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Abstract 
 

Brain-computer interfaces (BCI) allow the direct control of robotic devices for neurorehabilitation and 

measure brain activity patterns following the user’s intent. In the past two decades, the use of non-invasive 

techniques such as electroencephalography and motor imagery in BCI has gained traction. However, many 

of the mechanisms that drive the proficiency of humans in eliciting discernible signals for BCI remains 

unestablished. The main objective of this thesis is to explore and assess what improvements can be made 

for an integrated BCI-robotic system for hand rehabilitation.  

Chapter 2 presents a systematic review of BCI-hand robot systems developed from 2010 to late 

2019 in terms of their technical and clinical reports. Around 30 studies were identified as eligible for review 

and among these, 19 were still in their prototype or pre-clinical stages of development. A degree of 

inferiority was observed from these systems in providing the necessary visual and kinaesthetic stimuli 

during motor imagery BCI training. Chapter 3 discusses the theoretical background to arrive at a 

hypothesis that an enhanced visual and kinaesthetic stimulus, through a virtual reality (VR) game 

environment and a robotic hand exoskeleton, will improve motor imagery BCI performance in terms of 

online classification accuracy, class prediction probabilities, and electroencephalography signals. Chapters 

4 and 5 focus on designing, developing, integrating, and testing a BCI-VR-robot prototype to address the 

research aims. Chapter 6 tests the hypothesis by performing a motor imagery BCI paradigm self-

experiment with an enhanced visual and kinaesthetic stimulus against a control.  

A significant increase (p = 0.0422) in classification accuracies is reported among groups with 

enhanced visual stimulus through VR versus those without. Six out of eight sessions among the VR groups 

have a median of class probability values exceeding a pre-set threshold value of 0.6. Finally, the thesis 

concludes in Chapter 7 with a general discussion on how these findings could suggest the role of new and 

emerging technologies such as VR and robotics in advancing BCI-robotic systems and how the 

contributions of this work may help improve the usability and accessibility of such systems, not only in 

rehabilitation but also in skills learning and education.  
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Buod (Abstract in Filipino) 
 

Ang mga brain-computer interface (BCI) ay may kakayahang mag kontrol ng robot para sa rehabilitasyon 

ng mga sakit at pinsala na may kinalaman sa utak. Ito ay batay sa pagsukat ng aktibidad ng utak kasunod 

sa hangarin ng gumagamit. Isang paraan upang magamit ang mga ito ay ang pagkuha ng 

electroencephalography habang nag-iimahe ng paggalaw. Sa mahigit na dalawang dekada ng pagsusuri, 

karamihan ng kaalaman sa mga mekanismo na nagtutulak sa kahusayan ng mga tao na gumawa ng signal 

para sa BCI ay nananatiling mababaw. Ang pangunahing layunin ng tesis na ito ay upang tuklasin at 

suriin kung anong pagbubuti ang maaaring gawin para sa mga BCI at robot upang mapagaling ang 

paggalaw ng kamay ng isang pasiyente.  

Inilalahad sa Kabanata 2 ang isang sistematikong pagsusuri na ginawa upang surbeyin ang mga 

sistema ng BCI-robot na binuo noong 2010 hanggang sa 2019 para sa mga kamay base sa mga tuntunin 

ng kanilang mga teknolohikal at klinikal na ulat. Sa 30 na mga sistema na nakuha, 19 dito ang nasa 

kanilang prototype o pre-klinikal na yugto ng pag-unlad. Ang nakitang kakulangan sa mga sistemang ito 

ay ang antas ng pagbibigay ng kinakailangang biswal at kinestetik na stimuli habang nag-iimahe ng 

paggalaw. Sa Kabanata 3, mas pinalawak pa ang diskusyong ito upang makarating sa teorya na kayang 

pahusayin ang paggamit ng BCI sa pamamagitan ng virtual reality (VR) at isang uri ng robot na nasusuot 

sa kamay. Sa mga Kabanatang 4 at 5, itinutuon ang talakayan sa pagdisenyo, pag-unlad, pagsasama, at 

pagsubok ng ng isang BCI-VR-robot prototype upang matuguran ang mga hangarin sa pagsasaliksik. Sa 

Kabanata 6, sinusubukan naman ang mga teoryang nabanggit sa pamamagitan ng pagsasagawa ng 

eksperimento sa sarili gamit ang prototype.  

Inuulat ng kasulatan na ito ang isang makabuluhang pagtaas (p = 0.0422) ng mga puntos sa mga 

sesyon na may larong ginawa habang may suot na VR kumpara sa mga sesyon na wala. Anim sa walong 

mga sesyon sa grupo na may kasamang VR ang nakapasa sa aming pamantayan na 0.6 para sa posibilidad 

na makatama ang kompyuter sa kanyang prediksyon. At sa panghuling kabanata, Kabanata 7, tinatapos 

ang tesis na ito sa pamamagitan ng pagbibigay ng isang pangkalahatang talakayan tungkol sa mga 

kontribusyon para mapaunlad ang mga naturing na sistema, hindi lamang para sa rehabilitasyon, kundi 

pati na rin sa pag-aaral ng kasanayan at edukasyon. 
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Chapter 1 

Introduction 
 

In 1924, Hans Berger, a German neurologist, first devised a method to amplify a brain’s 

electrophysiological signals using a radio amplifier and thin silver foils that are in contact with 

a human’s scalp. He later coined the term electroencephalogram (EEG) to describe recordings 

based on this technique (Teplan, 2002). Almost a hundred years later, in 2021, EEG has been 

the method of choice for clinicians to perform non-invasive, portable, and reliable imaging of 

brain activity for diagnosing certain diseases and for neuroscientists to record electrophysiological 

responses during experiments that involve human cognition, action, and planning. Berger’s 

innovations also led researchers in developing the technology behind what would be known as 

brain-computer interfaces (BCI) – an emerging and rapidly advancing group of systems that use 

brain activity signals to control devices (Graimann et al., 2010). A BCI is an artificial system 

composed of hardware and software that provides direct communication between the brain and 

a device based on its user’s intent. The resulting flow of information (e.g., modulation of the 

sensorimotor rhythm) bypasses the normal efferent pathways of the body’s peripheral nervous 

system1. Instead, a BCI recognises a user’s intent by measuring event-related brain activity and 

translating it into executable commands usually done by a computer, hence the term: brain-

computer interface. Although far from what the popular media and science-fiction depict what 

these technologies can do (i.e., command military equipment like Yuri in the videogame 

Command & Conquer: Red Alert or using the Cerebro, a device that can amplify brainwaves to 

locate certain beings in Marvel Comics’ The X-Men), the current technology for BCI allows us 

to control or trigger simpler devices and processes such as computer cursors, videogames, and 

even robotic systems (Vidal, 1973; Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012; Bozinovski, 

2013). 

 

1 The term “efferent” refers to the neural pathway that carries signals away from the brain and spinal 
cord (Central Nervous System) towards an effector such as motor neurons (Peripheral Nervous System) 
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One specific application of brain-computer interfaces, which excites research scientists 

and medical device developers alike, is the neurorehabilitation of brain injuries such as stroke. 

Stroke, also known as a cerebrovascular accident, is a widespread medical condition that affects 

the lives of many individuals. The 2019 global data for stroke shows a prevalence of above 101 

million (101,474,558.48), where 12% are first-time incidents (University of Washington Institute 

for Health Metrics and Evaluation, 2021). Strokes occur when there is a failure to supply blood 

to the brain caused by ischaemic (clotting) or haemorrhagic (bleeding) mechanisms. The sudden 

deficiency of oxygen damages the brain tissues leading to death or, if survived, a life with 

neurological impairment. Because of this, the World Health Organization (WHO) has also 

regarded stroke as one of the top causes of disability (World Health Organization, 2011). 

According to some studies, stroke is perceived to have a higher burden among low and middle-

income countries (World Health Organization, 2011; Mukherjee and Patil, 2011; Benjamin et 

al., 2018) and may be due to the lack of access to well-established therapy programmes and 

other healthcare options.  

Of the many neurological deficiencies after stroke, motor weakness, especially in the 

extremities, are the most obvious symptom to a patient or an outside observer (O’Dell et al., 

2009). Motor weakness, as well as other cognitive and sensory deficiencies in stroke, is 

hemiparetic (i.e., “Hemi-” half/one-sided “paresis” motor weakness) and depends on the severity 

of the neurological damage (O’Dell et al., 2009). Despite the symptoms affecting typical motor 

and cognitive functions, recovery after stroke is possible via natural and induced mechanisms 

(Krakauer, 2005; Fregni and Pascual-Leone, 2006; O’Dell et al., 2009). Cortical neuroplasticity, 

the ability of the motor cortex to reorganise and thus relearn motor skills, is the underlying 

principle behind standard interventional therapy and relies on both intensive and repetitive 

stimuli (Hallett, 2001; Fregni and Pascual-Leone, 2006). This type of plasticity is use-dependent 

which means it is induced by the repeated experience of initiating and achieving a specified 

target; making the active participation of the patient in performing the therapy exercises an 

integral part of the motor re-learning process (Zeiler and Krakauer, 2013; Mawase et al., 2017). 

With the use of a brain-computer interface, a stroke rehabilitation regimen is improved in 

promoting active participation by allowing the intent-based control of systems such as robotic 

devices (Marchal-Crespo and Reinkensmeyer, 2009) and computer-based video games 
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(Vanbellingen et al., 2017). The primary motivation for developing such technologies is rooted 

in providing better and more accessible treatment options with lesser economic costs.  

The main objective of this thesis is to look deep into the field of brain-computer interfaces 

and robotics to assess what can be done to improve neurorehabilitation and provide a cost-

effective solution to its current accessibility problem. This research focuses on the motor 

rehabilitation of the hands as a case for BCI-robot systems. An emerging interest in hand and 

wrist therapy, through prehension exercises, is observed as it directly promotes the independence 

of a patient in performing activities of daily living (ADL) or instrumental activities of daily 

living (IADL) (Taylor and Schwarz, 1955). ADL involves using bare hands or individual fingers 

to perform tasks requiring dexterity, such as picking or placing objects, dressing up (i.e., 

buttoning one’s shirt), and maintaining personal hygiene. IADL, as the term implies, makes use 

of an instrument to aid the hands, such as cutlery (e.g., spoons, forks, knives, etc.) during eating 

or a pen/pencil for writing (Krakauer, 2006). While this research focuses on the rehabilitation 

of the hands, the concepts that will be discussed in succeeding chapters can also be applied in 

other rehabilitation regimes such as whole upper extremity therapy, lower extremity therapy, 

and mobility therapy using a brain-computer interface. 

The specific objectives of this thesis are: 

 to look into the scientific literature for existing BCI-hand robot systems by 

performing a thorough and systematic review of existing research work. In this 

way, the current gaps in the body of knowledge for BCI-hand robot systems can 

be laid out, leading to the development of a new and suitable research question 

 to propose the use of scientific and engineering methods in hypothesising and 

prototyping a solution that can address these questions 

 to experiment and analyse the gathered data and then relate to the bigger 

picture of improving brain-computer interfaces and robotic systems for 

rehabilitation 

Figure 1.1 presents a map of the thesis with a short description of the succeeding 

chapters. 
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Figure 1.1: A map of the thesis with a short description of succeeding chapters 

 

Chapter 2 presents a systematic review of integrated brain-computer interfaces and 

wearable hand robot systems for rehabilitation after stroke. As a summary of my findings from 

the 30 BCI-hand robot systems that passed my screening criteria, I report the need to improve 

the way stimuli, through cue and feedback, is presented to a user during BCI training. In Chapter 

3, I further expand this by discussing the theory of BCI use, focusing on sensorimotor rhythm 

modulation by motor imagery as a viable mode, and laying out a potential solution for improving 

motor imagery BCI classification accuracy based on two factors: visual stimuli and kinaesthetic 

stimuli. Here, I discuss that by improving on these factors, we can promote neuroplasticity and 

significantly impact the time and resources needed for neurophysiological recovery (Nojima et 

al., 2012; Liu et al., 2014; Chowdhury, Meena, et al., 2018). In Chapters 4 and 5, I present 
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engineering solutions to the two aforementioned factors. Chapter 4 focuses on the software design 

and programming of a motor imagery BCI paradigm with enhanced visual stimuli through a 

virtual reality environment, while Chapter 5 focuses on the hardware design, prototyping, and 

testing of a low-cost robotic hand exoskeleton to provide kinaesthetic stimuli as part of the cue 

component (i.e., instructing and guiding the users to perform the tasks).  

Chapter 6 presents the integration of these systems into a BCI-VR-robot prototype and 

the methods, results, and discussion of a self-experiment performed to test my hypothesis. The 

ongoing coronavirus disease (COVID) pandemic in the United Kingdom at the time of this study 

(2020) restricted most physical/in-person research activities, including experiments involving 

healthy human participants – the initially intended method to test my hypothesis. With careful 

consideration of the probable outcomes and quality of research, we (i.e., myself and my doctoral 

supervision team) have decided to progress this study with a self-experiment. I discuss the 

implications of my recent findings to the main objective of this thesis through a general 

discussion in Chapter 7. Finally, this chapter also summarises and concludes the contributions 

of this thesis to the current body of scientific knowledge with recommendations for future work. 
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Chapter 2 

Systematic Review of          
Wearable Robots and                   
Brain-Computer Interfaces for        
Hand Rehabilitation After Stroke 

 
2.1. Introduction 

The growing interest in robot-assisted rehabilitation is driven by the increasing number of people 

requiring therapy and the global phenomenon of insufficient numbers of therapists to deliver 

rehabilitation exercises to patients (McHugh and Swain, 2014; Ntsiea, 2019). Robotic systems 

allow a therapist to prescribe exercises that can then be guided by the robot rather than the 

therapist. An essential principle within such systems is that the robots assist the patient in 

actively undertaking a prescribed movement rather than the patient’s limb being moved 

passively. This means that the system must sense when the patient is trying to generate the 

required movement (given that, by definition, the patient struggles typically with the action). 

One potential solution to this issue is to use force sensors that can detect when the patient is 

starting to generate movement (at which point the robot’s motors can provide assistive forces). 

It is also possible to use measures of muscle activation (i.e., electromyographic or EMG signals) 

to detect the intent to move (Manguerra et al., 2018).  In the last two decades, there has been 

a concerted effort by groups of clinicians, neuroscientists and engineers to integrate robotic 

systems with brain activity signals correlated with a patient trying to generate a movement 

actively, or imagine a motor action, to enhance the efficacy and effectiveness of stroke 

rehabilitation – these systems fall under the definition of brain-computer interfaces or BCI 

(Wolpaw and Wolpaw, 2012). Figure 2.1 shows a typical BCI setup for robot-assisted 

rehabilitation. 
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Figure 2.1: Typical brain-computer interface setup for robot-assisted rehabilitation. The main 

components of this BCI are: (A) an EEG acquisition device that can transmit data to a 

computer, (B) a computer unit for data processing and visual display, and (C) a robotic device 

that assists the user to perform a particular task 

 

BCIs allow brain state-dependent control of robotic devices to aid stroke patients during 

upper limb therapy. While BCIs in their general form has been in development for almost 50 

years (Vidal, 1973) and were theoretically made possible since the discovery of the scalp-recorded 

human electroencephalogram in the 1920s (Berger, 1929), their application to rehabilitation is 

more recent (Birbaumer et al., 1999; Hochberg et al., 2006; Silvoni et al., 2011). The use of a 

BCI follows a cue-feedback process. A cue, which may come in various combinations of sensory 

stimuli, is an instruction to the user to perform a mental task. Feedback is the result of the 

processing of physiological signals (usually based on the predicted outcome of a pre-trained 

classifier) recorded during the mental task and is provided back to the user to inform them of 

the outcome of that cue-feedback cycle (i.e., a trial). I discuss the processes involved in BCI use 

in Chapter 3 (Section 3.4 – Brain-Computer Interfaces based on Motor Imagery). 
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Most robotic devices used in upper limb rehabilitation exist as exoskeletons or end-

effectors. Robotic exoskeletons (i.e., powered orthoses, braces) are wearable devices where the 

actuators are biomechanically aligned with the wearer’s joints and linkages, allowing the 

additional torque to provide assistance, augmentation and even resistance during training 

(Molteni et al., 2018). In comparison, end-effector systems generate movement by applying forces 

to the most distal extremity segment via handles and attachments (Molteni et al., 2018). 

Rehabilitation robots are classified as Class II-B medical devices (i.e., a therapeutic device that 

administers the exchange of energy, mechanical in the case of robots, to a patient). In this class, 

safety considerations are essential during development (Guiochet et al., 2012; European 

Commission, 2016). Most commercial robots focus on arms and legs, each offering a unique 

therapy methodology. There is also a category of devices that target the hands and fingers. 

While often less studied than the proximal areas of the upper limb, hand and finger rehabilitation 

are core components in regaining daily living activities (ADL) (Yue et al., 2017). Many ADLs 

require dexterous and fine motor movements (e.g. grasping and pinching), and there is evidence 

that even patients with minimal proximal shoulder and elbow control can regain some hand 

capacity long-term following stroke (Houwink et al., 2013).  

The strategy of BCI-robot systems (i.e., systems that integrate BCI and robots into one 

unified system) in rehabilitation is to recognise the patient's intention to move or perform a task 

via a neural or physiological signal and then use a robotic device to provide assistive forces in a 

manner that mimics the actions of a therapist during standard therapy sessions (Takahashi et 

al., 2016). The resulting feedback is patient-driven and is designed to aid in closing the neural 

loop from intention to execution. This process is said to promote use-dependent neuroplasticity 

within intact brain regions and relies on the repeated experience of initiation, execution, and 

feedback (Hallett, 2001; Fregni and Pascual-Leone, 2006).  

At the robot end of the system, the device can be operated continuously or by a trigger 

to perform a predefined motion. A continuous control strategy increases the temporal volitional 

control over the robot instead of triggered assistance where a threshold is applied, and the robot 

finishes the movement for the participant. The choice of using one control strategy over the 

other relies on two major factors: (1) the ability of a patient to produce an intent signal and (2) 
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the capability of the system to extract and map out an intent signal successfully. The patient’s 

recovery stage reflects the first factor. For example, a trigger strategy might be ideal for severely 

impaired patients who cannot produce a stable signal for robotic control. In contrast, a 

continuous strategy can be implemented for those who can provide enough stability in their 

movement intent but are still not fully recovered and be considered independent. The second 

factor is based on knowing the state-of-the-art of BCI-robots in rehabilitation and is one of the 

main questions targeted for this study. 

The BCI end of the system mainly focuses on developing the optimum strategy for brain 

signal data acquisition. The aforementioned scalp-recorded EEG signal is a commonly used 

instrument for data acquisition in BCI systems because it is non-invasive, easy to use, and can 

detect relevant brain activity with high temporal resolution (Teplan, 2002; Cohen, 2014). In 

principle, the recognition of motor imagery, the imagination of movement without execution, via 

EEG can control a device independent of muscle activity (Graimann et al., 2010). It has been 

reported that motor imagery-based BCI can discriminate motor intent by detecting event-related 

spectral perturbations (Pfurtscheller and Lopes da Silva, 1999; Li et al., 2018). These can be 

decomposed as event-related desynchronisation/synchronisation (ERD/S) patterns in the µ (9-

11 Hz) and β (14-30 Hz) sensorimotor rhythm of EEG signals (Pfurtscheller and Lopes da Silva, 

1999). However, EEG also brings with it some challenges. Various artefacts often conceal these 

neural markers and may be difficult to recognise through the raw EEG signal alone. Thus, signal 

processing (including feature extraction and classification) is vital for obtaining a good motor 

imagery signal for robotic control. A general pipeline for EEG data processing involves several 

steps. First, the data undergo a series of pre-processing routines (e.g., filtering and artefact 

removal) before feature extraction and classification as a control signal for the robotic hand. 

Feature extraction involves recognising useful information (e.g., spectral power, time epochs, 

spatial filtering) for better discriminability among mental states. For example, the common 

spatial patterns (CSP) algorithm is a type of spatial filter that maximises the variance of band 

pass-filtered EEG from one class to discriminate it from another (Lotte and Guan, 2011). Finally, 

classification (which can range from linear and simple algorithms such as Linear Discriminant 

Analysis (LDA), Linear Support Vector Machine (L-SVM) up to more complex techniques in 

deep learning such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks 
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(RNN) (Schirrmeister et al., 2017; Roy et al., 2019) involves the translation of these signals of 

intent to an action that provides the user feedback and closes the loop of the motor intent-to-

action circuit.  

The potential of motor imagery-based BCIs has gained considerable attention because 

the neural activity involved in the control of the robotic device may be a key component in the 

rehabilitation itself. For example, motor imagery of movement is thought to activate some neural 

networks involved in movement execution (Hardwick et al., 2018; Xu et al., 2014; Sharma and 

Baron, 2013; Jeannerod, 2001). The resulting rationale is that encouraging the use of motor 

imagery could increase the capacity of the motor cortex to control major muscle movements and 

decrease the necessity to use neural circuits damaged post-stroke. The scientific justification for 

this approach was first provided by Jeannerod (Jeannerod, 2001), who suggested that the neural 

substrates of motor imagery are part of a shared network that is also activated during the 

simulation of action by the observation of action (Jeannerod, 2001). These ‘mirror neuron’ 

systems are thought to be an essential component of motor control and learning (Jeannerod, 

2001) – hence the belief that activating these systems could aid rehabilitation. The use of a 

motor imagery-BCI to control a robot compared to traditional motor imagery and physical 

practice provides several benefits to its user and the practitioner. These advantages include the 

fact that the former can provide a more streamlined approach such as sensing physiological 

states, automating visual and kinaesthetic feedback, enriching the task, and increasing user 

motivation through gamification. There are also general concerns around the utility of motor 

imagery without physical movement (and the corresponding muscle development that comes 

from these), and it is possible that these issues could be overcome through a control strategy 

that progressively reduces the amount of support provided by the motor imagery-BCI system 

and encourages active motor control (Marchal-Crespo and Reinkensmeyer, 2009; Brookes et al., 

2020).  

A recent meta-analysis of the neural correlates of action (motor imagery, action 

observation and motor execution) quantified ‘conjunct’ and ‘contrast’ networks in the cortical 

and subcortical regions (Hardwick et al., 2018). This analysis, which took advantage of open-

source historical data from functional magnetic resonance imaging studies, reported consistent 
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activation in the premotor, parietal, and somatosensory areas for motor imagery, observation, 

and execution. Predicated on such data, researchers have reasoned that performing motor 

imagery should cause activation of the neural substrates that are also involved in controlling 

movement. Furthermore, there have been several research projects that have used action 

observation in combination with motor imagery in neurorehabilitation (Mulder, 2007; Vogt et 

al., 2013; Friesen et al., 2017) and motor learning studies (Eaves et al., 2016; T. Kim et al., 

2017) over the last decade.  

One implication of using motor imagery and action observation to justify the use of BCI 

approaches is that great care must be taken about the quality of the environment in which the 

rehabilitation takes place. While people can learn to modulate their brain rhythms without using 

motor imagery, and there is variability across individuals in their ability to imagine motor 

actions, motor imagery-driven BCI systems require (by design at least) the patient to imagine a 

movement. Likewise, action observation requires the patients to see the action clearly. This 

suggests that the richness and vividness of the visual cues provided are essential for an effective 

BCI system. It is also reasonable to assume that feedback is vital within these processes, and 

thus the quality of feedback should also be considered essential. After all, motor imagery and 

action observation are just tools to modulate brain states (Vogt et al., 2013), and the 

effectiveness of these tools vary from one stroke patient to another (Nakano and Kodama, 2017). 

Finally, motivation is important in promoting active participation during therapy (Mawase et 

al., 2017; Laver et al., 2017). Thus, a good BCI system should incorporate an approach (such as 

gaming and positive reward) that increases motivation. In addition, recent advances in 

technology make it far easier to create a rehabilitation environment that provides rich vivid 

cues, gives salient feedback, and motivates. For example, the rise of immersive technologies, 

including virtual reality (VR) and augmented reality (AR) platforms (Brookes et al., 2019; Laver 

et al., 2017; Vourvopoulos et al., 2015), allows for the creation of engaging visual experiences 

that have the potential to improve a patient’s self-efficacy (Johnston et al., 2007) and thereby 

encourage the patient to maintain the rehabilitation regime. One specific example of this is 

visually amplifying the movement made by a patient when the movement is of a limited extent 

so that the patient can see their efforts are producing results (Hülsmann et al., 2019). 
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In this review, I set out to examine the literature to achieve a better understanding of 

the current value and potential of BCI-based robotic therapy with three specific objectives: 

1. Identify how BCI technologies are being utilised in controlling robotic devices for hand 

rehabilitation. My focus is on the study design and the tasks employed to set up a BCI-

hand robot therapy protocol. 

2. Document the readiness of BCI systems. Because BCI for rehabilitation is still an 

emerging field of research, I expect that most studies would be in their proof-of-concept 

or clinical testing stages of development. My purpose is to determine the limits of this 

technology in terms of (a) resolution of hand motor imagery detection (i.e., from gross 

to fine motor tasks) and (b) the degree of robotic control.  

3. Evaluate the clinical significance of BCI-hand robot systems by looking at the outcome 

measures in motor recovery and determine if a standard protocol exists for these 

interventions. 

It is important to note that there have been several recent reviews exploring BCI for 

stroke rehabilitation. For example, Monge-Pereira et al. (Monge-Pereira et al., 2017) compiled 

EEG-based BCI studies for upper limb stroke rehabilitation. Their systematic review (involving 

13 clinical studies on stroke and hemiplegic patients) reported on research methodological quality 

and improvements in the motor abilities of stroke patients. Cervera et al. (Cervera et al., 2017) 

performed a meta-analysis on the clinical effectiveness of BCI-based stroke therapy in 9 

randomised clinical trials (RCT). McConnell et al. (McConnell et al., 2017) undertook a narrative 

review of 110 robotic devices with brain-machine interfaces for hand rehabilitation post-stroke. 

These reviews, in general, have reported that such systems provide improvements in both 

functional and clinical outcomes in pilot studies or trials involving small sample sizes. Thus, the 

literature indicates that EEG-based BCI is a promising general rehabilitation approach post-

stroke. The current work complements these previous reports by providing the first systematic 

examination of BCI-robot systems for the rehabilitation of fine motor skills associated with hand 

movement and profiling these systems from a technical and clinical perspective. 
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2.2. Methodology 

2.2.1. Protocol Registration 

Details of the protocol for this systematic review were registered on the International Prospective 

Register of Systematic Reviews (PROSPERO) and can be accessed at 

www.crd.york.ac.uk/PROSPERO (ID: CRD42018112107). 

 

2.2.2. Search Strategy and Eligibility 

An in-depth search of articles from January 2010 to October 2019 was performed on Ovid 

MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library. Only full-text 

articles published in English were selected for this review. Table 2.1 shows the combination of 

keywords used in the literature searching. 

 

Table 2.1: Literature search keyword combinations 

Set 1 (OR)  Set 2 (OR)  Set 3 (OR) 

Brain-computer interface/BCI  

Electroencephalography/EEG 

Brain-machine interface/BMI 

Neural control interface 

Mind-machine interface 

 

 

 

AND 

Stroke (rehabilitation/ 
therapy/treatment/recovery) 

Motor (rehabilitation, 
therapy/treatment/recovery) 

Neurorehabilitation 

Neurotherapy 

Hand (rehabilitation/therapy/ 
recovery/exercises/movement) 

 

 

 

AND 

Robotic 
(exoskeleton/ 
orthosis) 

Powered 
(exoskeleton/ 
orthosis) 

Robot 

Device 

 

The inclusion criteria for the articles were: (1) publications that reported the 

development of an EEG-based BCI; (2) studies targeted toward the rehabilitation of the hand 

after stroke; (3) studies that involved the use of BCI and a robotic device (e.g., exoskeleton, end-

effector type, platform-types, etc.); (4) studies that performed a pilot test on healthy participants 

or a clinical trial with people who have had a stroke. The articles were also screened for the 

following exclusion criteria: (1) studies that targeted neurological diseases other than stroke; (2) 

studies that used other intention sensing mechanisms (electromyography/EMG, 

electrooculography/EOG, non-paretic hand, other body parts, etc.). 
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Two reviewers (i.e., myself and a colleague) performed independent screenings of titles 

and abstracts based on the inclusion and exclusion criteria. The use of a third reviewer was 

planned a priori in cases where a lack of consensus existed around eligibility. However, consensus 

was achieved from the first two reviewers during this stage. Full-text articles were then obtained, 

and a second screening was performed until a final list of studies was agreed to be included for 

data extraction. 

 

2.2.3. Data Extraction 

The general characteristics of the study and their corresponding results were extracted from the 

full-text articles by the reviewers following the Preferred Reporting Items for Systematic Reviews 

and Meta-Analysis (PRISMA) checklist. The data fields were extracted and categorised as 

follows: 

 Participant characteristics: sample population, healthy or stroke patients, handedness, 

age, sex, and the duration post-stroke: acute (<2 weeks), subacute (3-11 weeks), early 

chronic (12-24 weeks), and chronic (>24 weeks). The mean duration since stroke was 

also accounted for if reported. 

 Study design: a general description of study design, experimental and control groups 

 Task design: description of the task instructed and stimuli presentation (cue and 

feedback modalities, i.e., visual, kinaesthetic, auditory, etc.) 

 Technical specifications of the system: EEG system used (including the number of 

channels), robot device used (e.g. hand exoskeleton, end-effector, etc.), actuation mode, 

and control strategy 

 Main outcomes of the study: clinical outcomes (for studies involving stroke patients), 

classification accuracies based on correct predictions over the total number of trials 

(participant, group, and study levels; with consideration of the algorithm used and the 

number of trials set to train the classifier), and other significant findings 
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This data extraction strategy allowed me to evaluate further the technology and clinical 

use of the BCI-robot systems used in this study. 

