
Information and Software Technology 148 (2022) 106910

A
0

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Combiningmultiple granularity variability in a software product line
approach for web engineering
Jose-Miguel Horcas a,∗, Alejandro Cortiñas b, Lidia Fuentes a, Miguel R. Luaces b
a Universidad de Málaga, Andalucía Tech, Spain
b Universidade da Coruña, CITIC, Fac. Informática, Database Lab. Elviña, 15071 A Coruña, Spain

A R T I C L E I N F O

Keywords:
Annotations
Composition
Feature models
SPL
Variability
Web engineering

A B S T R A C T

Context: Web engineering involves managing a high diversity of artifacts implemented in different languages
and with different levels of granularity. Technological companies usually implement variable artifacts of
Software Product Lines (SPLs) using annotations, being reluctant to adopt hybrid, often complex, approaches
combining composition and annotations despite their benefits.
Objective: This paper proposes a combined approach to support fine and coarse-grained variability for web
artifacts. The proposal allows web developers to continue using annotations to handle fine-grained variability
for those artifacts whose variability is very difficult to implement with a composition-based approach, but
obtaining the advantages of the composition-based approach for the coarse-grained variable artifacts.
Methods: A combined approach based on feature modeling that integrates annotations into a generic
composition-based approach. We propose the definition of compositional and annotative variation points
with custom-defined semantics, which is resolved by a scaffolding-based derivation engine. The approach is
evaluated on a real-world web-based SPL by applying a set of variability metrics, as well as discussing its
quality criteria in comparison with annotations, compositional, and combined existing approaches.
Results: Our approach effectively handles both fine and coarse-grained variability. The mapping between the
feature model and the web artifacts promotes the traceability of the features and the uniformity of the variation
points regardless of the granularity of the web artifacts.
Conclusions: Using well-known techniques of SPLs from an architectural point of view, such as feature
modeling, can improve the design and maintenance of variable web artifacts without the need of introducing
complex approaches for implementing the underlying variability.
1. Introduction

Web engineering involves managing a high diversity of artifacts
at a different level of abstraction (e.g., web pages, templates, style
sheets, code, or databases). Development companies profit greatly from
component reusability and user-specific customization. To deal with the
automatic generation of web applications, the industry advocates for
adopting software product lines (SPLs) approaches [1,2].

A crucial step in SPL is modeling and implementing the variability
of the reusable artifacts [3]. The most popular technique to model
variability is feature modeling, which expresses the variability in terms
of common and optional features [4]. For implementing variability,
annotation-based approaches [3] are widely used in practice. They
are simple, flexible, and easy to adopt because they only require
annotating a common base artifact with the feature’s variability in-
formation. In contrast to annotations, most of SPLs studies suggest

∗ Corresponding author.
E-mail addresses: horcas@lcc.uma.es (J.-M. Horcas), alejandro.cortinas@udc.es (A. Cortiñas), lff@lcc.uma.es (L. Fuentes), miguel.luaces@udc.es

M.R. Luaces).

that artifacts should be developed in the form of composable fea-
tures which highly improve modularization, separation of concerns,
reusability, and maintenance [3,5,6]. Nevertheless, the industry is re-
luctant to adopt composition-based approaches (e.g., feature-oriented
programming (FOP) [7], aspect-oriented programming (AOP) [8], or
delta-oriented programming (DOP) [9]) because they require investing
a high effort to be adopted successfully. Only some classic composition-
based approaches [3] such as extensible frameworks with plug-ins, or
service-oriented architectures are being used in the web engineering
domain to support the reuse of a large granularity (e.g., black-box web
components). However, web applications must handle great amounts of
fine-grained variability across different types of source code (Python,
JavaScript, Java), templates (HTML, Markdown), style sheet files (CSS,
and its variants such as SCSS), data serialization languages (JSON, XML,
vailable online 5 April 2022
950-5849/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2022.106910
eceived 5 April 2021; Received in revised form 23 February 2022; Accepted 22 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:horcas@lcc.uma.es
mailto:alejandro.cortinas@udc.es
mailto:lff@lcc.uma.es
mailto:miguel.luaces@udc.es
https://doi.org/10.1016/j.infsof.2022.106910
https://doi.org/10.1016/j.infsof.2022.106910
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106910&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

t
a
a
a
T
t
c
m
p

q
t
h
i
t
p
R
i
(

2

a
i

e
b
t
t
n
b

2

c

YAML), and other kinds of files (property files or script files). The
fine-grained variability that is scattered among several artifacts can
be easily implemented with annotations but makes the maintenance
of the SPL artifacts a complex and a potential error-prone task [5].
Moreover, the traceability of features and the affected artifacts is not
easy in annotation-based approaches, even more considering the high
diversity of languages involved in a web application.

Then, the first research question that arises is how can an SPL
approach handle the high diversity and granular variability of the web
engineering domain? (RQ1). Several works try to combine annotation
and composition-based approaches to get their complementary ben-
efits [5,10,11] (Section 2). These works attempt to handle coarse-
grained variability with annotations, introducing feature composition
into annotation-based approaches with the definition of new imple-
mentation layers, resulting in complex approaches to be adopted by
the industry. In a previous work [12], we proposed just the contrary:
instead of extending annotations with composition mechanisms, we
proposed to integrate annotations into a composition-based approach
using the Common Variability Language (CVL) [13]. CVL acted as a
composition-based approach and was extended to manage fine-grained
variability thanks to the plethora of variation points provided by CVL.
However, the lack of tool support of CVL as well as its legal patent-
related issues [14] have made CVL fall in disuse nowadays, making it
difficult for the industry the adoption of CVL-based approaches [15].
In this paper, we answer RQ1 by proposing a combined approach
that effectively integrates annotations into a generic composition-based
approach by using feature models, instead of CVL, to handle the coarse
and fine-grained variability of web applications. We define a mapping
between the feature models and web artifacts, promoting the traceabil-
ity of the features and the uniformity of the variation points regardless
of the granularity of the web artifacts (Section 3).

Migrating an SPL in a company from a pure annotation-based
approach to a new compositional approach is a problem that hinders
the adoption of the combined approach. Web development companies
develop SPLs mostly using annotations (e.g., preprocessors [16] or
configuration parameters) or defining their custom tool-based solu-
tions. Maintaining and evolving an SPL following these strategies is an
arduous task, as the number of annotated files grows exponentially and
the quality of the annotated source code decreases. The second question
that arises at this point is is it feasible to migrate an annotation-based
owards a combined (more composable-based) implementation? (RQ2). To
nswer RQ2, we apply our combined approach to a case study based on
web-based SPL that currently implements its variable artifacts with
nnotations to handle both fine and coarse-grained variability [17,18].
he goal is to keep the annotations in the web SPL to implement
he fine-grained variability which is difficult to implement with a
omposition-based approach, while at the same time improving the
odularity of the code and the traceability between features, variation
oints, components, and final source files (Section 4).
Once that our combined approach is applied, our two last research

uestions are how does the resulting combined approach perform compared
o the previous annotation-based implementation of the SPL? (RQ3), and
ow does the resulting combined approach perform compared to the exist-
ng approaches RQ4. We answer to RQ3 by evaluating our approach
hrough the use of a set of metrics for analyzing variability and its im-
lementation which have been recently surveyed in [19,20]. To answer
Q4, we evaluate the quality criteria [3] of our approach in compar-
son with the most relevant combined solutions of the state-of-the-art
Section 5).

. State-of-the-art and motivation

One of the main objectives of SPL approaches is to derive a product
utomatically from variable code based on the user’s requirements. To
2

mplement the variability in an SPL, several implementation techniques
xist [3]. They can be classified into composition-based, annotation-
ased, and combined (hybrid) approaches. In the following, we present
he most relevant variability implementation techniques and discuss
heir limitations in general, and especially, in the context of web engi-
eering. Fig. 1 summarizes the existing techniques and their relations
ased on the classification proposed.

.1. Composition-based approaches

Composition-based approaches implement features in the form of
omposable units (e.g., modules, containers, classes, files), ideally map-
ping one feature to one unit. During product derivation, a combination
of selected units, based on the required features, are composed to
form the final product. There is a large body of research work on
composition-based approaches (see left-hand side of Fig. 1), from classi-
cal frameworks with extensible plug-ins, component-based and service-
oriented architectures, or even traditional design patterns to model
variability, to specific programming paradigms such as feature-oriented
programming (FOP) [7], aspect-oriented programming (AOP) [8], or
delta-oriented programming (DOP) [9]. A detailed description of all
these composition-based approaches can be found in [3].

Limitations. Composition-based approaches are rarely adopted in prac-
tice. This is mainly because composition-based approaches are chal-
lenging and error-prone. For instance, FOP and AOP, two of the most
studied composition approaches in research, require that the industry
takes risks and puts high efforts to successfully adopt these tech-
nologies [5,21]. Their corresponding tools (e.g., FeatureIDE, AHEAD
tool, AspectJ) have to meet high requirements and are hard to inte-
grate with existing development processes. In particular, in the web
engineering domain, the multilanguage nature of web applications,
involving handling multiple types of artifacts and a great amount of
fine-grained variability, makes it extremely difficult to apply some
advanced programming paradigms (e.g., FOP, AOP, DOP). There have
been some attempts in the past, such as [22] in 2005 that presents
a tool that generates HTML from XLST templates; or [23] in 2009,
with an extension for Visual Studio that generates a .NET/ASP web
page from UML standard diagrams. However, web applications are
nowadays built using a completely different set of technologies since
the rise of JavaScript popularity at the beginning of the 2010’s decade.
A more recent work, [24], uses DOP to implement microservices in
Java, but it does not handle the user interface (UI), which is the most
complex part of a web application. There are other composition-based
approaches that rely on version control systems (e.g., Git, Mercurial)
and build systems (e.g., ant, maven), which are very well known in the
industry, but they are normally used for their intended purpose (i.e., to
control the version history of the products, or to compile and build the
products), not for modeling variability in an SPL [3].

2.2. Annotation-based approaches

Annotation-based approaches (see right-hand side of Fig. 1) mark
a common artifact to identify which part of the artifact belongs to a
certain feature. During product derivation, all parts of the artifacts (e.g.,
pieces of code) that do not belong to the required features are removed
or ignored to form the final product. Preprocessors (i.e., #ifdef
annotations) [16] are the most widely used technique for implementing
variable code, but also the use of configuration parameters can control
and alter the behavior of a program (run-time variability) [3]. Other
advanced approaches like virtual separation of concerns are tool-based
and consist of a combination of tracing information, visualization facil-
ities, and source code views (i.e., coloring), to separately display, edit,

and manage the code belonging to individual features [21].

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
Fig. 1. State-of-the-art of SPL variability implementation techniques: composition, annotative, and combined approaches.
Limitations. Annotation-based approaches are widely used in practice
because they are simple, flexible, and are already natively supported
by many programming languages. However, numerous studies criti-
cize annotation-based approaches as they hinder the traceability and
physical separation of features. Moreover, it is well known that the
maintenance and evolution of the platform code using annotations is a
nightmare because annotations obfuscate the base functionality of the
application [3].

2.3. Combined approaches

To overcome the limitations of composition and annotative ap-
proaches, several hybrid approaches have emerged. Kästner and Apel
[6] were the first who formulated the idea of combining both ap-
proaches. In principle, any combination of composition-based and
annotation-based approaches is possible [21]. We classify the existing
proposals into two groups: unification approaches and integration
approaches (middle of Fig. 1).

2.3.1. Unification approaches
Unification approaches propose new paradigms to support both

composition and annotations. They usually unify the concepts of two or
more existing approaches into a new paradigm. Examples of unification
approaches are the compositional choice calculus (CCC) [25], colored snip-
pet graphs [26,27], and structured document graphs (SDA) [28]. Walking-
shaw and Erwig [25] propose compositional choice calculus as a formal
calculus model that unifies composition and annotations by generating
editable documents (views) from a variability-aware abstract syntax
tree. This approach has been put in practice [29] and depends on the
programming language used. Behringer et al. [26,27] propose to unify
composition (feature-oriented programming) and annotative (coloring)
approaches with adapted tools: FeatureHouse [30] and CIDE [21].
In particular, they propose structured document graphs [28] based on
the compositional choice calculus [25] to change between composition,
3

annotations, and the combination of both approaches in an SPL.
2.3.2. Integration approaches
Integration approaches represent the concepts of a specific approach

using another existing approach. For instance, representing composi-
tional mechanisms using an existing annotation-based approach (i.e.,
compositional into annotative), or representing annotations using an
existing composition-based approach (i.e., annotative into composi-
tional). In the former, the goal is to exploit the benefits of the com-
positional mechanisms (e.g., modularization, separation of concerns,
reusability, and maintenance) in annotative approaches while main-
taining the flexibility and easy adoption of the annotations. In the
latter, the goal is to migrate from pure annotations towards a more
compositional approach to achieve the major benefits provided by
composition [5,6]. Almost all existing works that put into practice the
combined approach in SPL are mainly based on the idea of the generic
integrated (hybrid) approach proposed by Kästner and Apel [6].

• Generic combination. Kästner and Apel [6] analyzed and com-
pared both composition and annotative approaches, separately
in detail, and showed the benefits of an integrated approach,
considering both compositional into annotative, and annotative
into compositional approaches. They claim that the integration is
straightforward, conceptually, and technically, since it is based on
combining existing implementation techniques such as combining
preprocessors [16] or virtual separation of concerns [31] with
FOP [7], AOP [8], or DOP [9]. In particular, in [31,32] they
introduce an additional implementation layer on top of preproces-
sors and CIDE to support compositional approaches like AHEAD,
FSTComposer, and FeatureHouse.

