
Implementing a maintainable and secure
tenancy model

Master of Science (Tech) Thesis
University of Turku
Department of Computing
Software Engineering
2023
Niklas Niemelä

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

NIKLAS NIEMELÄ: Implementing a maintainable and secure tenancy model

Master of Science (Tech) Thesis, 50 p.
Software Engineering
May 2023

Software-as-a-Service is a popular software delivery model that provides subscription-
based services for customers. In this thesis, we identify key aspects of implementing
a maintainable and secure tenancy model through analyzing research literature and fo-
cusing on a case study. We also study whether it is beneficial to change a single-tenant
implementation to a multi-tenant implementation in terms of maintainability and security.

We research common tenancy models and security issues in SaaS products. Based on
these, we set out to analyze a case study product, identifying potential problems in its
single-tenant implementation. We then decide on changing said model, and show the
process of implementing a new hybrid model. Finally, we present validation methods on
measuring the effectiveness of such implementation.

We identified data security and isolation, efficiency and performance, administrative man-
ageability, scalability and profitability to be the most important quality aspects to consider
when choosing a maintainable and secure tenancy model. We also recognize that it is ben-
eficial to change from a single-tenant implementation to a multi-tenant implementation in
terms of these aspects.

Keywords: SaaS, Multitenancy, Maintainability, Security

Sisällys

1 Introduction 1

2 Tenancy models 4

2.1 Previous research . 5

2.2 Single-tenant app and database . 6

2.3 Multi-tenant app with single-tenant database 7

2.4 Multi-tenant app and database . 8

2.5 Sharded database . 9

2.5.1 Elastic pools . 10

2.6 Configuration and customization . 11

3 Authentication and authorization 13

3.1 Security Issues in SaaS . 13

3.2 Access control . 15

3.3 Protecting against ASP .NET specific attacks 16

3.4 Token-based authentication . 16

3.5 Identity frameworks . 17

3.5.1 OAuth2.0 Core (RFC 6749) . 17

3.5.2 Entity Framework Identity . 19

3.6 Row-level security . 19

3.7 Data encryption . 20

i

3.8 Security standards and policies . 20

4 Case Study: CT Publisher by ATR Soft 22

4.1 Background . 22

4.2 Current solution in CT Publisher . 24

4.3 Current problems . 25

4.4 Goals . 26

4.5 Requirements . 28

4.5.1 R1: Maintainability . 28

4.5.2 R2: Tenant security . 29

4.5.3 R3: Customer integration . 29

4.5.4 R4: Performance . 30

5 Chosen solution 31

5.1 Scope . 31

5.1.1 Current solution: Single tenant application and database 31

5.1.2 Choosing a new tenancy model 34

5.2 Implementation . 37

5.3 Local setup . 40

6 Validation 42

6.1 Personal and team review . 42

6.2 Theory-based review . 43

6.3 Tests to measure maintainability and security 43

6.3.1 MSTest . 43

6.3.2 Mocking user data . 44

6.3.3 Windows Communication Foundation Service Host and Test Client 44

6.4 Future outlook on tests . 44

7 Conclusions 46

7.1 Summary of the study work . 46

7.2 Answering research questions . 47

7.2.1 Answering research question 1 47

7.2.2 Answering research question 2 48

7.3 Study limitations . 49

7.4 Value proposition of the study . 49

References 51

1 Introduction

Software development using Software-as-a-Service (SaaS) model is a popular approach

to creating customer products [1], [2]. The SaaS model allows for scaling up the product

easily by design. Developing software products for customers introduces concerns for the

maintainability and security for said products [3]. As the amount of customers increases,

so does the data related to those customers. This can easily lead to high maintenance costs

as an increasing amount of customers and data will raise the resource cost on hosting

and managing the product. Administrative management can also become laborious if

customers require customisation on their version of the product.

The implementation of SaaS products is often either a form of single-tenancy or multi-

tenancy. Tenancy refers to the way the product handles the deployment and hosting for

customers. Customers most often are referred to as tenants [3]–[5], but importantly ten-

ants are defined individually per SaaS products as the customers can be either businesses

or consumers.

Single-tenancy refers to the same model used in traditional software, where the soft-

ware is deployed individually for customer [6]. In single-tenant models, the deployment

and hosting of needed services can be done either by the service provider or the customer

depending on customer needs and requirements. However, in the core of cloud comput-

ing and SaaS products multi-tenancy should be utilized to take advantage of the economy

of scale [7], [8]. Bezemer et al. [3] claim that multi-tenancy as a model has two great

benefits. It makes the deployment of a SaaS product much easier, and it improves the

CHAPTER 1. INTRODUCTION 2

utilization rate of resources.

Managing hosting and customer data can become arduous with a weak design choice

for implementation. This thesis aims to research methods to identify weaknesses and

strengths in a SaaS product tenancy implementation. We compare alternative methods to

be able to assess potential benefits in changing already existing implementations to more

fitting solutions. We use a case study to apply this research on an already existing SaaS

product. The research questions for this thesis are as follows:

1. Research question 1: What aspects of developing and providing a SaaS product

should be considered when deciding on a tenancy model?

2. Research question 2: Is a change from a single-tenant implementation to a multi-

tenant implementation beneficial in terms of maintainability and security?

This thesis is composed using a literature review and employing information science

research paradigm framework design science presented by Hevner et al. [9].

For literature review, relevant literature was searched for manually in research pub-

lication databases relevant to information technology. The search of references was not

systematic, and they were picked from searching few of the largest research literature

databases on computer science. Mainly works regarding SaaS, cloud computing, multi-

tenancy, maintainability and security of such systems were evaluated. Unifying themes

were identified and analyzed in this research.

Design science is an iterative process where the goal is to identify, solve and evaluate

organizational problems in a continuous cycle. This methodology is presented to apply

to existing systems as well, which fits our case study project. The case study product

is a SaaS customer product CT Publisher, which is already public on the market. CT

Publisher is a online portal for sharing product related data and facilitating after-sales. It

is developed using C# using .NET framework and hosted in the cloud or locally using

Microsoft IIS.

CHAPTER 1. INTRODUCTION 3

This thesis starts with Chapter 2 discussing different tenancy models in a SaaS product

and providing explanation on the benefits of using any of them. The security matter of

such products is discussed more in Chapter 3, exploring various measures taken in SaaS

software to improve the security of them. Chapter 4 introduces the case study product CT

Publisher, and discusses the current architecture and implementation in more depth. The

chapter also sets goals and requirements for the product with maintainability and security

in the focus. The case product is reviewed against these goals and requirements and a

new, better fitting tenancy model solution is selected for it in Chapter 5. The chapter also

runs through the implementation process of said new tenancy model. Chapter 6 discusses

approaches to validate the maintainability and security of the implementation. In that

chapter we also discuss the results of the validation and answer our research questions set

earlier in this Chapter. Finally, in Chapter 7 we present the conclusions of the thesis along

with discussion on future work possibilities on the subject.

2 Tenancy models

This chapter discusses tenancy models for a SaaS software delivery model. Tenancy

model refers to the structure and implementation methods of tenants’ data storage [10].

SaaS product owner provides the software to the tenant as a single-tenant or multi-tenant

model, each providing differing advantages to the provider and the tenant. We discuss

multiple tenancy models of these two types to explore the strengths and weaknesses be-

tween them.

Bezemer and Zaidman [3] define multi-tenancy as following: "A multi-tenant appli-

cation lets customers (tenants) share the same hardware resources, by offering them one

shared application and database instance, while allowing them to configure the applica-

tion to fit their needs as if it runs on a dedicated environment". We use the same definition

throughout this publication. Single-tenancy on the other hand refers to having individual

instances of the services per customer. However, as discussed further in this Section, it

is possible to combine multi-tenant services with single-tenant services to gain various

benefits.

As our case study product is built as a .NET Application and hosted through the Mi-

crosoft Azure service, the following Sections describing tenancy models use the Microsoft

Azure documentation [10] as the primary reference.

2.1 PREVIOUS RESEARCH 5

2.1 Previous research

There are multiple studies done on multi-tenant applications, which all propose various

types of frameworks to handle the multi-tenancy. Multiple studies focus on optimizing

the performance in multi-tenant applications. Kalra et al. [11] propose a methodological

framework for a microservice based cloud application for their case study. This approach

tackles performance issues in a microservice level as opposed to application level. This

allows for micromanaging and optimizing the performance cost at high level, moving

tenants in and out of shards depending on perdformance. Mace et al. [12] also provide a

framework which is implemented at the application level instead. Their framework aims

to detect and throttle problematic tenants in a system, further distributing the resources

more fairly across all tenants. Weissman et al. [7] conclude that SaaS as a model improves

overall competitiveness of a product in the market.

The security is another main concern researched in multi-tenant applications. Bien

et al. [5] present a security pattern blueprint for hierarchical data authentication and

authorization. Their sample implementation is done in .NET environment similar to the

CT Publisher case study environment in this research. Aytac et al. [13] propose a tenant

management approach defining roles, access levels, ownerships, and permissions on a

Internet-of-Things (IoT) product. This allows for easier management on huge number of

objects introduced in IoT products, but the approach could be applied to similar products

with huge number of entities as well.

Tang et al. [14] propose an multi-tenant role-based access control model that allows

for secure cross-tenant access between selected tenants and resources. This model allows

for fast and secure authorization on data access on collaborative cloud environments.

2.2 SINGLE-TENANT APP AND DATABASE 6

2.2 Single-tenant app and database

Serving an application and database for each tenant provides the best application level

isolation [10]. Since every application is a standalone instance, tenants’ applications never

interact with each other. An application only needs one database for the single tenant it

serves. Of all the tenancy models, single-tenant application and database provides the

best tenant data isolation.

Figure 2.1: Single-tenancy: Application and database deployed once per tenant.

Since every tenant needs their own application instance and database, this is the most

inefficient model in regards of resource usage. Every tenant needs to be allocated suffi-

cient resources to handle peak loads, and at times resource usage can be negligible. Man-

aging an application and database for every tenant becomes difficult to maintain when

scaling up the number of tenants, hence proving the model to be the worst solution in

terms of scalability.

Having a database-per-tenant model allows for broad customization per tenant. Pro-

viding customization for tenants is discussed in Section 2.6.

2.3 MULTI-TENANT APP WITH SINGLE-TENANT DATABASE 7

2.3 Multi-tenant app with single-tenant database

Instead of installing an application per-tenant like discussed in Section 2.2, the application

can be installed once as a multi-tenant application to serve all the tenants. This model has

the same level of data isolation, as tenants are still provisioned their own databases. To

ensure the tenants are served their corresponding data, a separate database is used as

a management tool to improve security and maintainability. Such a database is called

the ’Catalog’ (as seen on Figure 2.2), which stores and maintains mappings between the

tenants and their data. This allows the application logic to route requests accordingly to

the correct tenants’ databases.

Figure 2.2: Multi-tenancy with single-tenant databases.

