680 research outputs found

    Smooth Coverage Path Planning for UAVs with Model Predictive Control Trajectory Tracking

    Get PDF
    Within the Industry 4.0 ecosystem, Inspection Robotics is one fundamental technology to speed up monitoring processes and obtain good accuracy and performance of the inspections while avoiding possible safety issues for human personnel. This manuscript investigates the robotics inspection of areas and surfaces employing Unmanned Aerial Vehicles (UAVs). The contribution starts by addressing the problem of coverage path planning and proposes a smoothing approach intended to reduce both flight time and memory consumption to store the target navigation path. Evaluation tests are conducted on a quadrotor equipped with a Model Predictive Control (MPC) policy and a Simultaneous Localization and Mapping (SLAM) algorithm to localize the UAV in the environment

    Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

    Get PDF
    Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.The authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    An Efficient Object-Oriented Exploration Algorithm for Unmanned Aerial Vehicles

    Get PDF
    Autonomous exploration of unknown environments usually focuses on maximizing the volumetric exploration of the surroundings. Object-oriented exploration, on the other hand, tries to minimize the time spent on the localization of some given objects of interest. While the former problem equally considers map growths in any free direction, the latter fosters exploration towards objects of interest partially seen and not yet accurately identified. The proposed work relates to a novel algorithm that focuses on an object-oriented exploration of unknown environments for aerial robots, able to generate volumetric representations of surroundings, semantically enhanced by labels for each object of interest. As a case study, this method is applied both in a simulated environment and in real-life experiments on a small aerial platform

    The Penetration of Internet of Things in Robotics: Towards a Web of Robotic Things

    Get PDF
    As the Internet of Things (IoT) penetrates different domains and application areas, it has recently entered also the world of robotics. Robotics constitutes a modern and fast-evolving technology, increasingly being used in industrial, commercial and domestic settings. IoT, together with the Web of Things (WoT) could provide many benefits to robotic systems. Some of the benefits of IoT in robotics have been discussed in related work. This paper moves one step further, studying the actual current use of IoT in robotics, through various real-world examples encountered through a bibliographic research. The paper also examines the potential ofWoT, together with robotic systems, investigating which concepts, characteristics, architectures, hardware, software and communication methods of IoT are used in existing robotic systems, which sensors and actions are incorporated in IoT-based robots, as well as in which application areas. Finally, the current application of WoT in robotics is examined and discussed

    Impact of UAV Hardware Options on Bridge Inspection Mission Capabilities

    Get PDF
    Uncrewed Aerial Vehicles (UAV) constitute a rapidly evolving technology field that is becoming more accessible and capable of supplementing, expanding, and even replacing some traditionally manual bridge inspections. Given the classification of the bridge inspection types as initial, routine, in-depth, damage, special, and fracture critical members, specific UAV mission requirements can be developed, and their suitability for UAV application examined. Results of a review of 23 applications of UAVs in bridge inspections indicate that mission sensor and payload needs dictate the UAV configuration and size, resulting in quadcopter configurations being most suitable for visual camera inspections (43% of visual inspections use quadcopters), and hexa- and octocopter configurations being more suitable for higher payload hyperspectral, multispectral, and Light Detection and Ranging (LiDAR) inspections (13%). In addition, the number of motors and size of the aircraft are the primary drivers in the cost of the vehicle. 75% of vehicles rely on GPS for navigation, and none of them are capable of contact inspections. Factors that limit the use of UAVs in bridge inspections include the UAV endurance, the capability of navigation in GPS deprived environments, the stability in confined spaces in close proximity to structural elements, and the cost. Current research trends in UAV technologies address some of these limitations, such as obstacle detection and avoidance methods, autonomous flight path planning and optimization, and UAV hardware optimization for specific mission requirements
    corecore