• Compositional into annotative approaches. These approaches
focus on implementing compositional mechanisms using annota-
tions to overcome the problems of migrating from annotations
to composition and refactoring an annotated SPL. For example,
Benduhn et al. [11] apply the integration approach proposed by
Kästner and Apel [6] in a real case study, by migrating Berkeley
DB from C preprocessor annotations towards partial composition.
They demonstrate that although the idea is feasible, the task is
challenging, error-prone, and that not all physical separations can
be achieved easily. Krüger et al. [5,10] present FeatureCoPP (Fea-

ture Compositional PreProcessor), an integrated implementation

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

L
p
n
u
S
t
t
o
c
i
w
l

v
m
a
w
S

Fig. 2. The CVL approach integrating composition and multilanguage annotations.
concept that introduces composition into an annotation-based
approach. Concretely, they extend the idea of preprocessors to
support composition and enable physical separation of concerns
similar to FOP, where the traceability is based on feature naming
to identify features in different modules.

• Annotative into compositional approaches. These approaches
integrate annotations into an existing compositional approach.
For instance, Don Batory [33,34] proposes two algebraic models:
the feature interaction algebra and the structured document algebra
(SDA). These models formalize the concept of a module with
variation points, the composition of them, and the decomposition
of the modules into smaller parts, simulating annotations for
FOP. In our previous work [12], we proposed to incorporate
annotations into the Common Variability Language (CVL) [13] to
allow the compositional approach of CVL to handle both coarse
and fine-grained variability. The approach presented in this paper
also fits in this category.

imitations. The advantages of the combined approaches mainly de-
end on the specific composition and annotative implementation tech-
iques used. However, the election of the programming model (e.g.,
sing or not using AspectJ for AOP) should not be imposed by the
PL implementation mechanism. Technological companies are reluc-
ant to embrace those kinds of combined approaches, mainly when
hose approaches impose the adoption of a new programming paradigm
r require the definition of new implementation layers, resulting in
omplex approaches to be adopted by practitioners. This is even worse
f we need to apply a new programming paradigm in the context of
eb engineering because we need to use several languages and new
anguages appear on the market every day.
To overcome the limitations of the combined approach, in a pre-

ious work, we proposed a combined approach integrating CVL with
ultilanguage annotations [12]. The following section details the CVL
pproach along with its limitations. In this paper, we extend that
ork to make the approach independent from the CVL language (see
ection 3).

2.4. The combined approach of CVL with multilanguage annotations

The CVL approach (Fig. 2) is, by nature, an orthogonal composition-
based approach since artifacts can be composed, removed, or substi-
tuted through the CVL variation points. Variation points specify how
the artifacts are modified by defining specific modifications to be
applied using model-to-model (M2M) transformations to a base model.
The semantics of these transformations are specific to the kind of each
variation point. During CVL’s execution, the CVL engine (vEXgine [35])
delegates its control to an M2M engine in charge of executing the
transformations of each variation point. Only the semantics of those
variation points bound to a selected feature in a configuration model
will be executed during variability resolution.
4

The coarse-grained variability is managed by the variation points
supported and predefined in CVL for composition. Some of these
variation points are the existence of elements of the base model
(ObjectExistence), the links between them (LinkExistence), the assign-
ment of an attribute’s value (ParametricSlotAssignment), or the replace-
ment of a set of elements with another set of elements
(FragmentSubstitution). The fine-grained variability is managed by defin-
ing a custom-made variation point (model transformation), that is,
in CVL, a new Opaque Variation Point (OVP) which specifies the
same semantics of the multilanguage annotations. Multilanguage an-
notations are a variant of #ifdef preprocessors [16] based on the
technique of scaffolding [18], and allows marking any text-based
artifact independently from the language used in such artifact (see
Section 4.1).

Limitations. The main advantage of CVL to manage variability is that
all types of artifacts are encoded and synthesized similarly as Meta-
Object Facility (MOF) references, regardless of the implementation
technique. This allows representing all artifacts subject to variation
as software components of an architectural model (e.g., in UML) and
applying M2M transformations to resolve the variability. However,
specifying all types of web artifacts in a MOF-based model is not al-
ways possible and will require defining a new MOF-compliant domain-
specific language (DSL) for web engineering. Besides, custom M2M
transformations in CVL need to be specified in QVT [13] or ATL [36]
requiring practitioners to have a wide knowledge of model-based devel-
opment (MDD) to define correct and generic transformations between
MOF-compliant models. These are technologies that are not still widely
adopted in industry [37]. The use of other transformation approaches
requires extending the CVL execution engine as in vEXgine [35].

When modeling variability, the CVL variability model needs to be
defined conform to the CVL metamodel [38], but the lack of tool
support for modeling variability in CVL [35], along with its dreadful
nomenclature of the modeling concepts (e.g., VSpecs vs. features, reso-
lution vs. configuration, materialization vs. product derivation, and the
large set of variation points) makes the use of CVL an arduous task in
practice. Moreover, its legal, patent-related issues [14] have made CVL
fall in disuse nowadays, and the SPL community is betting high again
for feature models as the de-facto standard for modeling variability [4].

A complete comparison based on different quality criteria between
the most relevant combined approaches, including the CVL approach,
and our approach is presented in Section 5.2.

3. A combined approach to model multiple granular variability

To answer RQ1: how can an SPL approach handle the high diversity and
granular variability of the web engineering domain?, we need to manage
fine-grained and coarse-grained variability of web engineering in an
integrated approach. In a previous work, we successfully managed the
variability with CVL and multilanguage annotations. In this section,
we propose a new approach that replaces entirely CVL to promote the

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
Fig. 3. A combined approach to model multiple granular variability.
i
p
c
a

3

t
w
u
a
g
a
a
a
i
s
c
a
t
c

adoption of our approach. Our approach fits into the ‘‘annotative into
compositional’’ integration approaches of the taxonomy presented in
the previous section (Fig. 1).

3.1. Orthogonal variability modeling

Fig. 3 shows our approach where we specify separately, the applica-
tion artifacts and the variability that can be applied to those artifacts.
We denote the set of all application artifacts in the SPL domain as the
application artifacts model (AAM).

Definition 1 (Application Artifact Model). An application artifact model
(AAM) is a software architectural model specifying the different arti-
facts of an application. That is, 𝐴𝐴𝑀 = {𝑎1, 𝑎2, 𝑎3,…} where 𝑎𝑖 can
be an arbitrary artifact representing, as for example, a component in
an architectural model, a class in a class diagram model, a source code
file, a database, or a web resource.

The AAM is equivalent to the base model used in the CVL language
for MOF-compliant models like UML, however, in contrast to the CVL
base model, AAM supports artifacts of different degrees of abstraction,
from architectural models specified in UML to a source code file in
Java. In the web engineering domain, the AAM can contain any kind
of web artifact (constant or variable) that is required to build the
web applications of the SPL. For instance, the AAM includes source
code files like Java classes, JavaScript and Python code, HTML and
markdown pages, style sheet files like CSS and SCSS, and other files
such as JSON, YML, and shell scripts. Constant artifacts are common
to all applications and do not contain any variability. Variable artifacts
contain variability that can be implemented using composition or using
annotations, based on their variability granularity, as we will explain in
Section 3.3. The variability is specified at the abstract level separately
in a feature model 𝑚 [39]. The feature model specifies the set of
features 𝐹 = {𝑓1, 𝑓2, 𝑓3,…} of the SPL, whether a feature is optional or
mandatory, and the relationships between the features. A configuration
𝑐𝑚 of the feature model is a valid selection of features that respects
all the relationships and constraints specified in the feature model 𝑚.
The configuration describes the features that compose a specific web
application of the SPL.

3.2. Feature traceability and variation points

To link the feature model with the AAM, we define a mapping 𝑀
as follows:

Definition 2 (Mapping 𝑀). The mapping 𝑀 ∶ 𝐹 → (𝐴𝐴𝑀) is a
function that maps each feature in 𝐹 to the associated artifacts in the
AAM implementing that feature. (𝐴𝐴𝑀) is the powerset of AAM, so
5

p

that a feature in 𝑓 ∈ 𝐹 can be mapped to an arbitrary number of
artifacts 𝑎 ∈ 𝐴𝐴𝑀 , including the empty set in case that the feature
has not associated artifacts (e.g., an abstract feature or non-variable
feature). The associated artifacts are variable and are subject to be
modified when the variability is resolved to derive the final application.
That is, the mapping 𝑀 defines the variation points of the artifacts
separately from the artifact’s implementation.

Fig. 4 shows the Ecore-based metamodel with the abstract syntax
definition of the mapping 𝑀 and the variation points (VPs). Each
variation point is bound to a feature 𝑓 in the feature model and links
to one or more artifacts 𝑎 through a handle reference. Apart from the
mapping information, each variation point defines a set of actions to
be performed over the artifact to resolve its variability. The actions
define the semantics (operations) of the variation points. Actions can be
either model transformations to be executed by a model transformation
engine (e.g., Henshin [40], ATL [36], ETL [41]), or code to be executed
by a programming execution engine (e.g., a JavaScript engine, a C
preprocessor engine). Finally, a variation point also contains a negative
variability flag to indicate whether or not the operations of the variation
point must be executed based on the selection or not of the bound
feature in a configuration of the feature model. When the negative
variability flag is set to true, the operations of the variation point will
be executed if the bound feature is not selected in a configuration. This
allows defining a negative variability approach for composition [35,42]
n the same way that annotation-based approaches work with #ifdef
reprocessor directives [16]. That is, starting from a complete appli-
ation model we can remove elements from the model in case the
ssociated feature is not selected in a configuration.

.3. Managing fine and coarse-grained variability

The semantics (operations) of the variation points will depend on
he variability granularity of the application artifacts. In our approach,
e distinguish four kinds of artifacts based on their variability gran-
larity: (1) common (non-variable) artifacts; (2) fine-grained variable
rtifacts; (3) coarse-grained variable artifacts; and (4) fine and coarse-
rained variable artifacts. Common (non-variable) artifacts are those
rtifacts that do not present any variability. These common artifacts
re present in all products of the SPL. Fine-grained variable artifacts
re those artifacts that present variability in its internal structure, that
s, they contain small pieces of code (like a code block, a few lines of
entences, or even a simple assignment statement) that are variable and
an be customized in the SPL. Fine-grained variability is implemented
s annotations [3]. Coarse-grained variable artifacts are those artifacts
hat are variable as a whole, that is, the whole artifact (a class, a
omplete file, or any modularity unit) can be present or not in a

roduct of the SPL. Coarse-grained variability is implemented following

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

a
m
f
v
v
t
a
v
a
c
m
a
c
f
v
i
i
c

C

A

M

Fig. 4. Metamodel of variation points.
i
t
i
o
c
d
O
P
s
t
t

compositional approach like FOP or AOP, but it may be imple-
ented with annotations surrounding the whole artifacts [3]. Finally,
ine and coarse-grained variable artifacts are those artifacts that are
ariable as a whole unit (coarse-grained variability), but also include
ariability in its internal structure (fine-grained variability). All these
ypes of artifacts are illustrated in our case study in Section 4. Note
lso that in the literature there exists the concept of medium-grained
ariability [21], which refers to a variable function, or a method inside
class, or a well-identified code block. Medium-grained variability
an be implemented as annotations (e.g., an annotation surrounding a
ethod) or following a compositional technique (e.g., an aspect of AOP
ffecting a method) [3]. In our approach, medium-grained variability is
onsidered as fine-grained variability, and artifacts containing variable
unctions/methods or variable code blocks are defined as fine-grained
ariable artifacts which are implemented with an annotation surround-
ng the affected code unit. To handle the different levels of granularity
n our orthogonal approach, we define three types of variation points:
ompositional, annotative, and mixed (see metamodel in Fig. 4).

ompositional variation point (𝑉 𝑃𝑐). Compositional variation
points define the coarse-grained variability that is applied at the
highest abstract level (e.g., at the architectural level). Coarse-
grained variable artifacts in the AAM model are composed,
removed, substituted, woven, etc. to derive the final product.
These are equivalent to traditional variation points provided by
CVL such as ObjectExistence, LinkExistence, FragmentSubstitution,
or ParametricsSlotAssignment. A difference with CVL (that only
supports model transformations defined over MOF-based mod-
els) is that the operations of our compositional variation points
can be defined as model transformations (e.g., an ATL trans-
formation rule), as operations over physical artifacts (e.g., file
system operations), or as specific composition operations used
in composition-based approaches (e.g., aspect weaving in AOP).
The operation of the compositional variation points is executed
by the composition engine associated with the variation points.

nnotative variation point (𝑉 𝑃𝑎). Annotative variation points de-
fine the fine- and medium-grained variability that is applied at
a lower level of abstraction (i.e., at the artifact level such as
source code or web templates). The semantics of a 𝑉 𝑃𝑎 specifies
that (1) there is an annotation bound to the selected feature; (2)
the annotation (e.g., a #ifdef statement, or a multilanguage
annotation) is located in the component/artifact this variation
point refers to; and (3) the annotation will be resolved by the
annotation engine specified in the variation point (e.g., our
scaffolding-based derivation engine [18], spl-js-engine).

ixed variation point (𝑉 𝑃𝑚). Mixed variation points act as a con-
tainer of variation points so that the feature bound to it is
scattered across more than one variable artifact. Mixed variation
points encapsulate both compositional and annotative variation
points, each of them with its semantics and linked to the variable
6

target artifact. When the hybrid variability engine (Fig. 3) finds
a 𝑉 𝑃𝑚, it first resolves the variability of the compositional
variation points (i.e., coarse-grained variability), and then the
annotative variation points of the remaining artifacts (i.e., fine-
and medium-grained variability).

