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Abstract: Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures
due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection
and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial
and target positions. In this sense, path-planning strategies are crucial, especially online path planning
that can represent the robot’s operational environment or for control purposes. Therefore, this paper
proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random
trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control
of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main
objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in
the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in
the environment. The proposed framework was tested in a simulated environment using Gazebo
and ROS. The results showed that the proposed solution accomplished the trial for environments up
to 300 m3 and with 10 dynamic objects.

Keywords: aerial robots; multiple robots; path planning; dynamic environment; precision agriculture

1. Introduction

With recent advances in optics, electronics, and informatics, countless possibilities
have emerged for modern robotics systems [1]. As stated in Almaki et al. [2], the fourth
industrial revolution (4IR) is bringing new opportunities to employ advanced technology
to achieve an efficient and sustainable means of boosting crop productivity. For instance,
unmanned aerial vehicles (UAVs) open new paths that advance the solution of existing
problems, such as for package delivery in logistics [3], in the field of agriculture 4.0 [4],
Industry 4.0 [5], artificial intelligence [6], the Internet of Things (IoT) [7], remote sensing [8]
and many others. In precision agriculture, UAVs are widely used to map the spatial
and temporal variability of various parameters in the cultivation environment, helping
producers in decision-making and consequently improving agricultural management [9,10].
In this sense, according to Yaqot et al. [1], UAVs are a sustainable and efficient tool in the
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agro-industry due to the automation level of their operation being low compared with
other industry solutions.

These unmanned aerial robots have been applied in many different tasks due to their
ability to perform activities that involve different levels of complexity, dynamicity of the
environment, and need for motion flexibility [11–13]. Inspection of large areas is one of the
leading applications that UAV systems are required to automate [14]. Regarding inspection
and monitoring tasks in the agriculture context, UAVs play an essential role in ensuring
that crops receive the care necessary to maintain their health and productivity [15,16].

UAVs represent the largest segment of robotic platforms used in precision olive grow-
ing, followed by the application of satellites [17]. The great advantage of UAVs compared
to satellites is the fast acquisition of data and high resolution of images [18]. On the other
hand, satellites have the benefit of covering large areas, although sometimes the presence
of clouds will influence the quality of information collected [18].

Precision agriculture is undergoing a massive technological transformation where
the applicability of UAVs in the agricultural segment is not restricted to remote-sensing
techniques. With the integration of artificial intelligence [19], the IoT [20], and computer
vision resources [21], it is now possible for UAVs to reach new layers of application for
automating inspection processes and generating data for supporting decision-making, such
as for selective and reduced pesticide applications, for example.

In autonomous inspection and monitoring tasks, the UAV needs to find an optimal or
near-optimal collision-free route and target positions, demanding continuous monitoring
of the vehicle during operation. There are two types of motion-planning strategies based
on the sensory information acquired from the environment: global path planning and local
path planning [22]. In the literature, several solutions regarding path-planning strategies
have been described [23,24]. In dynamic environments, if the sensors detect unaccounted
obstacles, the path planning must present a rapid response to re-compute the assigned path
to avoid the detected obstacle until it reaches its final position [25].

1.1. Olive Trees Insect Trap Inspection

Olive tree cultures Oleae europea L. are an important economic source for several coun-
tries. One of the most significant plagues that affects olive production is the Bactrocera oleae,
commonly known as the “olive fly”. The female of the fly puts its eggs in the fruits where
the growing larvae feed, impacting the product’s quality. Fighting this kind of infestation
commonly uses pesticides, but ecological concerns and the associated economic costs ne-
cessitate proposal of new methods to reduce the use of these products. One possible way
to achieve this objective is to use insect traps to capture the fly and evaluate the infestation
level, allowing intelligent decision-making control. This method is widely applied in this
kind of culture [26]. The traps are fixed in the tree’s crops at eye level, in variate numbers
and semi-randomly distributed [27].

A range of similar variate manual inspection methodologies are used. It is common
to exchange the traps every two weeks, for example, and perform a visual count of the
insects captured, which is a slow and demanding process. Moreover, the time interval for
data analysis can be problematic because of the delay in action to control the infestation. In
this sense, the development of methodologies for monitoring insects in chromotropic traps
by UAVs has been explored in the literature, with the objectives of replacing traditional
methods carried out by human observation, analyzing on a large scale the dynamics of
insect distribution, increasing the flow of information in a short time, as well as visualizing
and summarizing this flow of information in a statistically reliable sense [17]. A possible
way to achieve this objective is by using autonomous small-size UAV systems due to their
flexible characteristics.