 

2.2.4. Technology Evaluation 

EEG Acquisition 

The signal acquisition element of an EEG-based BCI is critical to its success in recognising task-

related intent. To better understand current practice, I gathered the type of electrode used (i.e., 

standard saline-soaked, gel or dry electrodes), the number of channels and its corresponding 

placement in the EEG cap. To illustrate where signals are recorded, I plotted the frequency with 

which electrodes were used across studies on a topographical map using the 10-20 international 

electrode placement system.  

 

Signal Processing 

I evaluated each study's signal processing strategies, looking specifically at the feature extraction 

and classification techniques within their respective data pipelines. In addition, for the studies 

that reported classification accuracy (i.e., comparing the predicted class against the ground 

truth), I compared their results to the current state-of-the-art classification accuracy published 

in the literature. 

 

Robot-Assisted Rehabilitation 

As the receiving end of the BCI pipeline and the provider of kinaesthetic feedback to the user, 

the robot-assisted device for hand rehabilitation plays a crucial role in providing the intervention 

in this therapy regimen. Therefore, I evaluated the robot components based on their actuation 

type, targeted body part (i.e., single-finger, multi-finger, whole hand), and control strategy. I 

also reported on commercially available systems, which has passed a series of regulatory 

processes, making them fit for commercial use, were classified as gold standard devices. 

 



16 
 

Technological Readiness 

I assessed the development stages of the system as a whole by performing a Technological 

Readiness Assessment. Using this strategy, I was able to determine the maturity of the systems 

through a Technology Readiness Level (TRL) scale of 1-9 and quantify its implementation in a 

research or clinical setting (Office of the Director of Defense Research and Engineering 

Washington DC, 2009). Since a BCI-robot for rehabilitation can be categorised as a Class II-B 

medical device, I have adapted a customised TRL scale to account for these requirements (Office 

of the Director of Defense Research and Engineering Washington DC, 2009). The customised 

TRL accounts for prototype development and pilot testing in human participants (TRL 3), 

safety testing (TRL 4-5), and small scale (TRL 6) to large scale (TRL 7-8) clinical trials. 

Performing a technology readiness assessment on each device should allow us to map out the 

technology's adoption and perceived usefulness. For example, if most of the studies have used 

devices that have a TRL below the clinical trials stage (TRL 6-8), then I can confidently say 

that the BCI-robot system is not yet widely accepted in the clinical community. In this way, I 

can focus on questions that improve my understanding of the factors that impede its use as a 

viable therapy option for stroke survivors.  

 

2.2.5. Clinical Use 

Clinical Outcomes Measures 

For studies involving stroke patients, clinical outcomes were obtained based on muscle 

improvement measures such as Fugl-Meyer Motor Assessment Upper Extremity (FMA-UE) 

scores (Fugl-Meyer et al., 1975), Action Research Arm Test (ARAT) scores (Lyle, 1981), United 

Kingdom Medical Research Council (UK-MRC) muscle grade (Matthews, 1977), Grip Strength 

(GS) Test and Pinch Strength (PS) Test scores (i.e., kilogram force collected using an electronic 

hand dynamometer) among others.  
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Physiotherapy Evidence Database (PEDro) Scale for Methodological Quality 

A methodological quality assessment was also performed for clinical studies based on the PEDro 

Scale (Maher et al., 2003). This scale evaluates studies with a checklist of 11 items based on 

experts’ consensus criteria in physiotherapy practice. The complete details of the criteria can be 

found online (PEDro Scale, 1999). A higher score on the scale (6 and above) implied better 

methodological quality but are not used as a measure of validity in terms of clinical outcomes. 

Pre-defined scores from this scale were already present in studies appearing in the PEDro search. 

However, studies without PEDro scores or those not present in the PEDro database had to be 

manually evaluated by myself against the 11-item checklist (five of seven studies). 

 

2.3. Results 

2.3.1. Search Results 

Figure 2.2 shows the study selection process and the number of articles obtained at each stage. 
 

 

Figure 2.2: Study selection flowchart 
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A total of 590 studies were initially identified. After deduplication, 330 studies underwent 

title and abstract screening. Forty-six studies passed this stage, and among these, 16 were 

removed after full-text screening due to the following reasons: insufficient EEG and robotic data 

(Broetz et al., 2010; Bergamasco et al., 2011; Cincotti et al., 2012; Ushiba et al., 2014; George 

et al., 2014; Belardinelli et al., 2017; Rathee et al., 2019) – these studies were either short papers 

that did not specify the required data fields specified in Section 2.3.3 or there was a lack of detail 

in the information provided for it to be included in the final table, the study was out of scope 

(Pellegrino et al., 2012; Norman, 2017; Naros and Gharabaghi, 2017), the study design was not 

for hand/finger movement (Formaggio et al., 2013; Shiman et al., 2015; Sarasola-Sanz et al., 

2017; Bousseta et al., 2018), no robot or mechatronic device was involved in the study 

(Muralidharan et al., 2011; Ono et al., 2013). A final sample of 30 studies were included in the 

qualitative review. Among the 30 studies, 11 (Ang et al., 2014; Barsotti et al., 2015; Ono et al., 

2016; Bundy et al., 2017; Frolov et al., 2017; Chowdhury, Raza, et al., 2018; Wang et al., 2018; 

Norman et al., 2018; Chowdhury, Meena, et al., 2018; Carino-Escobar et al., 2019; Tsuchimoto 

et al., 2019) were involved in testing the BCI-hand robot system on chronic and subacute stroke 

patients ((Ang et al., 2014; Frolov et al., 2017; Wang et al., 2018; Tsuchimoto et al., 2019) were 

RCTs) while the rest involved testing on healthy participants (Fok et al., 2011; King et al., 2011; 

Holmes et al., 2012; Ramos-Murguialday et al., 2012; Coffey et al., 2014; Witkowski et al., 2014; 

Bauer et al., 2015; Cantillo-Negrete et al., 2015; Vukelic and Gharabaghi, 2015; Ramos-

Murguialday and Birbaumer, 2015; Chowdhury et al., 2015; Stan et al., 2015; Naros et al., 2016; 

Diab et al., 2016; Tacchino et al., 2017; Randazzo et al., 2018; Ono et al., 2018; Li et al., 2019; 

Zhang et al., 2019). Appendix A shows the full data table for this study. 

 

Studies with Healthy Participants (Prototype Group) 

The studies which involved pilot testing on healthy human participants had a combined total of 

207 individuals (sample size ranging from 1-32) who had no history of stroke or other neurological 

diseases. Right-handed individuals made up 44.24% of the combined population, while 55.76% 

were unreported. These studies aimed to report the successful implementation of a BCI-robot 

system for hand rehabilitation and were more heterogeneous in study and task designs than 
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those involving clinical testing. The most common approach was to design and implement a 

hand orthosis controlled by MI which accounted for 9 out of the 19 studies and were measured 

based on classification accuracy during the calibration/training period and online testing. Li et 

al. (Li et al., 2019) and Stan et al. (Stan et al., 2015) also aimed to trigger a hand orthosis, but 

instead of MI, the triggers used by Li et al. is based on an attention threshold, while Stan et al. 

used a vision-based P300 speller BCI. Bauer et al. (Bauer et al., 2015) compared MI against ME 

using a BCI-device while Ono et al. (Ono et al., 2018) studied the implementation of an action 

observation strategy with a combined visual and kinaesthetic feedback or auditory feedback. 

Five more studies (Ramos-Murguialday et al., 2012; Vukelic and Gharabaghi, 2015; Ramos-

Murguialday and Birbaumer, 2015; Naros et al., 2016; Tacchino et al., 2017) focused on varying 

the feedback while two more (Witkowski et al., 2014; Zhang et al., 2019) assessed the 

performance and safety of a hybrid BCI with EMG, EOG or both. 

 

Studies with Stroke Patients (Clinical Group) 

A total of 208 stroke patients (with sample size varying 3-74) were involved in the 11 clinical 

studies. One study (Ang et al., 2014) reported a 3-armed RCT with control groups as device-

only and SAT while another study (Frolov et al., 2017) was a multi-centre RCT with sham as 

the control group. Five studies were uncontrolled – where the aims were either to study 

classification accuracies during sessions (Barsotti et al., 2015), to monitor clinical outcomes 

improvement from Day 0 until the end of the programme (Bundy et al., 2017; Carino-Escobar 

et al., 2019) or both (Norman et al., 2018; Chowdhury, Meena, et al., 2018).  Two studies (Wang 

et al., 2018; Tsuchimoto et al., 2019) were RCTs that compared the effects of the intervention 

against SHAM feedback. Another study (Chowdhury, Raza, et al., 2018) compared the 

classification accuracies of healthy and hemiplegic stroke patients against two BCI classifiers, 

while the remaining study (Ono et al., 2016) compared classification accuracies from stroke 

patients who receive congruent or incongruent visual and kinaesthetic feedback. 
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2.3.2. Technology Evaluation 

EEG Acquisition 

The EEG acquisition systems involved in the studies ranged from low-cost devices having few 

electrode channels (2-15 gel or saline-soaked silver/silver chloride [Ag/AgCl] electrodes) to 

standard EEG caps that had higher spatial resolution (16-256 gel or saline-soaked Ag/AgCl 

electrodes). Studies involving MI accounted for the placement of EEG channels (N=21). This 

allowed us to determine the usage frequency among electrodes and is presented in Figure 2.3 as 

a heat map generated in R Studio (using the packages: “akima”, “ggplot2” and “reshape2”) 

against the 10-20 international electrode placement system. 

 

 
Figure 2.3: EEG channel usage across motor imagery studies (N=21) 

 

It can be seen that the EEG channels used for MI studies are concentrated towards 

electrodes along the central sulcus (C) region and the frontal lobe (F) region of the placement 

system where the motor cortex strip lies. Among these, C3 (N=17) and F3 (N=14) were mainly 
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used, presumably because most of the participants were right-handed. The next most frequent 

were C4 (N=13) and the electrodes F4, Cz and CP3 (N=10). 

 

Signal Processing: Feature Extraction and Classification 

In the EEG-based BCI studies examined, it was found that the feature extraction and 

classification techniques were variable between systems. Table 2.2 provides a summary of pre-

processing, feature extraction and classification techniques across the studies.  

 

Table 2.2: BCI feature extraction and classification strategies 

Study Pre-Processing Feature Extraction Classification Mental Task 

(Ang et al., 2014) Band-pass          
(0.05-40 Hz) 

Filter Bank Common 
Spatial Pattern 
(FBCSP) algorithm 
(Ang et al., 2012) 

Naïve Bayesian Parzen 
Window classifier (Ang 
et al., 2012) 

MI vs rest 

(Barsotti et al., 
2015) 

Band-pass (8-24 Hz) ERD (β and µ-
decrease), CSP 

SVM with linear kernel MI vs rest 

(Bauer et al., 
2015) 

Band-pass (6-16 Hz) 
using zero-phase lag 
FIR 

ERD (β-decrease) Linear autoregressive 
model based on Burg 
Algorithm 

MI vs rest 

(Bundy et al., 
2017) 

Unspecified in the 
manuscript 

ERD (β and µ-
decrease) 

Linear autoregressive 
model 

MI (affected, 
unaffected) vs 
rest 

(Chowdhury, 
Raza, et al., 2018) 

Band-pass (0.1 Hz-100 
Hz), Notch (50 Hz) 

CSP Covariance-
based, ERD/ERS (β 
and µ-change) 

SVM with linear kernel, 
Covariate Shift 
Detection (CSD)-based 
Adaptive Classifier 

left vs right MI 

(Coffey et al., 
2014) 

Band-pass (0.5 Hz-30 
Hz), Notch (50 Hz) 

CSP Covariance-based Linear Discriminant 
Analysis (LDA) 
classifier 

MI vs rest 

(Diab et al., 2016) Unspecified in the 
manuscript 

Time epochs 
(unspecified) 

Artificial Neural 
Network (ANN)-based 
Feed Forward Back 
Propagation 

Non-MI open 
vs closed  

(Frolov et al., 
2017) 

Band-pass (5-30 Hz), 
FIR (order 101), IIR 
notch Chebyshev type 
I filter (50 Hz) 

Time epochs  

(10 s) 

Bayesian-based EEG 
covariance classifier 
(Bobrov et al., 2012) 

MI (affected, 
unaffected) vs 
rest 

(Ono et al., 2016) Band-pass (0.5-30 Hz), 
notch (50 or 60 Hz) 

Time epochs (700 ms), 
ERD (µ-decrease) 

Linear Discriminant 
Analysis (LDA) 
classifier 

MI vs rest 
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(Ramos-
Murguialday et al., 
2012) 

Band-pass (8-12 Hz, 
12-18 Hz, 18-25 Hz) 

Time epochs (5 s), 
Spatial filter, 
ERD/ERS (β and µ-
change) 

Linear autoregressive 
model 

MI vs rest 

(Vukelic and 
Gharabaghi, 2015) 

Band-pass (16-22 Hz) ERD (β-decrease) Linear autoregressive 
model based on Burg 
Algorithm 

MI vs rest 

(Witkowski et al., 
2014) 

Band-pass (0.4-70 Hz), 
Laplacian filter 

ERD/ERS (β and µ-
change) 

Linear autoregressive 
model based on Yule-
Walker algorithm 

MI vs rest 

 
SVM = Support Vector Machines, FIR = Finite Impulse Response, IIR = Infinite Impulse Response 

 

There was a wide variation in the implemented signal processing strategies, but a 

unifying theme across studies was the attempt to: (i) discriminate mental states recorded in 

EEG across different manual tasks; (ii) classify the different states to produce a viable signal. 

While classification accuracy is contingent on the number of mental state classes the 

system is trying to discriminate, classification accuracies do provide a comparable metric among 

BCI systems. This review found a high variation in the reported mean classification accuracies 

among the BCI systems in this study (i.e., 2-class left-hand and right-hand classification)- 

ranging from 40% (below chance-level) (Ono et al., 2016; Frolov et al., 2017; Norman et al., 

2018) up to 95% (King et al., 2011; Holmes et al., 2012; Diab et al., 2016; Li et al., 2019). For 

reference, two recent reviews on the state-of-the-art classification accuracies for motor imagery 

BCI find ranges between 63-97% (Gonzalez et al., 2018) and 68-90% (Chaudhari and Galiyawala, 

2017).  

 

Robot-Assisted Rehabilitation 

Robotic hand rehabilitation systems provide kinaesthetic feedback to the user during BCI trials. 

Most of these devices are powered by either DC motors, servomotors or pneumatic actuators 

that transmit energy via rigid links or Bowden cables in a tendon-like fashion. The studies in 

this review included single-finger (Cantillo-Negrete et al., 2015; Carino-Escobar et al., 2019; 

Tsuchimoto et al., 2019), multi-finger (Norman et al., 2018) (including EMOHEX (Chowdhury 

et al., 2015; Chowdhury, Raza, et al., 2018; Chowdhury, Meena, et al., 2018)), full hand gloves 
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(Li et al., 2019; Zhang et al., 2019) (including mano: Hand Exoskeleton (Randazzo et al., 2018) 

and Gloreha (Tacchino et al., 2017)) and full arm exoskeletons with isolated finger actuation 

(BRAVO-Hand (Barsotti et al., 2015)). Nine of the studies (Holmes et al., 2012; Ramos-

Murguialday et al., 2012; Coffey et al., 2014; Ramos-Murguialday and Birbaumer, 2015; 

Chowdhury et al., 2015; Stan et al., 2015; Bundy et al., 2017; Randazzo et al., 2018; Li et al., 

2019) presented their novel design of a hand rehabilitation device within the article while some 

reported on devices reported elsewhere (i.e., in a previous study of the group or a research 

collaborator). Two commercially-available devices were also used: AMADEO (Tyromotion, 

Austria) is an end-effector device used in 3 studies (Bauer et al., 2015; Vukelic and Gharabaghi, 

2015; Naros et al., 2016), and Gloreha (Idrogenet, Italy) is a full robotic hand glove used by 

Tacchino et al. (Tacchino et al., 2017). AMADEO and Gloreha are both rehabilitation devices 

that have passed regulatory standards in their respective regions. AMADEO remains the gold 

standard for hand rehabilitation devices as it has passed safety and risk assessments and provided 

favourable rehabilitation outcomes. The International Classification of Functioning, Disability 

and Health (ICF) provides three specific domains that can be used to assess an intervention of 

this kind: improving impairments, supporting the performance of activities and promoting 

participation (Kersten, 2004; Oña et al., 2018). In this case, a gold standard device prioritises 

user safety (established early in the development process) and delivers favourable outcomes on 

scales against these domains. Figure 2.4 shows the main types of robotic hand rehabilitation 

devices. 

 

 
Figure 2.4: Types of robot-assisted hand rehabilitation devices. (a) end-effector devices 

(Haptic Knob) from (Dovat et al., 2006), (b) wearable hand exoskeletons/orthoses 
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Technology Readiness Assessment 

A Technology Readiness Assessment (Office of the Director of Defense Research and Engineering 

Washington DC, 2009) was performed for each study and the Technology Readiness Levels 

(TRL) are presented in Table 2.3. While some of the system components (especially among 

robotic devices) were commercially available (having TRL 9+), I performed a technology 

readiness assessment on the whole system to provide an evaluation of its maturity and state-of-

the-art development with regard to rehabilitation medicine. I further assessed the TRL of each 

system at the time of the publication and its subsequent development. 

 

Table 2.3: Technology readiness assessment of the BCI-hand robot systems 

Levels Description Studies 

TRL 1 

 

Lowest level of technological readiness  

Literature reviews and initial market surveys  

Scientific application to defined problems 

 

TRL 2 Generation of hypotheses 

Development of research plans and/or protocols 

 

TRL 3 Testing of hypotheses – basic research, data collection and 
analysis 

Testing of design/prototype – verification and critical 
component specifications 

Initial proof-of-concept in limited amount of 
laboratory/animal models 

 

 
 
 
 
 
 
 
 

Most studies from the prototype 
group (N=18) (Fok et al., 2011; 
King et al., 2011; Holmes et al., 
2012; Ramos-Murguialday et al., 
2012; Coffey et al., 2014; Bauer et 
al., 2015; Cantillo-Negrete et al., 
2015; Vukelic and Gharabaghi, 
2015; Ramos-Murguialday and 
Birbaumer, 2015; Chowdhury et al., 
2015; Stan et al., 2015; Naros et al., 
2016; Diab et al., 2016; Tacchino et 
al., 2017; Randazzo et al., 2018; Ono 
et al., 2018; Li et al., 2019; Zhang et 
al., 2019) 

TRL 4 Proof-of-concept of device/system in defined 
laboratory/animal models 

Safety testing – problems, adverse events, and potential side 
effects 

(Witkowski et al., 2014) 

TRL 5 

 
 

Comparison of device/system to other existing modalities or 
equivalent devices/systems 

(Barsotti et al., 2015),  (Ono et al., 
2016), (Chowdhury, Raza, et al., 
2018), (Tsuchimoto et al., 2019) 
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TRL 5 
(con’t) 

Further development – testing through simulation (tissue or 
organ models), animal testing 

Drafting of Product Development Plan 

TRL 6 Small scale clinical trials (Phase 1) – under carefully 
controlled and intensely monitored clinical conditions 

 

 

(Carino-Escobar et al., 2019), 
(Chowdhury, Meena, et al., 2018), 
(Norman et al., 2018), (Wang et al., 
2018) 

TRL 7 Clinical trials (Phase 2) – safety and effectiveness integration 
in operational environment 

(Ang et al., 2014), (Frolov et al., 
2017) 

TRL 8 Clinical trials (Phase 3) – evaluation of overall risk-benefit of 
device/system use 

Confirmation of QSR compliance 

Awarding of Premarket Approval for device/system by CDRH 
or equivalent agency   

 

TRL 9 The device/system may be distributed/marketed  

 

QSR = Quality System Requirements, CDRH = Center for Devices and Radiological Health 

 

2.3.3. Clinical Use 

Clinical Outcomes Measures 

Most of the studies adopted FMA-UE, ARAT and GS measurements to assess clinical outcomes. 

Six studies (Ang et al., 2014; Bundy et al., 2017; Frolov et al., 2017; Wang et al., 2018; 

Chowdhury, Meena, et al., 2018; Carino-Escobar et al., 2019) reported patient improvement in 

these measures when subjected to BCI-hand robot interventions; in contrast with their respective 

controls or as recorded through time in the programme. For Ang et al. (Ang et al., 2014), FMA-

UE Distal scores were reported in weeks 3, 6, 12 and 24, and the BCI-device group (N=6) yielded 

the highest improvement in scores across all time points as compared to the device only (N=8) 

and SAT (N=7) groups. Bundy et al. (Bundy et al., 2017) reported an average of 6.20±3.81 

improvement in the ARAT scores of its participants (N=10) in the span of 12 weeks, while 

Chowdhury et al. (Chowdhury, Meena, et al., 2018) reported a group mean difference of +6.38 

kg (p=0.06) and +5.66 (p<0.05) in GS and ARAT scores, respectively (N=4). Frolov et al.’s 

(Frolov et al., 2017) multi-centre RCT reported a higher improvement in the FMA-UE Distal, 

ARAT Grasp and ARAT Pinch scores of the BCI-device group (N=55) when compared to the 
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control/SHAM group (N=19), but not in the ARAT Grip scores where the values are both equal 

to 1.0 with p<0.01 for the BCI-device group and p=0.045 for the control. 

 

Physiotherapy Evidence Database (PEDro) Scale for Methodological Quality 

For the studies that had a clinical testing component, a methodological quality assessment by 

the PEDro Scale was performed. Two studies which appeared on the PEDro search (Ang et al., 

2014; Frolov et al., 2017) had predetermined scores in the scale and were extracted for this part 

while the rest were manually evaluated by the authors. Table 2.4 shows the results of the 

methodological quality assessment against the scale. Note that in the PEDro Scale, the presence 

of an eligibility criteria is not included in the final score. 

 

Table 2.4: Methodological quality of clinical studies based on PEDro scale 

 

Criteria 
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1 Eligibility criteria* 1 1 1 1 1 1 1 1 0 1 1 

2 Random allocation 1 0 0 0 0 0 1 0 0 1 1 

3 Concealed allocation 0 0 0 0 0 0 0 0 0 1 1 

4 Baseline comparability 1 0 1 0 1 1 1 0 0 0 0 

5 Blind subjects 0 0 0 0 0 0 0 0 0 1 1 

6 Blind therapists 0 0 0 0 0 0 0 0 0 1 0 

7 Blind assessors 1 0 0 0 0 0 1 0 0 0 1 

8 Adequate follow-up 1 1 1 1 1 1 0 1 1 1 1 

9 Intention-to-treat analysis 0 0 1 1 1 1 0 1 0 0 0 

10 Between-group comparisons 1 0 0 0 1 0 1 0 1 1 1 

11 Point estimates and variability 1 1 1 1 1 0 1 1 1 1 1 

Total  6 2 4 4 5 3 5 4 3 7 7 

 
*Not included in the final score 
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2.4. Discussion 

2.4.1. General Discussion of Systematic Review Results 

This review is the first systematic examination of BCI-driven robotic systems specific for hand 

rehabilitation to the best of my knowledge. Through this review, I found several limitations 

present in the studies identified, and I examine these in more detail here and provide 

recommendations for future work in this area.  

To clarify the state of the current development of BCI-hand robot systems, I looked into 

the maturity of technology used in each study as determined by its readiness level (TRL). All 

but one in the prototype group was rated as having TRL 3, while the clinical group was more 

varied in their TRL (ranging from 5 to 7). The system used by Witkowski et al. (Witkowski et 

al., 2014), a prototype study, was rated TRL 4 due to the study being performed based on 

improving and assessing its safety features. It is also worth noting that while a formal safety 

assessment was not performed for the TRL 3 prototypes of Stan et al. (Stan et al., 2015), 

Randazzo et al. (Randazzo et al., 2018) and Tacchino et al. (Tacchino et al., 2017), safety 

considerations and implementations were made; a criterion to be satisfied before proceeding to 

TRL 4. The system used by Chowdhury et al. is an excellent example of improving a TRL from 

5 to 6 with a pilot clinical study published within the same year (Chowdhury, Raza, et al., 2018; 

Chowdhury, Meena, et al., 2018). The two systems used in the RCT studies by Ang et al. (Ang 

et al., 2014) and Frolov et al. (Frolov et al., 2017) achieved the highest score (TRL 7) among 

all of the studies, which also meant that no BCI-hand robot system for stroke rehabilitation has 

ever been registered and commercially-released to date. This suggests that such systems lack 

solid evidence for propelling commercialisation and technology adoption. 

Heterogeneity in the study designs was apparent in both the clinical and prototype 

groups. The lack of control groups and random allocation in clinical studies (e.g., only 4 out of 

11 studies are in the huge sample size RCT stage) made us unable to perform a meta-analysis 

of effects and continue the study by Cervera et al. (2017) with a focus on BCI-hand robot 

interventions. Results from the methodological quality assessment showed that only two studies 

(Wang et al., 2018; Tsuchimoto et al., 2019) scored 7 on the PEDro scale. Although non-
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conclusive, these results support the notion that most of the studies are not aligned with the 

criteria of high-quality, evidence-based interventions.  

Almost all the clinical studies (except for Carino-Escobar et al. (Carino-Escobar et al., 

2019) and Frolov et al. (Frolov et al., 2017)) limited their recruitment to chronic stroke patients. 

The reason may be due to the highly variable recovery rates in patients at different stages of 

their disease (Ballester et al., 2019). Baseline treatments were also not reported in the clinical 

studies. Instead, the BCI-robot interventions were compared to control groups using standard 

arm therapy; an example of this was done by Ang et al. (Ang et al., 2014). The heterogeneity of 

experimental designs reported in this review raises the need to develop clearly defined protocols 

when conducting BCI-hand robot studies on stroke patients. Until new systems have been 

assessed on this standard, it will be challenging to generate strong evidence supporting the 

effectiveness of BCI-robotic devices for hand rehabilitation.  

In the development of any BCI-robotic device, several design and feature considerations 

need to be made to ensure that the systems are both fit for purpose and acceptable to the end-

user. These design considerations must go beyond the scope of understanding the anatomy of 

the hand and the physiology of motor recovery in response to therapy. Feedback from stroke 

patients should also be an essential part of this design process. Among the extracted studies, I 

surveyed the extent of end-user involvement in the initial stages of development (i.e., through 

consultations, interviews, and therapy observations) and found no explicit statements about 

these in the reports. I recommend, as good practice, for future work in this area to report the 

type and degree of patient or physician involvement in device development to allow reviewers 

and readers to gauge the potential usability of the system more readily. 

I was able to profile the BCI-hand robot systems regarding their technical specifications 

and design features. In hardware terms, a BCI-hand robot system involves three major 

components: (1) An EEG data acquisition system with several electrodes connected to a signal 

amplifier; (2) A computer where raw EEG data is received then processed by filters and classifiers 

and where most of the cues and feedback during training is presented via a visual display; (3) a 

robotic hand rehabilitation system for providing the physical therapy back to the user. 
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The majority of the studies (N=19) used a BCI solely based on EEG, while the rest were 

combined with other sensors: EEG with EMG (Ramos-Murguialday et al., 2012; Ang et al., 2014; 

Bauer et al., 2015; Ramos-Murguialday and Birbaumer, 2015; Chowdhury et al., 2015; Naros et 

al., 2016; Tacchino et al., 2017; Chowdhury, Raza, et al., 2018), EEG with force sensors 

(Chowdhury, Meena, et al., 2018) and an EEG-EMG-EOG hybrid system (Witkowski et al., 

2014; Zhang et al., 2019). This integration mainly aims to improve signal quality by accounting 

for the artefact or by providing added modalities. For example, action potentials such as those 

caused by ocular, muscular and facial movements interfere with nearby electrodes, and the 

presence of an added electrophysiological sensor accounting for these would enable the technician 

to perform noise cancellation techniques as the first step in signal processing.  

The choice of EEG system and the type of electrodes provides a technical trade-off and 

affects the session both in terms of subjective experiences (i.e., ease-of-use, preparation time, 

cleaning, comfortability) and data performance. Due to the presence of a conducting gel/solution, 

standard “wet” electrodes provide a degree of confidence in preventing signal disruption within 

a short duration, usually enough for a standard stroke therapy session. However, this also makes 

the setup, use and cleaning in the experiment more challenging, non-ambulatory and reliant on 

a specialised laboratory setup (Graimann et al., 2010). Conversely, dry electrodes offer an 

accessible and portable alternative by using dry metal pins or coatings that comb through hair 

and contact the scalp directly. The signal fidelity of dry electrodes is still debated in the BCI 

community. A systematic comparison between dry passively-amplified and wet actively-

amplified electrodes reported similar performance in the detection of event-related potentials 

(ERP) (Kam et al., 2019). However, for a study involving dry active electrodes (Mathewson et 

al., 2017), high inter-electrode impedance resulted in increased single-trial and average noise 

levels compared to both active and passive wet electrodes. In classifying MI, movement-related 

artefacts adversely affect active dry electrodes, but these can be addressed through a hybrid 

system of other physiological sensors to separate sources (Saab et al., 2011).   

Almost all of the studies included used a standard EEG system with “wet” electrodes 

(e.g., g.USBamp by g.tec medical engineering GmbH and BrainAmp by Brain Products), while 

three used Emotiv EPOC+, a semi-dry EEG system that uses sponge conductors infused with 
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saline solution. While the use of dry electrodes has been observed in pilot and prototype studies 

of BCI-hand robot systems (Norman, 2017; Ushiba et al., 2014; Holmes et al., 2012; Fok et al., 

2011) and other motor imagery experiments (Guger et al., 2011; Mladenov et al., 2012; 

Grummett et al., 2015; Abdalsalam et al., 2017), no dry EEG system was used in the final 30 

studies that tested healthy or stroke participants. It is expected that as dry EEG systems 

continue to improve, their use in clinical studies of BCI will also become increasingly prominent.  