Table 1 shows some examples of custom variation points defined us-
ng different operations and engines. For each variation point, we show
he type (annotative or compositional), the negative variability flag,
ts description, an example of its operation, and the engine in charge
f executing the operations. Note that our approach allows defining
ustom operations for variation points, so that the SPL developer can
efine and implement its own operations using any derivation engine.
ur custom variation points can be similar to the Opaque Variation
oints (OVPs) proposed in CVL, but OVPs only support operations
pecified as M2M transformations (e.g., in ATL or QVT) [13,35], and
hus, OVPs require an M2M engine to execute the operations. In con-
rast, as shown in Table 1, our approach allows specifying different
operations for the same variation point. For instance, the Existence
compositional variation point can be defined as a file system operation
to be executed in a command-line interface (CLI) shell, or using an
M2M transformation rule to be executed by an ATL engine [35]. Note
also that Table 1 does not show any example of 𝑉 𝑃𝑚 since it is just a
container of 𝑉 𝑃𝑐 and 𝑉 𝑃𝑎.

3.4. Product derivation

The center of Fig. 3 shows the hybrid variability engine, which is in
charge of resolving the variability specified in a feature model over an
AAM to derive a valid product configuration. The hybrid engine allows
resolving both coarse- and fine-grained variability by delegating to the
appropriate engine according to the information provided in each varia-
tion point. For convenience, we have implemented the hybrid engine as
a CLI tool with nodejs, since it facilitates the invocation of the concrete
engines.1 For the composition engine we use shell scripting to resolve
the coarse-grained variability represented in compositional variation
points. While for the annotation engine we use the scaffolding-based
derivation engine, spl-js-engine which was developed by the Databases
Laboratory research group and it was used by its spin-off company,
Enxenio in previous projects [17,18]. However, the hybrid engine also
supports the delegation to other concrete engines, such as delegating
to an ATL engine [35] for compositional variability using M2M trans-
formation rules, or delegating to a C preprocessor [16] for annotative
variability. The feature model, mapping model, application artifact
model, and the valid configuration of a product are defined as JSON
documents (for convenience, the feature model is also supported as an
XML file following the schema of FeatureIDE [43]).

Algorithm 1 illustrates how the hybrid engine works to derive a final
application product from the SPL. The hybrid engine will resolve first

1 https://github.com/AlexCortinas/spl-js-engine

https://github.com/AlexCortinas/spl-js-engine

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

p
p
o
a
t
t
r
i
r

c

4

w
e
a
f

t
f

Table 1
Examples of custom variation points and their semantics.
VP Type Neg. Description Operations example Engine

Existence 𝑉 𝑃𝑎 No It indicates the existence of a
piece/block of code.

/*% if (feature.<<name>>) { %*/
<<code block>>

/*% } %*/

Scaffolding

Existence 𝑉 𝑃𝑎 Yes It indicates the existence of a
piece/block of code.

/*% if (!feature.<<name>>) { %*/
<<code block>>

/*% } %*/

Scaffolding

Existence 𝑉 𝑃𝑎 No It indicates the existence of a
piece/block of code.

#ifdef <<feature.name>>
<<code block>>

#endif

C preprocessor

Assignment 𝑉 𝑃𝑎 No It assigns a new value to an
annotated variable/entity in the
code.

class /*=
<<property.attribute>> */ {

<<code block>>
}

Scaffolding

Existence 𝑉 𝑃𝑐 Yes It indicates the existence of an
artifact.

rm <<artifact.handle>> CLI (shell)

Existence 𝑉 𝑃𝑐 Yes It indicates the existence of an
artifact.

rule Existence {
from a : AAM!Artifact
(a.handle == <<this.handle>>)
to drop }

ATL (M2M)

Substitution 𝑉 𝑃𝑐 No It replaces an artifact with
another one.

cp <<source.handle>> .
rm <<target.handle>>
mv <<source.handle>>
<<target.handle>>

CLI (shell)
the coarse-grained variability (lines 3–6) and then the remaining fine-
grained variability (lines 7–10). For each feature in the SPL, we obtain
the associated variation points differentiating them into compositional
(line 4) and annotative (line 8). That classification also considers vari-
ation points encapsulated in mixed variation points. The two separate
loops ensure that all compositional variation points for all features
are processed before considering any annotation variation points. The
operations of the variation points are applied by default to those
features selected in a valid configuration of the feature model (lines 13–
19). However, this behavior can be modified with the negative variability
flag for each variation point. This allows executing the operations of a
variation point associated to a feature that is not selected, for example,
to remove a complete artifact from the AAM when its bound feature has
not been selected in the configuration. In Algorithm 1, the operations
of a variation point will be executed only if the feature is selected
in the provided configuration of the feature model in case of positive
variability or if the feature is not selected in the configuration but
the variation point has the negative variability flag activated (see line
15). To resolve the variability of a specific variation point (lines 20–
27), we delegate the execution of its operations to the concrete engine
specified in the variation point (line 23) (see Table 1). For instance,
the operations of an Existence annotative variation point can be
resolved using our scaffolding derivation engine (spl-js-engine) or a C
reprocessor, according to the information provided in the variation
oint. That information includes the operation and the engine in charge
f executing it, as well as the references (handles) to the artifacts,
s specified in the metamodel of the variation points (Fig. 4). Note
hat before delegating the execution, we check for the validity of
he artifacts’ references specified in the variation point (line 22). As
esult, the hybrid engine returns a final application product, which
s a concrete instantiation of the AAM model with all the variability
esolved.
In the next section, we apply our combined approach to a running

ase study in the web engineering domain.

. Practical application

To test our proposal, we have designed and developed an SPL of
eb-based applications using an annotative-approach and a derivation
ngine we are familiar with, so we can afterwards apply the proposed
pproach to the same product line. The case of study chosen is an SPL
or the generation of blogs, described in Section 4.1.
Then we describe how we manage to apply our approach, describing

he different patterns of variation points and mapping that we have
ound integrating annotations into an orthogonal composition-based
7

Algorithm 1 Product derivation process.
Input: feature model (𝑓𝑚), configuration (𝑐𝑜𝑛𝑓), mapping model (𝑚𝑎𝑝), application artifact

model (𝑎𝑎𝑚)
Output: application product (𝑎𝑝𝑝) ⊳ concrete instantiation of 𝑎𝑎𝑚.
1: function Derive_Product(𝑓𝑚, 𝑐𝑜𝑛𝑓 , 𝑚𝑎𝑝, 𝑎𝑎𝑚)
2: 𝑎𝑝𝑝 ← 𝑎𝑎𝑚

⊳ First resolve compositional variability.
3: for each 𝑓 ∈ 𝑓𝑚.𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do

⊳ Obtain compositional variation points bound to the feature (including 𝑉 𝑃𝑐 in 𝑉 𝑃𝑚).
4: 𝑣𝑝𝑠 ← {𝑣𝑝 ∈ 𝑚𝑎𝑝.variationpoints | 𝑣𝑝.feature = 𝑓 ∧ 𝑣𝑝 instanceof 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑉 𝑃 }
5: 𝑎𝑝𝑝 ← PROCESS_VARIATIONPOINTS(𝑓 , 𝑣𝑝𝑠, 𝑐𝑜𝑛𝑓 , 𝑎𝑝𝑝)
6: end for

⊳ Then resolve annotative variability for remaining artifacts.
7: for each 𝑓 ∈ 𝑓𝑚.𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do

⊳ Obtain annotative variation points bound to the feature (including 𝑉 𝑃𝑎 in 𝑉 𝑃𝑚).
8: 𝑣𝑝𝑠 ← {𝑣𝑝 ∈ 𝑚𝑎𝑝.variationpoints | 𝑣𝑝.feature = 𝑓 ∧ 𝑣𝑝 instanceof 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑣𝑒𝑉 𝑃 𝑠}
9: 𝑎𝑝𝑝 ← PROCESS_VARIATIONPOINTS(𝑓 , 𝑣𝑝𝑠, 𝑐𝑜𝑛𝑓 , 𝑎𝑝𝑝)
10: end for
11: return 𝑎𝑝𝑝
12: end function

13: function Process_VariationPoints(𝑓 , 𝑣𝑝𝑠, 𝑐𝑜𝑛𝑓 , 𝑎𝑝𝑝)
⊳ Process the variability of the variation points associated with the feature.

14: for each 𝑣𝑝 ∈ 𝑣𝑝𝑠 do
⊳ Check for positive/negative variability.

15: if (𝑓 ∈ 𝑐𝑜𝑛𝑓 ∧ ¬𝑣𝑝.negativeVariability) ∨ (𝑓 ∉ 𝑐𝑜𝑛𝑓 ∧ 𝑣𝑝.negativeVariability) then
16: 𝑎𝑝𝑝 ← RESOLVE_VARIABILITY(𝑣𝑝, 𝑎𝑝𝑝)
17: end if
18: end for
19: end function

20: function Resolve_Variability(𝑣𝑝, 𝑎𝑝𝑝)
⊳ Execute the operations associated with the variation point.

21: for each 𝑠 ∈ 𝑣𝑝.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
22: if ∃ artifact ∈ 𝑎𝑝𝑝 | 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡.handle ∈ 𝑣𝑝.references then
23: EXECUTE(𝑠.action, 𝑠.engine, 𝑣𝑝.references, 𝑎𝑝𝑝) ⊳ Delegate to concrete

engine.
24: end if
25: end for
26: return 𝑎𝑝𝑝
27: end function

approach (see Section 4.2). Lastly, we briefly explain how the variabil-
ity is resolved in order to derive a product using our proposed approach
(see Section 4.3).

4.1. Case study: A blog SPL

Our case study is based on an SPL for the generation of blogs (see
Fig. 5). A blog is a website where entries (called posts) are HTML text
written by registered users of the blog using a post editor. The blog

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

p
a
c
B
w
i
a
b
t
t
m
t
t
t
i

g
s
p
t
w
a
d
a

t
t
b
a
P
i
a

w
a
A

r
n
m
f

I

Fig. 5. Feature model of the blog SPL.
latform provides different types of editors to write the posts: an HTML,
Markdown, and a WYSIWYG editor. Posts can contain images that
an be uploaded from a local file or straight from an external URL.
esides having an author and a timestamp, posts can also be linked
ith specific tags. To write a new post, a user needs to authenticate
n the web application. The registered users are usually managed by
n administrator. We can also allow anonymous users. Readers of the
log can comment on the posts, and we can even decide if they need
o be registered users to comment or any anonymous user can do
hat. The blog can also have one or more widgets in the front page to
anage the tags, comments, or files; and the user interface, including
he administration pages, can be internationalized. Finally, as a means
o debug the code properly, we can choose to add some extra logging in
he code (i.e., a logger). The features supported by this SPL are shown
n Fig. 5, where they are organized using a feature model.
The blog SPL has been developed from scratch as a software en-

ineering bachelor’s thesis to help disseminate SPL concepts among
tudents. The blog SPL was implemented following an annotative ap-
roach. The variability was resolved using the annotative-based deriva-
ion engine (spl-js-engine). The blog SPL was developed using modern
eb technologies, with a Spring2 back-end exposing REST services,
nd a VueJS3 front-end using them. Its base code is written in 8
ifferent languages: JSON, Java, JavaScript, HTML, CSS, SQL, XML,
nd properties syntax.
Fig. 6 shows the software architecture of the blog SPL, including

he variable artifacts with its granularity. In the current implemen-
ation, all the variability is directly implemented within the artifacts
y using multilanguage annotations. There are artifacts containing
nnotations of many features. Such case appears, for example, in the
ostREST component, or the PostEditor component. The former
s composed by 8 files (Java classes and interfaces), containing 40
nnotations of 10 features (Post, HTMLEditor, MarkdownEditor,
WYSIWYGEditor, Tags, Images, Comments, FileWidget,
TagsWidget, and SearchWidget). PostEditor component is
composed itself by 3 files (VueJS components, which includes HTML,
JavaScript and CSS), and it contains 35 annotations of 7 different fea-
tures (PostEditor, Comments, HTMLEditor, MarkdownEditor,
WYSIWYGEditor, Tags, and Images). There are other components
hich are the opposite, they have only a feature related with little
nnotations. This is the case for the componentes Tags Widget,
nonymousCommentsEditor or Tag Addon, for example. The two
first are each one composed by 1 file (a VueJS component), with 1
annotation of 1 feature (TagsWidget and AnonymousComments,
espectively), while the latter is composed by 2 files (VueJS compo-
ents), each one with 1 annotation of the feature Tags. Moreover,
ost of the features are scattered across many components, such as the
eature ImageUploading, with annotations in the ImageUpload-
Service in the server side, and the ImageUploadClient and
mageModalEditor in the client side. In some cases, the annotations

2 Spring framework: https://spring.io/
3 VueJS framework: https://vuejs.org/
8

f

handle coarse-grained variability (e.g., by marking the whole file) like
in the FileWidget artifact; in other cases, annotations handle fine-
grained variability (e.g., by marking a few lines of code as in Fig. 7)
like in Router artifact; and finally, there are also artifacts that contain
annotations handling both fine and coarse-grained variability like the
CommentViewer or CommentEditor artifacts. It is important to
note that this classification by granularity level is done after the SPL
was developed with the purpose of better understanding the software
product line architecture (SPLA), but in fact the annotation engine does
not classify in any way the annotated source files, and it treats any file
the same way.

Multilanguage annotations. An example of multilanguage annotations is
illustrated as part of our case study in Fig. 7. We show simplified ex-
cerpts of annotated code for the ImageModalEditor artifact, which
functionality is associated with the inclusion of images in a post, (a)
for the view (HTML), and (b) for the controller (JavaScript).