This model allows for broad tenant customization, as databases can have their schemas

optimized for tenant-specific use. Maintaining a multi-tenant application is significantly

easier than multiple single-tenant applications, especially when scaling up the amount

of tenants. This allows for the multi-tenant application model to be a relatively scalable

solution. The separate database instances for each tenant still allows for tenant-specific

customization on the database level.

2.4 MULTI-TENANT APP AND DATABASE 8

2.4 Multi-tenant app and database

Having a single app serve a single database is the core idea of multi-tenancy. It achieves

the lowest cost-per-tenant as the product owner needs to maintain only one instance of

the application and the database. To store and retrieve data of a specific tenant, a tenant

identifier tenantID-column needs to be added to tables in the database. This enables Row-

Level Security supported in SQL Database which is explained in Section 3.6. For further

security, extra logic can be added to ensure that the correct tenant data is always shown.

Figure 2.3: A simple multi-tenant application and database.

Having only one multi-tenant database serve the multi-tenant application means in

addition to data, processing power is also shared between all the tenants. This might

mean one overactive tenant hindering the performance of other tenants. As all the tenants

use the same database, it is hard to monitor the performance from the database. The

performance per-tenant can instead be scoped with application-level monitoring. A multi-

tenant database can be scaled up by adding more storage and computing resources.

2.5 SHARDED DATABASE 9

2.5 Sharded database

When the one multi-tenant database discussed in Section 2.4 becomes unwieldy to man-

age, multiple sharded databases are the solution. Database sharding provides the most

scalable solution for multi-tenancy, as it can be scaled both vertically and horizontally.

Sharded pattern merges the key principles of single database and shared database into one

system. Since one multi-tenant database will not be able to maintain unlimited amounts

of tenants, scaling out horizontally is done by adding more multi-tenant databases called

shards.

Figure 2.4: Multi-tenancy with database shards.

A sharded database consists of multiple multi-tenant or single-tenant database shards,

which can each have one or more tenants’ data stored in them. Being able to serve both

multi-tenant and single-tenant solutions to tenants allows for more flexibility in for prod-

uct owners providing the SaaS service. Tenants in the same shard share the storage and

performance capabilities of the database. Tenants can be moved from shard to shard to

balance shard performance, or to provide a single-tenant database for a tenant.

Tenants who require data isolation can opt in for the single-tenant database, where the

2.5 SHARDED DATABASE 10

tenant is the only tenant in the shard.

2.5.1 Elastic pools

Microsoft offers the option to deploy databases in a same resource group called elastic

pools [10]. Elastic pools allows for the resources allocated for the pool as a whole to be

distributed differently across the databases in the pool. When one database sees lower

usage, the allocated resources in the pool can still be used effectively by another database

in the pool. Elastic pools are useful if it is not expected for all the databases in the pool to

have their peak usage and resource drain at the same time. Accommodating resources per-

database to handle their respective peaks in performance could easily take more resources

than using elastic pools in this case, making them a cost-effective solution. The databases

still preserve the data isolation benefits from the Multitenant Application, Single-tenant

databases model.

Figure 2.5: Elastic pool sharing the performance resources across multiple databases.

2.6 CONFIGURATION AND CUSTOMIZATION 11

2.6 Configuration and customization

Sun et al. [15] conclude that the most ideal solution for a SaaS product owner to offer a

standardized product every tenant feels comfortable using. Sun et al. define the difference

of configuration and customization as following; configuration scopes small changes in

predetermined behavior or looks of the application, where customization covers bigger

features that need tenant-specific code changes. Mietzner et al. [4] identify the need

for customization with also taking advantage of the economy of scale the multi-tenancy

provides, providing tools to balance between the two.

Providing customization options, increased workload and maintaining different ver-

sions of code brings forth costs to the product owner that can be minimized by allowing

for larger pool of configurable options for the tenants. Better configuration options allows

product owners to meet more tenants’ requirements allowing for maximizing profitability

with no need to provide customized features. Depending on the competition in the prod-

uct market, it can still be beneficial to offer customization to attract the tenants that look

for that kind of product model. Allowing customization strays away from the core idea of

a SaaS-product being a subscription-based pricing model. Despite this, the product can be

distributed as a SaaS-product for an affordable price, and can be customized for premium

price if the tenant so chooses.

Tsai et al. [16] discuss three ways to approach tenant customization; manual, auto-

mated and guided. Manual approach is defined by tenants manually making decisions per

customization point. On automated approach, the customization choices are based only

on tenants requirements, potentially not meeting all of tenants customization needs. The

guided approach they propose automatically suggest key customization choices, and the

choices will be selected manually.

Song et al. [17] investigate the possibilities of deep customization per tenant in a

multitenant environment. Where in the past deep customization was done on the products

code base directly, in cloud environments that’s not possible as multiple tenants share the

2.6 CONFIGURATION AND CUSTOMIZATION 12

same service instances. To ensure deeper customization possibilities for each tenant, they

propose running custom code as intrusive microservices in containers not affecting the

main services other tenants use. They acknowledge further research needs to be done to

improve on and solve the problems the tight coupling their method introduces.

In practice, User Interface (UI) design is the most visible part of the configurations in

the product. Research on designing the UI on the case study product CT Publisher can be

found on M. Tuomola’s master’s thesis [18].

3 Authentication and authorization

In this chapter, we review literature on security, authentication and authorization practices

in SaaS software. We discuss the known security issues in SaaS software, websites and

APIs in general. We present some known malicious attacks SaaS developers need to take

into account while developing their software not to leave them vulnerable. We discuss

access control mechanisms in multi-tenant environments and in ASP .NET specifically to

prepare for analyzing the case study product.

3.1 Security Issues in SaaS

Sandanayake et al. state that the security layer is very essential in SaaS software, as it

provides the facilities of authentication and authorization, logging system and monitoring

solutions [19]. They outline current trends in SaaS software and also identify some secu-

rity issues. Chouhan et al. [20] identify three main categories in SaaS security challenges

in the rapidly growing SaaS field: data security, application security and deployment se-

curity.

Data security Customers of the product are often highly concerned about data security.

In a SaaS scenario, the hosting of the tenant data is no longer the customer’s responsibility,

but rather the responsibility of the SaaS provider. When a SaaS provider hosts the database

in a multi-tenant instance, there are multiple customers confidential data stored on the

same instance. As the data is no longer physically isolated, the data isolation aspect has

3.1 SECURITY ISSUES IN SAAS 14

to be done though authentication and authorization. Data needs to be secured in a way

that only authorized people can view the data they have permission to access.

Application security As SaaS application instances are often hosted in the web and

viewed through the browser, they are vulnerable to typical website vulnerabilities like

SQL injection, Cross Site Scripting (XSS) and Cross-site Request Forgeries [20], [21].

As Application Programming Interfaces (API) are used to power SaaS applications, their

security is of utmost importance [22]. Díaz-Rojas et al. [23] mapped systematically

the literature on malicious attacks on web APIs. They identified 68 different security

threats but the methods most often mentioned were as follows: eavesdropping, leakage of

sensitive information, code injection, denial of service attacks, man-in-the-middle attacks,

API hijacking, replay attack, brute forcing credentials, and broken authentication.

Deployment security SaaS multi-tenancy is most often made possible using virtual-

ization, which introduces security risks on its own [24], [25]. Wu et al. [26] state that

virtualization brings a more complex and risky security environment. They conclude

the following main security issues in virtualization: the break of isolation, remote man-

agement vulnerabilities, denial of service, virtual machine based rootkits and revert to

snapshots problem.

Sharma et al. [27] have found that the information privacy issues in the cloud are

increasingly needed. They found that where there are various privacy frameworks, none of

them are a standard in the industry. This leads to various levels of protected data in cloud

products like SaaS. They raise a few of the existing standards to their comprehensive list

of privacy protection in cloud computing: FIPPs, CSA, NIST2020, NIST 800-53, GDPR

and CCPA. They also suggest that separate standards need to be built to separate privacy

from security.

3.2 ACCESS CONTROL 15

3.2 Access control

Goyal et al. [28] define access as granting differential access rights to a set of users and

allow flexibility in specifying the access right of individual users. Kazmi [29] define ac-

cess control as the process that determines what activities a user is authorized to perform.

However, often authentication and authorization both are included in access control [30].

The goal of access control is to deny access to restricted resources from users that do

not have the right to access those resources. On the other hand, if a user has the right

to certain resources, we must be able to provide those resources in full scope related to

the users right of access. In practice, after proper authentication, the user is only shown

resources they are authorized to access.

Solanki et al. [31] suggest that there are multiple of different access control models,

but not all of them are fit for the SaaS cloud computing space. They cite the Multi-Tenant

Role-Based Access Control (MT-RBAC) model proposed by Tang et al.[14] to be the basis

for most access control models in use today. RBAC as it was first defined by Ferraiolo et

al. [32] is defining all access through roles. The roles are defined to all users in the system

as they would have them in a organization with differing levels of duties, responsibilities

and qualifications. This is later standardized multiple times by NIST [33] to enforce three

rules: role assignment, role authorization and permission authorization. These are the key

principles to intra-tenant authorized communication in a multi-tenant SaaS system.

Authentication is the process of verifying the identity of a role [30]. Authentication is

an imperative process in the access control procedure. Users need to authenticate them-

selves in order for them to gain any authorization over protected resources. Once a user

has authenticated themselves and are authorized to certain resources, their actions on ac-

cessing those resources may be monitored and logged.

3.4 TOKEN-BASED AUTHENTICATION 16

3.3 Protecting against ASP .NET specific attacks

Al-Amro et al. [21] identify security vulnerabilities in ASP .NET websites. They provide

concrete examples of how SQL injection and XSS attacks would work. They propose a

tool to check for such vulnerabilities. To this day, there is no standard set to protecting

against these attacks, but there are unequivocal best practices to follow, which are pre-

sented in Microsoft’s own documentation as well. They address protection against XSS

as follows in five steps, all containing a form of input validation and output encoding

[34]. They also stress that output encoding must be always done no matter the kind of

validation and input sanitization has been done.

The Open Worldwide Application Security Project (OWASP) has guidance on how to

securely implement data access [35]. They state that using Entity Framework is a very ef-

fective SQL injection prevention mechanism in itself, but other measures should be taken

as well where possible. They also stress the importance of using available encryption

algorithms and never trying to write your own encryption. Other important best prac-

tices include but are not limited to: always using HTTPS, using .NET Identity and using

logging and monitoring.

3.4 Token-based authentication

In place of only using username and password to authenticate a user directly, token-based

authentication allows for the user to authenticate with username and password to obtain

an access token. This token now can be sent the to verify the users authentication, re-

moving the risk of sending usernames and passwords over the internet, as doing so would

be a vulnerability no matter how well they would be encrypted. A popular standard for

token-based authentication is JSON web token (JWT), which is a compact format token

used in scale on websites all over. JWT allows for sending identities in a standard format

JSON object. We will be going over a authorization framework that utilizes token-based

3.5 IDENTITY FRAMEWORKS 17

authentication in Section 3.5.1. This framework doesn’t specify the format for such to-

kens. JWT is widely used in web applications over all and in .NET built solutions as well,

as it provides a lightweight format to the tokens.