The degree of BCI-robotic control for the majority of the studies (N=26) was limited to 

triggering the device to perform grasping (opening and closing of hand) and pinching (a thumb-

index finger pinch or a 3-point thumb-index-middle finger pinch) movements using MI and other 

techniques. A triggered assistance strategy provides the patient's minimum amount of active 

participation in a BCI-robot setup (Marchal-Crespo and Reinkensmeyer, 2009). The main 

advantages of this are that it is easy to implement, requiring less computational complexity in 

signal processing. However, a higher spatial or temporal volitional control over the therapeutic 

device increases its functionality and can be used to develop more engaging tasks for stroke 

therapy. Among the studies, no robotic control setup was able to perform digit-specific MI which 

corresponds to the spatial aspects of volitional control. This is a limitation caused by the non-

invasive setup of EEG and is due to the low spatial resolution brought by the distances between 

electrodes (Srinivasan, 1999). The homunculus model, a representation of the human body in 

the motor strip, maps the brain areas where activations have been reported to occur for motor 

processes. The challenge of decoding each finger digit MI in one hand is that they only tend to 

occupy a small area in this strip. Hence even the highest resolution electrode placement system 

(i.e., the five per cent or 10-5 system – up to 345 electrodes) would have difficulties accounting 

for digit-specific MI for BCI. 

In contrast to EEG, electrocorticography (ECoG) have been used to detect digit-specific 

MI. The electrodes of ECoG come in contact directly with the motor cortex and is an invasive 

procedure, making it non-ideal for use in BCI therapy (Liao et al., 2014). However, it is worth 

noting that some studies were successful in implementing continuous control based on ERD/ERS 

patterns. Bundy et al. (Bundy et al., 2017) and Norman et al. (Norman et al., 2018) were both 

able to apply continuous control of a 3-DOF pinch-grip exoskeleton based on spectral power 
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while Bauer et al. (Bauer et al., 2015) provided ERD-dependent control of finger extension for 

an end-effector robot. These continuous control strategies have been shown to be very useful in 

BCI-hand robots for assistive applications (i.e., partial or full device dependence for performing 

ADL tasks (Johnson et al., 2008)). Whether this type of control can significantly improve stroke 

recovery is still in question as the strategy of robots for stroke rehabilitation can be more 

classified as a therapeutic “exercise” device. 

Signal processing and machine learning play a vital role in developing any EEG-based 

BCI. The pre-processing techniques (e.g., filtering, artefact removal), types of features computed 

from EEG, and the classifier used in machine learning can significantly affect the performance 

of the robotic system in classifying the user’s intent via MI (Arvaneh et al., 2011). False 

classification, especially during feedback, could be detrimental to the therapy regime related to 

the reward and punishment mechanisms that are important in motor relearning (Quattrocchi et 

al., 2016). For example, false negatives hinder the reward strategy essential to motivate the 

patient, while false positives would also reward the action with the wrong intent. In this review, 

a critical appraisal of the signal processing techniques was done on each system to recognise the 

best practices involved. The current list of studies has revealed that approaches to developing 

MI-based EEG signal processing are highly diverse, which makes it difficult to compare across 

the systems and hinders the development of new BCI systems informed by the strengths and 

weaknesses of existing state-of-the-art systems. The diversity in the design process can be 

beneficial to develop complex MI EEG-based BCI systems to achieve high efficiency and efficacy. 

However, such newly developed systems should be open-sourced and easily reproducible by the 

research community to provide valid performance comparisons and drive forward the domain of 

robotic-assisted rehabilitation.  

In addition to MI, other strategies for robotic control were reported. Diab et al. (Diab et 

al., 2016) and King et al. (King et al., 2011) both facilitated the movements of their respective 

orthoses by physical practice, while Stan et al. (Stan et al., 2015) utilised a P-300 evoked 

potential speller BCI, where the user visually focused on a single alphanumerical character 

situated in a grid. The chosen character then corresponded to a command for the hand orthosis, 

thereby producing the desired stimulus for the patient. While the latter study reported a 100% 
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accuracy rate in terms of intention and execution, the EEG channels were situated in the visual 

cortex rather than the motor strip, which deviates from activating the desired brain region for 

plasticity. This highlights a broader issue on the intent behind a BCI-robotic system. Given that 

any potential signal that a patient can reliably modulate can be used to trigger a robot and that 

such an approach would be antithetical to the goal of many MI-based systems, engineers may 

consider how they can tailor their systems to ensure that a user implements the appropriate 

control strategy (and corresponding neural networks). For example, this can be implemented by 

taking a hybrid approach that includes motor-related intent recognition such as EMG and force 

sensors to recognise residual movement from an impaired limb.  

In order to facilitate hand MI and account for significant time points in the EEG data, 

all the studies employed a cue-feedback strategy during their trials. Nineteen of the studies 

presented a form of visual cue, while the rest, except for two unspecified (Fok et al., 2011; 

Tsuchimoto et al., 2019), involved cues in auditory (“bleep”) (Ramos-Murguialday et al., 2012; 

Bauer et al., 2015; Ramos-Murguialday and Birbaumer, 2015; Naros et al., 2016; Tacchino et 

al., 2017), textual (King et al., 2011; Holmes et al., 2012; Stan et al., 2015) or verbal (Diab et 

al., 2016) forms. As for the provision of matching sensory feedback, 16 studies presented a 

combination of kinaesthetic and visual feedback, with some also providing auditory feedback 

during successful movement attempts. All the studies provided kinaesthetic feedback through 

their robotic devices. Some systems with visual feedback, such as Wang et al. (Wang et al., 

2018), Li et al. (Li et al., 2019), Chowdhury et al. in both their clinical studies (Chowdhury, 

Raza, et al., 2018; Chowdhury, Meena, et al., 2018) and Ono et al. in their clinical (Ono et al., 

2016) and pilot testing experiments (Ono et al., 2018), used a video of an actual hand performing 

the desired action. Ang et al. (Ang et al., 2014) and Stan et al. (Stan et al., 2015), in a different 

strategy, provided visual feedback through photo manipulation and textual display, respectively. 

While these two studies reported promising results, it should also be considered that such cue 

and feedback types (including Graz visualisations and auditory forms) are non-representative of 

hand movement and may not provide the same stimuli as an anthropomorphic representation of 

a hand moving its desired course. This may be essential when we base principles of stroke 

recovery in alignment with how MI correlates with AO – an underlying theme of the motor 

simulation theory proposed by Jeannerod (Jeannerod, 2001). Figure 2.5 shows how different 
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kinds of visual cue and feedback can be presented to participants to help facilitate motor 

imagery. 

 

 

Figure 2.5: Visual cue and feedback during motor imagery trials in different conditions.           

(a) Graz motor imagery visualisations – the arrow (cue) tells the user which side of the limb 

(left or right) should be imagined, while the blue bar is the feedback provided after running 

new motor imagery attempts to a pre-trained classifier model (b) video recordings of hand 

movement which are played instead of the abstract arrow and bar Graz visualisations               

(c) proposed animated virtual hand representation of the same motor imagery paradigm 

through virtual or augmented reality 

 

2.4.2. Future Directions 

There is great potential for BCI-hand robots in the rehabilitation of an affected hand following 

a stroke. Nevertheless, it is important to emphasise that there is currently insufficient evidence 

to support such systems within clinical settings. Moreover, the purported benefits of these 

systems rest on conjectures that require empirical evidence. In other words, there are grounds 

for supposing that MI could be beneficial within these rehabilitation settings but no supporting 

evidence. This systematic review has also revealed several technological limitations to existing 

BCI-hand robotic systems.  There is an urgent need to address these limitations to ensure that 
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the systems meet the minimum required product specification levels (in measuring brain activity, 

processing signals, delivering forces to the hand, and providing rich feedback and motivating 

settings). The ethics and usefulness of conducting clinical trials with such systems must be 

thoroughly reviewed until they can demonstrate minimum levels of technological capability. 

Considerations must be made regarding what standards these systems should obtain before 

subjecting them to a clinical trial. 

 

2.4.3. Ideal Setup for a BCI-hand Robot 

I summarise the information gathered from this review about what constitutes an acceptable 

setup for a BCI-hand robot for stroke rehabilitation. My focus is on improving individual 

components in data acquisition, processing, the robotic device, and the stimuli. Table 2.5 

presents the features and specifications of an acceptable, fully integrated system. 

 

Table 2.5: Exemplary features and specifications of future BCI-hand robot systems 

Component Features and Specifications 

Data Acquisition 

System and Software 

 

 Dry EEG system with 8-16 channels, comfortable and easy to use 

 Inclusion of other bio-signal sensors such as EMG, EOG, force, 

accelerometers to remove artefacts and improve classification 

 Robust and reliable signal processing software: machine learning-based 

algorithms that discriminate brain states such as MI or evoked potentials 

with high classification accuracies (≥95%) and lower calibration times.  

 Low latency in the delivery of the feedback should be considered  

Hand Robot  Safe, comfortable, and aligned with the hand’s range of motion 

 Effective in providing kinaesthetic feedback 

 Use of back drivable or soft actuators that effectively assist movement 

without additional injury 

 Multiple levels of safety and emergency features (mechanical, electronic, 

software), clear operation 
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Visual Cue and 

Feedback 

 Provide rich visual cues and feedback to intended tasks taking account of its 

combination with other sensory modalities (e.g., tactile, auditory)  

 A geometric representation of the hand (video or simulated environment) 

which can be in multiple platforms such as display monitors or VR/AR on 

a head-mounted device 

 Gamification of therapy exercises to provide an engaging regime to stroke 

patients 

 

Implementing these features in an ideal BCI-robot setup needs to be weighed against 

socioeconomic factors in healthcare delivery to be considered market-ready. An ideal BCI system 

should primarily provide above chance-level classification after the first session on the first day 

of therapy. Ideally, the classification algorithm should also translate and adapt to following 

sessions or days, reducing the number of training sessions and focusing on the main therapy 

tasks. An alternative approach is to focus on making the setup an engaging experience. In other 

words, the delivery of intervention can be started immediately when the patient wears the EEG 

cap and runs the BCI system. For the hand robot system, more specific criteria can be followed 

with the numerous design protocols, regulation standards and assessment matrices mentioned in 

this review. Nevertheless, end-user involvement in the design with the prioritisation of safety 

while allowing the most natural hand movement and ROM possible is the recommended goal. 

 

2.4.4. Ideal Setup for Clinical Trials 

I also propose a set of specialised criteria for BCI-hand robot systems in addition to the standard 

motor improvement scores (e.g., ARAT, FMA-UE) evaluated during clinical trials. Firstly, 

classification accuracies between intended and interpreted actions from the data acquisition and 

software component should always be accounted to track the effectiveness of BCI in executing 

the clinical task. In addition to this, system calibration and training procedures, especially in 

their duration, should be detailed in the protocol to document the reliability of the classification 

algorithm. There is not much to consider in the use of robotic devices as they are most likely to 

be mature (if not yet commercially available) before being used as the hardware component in 
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the study. However, the devices’ functionality (i.e., task to be performed, degree of control and 

motion, actuation, power transmission, etc.) should always be stated as they contribute to 

evaluating interactions between other components in the system. Lastly, controls for the clinical 

study must always be included, even with small-scale patient studies. As discussed in this article, 

these controls may be in the form of sham, standard arm therapy (SAT), standard robotic 

therapy, congruency feedback and quality of stimuli. Having regarded and implemented these 

criteria would help homogenise the clinical data for future meta-analyses, strengthen evidence-

based results and provide reliable documentation for individual and interacting components. 

 

2.4.5. Proposed Roadmap 

I suggest that the immediate focus for BCI-controlled robotic device research should be on the 

engineering challenges. Only when these challenges have been met that it is valid and ethical to 

subject the systems to clinical trials. I recommend that the challenges be broken down into the 

following elements: (1) data acquisition; (2) signal processing and classification; (3) robotic 

device; (4) priming and feedback environment; (5) integration of these four elements. The nature 

of these challenges means that a multidisciplinary approach is required (e.g., including 

psychologists, cognitive neuroscientists, and physiologists to drive the adoption of reliable neural 

data acquisition). It seems probable that progress will be made by different laboratories tackling 

some or all of these elements and coordinating information sharing and technology 

improvements. Once the challenges have been met (i.e., there is a system that can take neural 

signals and use these to help drive a robotic system capable of providing appropriate forces to 

the hand within a motivating environment), then robust clinical trials can be conducted to 

ensure that the promise of this approach does translate into solid empirical evidence supporting 

the use of these systems within clinical settings.



37 
 

Chapter 3 

Theoretical Framework 

 
3.1. Introduction 

This chapter presents the theoretical framework of the thesis. I will first discuss the theory of 

brain-computer interfaces, including why it is used as a viable signal of intent for active robotic 

control and then review the basics of electroencephalography-based BCI, focusing on motor 

imagery as a task paradigm. Continuing from the findings in Chapter 2, I will then lay out a 

potential solution for improving motor imagery BCI based on two factors: visual stimuli and 

kinaesthetic stimuli. Finally, I will end the chapter by clearly stating my hypothesis and research 

aims, providing context to the following chapters of this current work.  

 

3.2. Signals of Intent for Active Robotic Control 

Robot-assisted devices for rehabilitation can either be passively or actively controlled (Wu et 

al., 2018; Marchal-Crespo and Reinkensmeyer, 2009). Both control strategies aim to provide 

physiotherapy by performing repetitive range-of-motion exercises in a clinical or home setting. 

The main difference between the two is in the modality of the input signal. Passive robotic 

devices are controlled by pre-programmed commands to perform a mechanical motion and are 

similar to a traditional session given by a physiotherapist. On the other hand, active robotic 

devices depend on the user’s intention to move or perform a task. Active participation in such 

therapy sessions is a crucial factor in increasing the rate of recovery in patients (Wu et al., 2018). 

Because of this principle, an active control strategy is utilised in robot-assisted rehabilitation 

(G.Y. Kim et al., 2017) and video game therapy (Vanbellingen et al., 2017).  

In order to provide signals for the active control of a robot for rehabilitation, we focus 

on the physiological signals of intent. A signal of intent, which can be external or internal, is 

acquired when the intention to move or perform a task is recognised and translated into 
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executable robot commands. Rehabilitative intervention is administered when the robotic device, 

in the form of an exoskeleton or end-effector, performs the motion aligned with the patient’s 

joints and linkages (G.Y. Kim et al., 2017). When executed successfully, whether as a continuous 

signal or a trigger, the robot provides the movement needed to close the neural loop between 

intention and execution. This active control strategy for therapy promotes activity-dependent 

neuroplasticity in stroke survivors undergoing therapy (Fregni and Pascual-Leone, 2006; Hallett, 

2001) and is achieved by the repeated utilisation of cognitive functions and personal experience 

to a task (Ganguly and Poo, 2013). 

External signals of intent refer to voluntary muscle movement and must be evident in 

musculoskeletal action. Examples of these include finger taps, eye movements, and voice 

commands. They are based on muscle activation brought upon by the intent signal coming from 

the brain descending into the motor pathways, which control skeletal muscle movement. For 

patients who have had a stroke, the intact regions of the brain can still provide such signals, but 

they are weaker in terms of magnitude (Marchal-Crespo and Reinkensmeyer, 2009). Not all of 

these external signals are optimal for controlling a robot for rehabilitation. The signal of intent 

must be closely related to the intended action. In this case, the focus should be on the movement 

of the upper extremities. In order to minimise the categorical differences between the signal of 

intent and the intended action, eye movement and voice commands should be ruled out as a 

viable signals for robotic control in this study.  

We now look at two types of external signals of intent that can be easily accessed and 

interpreted for robotic control. First, we have thin, flexible force sensors which can detect slight 

contact or pressure (Ashruf, 2002). They are made up of small resistors that record values 

according to the applied force. A simple and minimal movement such as a finger tap is only 

needed to recognise an intent with this sensor. This can be used as a trigger for the robot to 

perform the rest of the movement, thereby delivering the assistive intervention for its user. This 

technique can be ideal for patients with weak or spastic muscles as it combines both the 

advantages of an active and passive strategy for motor therapy. Second, we have 

electromyography (EMG) sensors that record electrical activity from skeletal muscles (Konrad, 

2006). An EMG signal is generated when individual muscle fibres exhibit a depolarization-
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repolarization process in its membrane during excitation. This creates a difference in electric 

charge between the two ends. Collectively, this difference can be detected by electrodes and 

amplified to give the signal; formally called as a motor unit action potential. Among different 

methods to acquire EMG, we look at non-invasive techniques particularly surface EMG (Konrad, 

2006). Unlike intramuscular EMG, which uses needle electrodes, surface EMG is portable and 

easily accessible as it uses conductive electrodes that record electrical muscle activity above the 

skin. With the correct placement of skin electrodes, one can extract motor intent from the regions 

of interest in the musculoskeletal system (Manguerra et al., 2018; Leonardis et al., 2015; Dipietro 

et al., 2005) are some examples of surface EMG being utilised as an active control method for 

robot-assisted rehabilitation. Figure 3.1 shows a map of external signals of intent and their 

usability as a control signal for a robot-assisted rehabilitation setup. The methods I deem to be 

non-viable and non-optimum for the current rehabilitation setup are greyed out. 

 

 

Figure 3.1: External signals of intent 

 

While using force sensors and surface EMG can be easily accessible and direct in 

acquiring external signals of intent, there are some limitations in using such techniques. For 

example, the disrupted motor pathways caused by the damaged brain regions after stroke may 

not be enough to elicit an EMG signal strong enough to be detected by electrodes (Marchal-

Crespo and Reinkensmeyer, 2009). This may also be the case for spasticity, where the muscle 
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tone is excessive, therefore, cannot be sensibly interpreted by the sensing system (Chen et al., 

2018). There are also issues involving high signal-to-noise ratios brought upon by subcutaneous 

fat diminishing the EMG signal (Kuiken et al., 2003). These limitations can make external signals 

of intent non-optimal as the primary source of the robotic device for rehabilitation. Therefore, 

as an alternative or complementary approach, we can increase the functionality of such devices 

by looking into internal signals of intent. 

Internal signals of intent originate from inside the central nervous system, particularly 

along the brain's cortical regions. These processes, when correctly interpreted, can bypass the 

efferent motor pathways and control a device directly. This is the principal basis for developing 

the architecture of brain-computer interfaces (BCI) (Wolpaw et al., 2002; Graimann et al., 2010). 

Brain activity decoding is more expansive in its methods and techniques than those with force 

sensors or EMG. It also requires more complex processing because its signals have more 

dimensionality in the spatial and temporal domains. During specific brain processes and states 

(e.g. cognition, planning and execution of motor-related activity), the brain elicits signature 

electrical signals brought by the transmission of chemical communicators (neurotransmitters) 

between individual neurons in specific regions of interest (Lovinger, 2008). These impulses can 

be recorded, interpreted and imaged by various methods (Lystad and Pollard, 2009). Finding 

the optimum technique for controlling a BCI requires having the right amount of spatial 

resolution, temporal resolution and accessibility, among other factors (Lenartowicz and Poldrack, 

2010). Spatial resolution in brain imaging refers to how well a technique measures individual 

neuronal populations during a particular activity. Decoding motor-related brain activity relies 

mainly on the sensorimotor cortex. A homunculus model (see Figure 3.2), a distorted 

representation of human body parts, shows how much space in the cortex is occupied by sensory 

and motor activities (Sinha et al., 2019). 
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Figure 3.2: Human homunculus of the sensorimotor cortex from (Sinha et al., 2019) 

 

Therefore, a technique with low spatial resolution would give us a “blurry” picture of the 

brain activity in the exact regions of interest. Likewise, a higher spatial resolution in a technique 

would resolve more activated brain regions; the more potential it can discriminate motor imagery 

tasks for BCI control (Chacko et al., 2019; Yong and Menon, 2015). The temporal resolution in 

brain decoding refers to how well a technique measures a brain activity signal in the time domain. 

This is usually determined by the frequency of samples recorded per second (unit: Hertz or Hz). 

Neural signatures for motor processes are quick and hard to find. They can span from 

milliseconds to seconds, and a good brain activity decoding system must record and process 

these samples seamlessly. 

The third requirement for an ideal brain activity decoding system is its accessibility. An 

ideal BCI-robot system for rehabilitation is portable/mobile, easy to set up, and user-friendly. 

This also means that the system should not require a costly laboratory setup nor a tedious and 

time-consuming patient preparation protocol for each therapy session. With these requirements 

in place, I can immediately rule out imaging techniques requiring room-scale space, such as 
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magnetoencephalography (MEG), positron emission tomography (PET) and functional Magnetic 

Resonance Imaging (fMRI), as these involve a bulky equipment setup (Lenartowicz and 

Poldrack, 2010; Lystad and Pollard, 2009). Some techniques also require electrodes to be 

implanted in the cortical or subcortical regions, such as electrocorticography (ECoG) (Hill et al., 

2012) and depth electrodes (Viskontas and Fried, 2009), among others. These invasive methods 

would require at least two surgical procedures: placing the electrodes before enrolling in the 

therapy programme and removing them. Because the ultimate goal of motor rehabilitation is to 

get out of the programme as soon as possible and continue doing activities of daily living 

independently, I also ruled these techniques out of this study. A non-invasive technique called 

functional near-infrared spectroscopy (fNIRS) measures hemodynamic patterns (i.e., blood 

oxygen) in the brain via optical absorption (Berger et al., 2019). This technique can provide a 

high temporal resolution and optimum spatial resolution and is relatively portable than room-

scale techniques. However, this technique is currently in its infancy and is less accessible to be 

adopted by developers of BCI-robot therapy systems. 

With all of these in mind, we look at electroencephalography (EEG), an accessible, non-

invasive and widely studied brain imaging procedure (Teplan, 2002). With the proper signal 

processing pipeline, the temporal and spatial resolutions of EEG required for motor activity 

interpretation can be achieved (Burle et al., 2015). EEG records brain activity from the scalp 

using conductive silver/silver chloride electrodes in dry, saline-soaked or gel forms (Teplan, 

2002). It has been argued that EEG has a relatively high temporal resolution but a sub-optimal 

spatial resolution (Burle et al., 2015). Furthermore, since EEG is recorded from the scalp, the 

electric signals get diminished as it passes through layers of anatomical barriers such as the 

meninges and the bones of the skull before reaching the skin where the electrodes are in contact 

(Nunez et al., 1994). While these physiological and technical limitations can pose a threat to its 

usability in BCI control, the growing research and development in signal processing algorithms 

and hardware implementation make it one of the premier techniques in acquiring motor-related 

signals of intent (Graimann et al., 2010; Lazarou et al., 2018; Rashid et al., 2020). Figure 3.3 

summarises the brain recording and imaging techniques used in decoding internal signals of 

intent. As with the external signals of intent, the methods I deem to be non-viable and non-

optimum for the current rehabilitation setup are greyed-out. 
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Figure 3.3: Internal signals of intent 

 

3.3. Electroencephalography-based Brain-Computer Interfaces 

The types of EEG-based BCI can be categorised based on their application or intended function. 

Each application has a corresponding decoding technique, electrode montage, and processing 

pipeline to detect a particular task's neural signatures. Vidal (1973) and Wolpaw et al. (2012) 

were the first to introduce mental strategies and brain patterns that can be decoded to control 

an EEG-based BCI. (Graimann et al., 2010) provided a comprehensive introduction to these 

systems and their applications. In their book, EEG signals for BCI control were categorised into 

those that use (1) selective attention and (2) motor imagery (Graimann et al., 2010). (Lotte, 

2014) provided a different perspective that categorised EEG-based BCI on oscillatory and non-

oscillatory activity. Recently, (Lazarou et al., 2018) have provided an in-depth review of these 

systems applying to motor rehabilitation. Their review categorised EEG-based BCI according to 

the following neurophysiological input: slow cortical potentials, evoked potentials, and 

sensorimotor rhythm. For the current study, it is most beneficial for the end-user to use an EEG 
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method closely related to motor activities in rehabilitation. EEG methods for BCI control can 

utilise non-motor related intent. Instead, these techniques rely on visual processes (i.e., depend 

on external visual stimuli) and other mental states such as attention and emotion. While some 

of these techniques have been implemented in assistive devices, its application for robot-assisted 

rehabilitation may be less optimal. These systems rely on the visual response of the user rather 

than the self-induced intent to perform an action (Fazel-Rezai et al., 2012). For the current 

study, the following techniques have been ruled out: 

 Event-Related Potential (ERP) BCI – ERPs can be extracted as a direct response 

to a specific sensory, cognitive, or motor event (Luck, 2005). The P300 Speller BCI is an 

example of a non-motor related ERP used as a signal to control a BCI. The P300 signal 

is extracted from electrodes around 250 to 500 milliseconds after a visual cue and is 

prominent along the parietal lobe region. This signal is often associated as a measure of 

cognitive function, particularly in decision making (Farwell and Donchin, 1988; Fazel-

Rezai et al., 2012). (Stan et al., 2015) have implemented this method to control a robot 

by spelling various letters from a grid-like pattern. 

 Visual Evoked Potential BCI – BCI types that are based on the brain’s natural 

response to visual stimuli and are initially characterised by a negative peak at 100 

milliseconds post-stimuli (N1) followed by a positive peak at 200 milliseconds (P2) 

(Vidal, 1973; Vidal, 1977). A variant of this technique uses Steady-State Visual Evoked 

Potentials (SSVEP), which are responses to visual stimuli at specific frequencies (i.e., 3.5 

Hz – 75 Hz) (Morgan et al., 1996; Müller et al., 1998). 

I now arrive with two EEG-based signals that are most associated with motor intent: 

 The first one is a type of motor-related slow cortical potential called 

Bereitschaftspotential (BP), also known as pre-motor potential or readiness potential. 

This signal is measured in the fluctuations of the δ band (0.1-4 Hz) at the primary motor 

cortex (M1) and supplementary motor area (SM1) about a second before movement onset 

(Bhagat et al., 2016). It is composed of two distinct components: BP1 (early BP) occurs 
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at -1.2 to -0.5 seconds, while BP2 (late BP) is at -0.5 seconds before movement onset 

(Bhagat et al., 2016). 

 The second one is based on the modulation of the sensorimotor rhythm (SMR) during 

action simulation, including motor imagery and action observation. Particularly, the 

EEG band power in the μ (9-11 Hz) and β (13-24 Hz) frequency bands produce signature 

patterns of desynchronisation and synchronisation during the execution of these events 

when compared to EEG band power at the resting state (Neuper and Pfurtscheller, 

2001). These event-related spectral perturbations are called event-related 

desynchronisation (ERD) or synchronisation (ERS). Contrary to BP, ERD/S happens 

at the onset of motor execution, motor imagery and action observation and can be 

sustained for more than a few seconds (Pfurtscheller and Lopes da Silva, 1999; 

Pfurtscheller and Aranibar, 1977). 

The nature of the signal determines how the EEG processing pipeline is developed as the 

stream of data will be eventually used in the active control of a robotic therapy system. While 

BP is a good predictor of movement onset, it is a hundred times shorter (thus more challenging 

to extract) than ERD/S. A good artefact rejection strategy and a high number of calibration 

trials will be required to predict these signals accurately. This also means that the training time 

for a BCI decoder will take longer, increasing the chances of user fatigue even before the actual 

therapy starts. ERD/S arising from motor imagery and execution can be much easier to extract, 

given that the magnitude of the signal is based on relative power changes seconds after the 

stimulus. For this reason, I selected the use of SMR modulations, particularly an ERD/S signal 

from motor imagery, as a viable internal signal of intent for robotic control.  

It is believed that motor simulation, which includes imagery and action observation, have 

a shared network of activations with that of motor execution or physical practice (Jeannerod, 

2001; Jeannerod, 2006). A recent meta-analysis (Hardwick et al., 2018) provided more insight 

into this shared network and found that these neural correlations have provided consistent 

recruitment in the motor cortex, parietal cortex, and subcortical regions. Several research groups 

have argued that with regards to activity-dependent neuroplasticity and the overall aim of 

rehabilitation, it is best to tap into nearby and related neural structures for the rewiring process; 
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given that the region being tapped is still intact and functioning well (Hatem et al., 2016; Hallett, 

2001; Zeiler and Krakauer, 2013). In the last two decades, motor imagery for conditioning (Lotze 

and Halsband, 2006; Cumming and Ramsey, 2009) and rehabilitation (Jackson et al., 2001) have 

been implemented successfully. However, its true potential in BCI has only been realised due to 

the rapid advances in brain imaging and signal processing (Chaudhari and Galiyawala, 2017).  

In some cases, motor attempt (rather than imagery) is encouraged as it is reported to 

provide better classification accuracies in BCI (Bai et al., 2020; Chen et al., 2021). This would 

best suit the clinical population (i.e., patients with hemiplegia or hemiparesis) undergoing 

therapy or in a clinical trial (Muralidharan et al., 2011). However, early development of novel 

BCI techniques requires the system to be tested on a healthy population and using attempted 

movement by a healthy individual to control a BCI would lead to actual movement. In this case, 

the advantages or disadvantages of using attempted movement over imagery in the early 

development phase of BCI would now depend on the nature of the study being performed. 