Note that multilanguage annotations are embedded within com-
ments and usually do not interfere with the source code, making them
perfect to annotate any type of web artifact (HTML, CSS, Java, etc.).
For instance, for HTML code, the annotations are within HTML com-
ments. In case of the artifact was specified in any other language, the
annotations would be inside the specific language syntax for comments.
This allows customizing the delimiters for the annotations depending
on the file, by linking each file extension with a particular delimiter.
Developers would prefer to use the syntax of the comments that are
native in every language. This way, they can work with their favorite
IDE and tools without having to deal with intrusive annotations that
make the code not compile or that will be marked as syntax errors
by for example an HTML editor. There are two exceptions: a) fine-
grained annotations, such as annotations that add a new parameter to a
method or similar, can break language-related analysis for some IDEs or
compilers; and b) very specific frameworks that mix languages in the
same source file and do not uniform the comment delimiters, like in
the case of VueJS single file components.4 Anyway, we have not found
any annotation-based alternative supporting multilanguage annotations
that properly solves these issues.

Despite the benefits of multilanguage annotations, the great number
of annotations makes it difficult to maintain and evolve the blog
SPL. The goal is that the blog SPL continues having their annotations
to handle fine-grained variability, but improving the modularity of
the code and the traceability between features, variation points, and
web artifacts (final source files), by using a generic (implementation-
independent) composition technique, as the presented in Section 3, to
handle the coarse and middle-grained variability.

4 For this specific case, the problem can be avoided by not using the single
ile component syntax.

https://spring.io/
https://vuejs.org/

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

4
b

b
p
t
l
i
u
m
t
A
a
w
i
c
p
u
d
c
l
g
p
h

c
t
s
m
p
a

Fig. 6. Software architecture of the blog SPL.
t
a
E
a
s
b

c
p
e
t
t
(
t
c
a
p
m
(
c

C

.2. Integrating multilanguage annotations into an orthogonal composition-
ased approach

This section answers RQ2: is it feasible to migrate an annotation-
ased towards a combined (more composable-based) implementation?. Our
roposed approach, like CVL, is intentionally a compositional approach
hat is applied at a high level of abstraction like the architectural
evel instead of working at the code level. However our approach
s unaware of how the features are physically separated into code
nits implementing the web artifacts (e.g., components, aspects, feature
odules), and therefore, any classical composition-based approach at
he code level could be applied, such as for instance, FOP or AOP.
ssuming features are separated the best possible in code units, an
nnotative approach can be used to additionally annotate code units
hen the variability affects finer levels [6]. So, one code unit can
mplement a variable feature and, at the same time, contain variable
ode text. The problem is that in web applications sometimes it is not
ossible to physically separate independent features in different code
nits, as desirable (see the current architecture in Fig. 6). Also, a web
eveloper can be reluctant to adopt our new approach and prefers to
ontinue using annotations to implement variable features at the code
evel. To handle all these cases we integrate annotations (our multilin-
ual annotations) within the orthogonal composition-based approach
resented in Section 3, to handle the fine-grained variability from a
igh abstract level.
Fig. 8 shows how our approach is applied to the blog SPL. We

an distinguish three separate models: (1) the feature model specifying
he variability of the blog SPL’s features (top of Fig. 8), which is the
ame used in our annotation-based blog SPL (Fig. 5); (2) the mapping
odel 𝑀 (middle of Fig. 8) specifying the information of the variation
oints, including our three types of variation points (compositional,
nnotative, and mixed); and (3) the AAM specifying the web artifacts
9

hat implement the blog SPL (bottom of Fig. 8). The three models
re related through the variation points defined in the mapping 𝑀 .
ach variation point is bound to a unique feature in the feature model
nd references one or more artifacts in the AAM model. Note that to
implify the figure we only show an excerpt of the AAM, the complete
log SPL is evaluated in Section 5.
To build the mapping model 𝑀 , we identify different application

ases based on the granularity of the features and their current im-
lementation across the web artifacts in the blog SPL (Table 2). For
ach case in Table 2, we expose the pattern that relates features with
he artifacts, and the corresponding entry in our mapping model 𝑀
hat should be defined. The mapping entry contains the variation point
VP), the negative variability flag (NegV), its operation, and an example
aken from the blog SPL architecture that matches the pattern. While
ases C1–C3 refer to the granularity of a unique feature scattered
cross one or more artifacts from the feature point of view (feature
erspective), cases C4–C7 refer to the implementation of two or
ore features in a unique artifact from the artifact point of view
artifact perspective). Complex cases can be addressed as the
onsecutive application of these patterns.

1. Coarse-grained variable artifacts that only contain code belonging
to one (compositional) feature and their variability is currently
implemented by marking the entire artifacts with a multilan-
guage annotation. This is the case of the International-
ization and the Logger components (features 10 and 11 in
Fig. 6 respectively). The annotations of those artifacts can be
completely removed with the following steps: (1) creating a new
compositional variation point (𝑉 𝑃𝑐) in our mapping model 𝑀
with the negative variability flag activated; (2) associating the
feature (e.g., Logger) of the feature model with the variation
point; (3) referencing the artifact(s) — e.g., Logger— with the
variation point; and (4) assigning the operation Existence

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

C

Fig. 7. Example of multilingual annotations for two artifacts in different languages.
(‘‘remove artifacts’’) to the variation point, which mean that
when the feature Logger is selected in a configuration, the
final product will include all those referenced artifacts providing
the functionality of the Logger feature, while if the feature
Logger is not present in a configuration, all the referenced
artifacts will be excluded from the final product.

2. A feature is scattered across several artifacts, some of them hav-
ing annotations handling coarse-grained variability and others
with annotations handling fine-grained variability. An example
of this pattern is the Tags feature which is implemented in
the TagREST, TagResource, and TagAddon artifacts, and
10
used or referenced in the PostViewer, PostEditor, and
SearchWidget artifacts. So, Tags is not a pure compositional
feature, but a mixed feature. In this case, we need to create
a mixed variation point (𝑉 𝑃𝑚) containing (1) a compositional
variation point (𝑉 𝑃𝑐) for those artifacts with coarse-grained
annotations (as in case C1), and (2) an annotative variation
point (𝑉 𝑃𝑎) for those artifacts with fine-grained annotations.

C3. Several artifacts have annotations handling fine-grained variability
of a feature. In our running case study, there are two examples
of this kind: features ImageUploading and ImageFromURL
modify the components ImageUploadClient,

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

C

Fig. 8. Our approach applied to the blog software product line: feature model variability (top), application artifacts model (bottom), and mapping model (middle).
C

ImageModalEditor and ImageUploadService. These an-
notations remain unchanged in our approach at the artifact
level, but we define a (𝑉 𝑃𝑎) in the mapping model to trace the
feature and the affected artifacts.

4. Non-variable (common) artifacts do not need any entry in the
mapping model because those artifacts will be present in all
products of the SPL. An example of common artifact is the
EmailService component, which is associated with the
UserManagement mandatory feature.

C5. An artifact contains coarse-grained annotations of more than one
feature. This case corresponds to a bad design in the implemen-
tation of the features and can be seen as a smell code that should
be refactored. In our case study there is not an example of this
case, but, our approach is unaware of the implementation details
and can handle this kind of design by defining a 𝑉 𝑃𝑎 for each
feature. Thus, we maintain the annotations in those artifacts but
improve the traceability of the involved features.
11
C6. An artifact contains fine-grained annotations of several features, as
occurs in the Router artifact for features Post, PostEditor,
Tags, UserManagement, Anonymous Registration, and
SearchWidget, or in the Store artifact for features Post,
Images, Tags, UserManagement, and GoogleComments
(Fig. 6). For each different feature, we define a 𝑉 𝑃𝑎 associated
with the corresponding artifact, indicating that such artifact has
annotated code which belongs to that feature.

7. An artifact contains both coarse and fine-grained annotations
referring to different features. This is a generalization of the pre-
vious cases, and specifically, a combination of cases C5 and C6,
where some mixed features (compositional and annotative) are
easier implemented using annotations but which also requires
the inclusion of a component. For instance, artifacts Com-
mentViewer, CommentResource, or CommentREST con-
tain a coarse-grained annotation belonging to the Comments
feature (number 18), while the same artifacts also contain
fine-grained annotations belonging to the GoogleComments,

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

o
C
v
a
i
g
f
(
N
c
a
i
a
v
O
r

a
i

𝑉
f

Table 2
Integrating annotations into an orthogonal composition-based approach.
o
T
f
o
a
v
a
o

d
a
d
a

RegisteredComments or AnonymousComments features
(features 19, 20 and 21 respectively). As in the previous cases,
we define a 𝑉 𝑃𝑐 for each feature implemented as coarse-grained
annotations (removing the annotation from the artifact) and a
𝑉 𝑃𝑎 for each feature implemented as fine-grained annotations
(maintaining the annotation in the artifact).

The artifacts of the resulting AAM in Fig. 8 with regard to the
riginal architecture presented in Fig. 6 have changed as follows.
ommon artifacts remain the same since they did not contain any
ariability. Coarse-grained variable artifacts are now artifacts without
nnotations because their variability has been defined compositively
n a 𝑉 𝑃𝑐 . Fine-grained variable artifacts and mixed (fine and coarse-
rained) variable artifacts still contain annotations referring to the
ine-grained variability, despite defining annotative variation points
𝑉 𝑃𝑎) and mixed variation points (𝑉 𝑃𝑚) for those artifacts respectively.
ote that since the artifacts of the blog SPL already contain all the
omplete functionality of the SPL, we follow a negative variability
pproach where we remove specific functionality from a core complete
mplementation. Thus, all our variation points have the negative vari-
bility flag activated and use the same operation of the Existence
ariation point (i.e., removing functionality) as specified in Table 1.
ther variation points with different operation (e.g., weave, add, or
eplace a new component) can be defined similarly.
From the point of view of the features, our mapping model looks

s in Fig. 8 where we provide complete traceability for features. For
nstance, feature WYSIWYGEditor can be implemented with barely
a few lines added to the JavaScript source code of the PostEditor
component. However, it also requires a specific component able to
show a preview of the user’s text (WYSIWYGEditor component). All
the variability of the WYSIWYGEditor feature is encapsulated in a
mixed variation point (𝑉 𝑃𝑚), and thus, when this feature is selected in
a configuration (or not selected for negative variability), all variation
points will be applied together. Note that the order in which the
variability is resolved does not affect the final product, but it impacts
the performance of the derivation process. Our hybrid engine first
resolves the compositional variation points, and then the annotative
variation points. This way we prevent resolving fine-grained variability
of components that will be not present in the final product. An advan-
tage over the CVL approach is that we can reuse a variation point over
multiple artifacts if the variation point shares the same operations for
those artifacts (see the ImageUploading feature and the associated
𝑃𝑎 in Fig. 8). In contrast, in CVL we need to define a variation point
or each artifact, despite those artifacts belong to the same feature.
12

a

4.3. Resolving the variability to derive a product

In order to resolve the variability and derive a final product from
the Blog SPL using our approach (Fig. 3), a specific configuration of
the feature model must be provided as input of our Hybrid Variability
Engine. A valid configuration of the feature model is depicted in
Fig. 9 where the selected features have been highlighted. The engine
also receives the feature model, the AAM, and the mapping model as
specified in Fig. 8.

Following the Algorithm 1 the engine traverses all features in the
feature models obtaining the associated variation points. The opera-
tions of the variation points will be executed if the feature is selected
in the configuration (and the negative variability flag is deactivated)
or if the feature is not selected in the configuration but the negative
variability flag is activated. For example, in the configuration pre-
sented in Fig. 9 the Internationalization feature has not been
selected, and its associated variation point (a 𝑉 𝑃𝑐 with an Existence
peration) has the negative variability flag activated (see Fig. 8).
herefore, the Internationalization artifact will be removed
rom the final product. The engine will execute first the operations
f the compositional variation points, and then the operations of the
nnotative variation points. Annotative variation points inside mixed
ariation points will be executed only if the referenced artifacts exist
fter executing the compositional variation points inside the mixed
ne. For instance, the HTML Editor feature, which has not been
selected, has bound a 𝑉 𝑃𝑚 similar to the 𝑉 𝑃𝑚 associated with the
WYSIWYG Editor feature (which is selected in the configuration).
The referenced artifact HTML Editor will be removed from the final
product, but also the pieces of code related to that feature that are
presented in the PostEditor artifact, since the PostEditor will
be present in the final product. Fig. 10 shows a final Blog product
according to the configuration provided in Fig. 9. Artifacts with coarse-
grained variability such as the Internationalization component
has been removed, while artifacts with fine-grained variability such as
the PostEditor component has been configured by removing the
unnecessary (annotated) pieces of code.

5. Evaluation

These sections evaluate our approach by answering RQ3: how
oes the resulting combined approach perform compared to the previous
nnotation-based implementation of the SPL? (Section 5.1), and RQ4: how
oes the resulting combined approach perform compared to the existing
pproaches? (Section 5.2). To answer these RQs we first apply our

pproach to the complete blog SPL and quantitatively evaluate it

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

q
c
s

5

o
a
a
s
w
N
a

v
t
o
a
a
c
e
i

Fig. 9. A valid configuration of the Blog SPL feature model.
Fig. 10. Final blog product with the variability resolved.
u
H
f
t
c
r
i
(

t
f
f
t
a
c
9
d
L
t
i
(
s
m

using a set of metrics for variability and SPL [19,20]. Then, we also
ualitatively evaluate our approach by discussing different quality
riteria for SPL in comparison with the existing SPL implementation
trategies presented in Section 2.

