28,665 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Beyond representations: towards an action-centric perspective on tangible interaction

    Get PDF
    In the light of theoretical as well as concrete technical development, we discuss a conceptual shift from an information-centric to an action-centric perspective on tangible interactive technology. We explicitly emphasise the qualities of shareable use, and the importance of designing tangibles that allow for meaningful manipulation and control of the digital material. This involves a broadened focus from studying properties of the interface, to instead aim for qualities of the activity of using a system, a general tendency towards designing for social and sharable use settings and an increased openness towards multiple and subjective interpretations. An effect of this is that tangibles are not designed as representations of data, but as resources for action. We discuss four ways that tangible artefacts work as resources for action: (1) for physical manipulation; (2) for referential, social and contextually oriented action; (3) for perception and sensory experience; (4) for digitally mediated action

    Setting the stage – embodied and spatial dimensions in emerging programming practices.

    Get PDF
    In the design of interactive systems, developers sometimes need to engage in various ways of physical performance in order to communicate ideas and to test out properties of the system to be realised. External resources such as sketches, as well as bodily action, often play important parts in such processes, and several methods and tools that explicitly address such aspects of interaction design have recently been developed. This combined with the growing range of pervasive, ubiquitous, and tangible technologies add up to a complex web of physicality within the practice of designing interactive systems. We illustrate this dimension of systems development through three cases which in different ways address the design of systems where embodied performance is important. The first case shows how building a physical sport simulator emphasises a shift in activity between programming and debugging. The second case shows a build-once run-once scenario, where the fine-tuning and control of the run-time activity gets turned into an act of in situ performance by the programmers. The third example illustrates the explorative and experiential nature of programming and debugging systems for specialised and autonomous interaction devices. This multitude in approaches in existing programming settings reveals an expanded perspective of what practices of interaction design consist of, emphasising the interlinking between design, programming, and performance with the system that is being developed

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: ‱ 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. ‱ 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. ‱ 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Simulation in Contexts Involving an Interactive Table and Tangible Objects

    No full text
    International audienceBy using an interactive table, it is possible to interact with several people (decision-makers) in a simultaneous and collaborative way, around the table, during a simulation session. Thanks to the RFID technology with which the table is fitted, it is possible to give tangible objects a unique identity to include and to consider them in the simulation. The paper describes a context model, which takes into consideration the specificities related to interactive tables. The TangiSense interactive table is presented; it is connected to a multi-agent system making it possible to give the table a certain level of adaptation: each tangible object can be associated to an agent which can bring roles to the object (i.e., the roles are the equivalent of a set of behaviors). The multi-agent system proposed in this paper is modeled according to an architecture adapted to the exploitation of tangible and virtual objects during simulation on an interactive table. A case study is presented; it concerns a simulation of road traffic management. The illustrations give an outline of the potentialities of the simulation system as regards the context-awareness aspect, following both the actions of the decision-makers implied in simulation, and the agents composing the road traffic simulation

    Distributed UI on Interactive tabletops: issues and context model

    Get PDF
    International audienceThe User Interface distribution can also be applied on interactive tabletops which are connected and more or less remote. This distribution raises issues which concern collaboration (how to distribute the UI to collaborate?); besides, concerning the tangible interaction: which role and appearance (tangible or virtual) must have the objects? In this chapter we describe an extended context model in order to take into account both interactions on a single interactive tabletop and interactions which are distributed and collaborative. The model proposed can, from our point of view, be used to make sure that the usability of the interaction is guaranteed. Indeed, it is essential to know the interaction configuration in order to ensure the usability of the system. The model suggested is illustrated in a case study integrating collaboration and UI distribution. A conclusion gives the limits of the article before a presentation of prospects

    From Centralized interactive tabletops to Distributed surfaces: the Tangiget concept

    No full text
    International audienceAfter having outlined the uses of new technologies such as smartphones, touch-screen tablets, and laptops, this article presents the TangiSense interactive tabletop, equipped with RFID technology tagged on tangible objects, as a new paradigm of interaction for ambient intelligence. Within its framework, this article aims to distribute surfaces (tables) interacting mainly with tangible objects. Leads for interactive surface distribution such as interactive tables are given. The article proposes to describe some tangible objects, which are the interaction supports; these are called Tangigets. They are defined according to an augmented Presentation-Abstraction-Control structure to take the tangibility element into account. Six categories of Tangigets are also proposed, which are tangible objects, and the supports of distributed collaboration. To validate the Tangiget concept and its use on the TangiSense tabletop, illustrations in centralized and distributed configurations are proposed. A first evaluation is also presented. To conclude, the article presents the directions under consideration for our future research
    • 

    corecore