Motor imagery can be performed in visual or kinaesthetic forms. Visual imagery refers 

to the visualisation of action, while kinaesthetic imagery refers to rehearsing the sensation of 

muscle activation and proprioception (Neuper et al., 2005). The ability to perform each or both 

types of motor imagery can differ among individuals. Several scales based on subjective ratings 

or self-report questionnaires have been developed to measure this (McAvinue and Robertson, 

2008). Examples of these include the Vividness of Movement Imagery Questionnaire (VMIQ) 

(Isaac et al., 1986), the Movement Imagery Questionnaire (MIQ) (Hall et al., 1985) with revised 

versions called MIQ-R (Hall and Martin, 1997) and MIQ-RS (Gregg et al., 2010), and the Florida 

Praxis Imagery Questionnaire (FPIQ) (Ochipa et al., 1997) among others. (Collet et al., 2011) 

developed the motor imagery index (MII) as a robust method that includes psychometric, 

behavioural, and psychophysiological evaluations. However, this method has yet to be tested on 

a larger scale of participants to confirm its viability. 
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3.4. Brain-Computer Interfaces based on Motor Imagery 

3.4.1. Basic Principles of BCI Use 

An EEG-based BCI has three main components: (1) an EEG acquisition system, (2) a computer 

that functions both as a processor and stimuli presenter, and (3) a device to be controlled (which 

can be the same computer unit as previously mentioned) (Graimann et al., 2010). The EEG 

acquisition system sits at the ‘brain-end’ of this interface. Over the past decades, EEG-based 

BCI technology has rapidly improved simultaneously with other engineering and scientific fields 

(Rashid et al., 2020). Table 3.1 presents a list of these fields and their contributions to the 

development of EEG-based BCI. 

 

Table 3.1: Fields of development in EEG-based BCI 

Development Fields Contributions 

Hardware 
Electronics 

Signal amplifiers, wireless transmission of data, batteries, 
portability, supporting devices 

Materials Electrode design and conductivity 
Software Computing Signal processing pipeline, machine learning 

Theory 
Neuroscience, 
Psychology 

Experimental protocols, stimuli presentation, user experiences, 
technology adoption 

Application 
Medicine, Sports, 
Industry 

Stroke rehabilitation, prosthetics, physical and mental 
wellbeing, athletic conditioning, occupational health 

 

Chapter 4 will discuss the hardware and software aspects as I seek to develop an EEG-

based BCI with motor imagery as the primary task paradigm. For this section, I will focus on 

the theoretical aspects of BCI design, particularly on the experimental nature of BCI use. A BCI 

is organised as a hierarchy system that includes sessions, phases, and trials, similar to a typical 

EEG experiment. A session usually starts and ends with the preparation and dismantling of the 

BCI hardware, respectively. Multiple sessions can be performed in a day. However, this depends 

on the procedural design for a particular BCI. Figure 3.4a illustrates this hierarchal organisation 

for one BCI session, while Figure 3.4b shows a classic motor imagery BCI paradigm adapted 

from (Marchesotti et al., 2016). 
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Figure 3.4: Brain-computer interfaces based on motor imagery. (a) Hierarchal structure in 

BCI, (b) classic motor imagery BCI paradigm from (Marchesotti et al., 2016) – the red arrow 

provides the directional cue to the user while the blue bar is the feedback arising from the 

classifier output after processing new motor imagery attempts.  

 

There are phases of BCI use within a session that relate to a specific objective. This may 

be for training a classifier model (training phase), testing the classifier for its accuracy (testing 

phase), or using a BCI freely and without any structure (use phase). In each phase, a user 

performs a number of trials (T) for a specific task (e.g., motor imagery of hand grasping) and 

these trials can be further categorised into a pre-determined class (K) (e.g., consider left- or 

right-hand grasping as an example). The classes may dictate the degree of control for a BCI. 

The trials are arranged in a random order within the training and testing phases to minimise 

bias for a particular class. The classic motor imagery BCI paradigm, as seen in Figure 3.4b 

(Müller-Putz et al., 2016; Marchesotti et al., 2016), is the simplest example of this BCI setup. 

This approach allows a user to control a BCI based on movement position or hand direction 

(i.e., contralateral left- or right-hand movement) (Müller-Putz et al., 2016; Marchesotti et al., 

2016). In the training phase, directional cues in each trial are delivered visually by a display 

monitor. Once a cue is displayed, the user performs the motor imagery corresponding to the 

intended class (i.e., left- or right-hand grasping) for a number of N trials evenly divided for each 

of the two classes. A resting-state interval of a few seconds is applied between trials to signal 

the user to stop performing the current imagery task and get a baseline of the EEG signals. 
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After the training phase, a classifier generates a model that can discriminate classes based on 

sensorimotor rhythm modulations. In the testing phase, a similar process is performed. However, 

a bar is presented as feedback immediately after the trial cue to reflect the model’s predicted 

class (i.e., whether this new motor imagery attempt falls to the left- or right-hand class based 

on the classifier model being trained with the data from the training phase). A score is often 

displayed based on online classification accuracy during this phase – the correctly predicted 

classes in each trial out of the total trials presented (see Equation 3.1). 

 

𝑂𝑛𝑙𝑖𝑛𝑒 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
∑ ∑

100  (Equation 3.1) 

 

Where ΣK1 and ΣK2 are the correctly predicted left- and right-hand motor imagery classes and 

TN is the total number of trials in the testing phase. The literature Virgilio Gonzales et al. (2018) 

reported that the state-of-the-art online classification accuracies for left-hand versus right-hand 

motor imagery range from 63% - to 97%. This suggests that such accuracies depend on the 

synergy between the feature extraction and classification methods used within the motor imagery 

BCI processing pipeline. 

The number of classes in a motor imagery paradigm is also an important consideration 

in the development process as this determines the control resolution of the BCI device. In Section 

3.2 – Signals of Intent, I discussed that motor processes correspond to specific neuronal 

activations within the motor cortex's localities as mapped by the homunculus model (see Figure 

3.2). Therefore, the resolution of control in a motor imagery paradigm greatly depends on the 

spatial resolution of the brain signal acquisition device (i.e., EEG) and the ability of its software 

to distinguish patterns and localise their source. The most straightforward control resolution 

would be binary (i.e., comparing the execution of a mental task versus none), which would also 

be the easiest to decode. Increasing this to one notch gives us bi-directional control of a BCI 

(e.g., two motor imagery classes from two different mental states; contralateral left- and right-

hand imagery or contralateral left- and right-foot imagery). In other cases, the motor imagery 

of the tongue is also applied (Morash et al., 2008; Giannopulu and Mizutani, 2021). A setup like 

this would amount to 6 classes (left hand, right hand, left foot, right foot, tongue, none). While 
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it may seem beneficial for a BCI system to distinguish a higher number of classes, a few 

important factors should also be considered: 

1. A higher number of classes would also need more participant training data, which 

translates to longer calibration times leading to BCI use fatigue. 

2. Increased variability for the outcomes. A 6-class motor imagery setup gives one out 

of six chances to successfully translate intent into execution. 

3. The patient may not need all of these classes during therapy. 

On the other hand, implementing a straightforward control strategy (such as those in 

binary control BCIs, go/no-go) poses many limitations in the type of tasks that are involved in 

rehabilitation. This could be one of the reasons why a bi-directional control of a motor imagery 

BCI (i.e., left- and right-hand imagery) might be an optimum setup for BCIs in development.    

The total number of trials in the phases dictates the overall duration of the session. An 

average trial duration, including the rest interval, lasts for about 14-16 seconds (Marchesotti et 

al., 2016). Therefore, a phase that consists of 20 trials for each class (TN = 40) will span more 

than 10 minutes. It is important to note that this procedural design for BCI use can be repetitive 

and tiresome for many individuals. This means that even if a higher number of trials in the 

training session can lead to higher online accuracy scores, an optimum duration for BCI training 

must also be considered to prevent fatigue and maintain the user’s active participation. When 

applied to people who have had a stroke or brain injury, careful consideration of this parameter 

will prevent the patient from being too tired and unmotivated when they get to the use phase 

of a BCI. 

 

3.4.2. Signal Processing Methods 

The goal of processing a signal of intent for BCI use is to convert raw EEG signals acquired 

from each trial to a categorised and class-labelled prediction of sensorimotor rhythm 

modulations. In order to do this, we need to treat the EEG signals as multivariate time series 

data with M dimensions (i.e., electrode channels) and T timesteps. Figure 3.5, adapted from 

(Ismail Fawaz et al., 2019), provides a visual overview of this process. 
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Figure 3.5: Structure and processing overview of raw EEG signals as a multivariate time 

series from (Ismail Fawaz et al., 2019) 

 

Each time step xi in a univariate time series X = [x1 , x2 , … , xT] is a sample reading of 

a signal coming from an EEG electrode at a particular time point. The number of samples 

dictates the length of each trial's time series. All of the trials are then compiled into a tensor, a 

3-dimensional array with [N trials, M channels, T timesteps] (see Figure 3.6), and labelled with 

K classes. During the training of a classifier, the raw EEG tensor undergoes a series of non-linear 

transformations that extract features from the sensorimotor rhythm modulations (i.e., feature 

extraction and selection). In the next chapter, I will discuss each of the processing steps involved 

in a typical BCI pipeline. In the meantime, it is first worth knowing that the feature extraction 

step, via the data filters and functions, leads to an output of probability values of the distinct 

K classes. Therefore, the resulting predicted classes can be decided based on various criteria such 

as the user’s sensorimotor rhythm modulations during the training phase, the complexity of the 

feature extraction method used, and the thresholds applied for each of the pipeline’s parameters. 

After all, the performance of a BCI classifier is predetermined by how well the sensorimotor 

rhythm modulations between such classes are separated. An exemplary processing pipeline will 

have to achieve this while maintaining session duration and hardware requirements at the 

optimum level. 
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Figure 3.6: Motor imagery EEG tensor. Each trial is labelled with a particular class Ki 

 

In earlier discussions (see Section 3.3), I introduced that spectral band power estimations 

in the μ and β bands exhibit ERD/S patterns during motor imagery (Pfurtscheller and Lopes 

da Silva, 1999; Neuper and Pfurtscheller, 2001). The extraction of these neural signatures 

provides the basis for some of the first motor imagery-based BCI pipelines, especially those that 

use a Graz (i.e., classic) motor imagery paradigm (Lotte, 2014). ERD/S for each frequency band 

is calculated by squaring the bandpass-filtered signal leading to the band power samples, 

averaging across all trials and averaging over the time steps (smoothing). The ERD/S pattern 

is observed by a power decrease (desynchronisation) and increase (synchronisation) of the 

frequency band relative to a reference interval (baseline) before the trial. This approach is based 

on the Power Method (also known as the classical ERD method) (Kalcher and Pfurtscheller, 

1995) and can be expressed mathematically as follows (Equations 3.2 – 3.4): 

 

𝐴 =
 

𝑥 ( , )                          (Equation 3.2) 

 

Equation 3.2 results in a time course of instantaneous band power (Aj) after averaging over all 

trials (N). The x2 with the jth sample of the ith trial is the calculated band power after squaring 

the bandpass filtered EEG data (x). To calculate the % change in ERD, the average band power 

of a reference interval (R) must be subtracted and divided from the actual band power:    
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𝑅 =
 

𝐴     (Equation 3.3) 

 

𝐸𝑅𝐷 (%) = 100              (Equation 3.4) 

 

within the reference interval, ro is the starting point (usually set to seconds before stimulus 

onset), and k is the number of samples used to calculate the average band power.  Earlier 

publications tend to subtract the average band power of the actual samples from the relative 

interval (R - Aj), resulting in negative values for ERS % and positive values for ERD % (Kalcher 

and Pfurtscheller, 1995). This was later changed, which I now use in Equation 3.4, to be 

consistent with the definition of ERD as the power decrease and ERS as the power increase 

(Pfurtscheller and Lopes da Silva, 1999; Graimann and Pfurtscheller, 2006). 

The visualisation of the resulting processed signals can also explain how these pipelines 

function. Figure 3.7 shows the plots by (Neuper and Pfurtscheller, 2001) as they attempt to 

extract ERD/S patterns from the C3 electrode (central position, left hemisphere) during the 

motor imagery of the right foot and hand. When looking at these plots, one must focus on the 

per cent change of the y-axis after stimulus onset (x = 0). A negative shift in the values depicts 

ERD patterns, while a positive shift depicts ERS. 
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Figure 3.7: Event-related desynchronisation and synchronisation patterns (top two plots: 8-10 

Hz, bottom two plots: 10-12 Hz) among three subjects (as depicted by line type – solid, 

dashed, dotted) relative to rest at the C3 electrode during hand and foot imagery from 

(Neuper and Pfurtscheller, 2001).  

 

While the processing of ERD/S patterns provides a viable way of calculating and 

visualising sensorimotor rhythm modulations for BCI control, much information recorded by the 

electrodes can be lost along the way. Within the ERD/S extraction pipeline, spatial and temporal 

filtering techniques may be responsible for this loss. With this in mind, a trade-off between the 

feature extraction methods and the potential information loss during the process should be 

considered. Several approaches that attempt to extract distinct features from motor imagery-

induced classes other than the traditional ERD/S pipeline have been implemented with the rise 

of the machine and deep learning algorithms (Roy et al., 2019).  

Deep learning is a relatively new and powerful approach that provides an alternative to 

the traditional processing pipeline of EEG-based BCI. The rapid development of this artificial 

intelligence and machine learning subset may potentially discriminate motor imagery classes 

with less processing steps. Deep learning approaches use the many layers of artificial neurons 
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that can be trained to identify one or several distinct features and calculate the probability of a 

particular class based on the criteria of weights and biases (Ismail Fawaz et al., 2019; 

Schirrmeister et al., 2017). One example is a deep convolutional neural network (Deep ConvNet) 

developed by (Schirrmeister et al., 2017), which allows a model to learn local patterns in the raw 

EEG signal through several connected convolutional layers. Several others have implemented 

novel architectures that report higher accuracy scores than traditional pipelines (Roy et al., 

2019). However, there is still much to discover with deep learning algorithms that the BCI 

community has not fully adopted its use in clinical settings. I relay most of the concerns on what 

these convolutional layers perceive during the learning process and the implications of an 

unsupervised learning approach to the resulting model. 

 

3.4.3. Current Issues and Limitations 

With all of these recent developments, motor imagery-based BCIs still have several issues and 

limitations that need addressing. I summarise these in the following statements: 

1. Using motor imagery-based BCI alone is not for a general purpose/‘one-size-fits-all’ 

solution to the internal active strategy of robotic control. BCI-illiteracy is currently a 

major topic of debate in the scientific community as it is reported that around 10%-30% 

of participants cannot modulate their sensorimotor rhythm – an essential requirement to 

control a motor imagery BCI (Ahn et al., 2013). Furthermore, this issue is exacerbated 

when one tries to implement a motor imagery BCI therapy for stroke survivors who have 

impaired brain substrates where motor imagery is believed to be elicited. BCI researchers 

have been addressing this by improving sensing capabilities through a hybrid BCI that 

combines EEG with other sensors such as EMG and/or EOG (Zhang et al., 2019; 

Witkowski et al., 2014). Furthermore, developing more robust processing algorithms will 

improve the signal quality and sensitivity of those who find it hard to modulate 

sensorimotor rhythm during motor imagery based BCI training. 

2. Motor imagery BCI's intra- and inter-subject variability makes the training and 

calibration phase a long and tedious process (Saha and Baumert, 2020). The user’s 

acquired fatigue poses a concern for those wanting to implement such systems for clinical 
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use. Two of the possible ways to resolve this is to either increase the classifying accuracy 

after training with better algorithms and processing pipelines (‘go better’ approach) or 

to reach an optimum accuracy level with the least number of trials to shorten the 

duration of the training phase (‘go faster’ approach).  

3. More key information about the neural correlates of motor imagery classes might be lost 

during the signal processing steps. It is important to know the extent of these and their 

relevance to the generation of decision boundaries for classification. It might be a case 

that some unutilised data contain key information that might help improve BCI use. 

This can be explored further by comparing widely accepted approaches to those using 

raw or less processed EEG data, such as those in deep learning algorithms. By visualising 

and analysing both approaches side-by-side, one might extract and study the mechanisms 

that drive these decision boundaries and increase the overall control resolution of motor 

imagery BCI.  

4. On the other hand, more attention might be placed on the new algorithms and techniques 

in signal processing but less on the human-facing side of the BCI training, as raised by 

(Jeunet et al., 2016) and (Lotte et al., 2013). The current protocols for BCI training 

might not be enough to elicit active participation from the user. Where the user, having 

an experience of BCI training and use, is overlooked by the delivery of abstract stimuli 

(i.e., arrows and bars in the Graz paradigm). The proposition is to look into both human 

and machine learning aspects and improve these with as much concurrency as possible. 

These points agree with the key findings reported in the recent systematic review of BCI-robot 

systems in Chapter 2. In this review, I reported that:  

1. There are limitations evident in the resolution of hand motor imagery (i.e., discriminating 

contralateral hand movement or go/no-go decisions) and the degree of robotic control 

(i.e., triggering or continuous control) 

2. The task design, cues, and matching sensory feedback play an important role in the 

ability to perform motor imagery 
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3. There is a degree of inferiority concerning the visual and kinaesthetic stimuli presented 

in most BCI-robot systems, which may contribute to the lack of adoption of motor 

imagery BCI for clinical use. 

Therefore, it might be worth addressing these limitations with a user-centred design approach, 

particularly on the visual and kinaesthetic stimuli that facilitate the trials, as a key motivator 

in improving the technology and making a novel contribution to this field.  

 

3.5. Understanding the Visual and Kinaesthetic Stimuli 

3.5.1. The Visual Stimuli 

In Section 3.3., I presented Jeannerod’s theory on action simulation and the shared network of 

neuronal structures among processes that involve motor imagery, motor execution, and action 

observation (Jeannerod, 2001). Prior to this, it is also believed that a network of ‘mirror neurons’ 

is activated when an individual observes and recognises a motor task being done by another 

individual (di Pellegrino et al., 1992). These findings give basis to the use of action observation 

as a supplementary tool to facilitate motor imagery and execution as described in recent EEG 

experiments: motor imagery with action observation (Eaves et al., 2016) and motor imagery 

with action observation and motor execution (Ono et al., 2018; Wang et al., 2018). The use of 

action observation to facilitate motor imagery and/or motor execution for EEG-based BCI has 

been limited to presenting a video or animation of hand movements on a flat computer display 

screen (Ono et al., 2018; Wang et al., 2018). With the emergence of immersive technologies such 

as VR and AR, one can deliver a novel approach to enhancing the visual stimuli through action 

observation with the following benefits:  

1. Embodiment – a first-person embodied avatar performing a pre-determined action of 

everyday experiences can provide an enhanced and extended sense of ownership, agency 

and self-location for the user; based on the principles of the rubber hand illusion and the 

body transfer illusion (Škola and Liarokapis, 2018). Furthermore, it was reported that a 

stimulus with more humanlike hands resulted in higher motor imagery performance 
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among participants than those provided with a stimulus akin to a robotic gripper 

(Alimardani et al., 2016). 

2. Gamification and progressive training – gamification is the provision of objectives, 

themes, and performance measures for a particular task, while progressive training is the 

practice of changing the difficulty (i.e., the pace of the task, hurdles to achieve the task, 

etc.) as the user gets better or worse in the task. These features are said to motivate the 

user to perform better, improve their attention, and increase their immersion in the game 

(Škola et al., 2019). 

3. Enhanced visual environment – VR provides a new platform for human behavioural 

experiments by subjecting the participant to an immersive simulated environment. 

However, this relies on the degree of validity and fidelity of the task and the virtual 

environment (Harris et al., 2020). It must be noted that the goal of implementing a VR 

platform for motor imagery based BCI must be on the limitations of enhancing the nature 

of the task to elicit signals of intent and its capability to promote active participation 

during the session. Otherwise, elements may distract the user instead, leading to an 

added noise to the signal being processed. 

4. Benefit for the therapist or researcher – the implementation of VR and other immersive 

technologies in human behaviour experimentation and exploration have been given much 

attention recently (Harris et al., 2020; Brookes et al., 2019). Currently, tools have been 

developed to support data collection so that therapists and researchers can get more out 

of the platform than deliver enhanced visual stimuli (Brookes et al., 2019). 

Apart from Skola (2019), a number of efforts have integrated BCIs with AR/VR systems. Tan 

et al. (2017) provided a general review of these, while Salisbury et al. (2016) and Wen et al. 

(2021) surveyed studies in the context of neurorehabilitation. Among these is REINVENT which 

stands for “Rehabilitation Environment using the Integration of Neuromuscular-based Virtual 

Enhancements for Neural Training” (Spicer et al., 2017). It is a low-cost BCI-VR device targeted 

to deliver motor rehabilitation of the upper limbs in severe stroke patients. REINVENT was 

developed on the basis that action observation and BCI-neurofeedback can help with the 

rehabilitation of the paretic upper limb. This device has since been tested on its feasibility with 
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a clinical study that involved four chronic stroke patients (Vourvopoulos et al., 2019). Other 

applications for BCI-VR systems have also been developed. Tremmel et al. (2019) used an EEG-

VR system to estimate three varying levels of cognitive workload in an immersive VR 

environment using low-frequency (θ-β) EEG bands. Coogan and He (2018) integrated BCI2000, 

a popular software package in early BCI development, with the Unity gaming engine platform. 

This work also provided a template layer for developers/researchers to utilise in various 

applications (e.g., gaming, psychology, internet-of-things, etc.) by modifying the current 

paradigm in Unity. While BCI-VR systems may carry a high potential to improve the current 

BCI-robot rehabilitation paradigm, there are still challenges that need to be addressed to be 

fully adopted in a clinical setting. Wen et al. (2021) suggested that the low data transfer rate, 

EEG signal quality (e.g., movement artefacts, electromagnetic interference), analysis algorithm 

and familiarity with the virtual environments are some of these challenges. The current work 

allowed me to encounter most of these problems and I discuss in the succeeding chapters my 

recommendations on how to address them. 

 

3.5.2. The Kinaesthetic Stimuli 

During motor imagery-based BCI training, a preference to perform kinaesthetic imagery rather 

than visual imagery is observed (Neuper et al., 2005). As discussed in Section 3.2., kinaesthetic 

motor imagery refers to the sensation of muscle activation and proprioception during the 

simulation of action, while visual motor imagery more relates to its visualisation. These two 

modalities have exhibited differences in their neural correlates (Chholak et al., 2019; Stecklow 

et al., 2010). However, kinaesthetic motor imagery was reported to exhibit more prominence in 

spatial patterns, particularly around the hand sensorimotor cortex area (Neuper et al., 2005). 

Several theories agree that the neural mechanisms involved in kinaesthetic motor imagery 

overlap those involved during motor execution, including the posterior parietal cortex, the 

cerebellum, the basal ganglia and the premotor cortex (Ridderinkhof and Brass, 2015). Moreover, 

the accessibility of kinaesthetic motor imagery is attributed to the personal experience of each 

individual (Stecklow et al., 2010; Ridderinkhof and Brass, 2015). 
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When combined with physical practice, kinaesthetic motor imagery was reported to 

improve performance in healthy adults (White et al., 1979) and stroke survivors (Chowdhury, 

Meena, et al., 2018). Chowdhury et al. (2018) reported improvements in neural activity (p<0.05) 

and rehabilitation outcomes (Action Research Arm Test, ARAT; p<0.05) after the intervention. 

Liu et al. (2014) reported improved hand function scores (ARAT p=0.04) in groups that 

combined physical practice with MI and stronger neural activity in the contralateral 

somatosensory motor cortex compared to a control group who did physical practice alone. 

Therefore, it would make sense to investigate how these findings translate into motor imagery 

based BCI training. Aside from the mechanical feedback delivered after successful motor imagery 

trials (Ono et al., 2018), an anatomically congruent kinaesthetic stimulation provided by a 

robotic hand glove or exoskeleton can perform physical practice before kinaesthetic motor 

imagery.  

 

3.6. Research Aims and Hypotheses 

3.6.1. Research Gaps and Questions  

The current developments and limitations of motor imagery BCI systems highlighted the 

importance of the visual and kinaesthetic stimuli in all phases of the intended therapy session. 

Through the discussions in the previous sections, I found a clear research gap in the 

enhancement, integration, and alignment of these stimulus modalities with the current motor 

imagery BCI protocol. The implementation of an enhanced embodiment and visual environment 

in VR has not been applied to the physical practice brought by a robotic mechanism during 

motor imagery tasks. Furthermore, the gamification of visual and kinaesthetic motor imagery 

training, which are potential implementors of a co-adaptive approach in BCI, has not been 

implemented using these components after a thorough search of the literature. It is possible that 

a clear understanding of the interactions between the enhanced visual and kinaesthetic 

implementations with respect to motor imagery BCI systems and with each other must be 

obtained. Finally, the research community has not addressed how these modalities affect simple 

hand grasping motor imagery tasks. With these in mind, I propose the design and development 

of an enhanced visual and kinaesthetic stimuli delivery system and the integration of these 
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modalities into a unified motor imagery BCI prototype. Figure 3.8 presents the theoretical basis 

of this work as a graphical summary based on the engineering design process and methodology 

leading to the proposed prototype components. 

 

 

Figure 3.8: Theoretical framework of the study based on the engineering design process. 

Through a systematic review of existing literature, the need to develop user-centric BCI was 

defined (problem statement) to improve the visual and kinaesthetic stimuli (theory). The 

technical requirements to solve this problem are then enumerated, resulting in a BCI-VR-robot 

prototype's proposed integration. The directional arrows represent the flow of ideas and their 

relation to each process stage.  

 

The unified motor imagery BCI prototype will be composed of the following components: 

 Component 1: A core EEG-based BCI that extracts and processes the spectral band 

power from the raw EEG signal (feature extraction) during contralateral hand motor 

imagery tasks. The features are then used to train a logistic regression model (classifier) 

to discriminate hand movement imagery classes. 

 Component 2:  A VR platform for a motor imagery BCI paradigm that uses the principles 

of action observation and the embodiment and animation of anthropomorphic hands as 

the main source of the participants’ cue and feedback stimuli. The enhanced visual 
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environment and gamification of motor imagery shall also be implemented to improve 

attention and active participation during the therapy sessions. 

 Component 3: A robotic hand exoskeleton for hand grasping to deliver an enhanced 

kinaesthetic stimulus for motor imagery based BCI therapy. This device, which should 

be worn by a participant during motor imagery BCI training, can be activated 

simultaneously during the trial to induce guided proprioception and kinaesthetic 

sensation to the user and aid in performing kinaesthetic motor imagery. 

 

I ask the following questions in order to test the proposed prototype on its theoretical basis and 

to give recommendations for future iterations: 

a. How does the enhanced visual and kinaesthetic stimuli, individually and combined, 

through a BCI-VR-robot system affect motor imagery signal strength in measures of 

online classification accuracy, predicted class probabilities, and EEG signal? 

b. Do these changes, if any, progress over time (i.e., learning effects)? 

 

3.6.2. Research Aims 

In order to address these research questions, I set the following specific objectives: 

1. Develop a core motor imagery based BCI system. The system must input a multivariate 

time series of raw EEG data and output class predictions based on a pre-trained classifier. 

The predictions can then be used as a trigger to deliver feedback to the user. 

2. Design and implement a VR-based virtual environment and integrate it with the core 

motor imagery BCI system. The combined BCI-VR component must:  

a. Provide a virtual embodiment of the hands, perform animations of hand grasping, 

and be able to track the user’s hand position and orientation  

b. Provide an enhanced task environment through virtual elements and gamification 
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3. Design and implement a robotic hand exoskeleton and connect it to the motor imagery 

BCI and VR systems. The robotic hand exoskeleton must: 

a. Deliver full grasping sensation on both hands through its motors and linkages 

b. Be tested on technical specifications relating to functionality and safety 

4. Integrate a full BCI-VR-robot system. The integrated system must be tested on its 

efficacy in enhancing motor imagery signal strength based on online classification 

accuracy (scores in the game), predicted class probabilities against the true class, and 

ERD/S patterns of its EEG signal 

 

3.6.3. Hypotheses 

In Table 3.2, I provide the hypotheses for the current study. Note that when I mention BCI 

performance, I refer to the following three measures: (1) online classification accuracy, (2) class 

probabilities, and (3) EEG signal. 

 

Table 3.2: Research hypotheses 

System and Effects Hypothesis 

H1 
BCI-VR  

main effect 

The enhanced visual stimuli through the VR component will 

significantly improve motor imagery BCI performance when 

compared to a control (without VR) 

H2 
BCI-robot 

main effect  

The enhanced kinaesthetic stimuli through the robotic hand 

exoskeleton will significantly improve motor imagery BCI 

performance when compared to a control (without a robot) 

H3 
BCI-VR-robot 

interaction 

The combined enhanced visual and kinaesthetic stimuli will 

significantly improve motor imagery BCI performance when 

compared to the prior conditions and the control 

H4 
BCI-VR-robot 

learning effect 

These effects will significantly increase as the number of 

sessions for each condition increases 
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Chapter 4 

Development of a Motor Imagery 
based Brain-Computer Interface 
Paradigm in Virtual Reality 

 
4.1. Introduction 

This chapter explains the development of a motor imagery task paradigm using a non-invasive 

EEG-based BCI system and VR. The imagination of left- and right-hand grasping was utilised 

to elicit changes in the sensorimotor rhythm, which a pretrained machine learning classifier can 

then decode. The BCI development section includes discussions on the hardware, software, and 

signal processing components of the BCI system, serving as the backbone of the prototype. The 

gamification of an immersive VR environment involving physical hand tracking and embodied 

hand animations was also integrated into the task paradigm. Finally, a discussion on the 

implications of the current BCI-VR prototype was done to summarise its contribution to current 

motor imagery based BCI systems and lay the groundwork for future experiments. 

 

4.2. Brain-Computer Interface Development 

4.2.1. Hardware 

In this work, an Enobio-8 EEG data acquisition system from Neuroelectrics (Barcelona, Spain) 

was used. Enobio-8 is a portable and low-cost device that can record and stream EEG from 8 

electrode channels with two reference electrodes. The system uses standard 4-mm pellets of 

silver/silver chloride sintered electrodes with a circular contact area of 1.75 cm2. Electric signals 

are recorded from the scalp through a conductive electrolyte gel (Signa Gel) from Parker 

Laboratories, Inc. (New Jersey, USA). To get a good spatial coverage of the primary motor 

cortex (M1) and surrounding areas, electrodes were set to the C3, C4, FC5, FC6, C1, C2, CP5, 
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CP6 locations of a neoprene EEG cap. These locations are based on the 10-10 international 

electrode placement system for EEG and are based on the most common electrodes used among 

the 21 motor imagery BCI studies listed in Chapter 2 – Systematic Review. Referencing was 

made using the Common Mode Sense (CMS) and Driven Right Leg (DRL) electrodes which are 

set to be attached to the right earlobe of the user. All ten electrodes are connected to a wireless 

amplifier which transmits the recorded EEG data through a wireless fidelity (Wi-Fi) connection 

(see Figure 4.1 for the full setup). 