.1. Quantitative evaluation

We compare our approach with the previous solution based only
n annotations. A quantitative comparison with the previous combined
pproach using CVL [12] is direct, since its benefits over the pure
nnotated-approach are the same as in the combined approach pre-
ented in this paper. Note that one of the goals was to replace CVL
ith feature models due to the CVL limitations discussed in Section 2.4.
evertheless, we qualitatively compare our approach with the CVL
pproach by discussing the quality criteria being affected.
[19,20] review an exhaustive collection of metrics for analyzing

ariability and its implementation from the literature. From this collec-
ion, we have selected those metrics that make sense to be applied in
ur context, a web-based blog SPL with around 17 K lines of code (LOC)
nd 35 components, including both server-side and client-side artifacts,
nd we have omitted the metrics that do not offer any interesting
omparison. Particularly, the main reasons to exclude metrics from our
valuation were: (1) they are language-related, this is, their calculation
13

s based on elements that exist on a specific object-oriented language, t
sually Java, and that do not make sense in other languages such as
TML or JavaScript (e.g., aspect size, lack of cohesion in methods or class
ragmentation); (2) they do not make sense with both our approaches,
his is, we are trying to compare an annotation-based approach with our
ombined approach so the metric should work for both (e.g., number of
efinements); and (3) they are not affected by the new approach, this
s, the result of the metric is the same independently of the approach
e.g., cross tree-constraints ratio or number of valid configurations).
The selected metrics are shown in Table 3, being most of them from

he groups composition and annotation-based code [19], since metrics
rom the other two groups, variability model and mixed, were omitted
or the given reasons. The metrics mostly show the difference between
he approaches related to the percentage of the code which is in fact
nnotated, being counting lines of code (LOC), files or components. It
an be observed that the lines of annotated code (LOAC) represent the
0,2% of the total in the annotation-based approach. This number goes
own to the 16,7% of the total in our combined approach. In fact, the
OAC are reduced to the 18,38%, from 15869 to 2 916, when switching
o our new approach. The number of variable files, this is, files which
ncludes at least one annotation, is also reduced but to a lesser extent
from 100 files to 62 files, over 117 total files for both approaches,
ince the actual source code does not change). Lastly, applying the same
etrics with a different granularity, components instead of files, we see

hat the results are that more discrete since most of the components

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

a
c
t
a
u
i
a
i
a
a
a
i
i
p
a
m

Table 3
Metrics for analyzing variability and its implementation in SPLs.
Metrics Annotation-based

approach
Our combined
approach

Number of files for the complete system 117 117
Number of features 24 24
Number of components 35 35
Lines of code (LOC) 17 576 17400
Lines of annotated code (LOAC) 15 869 2916

Number of distinct feature constants, this is, distinct features used in annotations, or concrete features 21 20
Number of variation points (#annotations) 450 362
Average number of annotations for a feature constant 21,43 18,10

Number of variable files for the complete system, or files with any annotation 100 67
Average of variable files belonging to a single feature 4,17 2,79

Number of variable components for the complete system, or components with any annotation 35 25
Average of variable components belonging to a single feature 1,46 1,04

Ratio of variable files over all files 85,47% 57,26%
Ratio of variable code lines over all lines of code 90,20% 16,70%
Ratio of variable components over all components 100% 71,42%
u
a
b
t
s
o
u
a
v

I
u
i
p
i
p
p
c
n
t
a
n
d

still include some variability. There is only a reduction in variable
components of a 28,58%, corresponding mostly to components that
include only one or two constant files with the new approach.

5.2. Qualitative evaluation

This section discusses and compares our approach to the pure
composition and annotation-based approaches and to the most rel-
evant combined approaches [6,10,12] presented in Section 2 when
dealing with variability in the web engineering domain. We use the
quality criteria for SPL implementation techniques defined in [3]:
feature traceability, separation of concerns, information hiding, granularity,
uniformity, and preplanning effort. We also incorporate others interesting
quality criteria that are recommendable for SPL implementation, such
as the support for multiple languages, the variability type supported,
automation, maintainability, evolution, and tool support. The results are
summarized in Table 4 with approximated grades following a Likert
scale [44] with five points that express the level of support of each
approach with the quality criteria. A value of 1 (↓) means that the ap-
proach does not provide enough support; and a value of 5 (↑) indicates
that the approach provides very good support. We also show the main
characteristic of the approach for each quality criteria according to the
score assigned.

Feature traceability . Feature traceability describes the mapping be-
tween a feature in the variability model and its implementation in an
artifact or set of artifacts. Approaches should offer the ability to explic-
itly locate features in software artifacts. The mapping helps developers
to identify relevant artifacts during development and maintenance,
and such mapping can be realized with several mechanisms (↑: bind-
ing and references, ↖: naming conventions, ←: naming conventions
nd tool support, ↙: depend on tool support, ↓: no traceability). For
ompositional approaches, this mapping depends on the implemen-
ation technique. It is said [3,10] that the mapping is direct as the
rtifact that implements a feature can be traced to a single code
nit (component, module, aspect,. . .). However, this ‘direct’ trace is
mplicitly done by name conventions since the only way to identify
nd relate the feature in the variability model and the artifact that
mplements that feature is using the same identifiers for the feature
nd the artifact, and/or using dedicated tools [21,46]. Moreover, in
nnotative approaches, feature traceability is poorly supported because
nnotations can be scattered over multiple artifacts, and traceabil-
ty, in this case, is usually a matter of tool support [3]. Traceability
n combined approaches is weaker than in pure compositional ap-
roaches because existing integrating approaches [6,10] are annotative
pproaches that try to introduce composition. Our approach defines a
14

apping model (see Fig. 3) that provides explicit traceability between the t
features and the application artifacts by defining variation points (as in
CVL) that bind each feature and reference the artifacts implementing that
feature. Although an annotative feature is scattered in multiple artifacts
due to a bad design, our approach allows explicitly identifying the artifacts
affected by the annotation. However, we do not support tracing fine-grained
variability at the level of source code line. Despite the exact source code
location of the annotations may be included as part of the information of
the variation point (e.g., adding a new field in the Artifact class of
the metamodel presented in Fig. 4), providing such support would make the
maintenance of the mapping model more difficult. A difference with CVL
is that variation points in CVL are defined as part of the variability
model, while our mapping is independent of the feature model, and this
allows to modify the variation point without affecting the variability
specification of the features.

Separation of concerns. Separation of concerns refers to the ability
to separate feature functionality into cohesive implementations [3],
even when features are crosscutting concerns like the Tags and the
Comments features in our example (Fig. 6). Separation of concerns de-
pends on the implementation carried out by the developers [10], which
in turn depends on the programming paradigm (e.g., FOP, AOP) or in
the design patterns used (↑: implementation independent, ↖: intended
by the programming paradigm, ←: implementation dependent, ↙: sim-
lated with tool support, ↓: no support). For most composition-based
pproaches, separation of concerns is intended, but not for annotation-
ased approaches [6] in which this separation can be simulated with
ool support (e.g., CIDE [21]). Likewise in composition-based approaches,
eparation of concerns in our approach also depends on the implementation
f developers. However, in contrast to existing combined approaches, to
nderstand the variability of a feature, it is not necessary to look at the
rtifact implementation because the mapping model explicitly exposes the
ariability information through the variation points.

nformation hiding . Information hiding is the separation of a mod-
le into internal and external parts (e.g., an interface). A module’s
mplementation should only provide its externally visible part inde-
endently from the implementation paradigm used (↑: implementation
ndependent interfaces, ↖: composition mechanism dependent, ←: im-
lementation paradigm dependent, ↙: interfaces implementation de-
end on the developers, ↓: prevents the usage of interfaces). While some
omposition-based approaches such as frameworks or components tech-
ology provide good support for information hiding, other composi-
ional approaches such as FOP or AOP do not [3]. Annotation-based
pproaches prevent information hiding because of the fine-grained
ature of the features [3]. Information hiding in combined approaches
epends on the composition mechanism used but normally is weaker

han in pure compositional approaches [10]. Our approach supports

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
Table 4
Comparison of SPL implementation strategies for web engineering.

Quality criteria Composition
[3]

Annotations
[3]

Generic
integration[6]

FeatureCoPP
[10]

CVL
[12]

Our approach

Feature
traceability

↖ ↙ ← ← ↑ ↑

naming conventions tool support naming and tool support naming and tool support binding and references binding and references

Separation of
concerns

↖ ↙ ← ↙ ← ←

intended simulated with tool
support

impl. dependent simulated with tool
support

impl. dependent impl. dependent

Information
hiding

↖ ↓ ← ← ↖ ↑

comp. mechanism
dependent

prevented impl. paradigm dependent impl. paradigm dependent comp. mechanism dependent impl. independentAL

Granularity ← ↖ ↑ ↑ ↑ ↑

coarse- and
medium-grained

fine-grained all levels all levels all levels all levels

Uniformity ↑ ↑ ↙ ↖ ← ←

enforce common style enforce common style enforce different styles common style different stylesAL different stylesAL,VL

Preplanning
effort

↙ ↖ ← ↖ ↙ ↙

new paradigm no code changes code changes no code changes new artifacts and models new artifacts and models

Language
independence

↙ ↑ ← ↖ ↑ ↑

host lang. dependent,
monolingual

lang. independent,
multilingual

language dependent lang. independent with
plugins

lang. independent, multilingual lang. independent,
multilingual

Variability type ↖ ← ↖ ↖ ↑ ↑

positive, function,
plat./env.

negative, optional positive, negative,
optional, alternative,
function, plat./env.

positive, negative,
optional, alternative,
function, plat./env.

positive, negative, optional,
alternative, function, plat./env.,
and custom

positive, negative,
optional, alternative,
function, plat./env., and
custom

Automation ← ↖ ↑ ↑ ↖ ↖

comp. mechanism
dependent

tool support tool support and comp.
mechanism

tool support and comp.
mechanism

tool support tool support

Maintainability ↖ ↙ ← ← ← ←

unique change several changes specific changes specific changes specific changes specific changes

Evolution ← ← ← ← ↖ ←

manual for variable
artifacts

manual for variable
artifacts

manual for variable
artifacts

manual for variable
artifacts

automatic with ad-hoc algorithms manual for variability
models

Tool support ← ↑ ↙ ↙ ↖ ↖

IDE dependent well-known tools (C
preprocessors,
CIDE[21],. . .)

not dedicated tool not dedicated tool dedicated tool (vEXgine[35],
scaffolding engine[18])

dedicated tool (feature
modeling[45], scaffolding
engine[18])

↑ very good support, ↖ good support, ← medium support, ↙ poor support, ↓ no support.
ALAt the architectural level.
VLAt the variability specification level.
information hiding well due to our AAM model (i.e., the software archi-
tecture vision). For compositional features, we assume their functionality
is encapsulated in generic modules or artifacts (not necessary in a one-
to-one relation) that we can modify, delete, or replace by other modules
that implement the same interfaces, but we are unaware of the specific
implementation technique (e.g., AOP). So a module of the AAM model could
be a JavaScript component, an aspect in AspectJ, or even a web template
in HTML. This is a difference with CVL where application artifacts need
to be modeled in a MOF-compliant base model. For annotative features,
our approach hides, at the architectural level, the internal variability of
the modules and explicitly indicates which modules are affected by fine-
grained variability. In any case, our approach does not support information
hiding when dealing with variability at the code level as in the majority of
annotation-based approaches [10].

Granularity . Granularity describes the level on which variability is
implemented [3]. Approaches capable of handling finer degree of gran-
ularity are desirable over those that only provide coarse-grained vari-
ability (↑: all levels, ↖: fine-grained, ←: medium-grained, ↙: coarse-
grained, ↓: no support). Compositional approaches only provide coarse-
grained or medium-grained variability at the level of components,
classes, methods extensions, etc., while annotative approaches support
well fine-grained variability at the level of statements, parameters, or
expressions [21]. Similarly to other integrated approaches [6,10], our
approach supports all levels of granularity. On the one hand, multilingual
annotations encapsulated in annotative variation points (𝑉 𝑃𝑎) support fine-
grained variability at the most finer statements, being possible to annotate
15

the same code line with different annotations, that is, our approach does
not enforce undisciplined annotations [3]. On the other hand, composite
variation points (𝑉 𝑃𝑐) allow handling coarse-grained variability on top
of the hierarchical structure (e.g., files, directories, packets,. . .) where
application modules are physically stored.

Uniformity . Uniformity refers to the principle that all artifacts (an-
notated or composed) should be encoded and synthesized in a similar
manner or style, regardless of the implementation technique [3] (↑:
enforce common style,↖: common style,←: different styles,↙: enforce
different styles, ↓: no support). On the hand one, both pure compo-
sitional and annotative approaches often enforce a common style by
defining a set of rules (e.g., preprocessors for annotations or aspects
for AOP), which results in a very good support for uniformity. On
the other hand, combined approaches [6] enables developers to use
different styles at the same time, providing poor uniformity. The com-
bination proposed by FeatureCoPP [10] uses a single encoding similar
to preprocessors, but due to the introduction of composition as an
additional implementation layer, uniformity is slightly weakened than
in preprocessors. Our approach allows representing all artifacts subject
to variation as generic software artifacts in our AAM model (in the same
manner than the CVL approach [12] supports any MOF-compliant model
at the architectural level). The AAM model supports artifacts encoded in
different styles (components, classes, files, templates,. . .), and therefore our
approach provides a poor uniformity compared with a pure composition
or annotative approach. However, in contrast to the generic combined
approach [6], the AAM model does not enforce specific styles, and thus,

a developer can use the same style (e.g., only components and connectors

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

↖

if only architectural artifacts are needed). Moreover, regarding the map-
ping model, the variability of both annotated and composed artifacts are
indistinguishable without the information contained in the variation points.
An advantage over the CVL approach is that our variation points do not
require to specify their operations from its definition, in contrast to CVL
where the operation is defined together with the kind of the variation points
(e.g., object substitution, fragment replacement,. . .), preventing uniformity
at the variability specification level.

