. This discussion 

is based on the researcher’s assumptions and also avenue for further research. 

4.1 Economic Consideration. 

The economy of any project has to do with the cost and the time it takes to complete the 

project. Cost and time are major factors to be considered under this heading. Cost is vital 

when considering the appropriate approach to be adopted in the implementation of database 

multi-tenancy. This cost is referred to as total cost of ownership (TCO) which is broken down 

into three major types. These are infrastructural cost, management cost and application 

development cost (Wang et al 2008 pp94-95).  Infrastructural cost includes the cost of 

hardware, software and utilization costs. Management cost are cost related to the operational 

activities and processes like lifecycle management, monitoring data backup and restore; while 

application development cost are cost related to meeting each customer additional unique 

requirement (Wang et al 2008 pp94-95). 
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Each of the three implementation approaches has different TCO depending on infrastructures, 

management and applications that are involved. Pippal (2011 p213) explained that separate 

database approach requires a high cost of maintenance since each tenant has separate 

database and each has some metadata used to relate to the correct database for each tenant. 

Chong et al (2006) illustrate economic consideration using two approaches: shared approach 

and isolated approach. The cost of shared approach tends to require a larger development 

effort because of the relative complexity of developing a shared architecture hence very high 

initial cost but in the long run the operational cost will be very low because they can support 

more tenants per server. 

 

 

 

 

 

 

 

Figure 4 - Cost over time for a hypothetical pair of SaaS applications; one uses a more 

isolated approach, while the other uses a more shared approach. 

Economic factors can constrain the development attempt which obviously can influence the 

choice of appropriate approach. And considering the time required to meet up with your 

customer (tenants) need, you might want to consider an approach that will require less time of 

development than a large-scale development approach. Aswathanarayana (2011 p4) also 

explain that cost saving is one of the major reasons for going into multi-tenancy in SaaS. And 

when talking about economical consideration we will always illustrate it in terms of cost 

saving or ROI (Return on investment) and time. Aswathanarayana (2011) argue that every 

application instance usually consumes a certain amount of overhead memory and processing 

power, which amount to a significant cost with many customers. This is reducing as many 

customers (tenants) share a single instance. Another aspect of cost benefit is the cost 
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associated with each tenant with regard to licensing cost, in multi-tenancy everything can be 

run on a single software instance. All tenants are now run on one single software and it means 

only one software license will be required. 

The advantage of several company or tenant with each varying number of users sharing the 

same set of IT resources both hardware and software in multi-tenant database, this is fully 

utilized thereby reducing the capital expenditure (CAPEX) that each tenant would have 

incurred in the business. Aswathanarayana (2011) support this by saying that multi-tenant 

environment maximizes the sharing of resources by allowing load balancing among tenants 

and reducing the CAPEX. There is efficient use of these resources because of the load 

balancing the idle time is completely remove or reduced to a very barest minimum.  

The cost of managing the software and hardware is greatly reduced in multi-tenancy since 

there is only one instance of the application is involved. Instead of caring out upgrade of 

software and hardware for each tenants involved. Only one off upgrade maintenance is done. 

Aswathanarayana (2011 p4) puts it by saying multi-tenancy greatly reduces operational 

complexity and cost in managing the software by simplifying the release management 

process since there is only one instance of the application. Same upgrades are common for all 

customers and the package typically need to be installed only on a single server. All forms of 

management and maintenance are done once in a single location. Gao et all (2011 p324) 

illustrate the reason behind the widespread of multi-tenancy one of which is the low cost for 

companies(tenants) in terms of hardware, software and utility of hosting centre (bandwidth, 

power, space etc.) and also lower cost of human resources to maintain processes and lifecycle 

via optimization and automation. The economic consideration in terms of cost is one factor so 

common in many scholars’ prepositions. Aulbach et al (2011 p99) put it that the total cost of 

ownership (TCO) is reduced relative to the on-premise solutions. The operational 

expenditures is reduce based on the fact that fewer processes are required for management. 

This invariably leads to reduction in capital expenditures and as well there will be increase in 

the resource utilization in the long run. 

Bezemer et al (2010 p1) explained this economic factor by saying that multi-tenant model has 

twofold benefit; application development to the users becomes easier for the service provider 

and also the utilization rate of the hardware can be improved as multiple tenants share same 

resource. Bezemer et al (2010) also illustrate that these two factors invariably reduce the 

overall cost of the application and makes multi-tenancy concept interesting for customers 
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who might have limited financial resource. The concept is more financial benefits to the SME 

businesses who might not have financial weight to have on-premises solution or system for 

their operation, thereby given them the opportunity to get same resources from a service 

provider on the basis of pay per use. 