 

 

Figure 4.1: EEG and VR hardware setup 

 

A Wi-Fi enabled Hewlett-Packard Omen-17 gaming laptop computer (California, USA) received 

the transmitted data which are then compiled within the Neuroelectrics Instrument Controller 

software (NIC2) for further processing. For this setup, the minimum specifications for the 

personal computer are provided as follows: 

 Operating System: 64-bit Windows 10 (Microsoft Corporation, Washington, USA) 

 Random Access Memory (RAM): 8 GB 

 Graphics Processing Unit (GPU): 6 GB 

 Ports and Connectivity: (3) USB, (1) Display Port or HDMI, Wi-Fi capable 
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4.2.2. Software 

The workflow of the BCI software is based on the trial structure previously described in Chapter 

3. Several software modules communicate to pass streaming data (i.e., EEG signals, event 

markers, prediction streams, etc.) around the BCI framework in each trial. These software 

modules are a combination of applications that are either commercially available, open-sourced, 

or custom-made. Most custom-made scripts were written using the Python programming 

language (version 3.7.4). A link to the GitHub repository of these software modules can be 

accessed here: https://github.com/paulbaniqued/bci-vr-robot-integration. Figure 4.2 presents a 

schematic of the current BCI-VR-robot system's software applications and hardware 

components.  

 

 

Figure 4.2: System components of the BCI-VR-robot prototype 

 

The first software component is a novel Python module for stimuli presentation called 

StimPres.py. This module allows the generation of a trial list (default setting: 60 trials, 30 per 

class), randomized for the two classes, which are then sent out as event markers (a timestamp 

aligned to the EEG data to mark an event) and cue triggers (a signal to trigger other software 

modules to present the cue: imagine left-hand, imagine right-hand, rest, etc.) via 
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Labstreaminglayer or LSL (“pylsl”) – both of these are sent out simultaneously. LSL is a 

streaming protocol that can collect, synchronise, and stream time-series data to the computer’s 

local network. The entire GitHub repository of LSL can be accessed at the following link: 

https://github.com/sccn/labstreaminglayer. The StimPres.py module provides a uniquely 

identified outlet data stream to send out integer codes corresponding to the events happening 

within each trial. Visual and audio stimuli were also generated from the script via the “tkinter” 

and “playsound (version 1.2.2)” packages, respectively. These packages allowed the presentation 

of classic motor imagery elements on the personal computer (see Table 4.1 for their full 

descriptions). 

 

Table 4.1: Event markers and corresponding elements 

Marker Event Description Visual and Auditory Stimuli 

1 Start of the session ◼ Blank screen. 

2 Get ready for trial. Start of the baseline period. + Green fixation cross. Low tone. 

3 Start of the trial. Cue is LEFT HAND. ← Red left Arrow. High tone. 

4 Start of the trial. Cue is RIGHT HAND. → Red right Arrow. High tone. 

5 End of the trial. Start of rest period. ◼ Blank screen. 

6 End of the session. Window closes. Victory sound. 

 

As the event markers are streamed via LSL, the NIC2 software (see Figure 4.3) receives 

and synchronises this with the incoming raw EEG signals at a sampling rate of 500 

samples/second. The NIC2 module also performs experimental protocol settings such as labelling 

electrode channels and LSL streaming via an outlet EEG. 
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Figure 4.3: NIC2 software interface 
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Figure 4.4 shows the program flowchart for the StimPres.py module. 

 

Figure 4.4: Program flowchart of the StimPres.py Python module - the BCI system's 

backbone experiment controller and stimuli presenter. The default settings and timings are 

indicated on the left-hand side of the figure. 
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The combined EEG and marker stream are then received by NeuroPype, a python-based 

signal processing pipeline from Syntrogi, Inc. Intheon (California, USA). NeuroPype allows the 

design and implementation of a BCI by converting raw EEG data into class probabilities through 

a simple machine learning algorithm. Details of this pipeline and algorithm are discussed in 

Section 4.2.3. Moreover, NeuroPype also saves the raw and bandpass filtered EEG data into an 

Extensible Data Format for time series (.XDF extension) for offline analysis. Finally, class 

probabilities from the NeuroPype pipeline (“Prediction” stream) are streamed back to the local 

computer network via LSL.  

A novel Python module for results logging called Logger.py receives the incoming 

“Prediction” stream and compares it with the event markers from the StimPres.py module 

(renamed as “Truth” stream to reflect the true class of the trial). A default setting for this script 

provides a correct prediction if the predicted class (i.e., the class with a probability that is greater 

than 0.50) matches the true class of the trial. Likewise, if the true class probability falls below 

0.50, then the trial is labelled as incorrect. Aside from visually displaying a bar plot of class 

probabilities, a chime sound was played for the correct trials, while a buzzer sound was played 

for incorrect trials. To increase confidence for true positive predictions, a 0.60 threshold value 

for class probabilities was implemented instead of the default >0.50 criterion. This was based 

on a previous discussion by (Combrisson and Jerbi, 2015). In this iteration, the trials that did 

not meet the threshold were not presented with a rewarding visual and auditory stimulus. At 

the end of each trial, a log of the true class, predicted class, left class probability, right class 

probability, and score are written as one row on a compiled data frame which are then saved as 

comma-separated values (CSV) file. To enable blinding during BCI experiments, session log 

filenames were encrypted by generating a unique combination of alphanumeric identifier codes 

corresponding to that session – encryption keys were stored in a JSON (JavaScript Object 

Notation) file. Figure 4.5 shows the program flowchart of the Logger.py Python module. 
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Figure 4.5: Program flowchart of the Logger.py Python module 

 

4.2.3. Signal Processing 

The decoding of raw EEG signals into class probabilities were performed in NeuroPype using a 

simple motor imagery scenario. A notch filter was first used to remove line noise from the raw 
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EEG signal at 50 Hz using the NIC2 software. The pre-processed EEG data with event markers 

are then streamed out to the NeuroPype pipeline designer module via LSL. NeuroPype follows 

a “drag-and-drop” user interface containing nodes and connectors which are saved into a 

NeuroPype Pipeline Designer file with a .PYP extension. A node corresponds to a particular 

process or steps in the signal processing pipeline (e.g., feature extraction, classification, file 

management, etc.). These often contain several input and output slots for various data streams. 

Some nodes can also display data visualisations such as time series plots, bar charts and spatial 

heat maps. Nodes are then connected by lines through which an order of steps can be arranged. 

For this setup, the pipeline begins and ends with an LSL input and output node to allow 

communication with other modules. This also allows the .PYP file to be running in the 

background while the StimPres.py module presents its visual stimuli on the display monitor. 

In Chapter 3, it was discussed that a typical BCI session follows a training and testing 

phase structure. These phases are dependent on the trial-based session protocol implemented by 

the StimPres.py module through its event markers. The event markers generated in this module 

also determine the timing and length of epochs. Epochs are slices of time series data labelled 

with a given class for a BCI task in the current BCI system. Two NeuroPype pipeline scenarios 

were designed for this setup, corresponding to the training (mi-training.pyp) and testing (mi-

testing.pyp) phases of the BCI session. These scenarios both depend on the stream of event 

markers provided by the StimPres.py module and are aligned with the EEG data by the NIC2 

software. The training phase scenario involves a simple collect-and-record pipeline that utilises 

an LSL input node and a ‘Record to XDF’ node. In addition, two other nodes are attached to 

the LSL input node: the first is a visualisation node that allows the plotting of the raw EEG and 

event markers time series for signal quality diagnostics, while the second node is a file writing 

node that records the bandpass filtered stream in XDF for offline analysis. More details on 

bandpass filtering will be discussed in the following paragraphs. Upon completing the training 

phase, the recorded EEG and event marker streams are fed into the testing phase pipeline 

scenario (mi-testing.pyp) to calibrate machine learning-related nodes such as the spatial filters 

and classifiers. Figure 4.6 shows the pipeline design of the testing phase pipeline scenario in 

NeuroPype.  
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Figure 4.6: Testing phase pipeline design in NeuroPype 
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The testing phase scenario involves resolving an LSL stream containing the raw EEG 

signals and event markers using the ‘LSL input’ node. Aside from the main pipeline, this node 

is also connected to a file writing node which saves the raw data into an XDF format and a data 

visualisation node that plots a time-series graph. The next step in the main pipeline is the 

conversion of event markers which are originally integer64 types, into string types ‘left’ (0) and 

‘right’ (1) using the ‘Rewrite Markers’ node. A ‘Dejitter Timestamps’ node follows this to 

maintain time synchronisation of the raw EEG data with the event markers. The pre-recorded 

training data are fed into the pipeline first through an' Inject Calibration Data' node, allowing 

the machine learning-based nodes (i.e., feature extraction, classification) to be trained for the 

incoming online stream. The ‘Assign Targets’ and ‘Select Range’ nodes are applied to the online 

stream to allow data reorganisation and labelling.  

A bandpass filter between 8-30 Hz is applied to limit the bandwidth of the EEG signal 

into motor imagery-related frequencies μ and β, as discussed in Section 3.2. A finite impulse 

response (FIR) filter through an ‘FIR filter’ node was used in this step and served as the default 

setting. This node is also connected to a file writing node ‘Record to XDF’, similar to the one 

connected to the raw EEG data. Recording a post-filtered signal to XDF allows an additional 

layer of session recording for offline use. From the bandpass filtered EEG signals, epochs with a 

length of 4 seconds and labelled by their true class were generated using a segmentation node. 

This step enables all training and testing trials to be categorised based on their true classes, 

which is a pre-requisite for training the machine learning-based nodes. 

Spatial filters are then generated from the ‘Common Spatial Patterns (CSP)’ node using 

the pre-recorded training data. The CSP algorithm allows multi-channel EEG data to be 

projected into a low-dimensional spatial subspace using its spatial filters (Ramoser et al., 2000; 

Blankertz et al., 2008). The process starts with input data from the bandpass-filtered and 

epoched single-trial EEG in the form of an N x T matrix, where N is the number of EEG channels 

and T is the number of samples per channel. By obtaining a normalised spatial covariance of 

the data for each class, a projection matrix where each row is a spatial filter containing the 

weights for each channel is generated. This matrix's top and bottom rows are then selected after 

being optimised to provide the maximum variance between the two classes. Upon the spatial 
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decomposition of the signals with the CSP node, the natural logarithm of the variances from the 

output channels is then calculated. This was done by passing the data to a variance node followed 

by a logarithm node. 

A regularised logistic regression model was trained and used in this scenario to compute 

for class probabilities. The logistic regression algorithm uses the input variables from the training 

data with two classes to generate a logistic curve that serves as the classifier for the incoming 

online trials. The probability that one of the given classes is true is calculated using Equation 

4.1. 

 

𝑃 (𝑌 = 0 | 𝑋) =
 ( ∑ )    (Equation 4.1) 

 

Where Pclass is the probability value of the class, e is the base of the natural logarithm, w0 is the 

value that yields the probability when X is 0 (intercept), and wi is the weight factor given a 

continuous X (slope/coefficient). The hyperplane equation then represents the decision boundary 

(see Equation 4.2).  

 

𝑌 = 𝑤 + ∑ 𝑤 𝑋     (Equation 4.2) 

 

Likewise, the probability of the other (false) class being true is given by Equation 4.3. 

 

𝑃  (𝑌 = 1 | 𝑋) =  1 −  𝑃(𝑌 = 0 |𝑋) =
( ∑ ) 

 ( ∑ )   (Equation 4.3) 

 

The resulting outputs are two class probabilities streams for the given trial's left and right. These 

values are then displayed to the NeuroPype interface using the ‘Streaming Bar Plot’ and ‘Print 

to Console’ nodes. As previously mentioned, the testing phase scenario ends with an ‘LSL output’ 



76 
 

node where the class probabilities are streamed and named “Predictions”. The stream of event 

markers that have gone through the pipeline is renamed “Truths”. Both of these streams are 

then received by the Python Logger.py module for results logging and integration with the VR 

and robot systems. 

 

4.3. Virtual Reality Game Development 

4.3.1. Hardware 

An Oculus Rift S head-mounted display (HMD) from Facebook Technologies, LLC./Meta 

Platforms, Inc. (California, USA) was used as the default VR hardware for the current system. 

It uses a single fast-switch liquid crystal display (LCD) panel with a total resolution of 2560x1440 

pixels (1280x1440 pixels per eye), a refresh rate of 80 Hz, and a field of view of 115°. In addition, 

the HMD uses a six-degree-of-freedom (6DOF) inside-out rotational and positional tracking with 

its five built-in cameras, allowing stationary and room-scale experiences. The design of the 

Oculus Rift S HMD does not interfere with the Enobio-8 EEG system, allowing the placement 

of its electrodes along the positions described in Section 4.2.1. However, the original attachment 

of the Enobio-8 amplifier interferes with the Oculus Rift S headband and must be placed just 

above the adjustable knob and secured using the head strap (see Figure 4.1b). 

The position and orientation of the user’s hands were tracked using a Leap Motion 

controller (Ultraleap, California, USA) mounted to the front of the Oculus Rift S HMD. Leap 

Motion uses a combination of infrared light-emitting diodes (LED) and depth cameras to 

recognise hand position and gestures in 3D space. In this current setup, only the position and 

orientation of the user’s palms were mapped into the 3D space of the virtual environment because 

the movement of the fingers was triggered by animation to provide the embodied visual cue 

during trials.  
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4.3.2. Virtual Environment 

A 3D virtual task environment was developed in Unity version 2019.3.6f1 (Unity Technologies, 

California, USA) based on the classic motor imagery BCI trial structure. The virtual scenario 

involves the user is situated in a typical task room where a classic motor imagery EEG 

experiment is performed. A well-lit workspace with a table, chair, and display monitor is 

imported to the Unity scene from the Google Poly library and other common workplace objects 

to simulate a realistic room environment. On the virtual display monitor, the usual elements of 

a classic motor imagery BCI setup (i.e., arrows, bars, trial number, etc.) is arranged. However, 

the task’s centrepieces are the virtual hand models that are tracked using the Leap Motion 

controller. The virtual hand models and their corresponding assets (i.e., skins, rig, mesh models) 

were imported from the Leap Motion Hands Module for Unity. A low-polygon hand mesh model 

was selected and applied with a matte white material to contrast the wood-textured table in the 

virtual room. A grasping animation for each hand was generated with one movement cycle (i.e., 

hand open-close-open) corresponding to the trial duration for every cue marker received. Spark 

particles were generated from the hand for trials involving feedback and set to instantiate if a 

correct classification was obtained. Figure 4.7 shows the virtual motor imagery task paradigm 

(training phase) and its various events in Unity. 

 

 

Figure 4.7: Motor imagery task paradigm of the training phase in virtual reality 
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The cue and feedback elements in the VR scenario were all triggered by LSL using the 

LSL4Unity and liblsl-Csharp modules from the Labstreaminglayer repository on GitHub. To do 

this, an empty game object was generated and attached with an LSL prefab containing the LSL 

Marker Stream script. This script resolved specific streaming data generated from the outlet 

streams of both the StimPres.py (cue markers) and Logger.py (class predictions) modules every 

time Unity was switched into game mode.  

 

4.4. Summary 

This chapter discusses the development of a BCI-VR prototype focusing on the design and 

implementation of both its hardware and software components. A backbone BCI system 

composed of an Enobio-8 EEG system was connected to a series of software modules to process 

raw EEG data into class probabilities for hand motor imagery. Custom-made modules to present 

stimuli and log experimental results were also created for this system. An immersive VR 

environment containing 3D room and game elements was also set up along with a geometric left 

and right hand that can be animated to provide an embodied visual stimulation for hand 

grasping. The next chapter (Chapter 5) discusses designing and developing a robotic hand 

exoskeleton for an enhanced kinaesthetic stimulus for motor imagery BCI. 
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Chapter 5 

Development of a Robotic Hand 
Exoskeleton for Enhanced 
Kinaesthetic Stimuli for Motor 
Imagery Brain-Computer Interface 

 
5.1. Introduction 

The functionality and independence after a brain injury such as stroke is greatly improved with 

the rehabilitation of hand movement (Fregni and Pascual-Leone, 2006). This type of 

rehabilitation focuses on the dexterous and fine motor movements of the wrist and digits, 

allowing us humans to perform prehensive actions such as grasping or pinching. The ability to 

perform prehension is a crucial aspect of daily living as it allows the execution of various tasks 

such as eating, writing, or grabbing tools. Likewise, the loss or impairment of such abilities 

results in dependence on an able individual who may not be available at all times. Motor therapy 

often includes repetitive and goal-oriented exercises to induce use-dependent neuroplasticity 

(Hallett, 2001). The repeated practice of functional tasks is reported to aid motor recovery by 

promoting changes in the neural circuitry of the intact regions of the brain after injury (Ganguly 

and Poo, 2013). The efficacy of this strategy greatly depends on the nature of the task, its 

intensity, and the time spent in therapy. While increasing the intensity and therapy duration 

can improve recovery rates, it also comes with additional economical costs which may pose a 

burden to both the patient and the therapist.  

Robotic devices have provided a substantial contribution to the administration of motor 

therapy to patients in recent years (Chang and Kim, 2013; Wu et al., 2018). Robot-assisted 

rehabilitation offers a more active approach to therapy than conventional methods (G.Y. Kim 

et al., 2017; Wu et al., 2018). For hand rehabilitation, I refer to robotic hand exoskeletons 
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(McConnell et al., 2017), which are a growing development field due to their wearability and 

biomechanical compatibility (Baniqued et al., 2015). One major advantage of robotic hand 

exoskeletons is providing an automated kinaesthetic stimulus during therapy. Furthermore, it 

can support remote therapy sessions (e.g. home use), which prove beneficial by offering the 

patient a flexible and adaptable working time (Housley et al., 2016). Undergoing treatment at 

home also gives patients the advantage of practising skills and developing compensation 

strategies in the context of their home environment. 

In Chapter 2, I reviewed BCI-controlled robotic systems for hand rehabilitation and 

reported a degree of inferiority with respect to the visual and kinaesthetic stimuli presented in 

most motor imagery-based BCI experiments. These inferiorities may be contributing to the lack 

of technology adoption of such devices for clinical use. I recommended that enhancing motor 

imagery stimuli within these strands could improve BCI performance. On the visual aspects, I 

tapped into immersive technologies such as VR and AR to provide an enhanced virtual 

embodiment and environment, facilitating the patient during motor imagery BCI training. For 

the kinaesthetic aspects, I proposed in Chapter 3 the utilisation of wearable robotic devices such 

as powered exoskeletons. Originally intended to provide mechanical feedback after successful 

motor imagery trials (Ono et al., 2018), robotic hand exoskeletons can also be programmed to 

provide a form of kinaesthetic sensation during hand motor imagery tasks. Kinaesthetic motor 

imagery focuses on reconstructing the sensation of muscle activation and proprioception without 

execution and is reported to exhibit more prominence in spatial patterns around the sensorimotor 

hand area (Neuper et al., 2005). When combined with physical practice, kinaesthetic motor 

imagery was reported to improve performance in healthy adults (White et al., 1979) and stroke 

survivors (Liu et al., 2014; Chowdhury, Meena, et al., 2018). 

This chapter presents a low-cost robotic hand exoskeleton design for immersive BCI-

based training and its integration into an enriched motor imagery VR paradigm. The 

development of the current prototype was maintained at a low cost by three major 

considerations:  

1. Commercially available and easily accessible “do-it-yourself (DIY)” components such as 

low-cost actuators, microcontroller boards, and other electrical components were used 
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2. The design was open-sourced and uploaded to the internet, allowing the public to 

improve, modify, and fabricate using a low-cost 3D printer 

3. The assembly and programming were made easy with the eventual goal of being used at 

home with medical supervision  

The next sections will discuss the conceptualisation, development, and implementation stages of 

the robotic hand exoskeleton prototype. Section 5.2 deals with the design and prototyping stages. 

Section 5.3 presents the experimental methods used to evaluate and implement the current 

prototype. Section 5.4 provides the experiments' results and discussion, and Section 5.5 

summarises the contribution of the current work. 

 

5.2. Design and Prototyping of a Robotic Hand Exoskeleton 

5.2.1. Design Considerations 

The functional requirements of the current robotic hand exoskeleton are to provide the 

kinaesthetic sensation of grasping during motor imagery BCI training in VR. With this in mind, 

the primary design consideration for the current prototype is its ability to apply sufficient force 

to move the fingers in its functional range of motion (ROM) from a fully extended pose (i.e., 

hand open) to a fully flexed pose (i.e., hand closed) (Bain et al., 2014).  

Table 5.1 summarises the design criteria of the robotic hand exoskeleton based on its 

required functionality, wearability, and safety features (Baniqued et al., 2015). I also considered 

that the current prototype should be cost-effective and accessible to fabricate. To address these 

requirements, I selected the materials used in the mechanical and electronic components to be 

commercially available and easily accessible. In the next sections, I describe the design of the 

robotic hand exoskeleton in terms of its electronic components, mechanical design and assembly, 

and its integration with the motor imagery BCI-VR paradigm. 
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Table 5.1: Robotic exoskeleton design criteria 

Criteria  Description 

1 Wearability 
The robotic exoskeleton must account for the dimensions of a medium-sized 
hand for wearability and comfort. 

2 Torque 
The robotic exoskeleton must move the hand from fully extended to fully closed 
using torque requirements 

3 Electronics 
The robotic exoskeleton’s electronic componentry must not interfere with the 
hand’s movement along its joints 

4 Hand Tracking 
The robotic exoskeleton’s hand orientation must be tracked in a 3D virtual 
environment platform 

5 
Safety – 
Mechanical 

Safety consideration 1: The robotic exoskeleton must have mechanical stops to 
avoid exceeding the hand’s functional ROM (mechanical level safety) 

6 
Safety – 
Electronics 

Safety consideration 2: The robotic exoskeleton must have an emergency 
button that “relaxes” the motors when pressed (electronic level safety) 

7 Safety - Software 
Safety consideration 3: The robotic exoskeleton’s software must account for 
anomalies in its actuators and “relax” the motors when anomaly is detected 

 

5.2.2. Electronic Components 

I first selected the actuation strategy for the current prototype. It is worth noting that while a 

cable-driven tendon or a soft pneumatic actuation strategy for a hand exoskeleton have been 

gaining traction in recent years, these strategies would require more complex mechanical 

components that may not be easily accessible commercially. For example, pneumatic actuators 

would require the fabrication of soft air-locked chambers and the purchase of bulky air pumps, 

while a cable-driven tendon requires its cables to have complex assemblies (e.g., Bowden cables 

and pulleys) to preserve its tension at all times (Heo et al., 2012). I selected a servo motor-driven 

exoskeleton with rigid links as it is easier to assemble, power, and program than the first two 

strategies described.  

Two LewanSoul LD-20MG full metal gear digital servomotors (Shenzen Hiwonder 

Technology Co., Ltd., China) with up to 20 kg-cm torque were used to actuate the fingers and 

thumb using a rigid link mechanism. These servomotors are mounted at the back of the hand 

between the MCP joint and the wrist, satisfying Criterion 3. A 6V power supply with four AA 
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batteries was required to operate the actuators, while an Arduino Uno microcontroller board 

(Arduino LLC, Massachusetts, USA) with a servomotor shield sends the triggers from the 

computer using pulse width modulation. The servomotors rotate simultaneously from their 

starting positions at about 90° and 60° for the fingers and thumb, respectively. A red light-

emitting diode (LED) acting as a safety indicator was programmed to turn on when the 

servomotors were in motion. To satisfy criteria 6 and 7, two safety features at the electronic and 

software levels were included in the prototype. At the electronic component level, an easy-press 

red emergency button (Gravity: Digital Push Button from DFRobot) was included in the 

prototype, which enables the servomotors to slowly shift back up until their starting position 

before temporarily cutting itself from the power supply. At the software level, the servomotors 

were programmed not to exceed the functional ROM of the fingers and thumb, based on Bain 

et al. (2014) to avoid hyperflexion and hyperextension of its joints.  

 

5.2.3. Mechanical Design, Fabrication, and Assembly 

The human hand can be modelled to have a total of 27 degrees of freedom (DOF), with each of 

the digits having the following DOF: thumb – 6, index – 4, middle – 4, ring – 4, small – 4 

(ElKoura and Singh, 2003). The remaining six DOFs are attributed to the wrist, which is not 

included in the exoskeleton’s mechanism. Each of the finger digits possesses three joints: the 

metacarpophalangeal (MCP) joint, the proximal interphalangeal joint (PIP), and the distal 

interphalangeal (DIP) joint. The thumb also has an MCP, but a sole interphalangeal (IP) joint 

comes afterwards. In current commercially available hand exoskeleton prototypes, the cost 

increases with the degree of complexity in its mechanism; more complex devices tend to have 

more specialised components. For the current prototype (see Figure 5.1a), each of the four fingers 

was simplified to a 3-joint planar mechanism: restricting the movement to the rotational flexion-

extension of MCP, PIP, and DIP and removing the abduction-adduction movement of the MCP 

joints. The finger mechanism follows a serial linkage structure (Heo et al., 2012), where the distal 

segments of the fingers are in contact with the final link of the exoskeleton. This mechanism 

allows the exoskeleton to actuate the flexion and extension of the index and middle fingers 

(pinch-grip mode with the middle and small fingers underactuated) or in unison (full grasp 
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mode). Due to this strategy, only a single servomotor was required to drive the four fingers at 

the MCP joint (see Figure 5.1b), while the PIP and DIP joints are underactuated. The thumb 

mechanism follows a redundant linkage structure (Heo et al., 2012) with two thumb attachments 

placed at the proximal and distal phalanx. The same strategy was applied to the MCP and IP 

joints of the thumb to allow a second servomotor to drive it. However, a Cardan joint (see Figure 

5.1c) and a flexible servo base made of 3D-printed thermoplastic polyurethane (see Figure 5.1d)  

was included to allow 2-DOF of additional underactuated thumb movement. Overall, the total 

DOF that the exoskeleton allows the hand digits to move was reduced from 22 to 16. Appendix 

B shows the development process of the robotic hand exoskeleton from design to fabrication. 

 

 

Figure 5.1: (a) Full assembly of the robotic hand exoskeleton (right-hand),                      

(b) gear system and mechanical stops, (c) underactuated Cardan joint for thumb abduction-

adduction, (d) flexible base attached to a fabric glove 
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The robotic hand exoskeleton’s individual parts were designed using SolidWorks 2019 

(Dassault Systèmes, France). The joints and linkages took account of the measured hand’s 

dimensions to avoid the obstacle (Criterion 2). Mechanical stops were placed along with the first 

links that connect directly with both the servo gears (Criterion 5). Upon finalising the design, 

the parts were then printed with an Ender-3 V2 3D Printer (Shenzhen Creality 3D Technology 

Co., Ltd, China) using a 1.75 mm diameter polylactic acid (PLA) filament with an infill density 

of 20% and print temperatures of 210°C on the print end and 60°C on the build plate. The 

flexible servo base was stitched and glued to an elastic fabric glove to maintain rigidity at the 

back of the hand when the finger servomotor is in operation while maintaining comfort and 

adaptability to various hand sizes (Criterion 1). Moreover, the flexible servo base also allows 

compliance with the complex movements of the thumb’s carpometacarpal joint. All the 

attachments for the digit linkages were stitched and glued to the fabric glove at 1 cm beyond 

the DIP (the two thumb attachments were placed at 1 cm beyond the MCP and IP). Upon 

completing the assembly of the linkages and electronic components with the fabric glove, the 

total weight of the device was measured at 280 g per hand. In this work, two exoskeleton systems 

(i.e. one for each hand) were prototyped and integrated into a BCI-VR system (see Figure 5.2). 

 

 

Figure 5.2: (a) Integrated BCI-VR-robot prototype and experimental setup,                   

(b)-(c) hand grasping animation for motor imagery in virtual reality 



86 
 

 

5.2.4. Systems Integration 

The role of the VR and robotic hand exoskeleton systems in the current work is to improve the 

classic motor imagery paradigm to enhance the delivery of its visual and kinaesthetic stimuli. 

Chapter 4 described a 3D virtual task environment developed in Unity version 2019.3.6f1 (Unity 

Technologies, California, USA) following the classic motor imagery BCI structure as presented 

in Figure 5.2b-c. The virtual scenario represents a typical task room where a classic motor 

imagery EEG experiment is performed. In addition to the usual abstract cues for motor imagery 

(i.e. arrows and bars), a virtual hand model is presented to the user during trials. The virtual 

hand represents the user’s robot-wearing physical hand in the virtual environment and was 

tracked using a Leap Motion controller (Ultraleap, California, USA) mounted to an Oculus Rift 

S VR headset (Facebook Technologies, LLC./Meta Platforms, Inc., California, USA). In the 

current work, I used the Leap Motion controller to map the hand’s palm position and orientation 

into the 3D environment through a Unity plugin (Criterion 4). During motor imagery trials, the 

virtual hand animates a full grasping motion, simultaneous with the robotic hand exoskeleton’s 

actuation and corresponding to the trial’s class. 

