5 research outputs found

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Classification of different reaching movements from the same limb using EEG

    Get PDF
    Objective. Brain–computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices using EEG data. These results have important implications towards assistive and rehabilitative neuroprostheses control in paralyzed patients.This study was funded by the Baden-Württemberg Stiftung (GRUENS), the Deutsche Forschungsgemeinschaft (DFG, Koselleck and SP-1533/2-1), Bundes Ministerium für Bildung und Forschung BMBF MOTORBIC (FKZ 13GW0053), the fortune-Program of the University of Tübingen (2422-0-0), and AMORSA (FKZ 16SV7754). A Sarasola-Sanz’s work is supported by the La Caixa-DAAD scholarship, and N IrastorzaLanda’s work by the Basque Government and IKERBASQUE, Basque Foundation for Science

    Brain-Computer Interface Robotics for Hand Rehabilitation After Stroke: A Systematic Review

    Get PDF
    Background Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the rehabilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical perspective. Methods A search for January 2010–October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for rehabilitation at different stages of development involving tests on healthy participants or people who have had a stroke. Data fields include those related to study design, participant characteristics, technical specifications of the system, and clinical outcome measures. Results 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the majority of studies was limited to triggering the device to perform grasping or pinching movements using motor imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, respectively, to match feedback to motor imagery. Conclusion 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be developed

    A brain-computer interface integrated with virtual reality and robotic exoskeletons for enhanced visual and kinaesthetic stimuli

    Get PDF
    Brain-computer interfaces (BCI) allow the direct control of robotic devices for neurorehabilitation and measure brain activity patterns following the user’s intent. In the past two decades, the use of non-invasive techniques such as electroencephalography and motor imagery in BCI has gained traction. However, many of the mechanisms that drive the proficiency of humans in eliciting discernible signals for BCI remains unestablished. The main objective of this thesis is to explore and assess what improvements can be made for an integrated BCI-robotic system for hand rehabilitation. Chapter 2 presents a systematic review of BCI-hand robot systems developed from 2010 to late 2019 in terms of their technical and clinical reports. Around 30 studies were identified as eligible for review and among these, 19 were still in their prototype or pre-clinical stages of development. A degree of inferiority was observed from these systems in providing the necessary visual and kinaesthetic stimuli during motor imagery BCI training. Chapter 3 discusses the theoretical background to arrive at a hypothesis that an enhanced visual and kinaesthetic stimulus, through a virtual reality (VR) game environment and a robotic hand exoskeleton, will improve motor imagery BCI performance in terms of online classification accuracy, class prediction probabilities, and electroencephalography signals. Chapters 4 and 5 focus on designing, developing, integrating, and testing a BCI-VR-robot prototype to address the research aims. Chapter 6 tests the hypothesis by performing a motor imagery BCI paradigm self-experiment with an enhanced visual and kinaesthetic stimulus against a control. A significant increase (p = 0.0422) in classification accuracies is reported among groups with enhanced visual stimulus through VR versus those without. Six out of eight sessions among the VR groups have a median of class probability values exceeding a pre-set threshold value of 0.6. Finally, the thesis concludes in Chapter 7 with a general discussion on how these findings could suggest the role of new and emerging technologies such as VR and robotics in advancing BCI-robotic systems and how the contributions of this work may help improve the usability and accessibility of such systems, not only in rehabilitation but also in skills learning and education
    corecore