Myer (2007) in Schaffner et al (2012 p157) brought more light into this discussion with 

illustration on cost of hosting one instance EC2 on Amazon’s Elastic Compute Cloud with 

MySQL database for one year. This shows that it is very high for a single tenant system to 

bear. This is expressly shown with the diagram below. This is an indication that the more 

consolidation the better in terms of cost. This another evidence to support the fact that the 

more tenants you have on a system the better it is for the tenants as this will drastically reduce 

the subscription expenses. The cost itemised here is excluding the cost involved in 

administering the database.  

Table 2-Yearly Cost to Host RightNow Database on Amazon EC2 (Schaffner et al 2012 

p157) 

 Single Tenant Multi-tenant 

Standard on-demand pricing $2,233,800.00 $148,920.00 

One-year reserved pricing $1,470,900.00 $98,060.00 

 

4.2 Growth consideration. 

In multi-tenant database growth is very vital factor that must be considered when choosing 

one of the implementation approaches you desire. The nature, number and need of the 

intended tenants expected to render services to will definitely affect the type of multi-tenant 

database model or architecture you will eventually adopt. 

I have decided to group all points 1-5 of the above mentioned factors as part of growth 

consideration factors. Aulbach and Jacobs (2007pp3-4) carried out experiment on memory 

(storage) and disk usage of the five different databases. This experiment focused on the 

shared process approach. It shows that memory storage required to handle 10,000 schema 

instances vary from 79MB to 2,061MB across the five databases. 



16 
 

Table3 - Figure Storage requirements for schemas instances in megabyte (Aulbach and 

Jacobs 2007 p3) 

 Memory 

1 instance 

Memory 

10,000 instance 

Disk 

1 instance 

Disk 

10,000 instance 

PostgreSQL 55 79 4 4,488 

MaxDB 80 80 3 1,168 

Commercial1 171 616 200 414,210 

Commercial2 74 2,061 3 693 

Commercial3 273 359 1 13,630 

This shows that the size of tenant database in terms of storage capacity is a factor needed to 

be considered during the decision about choice of approach. How much storage space do you 

expect the average tenant’s data to take? Schiller et al (2011 p118) give an illustration that the 

shared table approach has a promising for a service provider that has target for long tail 

because it offers the lowest over-head per tenant and thus suitable for a large number of small 

tenants.  An example of 1000 tenants with each uses less than 50MB of data and at most 5 

concurrent users. This is an indication that the number of tenants on the database and the 

number of users per tenant are all factors which must be thoroughly examined and also 

contribute to the performance of database system which invariably is also a factor to be 

considered when taking decision on what approach to be used.  

The degree of tenancy is an influence to the approach to be adopted. How many prospective 

tenants is your system going to serve? The rate of growth of tenancy ie at what rate the tenant 

will increase? Though you might not be able to estimate the use with authority assign to them 

but you must be able to reason out in terms of the size. Is it going to be a database for 

hundreds of tenants, for thousand, ten thousand or more? Myer (2007) in Schaffner (2013 p1) 

reveal that already in October 2007, the SaaS CRM vendor RightNow had 3,000 tenants 

which are distributed across 200 MySQL database instances with 1-100 tenants per instance. 

This means that the CRM can evolve overtime. It’s been designed to accommodate more 

tenants. The growth rate of tenants on it is never limited to a small number. Lang et al (2012 

p702) buttress this point by referring to multi-tenant setting that the degree of multi-tenancy 

becomes an additional factor that impacts performance that is experienced by every tenant on 

it. Lang et al (2012) says that per-tenant performance decreases with an increase in the degree 
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of multi-tenancy but other way reduces the overall operating cost for the service provider. 

Two approaches were used by Lang et al to explain this which indicate the importance of 

growth. Chong et al (2006) explains with a simple diagram where the choice will tend to 

consider these factors. The larger you expect your tenant base to be the more likely you will 

want to consider a more shared approach (Chong et al 2006). When all or some the of your 

tenant want to store very large amount of data, it is better to consider the isolated or separate-

database approach. And isolated approach is also good when there are a larger number of 

concurrent users (end users) per tenant (Chong et al 2006). The diagram illustrates with 

arrows pointing to the direction the decision is likely to go. 

Shared                                                                                                    Isolated  

 

 

 

 

 

 

Figure 5 - Tenant-related factors and how they affect "isolated versus shared" data 

architecture decisions. 

