21,880 research outputs found

    Traceability for Model Driven, Software Product Line Engineering

    Get PDF
    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Towards Product Lining Model-Driven Development Code Generators

    Get PDF
    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its infancy. Thus, the aim of this paper is to identify the mechanism necessary for a code generator product line by (a) analyzing the common product line development approach and (b) mapping those to a code generator specific infrastructure. As a first step towards realizing a code generator product line infrastructure, we present a component-based implementation approach based on ideas of variability-aware module systems and point out further research challenges.Comment: 6 pages, 1 figure, Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development, pp. 539-545, Angers, France, SciTePress, 201

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Combining Multiple Granularity Variability in a Software Product Line Approach for Web Engineering

    Get PDF
    [Abstract] Context: Web engineering involves managing a high diversity of artifacts implemented in different languages and with different levels of granularity. Technological companies usually implement variable artifacts of Software Product Lines (SPLs) using annotations, being reluctant to adopt hybrid, often complex, approaches combining composition and annotations despite their benefits. Objective: This paper proposes a combined approach to support fine and coarse-grained variability for web artifacts. The proposal allows web developers to continue using annotations to handle fine-grained variability for those artifacts whose variability is very difficult to implement with a composition-based approach, but obtaining the advantages of the composition-based approach for the coarse-grained variable artifacts. Methods: A combined approach based on feature modeling that integrates annotations into a generic composition-based approach. We propose the definition of compositional and annotative variation points with custom-defined semantics, which is resolved by a scaffolding-based derivation engine. The approach is evaluated on a real-world web-based SPL by applying a set of variability metrics, as well as discussing its quality criteria in comparison with annotations, compositional, and combined existing approaches. Results: Our approach effectively handles both fine and coarse-grained variability. The mapping between the feature model and the web artifacts promotes the traceability of the features and the uniformity of the variation points regardless of the granularity of the web artifacts. Conclusions: Using well-known techniques of SPLs from an architectural point of view, such as feature modeling, can improve the design and maintenance of variable web artifacts without the need of introducing complex approaches for implementing the underlying variability.The work of the authors from the Universidad de Málaga is supported by the projects Magic P12-TIC1814 (post-doctoral research grant), MEDEA RTI2018-099213-B-I00 (co-financed by FEDER funds), Rhea P18-FR-1081 (MCI/AEI/FEDER, UE), LEIA UMA18-FEDERIA-157, TASOVA MCIU-AEI TIN2017-90644-REDT and, European Union’s H2020 research and innovation program under grant agreement DAEMON 101017109. The work of the authors from the Universidade da Coruña has been funded by MCIN/AEI/10.13039/501100011033, NextGenerationEU/PRTR, FLATCITY-POC: PDC2021-121239-C31 ; MCIN/AEI/10.13039/501100011033 EXTRACompact: PID2020-114635RB-I00 ; GAIN/Xunta de Galicia/ERDF CEDCOVID: COV20/00604 ; Xunta de Galicia/FEDER-UE GRC: ED431C 2021/53 ; MICIU/FEDER-UE BIZDEVOPSGLOBAL: RTI-2018-098309-B-C32 ; MCIN/AEI/10.13039/501100011033 MAGIST: PID2019-105221RB-C41Junta de Andalucía; P12-TIC-1814Universidad de Málaga; UMA18-FEDERIA-157Xunta de Galicia; COV20/00604Xunta de Galicia; ED431C 2021/53Junta de Andalucía; P18-FR-108

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache
    corecore