3.5 Identity frameworks

There are multiple open identity frameworks like OAuth2.0 [36], SAML [37] and OpenID

[38]. We will be focusing on the OAuth2.0 protocol specification, as it is the framework

used in our case study product and widely used in projects using similar technologies.

3.5.1 OAuth2.0 Core (RFC 6749)

OAuth 2.0 is a authorization framework aimed to increase security of user data in client-

server communication [36]. Göçer et al. [39] state that OAuth2.0 identity framework is

the most used framework for authorization. OAuth proposes an additional authorization

layer by implementing a resource owner approved authorization server. Following the

OAuth2.0 protocol in an abstract example shown in Figure 3.1, client first requests an

authorization grant from the resource owner (or indirectly from the authorization server).

This can be done by authenticating themselves, for example, with username and pass-

word. After authentication, the users rights to access resources can be evaluated. If they

do not have the rights to access any resources, an authorization grant will not be given.

However, if the user is eligible for accessing some or all of the resources, they are given

the authorization grant. With the authorization grant, the user requests an access token

from the authorization server. Authorization server then valuates if the authorization grant

is indeed valid, and returns a access token only if it is. This access token represents the

authorization on the specific application and resources that user has the right to access.

The access token can now be used to request data from the resource server. This access

token is proof to the resource server that the user is authorized. The resource server then

3.5 IDENTITY FRAMEWORKS 18

validates the access token, and if valid, returns the requested resources to that user.

Access tokens have a certain lifetime given by the authorization server, and only works

as a proof of access until that timestamp. A token can be stored and reused until it expires.

The ability to store the access token securely is a strong benefit to using access tokens in

general. As the token itself does not contain any user credentials, they can be stored

and reused for some time. Comparing tokens to using only usernames and passwords,

storing them for reusing purposes would leave them very vulnerable for malicious attacks.

When an access token ultimately expires, a refresh token can be used to obtain a new

access token. The refresh tokens are issued from the authorization server in tandem with

the access tokens. A request containing the refresh token is sent to the authorization

server, and again represents the authorization granted to the user. If the authorization

server validates the refresh token, it returns a newly issued access token. Optionally, the

authorization server can also issue a new refresh token.

Figure 3.1: Abstract OAuth2.0 protocol in a simplified form.

3.6 ROW-LEVEL SECURITY 19

3.5.2 Entity Framework Identity

Entity Framework provides an API for authentication in .NET applications, Identity. Iden-

tity is used to store and manage users, passwords, roles, claims, tokens and more. Identity

is best used in tandem with a authorization server framework following a access control

protocol like OAuth2.0, allowing for token-based authentication. Identity is a great way

to set roles for users with various levels of access rights. These roles define the autho-

rization level given to users. In other words, authorization defines the resources a user

has access to. As defined in OAuth2.0 and explained in Section 3.5.1, Entity Framework

provides all the methods for using a authorization server with access tokens and refresh

tokens in .NET web API.

3.6 Row-level security

Row-level security (RLS) enables access control for multitenant databases in fine granu-

larity. In a multi-tenant environment, tenant data located in the same database are filtered

by adding a tenantId column to all tables. All database queries must use the tenantId

value as a identifier when fetching data from the database. This allows for multi-tenant

applications to create a policy that logically separates each tenant’s data rows from every

other tenant’s rows.

More general usage of RLS may be to restrict access to data based on security policies,

such as predetermined roles. RLS used in this way helps to achieve Principle of Least

Privilege (PoLP) commonly enforced in information security. PoLP is a concept used to

define a user should only be given access to the least amount of data that they specifically

need to complete their workflow. Following PoLP improves overall security of a system

as it reduces the attack surface susceptible for malicious attacks.

3.8 SECURITY STANDARDS AND POLICIES 20

3.7 Data encryption

Data encryption is essential to secure the data sent over the internet. This allows us to

protect restricted data and access tokens by first encrypting them, then sending them over

the internet and then decrypting them to finally read the transferred data. The intention of

encryption is to protect the data in case of a hijack, as a malicious attacker should not be

able to decrypt the hijacked message. There are symmetric and asymmetric encryption

methods as presented by Simmons [40]. Symmetric encryption uses one key to both

encrypt and decrypt data. Asymmetric encryption uses two keys, a public key to encrypt

and a private key to decrypt data.

Asymmetric encryption, or public key encryption, provides a more secure approach to

encryption than symmetric encryption, albeit with the cost of taking more time. It might

be beneficial to combine both types of algorithms to create even more secure, hybrid

encryption [41]. However, it is common in public to use them both as is, but for separate

functions. Symmetric encryption is better used to encrypt large amounts of data, and

asymmetric encryption is used to encrypt smaller chunks of data, like an HTTP request.

.NET provides multiple implementations of many standard cryptographic algorithms,

both symmetric and asymmetric, like AES and RSA respectively. These can be used to

encrypt data like access tokens in .NET applications.

3.8 Security standards and policies

There are several third party organizations that provide a set of standards, guidelines and

frameworks for secure data management and consumers right to access their data. Com-

pliance is the act of ensuring your organization and products are using said standards.

Compliant software satisfies customer needs and pose advantages with competitors as

stated by Moyón et al. [42]. We already have mentioned The National Institute for Stan-

dards in Technology (NIST) [43], which publishes and upkeeps various security stan-

3.8 SECURITY STANDARDS AND POLICIES 21

dards considered industry best-practices. The International Organization for Standardiza-

tion (ISO) [44] is also known for providing some of the most-used security standards.

OAuth2.0 [36] and JWT discussed in this chapter are very popular authorization frame-

works. Complying to these kinds of widely used security standards will increase the

perceived security of one’s organization and product [42].

There are also policies and laws in place that protect people’s data, and as such, are

very important to abide by. An example of such law is General Data Protection Regulation

(GDPR) [45] for organizations that target or collect data related to people in the European

Union (EU). As it is a law, GDPR compliance is a must in security measures across the

industry.

4 Case Study: CT Publisher by ATR

Soft

This chapter discusses the background of the case study product CT Publisher with its

current architecture and implementation. We identify current problems in CT Publisher

and outline the goals we want to achieve for the product in the scope of this thesis work.

We define requirements for the product in terms of the aforementioned goals and the

research questions set in Chapter 1. These requirements will be used to drive our decision

making on a new tenancy model and implementation outlined in Chapter 5.

4.1 Background

ATR Soft is a full-service software development company, which produces software to

support the business of companies [46]. The case study product development we work

on this thesis is on their product CT Publisher [47]. CT Publisher is an online portal for

sharing product related data. Use cases can vary per-customer, as CT Publisher is tailored

to fit each customers’ needs separately. One of the main uses for the product is after-sales

service in the form of providing maintenance info and sales of spare parts. Currently,

customers are able to choose for the product to be fully provided and hosted for them or

they can opt to host it by themselves on-premises. The product follows the SaaS model

allowing the sales of the product on a license-basis.

4.1 BACKGROUND 23

Figure 4.1: An example ’Pick and place robot’ product shown on CT Publisher demo.

CT Publisher in theory can be used as any type of online store in general thanks to its

high customizability. Customers can generate interactive graphics from CAD files with

clickable hotspots as seen with an example on Figure 4.1. This view can be displayed on

the website to aid with sharing product related data. Each part is interactive and reveals

further details of the part when interacted with as seen on Figure 4.2. This makes specific

parts easy to find on the website, allowing for viewing documentation and purchasing

replacements effortless. All these features also come in a CT Publisher Editor desktop

application, which end-users get access to when purchasing the product. The Editor can

be used to manage all customer data, like managing prices and updating manuals and

instructions.

4.2 CURRENT SOLUTION IN CT PUBLISHER 24

Figure 4.2: Interacting with a part will allow you to see further details on that part.

4.2 Current solution in CT Publisher

This Chapter outlines the technologies used in the CT Publisher product development and

hosting.

The CT Publisher product is developed using C# and ASP.NET Framework. The

.NET Framework allows for the use of the MVC (Model-View-Controller) design pattern

conceived originally by Reenskaug [48]. This follows the design principle separation

of concerns, breaking up the code into chunks with independent logic for completing a

simple task each. Separating the application logic into models, views and controllers,

provides a effective approach to updating, testing and debugging code.

The project also utilises Entity Framework [49] as the data access technology. It is an

object-relational mapper for .NET which enables users to interact with data through .NET

objects representing the application’s domain. EF introduces a "Code First" -workflow to

creating models through C# classes and creating databases using these models.

4.3 CURRENT PROBLEMS 25

The hosting of the needed project instances is implemented through Microsoft Inter-

net Information Services (IIS) [50]. The use of IIS is integrated in ASP.NET which allows

for easy development and deployment of the site using the included pipelines. IIS also

has native C++ extensibility to build solutions beyond the application layer. This makes it

possible to develop custom application components like authentication schemes and mon-

itoring and logging. IIS allows for servers to be hosted natively on Windows machines

or Azure cloud services. This allows for customers to host their services on-premises if

they so require. This however makes updating the services much harder, as such services

are no longer managed by the product owner. Cloud hosting provides more maintainable

hosting for the product owner, and is the preferred way to host all product services.

4.3 Current problems

Current system hosts all the tenants’ databases on one server, where every tenant has their

own database. In addition, each tenant has two hosted services associated with them; an

API and a website. Therefore updating release versions means upgrading three different

entities per tenant. This quickly becomes a large time sink as these updates are done

manually. Agile development on the CT Publisher product provides increments to the

product every four weeks. These updates take administrative work linearly dependent to

the amount of customers. Each new customer added to the management increases the

manual labor on each update process.

The problem is aggregated in the cases where customers have opted to host the prod-

uct themselves on-premises. On these cases, we rely on the customer to update to the

new versions on their time. The leading reason why customers have wanted to host CT

Publisher themselves is their concerns for security in a shared multi-tenant environment.

Customers need to be assured that their confidential data is not leaked to any other cus-

tomers. These customers have indicated that providing successful security tests would

4.4 GOALS 26

entice them to opt to a multi-tenant system.

Kappes et al. [51] define access control goals with five key points: isolation, sharing,

efficiency, interface and manageability. We can adapt to use the same goals in our project

as follows.

1. Isolation: Tenant is able to choose identities for its users. Tenants need to be certain

that their data is shown to only their users.

2. Sharing: Provide flexible access control if needed. Allow access control to be

defined as role-based within tenants organization.

3. Efficiency: Access control needs to support performance and scalability in all cases.

4. Interface: Access control must allow for wide customization possibilities for ten-

ants.

5. Manageability: Access control must not interfere with effortless administrative

management.