 

5.3. Joint Angle Profiling 

5.3.1. Methodology 

A hand model with finger joints (MCP, PIP, DIP), thumb joints (MCP, IP), and anthropometric 

dimensions was used as a human analogue to evaluate the current robotic hand exoskeleton. The 

hand model was printed with an Ender-3 V2 3D Printer using PLA filament. With a print 

density of 20% infill, the total weight of the 3D-printed hand model was measured at 85 g. The 

assembled hand model was mounted to a tripod with the palm facing directly upward. The 

robotic hand exoskeleton was then worn on the hand model and placed on a weighted block to 

provide stability during actuation. The joint angles were tracked and analysed by Kinovea, an 

open-source video tool for sports analysis. I used a Sony a6000 mirrorless camera to capture the 

video with a 16-50 mm lens and a capture frame rate of 25 fps. For each hand part (i.e., fingers 
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and thumb), one movement cycle starts and ends at the position where the hand is fully extended 

(hand open), with the midpoint being when the hand is fully flexed (full grasp). 

Figure 5.3 shows the experimental setup and the Kinovea interface. For this experiment, 

the duration of one movement cycle was set at 2.24 seconds. The progression of joint angles from 

0-100% in the movement cycle was measured and plotted in the R programming language and 

statistics software. The maximum MCP, PIP, and DIP angles of the hand model were then 

compared to actual human hands based on the data from existing literature (Bain et al., 2014). 

This was done to assess if the robotic hand exoskeleton provides functional actuation to the 

hand without exceeding its safe ROM values. 

 

 

Figure 5.3: Joint angle profiling of the hand digits. (a) finger joints at initial and final states, 

(b) finger joints at the midpoint state, (c) thumb joints at the initial and final states,             

(d) thumb joints at the midpoint state 
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5.3.2. Results and Discussion 

The progression of joint angles for one movement cycle (hand open – closed – open) of the fingers 

and thumb of the hand model were presented on Figures 5.4 and 5.5, respectively.  

 

 

Figure 5.4: Joint angle profile of the fingers for one movement cycle 

 

 

Figure 5.5: Joint angle profile of the thumb for one movement cycle 
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For the finger mechanism, the maximum angles of the MCP, PIP, and DIP joints of the 

fingers fall well within the average active ROM of the MCP (90°±9.1), PIP (101°±8.3), and DIP 

(84°±8.5) joints in literature (Bain et al., 2014). For the thumb mechanism, the maximum IP 

joint angle was well below the normal IP joint ROM of 73° based on Hume et al. (1990). However, 

the maximum MCP joint angle exceeded the normal MCP joint ROM of 56° (Hume et al., 1990) 

by 6.85°. This might be attributed to the flexible servo base accommodating the additional ROM 

provided by the carpometacarpal joint and offering a degree of compliance to the orientation of 

the thumb servo at full flexion. I also highlight the slow progression of joint angles for both the 

fingers and the thumb from their initial positions to their maximum angles, with the servomotors 

operating at 0-30% and 70-100% of the movement cycle. This was demonstrated by the slopes 

of the plotted curves and suggests that the current robotic hand exoskeleton can support the 

actuation of the hand digits in an effective yet safe manner. The measured ROM of the hand 

model also presents some insights on the degree of kinaesthetic stimuli the robotic hand 

exoskeleton can provide to its user during motor imagery BCI training. 

 

5.4. Summary 

I presented the design of a low-cost robotic hand exoskeleton for an enhanced kinaesthetic 

stimulus during motor imagery BCI-VR training. I followed the design criteria for functionality, 

wearability, and safety, resulting in a BCI-VR-robot prototype that can perform hand actuation 

while being tracked in the physical space and then translated to a virtual environment. In 

addition, the maximum joint angles of the prototype were measured to be within the normal 

ROM of hand digits, while a pilot motor imagery experiment of the integrated BCI-VR-robot 

demonstrated the feasibility of the prototype. Future directions for this device include the 

integration of better position and orientation sensors and haptic capabilities to increase its 

functionality in VR while still preserving its accessibility and cost-effectiveness. The next chapter 

discusses the self-experimentation performed to test the hypotheses of the current work using 

the integrated BCI-VR-robot prototype.
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Chapter 6 

Effects of Enhanced Visual and 
Kinaesthetic Stimuli on Motor 
Imagery based Brain-Computer 
Interface: A Self Experiment 

 
6.1. Introduction 

This chapter presents a self-experiment performed with an integrated BCI-VR-robot system for 

hand motor imagery. The experiment tests how the enhanced visual and kinaesthetic stimuli 

brought by the VR and robotic exoskeleton systems affect motor imagery BCI performance in a 

single subject.  I consider motor imagery BCI performance by looking at three measures: (1) 

online classification accuracy scores, (2) probability values of the true class being predicted, and 

(3) event-related desynchronisation and synchronisation (ERD/S) patterns during motor 

imagery trials in EEG data. This chapter is structured by first presenting the experiment's 

methodology, followed by the results, and finally, a discussion of my findings and their 

implications with the aims and objectives of the current study. All the pre-registration 

documents, protocols, data, and analyses generated from this experiment were uploaded to the 

Open Science Framework (OSF) and can be accessed via this link: bit.ly/bci-vr-robot-expt 

 

6.2. Methodology 

6.2.1. Participant 

The sole participant was a healthy 29-year-old adult male with no history of neurological disease 

or injury. He was classified as right-handed with a score of +60 based on the Edinburgh 

Handedness Inventory (Oldfield, 1971) and scored an average of 5.14 out of 7.00 on visual 
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imagery and 5.86 out of 7.00 on kinaesthetic imagery using the Revised-Motor Imagery 

Questionnaire (MIQ-RS) (Gregg et al., 2010). The participant was familiar with training and 

operating a classic motor imagery BCI and has previous experience with VR environments. 

 

6.2.2. Study Design 

A within-subject 2x2x8 design to investigate the effects of enhanced visual and kinaesthetic 

stimuli (factors) was done with two levels (visual: VR and no VR; kinaesthetic: robot and no 

robot). The chosen experimental design resulted in four different conditions: VR only, robot 

only, combined VR and robot (“both” condition), and control (no VR and no robot condition). 

The participant performed each condition for eight sessions, having 32 sessions, all within four 

weeks. Each week was structured by four consecutive experiment days and three rest days. For 

each experiment day, the participant performed two sessions (one in the morning and one in the 

afternoon) with different conditions. The morning and afternoon sessions followed the same time 

of the day and were at least four hours apart. To avoid any order effects across sessions, a 

counterbalanced schedule was implemented for the conditions (see Table 6.1). 

 

Table 6.1: Counterbalancing conditions for the morning (AM) and afternoon (PM) sessions 

within the 4-week duration of the experiment 

 
Day 1 Day 2 Day 3 Day 4 Days 5-7 

AM PM AM PM AM PM AM PM 

REST 

Week 1 Control VR Robot Both VR Robot Both Control 

Week 2 Both Control VR Robot Control Both Robot VR 

Week 3 Control Both Robot VR Both Robot VR Control 

Week 4 VR Robot Both Control Robot VR Control Both 

 

Due to the experimental setup, blinding strategies were also implemented to minimise 

experimental bias. The levels of blinding were implemented as follows: 
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1. Blinding of experimental outcomes during the session – the score obtained during the 

session was hidden from the participant. Only the trial-wise feedback was given to the 

participant as a form of auditory and visual reward and punishment. 

2. Blinding of experimental outcomes after the session – the results log file (comma-

separated values or CSV format) saved after every session was encrypted with a 

randomly generated 10-character unique identifier (e.g., r2gen7xilb, mcz51s28rl, 

4oyqqflbey) during the 4-week implementation of the study. After all the sessions had 

been performed, a JavaScript Object Notation (JSON) key file containing the session 

names (e.g. “control-1”, “vr-3”, “robot-7”) and their corresponding encryption codes were 

then used to translate the logged filenames back to its original and unencrypted form. 

 

6.2.3. Experimental Setup 

A detailed discussion of the components of a BCI-VR-robot system was done in Chapters 4 and 

5. This section briefly reviews these components and their settings for the current experiment. 

The experimental setup involves three main components: (1) an EEG acquisition system to 

record brain activity (i.e., BCI system), (2) a visual stimuli presentation system which can either 

be a VR HMD or a display monitor (for conditions without VR) and (3) a kinaesthetic stimuli 

presentation system which involves a robotic hand exoskeleton. In addition, all conditions 

received an auditory stimulus for the “get ready”, cue and feedback (score, error) events. 

 

EEG Acquisition System 

In all four conditions, the participant wore an EEG-based BCI system to record motor imagery 

signals. The EEG acquisition system is an Enobio-8 device by Neuroelectrics. It comprises eight 

channels with standard silver/silver chloride electrodes placed on a Neoprene head cap and 

attached to a wireless amplifier transmitting signals via Wi-Fi. A highly conductive electrolyte 

gel was applied to the participant’s scalp and reference regions to provide continuous 

conductivity with the electrodes. EEG was recorded with a sampling rate of 500 Hz from the 
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scalp around the sensorimotor area with electrode locations at C3, C4, FC5, FC6, C1, C2, CP5 

and CP6 following the international 10-10 electrode placement system. Referencing was made 

using Common Mode Sense (CMS) and Driven Right Leg (DRL) electrodes attached to the right 

earlobe. Data were initially received from the wireless amplifier via Wi-Fi and was streamed to 

Labstreaminglayer (LSL) through the NIC 2.0 application (Neuroelectrics). Section 4.2 of 

Chapter 4 presented more details of the development of the EEG-based BCI system. 

 

Visual Stimuli Presentation 

The experimental setup's visual stimuli component provided the participant's cue and feedback 

during motor imagery tasks. For the control and robot conditions, an LCD monitor with a 

supported refresh rate of 120 Hz and placed at about 60 cm distance from the participant’s 

nasion was used to present directional cues (i.e., red left and right arrows) and feedback (i.e., 

blue left and right bars) similar to the Graz classic motor imagery paradigm. At 2 seconds before 

a cue was presented, a green fixation cross was presented to prepare the participant. When 

feedback was presented (testing phase), a blue bar that corresponded to the predicted class was 

presented at 500 milliseconds after the cue duration. The length of the blue bar reflected the 

probability value (range 0-1) of the predicted class. The display monitor was set to blank during 

rest periods until the next trial came.  

For conditions when the participant was required to wear a VR HMD, an Oculus Rift S 

VR system from Facebook Technologies, LLC/Meta Platforms, Inc. was used. The VR HMD 

provided a single fast-switch LCD lens with a supported refresh rate of 80 Hz. A virtual 

environment that resembled a testing room with a desk and a chair was made in Unity 2019.3.6f. 

The virtual room contained a similar display monitor as the control and robot conditions and 

presented the same cue and feedback symbols. However, the main difference between VR 

conditions from non-VR ones, apart from being in a virtual environment, was the presence of a 

low polygon mesh of a pair of hands. These hands animated a full grasping motion according to 

the cue of a particular trial. During feedback, if the predicted class matched the true class 

(correct prediction), a sparkle animation originating from the predicted hand was triggered. 
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Section 4.3 of Chapter 4 provided a more detailed description of the development and 

implementation of this virtual environment in the Unity 3D platform. 

 

Kinaesthetic Stimuli Presentation 

For robot and combined VR and robot conditions, kinaesthetic stimuli were provided during the 

trials, which involved wearing a pair of robotic hand exoskeleton devices attached to an Arduino 

microcontroller unit. The robotic exoskeleton actuated a full hand grasp by powering two 6V 

servomotors to rotate a rigid link mechanism. The first servomotor actuated all of the fingers at 

once, while the second servomotor actuated the thumb. These robotic commands were 

synchronised with the cue duration to enhance the kinaesthetic sensation. During the combined 

VR and robot condition, the movement of the robotic exoskeleton was programmed to be 

simultaneous with the movement of the virtual hands through the VR HMD. Chapter 5 provided 

a detailed description of the design and fabrication of this device. 

 

6.2.4. Motor Imagery Task 

In the current experimental setup, a motor imagery BCI session was divided into a training and 

testing phase, with each phase having 60 trials (i.e., 30 for each class presented randomly). The 

participant trained the BCI system to decode left- and right-hand motor imagery classes using 

their EEG signals in the training phase. The participant did not receive any form of feedback 

during this phase. In the testing phase, the BCI system classified the trials as the participant 

performed tasks similar to the training phase and received feedback for correct and incorrect 

classifications. Due to a class probability threshold being applied, the participant did not receive 

feedback when the resulting probability was below a threshold of 0.6. The trial duration was 

between 8 to 10 seconds resulting in approximately 10 minutes per phase. With a preparation 

time of 30 minutes (for equipment setup, application of conductive gel, etc.), 10 minutes for the 

training phase, 10 minutes for the testing phase, and 10 minutes for post-experiment activities 

(for cleaning and packing up), the total duration of one session was approximately 60 minutes. 
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Table 6.2 summarises the conditions and the differences of each in terms of its cue and feedback 

mechanisms. 

 

Table 6.2: Experimental conditions and their respective stimuli presentation modes 

*The participant was not wearing the device in this condition 

 

6.2.5. Data Analysis 

Online Classification Accuracy 

Online classification accuracy percentages were calculated based on points earned over the total 

number of trials in the testing phase. For each trial, a score was earned by satisfying two factors: 

 Ready Cue Feedback Rest 

Duration 2 seconds 4 seconds 1 second 1-3 seconds 

Control     

   Visual: Display Fixation cross Left/right arrows Left/right bars  

   Visual: VR HMD*     

   Kinaesthetic: Robot*     

   Auditory: Speaker Low tone High tone Chime or buzz  

VR     

   Visual: Display (VR) Fixation cross Left/right arrows Left/right bars  

   Visual: VR HMD  Virtual hands animate Sparkle (correct)  

   Kinaesthetic: Robot*     

   Auditory: Speaker Low tone High tone Chime or buzz  

Robot     

   Visual: Display (VR) Fixation cross Left/right arrows Left/right bars  

   Visual: VR HMD*     

   Kinaesthetic: Robot  Robot actuates the hands   

   Auditory: Speaker Low tone High tone Chime or buzz  

VR+robot     

   Visual: Display (VR) Fixation cross Left/right arrows Left/right bars  

   Visual: VR HMD  Virtual hands animate Sparkle (correct)  

   Kinaesthetic: Robot  Robot actuates the hands   

   Auditory: Speaker Low tone High tone Chime or buzz  
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(1) if the predicted class matched the true class of the trial and (2) if the predicted class 

probability exceeded the given threshold of 0.6. Other categories given to the trials in the testing 

session included correctly classified trials but did not meet the threshold, incorrectly classified 

trials but did not meet the threshold, and incorrectly classified trials that exceeded the threshold 

value (i.e., a true mismatch). Pearson correlation and linear regression analyses were performed 

for overall online classification accuracy scores and conditions to determine what learning effect 

was achieved. The significance values of the generated linear models were determined by 

comparing the group slopes of the conditions versus the 50% chance level of a two-class motor 

imagery BCI task. 

To study the main effects and interactions of online accuracy scores among different 

conditions, a 2x2 factorial analysis of variance (ANOVA) was performed using the programming 

and statistical package R (version 2019). Factors were determined based on the presence or 

absence of the enhanced visual and kinaesthetic stimuli. Table 6.3 presents the factors generated 

from the experimental conditions. 

 

Table 6.3: Experimental conditions in the 2x2 factorial ANOVA 

 No VR VR 

No Robot Control Condition VR Condition 

Robot Robot Condition VR+robot Condition 

 

The resulting p-values were then subjected to Bonferroni-corrected pairwise comparisons 

to identify the main effects of the factors. All results were plotted using the ggplot2 library in 

the R-Studio software. 

4x2 confusion matrices were generated using the percentage values categorised into the 

following groups: the predicted classes (y-axis) and the true classes (x-axis). Due to having a 

pre-set threshold of 0.6 for the predicted classes, the y-axis of the matrix was further decomposed 

into four predicted categories instead of two. Each tile in the matrix was filled with ggplot2’s 

default blue colour scale, where the darker tiles have a higher percentage value. 
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Class Probabilities 

For every testing phase in the session, the Python Logger.py module outputs a .CSV file of 

probability values for the left and right classes of each trial. Data points were first plotted for 

each day (x-axis) of each condition (facet grid). Violin plots were then generated from these 

values to visualise the distribution along the y-axis (with a probability scale of 0-1). Box plots 

were also generated for each day of each condition, where the centre line depicts the median of 

the data set, the box borders are the lower and upper quartiles, and the whiskers are the 

minimum and maximum values. All results were plotted using the ggplot2 library in the R-

Studio software. 

 

EEG Analysis 

EEG data analysis and visualisation were performed in the Python 3.7 language and the Spyder 

integrated development environment. The following packages were used in this part of the 

analysis: (1) For EEG analysis: MNE, NumPy, and Pandas, (2) For EEG visualisation: Seaborn 

and Matplotlib. 

Each Extensible Data Format (.XDF) file containing the raw EEG recording, events 

from markers, and other session information (e.g., channels, time stamps and stream identifiers) 

were first imported and reconfigured to Python as an MNE object. To represent the 

hemispherical activity in the left and right regions of the sensorimotor cortex, the C3 and C4 

channels were picked for further analysis. The raw EEG data, sampled at 500 Hz, were then 

epoched (i.e., sliced and labelled) from one second before the event stimuli (-1) and up to four 

seconds after (+4). With this, one 5-second epoch would contain 2500 timesteps of recorded data 

per electrode.   

The event-related desynchronisation and synchronisation (ERD/S) patterns 

corresponding to motor imagery (see discussion on Section 3.4.2) were extracted by generating 

time-frequency representations (TFR) of each electrode (i.e., C3 and C4) for each class (i.e., left 
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and right). This was based on the method by (Graimann et al., 2002) and was achieved using 

MNE’s “tfr_multitaper” function. This was followed by a cluster-based permutation test to 

determine significant time-frequency regions (Maris and Oostenveld, 2007). In this series of steps, 

the epoched data were the first bandpass filtered at a range of 2-36 Hz. As discussed in Section 

3.4.2, the ERD/S is determined by the relative power decrease (desynchronisation) and increase 

(synchronisation) in the spectral band based on a baseline average before the event trigger. For 

this setup, the baseline was set to -1 to 0 (1 second before the event trigger). The resulting plots 

are TFRs of left- and right-hand epoched trials per electrode of each session. In addition, 

averaged TFRs of each phase (i.e., training and testing) per condition were also generated. 

To further visualise the separation of left- and right-hand classes, the per-session and 

per-condition ERD/S values were grouped into the spectral bands of interest for motor imagery: 

µ (8-12 Hz) and β (13-36 Hz); producing a line plot. Significant time points were calculated by 

performing a running t-test on each timepoint with an alpha of 0.05. To control the false 

discovery rates in this calculation, p-values were corrected using the Benjamini-Hochberg 

method.  

Finally, the Common Spatial Patterns (CSP) filters generated from the training phase 

trials to help decode the testing phase trials were visualised using the CSP module in MNE. As 

discussed in Section 4.2.3 of Chapter 4, CSP is a supervised signal decomposition technique to 

estimate spatial filters that can be used to extract discriminant neural sources during the feature 

extraction step. More details on this technique can be found in this comprehensive tutorial by 

Blankertz et al. (2008). The resulting scalp topographical maps are the spatial filters based on 

the four different components set by cross-validation. In this step, all the eight electrode channels 

in the raw EEG stream were used to visualise the spatial filters. 

 

6.3. Results 

The motor imagery BCI performance in VR, robot, and combined VR+robot conditions against 

a control were measured in three aspects: (1) online classification accuracy scores, which were 

calculated based on the number of correctly predicted trials over the total number of trials in a 
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session, (2) probability of the true class being predicted, and (3) the presence and significance 

of ERD/S patterns in EEG data. In this section, I report the results of the self-experimentation 

done considering these three BCI performance measures.  

 

6.3.1. Online Classification Accuracy 

Figure 6.1 shows a line plot of the online classification accuracy and misclassification percentages 

per condition across all eight sessions. This was done to easily visualise the percentages (or 

fractions) taken by the four different classification outcomes during the testing phases of the 

session and to provide a visualisation of the trials that receive no feedback after decoding (“none” 

classification). 

 

 

Figure 6.1: Online classification accuracy (left y-axis) and misclassification (right y-axis) 

percentages. The turquoise plots show the percentage of trials that exceed the pre-set threshold 

of 0.6 - left y-axis used. Grey plots show the percentage of trials that were correctly classified 

but did not meet the threshold (anything above 0.5) – left y-axis used. The orange plots show 

the percentage of misclassified trials – right y-axis used. 
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Table 6.4 presents the online classification accuracy percentages (score >0.6 threshold) in 

numeric form (the highest score per condition is italicised and highlighted in bold).  

 

Table 6.4: Online classification accuracy scores (%) 

Condition 1 2 3 4 5 6 7 8 Mean ± SD 

Control 35.00 60.42 35.59 38.98 55.17 32.76 74.14 67.80 49.98 ± 16.42 

VR 80.36 59.18 46.55 55.17 62.07 44.83 67.24 70.73 60.77 ± 12.05 

Robot 50.00 34.62 48.28 43.10 53.45 46.55 57.41 42.86 47.03 ± 7.03 

VR+robot 30.77 52.54 42.37 76.92 65.52 55.77 62.71 55.36 55.25 ± 14.16 

 

The highest score was the first session in the VR condition (80.36%), followed by the 

fourth day of the VR+robot condition (76.92%). I report the first session of the VR+robot 

condition (30.77%) to have the lowest score, followed by the sixth session of the control condition 

(32.76%). Table 6.4 also presented all sessions' means and standard deviations within a 

condition. The condition with the highest mean value belonged to the VR condition (60.77% ± 

12.05), but its standard deviation would mean that there could be an overlap with the second 

highest mean value coming from the VR+robot condition (55.25% ± 14.16). I report the robot 

condition (47.03% ± 7.03) to have the lowest mean value, followed closely by the control 

condition (49.98% ± 16.42). 

The results of the Pearson’s correlation analysis on online classification accuracy and the 

number of sessions reported moderate correlation among control conditions, r (6) = 0.54, p = 

0.16, and VR+robot conditions, r (6) = 0.52, p = 0.19, while a weak correlation was reported 

on robot conditions, r (6) = 0.29, p = 0.49. The VR sessions were the only condition calculated 

to have a negative r coefficient r (6) = -0.06, p = 0.89; however, the value was small enough to 

be considered not to correlate. Overall, I calculated a weak correlation, r (30) = 0.31, p = 0.08, 

among all sessions. In Table 6.5, I summarise the linear regression analysis performed for these 

percentage values. 
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Table 6.5: Summary of linear regression analysis of online classification accuracy scores 

 
Y-Intercept p-value (β=0) Slope p-value 

All conditions 45.20 5.09e-10*** 1.80 0.08 

Control 33.60 0.0274* 3.06 0.16 

VR 63.13 0.0009*** -0.30 0.89 

Robot 43.33 0.0003*** 0.82 0.49 

VR+Robot 41.76 0.0064** 3.00 0.19 

 

To visualise this, I generated a trend line depicting the generated linear equation in all sessions 

regardless of condition (see Figure 6.2a) and all sessions per condition (see Figure 6.2b).  

 

 

Figure 6.2a: Plot of the linear trend line from the regression analysis of online classification 

accuracy scores across all sessions 

 

 

(a) 
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Figure 6.2b: Plot of the linear trend line from the regression analysis of online classification 

accuracy scores per condition 

 

Among all these groups, only the VR condition has been found to have a negative slope 

(-0.30), albeit one that is close to zero. Among other conditions, the control condition (3.06) 

exhibited the highest slope, followed by the VR+robot condition (3.00) and finally the robot 

condition (0.82). Furthermore, the slope p-values suggested no significant linear incline or decline 

per condition across all sessions.  

A 2x2 factorial ANOVA was conducted to compare the main effects of the visual and 

kinaesthetic factors on online classification accuracy scores and to check any interaction effects 

between the two. The visual and kinaesthetic factors included two levels: no VR and VR for the 

visual factor while no robot and robot for the kinaesthetic factor (see Table 6.3 for the 

experimental conditions). Shapiro-Wilk tests for normality were applied for all conditions 

beforehand which yielded the data to have normal distribution: control (p = 0.17), VR (p = 

0.91), robot (p = 0.97), and VR+robot (p = 0.95). 

 

(b) 
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I observed a main effect in the visual factor which yielded an F ratio of F (1, 28) = 4.34, 

p = 0.042 Bonferroni-corrected, indicating a significant difference between conditions with VR 

(M = 58.01, SD = 12.61) and conditions with no VR (M = 48.51, SD = 11.90) in the setup. The 

main effect for the kinaesthetic factor yielded an F ratio of F (1,28) = 0.863, p = 0.379 

Bonferroni-corrected, indicating that the effect was not significant between conditions with robot 

(M = 51.14, SD = 11.24) and conditions without a robot (M = 55.37, SD = 14.51). Finally, I 

report no significant interaction between the two factors visual and kinaesthetic, F (1,28) = 

0.08, p = 0.78.  

Figure 6.3 summarises the results in the form of a box plot. Furthermore, supplementary 

data and plots for the 2x2 factorial ANOVA, which includes the diagnostic procedures and 

interaction plot, are made available for reference in Appendix C. 

 

 

Figure 6.3: Summary of results for the 2x2 factorial ANOVA 

 

Figures 6.4 – 6.7 present all the confusion matrices generated for each session of each condition. 
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Figure 6.4: Confusion matrices of control sessions 

 

 

Figure 6.5: Confusion matrices of VR sessions 
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Figure 6.6: Confusion matrices of robot sessions 

 

 

Figure 6.7: Confusion matrices of VR+robot sessions 
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6.3.2. Class Probabilities 

The violin and box plots in Figure 6.8 show the median of the true class probabilities per 

condition across all sessions. A dashed line was drawn on the 0.6 threshold value for each plot. 

About 6 out of 8 sessions for both the VR and VR+robot conditions exceeded the threshold line, 

while the control and robot conditions had 4 and 3 sessions exceeding the threshold line, 

respectively.    

 

 

Figure 6.8: Probability values of the true class per condition across all sessions 
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6.3.3. EEG Analysis 

Figures 6.9 – 6.12 show all the session-averaged time-frequency representations (TFRs) of each 

condition's left- and right-hand classes, while Figures 6.13 – 6.16 show all the session-averaged 

ERD/S line plots along the μ and β spectral bands. Training and testing phases are presented 

separately in all plots because the feedback stimuli in the testing phases might present some 

differences from the data. The colour scale in TFRs and the y-axis in the ERD/S line plots refer 

to relative event-related spectral perturbations (%). Within TFRs, red-coloured patterns 

observed across time points (x-axis) depict sensorimotor-related event-related desynchronisation 

(ERD), while blue-coloured patterns depict event-related synchronisations (ERS). The y-axis in 

TFRs corresponds to the bandpass frequency range (2-36 Hz). I also extended the plots to a 

second before the event trigger (-1s) as this was used as the baseline interval to calculate the % 

ERD/S change. The TFRs and ERD/S line plots generated for the individual sessions of every 

condition, separated into training and testing phases, can be found in Appendix D, while the 

topographic visualisations of the CSP spatial filters for the training phase of all sessions are 

presented in Appendix E. 

 Due to an overwriting incident within the NeuroPype software, I failed to record the 

EEG file (.XDF) of the testing phase during the 3rd session of the VR condition (VR-3-Testing). 

The online classification accuracy scores and class probabilities were not affected during this 

incident. However, it is important to consider this when looking at the averaged TFR and ERD/S 

line plots of the VR condition. 
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Control - Training 

 

 

Control - Testing 

 

 

Figure 6.9: Averaged EEG time-frequency representations of the control condition 
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VR – Training 

 

 

VR – Testing (N = 7) 

 

 

Figure 6.10: Averaged EEG time-frequency representations of the VR condition 



110 
 

Robot - Training 

 

Robot - Testing 

 

 

Figure 6.11: Averaged EEG time-frequency representations of the robot condition 
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VR+robot - Training 

 

 

VR+robot - Testing 

 

Figure 6.12: Averaged EEG time-frequency representations of the VR+robot condition 
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Control - Training 

 

Control - Testing 

 

Figure 6.13: Averaged EEG ERD/S line plots of the control condition 
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VR - Training 

 

VR – Testing (N = 7) 

 

Figure 6.14: Averaged EEG ERD/S line plots of the VR condition 
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Robot - Training 

 

Robot - Testing 

 

Figure 6.15: Averaged EEG ERD/S line plots of the robot condition 
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VR+robot - Training 

 

VR+robot - Testing 

 

Figure 6.16: Averaged EEG ERD/S line plots of the VR+robot condition 
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From the averaged TFRs, I immediately observed a strong ERS pattern within one 

second after the event trigger in the delta (δ) (2–4 Hz) band of the left trials and a strong ERS 

pattern in the theta (θ) (4–8 Hz) and δ bands of the right trials. For some TFRs (i.e., VR 

training and testing right trials both channels, robot training and testing left trials C4, and robot 

testing right trials both channels), a strong ERS pattern in the δ band can also be observed at 

time 3-4 seconds. No distinguishable ERD patterns were observed in all of the control conditions. 

For the rest of the conditions, the presence of faint ERD patterns within the μ and β bands 

were observed except for the VR training right trials of both channels, the robot training left 

trials of both channels, the robot training right trials of C4, and the robot testing right trials of 

both channels. Stronger and more vivid ERD patterns can also be observed in all VR+robot 

TFRs. The running t-test performed on the ERD/S line plots of μ and β bands yielded no 

significant time points after correcting the p-values based on the Benjamini-Hochberg method. 

 

6.4. Discussion 

In this study, I hypothesised that the enhanced visual and kinaesthetic stimuli through an 

immersive VR environment and a robotic hand exoskeleton, respectively, will increase motor 

imagery BCI performance. This section provides an in-depth discussion of the results from the 

previous self-experiment performed using a BCI-VR-robot prototype. I will first look at the three 

measures of motor imagery BCI performance explained at the beginning of this chapter and then 

relate my findings to the specific aims and objectives of the study. 