Tenancy growth was also mentioned by Aulbach et al (2008 p1196) that a tenant denotes an 

organisation with multiple users, up to 10 for a small to mid-sized business. A simple web 

application like business email, a single blade server will support up to 10,000 tenants. This 

shows that the magnitude of growth is high in terms of tenant number. Therefore, if there are 

10 concurrent users in each tenant, this will amount to 100,000 users in the database using the 

system simultaneously. Chong et al mention per-tenant value-added services. These services 

include backup, restore, customization reconfiguration etc. which are services that are easier 

to provide in the isolated approach. These services can still be provided in shared 

environment but not as easy as in the isolated approach.  In mid-sized enterprise application 

Per-tenant value-added services 

Number of Tenant 

Database size per tenant 

Number of users per tenant 
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like CRM, a blade server can support 100 tenants while a large cluster database can support 

up to 10,000 tenants (Aulbach et al 2008 p1196). 

 

Most multi-tenant database systems have challenges in coping with the increase in number of 

tenants using the same logical schema. Zhou et al (2011 p335) came up with DB2MMT 

system,  a DB2 massive multi-tenant database platform which provide case for multi-tenant 

application for long tail of tenants i.e very large number of small tenants using the same 

logical database schema. This also caters for consolidation of application or database for long 

tail of application with different schemas. This feature is an advantage for service providers 

who want to have very large number of tenant that would not require much memory space.  

4.3 Security Consideration 

In multi-tenant database system, one of the major concerns is the risk of data being exposed 

to the third parties. And because every database is design to store sensitive data, the 

prospective tenant will have very high security expectations. Every service provider will 

always want to operate to much higher security standard but sometimes this might not be to a 

hundred per cent. Therefore the service level agreement (SLAs) will have to provide very 

strong data security guarantees. 

Some of the security issues related to multi-tenancy database include data isolation among 

the tenants. Gao et al (2011 p324) mention some of the challenges facing the ISVs 

(Independent Service Vendor/Provider) in delivering their service these include the data 

security isolation among tenant, the different tenants having different SLA demand, 

customization requirement and effective database scale  out mechanism as the number of 

tenant increases. Hui et al (2009 p832) itemizes the problems faced in providing database as a 

service which includes security, contention for shared resources and extensibility. Hui et al 

(2009) also mentioned scalability as one of the problem which was defined as the ability to 

serve an increasing number of tenants without too much query performance degradation. In 

spite of the increase in the tenancy and query request, the system should still be able maintain 

its performance level. This tenancy growth should not impact the service availability of other 

tenants.  

Another major security issue is the flexibility of the system. A Multi-tenant database must be 

able to serve hundreds and thousands of tenants through one instance. Aulbach et al (2009 
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p881) expand this on by saying that a multi-tenant database must be flexible by been able to 

extend the base schema to support multiple specialised version of application and to 

dynamically evolve the base schema and its extension while the database is on line. This 

means that the evolution of one tenant-owned extension should be independent on the service 

provider. The tenant should be able to achieve this without the service provider. The creation 

of multiple tables by individual tenant must be guaranteed. This is not most times possible 

because each tenant has its own system requirement such as objects attribute business logic 

etc (Gao et al 2009 p325)  

Guo et al (2007 p2) also highlights two major challenges of native multi-tenancy design, 

firstly the system should support application level isolation among different tenants. This is 

quite in line with other scholars’ positions. The multi-tenancy database should support more 

tenants and efforts are made to prevent the quality of service of one tenant from being 

affected by other tenants. While the processes and operation request of one tenant increases 

should not be a deterrent to other tenant on the platform. Secondly, Guo et al (2007) bring to 

notice that in this type of environment, the customization for one tenant should not impact on 

the other tenant during the runtime. This was also pointed by Vashistha and Ahmed (2012 

p49) that  Isolation should be carefully considered in almost all part of architecture design 

from both functional and non-functional level such as security, performance, availability, 

administration and also support tenant customization of their own services in runtime without 

impacting on others.  Customization effort for one tenant which might require code 

modification and applications re-deployment, this sometimes affects other tenant. Once this 

becomes frequent occurrence will bring about the issue called service availability issues (Guo 

et al 2007 p2). The ISP will definitely have scores to settle with the customers (tenants) and 

will automatically results in   termination of contract and withdrawer of service from such 

ISV. 

Gao et al (2011 p325) gave a major requirement of multi-tenant database architecture as a 

system which is able to scale very large to support very large customer volume. This also 

Gao et al called incremental scalability, scale-out without impacting the service availability 

of other tenants. This particular feature is very difficult to achieve in most model types. This 

is also subject to the level of isolation in the approach adopted. Some service providers of 

multi-tenant database will have to put a lot of expertise and resources into making sure its 

infrastructure is as secure as possible against any form of data exposure, which would be very 

bad for its reputation. 
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One other security issue with this concept is that when one tenant has a particular application, 

it should be possible to deploy this application to other tenant in such system. This is a 

challenge mentioned by Zhou et al (2011 p335) as the cloud developer can easily deploy the 

existing application on to multi-tenant database without a large code change. When there is 

much code changes it affect other tenants’ processes and subsequently lead to system down 

time. 