4.4 Goals

In this chapter, we will define some general goals we want to achieve in the new im-

plementation. More specific requirements are set on the basis of these goals in Chapter

4.5.

Effortless deployment of CT Publisher demo. ATR Soft wants to provide easy trial

access for potential customers with a CT Publisher demo. With current single-tenant

application and database tenancy model explained in Section 2.1, it takes excessive work

to setup and deploy a demo environment for every potential customer. The overhead

deployment time needs to be reduced to minimal to maximize time-efficiency, and by

extension, the profit of the product. It is not sensible to put the same resources into

4.4 GOALS 27

building a trial version as it is to build it for a confirmed, paying customer. The goal is to

provide an advantageous solution for both the customer and product owner with the SaaS

model, where the customer is seeking for a low-cost product and the vendor is looking to

maximize the profit [52]. For that, creating an easier process for creating trial versions for

customers satisfies is essential. Further providing the full product from the trial version

should be made fast and simple for each party.

Develop existing solution for better maintainability. The current single-tenant so-

lution provides excellent customizability. Like discussed in Section 2.6, customization

options can be generalized to be offered as configurations instead. The goal is to offer

a simple and straightforward, yet configurable, product for customers, while having the

maintenance costs low for the product owner. Current configurations offered through a

custom add-in service should be preserved. Manual work for updating and maintaining

the product needs to be minimized.

Improve and measure security. The main reason a customer chooses to host the prod-

uct on-premises is the concerns for security in a multi-tenant system. We need to provide

sufficient proof of security to such customers. Such proof could be architectural measures

done to allow secure data flow, as well as results from successful test cases.

Scalability and costs to allow for profitability. In essence, the main goal of a SaaS

provider is to provide a service profitably. There needs to be an appropriate return of

investment (ROI) against the cost of developing and providing the service. Even though

multiple tenants share a multi-tenant application, an individual tenant will expect the ap-

plication to be scalable and be able to meet their level of demand. At the same time, we

as the service providers need the product to be scalable in order to properly account for

increasing amount of customers and users. We need to be able to bill the tenants appro-

priately. Whilst a fixed rate is the simplest to implement, a usage-based pricing model

4.5 REQUIREMENTS 28

would suite better. Resource usage may need to be monitored for such pricing model. In

addition to usage-based pricing, we could provide varying pricing for varying levels of

service. These levels could included and not be limited to, different functionality, differ-

ent usage limitations, have different service level agreements (SLA) or some combination

of such factors. Revenue from the application must be sufficient to cover both the capital

and running costs of the application.

SaaS security compliance Customers should be able to easily determine our SaaS se-

curity compliance of industry regulations and frameworks. This makes it possible for the

customers to ascertain if the product security is in their required standard. This increases

the credibility of the service providers overall and is a certificate of a certain level of se-

curity. This compliance would help prevent us losing any potential or existing customers.

4.5 Requirements

In this chapter, we will set the requirements we will strive to achieve in the new imple-

mentation. These requirements will be referred to when deciding on which tenancy model

to implement, and will be guiding the implementation process throughout. These require-

ments have been decided with the CT Publisher project team members and approved by

the product manager. Our research questions defined in Chapter 1 also influence defining

the requirements.

A total of four requirements were set to guide us on the project. These requirements

will be assigned abbreviations R1–R4 for ease of referring later in this document.

4.5.1 R1: Maintainability

The product and its trial version must be easily maintained to accommodate for an increas-

ing amount of customers. In practice, any operation on application instance or database

4.5 REQUIREMENTS 29

must be easy and fast for the product owner. The per-tenant cost to maintain the product

must stay low even when the product gains more customers and users.

4.5.2 R2: Tenant security

The customer data must be protected with appropriate measures to achieve satisfactory

tenant security. As CT Publisher has multiple customers, we as the vendor have a respon-

sibility to ensure that tenant data is sent and shown only to the correct tenant. This must be

done through proper tenant authorization handling through all the application instances;

website, web API and desktop application. This restricts the data flow correctly so that a

data request from one tenant cannot be authorized and hence shown to a application user

from another tenant. This authorization must also allow only minimal relevant data shown

to the tenants in relation to their user role in the authorization system. These roles should

generally reflect the user’s position in the customer workflow. This per-product restricted

access is an important data security requirement to allow the customers to manage and

serve their data securely and accurately within their organization.

4.5.3 R3: Customer integration

A fast and simple deployment process to provide a demo version of the product for trial

customers and new customers is required. The trial version must be able to be pro-

duced with minimal resource cost as to allow for plentiful deployments of these whenever

needed for customer acquisition. The trial version must demonstrate basic product func-

tionality that produces sufficient user experience to get a good understanding of the prod-

uct workflow. This demo version of the product can be then extended to already acquired

customers to test out features they might want in their final version.

4.5 REQUIREMENTS 30

4.5.4 R4: Performance

It is decided that the activities of other tenants must not affect the availability, performance

or scalability of the service. As a tenant of the product, you must have the required

resources allocated to achieve a beforehand decided desired performance levels. This

requirement is aimed to satisfy the customers’ desire to have their applications running

smoothly with minimal performance drops and downtime.

5 Chosen solution

In this chapter, we go through the process of choosing a solution based on the require-

ments set in Section 4.5. These requirements are used to guide us through the selection

process, weighing in pros and cons in every tenancy pattern. Then we discuss the imple-

mentation of a new model and assess how the change affected satisfying our requirements.

5.1 Scope

In the course of this section, we refer to the specific requirements we set in Section 4.5.

The abbreviations R1–R4 set in that section are now used to refer to the four requirements

respectively. These requirements are then used to assess the different tenancy models in-

troduced in Section 2. The research questions are also tightly kept in mind when assessing

tenancy models for the new solution.

5.1.1 Current solution: Single tenant application and database

Single-tenant app and database, discussed in Section 2.1, is the current solution deployed

for the product. The problems encountered through the use of this model drew attention

to looking for another tenancy model and implementation for the product. The greatest

pitfall of this model for this product was not satisfying R1: Maintainability. It quickly

became apparent early in the product’s life cycle that maintainability could easily be a

bottleneck when scaling up the product. As seen in Figure 5.1, hosting three different

5.1 SCOPE 32

Figure 5.1: Website and API services are instanced and hosted once per tenant in the

current solution.

services per customer, a website, a database and a web API quickly became strenuous to

update manually. This leads to slow upgrading of customers’ systems or more infrequent

updates altogether all the while being costly for the product owner due to the time spent

upgrading the services one by one.

R2: Tenant security is satisfied with the single-tenant model. Separate databases per

customer or tenant is a highly significant architectural security design choice [53]. Like

with all architectural choices for the database solution, this assumes a proper implemen-

tation of user roles. Satisfying this requirement was a high priority from the very start of

the project development cycle.

R3: Customer integration is not very efficiently met in this model. Creating a trial ver-

sion for customers violates R1: Maintainability, as it takes hosting three different services

to get the trial up and running. As setting this trial up takes time in itself, customising the

trial further than the bare minimum functionalities and themes might not prove worth it

for the customer acquisition.

Single-tenant application and database is the most independently managed tenancy

model per-customer, affecting R4: Performance. When allocated enough resources, the

5.1 SCOPE 33

customers are not hindered by any other customers. This resource allocation can be costly

per customer though, making this possibly the most costly option of all the tenancy mod-

els [3]. In the current state of the product, customers can even choose to host the product

themselves. This transfers the responsibility of managing performance from us, the prod-

uct owner, to the customer.

Figure 5.2: Requirements on a scale of satisfaction in the current solution.

Assessing the product through the requirements R1–R4, it becomes obvious that the

current implementation does not meet them all on sufficient levels. This can be roughly

visualised in the Figure 5.2. R2: Tenant security is the only one of these four requirements

being satisfied properly, while the other three clearly struggling to be met in a sufficient

manner. This confirms the evident need of restructuring the product architecture in a

way that allows all four of the requirements to be satisfied. This will be mainly done

by choosing and implementing a more suitable tenancy model. After such a model is

implemented, if needed, it should allow for further improvements in the product in relation

to the same requirements.

5.1 SCOPE 34

5.1.2 Choosing a new tenancy model

When considering which tenancy models would satisfy R1: Maintenance the best, the

multitenant app and database would seem the most efficient tenancy model available [3],

[13], [53]. To update the services, a total of three updates is sufficient to update all

services for all clients. This would cut the time to update the product to a fraction of

what it currently is. Extending this model would be to choose the sharded databases

model, which allows for even higher amount of tenants while making it more reliable and

easier to maintain. On the topic of using multiple databases in the solution, it would be

possible to take advantage of elastic pools. Elastic pools could however be detrimental to

satisfying R1: Maintenance on the cost of saving resources. The added maintenance cost

could be of needing to adjust the resources given per certain elastic pools; if the databases

in a same pool hit the cap of resources allocated, all the database operations in the pool

would slow down. This could be solved relatively easily by monitoring and readjusting

the resources per elastic pool as needed.

Multi-tenant app with single-tenant database is another noteworthy option. It allows

for updating the product website and web API instances once, but then still leaves the

customers databases the need to be updated separately. This at face value would seem to

cut the time and resources to update the product by almost a third, but it is likely to be

even bigger gain than that. The database instances might not need updating every time the

product is updated. In other words, usually when updating, the increments in the product

are to the website and web API instances which would need to be updated only once.

Already at this point, the multi-tenant application and singe-tenant database model seems

like a strong option.

Satisfying R2: security on an architectural level is already optimal in the current so-

lution from a data storage standpoint [3]. The benefits of the data isolation on sepa-

rate databases is a huge advantage compared to the models with a form of multitenant

databases [13]. Restricting the data access accordingly between the customers and ten-

5.1 SCOPE 35

ants becomes a question of secure data logic, encryption and transfer [53]. R3: Cus-

tomer Integration is rather easy to satisfy using multi-tenant application and single-tenant

database. When a demo database is already prepared, a simple trial version to showcase

the functionality is as easy as in a fully multi-tenant system. If satisfied with the demo trial

version, a database needs to be created with their respective data. Single-tenant databases

model allows for the customer to affect the form of the data stored.

R4: Performance per tenant could be sacrificed using a full multitenant model, as the

tenants share all the instances between them. Using single-tenant databases, the amount

of requests done to the database is guaranteed not to affect other tenants. Performance of

the application and web services can vary as all the tenants are using the same instances.

This can be avoided with sufficient resource allocation in hosting them.

To summarize on the set requirements, we can decide on best approaches per require-

ment as follows:

1. R1: Multi-tenant application is the simplest to maintain. One deploys it once, and

once its running, one does not need to worry about it.

2. R2: Data security is a big concern for the current tenants of the CT Publisher

product, and the demand for data protection is on the rise. To best satisfy future

customers, even the demo environment must have proper data protection. Proper

application level security will be applied, but single-tenant databases provide data

isolation per tenant.