Preplanning effort . SPL engineering always incurs a certain amount
of preplanning in order to be adopted regardless the approach and
implementation [3]. While compositional approaches usually require
substantial preplanning activities (e.g., change the code base, learn
new programming paradigms,. . .), annotation-based approaches allow
introducing annotations to artifacts with lower efforts [3] (e.g., prepro-
cessors are already well-known in some programming languages), as
occurs also for combined approaches based mainly on annotations [10]
(↑: variability is intended by the programming paradigm not requir-
ing additional language constructs, ↖: do not require changes in the
code base, ←: require changes in the code base, ↙: introduce new
paradigm or require building new artifacts/models, ↓: new paradigm
and artifacts/models). Our approach requires building the mapping model
that includes the specification of the variation points, their bindings to the
features in the feature model, and their references to the artifacts; resulting
in a high amount of preplanning (similar effort that for the CVL approach).
However, note that existing support for specifying feature models is superior
than for CVL variability models [4,35] which greatly facilitates the adoption
of our approach over the CVL approach.

Language independence. In order to implement the variability, ap-
proaches should be independent from the host language as well as
support multiple languages (↑: language independent and multilingual,
: language independent with plugins, ←: language dependent, ↙:

monolingual, ↓: no support). Most of the composition-based approaches
are monolingual, that is, they work exclusively for one language. Partic-
ularly, most of them work on Java, such as AHEAD [47], AspectJ [8],
or DeltaJ [48], among others. There are exceptions such as Feature-
House [30], based on FSTComposer [31], that support more than one
language, but a plugin or extension is needed for each language. An-
notative approaches are usually multilanguage such as C preprocessor,
or CIDE [21], as well as the main commercial alternatives such as
Gears [49] or pure::variant [50]. In the generic combination [6], the
approach itself is independent of the language but it relies on the
particular engines used for composition and annotation. For example,
on FeatureC [10] they rely on FeatureHouse [30] and a C preprocessor,
so they had to develop a FeatureHouse plugin to support C preproces-
sor annotations on feature-based modules. FeatureCoPP [10] is based
solely on C preprocessor and therefore is independent of the language.
However, there is still no tooling support to test this approach with a
multilingual product line and evaluate how intrusive the annotations
are. Our approach is completely language independent. For composition,
we model the variability of the product line using generic units that can be
composed themselves by any kind of artifacts, regardless of the language they
are written. For annotations, our derivation engine in charge of resolving
the variability does not need any kind of adaptor or plugin, thanks to our
multilanguage annotations that can be applied to any application artifact.

Variability type. An SPL approach supports different types of variabil-
ity categorized as [51]: positive (functionality is added), negative (func-
tionality is removed), optional (code is included), alternative (code is
replaced), function (functionality changes), and platform/environment
changes. Here it is better to support more type of variability (↑: support
all types of variability including custom variability types, ↖: support
more than two variability types, ←: support at least two types of
variability, ↙: only support one type of variability, ↓: no support
any type of variability). Compositional approaches often support pos-
itive, function, and platform/environment variability. Annotative ap-
16

proaches usually support negative and optional variability. Combined
approaches based on annotations [6,10] can support also alternative
variability. Our approach supports all types of variability (including nega-
tive variability) because we can specify arbitrary operations for the variation
points in the mapping model that can be executed by a derivation engine. A
difference with CVL is that CVL already provides a larger set of variation
points with their predefined operations. However, the operations of the CVL
variation points is only based on model transformations, while our opera-
tions can be specified as model transformations, executable code scripts, or
as direct operations over the file system.

Automation. The degree of automation is a measure that compares the
software elements (e.g., number of components, lines of code) that are
manually defined with those that are automatically generated [52,53].
To achieve some degree of automation, compositional approaches rely
on their own compositional mechanisms (e.g., weaving aspects for
AOP), while annotative approaches are based in some kind of tool
support such a preprocessor or a specific tool like CIDE [21]) (↑:
tool support and composition mechanism dependent, ↖: tool support,
←: composition mechanism dependent, ↙: ad-hoc mechanism, ↓: no
support). This metric can be quantified to allow discussing about the
development effort, degree of reuse, and productivity of applying a
specific approach. The degree of automation of our approach is defined
as the comparison between the number of artifacts (i.e., components,
code artifacts, templates, files,. . .) automatically generated when the
variability is resolved (#𝑒𝑎) and the number of artifacts manually
defined (#𝑒𝑚) to resolve the variability of a specific product [54]:

Degree of Automation =
#𝑒𝑎

#𝑒𝑎 + #𝑒𝑚
(1)

As shown in Table 3, we observe that the blog SPL using our combined
approach contains 117 files, where 67 are variable or contain some
annotations, and the remaining 50 files are non-variable or do not need
to be modified to derive a product. Without an SPL approach, all the
117 files need to be manually defined, and the 67 variable files need
to be manually customized for each product. Whereas applying an SPL
approach as presented in this paper we automatically resolve the variability
of those variable files. Concretely, for the blog SPL, we obtain a degree of
automation of 67

67+50 = 57%. However, this metric is not specific to our
approach, and a similar degree of automation is achieved by any other
SPL approach. Indeed, this metric is more suitable to compare specific SPLs
and makes sense when considering the developers’ efforts when applying,
maintaining, and evolving a specific SPL (see the following quality criteria).

Maintainability . Maintainability is the ease with which a software
product can be modified. Maintenance in SPL is more complex because
changes in a module can affect various products. Here we are interested
in the maintainability of the SPL instead of the individual generated
product after delivery. So, the main goal is to evaluate the impact of
maintaining the artifacts of the features that compose the SPL [55].
Maintenance is also related to preplanning effort and evolution (↑: a
modification does not affect any existing artifact, ↖: a modification
only affects a unique artifact, ←: a modification only affects specific
well-identified artifacts, ↙: a modification implies several changes in
multiple artifacts, ↓: no maintainable or require re-engineering the
solution). In this scenario, composition approaches are superior since
they promise improvements during maintenance and evolution because
of modularity and separation of concerns, requiring to deal with a lesser
number of artifacts when modifying them. We observe in Table 3 that
in our previous purely annotations solution, developers need to manage
450 annotations scattered among 100 artifacts (files). In contrast, in
our approach, annotations are reduced up to 362 (20% fewer annotations)
scattered among 67 artifacts (files), reducing the annotated artifacts to be
managed up to 67% of the original ones. This large reduction in the number
of annotated artifacts happens because many annotations affect complete
files to handle coarse-grained variability, and with the new approach, these
annotations have been modeled as compositional variation points (𝑉 𝑃𝑐).
Nevertheless, in our approach the information of the mapping model needs

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
Table 5
Comparison of the CVL approach and our approach using feature models.
Characteristic CVL approach [12] Our approach with FMs Discussion

Variability modeling
constructs

VSpecs, Choices,
Variables, VClassifiers,
Composite VSpecs

Features,
Optional/Mandatory
features, Feature groups
(or, xor), Clonable features
(Multi-features), Feature
attributes

While the term ‘‘feature’’ is well-known in the SPL
community and used in nearly all variability modeling
languages, CVL introduces a new dreadful
nomenclature of the modeling concepts, despite that
the semantics are the same [13].

Cross-tree
constraints modeling

Object Constraint
Language (OCL)

Propositional Logic (PL) PL is a simple mathematical standard and can be
complemented with higher-order logic if needed. OCL
in contrast, is simply too complicated and is tied to
MDD and UML [57].

Variation points Pre-defined
(ObjectExistence,
LinkExistence, Paramet-
ricSlotAssignment,. . .)
and Opaque Variation
Points (OVPs)

Custom variation points
(Existence, Assignment,
Substitution,. . .)

CVL variation points are all compositional, while our
custom variation points can be compositional or
annotative.

Base model MOF-compliant models AAM models CVL supports any architectural elements defined
according to a MOF-compliant model (e.g., UML). Our
AAM model supports arbitrary artifacts with different
abstraction such as a component in an architectural
model, a class in a class diagram model, a source
code file, a database, or a web resource.

Product derivation M2M transformations
(QVT, ATL)

M2M transformations,
Scaffolding derivation,
code scripts, CLI operations

The operations of the CVL variation points is only
based on model transformations over a
MOF-compliant model, while our operations can be
specified as model transformations, executable code
scripts, or even as direct actions over the file system
supporting to work with any kind of web artifact
(HTML, CSS, Java classes, Python code,. . .).

Tool support MoSIS CVL, CVL 2,
BVR, KCVL, vEXgine

FeatureIDE, pure::variants,
Glencoe, FaMa, Clafer,
SPLOT

Almost all of the CVL tools are currently deprecated
and even unavailable (e.g., MoSIS CVL, CVL 2, BVR),
or abandoned (e.g., KCVL, vEXgine) [35]. However,
feature models have the support of the SPL
community being the de-facto standard for modeling
variability with many tools supporting the different
SPL phases [45].
,

to be maintained, which in fact may suppose a considerable effort. However,
the mapping model itself helps to identify and locate the modifications to
be performed over the artifacts when a feature is modified. Moreover, the
mapping model may be maintained with the help of dedicated tool support
as it occurs with the evolution of the CVL models in [56].

Evolution. Evolution is the ability to modify the SPL to support changes
for example, to incorporate new features or functionalities to the SPL.
Normally, independently of the SPL approach, this is a manual task
to be performed, and practitioners need to define their own ad-hoc
algorithms to evolve the variability model and the associated variation
points, as occurs with the CVL approach [56] (↑: completely automatic
for variable artifacts and variability models, ↖: automatic with ad-
hoc algorithms or tool support for variability models, ←: manual for
variable artifacts, ↙: manual for variability models, ↓: none support for
evolution). Our approach requires to manually modify the feature model,
the AAM model, and the mapping model in order to modify or incorporate
new features. However, as occurs with the CVL approach, specific algorithms
to automatically evolve those models can be defined [56].

Tool support . SPL approaches are viable and useful to the extent that
they are supported by appropriate tools (↑: there exist several well-
known tools that provide good support, ↖: dedicated tool support,
←: IDE dependent tool support, ↙: not dedicated tool but it can be
still supported with CASE tools such as common text editors, ↓: no
tool support). First, composition-based approaches are supported by
tools that depend on the implementation mechanisms. For instance,
FeatureIDE [43] for FOP, and AspectJ [8] or AspectC/C++ [58,59] for
AOP. These tools are often language and IDE-dependent. Second, most
of the annotation-based approaches are supported by C preprocessor,
17
but there is also some specific tool to manage annotations such as
CIDE [21]. Finally, the combined approaches have not a dedicated tool
and the developer usually needs one or more tools to support both
compositional and annotative approaches. Our approach is supported by
a hybrid engine in charge of resolving the variability with the information
provided in the mapping model. The hybrid engine is implemented as a
CLI tool with Node.js, since it facilitates the invocation of the concrete
engines: the scaffolding-based derivation engine [18] to resolve annotative
variability and shell scripting to resolve the compositional variability (see
Section 3). Despite other engines could be used (ATL engine, CVL engine,
C Preprocessor), it requires manually integrating them into the hybrid
engine to support them, which can be a considerable implementation effort.
Another limitation of the hybrid engine is that it requires specific inputs
(feature model, AAM, mapping model, configuration) that, in this case,
we specify in JSON format. However, in contrast to CVL which lacks of
tool support, feature models are widely supported by several tools in the
SPL community [45] as they become the de-facto standard for modeling
variability [4].

5.2.1. Comparison between CVL and feature model-based approaches
An explicit comparison between the CVL approach and our ap-

proach using feature models is presented in Table 5. Since the differ-
ence between CVL and feature models relies on the variability speci-
fication, that is, in the variability model and in the mapping model,
the benefits of both approaches are similar as qualitatively shown in
Table 4. The quantitative evaluation presented in Section 5.1 is not
affected by the usage of feature models in contrast to CVL because the
benefits of both approaches over the pure annotation-based approach
are the same. Nevertheless, Table 5 summarized the differences of both

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.

W
w
i
V

D

p
w
1

CVL and feature model approaches, comparing the different aspects
that effectively affect the use of CVL or feature models. Some of these
differences have been already discussed throughout the paper.

5.2.2. Adoption of the combined approach
Finally, we would like to briefly discuss the opportunity and adop-

tion challenges of our approach. The case study we have used to present
our proposal consists of migrating an annotative-based SPL into a
combined approach, which provides a good support for traceability, but
requires a complex mapping model. The set of transformation patterns
we have identified in Table 2 helps application architects and develop-
ers in the migration process and in the definition of the mapping model.
The mapping model serves as an additional documentation facet of the
SPL. From an architectural point of view, the mapping model facilitates
the location of features in software artifacts, improving traceability.
Traceability is achieved because the variation points in the mapping
model explicitly associate features in the variability model and artifacts
in the AAM model, which also helps developers to identify relevant
features and artifacts during the development and maintenance of the
SPL. The mapping is also used as an input for the hybrid engine to
invoke the concrete engines in charge of deriving a product according
to the information provided in the variation points. In addition, our
proposal can be also applied to an SPL from scratch following any
methodology for software development. In this case, to facilitate the
adoption of the approach, and to simplify the process of building the
mapping model, we consider that using an iterative approach guided
by the features could be suitable. That is, each feature is developed in
an iteration, and both the product line architecture and the mapping
model are updated accordingly; in contrast to first implementing all
features and then building the mapping model.

6. Conclusions and future work

We have presented a combined approach to model multiple granular
variability based on feature modeling that integrates annotations into
a generic composition-based strategy. Our approach effectively handles
both fine and coarse-grained variability presented in web applica-
tions. The mapping between the feature model and the web artifacts
promotes the traceability of the features and the uniformity of the
variation points regardless of the granularity of the final source files.
The proposed solution uses feature models to specify the variability,
in contrast to the CVL language, facilitating the adoption of our ap-
proach, while maintaining a good support for feature traceability for
both compositional and annotative variation points, at the architectural
level.