 

6.4.1. Online Classification Accuracy 

In the recently performed experiment, both the VR and VR+robot conditions performed better 

than the control and robot conditions in terms of online classification accuracy scores. Their 

calculated means were above the 50% mark, which was the chance-level accuracy for a two-class 

classification setup. However, the high standard deviation calculated in all of these conditions 

(including the robot and control) suggests a high variability among the scores. It is worth noting 
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that these scores were also subjected to a >0.6 threshold value to increase confidence in 

predicting correct trial-wise classifications (Combrisson and Jerbi, 2015). Classifying each trial 

without a threshold value, as with conventional motor imagery based BCI setups (Lotte, 2014; 

Virgilio Gonzalez et al., 2018), these sessions would achieve higher classification rates. The grey 

plots on Figure 6.1 presented how much increase this would make to the current scores. In this 

no-threshold scenario, all sessions in the VR and VR+robot conditions would score above 50%, 

while the control and robot conditions would only have two sessions below 50%. Careful 

consideration of the threshold value is crucial in this experiment. If I prioritise rewarding 

correctly classified trials with greater confidence (greater account for true positives), then a 

higher threshold value should be implemented. Practically, this may not be the case for 

rehabilitation regimens as the motivation to participate actively is given utmost priority during 

sessions. Physicians and therapists might even want to prescribe an opposite scenario where a 

patient receives rewarding feedback even if the BCI system has incorrectly classified some of 

their trials. Nevertheless, I believe a >0.6 threshold provides the optimum level of providing 

feedback to the user while maintaining confidence for the prediction of trial-wise classes within 

the motor imagery sessions.  

Regarding the progression of scores, no learning effects were observed based on the results 

from the linear regression analysis. An overall positive trend was calculated as the number of 

sessions performed increased. A positive trend was also calculated per condition except for VR. 

However, all calculated slope p-values reported that none of these was significant. This might be 

due to the participant being an experienced motor imagery BCI user. The case might be different 

if the experiment was performed with naïve BCI participants.  

The results of the 2x2 factorial ANOVA suggested that the enhanced visual stimuli 

brought by the immersive VR environment could be contributing to the improved motor imagery 

BCI performance. This agrees with the findings reported from the mean values where the VR 

and VR+robot conditions performed better. Although I reported significant differences in the 

enhanced visual factor (p = 0.0422), I believe that this value might not be low enough to be 

considered solid evidence of the actual effect of VR on motor imagery BCI performance. 

Therefore, I recommend progressing this finding by repeating the experiment within a larger 
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study population. In this way, I can increase my statistical power and better understand this 

topic. 

 

6.4.2. Class Probabilities 

Analysing the true class probability values allowed me to look at the trial-wise decoding of motor 

imagery classes using the logistic regression classifier. In this performance measure, the VR and 

VR+robot conditions also performed better than the control and robot conditions. Both 

conditions with VR have 6 out of 8 sessions above the threshold line of 0.6. This finding is 

supported by visualising each session through the confusion matrices presented in Figures 6.4-

6.7 of Section 6.3.1. By visual inspection, the sessions that pass the threshold line have more 

distinct segregation in the true class tiles than lower-scoring sessions where the tiles seem 

randomly distributed or, in other cases, distinctly misclassified to the wrong class.    

 

6.2.3. EEG Analysis 

I first address the presence of strong event-related synchronisation (ERS) patterns in some of 

the time-frequency (TFR) plots along the δ (1-4 Hz) band for left trials and along the δ and θ 

(4-7 Hz) bands for right trials. These were either within one second at stimulus onset or within 

one second before the trial ended. These may be artefacts related to head movement. In the 

literature, the presence of these artefacts can be manifested in the δ and θ frequencies (Kappel 

et al., 2017; Britton et al., 2016; Jansen et al., 2012). The current experimental setup performed 

head movements which might be causing this distinguished artefact. Within one second from 

when the event trigger was shown, the participant routinely performed a slight and abrupt head 

movement to focus on the direction of the hand of interest. Likewise, when the trial ended, the 

participant returned to their initial head position and orientation straight towards the screen 

and focused on the appearance of the next fixation cross to get ready for the subsequent trial. 

As this was consistent throughout the sessions, averaging this generated a strong activity in 

those bands. As a result, this artefact appeared in the EEG data as a strong ERS pattern. To 

confirm the exact timepoints of head movement, accelerometer and EEG data were acquired 
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from two healthy adult participants, both male at 20 years of age. These data were obtained 

from a pilot test performed during the developmental period of the BCI-VR prototype. In this 

scenario, the participants performed a similar motor imagery BCI task (i.e., a VR condition 

session) as the current self-experiment. However, accelerometer data were also recorded from the 

sensors present in the Enobio-8 wireless EEG amplifier (note: no accelerometer data was recorded 

during the current self-experiment due to computer memory-related limitations). Acceleration 

data in the x-, y-, and z-axis (mm/s2) were extracted and processed (i.e., epoched and averaged 

across all trials) to show head movement occurring within the trial (see Figures 6.17 and 6.18). 

 

 

Figure 6.17: Head movement and EEG artefacts in a pilot BCI-VR testing (participant 1) 
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Figure 6.18: Head movement and EEG artefacts in a pilot BCI-VR testing (participant 2) 

 

As presented in the figures, the session-averaged accelerometer data plotted against the 

EEG TFR of the same session showed both head movements commencing within one second 

from stimulus onset (time = 0 s). Simultaneously, the presence of similar δ (1-4 Hz) and θ (4-

7 Hz) ERS patterns appeared in both their TFR plots. These findings support the assumptions 

that EEG artefacts caused by head movements may be attributed to the strong ERS patterns 

observed in the recent self-experiment. Such artefacts might be affecting the decoding process of 

the classifier during the testing phase. For example, if the artefacts are not equally distributed 

between the two classes during the training phase, it would favour one class's prediction over 

the other. However, in the current scenario, the EEG artefacts were evenly distributed across 

both classes, which can be seen in the averaged TFR plots of each condition (Figures 6.9-6.12). 

I also think that the presence of these artefacts has not significantly affected the decoding process 

of the motor imagery classes as the lower cut-off for the bandpass filter in the NeuroPype BCI 

pipeline was set to 8 Hz. This cut-off frequency excludes most of the δ (1-4 Hz) and θ (4-7 Hz) 
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bands during the training of the classifier and focuses on the ERD/ERS patterns on the μ (9-11 

Hz) and β (13-24 Hz) bands. 

Next, I observed the presence of event-related desynchronisation (ERD) patterns in the 

μ (9-11 Hz) and β (13-24 Hz) bands of some TFR plots. I believe these patterns depict changes 

in the sensorimotor rhythm during motor imagery trials as it agrees with how ERD patterns 

should appear based on literature (Maris and Oostenveld, 2007) and as discussed in Section 3.3 

of Chapter 3. A few noticeable observations were that I did not see these patterns in the averaged 

TFR plots of the control condition, while I saw more obvious and vivid patterns as I looked at 

the averaged TFR plots of the VR+robot condition. While it may seem that the intervention 

conditions (i.e., VR, robot, VR+robot) were contributing to the enhanced visualisation of ERD 

patterns in the averaged TFR plots, I cannot directly attribute these differences to the actual 

decoding process of the motor imagery BCI processing pipeline. One reason is that no distinct 

ERD/S patterns were observed when I looked at the plots based on hemispherical activity. Based 

on my discussion in Chapter 3, I should expect the left hemisphere (as represented by the C3 

electrode) to have a stronger ERD/S signal in the right-hand trials and vice versa; a contralateral 

pattern between the hemispheres of the motor cortex and the left and right hands. However, 

these patterns were not consistently observed in my averaged TFR plots. The second reason is 

that the intensities of these patterns from the intervention conditions (i.e., VR, robot, and 

VR+robot) were not significant and therefore cannot be considered as strong evidence that they 

increase performance at the EEG level. This leads me to suggest that the ERD/S patterns 

extracted from the TFR plots were only a part of a more prominent feature space that the 

machine learning-based classifier is using to decode left and right-hand classes.   

 

6.5. Summary 

I performed a self-experiment using an integrated BCI-VR-robot prototype to determine the 

effects of enhanced congruent visual and kinaesthetic stimuli on hand motor imagery based BCI. 

A 2x2 factorial design allowed me to test three intervention conditions: VR, robot, and combined 

VR+robot against a control. I hypothesised that an increased motor imagery BCI performance 

will be observed on the following measures: (1) online classification accuracy scores, (2) 
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probability values of the true class being predicted, and (3) ERD/S patterns in EEG (refer to 

Table 3.2 – Research hypotheses). My findings demonstrate a positive effect of the enhanced 

visual stimuli on online classification accuracy scores and probability values of the true class. 

Furthermore, I also reported that although faint, ERD/S patterns can be observed in various 

conditions, excluding the control. In the next chapter, I provide a general discussion on how 

these findings relate to the overall aims of this thesis and provide a conclusion to summarise my 

contribution to the scientific field. 
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Chapter 7 

General Discussion and Conclusion 

 
7.1. General Discussion 

The overarching hypothesis of this research is that enhanced visual and kinaesthetic stimuli 

through an immersive virtual reality environment and a robotic hand exoskeleton will improve 

motor imagery BCI performance. In Chapter 2 (Systematic Review), I reported a list of BCI-

hand robot studies and their scarce implementation of a rich and engaging stimulus for their cue 

and feedback delivery. Chapter 3 (Theoretical Framework) provides a compelling theory on BCI 

use and enhancing the stimuli presentation processes. In Chapter 4 (BCI-VR Development), I 

demonstrated an integrated virtual environment and brain-computer interface based on a motor 

imagery paradigm in VR. While in Chapter 5 (Robotic Hand Exoskeleton Development), I 

presented a prototype for a robotic hand exoskeleton and its integration with the current BCI-

VR system. In Chapter 6 (Experimentation), I presented the methods, results, and discussion of 

a self-experiment performed to test my hypotheses. A self-experiment, in which I was the 

researcher and participant, was done to progress this research amid the restrictions to physical 

research activities brought by the ongoing COVID pandemic. Finally, in this chapter, I provide 

a general discussion related to my research findings, its contribution to the body of scientific 

knowledge, and the benefits of an integrated BCI-VR-robot system to the medical community 

and society as a whole. 

The results of my recent experiment showed that enhanced visual stimuli through an 

immersive VR environment could potentially improve motor imagery BCI performance. Across 

all the sessions performed, the visually enhanced conditions improved BCI performance in terms 

of online accuracy scores and true class probabilities. Although I have observed weak and 

marginal effects, these were deemed significant, nonetheless. However, it is not clear from these 

findings which factors tap into the internal mechanisms that drive this effect. In the integrated 

BCI-VR setup, I presented an enhanced visual stimulus to the motor imagery paradigm via two 
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factors: (1) embodiment and (2) environment. I interpret embodiment as the presence of 

animating a geometric representation of a five-fingered appendage (a hand) during motor 

imagery trials.In contrast, the presence of virtual elements brings an enhanced environment (e.g., 

room setup, lighting, sparkles as rewards, other objects) and other stimuli (i.e., auditory, haptic, 

etc.) as part of a game.  

I now ask the question: “Which among these factors could be driving the neural 

mechanisms that promote motor imagery performance?”. In future experiments, I suggest looking 

into these factors separately. For example, I envision a similar VR scenario with only the hands 

presented visually and the remaining elements absent. When looking into the enhanced 

environment factor, I ask the question: “Does the addition of virtual gamification elements 

provide motivation or is it a distraction?”. It is worth noting that the stimuli presented to a 

participant, regardless of modality, are reflected in their EEG data (Kaufmann et al., 2013), and 

I recommend that future BCI-VR developers put importance on this matter. Existing 

applications in BCI literature implement an immersive paradigm where one can control a 

spaceship (Škola et al., 2019) or play World of Warcraft (Nijholt et al., 2009) with their brain 

signals. While these themed scenarios provide us with a good proof of concept for visually-

enhanced BCI paradigms, I still believe that their role and mechanism in affecting BCI 

performance remains unexplored.  

In this study, I also introduced a low-cost robotic hand exoskeleton made of 3D-printed 

materials and high torque servo motors. The current prototype in itself, with further refining, 

can be used for conventional robot-assisted rehabilitation tasks as they have successfully 

performed the assistance of simple prehension activities (i.e., full grasping movement and pinch-

grip movements). However, for the recent self-experiment, the prototype was utilised as a 

provider of kinaesthetic stimuli during motor imagery trials. The results presented in Chapter 6 

reported that the robot conditions provided no significant difference against the control groups, 

which suggests that the enhanced kinaesthetic stimulus provided by the robotic hand exoskeleton 

may not improve motor imagery performance. Therefore, I now ask the question: “Does the 

robotic exoskeleton increase performance or provide distraction?”. Because the current prototype 

is a low-cost and low-end device, it has many features that can be improved. In the following 
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list, I enumerate the current limitations of the robotic hand exoskeleton, followed by the 

recommendations that I made for improving its design: 

1. Actuation - The choice of actuators influences most of the exoskeleton’s mechanical 

and electronic components and is an essential aspect that needs improvement. I 

recommend using quieter, more lightweight, and more safety-compliant actuators for the 

next iteration. The current mechanical design uses rigid linkages that restrict the fingers' 

movement and a limited range of motion. By using soft pneumatic artificial muscles 

(Polygerinos et al., 2013; Polygerinos et al., 2015; Coffey et al., 2014) or cable-driven 

mechanisms (Heo et al., 2012), we can reduce the rigidity of the exoskeleton mechanism 

while still attaining the required poses for the hand. In addition, we can also move (or 

alter) the placement of the power driving source away from the hand and into more 

stable bases, increasing its safety rating and reducing the total weight of the device 

affecting the hand. 

2. Hand Tracking – The Leap Motion controller enables static and dynamic hand tracking 

via infrared sensors and depth cameras. However, the current design of the robotic hand 

exoskeleton only allows hand tracking with the Leap Motion for a specific pose (i.e., palm 

facing upwards). This is due to the linkages situated on the other side of the hand (dorsal 

side) and obstructing the view of the Leap Motion sensors. While this does not affect the 

current hand grasping motor imagery paradigm, it limits the capability of the BCI-VR-

robot prototype to track dynamic hand movements such as pronation and reach-to-grasp. 

This can be resolved by removing the obstruction (through a change in the actuation 

strategy and mechanical design) and by using highly reflective gloves and covers, allowing 

the Leap Motion controller to identify the geometric shape of the hands. As an 

alternative, one can also use other hand tracking systems, such as motion capture systems 

that use retroreflective ball markers. In this way, individual markers can be placed on 

the gloves, captured by an external sensor, and then aligned geometrically using the 

motion capture software. 

3. Sensors - The perceptual and sensing capabilities of the robotic hand exoskeleton can 

be improved by integrating several sensors into the system. My recommendation is to 
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include accelerometers and gyroscopes in the prototype to measure the hand’s linear 

acceleration and rotation, respectively. By integrating these sensors into the system, we 

can measure hand movement during tasks (in addition to the hand tracking enabled by 

the Leap Motion system) and enable more complex tasks and experiments with the 

device. I also discussed the use of EMG and force sensors in Section 3.2 as a means of 

acquiring external signals of intent. These were not applied to the current prototype as 

the main focus of developing a robotic hand exoskeleton was to provide kinaesthetic 

stimuli during the experiment. However, a device that can acquire signals of intent 

internally (EEG-BCI) and externally (EMG and force sensor) enables the BCI-VR-robot 

system to be multimodal.  

Providing a seamless, flexible, and quiet experience can also be achieved by more 

developed and expensive robotic systems. For example, commercial systems such as HaptX 

(Stamer et al., 2020) and Gloreha (Tacchino et al., 2017) provide the same goals as the current 

prototype but with higher specifications for their materials.  

I also identified some limitations that contributed to my experiment and analysis. First, 

I look into my BCI system architecture. In this study, I used a basic motor imagery BCI pipeline 

adapted from (Lotte, 2014). Online and offline (visualisation and analysis) pipelines used a 

classical feature extraction and classification method based on common spatial patterns and 

logistic regression. While these processes provide us with a basic but effective classification 

algorithm (Lotte et al., 2018), I may be missing out on potential information that can improve 

the online classification accuracy. The advent of deep learning approaches for motor imagery 

BCI (Schirrmeister et al., 2017; Roy et al., 2019) addresses these limitations with the requirement 

of using larger datasets (i.e., from similar historical motor imagery EEG data) and fine-tuning 

hyperparameters with the session’s training data. Deep learning might also be a key solution to 

address inter-session variability (Saha and Baumert, 2020), which is important because training 

and calibrating an embedded classifier currently takes half of the time allotted for the session. 

In the future, I see a “wear-and-use” motor imagery BCI setup that eliminates the need for daily 

session training and calibration. Another limitation of this study is how the experiment was 

designed and implemented. A self-experiment design based on repeated measures provides 
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subject-specific data across sessions and conditions. However, I missed out on the statistical 

power of my perceived effects which can only be obtained by an experiment having a larger 

sample size. Having said all of this, the current self-experiment design has still provided great 

contributions to the body of knowledge for future clinical practices. Designing this self-

experiment allowed me to devise a novel approach to motor imagery BCI operation. The current 

method and evaluation presented in these chapters gives a general knowledge or grasp of an idea 

for a future process flow that may lead to providing us with better home rehabilitation setups. 

 

7.2. Proposed Experimental Design for Human Testing 

It would be good to ask what an ideal design would be if the current research questions 

were to be implemented for a large-scale human experiment involving healthy participants. The 

first consideration would be to separate the enhanced visual aspects (VR/No VR) from the 

kinaesthetic ones (Robot/No Robot). As discussed earlier in this chapter, there is a need to 

dissect and look into the mechanisms that drive enhanced stimuli on motor imagery BCI 

performance. The visual and kinaesthetic aspects of the current study presented us with their 

respective fundamental research questions, and I propose that these be addressed as separate 

experiments before implementing a fully integrated BCI-VR-robot prototype study.  

A visual stimuli-focused experiment is similar to the current BCI-VR setup with the VR 

and control conditions. However, in this scenario, the control condition should involve the 

participants wearing a VR headset and observing a virtual hand without animation instead of 

performing the classical motor imagery paradigm without VR. The rationale behind this is that 

the focus of such an experiment should be to answer whether action observation in the form of 

a VR animation would improve motor imagery BCI performance. In a similar design, a 

kinaesthetic stimuli-focused experiment should involve wearing the robot and performing motor 

imagery with or without actuation in their intervention and control conditions, respectively. The 

following experimental parameters should then apply to both experiments. 
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7.2.1. Participants 

It would be ideal to recruit at least ten naïve participants for each condition (10 for control and 

10 for the intervention), leading to a total of N=20 participants in each experiment. This would 

allow us to generate the necessary effect size differences among conditions in an optimum time 

frame. The participants should be randomly assigned to a particular group instead of undergoing 

multiple conditions to maximise each condition's effect. This would eliminate the need to 

counterbalance sessions as previously done in the self-experimentation. 

 

7.2.2. Study Design 

Each participant would undergo seven consecutive days of motor imagery BCI sessions (1 session 

per day) in their assigned condition. Using the MIQ-R questionnaire, a measurement of their 

motor imagery ability should be performed on Day 1 and Day 7 of the study. This design also 

enables us to perform a double-blind experiment where the participant is not aware of the 

conditions involved in the study, and the researcher/s (mainly those in charge of data analysis) 

are blinded from the condition being presented (Note: a technical expert must still be present 

during the sessions to ensure the safety of the participant and the proper installation of research 

equipment).  

 

7.2.3. Task Design 

I recommend that the nature of the task must still be retained in these scenarios. As discussed 

in Section 3.4.1 - Basic Principles of BCI Use, the attempt to operate a BCI using contralateral 

motor imagery of hand grasping allows us to study neural mechanisms optimally. Performing 

left- and right-hand imagery is a relatively simple task but not elementary. This would allow 

the participant to quickly familiarise themselves with the nature of the task but still depend on 

the incoming stimuli during individual trials. However, I would alter some of the elements in the 

conditions to inform the participants of the task better. For example, I would eliminate the 

virtual screen presenting the classic motor imagery stimuli elements in the VR condition and 

incorporate them into the cue and feedback elements happening in the 3D virtual hand. This 
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would allow them to focus their attention on the hand instead of the other elements in the 

virtual scenario. Similarly, I would implement a simple tactile cue and feedback system to the 

robotic hand exoskeleton (i.e., in the form of simple vibrations). In both experiments, I would 

retain the auditory aspects of the cue-feedback system.  

To ensure that the healthy participants perform motor imagery, EMG sensors can be 

attached over the major muscle groups for grasping (i.e., extrinsic flexors) (Flatt, 2000) to 

measure muscle activity. In this way, we can detect (subject to a certain threshold) whether 

motor execution is being performed and reject trials that do so. This can only be applied to 

healthy participants but not in actual stroke patients where movement attempt is more beneficial 

(as discussed in Section 3.3 - Electroencephalography-based Brain-Computer Interfaces).  

 

7.2.4. Data Analysis 

In the current experiment, I provided three measures of motor imagery performance: (1) online 

classification accuracy scores, (2) probability values of the true class being predicted, and (3) 

ERD/S patterns in EEG. In the proposed experiment, I would retain these measures as it 

excellently captures and evaluates both the human and machine sides of the BCI system. As an 

added measure, I would like to know if there are learning effects among participants (since the 

requirement is to recruit naïve subjects and the experimental design allows one participant to 

focus on a particular condition).   

 

7.3. Conclusion 

Integrating brain-computer interfaces, virtual reality, and robotic exoskeletons is a 

promising area of research and development. One major benefit of such systems is their 

multimodality and modularity. For the clinical aspects, the multimodality and modularity of a 

BCI-VR-robot system can provide accessible rehabilitation options and future home use 

(Vourvopoulos et al., 2015; Zhang et al., 2019; Smith and West, 2008). After all, stroke and 

other brain and spinal cord injuries are personal diseases that need to be treated on a case-to-

case basis (Hui et al., 2021). The modularity feature of this system also allows us to prescribe 
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various regimens for stroke and injury rehabilitation (i.e., BCI only, VR only, robot only, or a 

combination of the three). Finally, BCI-VR-robot systems do not thrive on rehabilitation and 

healthcare applications alone but can also be used in skills learning and education. As discussed 

in this research, the human brain is capable of neuroplasticity, and the advanced mechanisms 

involving the brain’s visual and kinaesthetic perception are effective factors that should be 

utilised to their full potential. With these new and emerging technologies, one can provide a 

holistic and fully immersive experience that allows individuals to learn new skills with excellent 

efficiency and retention.   
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Appendix A 

Full Data Extraction Table from   
the Systematic Review of Wearable 
Robots and Brain-Computer 
Interfaces for Hand Rehabilitation 
After Stroke  

 
This appendix contains the full data extraction table from the systematic review performed on 

30 BCI-hand robot studies from January 2010 to October 2019 (see Chapter 2). The data fields 

include the authors, year published, participant profile, study design, task design, BCI-hand 

robot specifications, and main outcomes. The table is divided into two sections: (1) studies 

involving stroke patients and (2) studies involving healthy participants. 
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Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving stroke patients    

(Ang et al., 2014) 

 

 

 

 

 

 

 

 

 

N=21 (7F:14M) 
Moderate to severe 
impairment of UE 
function                
Mean age: 54.2y   
Mean stroke duration: 
385.1 days 

3-armed RCT of 
motor function with 
MI-BCI-device as the 
intervention 

Control groups: device 
only (Haptic Knob), 
SAT 

Photo manipulation: 
hand opening and 
closing, pronation, and 
supination 

Cue: visual (photo) 

Feedback: visual 
(photo) and 
kinaesthetic 

EEG: 27 channels to 
classify ERD/ERS and 
coupled with EMG to 
confirm MI 

Device: Haptic Knob, 
2-DOF for hand 
grasping and knob 
manipulation 

Actuation: DC 
brushed motors with 
linear belt drive 

Control: trigger 

Clinical outcome measure:            
FMMA Distal, improvement in weeks 
3, 6, 12, 24 

BCI-device group = 2.5±2.4, 3.3±2.3, 
3.2±2.7, 4.2±3.1 

Device only group = 1.6±2.5, 2.9±3.0, 
2.5±2.6, 2.5±3.0 

SAT group = 0.4±1.1, 1.9±1.9, 
1.0±1.3, 0.3±2.1 

(Barsotti et al., 
2015) 

 

 

 

 

 

 

N=3 (1F:2M)     
Chronic stroke 
survivors with right 
arm hemiparesis   
Mean age: 62±12y 

Probing MI 
classification by BCI 
training, time-
frequency analysis, 
and robot trajectories 

Uncontrolled 

Reaching-grasping-
releasing 

Cue: visual 

Feedback: kinaesthetic 

Minimum time required 
to perform MI = 2s 

EEG: 13 channels to 
classify ERD 

Device: BRAVO 2-
DOF hand orthosis 
attached to full UE 
exoskeleton 

Actuation: DC motors 
with rigid links 

Control: trigger 

Mean classification accuracy during 
BCI training = 82.51±2.04% 

Average delay from visual cue to 
robot initiation = 3.45±1.6s 

Average delay due to patient’s ability 
to start MI = 1.45s 

(Bundy et al., 2017) 

 

N=10                 
Chronic hemiparetic 
stroke with moderate 

Motor function 
evaluation before and 
after intervention by 

Opening of the affected 
hand 

Cue: visual 

EEG: 8 channels to 
classify ERD 

Clinical outcome measure:                      
ARAT Score, improvement from 
baseline to completion (12 weeks) 
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Bundy et al. 
(cont’d) 

 

to severe UE 
hemiparesis Mean 
age: 58.6±10.3y 

 

MI-BCI from 
unaffected hemisphere 

Uncontrolled 

Feedback: visual and 
kinaesthetic 

Device: 3-pinch grip, 
1-DOF hand 
exoskeleton 

Control: continuous 
depending on the 
spectral power 

Mean ± SD = 6.20±3.81 

Note: 5.7 ARAT Score is the minimal 
clinically important difference in 
chronic stroke survivors 

(Carino-Escobar et 
al., 2019) 

N=9 (4F:5M)                 
Subacute ischaemic 
stroke                     
Mean age: 59.9±2.8y 
Mean stroke duration: 
158(±74)-185(±73) 
days 

Determine 
longitudinal 
ERD/ERS patterns 
and functional 
recovery with BCI-
robot 

Uncontrolled 

Extension-flexion of 
hand fingers 

Cue: visual (Graz MI) 

Feedback: visual and 
kinaesthetic 

EEG: 11 channels to 
classify ERD/ERS 

Device: hand finger 
orthosis 

Actuation: DC motor 
with screw system for 
linear displacement, 
flexible links 

Control: trigger 

FMA-UE: N=3 reported equal or 
higher than 3 score gains, N=3 no 
score gains,  

Mean longitudinal ERD/ERS: beta 
bands have higher association with 
time since stroke onset than alpha, 
and strong association with UL motor 
recovery 

(Chowdhury, Raza, 
et al., 2018) 

 

 

 

 

 

 

N=20                          
10 healthy and 10 
hemiplegic stroke 
patients                 
Mean age (healthy, 
stroke): 41±9.21y, 
47.5±14.23y 

Probe non-adaptive 
classifier (NAC) vs 
Covariate Shift 
adaptive classifier 
(CSAC) of MI in EEG 

Control group: healthy 
participants 

Extension-flexion of 
hand fingers 

Cue: visual 

Feedback: visual and 
kinaesthetic 

EEG: 12 channels with 
EMG to classify 
ERD/ERS 

Device: EMOHEX 3-
finger, 3-DOF each, 
exoskeleton (thumb, 
index, middle) 

Actuation: 
servomotors with rigid 
links 

Control: trigger 

Mean classification accuracies during 
BCI training: 

Healthy group: calibration = 
78.50±9.01%, NAC = 75.25±5.46%, 
CSAC = 81.50±4.89% 

Patient group: calibration = 
79.63±13.11%, NAC = 70.25±3.43%, 
CSAC = 75.75±3.92% 
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(Chowdhury, 
Meena, et al., 2018) 

 

 

 

 

 

 

 

N=4 (2F:2M)    

Chronic hemiplegic 
stroke patients, right-
handed, left hand 
impaired Mean age: 
44.75±15.69y       
Mean stroke duration: 
7 ±1.15mo 

Motor function 
evaluation by using 
active physical 
practice followed by 
MI-BCI-controlled 
device intervention 

Uncontrolled 

Extension-flexion of 
hand fingers 

Cue: visual 

Feedback: visual and 
kinaesthetic 

EEG: 12 channels with 
force sensors to 
classify ERD/ERS 

Device: EMOHEX 3-
finger, 3-DOF each, 
exoskeleton (thumb, 
index, middle) 

Actuation: 
servomotors with rigid 
links 

Control: trigger 

Classification accuracies of 4 
participants: P01 = 81.45±8.12%, P02 
= 70.21±4.43%, P03 = 76.88±4.49%, 
P04 = 74.55±4.35% 

Clinical outcome measures:                      
GS and ARAT Scores, improvement 
from baseline to completion (6 weeks) 

GS scores: group mean difference = 
+6.38 kg, p=0.06 

ARAT scores: group mean difference 
= +5.66, p<0.05 

(Frolov et al., 2017) 

 

 

N=74 (26F:48M)    
BCI 55: Control 19 
Subacute or chronic 
stroke with mild to 
hemiplegic hand 
paresis, right-handed 

Multi-centre RCT of 
MI-BCI-controlled 
hand exoskeleton 

Control group: SHAM 

3 Tasks: (1) motor 
relaxation, (2) imagery 
of left-hand opening, 
(3) imagery of right-
hand opening 

Cue: visual 

Feedback: visual and 
kinaesthetic 

EEG: 30 channels to 
classify the three 
mental tasks by 
Bayesian classifier 
based on covariance 
matrices 

Device: hand 
exoskeleton by 
Neurobotics, Russia 

Actuation: pneumatic 
motors with spring 
flexors 

Control: trigger 

Mean classification accuracy during 
BCI training = 40.6% 

Clinical outcome measures: 