3. R3: We want to provide all the same features in the demo version as in the version

current tenants have. This is why a multitenant app is a good choice, providing all

the same flexible configuration options that are already in place in CT Publisher.

4. R3: The tenant data needs to be easy to detach from the demo system into else-

where, whether it be in house servers, cloud, or the tenant’s own on-premises

5.1 SCOPE 36

servers. Based on this, single-tenant databases are easy to move from ATR Soft’s

demo environment into another environment.

5. The scalability is not a big concern for the demo, as the amount of users in the demo

environment at a single time is most likely low.

6. R4: Performance is isolated in a full tenant system, allowing customers full control

of resources given to them. On a multitenant system performance can be affected

from another tenants use, but can be taken into consideration when allocating re-

sources.

Balancing between maintainability and security was not easy. With these consider-

ations in mind, it was obvious we wanted to implement a multi-tenant application. The

lower maintenance costs and the ease of configurability were the main factors that drove

forward this decision.

The single-tenant database solution was decided for the data storage. This allows for

customers to have full control of their data albeit being a maintenance hindrance.

A multi-tenant application with single-tenant databases approach is chosen for CT

Publisher demo. Implementing the multi-tenant application involves performing many

of the necessary steps to implement a multi-tenant database as well. This means that a

future implementation of multi-tenant databases is possible with relatively minimal effort.

Such an implementation was deemed to require more comprehensive security measures

implemented to be considered than possible in the scope and time frame of this thesis

work. As where the product currently stands, single-tenant databases satisfy the security

needs of the customers and do not hinder the maintainability of the service significantly

at this scale.

5.2 IMPLEMENTATION 37

5.2 Implementation

As we decided to use a model with multi-tenant application and single-tenant databases,

we can utilize the already existing test- and demo-databases to test our multi-tenant ap-

plication implementation. The implementation is explained on a rather general level here,

as the CT Publisher is a protected product that belongs to ATR Soft.

The work flow from research to implementation was not straightforward in this project.

The implementation of the new tenancy model required some preparation. The technolo-

gies used were not known to the author beforehand, so I had to first get familiar with the

programming languages, frameworks and programs used. I first got familiar with the cur-

rent single-tenant model and analyzed and tested how the website, web API and database

instances were running on test environment on a virtual machine. Being familiar with

the current solution then allowed me to start implementing the new multi-tenant model

smoothly. There was still some amount of back and forth switching between implement-

ing the new solution and researching more as problems arose in the code and when my

understanding further grew on the project. This was important to verify the implementa-

tion was satisfying all the requirements accordingly.

As the current solution directly has a single website and API services pointing to

a single database, it only needs to know that single specific connection to that tenant’s

database. The connection is served as a connection string object that points to a specific

database. The usage of multiple connection strings needs to be implemented first to allow

for the website and API instances to communicate with more than one database. The data

flow plan seen in Figure 5.3 shows how the connection string is fetched from Catalog, the

creation of which is explained next. Website and API only need to know the subdomain

they have been accessed on to be able to acquire the correct connection string.

To manage all the connection strings for the tenant databases, the Catalog database

discussed in Section 2.3 needs to be created. Microsoft SLQ Server Management Studio

(SSMS) was used to manage our databases. It allowed us to view and analyze our test

5.2 IMPLEMENTATION 38

Figure 5.3: CT Publisher data flow chart.

databases and the Catalog-database. The Catalog was created through code-first approach

to creating databases. We use Entity Framework Object-relational mapping (ORM) to

create models using classes. This allows us to work with the database using .NET objects,

intancing these defined classes through a derived database context. Data on these models

is read and saved through the context "DbContext" in the Catalog. All the databases in

the project also derive from the same database context to connect to databases.

These connections are created through using connection strings. Only the connec-

tion string to the Catalog is known, where all the other connection strings are stored. In

the single-tenant solution only the customer database connection string was known, as

the applications were instanced per customer. The connection string was stored in the

configuration files. The catalog connection string is stored in the same way.

With sufficient rights, we can now request a connection string from the Catalog to

connect to a customer database. In the multi-tenant application system, we now need to

know which tenant is trying to connect to which database. We defined a system to fetch

the corresponding customer from URL of the HTTP request itself.

5.2 IMPLEMENTATION 39

All customers using the product use a unique subdomain for their websites. The cus-

tomers get to define that subdomain to use their company or brand name. For example,

"subdomain1" would access their CT Publisher website through the URL address

subdomain1.ctpublisher.com.

Using .NET, we utilize a provided HttpContext-class through which we can access

the URL of the request. From there, we identify the subdomain name and use it to fetch

the corresponding connection string from the Catalog. The connection string is used to

create a connection to the corresponding database only if the tenantID identifier on the

connection string matches with the subdomain on the database request. The requested

resources are then fetched from the correct database and finally the tenant data shown to

the end user. This satisfies R2: tenant security when authorization and authentication is

made for every request to that database to ensure the data is only given to tenants of that

database.

The feature of fetching the subdomains from the URL ties into R3: customer inte-

gration. We automated the creation of a demo site through using a new subdomain. We

added the option to whitelist new subdomains on the fly. After this, trying to access the

new website starts the automated process to create the website, web API and database.

Naturally, the new connection string to the new database is also added to the existing

catalog. The whitelisting of subdomains is done to prevent anyone from trying to create

endless new sites and trying to overload the system. This also satisfies R4: performance,

as such attacks are prevented to affect any existing tenants’ performance.

With the multi-tenant application setup and running, we need to lean on access control

methods to further satisfy R2: tenant security. Token-based authentication and the use of

authorization server like outlined on OAuth2.0 specification discussed in Section 3.5.1

were implemented to add an additional level of security. The access tokens granted per

tenant allow for role-based access control. These roles are assigned to tenants users based

on the principle of least privilege, allowing them access to only the resources they need.

5.3 LOCAL SETUP 40

5.3 Local setup

Testing the project locally can be done using IIS Express. However, there are a few things

that need to be setup for the website and web API to work.

On IIS Administrative tools, we need to generate and install a wildcard certificate.

This wildcard certificate allows for multiple tenants accessing the same instances of the

website and web API. The certificate usually needs to be binded to specific websites. With

a wildcard certificate, we can bind it to a website and all of its subdomains by using an

asterisk "*" appending our website URL as follows: "*.ctpublisher.com".

The IIS Express has its configuration file applicationhost.config located at

<project directory>\.vs\config\

The config file allows for adding a wildcard site binding. It can be done manually

using a text editor or programmatically:

c:\Program Files\IIS Express\appcmd.exe" set site

/site.name:CTPublisherWebsite

/+bindings.[protocol='http',bindingInformation='*:<port

number>:localhost

In this example, the binding is set to an address *:80:localhost. As we do

not want to allow every subdomain binding possible, we will only add bindings when

needed using a format *:<portNumber>:<tenantName>:localhost so an ex-

ample bindingInformation would look like this: *:80:tenant:localhost.

When using Windows servers on our local machine, we can use the netsh-commands

provided in HTTP Server API to manage your HTTP-settings. By using the following

command line command,

netsh http add urlacl url=http://url:port/user=Everyone

5.3 LOCAL SETUP 41

we can reserve specific URLs on certain ports to test the multitenant websites on. The

sites need to be reserved first with the command for the sites to work locally. We created

a simple Windows batch file (.bat) to be ran easily by anyone wishing to test their services

locally before launching them fully. This file is ran through the command line as:

setup.bat project url port protocol

If some of the parameters were omitted, default values were added. The program also

adds the appropriate bindingInformation to the IIS Express applicationhost.config file.

After running this file, everything is setup on our machine to simply run the website and

web API as we wish.

Documentation was created in depth to aid in installing the development environment

for the multi-tenant application on a clean virtual machine and IIS.

6 Validation

In this chapter, we define methods to validate and analyze the change and results in our

new implementation. We go over both qualitative and quantitative methods to validate

our work. The implementation is reviewed both by the author and the team, who give

thoughts and experience of the advantages over the previous implementation. We then

lean on literature to review the effectiveness of our new implementation. We then go over

tests to assess the maintainability and security qualitatively.

6.1 Personal and team review

We managed to identify multiple problems with the existing solution, and designed goals

and requirements to fix those problems. We structured a new implementation to comply

with the requirements. A new tenancy model was implemented successfully and many

of the product management processes streamlined to be simpler and faster. Maintaining

the product became evidently easier in terms of user experiences, as we implemented

systems to allow for better maintainability. The product owner was satisfied with the

streamlined processes introduced and testified immediate benefits in maintainability in

the new implementation. The product owner also reported all the set requirements were

satisfied properly. Other team members were also positive about the effects of the research

and implementation finished through the scope of this thesis. Based on these personal

reviews on user experience, we can evaluate the requirements R1–R4 are satisfied on a

practical level.

6.3 TESTS TO MEASURE MAINTAINABILITY AND SECURITY 43

6.2 Theory-based review

The implemented work in the scope of this thesis can be assessed against the presented

research literature on the field. The server-side implementation of the website and web

APIs allow for them to be instanced only once, but used by multiple customers. This

allows for multi-tenancy on the application and increases the performance when imple-

mented correctly [3], [5], [7], [8], [10], [11], [13], [16], [19], [31]. The databases are

implemented as single-tenant, which proves to be more secure as the data isolation is bet-

ter for security than in a multi-tenant database [20], [22], [24], [27], [31], [53]–[55]. For

access control security, we used established protocols, frameworks and industry best prac-

tices [21]–[27], [29], [31]–[33], [36], [39], [53], [55]. These include following OAuth2.0

protocol on authorization, using Entity Framework Identity to further strengthen access

control, conforming to GDPR on data storage and using encrypting data best practices.

Based on the literature these sources provide, we can evaluate that all the requirements

R1–R4 are satisfied on theoretical level.

6.3 Tests to measure maintainability and security

This section discusses tests designed to measure the maintainability and security of the

product to validate the new implementation.

6.3.1 MSTest

MSTest is a library available to test .NET Applications on multiple platforms, imported

using Microsoft.VisualStudio.TestTools. MSTest allows for designing unit

tests for our application. We use MSTest to design tests per function in our project. When

implemented, it allows for automated tests during development. Implementing proper

unit testing was important for the change in tenancy model, as it allowed us to retest the

changed code whenever we made changes. Unit testing has become an accepted practice

6.4 FUTURE OUTLOOK ON TESTS 44

in the field [56]. When implementing the new tenancy model, we made sure to write unit

tests for functions as we wrote them. We confirmed that the new implementation passed

all the existing and new unit tests designed.

6.3.2 Mocking user data

Testing the new implementation using mocked user data is very important on further

affirming R2: tenant security and solving data security discussed in Section 3.1. We need

concrete evidence of only the correct data shown to the correct tenants. These tests were

designed to test the authentication and authorization mechanisms in place. Performing

these tests is discussed in the next Section 6.3.3.