Our ongoing work considers evaluating our approach with several
real-word SPLs in the web engineering domain as well as improving
the tooling support by integrating the whole process of modeling and
resolution of the variation points in a unique web interface application.
We also plan to automate the process of identifying the variation points
to reduce the effort of the developers in defining the mapping model.

CRediT authorship contribution statement

Jose-Miguel Horcas: Conceptualization, Methodology, Software,
riting – review & editing. Alejandro Cortiñas: Investigation, Soft-
are, Writing – review & editing. Lidia Fuentes: Work idea, Fund-
ng, Supervision, Resources, Project administration. Miguel R. Luaces:
alidation, Supervision.

eclaration of competing interest

No author associated with this paper has disclosed any potential or
ertinent conflicts which may be perceived to have impending conflict
ith this work. For full disclosure statements refer to https://doi.org/
0.1016/j.infsof.2022.106910.
18
Acknowledgments

The work of the authors from the Universidad de Málaga is sup-
ported by the projects Magic P12-TIC1814 (post-doctoral research
grant), MEDEA RTI2018-099213-B-I00 (co-financed by FEDER funds),
Rhea P18-FR-1081 (MCI/AEI/FEDER, UE), LEIA UMA18-FEDERIA-157,
TASOVA MCIU-AEI TIN2017-90644-REDT and, European Union’s
H2020 research and innovation program under grant agreement DAE-
MON 101017109. The work of the authors from the Universidade
da Coruña has been funded by MCIN/AEI/10.13039/501100011033,
NextGenerationEU/PRTR, FLATCITY-POC: PDC2021-121239-C31;
MCIN/AEI/10.13039/501100011033 EXTRACompact: PID2020-114635
RB-I00; GAIN/Xunta de Galicia/ERDF CEDCOVID: COV20/00604; Xunta
de Galicia/FEDER-UE GRC: ED431C 2021/53; MICIU/FEDER-UE BIZDE-
VOPSGLOBAL: RTI-2018-098309-B-C32; MCIN/AEI/10.13039/50110
0011033 MAGIST: PID2019-105221RB-C41.

References

[1] M. Marques, J. Simmonds, P.O. Rossel, M.C. Bastarrica, Software product line
evolution: A systematic literature review, Inf. Softw. Technol. 105 (2019)
190–208, http://dx.doi.org/10.1016/j.infsof.2018.08.014.

[2] M.A. Laguna, Y. Crespo, A systematic mapping study on software product line
evolution: From legacy system reengineering to product line refactoring, Sci.
Comput. Program. 78 (8) (2013) 1010–1034, http://dx.doi.org/10.1016/j.scico.
2012.05.003.

[3] S. Apel, D.S. Batory, C. Kästner, G. Saake, Feature-Oriented Software Product
Lines - Concepts and Implementation, Springer, 2013, http://dx.doi.org/10.1007/
978-3-642-37521-7.

[4] M. Raatikainen, J. Tiihonen, T. Männistö, Software product lines and variability
modeling: A tertiary study, J. Syst. Softw. 149 (2019) 485–510, http://dx.doi.
org/10.1016/j.jss.2018.12.027.

[5] J. Krüger, M. Pinnecke, A. Kenner, C. Kruczek, F. Benduhn, T. Leich, G. Saake,
Composing annotations without regret? Practical experiences using featurec,
Softw. Pract. Exp. 48 (3) (2018) 402–427, http://dx.doi.org/10.1002/spe.2525.

[6] C. Kästner, S. Apel, Integrating compositional and annotative approaches for
product line engineering, in: Proc. GPCE Workshop on Modularization, Com-
position and Generative Techniques for Product Line Engineering, 2008, pp.
35–40.

[7] C. Prehofer, Feature-oriented programming: A fresh look at objects, in: M. Akşit,
S. Matsuoka (Eds.), ECOOP’97 — Object-Oriented Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997, pp. 419–443.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Ir-
win, Aspect-oriented programming, in: European Conference on Object-Oriented
Programming, Springer, 1997, pp. 220–242.

[9] I. Schaefer, L. Bettini, F. Damiani, N. Tanzarella, Delta-oriented programming
of software product lines, in: Proceedings of the 14th International Conference
on Software Product Lines: Going beyond, in: SPLC’10, Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 77–91, URL http://dl.acm.org/citation.cfm?id=1885639.
1885647.

[10] J. Krüger, I. Schröter, A. Kenner, C. Kruczek, T. Leich, FeatureCoPP: composi-
tional annotations, in: C. Seidl, L. Teixeira (Eds.), Proceedings of the 7th Inter-
national Workshop on Feature-Oriented Software Development, FOSD@SPLASH
2016, Amsterdam, Netherlands, October 30, 2016, ACM, 2016, pp. 74–84,
http://dx.doi.org/10.1145/3001867.3001876.

[11] F. Benduhn, R. SCHRöTER, A. Kenner, C. Kruczek, T. Leich, G. ANDSAAKE,
Migration from annotation-based to composition-based product lines: towards a
tool-driven process, in: Proc. Conf. Advances and Trends in Software Engineering,
SOFTENG. IARIA, 2016, pp. 102–109.

[12] J. Horcas, A. Cortiñas, L. Fuentes, M.R. Luaces, Integrating the common
variability language with multilanguage annotations for web engineering, in:
T. Berger, P. Borba, G. Botterweck, T. Männistö, D. Benavides, S. Nadi, T.
Kehrer, R. Rabiser, C. Elsner, M. Mukelabai (Eds.), Proceeedings of the 22nd
International Systems and Software Product Line Conference - Vol. 1, SPLC
2018, Gothenburg, Sweden, September 10-14, 2018, ACM, 2018, pp. 196–207,
http://dx.doi.org/10.1145/3233027.3233049.

[13] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. ran K. Olsen, A. Svendsen, Adding
standardized variability to domain specific languages, in: Software Product Lines,
12th International Conference, SPLC 2008, Limerick, Ireland, September 8-12,
2008, Proceedings, IEEE Computer Society, 2008, pp. 139–148, http://dx.doi.
org/10.1109/SPLC.2008.25.

[14] T. Berger, P. Collet, Usage scenarios for a common feature modeling language, in:
23rd International Systems and Software Product Line Conference, Vol. B, SPLC
2019, ACM, 2019, pp. 86:1–86:8, http://dx.doi.org/10.1145/3307630.3342403.

[15] V.R. Sánchez, P.N. Ayuso, J.A. Galindo, D. Benavides, Open source adoption
factors - a systematic literature review, IEEE Access 8 (2020) 94594–94609,
http://dx.doi.org/10.1109/ACCESS.2020.2993248.

https://doi.org/10.1016/j.infsof.2022.106910
https://doi.org/10.1016/j.infsof.2022.106910
https://doi.org/10.1016/j.infsof.2022.106910
http://dx.doi.org/10.1016/j.infsof.2018.08.014
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1016/j.scico.2012.05.003
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1002/spe.2525
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb6
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb7
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb7
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb7
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb7
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb7
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb8
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb8
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb8
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb8
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb8
http://dl.acm.org/citation.cfm?id=1885639.1885647
http://dl.acm.org/citation.cfm?id=1885639.1885647
http://dl.acm.org/citation.cfm?id=1885639.1885647
http://dx.doi.org/10.1145/3001867.3001876
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb11
http://dx.doi.org/10.1145/3233027.3233049
http://dx.doi.org/10.1109/SPLC.2008.25
http://dx.doi.org/10.1109/SPLC.2008.25
http://dx.doi.org/10.1109/SPLC.2008.25
http://dx.doi.org/10.1145/3307630.3342403
http://dx.doi.org/10.1109/ACCESS.2020.2993248

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
[16] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker, S. Apel,
Preprocessor-based variability in open-source and industrial software systems: An
empirical study, Empir. Softw. Eng. 21 (2) (2016) 449–482, http://dx.doi.org/
10.1007/s10664-015-9360-1.

[17] A. Cortiñas, M. Luaces, O. Pedreira, A. Places, J. Pérez, Web-based geographic
information systems SPLE: Domain analysis and experience report, in: Proceed-
ings of the 21st International Systems and Software Product Line Conference -
Volume a, Vol. 1, ACM, Sevilla, Spain, 2017, pp. 190–194, http://dx.doi.org/10.
1145/3106195.3106222.

[18] A. Cortiñas, M.R. Luaces, O. Pedreira, A.S. Places, Scaffolding and in-browser
generation of web-based GIS applications in a SPL tool, in: M.H. ter Beek, W.
Cazzola, O. Díaz, M.L. Rosa, R.E. Lopez-Herrejon, T. Thüm, J. Troya, A.R. Cortés,
D. Benavides (Eds.), Proceedings of the 21st International Systems and Software
Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25-29,
2017, ACM, 2017, pp. 46–49, http://dx.doi.org/10.1145/3109729.3109759.

[19] S. El-Sharkawy, N. Yamagishi-Eichler, K. Schmid, Metrics for analyzing variability
and its implementation in software product lines: A systematic literature review,
Inf. Softw. Technol. 106 (2019) 1–30, http://dx.doi.org/10.1016/j.infsof.2018.
08.015.

[20] S. El-Sharkawy, A. Krafczyk, K. Schmid, Fast static analyses of software product
lines: an example with more than 42, 000 metrics, in: M. Cordy, M. Acher, D.
Beuche, G. Saake (Eds.), VaMoS ’20: 14th International Working Conference on
Variability Modelling of Software-Intensive Systems, Magdeburg Germany, Febru-
ary 5-7, 2020, ACM, 2020, pp. 8:1–8:9, http://dx.doi.org/10.1145/3377024.
3377031.

[21] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines, in: W.
Schäfer, M.B. Dwyer, V. Gruhn (Eds.), 30th International Conference on Software
Engineering, ICSE 2008, Leipzig, Germany, May 10-18, 2008, ACM, 2008, pp.
311–320, http://dx.doi.org/10.1145/1368088.1368131.

[22] L. Balzerani, D.D. Ruscio, A. Pierantonio, G. De Angelis, A product line
architecture for web applications, in: Proceedings of the 2005 ACM Symposium
on Applied Computing, in: SAC ’05, Association for Computing Machinery,
New York, NY, USA, 2005, pp. 1689–1693, http://dx.doi.org/10.1145/1066677.
1067059.

[23] M. Laguna, B. González-Baixauli, C. Hernández, Product line development of web
systems with conventional tools, in: M. Gaedke, M. Grossniklaus, O. Díaz (Eds.),
Web Engineering, ICWE 2009, in: Lecture Notes in Computer Science, vol. 5648,
Springer, Berlin, Heidelberg, 2009, pp. 205–212, http://dx.doi.org/10.1007/978-
3-642-02818-2_16.

[24] M.A. Naily, M.R.A. Setyautami, R. Muschevici, A. Azurat, A framework for
modelling variable microservices as software product lines, in: A. Cerone, M.
Roveri (Eds.), Software Engineering and Formal Methods, Springer International
Publishing, Cham, 2018, pp. 246–261.

[25] E. Walkingshaw, M. Erwig, A calculus for modeling and implementing variation,
in: K. Ostermann, W. Binder (Eds.), Generative Programming and Component
Engineering, GPCE’12, Dresden, Germany, September 26-28, 2012, ACM, 2012,
pp. 132–140, http://dx.doi.org/10.1145/2371401.2371421.

[26] B. Behringer, Integrating approaches for feature implementation, in: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, in: FSE 2014, Association for Computing Machinery, New York, NY,
USA, 2014, pp. 775–778, http://dx.doi.org/10.1145/2635868.2666605.

[27] B. Behringer, L. Kirsch, S. Rothkugel, Separating features using colored snippet
graphs, in: T. Berger, M. Ribeiro (Eds.), Sixth International Workshop on Feature-
Oriented Software Development, FOSD ’14, VäSteråS, Sweden, September 14,
2014, ACM, 2014, pp. 9–16, http://dx.doi.org/10.1145/2660190.2660192.

[28] B. Behringer, S. Rothkugel, Integrating feature-based implementation approaches
using a common graph-based representation, in: S. Ossowski (Ed.), Proceedings
of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April 4-8,
2016, ACM, 2016, pp. 1504–1511, http://dx.doi.org/10.1145/2851613.2851791.

[29] E. Walkingshaw, K. Ostermann, Projectional editing of variational software, in:
U.P. Schultz, M. Flatt (Eds.), Generative Programming: Concepts and Experiences,
GPCE’14, Vasteras, Sweden, September 15-16, 2014, ACM, 2014, pp. 29–38,
http://dx.doi.org/10.1145/2658761.2658766.

[30] S. Apel, C. Kästner, C. Lengauer, Language-independent and automated software
composition: The FeatureHouse experience, IEEE Trans. Software Eng. 39 (1)
(2013) 63–79, http://dx.doi.org/10.1109/TSE.2011.120.

[31] S. Apel, C. Kästner, Virtual separation of concerns - A second chance for
preprocessors, J. Object Technol. 8 (6) (2009) 59–78, http://dx.doi.org/10.5381/
jot.2009.8.6.c5.

[32] C. Kästner, S. Apel, M. Kuhlemann, A model of refactoring physically and virtu-
ally separated features, in: J.G. Siek, B. Fischer (Eds.), Generative Programming
and Component Engineering, 8th International Conference, GPCE 2009, Denver,
Colorado, USA, October 4-5, 2009, Proceedings, ACM, 2009, pp. 157–166,
http://dx.doi.org/10.1145/1621607.1621632.