Pippal et al (2011 p213) list out some concerns about third party offering multi-tenant 

service. One of which is the provision of a secure framework for authentication and 

authorization within the system. Pippal et al developed a protocol called Kerberos protocol. 

This incorporates a standard framework to implement authentication and authorization in the 

use of a multi-tenant database. This confirms who can access the database and verifies what 

you are allowed to do. This is to ensure what type of operation you are permitted to carry on 

the system. Authorization occurs after a successful authentication process. Every connection, 

login, query and update on a database must go through these two major security processes. 

These two security measures help find out why connection attempts are either accepted or 

denied. Authentication is important part of identity management while authorization has to do 

with access management. These are major mechanisms that must be enforced in a multi-

tenant database for security purposes.  

4.4 Regulatory Consideration. 

The database of every organisation is very vital to the growth and progress of the 

organisation. Enormous time and resources are devoted to the safety and protection of 

databases even as information is very important to organisations’ processes. There are laws 

and regulations put in place by different governments that serve as protection to databases of 

different entities that operate in that geographical location. Companies, organisation and 

governments are often subject to regulatory laws that affect their security and even record 

storage needs.  The knowledge of these different laws and regulations is also to be considered 

when taking the decision about multi-tenant database. Chong et al (2006) argue that the 

investigation of regulatory environments that your prospective customers occupy in the 

market in which you expect to operate is important. This shows that you have to be 

conversant with the laws that operate in that area or country. It is important to find out 

whether there are any aspect of the law that present any condition that will influence your 

decision toward given your database service to a third party. 
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In 1996, the European Union (EU) finally adopted the EU Database Directive (Directive). 

The Directive created a two-tier protection scheme for electronic and non-electronic 

databases. Member states are required to protect databases by copyright as intellectual 

creations, or to provide a novel sui generis right to prevent unauthorized extraction or re-

utilization of the contents of a database (Grosheide 2002 p39). The sui generis database right 

refer to as an intellectual property right that provides protection for the contents of a database 

(Schellekens 2011 p620). The difference between the two is that copyright infringement 

implies copying the structure, while the sui generis right infringement implies copying the 

contents themselves, irrespective of their copyright ability (Grosheide 2002 p39). This shows 

that provision is made for the protection of the content and also the structure of a particular 

database.  The most important aspect of this law is the sui generis law which protect the 

content of the database. 

 Davison (2003 p10) explains these provisions of database protection with three different 

models. These models are; 1) Copyright protection is provided at a low level of originality, 

this means that a database user cannot take a substantial amount of the data contained within 

the database (Davison 2003 p10). There are prohibitions supported by law and regulation to 

those who might want to copy part of a database.  2) Copyright protection is provided if there 

is some creativity in the selection or arrangement of the database material which is back up 

with sui generis right (Davison 2003 p10). This is to say that prohibitions are placed on 

unauthorised extraction or re-utilisation of a substantial part of the data. This actually confers 

the exclusive property right to the database owner. 3) Copyright protection is provided for the 

creativity in the selection or arrangement of the database material (Davison 2003 p10). These 

models help in the protection of database in terms of security. Even when an unauthorised 

someone gained access, these protections put in place by EU helps protect the database to 

some extent.  

 

There are challenges when tenants are from different regulatory authority. Most of the 

countries have different laws which sometimes are not having same conditions and to now 

manage these conflicts will pose a great technical and economical challenge to the ISVs. One 

of the reason given by Johnson and Grandison (2007 p256) for privacy breaches and identity 

theft is the fact that there is weak and ineffective enforcement of the data protection laws as 

well as discrepancies and conflicts in the legal protections. 
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5. CONCLUSION 

In this paper, we show that multi-tenant database helps reduce the cumulative cost that will 

be incurred by organizations on the development and deployment of an on premises database 

system. We show that economic factors can constrain the development attempt which 

obviously can influence the choice of appropriate approach of multi-tenant database models. 

One need to take into consideration the growth rate of your database which include the 

number of tenants, the number of users per tenant, size of each tenant database, growth rate 

of tenants and lastly the growth rate of tenant database. We have also show different security 

issues related to multi-tenant database which include data isolation, scalability, flexibility and 

customization. Effort must be made to look into the regulatory provisions for prospective 

tenants. The regulatory laws of all the tenants on a particular multi-tenanted database must be 

the same in order to have harmony in the laws that govern the system. 
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