6.3.3 Windows Communication Foundation Service Host and Test

Client

Windows Communication Foundation (WCF) Service Host allows us to host and test

services with ease on our Visual Studio development environment. We can then use the

Test Client, which is a GUI tool that enables users to input test parameters, submit that

input to the service and view the response that the service sends back [57]. This tool was

used to design and use simple tests on our IIS hosted test environment with mocked data.

Any problems occurring during these tests were addressed and fixed.

These tests confirmed data security, as the mocked tenants were shown only their data.

As wrong or another tenants’ data was not shown, this is further proof of satisfying R2:

tenant security.

6.4 Future outlook on tests

The design of further tests for attacks covered in Chapter 3, like SQL injection and XSS,

was started. However, due to time constraints on the employment of the author and the

6.4 FUTURE OUTLOOK ON TESTS 45

organization, these designs were ultimately left unfinished and naturally not yet imple-

mented. These tests will further show that the product is compliant with current security

measures and standards, and as such, should be implemented in full in the future. On the

scope of this thesis, these designs were rudimentary but not comprehensive.

Further monitoring on the new hybrid tenancy model implementation needs to be done

to further assess the scalability and costs to allow for profitability. Like we discussed in

Section 4.4, performance monitoring could reveal some tenants using higher proportion

of the resources than others, allowing for just pricing models on customers of varying

sizes in terms of performance.

7 Conclusions

In this Chapter, we provide a summary of the study work and results said work provides.

Then we answer the research questions set in Chapter 1. We also discuss the limitations

of the study and consider future prospects for the case study product. We also review the

value proposition of this thesis for the case study product and similar products in SaaS.

7.1 Summary of the study work

The goal of this thesis was to analyze a case study SaaS product against research litera-

ture on maintainability and security. SaaS tenancy models and security practices on au-

thentication and authorization were reviewed. Analyzing the options on tenancy models,

whether single-tenant, multi-tenant or hybrid tenancy, we detected that the case tenancy

model of full single-tenant was not a tenancy model widely used in similar products. We

identified problems of administrative maintainability, security and its measuring as well

as scalability and cost. We discussed goals designed to improve upon these issues. We

set four requirements based on achieving these goals. To satisfy these goals, we deter-

mined that a new tenancy model should be implemented along with features to improve

the maintainability.

The full single-tenant tenancy model the product originally had was changed to a hy-

brid tenancy model of multi-tenant application and single-tenant databases. This was done

using the Entity Framework, adding a Catalog-type database to the system for discerning

tenants and allowing for multi-tenant instances for the website and web API. Validation

7.2 ANSWERING RESEARCH QUESTIONS 47

methods for measuring and confirming the maintainability and security of the new ten-

ancy model were discussed and partly performed. Further measuring and testing was left

outside of the scope of this thesis due to time constraints.

The new tenancy model was implemented successfully and validated accordingly.

Some new features were added to further aid with the maintainability for the product

owner in terms of hosting, updating and developing the product. The research questions

were answered based on literature and the results of the implementation. We identified

security, maintainability and performance to seem to be the most prevalent concerns when

choosing a tenancy model for a SaaS product. As a product enters different phases in its

life cycle, it might be beneficial to change to a different tenancy model. We provided many

concerns to take into account on top of the aforementioned three most prevalent aspects,

which might push to a decision on restructuring the tenancy model in use. We demon-

strated that in our case study product, it was beneficial to change from a single-tenant

application and database to a hybrid multi-tenant application and single-tenant database.

A full multi-tenant application and database solution could further reduce costs on host-

ing the product, but will require further efforts to satisfy the security requirements on the

product. Until then, the hybrid model is considered the best option on the case study

product.

7.2 Answering research questions

In this Section, we will provide answers to the research questions set in Chapter 1 based

on the research and results on this thesis.

7.2.1 Answering research question 1

What aspects of developing and providing a SaaS product should be considered

when deciding on a tenancy model? We identified multiple important aspects to be

7.2 ANSWERING RESEARCH QUESTIONS 48

considered that are beneficial to maintainability and security on SaaS products. These

include security and data isolation, efficiency and performance, administrative manage-

ability, scalability, profitability, explained in more depth below.

Data isolation is crucial for security. Physical isolation proves the best security, but

in a multi-tenant environment that might not be possible. Data isolation must be imple-

mented in a logical form conrofming to row level security in these cases. Efficiency and

performance aspects ensure customers receive the service with minimal downtime and

in the full capacity promised. Service providers can monitor performance per customer

and scale resources and billing accordingly. Administrative manageability is important

to support the scalability of SaaS products. When designing the service to be scalable to

allow for ever increasing amount of customers, processes to maintain the product need

to be designed in a support-friendly manner. Maintaining, updating and providing sup-

port for the product shouldn’t be heavily affected by an increasing amount of customers.

Obtaining said customers should be made cost-efficient and adding said customers to the

system should take minimal effort and cost to maximize profitability.

7.2.2 Answering research question 2

Is a change from a single-tenant implementation to a multi-tenant implementation

beneficial in terms of maintainability and security? Yes. We approached the ques-

tion in terms of making the change in our case study product. The implementation was

beneficial for maintainability and security and the supplementary aspects discussed in an-

swering research question 1. As such, we recognize the results of the case study can be

generalized to hold true in any similar SaaS product with the same tenancy model or fac-

ing the same issues. In a SaaS environment any form of multi-tenancy over single-tenancy

will have sizable and measurable gains to maintainability. Appropriate security measures

can be taken to improve the security of any tenancy model.

7.4 VALUE PROPOSITION OF THE STUDY 49

7.3 Study limitations

As the validation done was focused more on qualitative analysis, more quantitative anal-

ysis would be effective to further justify the work on the case study. For a more compre-

hensive analysis of the results of changing the case study tenancy model, the old model

would have needed to be monitored and measured with quantitative methods. These same

methods could have then been used on the new implementation, allowing us to compare

the quantitative results. This would have allowed us to have a more defined and objective

quantitative analysis on the thesis work done on the case study.

The case study project took longer to complete than anticipated. This is a common

recurring trope in the computer science industry, where projects more often than not take

more time to complete than planned. Unfortunately, time limitations posed by the em-

ployment relationship with the author and the case study organization, the scope of the

thesis was ultimately reduced from the original plans. While maintainability and secu-

rity were qualitatively and quantitatively improved, further work on analysing the results

would have further increased the validity and reliability of this study. Despite the limited

validation completed on the scope of this thesis, we laid out the ground work for such

tests to be completed in the future based on our security issues analysis.

7.4 Value proposition of the study

We believe the study added significant value to the case study product CT Publisher.

We provided timely upgrades to the maintainability and security of the product, and also

made the development environment more efficient for further development and testing.

Further tests could be designed on the basis of the research in this study. Researching

and exploring the tenancy models and security issues prepared the case study product

to be analyzed in a critical manner, and allowed us to identify problems in the current

implementation efficiently together with the case study organization. This research also

7.4 VALUE PROPOSITION OF THE STUDY 50

prepared the organization to better plan for the future vision of the product with more

knowledge of the possible tenancy models, maintainability features and security issues.

The research in this thesis presents valuable insights on what aspects to consider when

building any SaaS product. The case study gives insight to potential problems one might

face in SaaS development, and the information presented here can be helpful and applied

at any point of a SaaS product development or life cycle. We provide tools and examples

on how to evaluate such a software project. We show with the case study how to define

goals and requirements for a scalable, maintainable and secure SaaS product. We follow

through an approachable implementation on the case study presenting how implementing

a new tenancy model might look in a SaaS product in need of a tenancy model change.

This information may be used to aid in developing and improving upon a similar product

in the SaaS environment.

References

[1] P. M. Mell and T. Grance, ”The nist definition of cloud computing”, National Insti-

tute of Standards and Technology, 2011. DOI: 10.6028/NIST.SP.800-145.

[Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/

SP/nistspecialpublication800-145.pdf.

[2] S. E. Kafhali, I. E. Mir, K. Salah, and M. Hanini, ”Dynamic scalability model

for containerized cloud services”, Arabian Journal for Science and Engineering,

vol. 45, pp. 10 693–10 708, 12 Dec. 2020, ISSN: 21914281. DOI: 10.1007/s

13369-020-04847-2.

[3] C.-P. Bezemer and A. Zaidman, ”Multi-tenant saas applications: Maintenance

dream or nightmare?”, in Proceedings of the Joint ERCIM Workshop on Software

Evolution (EVOL) and International Workshop on Principles of Software Evolution

(IWPSE), ser. IWPSE-EVOL ’10, Antwerp, Belgium: Association for Computing

Machinery, 2010, pp. 88–92, ISBN: 9781450301282. DOI: 10.1145/1862372.

1862393. [Online]. Available: https://doi.org/10.1145/1862372.

1862393.

[4] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, ”Variability modeling to sup-

port customization and deployment of multi-tenant-aware software as a service ap-

plications”, in 2009 ICSE Workshop on Principles of Engineering Service Oriented

Systems, May 2009, pp. 18–25. DOI: 10.1109/PESOS.2009.5068815.

https://doi.org/10.6028/NIST.SP.800-145
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://doi.org/10.1007/s13369-020-04847-2
https://doi.org/10.1007/s13369-020-04847-2
https://doi.org/10.1145/1862372.1862393
https://doi.org/10.1145/1862372.1862393
https://doi.org/10.1145/1862372.1862393
https://doi.org/10.1145/1862372.1862393
https://doi.org/10.1109/PESOS.2009.5068815

REFERENCES 52

[5] N. H. Bien and T. D. Thu, ”Hierarchical multi-tenant pattern”, in 2014 Interna-

tional Conference on Computing, Management and Telecommunications (Com-

ManTel), Apr. 2014, pp. 157–164. DOI: 10 . 1109 / ComManTel . 2014 .

6825597.

[6] R. Mietzner and F. Leymann, ”Generation of bpel customization processes for saas

applications from variability descriptors”, in Proceedings of the 2008 IEEE In-

ternational Conference on Services Computing - Volume 2, ser. SCC ’08, USA:

IEEE Computer Society, Jul. 2008, pp. 359–366, ISBN: 9780769532837. DOI: 10.

1109/SCC.2008.85. [Online]. Available: https://doi.org/10.1109/

SCC.2008.85.

[7] C. D. Weissman and S. Bobrowski, ”The design of the force.com multitenant inter-

net application development platform”, in Proceedings of the 2009 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’09, Providence,

Rhode Island, USA: Association for Computing Machinery, 2009, pp. 889–896,

ISBN: 9781605585512. DOI: 10.1145/1559845.1559942. [Online]. Avail-

able: https://doi.org/10.1145/1559845.1559942.

[8] W.-T. Tsai, Q. Shao, Y. Huang, and X. Bai, ”Towards a scalable and robust multi-

tenancy saas”, in Proceedings of the Second Asia-Pacific Symposium on Internet-

ware, ser. Internetware ’10, Suzhou, China: Association for Computing Machinery,

2010, ISBN: 9781450306942. DOI: 10.1145/2020723.2020731. [Online].