[33] D.S. Batory, P. Höfner, B. Möller, A. Zelend, Features, modularity, and vari-
ation points, in: A. Classen, N. Siegmund (Eds.), 5th International Workshop
on Feature-Oriented Software Development, FOSD ’13, Indianapolis, in, USA,
October 26, 2013, ACM, 2013, pp. 9–16, http://dx.doi.org/10.1145/2528265.
2528269.
19
[34] D.S. Batory, P. Höfner, D. Köppl, B. Möller, A. Zelend, Structured document
algebra in action, in: R.D. Nicola, R. Hennicker (Eds.), Software, Services, and
Systems - Essays Dedicated To Martin Wirsing on the Occasion of His Retirement
from the Chair of Programming and Software Engineering, in: Lecture Notes in
Computer Science, vol. 8950, Springer, 2015, pp. 291–311, http://dx.doi.org/
10.1007/978-3-319-15545-6_19.

[35] J.M. Horcas, M. Pinto, L. Fuentes, Extending the common variability language
(CVL) engine: A practical tool, in: M.H. ter Beek, W. Cazzola, O. Díaz, M.L.
Rosa, R.E. Lopez-Herrejon, T. Thüm, J. Troya, A.R. Cortés, D. Benavides
(Eds.), Proceedings of the 21st International Systems and Software Product Line
Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25-29, 2017, ACM,
2017, pp. 32–37, http://dx.doi.org/10.1145/3109729.3109749.

[36] T.L. Calvar, F. Jouault, F. Chhel, M. Clavreul, Efficient ATL incremental trans-
formations, J. Object Technol. 18 (3) (2019) 2:1–17, http://dx.doi.org/10.5381/
jot.2019.18.3.a2.

[37] L. Burgueño, J. Cabot, S. Gérard, The future of model transformation languages:
An open community discussion, J. Object Technol. 18 (3) (2019) 7:1–11, http:
//dx.doi.org/10.5381/jot.2019.18.3.a7.

[38] Ø. Haugen, O. Øgård, BVR - better variability results, in: D. Amyot, P.F. i Casas,
G. Mussbacher (Eds.), System Analysis and Modeling: Models and Reusability
- 8th International Conference, SAM 2014, Valencia, Spain, September 29-30,
2014. Proceedings, in: Lecture Notes in Computer Science, vol. 8769, Springer,
2014, pp. 1–15, http://dx.doi.org/10.1007/978-3-319-11743-0_1.

[39] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-oriented
domain analysis (FODA) feasibility study, Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[40] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin: Advanced
concepts and tools for in-place EMF model transformations, in: 13th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2010,
in: Lecture Notes in Computer Science, 6394, Springer, 2010, pp. 121–135,
http://dx.doi.org/10.1007/978-3-642-16145-2_9.

[41] D.S. Kolovos, R.F. Paige, F. Polack, The epsilon transformation language, in:
A. Vallecillo, J. Gray, A. Pierantonio (Eds.), First International Conference on
Theory and Practice of Model Transformations, ICMT 2008, in: Lecture Notes in
Computer Science, vol. 5063, Springer, 2008, pp. 46–60, http://dx.doi.org/10.
1007/978-3-540-69927-9_4.

[42] N. Loughran, P. Sánchez, A. Garcia, L. Fuentes, Language support for managing
variability in architectural models, in: C. Pautasso, E. Tanter (Eds.), Software
Composition - 7th International Symposium, SC@ETAPS 2008, Budapest, Hun-
gary, March 29-30, 2008. Proceedings, in: Lecture Notes in Computer Science,
vol. 4954, Springer, 2008, pp. 36–51, http://dx.doi.org/10.1007/978-3-540-
78789-1_3.

[43] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeatureIDE:
An extensible framework for feature-oriented software development, Sci. Com-
put. Program. 79 (2014) 70–85, http://dx.doi.org/10.1016/j.scico.2012.06.002,
URL http://www.sciencedirect.com/science/article/pii/S0167642312001128, Ex-
perimental Software and Toolkits (EST 4): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WASDeTT-3 2010).

[44] A. Joshi, S. Kale, S. Chandel, D.K. Pal, Likert scale: Explored and explained, Br.
J. Appl. Sci. Technol. 7 (4) (2015) 396.

[45] J. Horcas, M. Pinto, L. Fuentes, Software product line engineering: a practical
experience, in: 23rd International Systems and Software Product Line Conference,
Vol. A, SPLC, ACM, 2019, pp. 25:1–25:13, http://dx.doi.org/10.1145/3336294.
3336304.

[46] F. Heidenreich, J. Kopcsek, C. Wende, Featuremapper: Mapping features to
models, in: Companion of the 30th International Conference on Software Engi-
neering, in: ICSE Companion ’08, ACM, New York, NY, USA, 2008, pp. 943–944,
http://dx.doi.org/10.1145/1370175.1370199, URL http://doi.acm.org/10.1145/
1370175.1370199.

[47] D.S. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE
Trans. Software Eng. 30 (6) (2004) 355–371, http://dx.doi.org/10.1109/TSE.
2004.23.

[48] J. Koscielny, S. Holthusen, I. Schaefer, S. Schulze, L. Bettini, F. Damiani, Deltaj
1.5: Delta-oriented programming for java 1.5, in: Proceedings of the 2014
International Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, in: PPPJ ’14, ACM, New York,
NY, USA, 2014, pp. 63–74, http://dx.doi.org/10.1145/2647508.2647512, URL
http://doi.acm.org/10.1145/2647508.2647512.

[49] C. Krueger, P. Clements, Feature-based systems and software product line
engineering with gears from BigLever, in: Proceedings of the 22Nd International
Systems and Software Product Line Conference - Vol. 2, in: SPLC ’18, ACM, New
York, NY, USA, 2018, pp. 1–4, http://dx.doi.org/10.1145/3236405.3236409,
URL http://doi.acm.org/10.1145/3236405.3236409.

[50] D. Beuche, Using pure: Variants across the product line lifecycle, in: Proceedings
of the 20th International Systems and Software Product Line Conference, in: SPLC
’16, ACM, New York, NY, USA, 2016, pp. 333–336, http://dx.doi.org/10.1145/

2934466.2962729, URL http://doi.acm.org/10.1145/2934466.2962729.

http://dx.doi.org/10.1007/s10664-015-9360-1
http://dx.doi.org/10.1007/s10664-015-9360-1
http://dx.doi.org/10.1007/s10664-015-9360-1
http://dx.doi.org/10.1145/3106195.3106222
http://dx.doi.org/10.1145/3106195.3106222
http://dx.doi.org/10.1145/3106195.3106222
http://dx.doi.org/10.1145/3109729.3109759
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.1145/3377024.3377031
http://dx.doi.org/10.1145/3377024.3377031
http://dx.doi.org/10.1145/3377024.3377031
http://dx.doi.org/10.1145/1368088.1368131
http://dx.doi.org/10.1145/1066677.1067059
http://dx.doi.org/10.1145/1066677.1067059
http://dx.doi.org/10.1145/1066677.1067059
http://dx.doi.org/10.1007/978-3-642-02818-2_16
http://dx.doi.org/10.1007/978-3-642-02818-2_16
http://dx.doi.org/10.1007/978-3-642-02818-2_16
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb24
http://dx.doi.org/10.1145/2371401.2371421
http://dx.doi.org/10.1145/2635868.2666605
http://dx.doi.org/10.1145/2660190.2660192
http://dx.doi.org/10.1145/2851613.2851791
http://dx.doi.org/10.1145/2658761.2658766
http://dx.doi.org/10.1109/TSE.2011.120
http://dx.doi.org/10.5381/jot.2009.8.6.c5
http://dx.doi.org/10.5381/jot.2009.8.6.c5
http://dx.doi.org/10.5381/jot.2009.8.6.c5
http://dx.doi.org/10.1145/1621607.1621632
http://dx.doi.org/10.1145/2528265.2528269
http://dx.doi.org/10.1145/2528265.2528269
http://dx.doi.org/10.1145/2528265.2528269
http://dx.doi.org/10.1007/978-3-319-15545-6_19
http://dx.doi.org/10.1007/978-3-319-15545-6_19
http://dx.doi.org/10.1007/978-3-319-15545-6_19
http://dx.doi.org/10.1145/3109729.3109749
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a7
http://dx.doi.org/10.5381/jot.2019.18.3.a7
http://dx.doi.org/10.5381/jot.2019.18.3.a7
http://dx.doi.org/10.1007/978-3-319-11743-0_1
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb39
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb39
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb39
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb39
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb39
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-540-78789-1_3
http://dx.doi.org/10.1007/978-3-540-78789-1_3
http://dx.doi.org/10.1007/978-3-540-78789-1_3
http://dx.doi.org/10.1016/j.scico.2012.06.002
http://www.sciencedirect.com/science/article/pii/S0167642312001128
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb44
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb44
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb44
http://dx.doi.org/10.1145/3336294.3336304
http://dx.doi.org/10.1145/3336294.3336304
http://dx.doi.org/10.1145/3336294.3336304
http://dx.doi.org/10.1145/1370175.1370199
http://doi.acm.org/10.1145/1370175.1370199
http://doi.acm.org/10.1145/1370175.1370199
http://doi.acm.org/10.1145/1370175.1370199
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1145/2647508.2647512
http://doi.acm.org/10.1145/2647508.2647512
http://dx.doi.org/10.1145/3236405.3236409
http://doi.acm.org/10.1145/3236405.3236409
http://dx.doi.org/10.1145/2934466.2962729
http://dx.doi.org/10.1145/2934466.2962729
http://dx.doi.org/10.1145/2934466.2962729
http://doi.acm.org/10.1145/2934466.2962729

Information and Software Technology 148 (2022) 106910J.-M. Horcas et al.
[51] C. Gacek, M. Anastasopoules, Implementing product line variabilities, SIGSOFT
Softw. Eng. Notes 26 (3) (2001) 109–117, http://dx.doi.org/10.1145/379377.
375269, URL http://doi.acm.org/10.1145/379377.375269.

[52] R. Lence, L. Fuentes, M. Pinto, Quality attributes and variability in AO-ADL soft-
ware architectures, in: W. Hasselbring, V. Gruhn (Eds.), Software Architecture,
5th European Conference, ECSA 2011, Essen, Germany, September 13 - 16, 2011.
Companion Volume, in: ACM International Conference Proceeding Series, ACM,
2011, p. 7, http://dx.doi.org/10.1145/2031759.2031768.

[53] A. Harrington, V. Cahill, Model-driven engineering of planning and optimisation
algorithms for pervasive computing environments, in: Ninth Annual IEEE Interna-
tional Conference on Pervasive Computing and Communications, PerCom 2011,
21-25 March 2011, Seattle, WA, USA, Proceedings, IEEE, 2011, pp. 172–180,
http://dx.doi.org/10.1109/PERCOM.2011.5767582.

[54] J.M. Horcas, M. Pinto, L. Fuentes, An automatic process for weaving functional
quality attributes using a software product line approach, J. Syst. Softw. 112
(2016) 78–95, http://dx.doi.org/10.1016/j.jss.2015.11.005.
20
[55] G. Vale, R. Abílio, A. Freire, H. Costa, Criteria and guidelines to improve
software maintainability in software product lines, in: 2015 12th International
Conference on Information Technology - New Generations, 2015, pp. 427–432,
http://dx.doi.org/10.1109/ITNG.2015.75.

[56] J.M. Horcas, M. Pinto, L. Fuentes, Product line architecture for automatic
evolution of multi-tenant applications, in: F. Matthes, J. Mendling, S. Rinderle-
Ma (Eds.), 20th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2016, Vienna, Austria, September 5-9, 2016, IEEE Computer
Society, 2016, pp. 1–10, http://dx.doi.org/10.1109/EDOC.2016.7579384.

[57] D.S. Batory, Should future variability modeling languages express constraints in
ocl? in: C. Cetina, O. Díaz, L. Duchien, M. Huchard, R. Rabiser, C. Salinesi,
C. Seidl, X. Tërnava, L. Teixeira, T. Thüm, T. Ziadi (Eds.), 23rd International
Systems and Software Product Line Conference (SPLC 2019), Vol. B, ACM, 2019,
p. 87:1, http://dx.doi.org/10.1145/3307630.3342406.

[58] Y. Coady, G. Kiczales, M. Feeley, G. Smolyn, Using aspectc to improve the
modularity of path-specific customization in operating system code, in: ACM
SIGSOFT Software Engineering Notes, 26, ACM, 2001, pp. 88–98.

[59] O. Spinczyk, D. Lohmann, M. Urban, Aspectc++: an AOP extension for c++,
Softw. Dev. J. 5 (68–76) (2005).

http://dx.doi.org/10.1145/379377.375269
http://dx.doi.org/10.1145/379377.375269
http://dx.doi.org/10.1145/379377.375269
http://doi.acm.org/10.1145/379377.375269
http://dx.doi.org/10.1145/2031759.2031768
http://dx.doi.org/10.1109/PERCOM.2011.5767582
http://dx.doi.org/10.1016/j.jss.2015.11.005
http://dx.doi.org/10.1109/ITNG.2015.75
http://dx.doi.org/10.1109/EDOC.2016.7579384
http://dx.doi.org/10.1145/3307630.3342406
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb58
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb58
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb58
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb58
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb58
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb59
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb59
http://refhub.elsevier.com/S0950-5849(22)00066-0/sb59

	Combining multiple granularity variability in a software product line approach for web engineering
	Introduction
	State-of-the-art and motivation
	Composition-based approaches
	Annotation-based approaches
	Combined approaches
	Unification approaches
	Integration approaches

	The combined approach of CVL with multilanguage annotations

	A combined approach to model multiple granular variability
	Orthogonal variability modeling
	Feature traceability and variation points
	Managing fine and coarse-grained variability
	Product derivation

	Practical application
	Case study: A blog SPL
	Integrating multilanguage annotations into an orthogonal composition-based approach
	Resolving the variability to derive a product

	Evaluation
	Quantitative evaluation
	Qualitative evaluation
	Comparison between CVL and feature model-based approaches
	Adoption of the combined approach

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