FMMA Distal and ARAT Scores, 
improvement in 10 days of training 

FMMA Distal = 2.0, p<0.01 (BCI) 
and 1.0, p=0.046 (control) 

ARAT Grasp = 3.0, p<0.01 (BCI) 
and 1.0, p=0.0394 (control) 

ARAT Grip = 1.0, p<0.01 (BCI) and 
1.0, p=0.045 (control) 

ARAT Pinch = 1.0, p<0.01 (BCI) 
and 0.0, p=0.675 (control) 

(Norman et al., 
2018) 

N=8 (All male) 
Chronic cortical and 
subcortical single 

Implementation of 
sensorimotor rhythm 
(SMR) control on 

Extension of hand 
finger 

EEG: 16 channels 
mapping SMR changes 

Mean classification accuracies: 
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Norman et al. 
(cont’d) 

haemorrhagic or 
ischaemic stroke (at 
least 6 months)     
Mean age: 59.5±11.8y 

robot-assistive 
movement 

Uncontrolled 

Cue: visual 

Feedback: visual and 
kinaesthetic 

Device: FINGER robot 

Actuation: Linear 
servo-tube actuator 
with rigid links 

Control: Visual - 
continuous (colour 
change respective to 
SMR), Robot - trigger 

8 participants: 83.1%, 76.3%, 73.3%, 
68.2%, 74.5%, 86.5%, 47.9%, 40.0% 

Box and blocks test (BBT):  

At screening: mean score = 14.3±10.0, 
mean change after therapy = 4.3±4.5 
(range 0-12). Higher score changes in 
participants who demonstrated SMR 
control but not significant (p=0.199) 

(Ono et al., 2016) 

 

 

 

 

N=21 (9F:12M) 
Chronic stroke 
patients with 
hemiplegic hands 
Mean age: 57.9±2.4y 

Probe congruent vs. 
incongruent MI 
feedback strategies 

Control groups: 
congruent 
(synchronous 
proprioceptive and 
visual feedback) and 
incongruent 
(proprioceptive 
feedback given 1s after 
visual) 

Grasping of a tennis 
ball with a hand 

Cue: visual (video of 
hand performing 
action) 

Feedback: visual and 
kinaesthetic 

EEG: 9 channels to 
classify ERD 

Device: Power Assist 
Hand - Team ATOM, 
Atsugi, Japan 

Actuation: pneumatic 
motors with rigid links 

Control: trigger 

Mean classification accuracies: 

Congruent feedback = 56.8±5.2%, 
chance level=36.4±4.5% 

Incongruent feedback = 40.0±3.5%, 
chance level 35.4±4.5% 

(Tsuchimoto et al., 
2019) 

N=18 (3F:14M)   
Chronic haemorrhagic 
or ischaemic stroke 
(from 2mo onwards) 
Mean age: 58±10y 

RCT Implementation 
of MI-controlled 
robotic orthosis as 
neurofeedback 

Control: SHAM 

Extension of hand 
finger 

Cue: unspecified 

Feedback: kinaesthetic 
and electrical 
stimulation 

EEG: 5 channels to 
classify MI 

Device: robotic finger 
orthosis 

Actuation: servo 
motors with rigid links 

Control: trigger 

Significant time-intervention 
interaction in the ipsilesional 
sensorimotor cortex. Higher 
coactivation of sensory and motor 
cortices for neurofeedback group in 
the ipsilesional sensorimotor cortices 
as compared to SHAM 
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(Wang et al., 2018) N=24 (4F:20M) 
Chronic stroke 
patients with 
paralysed hands 
Mean age: 54±9y 

RCT Implementation 
of action observation 
and motor imagery 
(AO+MI) with 
kinaesthetic feedback 

Control: SHAM 

Hand grasping 

Cue: visual (video of 
hand action / textual 
cues in SHAM group) 

Feedback: visual and 
kinaesthetic 

EEG: 16 channels to 
classify ERD 

Device: robot hand 

Control: Trigger 

AO+MI with kinaesthetic feedback 
group showed significant 
improvements in FMA-UE across 
longitudinal evaluation [χ2(2) = 
7.659, p = 0.022], no significant 
difference in SHAM group [χ2(2) = 
4.537, p = 0.103] 

Authors Participants Study Design Task Design BCI-Hand Robot Main Outcomes 

Studies involving healthy participants    

(Bauer et al., 2015) 

 

 

 

 

 

N=20 (11F:9M)    
Right-handed        
Mean age: 28.5±10.5y 

Study on MI as 
compared to motor 
execution (ME) using 
BCI-device 

Opening of left hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 31 channels to 
detect ERD, with 
EMG to classify MI 
from execution and 
account for tonic 
contraction 

Device: Amadeo, 
Tyromotion, Austria 

Control: 
discontinuation of 
ERD stops finger 
extension 

Principal component analyses 
(between MI and execution) generated 
coefficients for the visual (VIS) and 
kinaesthetic (KIS) imagery scale, BCI-
robot performance (BRI), tonic 
contraction task (MOC) and 
visuomotor integration task (VMI). 
VIS and KIS yielded high coefficients 
on MI while MOC and VMI yield high 
coefficients on ME. BRI show high 
coefficient yields on both MI and ME. 

(Cantillo-Negrete et 
al., 2015) 

 

 

N=1 Design and 
implementation of a 
MI-controlled hand 
orthosis  

Extension-flexion of 
right-hand finger 

Cue: visual (modified 
Graz) 

Feedback: kinaesthetic 

EEG: 11 channels to 
detect MI 

Device: 1-DOF hand 
finger orthosis 

Actuation: DC motor 
with screw system for 

Classification accuracy = 78% 
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Cantillo-Negrete et 
al. (cont’d) 

 

linear displacement, 
flexible links 

Control: trigger 

(Chowdhury et al., 
2015) 

 

 

 

N=6                         
Age range: 20-30y 

Study of cortico-
muscular coupling in 
robotic finger 
exoskeleton control  

Extension-flexion of 
hand fingers 

Cue: visual 

Feedback: kinaesthetic 

EEG: 10 channels with 
EMG to classify MI 

Device: 3-finger, 3-
DOF each, exoskeleton 
(thumb, index, 
middle) 

Actuation: 
servomotors with rigid 
links 

Control: trigger 

Mean classification accuracies: passive 
execution = 69.17%, hand execution 
= 71.25%, MI = 67.92% 

(Coffey et al., 2014) 

 

 

 

N=3 (All male)     
Right-handed 

Age range: 24-28y 

Design and 
implementation of a 
MI-controlled hand 
orthosis 

Hand digit and wrist 
contraction and 
extension 

Cue: visual (Graz MI) 

Feedback: kinaesthetic  

EEG: 27 channels to 
classify MI 

Device: hand glove 
controlled by Arduino  

Actuation: pneumatic 

Control: trigger 

Glove inflation-deflation cycle = 22s 

Classification accuracies of 3 
participants: A = 92.5%, B = 90.0%, 
C = 80.0% 

(Diab et al., 2016) 

 

 

 

 

 

N=5 Design and 
implementation of 
EEG-triggered wrist 
orthosis with accuracy 
improvement 

Hand opening and 
closing 

Cue: verbal instruction 

Feedback: kinaesthetic 

EEG: 14 channels to 
detect hand movement 
related EEG 

Device: actuated 
Talon wrist orthosis 

Actuation: linear 

Control: trigger 

Mean classification accuracies: 
simulation studies = 95%, online BCI 
training = 86% 
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(Fok et al., 2011) N=4 Design and 
implementation of a 
MI-controlled hand 
orthosis 

Hand opening and 
closing 

Cue: unspecified 

Feedback: visual 
(cursor movement) and 
kinaesthetic 

EEG: 14 channels to 
detect MI-related ERD 

Device: actuated 
Talon wrist orthosis 

Actuation: linear 
actuator 

Control: trigger 

EEG signals from imagined hand 
movement was correlated with the 
contralesional hemisphere and utilised 
to trigger the actuation of orthosis 

ERD was detected from 12 Hz bin 
power of EEG during move condition 

(Li et al., 2019) N=14 (4F:10M)      
Mean age: 23.8±0.89y 

Design and 
implementation of an 
attention-controlled 
hand exoskeleton with 
rigid-soft mechanism 

Hand grasping 

Cue: visual (video of 
hand action) 

Feedback: kinaesthetic 

EEG: 3 channels to 
map signals relative to 
attention 

Device: hand 
exoskeleton 

Actuation: linear 
actuator with rigid-
soft mechanism 

Control: Trigger 

Mean classification accuracy: 

95.54% actuation success rate against 
the attention threshold 

(Holmes et al., 
2012) 

 

 

 

 

 

 

N=6 (All male, young 
adults) 

Design and 
implementation of a 
MI-controlled hand 
orthosis 

Hand opening and 
closing 

Cue: textual 

Feedback: kinaesthetic 

EEG: 14 channels to 
detect hand movement 
related EEG 

Device: ExoFlex Hand 
Exoskeleton controlled 
by Arduino 

Actuation: linear 
actuator connected to 
chained links that flex 

Control: trigger 

Classification accuracies of 6 
participants: T001 = 95%, T002 = 
98%, D001 = 91%, U001 = 93%, E001 
= 87%, E002 = 86% 
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(King et al., 2011) 

 

 

 

King et al. (cont’d) 

N=1 (Female) 24y Contralateral control 
of hand orthosis using 
EEG-based BCI 

Right hand idling and 
grasping 

Cue: textual 

Feedback: visual and 
kinaesthetic 

EEG: 63 channels to 
control contralateral 
hand movement 

Device: hand orthosis 

Actuation: 
servomotors attached 
to Bowden cables as 
tendons 

Control: trigger 

Offline classification accuracy = 
95.3±0.6%, p < 3.0866×10−25 

Average lag from voluntary 
contractions to BCI-robot control = 
2.24 ± 0.19s (after 5 sessions) 

 

(Naros et al., 2016) 

 

N=32 (16F:16M)   
Mean age: 25.9±0.5y 

2x2 factorial design 
with parameters: 
adaptive classifier 
threshold and non-
adaptive classifier 
threshold, contingent 
feedback and non-
contingent feedback 

Opening of right hand 

Cue: auditory 

Feedback: kinaesthetic 

EEG: 32 channels to 
detect ERD, with 
EMG to classify MI 
(FC3, C3, CP3 used) 

Device: Amadeo, 
Tyromotion, Austria 

Control: trigger 

Significant enhancement in group 1 
(adaptive classifier + contingent 
feedback), p=0.0078 

Significant reduction in group 4 (non-
adaptive classifier + non-contingent 
feedback), p=0.0391 

Motor performance improvement over 
baseline from first and last tasks, 
significant results: 

Group 1 (adaptive classifier + 
contingent feedback), p=0.0313 

Group 4 = (non-adaptive classifier + 
non-contingent feedback), p=0.0411 

(Ono et al., 2018) 

 

 

 

N=28                    
Right-handed except 
1 

Implementation of an 
action observation 
strategy with visual 
and proprioceptive, or 

Grasping of a tennis 
ball with a hand 

Cue: visual (video of 
hand performing 
action) 

EEG: 9 channels to 
classify ERD 

Device: Power Assist 
Hand - Team ATOM, 
Atsugi, Japan 

AO+MI + proprioceptive and visual 
feedback:  

Mean MI-ERD powers of correct 
feedback vs SHAM provide significant 
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Ono et al. (cont’d) auditory feedback to 
MI 

Control group: SHAM 

Feedback: visual, 
kinaesthetic and 
auditory 

Actuation: pneumatic 
motors with rigid links 

Control: trigger 

interaction, F1,17=6.618, p=0.020 (6 
days) 

Statistically significant increase in MI-
ERD power in correct feedback group 
over baseline, p=0.012 (6 days) 

(Stan et al., 2015) 

 

 

 

 

 

N=9 Trigger a hand 
orthosis using a P300 
speller BCI 

Spell E (enable), A 
(hand opening) and B 
(hand closing) in P300 
speller BCI to perform 
hang grasping, moving 
and releasing objects 

Cue: textual (spelling) 

Feedback: visual 
(textual) and 
kinaesthetic 

EEG: 8 channels 
focusing on visual 
cortex 

Device: hand orthosis 

Actuation: 2 
servomotors and 
current feedback 
circuitry 

Control: trigger 

Mean classification accuracies: 100% 
(on 6th letter flash during calibration) 

(Ramos-
Murguialday et al., 
2012) 

N=23                     
Mean age (contingent 
positive, contingent 
negative, SHAM): 
26.6±4y, 26.5±5y, 
26.2±2y 

Probing MI with 
proprioceptive 
feedback 

Experimental groups: 
contingent positive, 
contingent negative 
feedback 

Control group: SHAM 

5 tasks: MI without 
direct control, MI with 
direct control, passive, 
active, rest 

Cue: auditory 

Feedback: visual and 
kinaesthetic 

EEG: 61 channels with 
EMG to classify 
ERD/ERS 

Device: hand orthosis 

Actuation: DC motor 
M-28 with a worm 
gearhead and Bowden 
cables for each finger 

Control: trigger 

Contingent positive feedback provided 
higher BCI performance during MI 
without feedback than contingent 
negative and SHAM; and higher 
during MI with or without feedback 
as compared to rest 

(Ramos-
Murguialday and 
Birbaumer, 2015) 

N=9                      
Right-handed        
Mean age: 26.6±4y 

Detect oscillatory 
signatures of motor 
tasks during EEG 

5 tasks: MI without 
direct control, MI with 

EEG: 61 channels with 
EMG to classify 
ERD/ERS 

Significant change in power in all 
frequency ranges during MI with 
direct control before trial initiation  
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Ramos-Murguialday 
and Birbaumer 
(cont’d) 

direct control, passive, 
active, rest 

Cue: auditory 

Feedback: visual and 
kinaesthetic 

Device: hand orthosis 

Actuation: DC motor 
M-28 with a worm 
gearhead and Bowden 
cables for each finger 

Control: trigger 

Kinaesthetic feedback increased 
significant changes in alpha and beta 
power; therefore, increasing BCI 
performance 

 

(Randazzo et al., 
2018) 

 

 

 

 

 

 

 

N=9 (2F:7M)        
Mean age: 23±5y 

Design and 
implementation of a 
hand orthosis with 
testing of kinaesthetic 
effects in EEG 

4 tasks: rest (REST), 
exoskeleton-induced 
hand motions (EXO), 
MI of right hand (MI), 
exoskeleton-induced 
hand motions plus MI 
(MIEXO) 

Cue: visual 

Feedback: kinaesthetic 

EEG: 16 channels to 
detect MI 

Device: mano hand 
exoskeleton 

Actuation: linear 
servomotors attached 
to Bowden cables as 
tendons 

Control: passive 
(exoskeleton not 
dependent on MI to 
move during MIEXO 
task) 

Mean classification accuracies among 
groups: 

(vs REST) MI = 63.02±5.91%, EXO 
= 69.64±5.74%, MIEXO = 
72.19±6.57% 

MIEXO vs EXO = 69.91±9.86% 

Chance level at 95% confidence = 
58% (N=50 trials) 

(Tacchino et al., 
2017) 

 

 

 

 

 

N=8 (7F:1M)          
Right-handed          
Mean age: 26.3±1.9y 

2x2 factorial design 
with parameters: 
glove, no glove, active 
movement, passive 
movement 

Opening and closing of 
hand, 4 tasks: (A) 
glove with active 
movement, (B) glove 
with passive 
movement, (C) no 
glove with active 
movement, (D) no 
glove and no movement 

EEG: 19 channels with 
EMG to detect 
ERD/ERS (C3, F3, Cz 
used)  

Device: Gloreha hand 
rehabilitation glove 

Actuation: electric 
actuators with 

Statistically significant ERD changes 
in beta and mu bands were observed 
to initiate earlier in tasks A and C 
(involves active movement) 

Stronger and longer ERD was 
observed in tasks A and B (involves 
robotic assistance) suggesting 
reinforced afferent kinaesthetic 
feedback 
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Tacchino et al. 
(cont’d) 

Cue: auditory 

Feedback: kinaesthetic 

Bowden cables on each 
finger 

Control: passive (glove 
not dependent on 
brain-state during 
tasks) 

(Vukelic and 
Gharabaghi, 2015) 

N=11 (4F:7M)       
Right-handed          
Mean age: 25.83±3.1y 

Assessment 
sensorimotor activity 
during MI with either 
visual or kinaesthetic 
feedback 

Right hand opening 

Cue: visual (coloured 
cursor ball) 

Feedback: visual and 
kinaesthetic (separated 
by experimental 
groups) 

EEG: 128 channels to 
detect ERD/ERS 
during MI (F3, CP3, 
C3 used) 

Device: Amadeo, 
Tyromotion, Austria 

Control: trigger 

MI + kinaesthetic feedback group 
resulted in higher beta ERS (p=0.02) 
during rest and higher beta ERD 
(p=0.04) during MI 

Kinaesthetic feedback provides higher 
stability and sustained beta ERD 
activity than visual feedback  

(Witkowski et al., 
2014) 

 

 

 

 

 

 

N=12 (4F:8M)      
Right-handed           
Mean age: 28.1±3.63y 

Assessment 
performance and 
safety of EEG-EOG 
hybrid BCI 

Right hand grasping 

Cue: visual (coloured 
squares and arrows) 

Feedback: kinaesthetic 

EEG: 5 channels with 
EOG and EMG to 
detect ERD during MI 

Device: HX hand 
exoskeleton 

Actuation: DC motors 
with Bowden cables 
for thumb and index 
fingers 

Control: trigger 

Mean classification accuracies: 

EEG only = 63.59±10.81% 

EEG/EOG hybrid = 60.77±9.42% 

Mean safety criterion violations 
during rest: 

EEG only = 45.91±26.8% 

EEG/EOG hybrid = 10.14±0.3% 

(Zhang et al., 2019) 

 

 

N=6 (2F:4M)       
Right-handed          
Age range: 23-26y 

Implementation of a 
multimodal system 
using EEG, EMG and 

Graz visualisation and 
auditory instructions, 
eye movements and 

EEG with EMG and 
EOG: 40 channels to 
analyse ERD/ERS 
patterns 

Mean classification accuracies: 

EOG = 94.23% 

EEG = 31.46% 
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Zhang et al. 
(cont’d) 

EOG to control a soft-
robotic hand 

physical practice (hand 
gestures) 

Cue: visual (Graz MI), 
auditory 

Feedback: visual and 
kinaesthetic 

Device: Soft 
pneumatic finger 

Actuation: pneumatic 
actuator with soft 
structures 

Control: trigger 

EMG = 36.38% 

Multimodal = 93.83±0.02% 

 

UE = Upper Extremity, MI = Motor Imagery, BCI = Brain-Computer Interface, RCT = Randomised Clinical Trial, SAT = Standard Arm Therapy,           
EMG = Electromyography, EOG = Electrooculography, ERD/ERS = Event-Related Desynchronisation/Synchronisation,                                                  
FMMA = Fugl-Meyer Motor Assessment, ARAT = Action Research Arm Test, GS = Grip Strength, DOF = Degrees-of-Freedom 
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Appendix B 

Development of a Low-Cost              
Robotic Hand Exoskeleton:               
From Design to Fabrication 

 
This appendix contains the mechanical drawings, illustrations, and images from the low-cost 

robotic hand exoskeleton fabrication process. All figures in this appendix illustrate the right-

hand version of the robotic exoskeleton to represent the device. All distance measurements are 

in millimetres (mm), while angle measurements are in degrees (°). 

 

 

 

Figure B.1: Main servo base 
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Figure B.2: Thumb servo base 

 

 

Figure B.3: Main servo gear (left) and finger link 1 gear (right) 
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Figure B.4: Finger link 1 

 

 

Figure B.5: Finger link 2 
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Figure B.6: Finger link attachments 

 

 

Figure B.7: Thumb link 1 
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Figure B.8: Thumb link 2a (left) and thumb link 2b (right) 

 

Figure B.9: Cardan joint which connects thumb link 2a and thumb link 2b (left) and                 

thumb link attachments (right) 
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Figure B.10: Full mechanical assembly (right-hand version) 
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Figure B.11: Fabrication via 3D printing 

 

     

Figure B.12: Wearing the prototype 
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Appendix C 

2x2 Factorial ANOVA          
(Additional Details) 

 
This appendix contains supplementary figures and tables from the 2x2 factorial ANOVA 

performed to treat the experimental data obtained in Chapter 6. All plots and numerical results 

were obtained from the statistical software R/R-Studio. 

 

 

 

Figure C.1: Shapiro-Wilk Test for Normality: Overall (left) and Per Condition (right) 
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Table C.1: Shapiro-Wilk Test for Normality: Overall 

Variable Statistic p-value 

Residuals (model) 0.976 0.668 

 

 

Table C.2: Shapiro-Wilk Test for Normality: Per Condition 

Visual Kinaesthetic Variable Statistic p-value 

No VR No Robot Score 0.877 0.177 

No VR Robot Score 0.982 0.177 

VR No Robot Score 0.971 0.907 

VR Robot Score 0.978 0.953 

 

 

 

Figure C.2: Interaction plot 
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Table C.3: Main and interaction effects 

Effect DFn DFd F p p<.05 Ges 

Visual (main) 1 28 4.343 0.046 * 0.134 

Kinaesthetic (main) 1 28 0.863 0.361  0.030 

Interaction 1 28 0.080 0.780  0.003 

 

Table C.4: Pairwise T-Test and Bonferroni Correction  

Y Group 1 Group 2 N1 N2 p adjusted p<.05 

Score No VR VR 16 16 0.0422 * 
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Appendix D 

Individual EEG Time-Frequency 
Representations and ERD/S               
Line Plots for All Sessions 

 
This appendix contains the phase EEG time-frequency representations and ERD/S line plots 

across all sessions and conditions from the experiment in Chapter 6. Conditions that indicate 

“BOTH” refer to the combined VR+robot condition. The first two plots were generated from 

the training phase's averaged left and right trials, while the last two plots were generated from 

the averaged left and right trials of the testing (online) phase. Each page in this appendix shows 

all the generated EEG time-frequency representations or ERD/S line plots for that particular 

session (labelled). For the ERD/S line plots, the top quadrants are the mu (μ) spectral band 

power plots at 8-12 Hz, while the bottom quadrants are the plots for the beta (β) spectral band 

power at 13-35 Hz. 
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CONTROL – 1 –TRAINING 

 
CONTROL – 1 – TESTING 

 
 



177 
 
CONTROL – 2 –TRAINING 

 

 
CONTROL – 2 – TESTING 
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CONTROL – 3 – TRAINING 

 
CONTROL – 3 – TESTING 
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CONTROL – 4 – TRAINING 

 
CONTROL – 4 – TESTING 

 
 



180 
 
CONTROL –5 – TRAINING 

 

 
CONTROL – 5 – TESTING 
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CONTROL – 6 – TRAINING 

 

 
CONTROL – 6 – TESTING 
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CONTROL – 7 – TRAINING 

 

 
CONTROL – 7 – TESTING 
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CONTROL – 8 – TRAINING 

 

 
CONTROL – 8 – TESTING 
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VR – 1 – TRAINING 

 
VR – 1 – TESTING 

 
 



185 
 
VR – 2 – TRAINING 

 
VR – 2 – TESTING 

 
 



186 
 
VR – 3 – TRAINING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



187 
 
VR – 4 – TRAINING 

 
VR – 4 – TESTING 
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VR – 5 – TRAINING 

 
VR – 5 – TESTING 
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VR – 6 – TRAINING 

 
VR – 6 – TESTING 
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VR – 7 – TRAINING 

 
VR – 7 – TESTING 
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VR – 8 – TRAINING 

 
VR – 8 – TESTING 
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ROBOT – 1 – TRAINING 

 
ROBOT – 1 – TESTING 
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ROBOT – 2 – TRAINING 

 
ROBOT – 2 – TESTING 
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ROBOT – 3 – TRAINING 

 
ROBOT – 3 – TESTING 
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ROBOT – 4 – TRAINING 

 
ROBOT – 4 – TESTING 
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ROBOT – 5 – TRAINING 

 
ROBOT – 5 – TESTING 

 
 



197 
 
ROBOT – 6 – TRAINING 

 
ROBOT – 6 – TESTING 
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ROBOT – 7 – TRAINING 

 
ROBOT – 7 – TESTING 
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ROBOT – 8 – TRAINING 

 
ROBOT – 8 – TESTING 
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BOTH – 1 – TRAINING 

 
BOTH – 1 – TESTING 

 
 



201 
 
BOTH – 2 – TRAINING 

 
BOTH – 2 – TESTING 

 
 



202 
 
BOTH – 3 – TRAINING 

 
BOTH – 3 – TESTING 
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BOTH – 4 – TRAINING 

 
BOTH – 4 – TESTING 
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BOTH – 5 – TRAINING 

 
BOTH – 5 – TESTING 
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BOTH – 6 – TRAINING 

 
BOTH – 6 – TESTING 
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BOTH – 7 – TRAINING 

 
BOTH – 7 – TESTING 
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BOTH – 8 – TRAINING 

 
BOTH – 8 – TESTING 
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CONTROL – 1 –TRAINING 

 
 
CONTROL – 1 – TESTING 
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CONTROL – 2 –TRAINING 

 
 
CONTROL – 2 – TESTING 
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CONTROL – 3 – TRAINING 

 
 
CONTROL – 3 – TESTING 
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CONTROL – 4 – TRAINING 

 
 
CONTROL – 4 – TESTING 
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CONTROL –5 – TRAINING 

 
 
CONTROL – 5 – TESTING 

 
 



213 
 
CONTROL – 6 – TRAINING 

 
 
CONTROL – 6 – TESTING 
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CONTROL – 7 – TRAINING 

 
 
CONTROL – 7 – TESTING 
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CONTROL – 8 – TRAINING 

 
 
CONTROL – 8 – TESTING 
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VR – 1 – TRAINING 

 
 
VR – 1 – TESTING 

 
 



217 
 
VR – 2 – TRAINING 

 
 
VR – 2 – TESTING 
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VR – 3 – TRAINING 
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VR – 4 – TRAINING 

 
VR – 4 – TESTING 

 
 
 



220 
 
VR – 5 – TRAINING 

 
VR – 5 – TESTING 

 
 
 



221 
 
VR – 6 – TRAINING 

 
VR – 6 – TESTING 

 
 
 



222 
 
VR – 7 – TRAINING 

 
VR – 7 – TESTING 
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VR – 8 – TRAINING 

 
VR – 8 – TESTING 
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ROBOT – 1 – TRAINING 

 
 
ROBOT – 1 – TESTING 
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ROBOT – 2 – TRAINING 

 
 
ROBOT – 2 – TESTING 

 
 



226 
 
ROBOT – 3 – TRAINING 

 
 
ROBOT – 3 – TESTING 
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ROBOT – 4 – TRAINING 

 
 
ROBOT – 4 – TESTING 

 
 



228 
 
ROBOT – 5 – TRAINING 

 
 
ROBOT – 5 – TESTING 

 
 



229 
 
ROBOT – 6 – TRAINING 

 
 
ROBOT – 6 – TESTING 
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ROBOT – 7 – TRAINING 

 
 
ROBOT – 7 – TESTING 
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ROBOT – 8 – TRAINING 

 
 
ROBOT – 8 – TESTING 
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BOTH – 1 – TRAINING 

 
 
BOTH – 1 – TESTING 
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BOTH – 2 – TRAINING 

 
 
BOTH – 2 – TESTING 
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BOTH – 3 – TRAINING 

 
 
BOTH – 3 – TESTING 

 
 



235 
 
BOTH – 4 – TRAINING 

 
 
BOTH – 4 – TESTING 

 
 



236 
 
BOTH – 5 – TRAINING 

 
 
BOTH – 5 – TESTING 
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BOTH – 6 – TRAINING 

 
 
BOTH – 6 – TESTING 
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BOTH – 7 – TRAINING 

 
 
BOTH – 7 – TESTING 
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BOTH – 8 – TRAINING 

 
 
BOTH – 8 – TESTING 
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Appendix E 

Visualisation of the Spatial Filters 
based on Common Spatial Patterns 
for the Training Phase of All Sessions 

 
This appendix contains the visualisation plots of the spatial filters generated from the EEG data 

of the training phase in each session for each condition using the common spatial patterns module 

(csp.plot_filters) from the MNE-Python package. Conditions that indicate “BOTH” refer to the 

combined VR+robot condition. The plots use a spectral colour scale of arbitrary units specific 

for each session. 
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CONTROL – 1 –TRAINING 

 

 

CONTROL – 2 –TRAINING 

 

 

CONTROL – 3 – TRAINING 

 

 

CONTROL – 4 – TRAINING 
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CONTROL –5 – TRAINING 

 

 

CONTROL – 6 – TRAINING 

 

 

CONTROL – 7 – TRAINING 

 

 

CONTROL – 8 – TRAINING 
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VR – 1 – TRAINING 

 

 

VR – 2 – TRAINING 

 

 

VR – 3 – TRAINING 

 

 

VR – 4 – TRAINING 
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VR – 5 – TRAINING 

 

 

VR – 6 – TRAINING 

 

 

VR – 7 – TRAINING 

 

 

VR – 8 – TRAINING 
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ROBOT – 1 – TRAINING 

 

 

ROBOT – 2 – TRAINING 

 

 

ROBOT –3 – TRAINING

 

 

ROBOT – 4 – TRAINING 
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ROBOT – 5 – TRAINING 

 

 

ROBOT – 6 – TRAINING 

 

 

ROBOT – 7 – TRAINING 

 

 

ROBOT – 8 – TRAINING 
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BOTH – 1 – TRAINING 

 

 

BOTH – 2 – TRAINING 

 

 

BOTH – 3 – TRAINING 

 

 

BOTH – 4 – TRAINING 
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BOTH – 5 – TRAINING 

 

 

BOTH – 6 – TRAINING 

 

 

BOTH – 7 – TRAINING 

 

 

BOTH – 8 – TRAINING 

 

 

 