Available: https://doi.org/10.1145/2020723.2020731.

[9] A. R. Hevner, S. T. March, J. Park, and S. Ram, ”Design science in information sys-

tems research”, MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004, ISSN: 02767783.

[Online]. Available: http://www.jstor.org/stable/25148625 (visited

on 05/09/2023).

https://doi.org/10.1109/ComManTel.2014.6825597
https://doi.org/10.1109/ComManTel.2014.6825597
https://doi.org/10.1109/SCC.2008.85
https://doi.org/10.1109/SCC.2008.85
https://doi.org/10.1109/SCC.2008.85
https://doi.org/10.1109/SCC.2008.85
https://doi.org/10.1145/1559845.1559942
https://doi.org/10.1145/1559845.1559942
https://doi.org/10.1145/2020723.2020731
https://doi.org/10.1145/2020723.2020731
http://www.jstor.org/stable/25148625

REFERENCES 53

[10] V. contributors, Multi-tenant saas database tenancy patterns, Mar. 2023. [Online].

Available: https://docs.microsoft.com/en-us/azure/sql-data

base/saas-tenancy-app-design-patterns#d-multi-tenant-

app-with-database-per-tenant (visited on 06/02/2023).

[11] S. Kalra and T. V. Prabhakar, ”Towards dynamic tenant management for microser-

vice based multi-tenant saas applications”, in Proceedings of the 11th Innovations

in Software Engineering Conference, ser. ISEC ’18, Hyderabad, India: Associa-

tion for Computing Machinery, 2018, ISBN: 9781450363983. DOI: 10.1145/

3172871.3172882. [Online]. Available: https://doi.org/10.1145/

3172871.3172882.

[12] J. Mace, P. Bodík, R. Fonseca, and M. Musuvathi, ”Retro: Targeted resource man-

agement in multi-tenant distributed systems”, in 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 15), Oakland, CA: USENIX

Association, May 2015, pp. 589–603, ISBN: 9781931971218. [Online]. Available:

https://www.usenix.org/conference/nsdi15/technical-

sessions/presentation/mace.

[13] K. Aytaç and Ö. Korçak, ”Multi-tenant management in secured iot based solu-

tions”, in 2022 32nd Conference of Open Innovations Association (FRUCT), Nov.

2022, pp. 56–64, ISBN: 9789526924489. DOI: 10 . 23919 / FRUCT56874 .

2022.9953817.

[14] B. Tang, Q. Li, and R. Sandhu, ”A multi-tenant rbac model for collaborative cloud

services”, in 2013 Eleventh Annual Conference on Privacy, Security and Trust, Jul.

2013, pp. 229–238. DOI: 10.1109/PST.2013.6596058.

[15] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su, ”Software as a service: Con-

figuration and customization perspectives”, in 2008 IEEE Congress on Services

https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-app-design-patterns#d-multi-tenant-app-with-database-per-tenant
https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-app-design-patterns#d-multi-tenant-app-with-database-per-tenant
https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-app-design-patterns#d-multi-tenant-app-with-database-per-tenant
https://doi.org/10.1145/3172871.3172882
https://doi.org/10.1145/3172871.3172882
https://doi.org/10.1145/3172871.3172882
https://doi.org/10.1145/3172871.3172882
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace
https://doi.org/10.23919/FRUCT56874.2022.9953817
https://doi.org/10.23919/FRUCT56874.2022.9953817
https://doi.org/10.1109/PST.2013.6596058

REFERENCES 54

Part II (services-2 2008), Sep. 2008, pp. 18–25. DOI: 10.1109/SERVICES-

2.2008.29.

[16] W.-T. Tsai and X. Sun, ”Saas multi-tenant application customization”, in 2013

IEEE Seventh International Symposium on Service-Oriented System Engineering,

Nov. 2013, pp. 1–12. DOI: 10.1109/SOSE.2013.44.

[17] H. Song, F. Chauvel, and A. Solberg, ”Deep customization of multi-tenant saas us-

ing intrusive microservices”, in Proceedings of the 40th International Conference

on Software Engineering: New Ideas and Emerging Results, ser. ICSE-NIER ’18,

Gothenburg, Sweden: Association for Computing Machinery, May 2018, pp. 97–

100, ISBN: 9781450356626. DOI: 10.1145/3183399.3183407. [Online].

Available: https://doi.org/10.1145/3183399.3183407.

[18] M. Tuomola, ”Käyttäjäkeskeinen käyttöliittymäsuunnittelu web-sovellukseen:

Case atr soft”, Finnish, M.S. thesis, University of Turku, Dec. 2020. [Online].

Available: https://urn.fi/URN:NBN:fi-fe202102053817.

[19] T. C. Sandanayake and P. G. C. Jayangani, ”Current trends in software as a service

(saas)”, in International Journal for Innovation Education and Research, vol. 6,

Feb. 2018, pp. 221–234. [Online]. Available: https://doi.org/10.31686/

ijier.vol6.iss2.969.

[20] P. K. Chouhan, F. Yao, S. Yerima, and S. Sezer, ”Software as a service: Analyzing

security issues”, in International Conference on Big Data and Analytics for Busi-

ness (BDAB 2014), New Delhi, India, Dec. 2014. [Online]. Available: https:

//doi.org/10.48550/arXiv.1505.01711.

[21] H. AL-Amro and E. El-Qawasmeh, ”Discovering security vulnerabilities and leaks

in asp.net websites”, in Proceedings Title: 2012 International Conference on Cyber

Security, Cyber Warfare and Digital Forensic (CyberSec), Jun. 2012, pp. 329–333.

DOI: 10.1109/CyberSec.2012.6246175.

https://doi.org/10.1109/SERVICES-2.2008.29
https://doi.org/10.1109/SERVICES-2.2008.29
https://doi.org/10.1109/SOSE.2013.44
https://doi.org/10.1145/3183399.3183407
https://doi.org/10.1145/3183399.3183407
https://urn.fi/URN:NBN:fi-fe202102053817
https://doi.org/10.31686/ijier.vol6.iss2.969
https://doi.org/10.31686/ijier.vol6.iss2.969
https://doi.org/10.48550/arXiv.1505.01711
https://doi.org/10.48550/arXiv.1505.01711
https://doi.org/10.1109/CyberSec.2012.6246175

REFERENCES 55

[22] P. K. Tiwari and S. Joshi, ”A review of data security and privacy issues over saas”,

in 2014 IEEE International Conference on Computational Intelligence and Com-

puting Research, Dec. 2014, pp. 1–6. DOI: 10.1109/ICCIC.2014.7238432.

[23] J. A. Díaz-Rojas, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga, and X. Limón,

”Web api security vulnerabilities and mitigation mechanisms: A systematic map-

ping study”, in 2021 9th International Conference in Software Engineering Re-

search and Innovation (CONISOFT), Oct. 2021, pp. 207–218. DOI: 10.1109/

CONISOFT52520.2021.00036.

[24] M. Shakir, M. Hammood, and A. K. Muttar, ”Literature review of security issues

in saas for public cloud computing: A meta-analysis”, International Journal of

Engineering & Technology, vol. 7, p. 1161, 3 Jun. 2018. DOI: 10.14419/ijet.

v7i3.13075.

[25] M. Pearce, S. Zeadally, and R. Hunt, ”Virtualization: Issues, security threats, and

solutions”, 2, vol. 45, New York, NY, USA: Association for Computing Machinery,

Mar. 2013. DOI: 10.1145/2431211.2431216. [Online]. Available: https:

//doi.org/10.1145/2431211.2431216.

[26] H. Wu, Y. Ding, C. Winer, and L. Yao, ”Network security for virtual machine

in cloud computing”, in 5th International Conference on Computer Sciences and

Convergence Information Technology, Nov. 2010, pp. 18–21. DOI: 10.1109/

ICCIT.2010.5711022.

[27] T. Sharma, T. Wang, C. Di Giulio, and M. Bashir, ”Towards inclusive privacy pro-

tections in the cloud”, in Applied Cryptography and Network Security Workshops:

ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT,

and SiMLA, ser. Lecture Notes in Computer Science, Rome, Italy: Springer-Verlag,

2020, pp. 337–359, ISBN: 978-3-030-61637-3. DOI: 10.1007/978-3-030-

https://doi.org/10.1109/ICCIC.2014.7238432
https://doi.org/10.1109/CONISOFT52520.2021.00036
https://doi.org/10.1109/CONISOFT52520.2021.00036
https://doi.org/10.14419/ijet.v7i3.13075
https://doi.org/10.14419/ijet.v7i3.13075
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1109/ICCIT.2010.5711022
https://doi.org/10.1109/ICCIT.2010.5711022
https://doi.org/10.1007/978-3-030-61638-0_19
https://doi.org/10.1007/978-3-030-61638-0_19

REFERENCES 56

61638-0_19. [Online]. Available: https://doi.org/10.1007/978-3-

030-61638-0_19.

[28] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ”Attribute-based encryption for

fine-grained access control of encrypted data”, in Proceedings of the 13th ACM

Conference on Computer and Communications Security, ser. CCS ’06, Alexandria,

Virginia, USA: Association for Computing Machinery, 2006, pp. 89–98, ISBN:

1595935185. DOI: 10.1145/1180405.1180418. [Online]. Available: htt

ps://doi-org.ezproxy.utu.fi/10.1145/1180405.1180418.

[29] S. N. Kazmi, ”Access control process for a saas provider”, University of Turku,

Jun. 2019. [Online]. Available: https : / / urn . fi / URN : NBN : fi - fe

2019092329507.

[30] S. Han, G. Skinner, V. Potdar, and E. Chang, ”A framework of authentication and

authorization for e-health services”, in Proceedings of the 3rd ACM Workshop on

Secure Web Services, ser. SWS ’06, Alexandria, Virginia, USA: Association for

Computing Machinery, 2006, pp. 105–106, ISBN: 1595935460. DOI: 10.1145/

1180367.1180387. [Online]. Available: https://doi-org.ezproxy.

utu.fi/10.1145/1180367.1180387.

[31] N. Solanki, W. Zhu, I.-L. Yen, F. Bastani, and E. Rezvani, ”Multi-tenant access and

information flow control for saas”, in 2016 IEEE International Conference on Web

Services (ICWS), Jun. 2016, pp. 99–106. DOI: 10.1109/ICWS.2016.21.

[32] D. Ferraiolo and D. R. Kuhn, ”Role-based access controls”, vol. abs/0903.2171,

Mar. 2009. [Online]. Available: https://doi.org/10.48550/arXiv.

0903.2171.

[33] E. J. Coyne, T. R. Weil, and R. Kuhn, ”Role engineering: Methods and standards”,

in IT Professional, vol. 13, Nov. 2011, pp. 54–57. DOI: 10.1109/MITP.2011.

105.

https://doi.org/10.1007/978-3-030-61638-0_19
https://doi.org/10.1007/978-3-030-61638-0_19
https://doi.org/10.1007/978-3-030-61638-0_19
https://doi.org/10.1007/978-3-030-61638-0_19
https://doi.org/10.1145/1180405.1180418
https://doi-org.ezproxy.utu.fi/10.1145/1180405.1180418
https://doi-org.ezproxy.utu.fi/10.1145/1180405.1180418
https://urn.fi/URN:NBN:fi-fe2019092329507
https://urn.fi/URN:NBN:fi-fe2019092329507
https://doi.org/10.1145/1180367.1180387
https://doi.org/10.1145/1180367.1180387
https://doi-org.ezproxy.utu.fi/10.1145/1180367.1180387
https://doi-org.ezproxy.utu.fi/10.1145/1180367.1180387
https://doi.org/10.1109/ICWS.2016.21
https://doi.org/10.48550/arXiv.0903.2171
https://doi.org/10.48550/arXiv.0903.2171
https://doi.org/10.1109/MITP.2011.105
https://doi.org/10.1109/MITP.2011.105

REFERENCES 57

[34] R. Anderson and V. contributors. ”Prevent cross-site scripting (xss) in asp.net

core”. (Mar. 2023), [Online]. Available: https://learn.microsoft.com/

en-us/aspnet/core/security/cross-site-scripting (visited on

05/26/2023).

[35] V. contributors. ”Dotnet security cheat sheet”. (2021), [Online]. Available: https

://cheatsheetseries.owasp.org/cheatsheets/DotNet_Secur

ity_Cheat_Sheet.html (visited on 05/26/2023).

[36] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749, Oct. 2012. DOI:

10.17487/RFC6749. [Online]. Available: https://www.rfc-editor.

org/info/rfc6749.

[37] T. Wisniewski, G. Whitehead, and e. a. Hinton Hp, ”Saml v2.0 errata 05”, May

2012. [Online]. Available: http://docs.oasis-open.org/security/

saml/v2.0/errata05/os/saml-v2.0-errata05-os.html.

[38] Openid connect core 1.0 incorporating errata set 1. [Online]. Available: https:

//openid.net/specs/openid-connect-core-1_0.html (visited on

06/02/2023).

[39] B. D. Göçer and Ş. Bahtiyar, ”An authorization framework with oauth for fintech

servers”, in 2019 4th International Conference on Computer Science and Engi-

neering (UBMK), Sep. 2019, pp. 536–541. DOI: 10 . 1109 / UBMK . 2019 .

8907182. [Online]. Available: https://doi.org/10.1109/UBMK.

2019.8907182.

[40] G. J. Simmons, ”Symmetric and asymmetric encryption”, ACM Comput. Surv.,

vol. 11, no. 4, pp. 305–330, Dec. 1979, ISSN: 0360-0300. DOI: 10 . 1145 /

356789.356793. [Online]. Available: https://doi.org/10.1145/

356789.356793.

https://learn.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://learn.microsoft.com/en-us/aspnet/core/security/cross-site-scripting
https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
http://docs.oasis-open.org/security/saml/v2.0/errata05/os/saml-v2.0-errata05-os.html
http://docs.oasis-open.org/security/saml/v2.0/errata05/os/saml-v2.0-errata05-os.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1109/UBMK.2019.8907182
https://doi.org/10.1109/UBMK.2019.8907182
https://doi.org/10.1109/UBMK.2019.8907182
https://doi.org/10.1109/UBMK.2019.8907182
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793

REFERENCES 58

[41] Q. Zhang, ”An overview and analysis of hybrid encryption: The combination of

symmetric encryption and asymmetric encryption”, in 2021 2nd International Con-

ference on Computing and Data Science (CDS), Jan. 2021, pp. 616–622. DOI:

10.1109/CDS52072.2021.00111.

[42] F. Moyón, P. Almeida, D. Riofrío, D. Mendez, and M. Kalinowski, ”Security com-

pliance in agile software development: A systematic mapping study”, in 2020

46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), Aug. 2020, pp. 413–420. DOI: 10.1109/SEAA51224.2020.00073.

[43] The national institute for standards in technology. [Online]. Available: https:

//www.nist.gov/ (visited on 06/02/2023).

[44] The international organization for standardization. [Online]. Available: https:

//www.iso.org/ (visited on 06/02/2023).

[45] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april

2016 on the protection of natural persons with regard to the processing of per-

sonal data and on the free movement of such data, and repealing directive 9546ec

(general data protection regulation). [Online]. Available: https://eur-lex.

europa.eu/eli/reg/2016/679/oj (visited on 06/02/2023).

[46] ”Atr soft oy”. (2023), [Online]. Available: https://www.atrsoft.com/

(visited on 05/18/2023).

[47] ”Ct publisher”. (2023), [Online]. Available: https://www.ctpublisher.

com/ (visited on 03/16/2023).

[48] T. Reenskaug, ”The model-view-controller (mvc) its past and present”, Aug. 2003.

[Online]. Available: http://home.ifi.uio.no/trygver/2003/javaz

one-jaoo/MVC_pattern.pdf.

[49] ”Entity framework 6”. (2020), [Online]. Available: https://learn.micros

oft.com/en-us/ef/ef6/ (visited on 03/12/2023).

https://doi.org/10.1109/CDS52072.2021.00111
https://doi.org/10.1109/SEAA51224.2020.00073
https://www.nist.gov/
https://www.nist.gov/
https://www.iso.org/
https://www.iso.org/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.atrsoft.com/
https://www.ctpublisher.com/
https://www.ctpublisher.com/
http://home.ifi.uio.no/trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://home.ifi.uio.no/trygver/2003/javazone-jaoo/MVC_pattern.pdf
https://learn.microsoft.com/en-us/ef/ef6/
https://learn.microsoft.com/en-us/ef/ef6/

REFERENCES 59

[50] ”Microsoft internet information services (iis)”. (2023), [Online]. Available: http

s://www.iis.net/ (visited on 03/12/2023).

[51] G. Kappes, A. Hatzieleftheriou, and S. V. Anastasiadis, ”Multitenant access con-

trol for cloud-aware distributed filesystems”, English, IEEE Transactions on De-

pendable and Secure Computing, vol. 16, no. 6, pp. 1070–1085, Nov. 2019. DOI:

10.1109/TDSC.2017.2715839. [Online]. Available: https://ieeexpl

ore.ieee.org/document/7949056.

[52] A. Omezzine, N. B. B. Saoud, S. Tazi, and G. Cooperman, ”Sla and profit-aware

saas provisioning through proactive renegotiation”, English, IEEE, Oct. 2016,

pp. 351–358. DOI: 10 . 1109 / NCA . 2016 . 7778640. [Online]. Available:

https://ieeexplore.ieee.org/document/7778640.

[53] K. Gupta, S. Kumar, and O. Agnihotri, ”Data isolation in multi-tenant saas envi-

ronment”, in 2016 International Conference on Computing, Communication and

Automation (ICCCA), Apr. 2016, pp. 1290–1292. DOI: 10.1109/CCAA.2016.

7813917.

[54] N. Pustchi and R. Sandhu, ”Mt-abac: A multi-tenant attribute-based access con-

trol model with tenant trust”, in Network and System Security, M. Qiu, S. Xu, M.

Yung, and H. Zhang, Eds., ser. Lecture Notes in Computer Science, vol. 9408,

Cham: Springer International Publishing, Nov. 2015, pp. 206–220, ISBN: 978-3-

319-25644-3. DOI: 10.1007/978-3-319-25645-0_14. [Online]. Avail-

able: https://doi.org/10.1007/978-3-319-25645-0_14.

[55] R. Maheshwari, A. Toshniwal, and A. Dubey, ”Software as a service architecture

and its security issues: A review”, in 2020 Fourth International Conference on

Inventive Systems and Control (ICISC), Jan. 2020, pp. 766–770. DOI: 10.1109/

ICISC47916.2020.9171145. [Online]. Available: https://doi.org/

10.1109/ICISC47916.2020.9171145.

https://www.iis.net/
https://www.iis.net/
https://doi.org/10.1109/TDSC.2017.2715839
https://ieeexplore.ieee.org/document/7949056
https://ieeexplore.ieee.org/document/7949056
https://doi.org/10.1109/NCA.2016.7778640
https://ieeexplore.ieee.org/document/7778640
https://doi.org/10.1109/CCAA.2016.7813917
https://doi.org/10.1109/CCAA.2016.7813917
https://doi.org/10.1007/978-3-319-25645-0_14
https://doi.org/10.1007/978-3-319-25645-0_14
https://doi.org/10.1109/ICISC47916.2020.9171145
https://doi.org/10.1109/ICISC47916.2020.9171145
https://doi.org/10.1109/ICISC47916.2020.9171145
https://doi.org/10.1109/ICISC47916.2020.9171145

REFERENCES 60

[56] E. Daka and G. Fraser, ”A survey on unit testing practices and problems”, in 2014

IEEE 25th International Symposium on Software Reliability Engineering, 2014,

pp. 201–211. DOI: 10.1109/ISSRE.2014.11. [Online]. Available: https:

//doi.org/10.1109/SEAA51224.2020.00073.

[57] V. contributors, Wcf test client (wcftestclient.exe), 2021. [Online]. Available: htt

ps://learn.microsoft.com/en-us/dotnet/framework/wcf/

wcf-test-client-wcftestclient-exe.

https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/SEAA51224.2020.00073
https://doi.org/10.1109/SEAA51224.2020.00073
https://learn.microsoft.com/en-us/dotnet/framework/wcf/wcf-test-client-wcftestclient-exe
https://learn.microsoft.com/en-us/dotnet/framework/wcf/wcf-test-client-wcftestclient-exe
https://learn.microsoft.com/en-us/dotnet/framework/wcf/wcf-test-client-wcftestclient-exe

	Introduction
	Tenancy models
	Previous research
	Single-tenant app and database
	Multi-tenant app with single-tenant database
	Multi-tenant app and database
	Sharded database
	Elastic pools

	Configuration and customization

	Authentication and authorization
	Security Issues in SaaS
	Access control
	Protecting against ASP .NET specific attacks
	Token-based authentication
	Identity frameworks
	OAuth2.0 Core (RFC 6749)
	Entity Framework Identity

	Row-level security
	Data encryption
	Security standards and policies

	Case Study: CT Publisher by ATR Soft
	Background
	Current solution in CT Publisher
	Current problems
	Goals
	Requirements
	R1: Maintainability
	R2: Tenant security
	R3: Customer integration
	R4: Performance

	Chosen solution
	Scope
	Current solution: Single tenant application and database
	Choosing a new tenancy model

	Implementation
	Local setup

	Validation
	Personal and team review
	Theory-based review
	Tests to measure maintainability and security
	MSTest
	Mocking user data
	Windows Communication Foundation Service Host and Test Client

	Future outlook on tests

	Conclusions
	Summary of the study work
	Answering research questions
	Answering research question 1
	Answering research question 2

	Study limitations
	Value proposition of the study

	References