Motion-planning algorithms are needed for autonomous UAVs that operate in dy-
namic and high-dimensional environments. Developing autonomous UAVs for this kind of
application remains challenging, especially in low-altitude flight operations in large-scale
unstructured and dynamic environments involving operation between tree rows under
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canopy level to conduct the trap-inspection process [28]. It is necessary to create a viable and
low-energy cost path to the UAV and to provide obstacle detection and avoidance to ensure
motion security. Proposing an intelligent path-planning algorithm with collision-avoidance
capability for this specific application is the objective of the present work.

1.2. Objectives and Main Contributions

The main objective of the present work is to propose an autonomous path-planning
and collision-avoidance algorithm for a UAV applied to the olive fly trap inspection task,
providing a viable route between the tree crops and allowing the UAV to reach the pre-
programmed inspection points avoiding static and dynamic obstacles present in the space.

Therefore, this work aims to advance a methodology for online adaptive path planning
based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement
learning (DRL) applied to unmanned aerial vehicles. This research considers an olive-
growing environment to assess the proposed methodology. In this scenario, the UAV will
move among the aisles of olive groves. During this movement, the UAV will hover at
previously known inspection set points to allow the capture of a trap image. Implementing
the capture algorithm, image-processing, and automatic insect counting is beyond the scope
of this study. This work will only address the online path-planning problem and collision
avoidance of the UAV in this navigation process. The framework is assessed by simulations
performed in the robot operating system (ROS) along with the Gazebo platform [29].

The main contribution of this work is the development of a novel adaptive path-
planning approach for UAVs with obstacle-detection capability, based on the fusion of RRT
and DRL algorithms, applied to capture images from insect traps fixed in the olive trees,
considering the dynamic agriculture environment.

1.3. Organization

The next part of this paper is organized as follows: Related work on the application of
UAVs in precision agriculture and online path planning is reviewed in Section 2. Section 3
presents an overview of the proposed path-planning strategy and its mathematical founda-
tions. The validation and assessment of the proposed strategy are described in Section 4.
Finally, concluding remarks and ideas for future work are given in Section 5.

2. Background and Related Work
2.1. UAVs Applied to Precision Agriculture

In precision agriculture, UAVs, along with several technologies, such as sensors and
companion computers, are used to estimate the characteristics of the local culture. They can
determine culture vigor using multispectral or hyperspectral cameras [30], potential local
water stress using thermal cameras [31], pest and disease severity using computer-vision
techniques [32], or by reconstructing three-dimensional maps using LiDAR (light detection
and ranging) sensors to estimate the density of local vegetation [33], among others. For
instance, precision olive growing represents an essential agricultural management method
for the countries of southern Europe that aims to maximize the yield of olive groves,
offering benefits from productive, qualitative and environmental points of view. Given this
fact, developing and applying new technologies to monitor olive groves using multi-rotor
UAVs has increased rapidly in recent decades [34].

In this sense, different solutions are presented in the literature, aiming to maximize the
inspection process of various parameters of the local culture. UAVs equipped with thermal
cameras and applying computer-vision resources are used to collect valuable information,
which can be used, for example, to analyze and classify regions with potential water deficit,
identify the water needs of a set of olive groves, and to use the local distribution of water
more efficiently, thus avoiding risks in located areas [35]. Aerial systems equipped with
multispectral and hyperspectral cameras can estimate regions with potentially deficient
metabolic processes to indicate diseases in olive groves [36]. Using the same sensory
technology, it is also possible to estimate potential problems related to nutritional stress
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through spectral reflectance image analysis. Quantifying the vigor of the local biomass
using different vegetation indices can later indicate regions needing fertilizers [37].

Usually, UAVs are applied at a very high altitude when monitoring crops. In this
case, the photogrammetry technique is widely used for olive grove canopy reconstruction.
Typically, the UAV is equipped with an RGB camera to carry out counting and forest
inventory in the region [38]. Using LiDAR sensors, three-dimensional maps with high
spatial resolution are used to obtain production estimates based on the canopy diameter.
Moreover, the approach can be used to carry out a forest inventory or even assess damage
in forest plots due to different phenomena, such as fires [39]. Despite recent technological
advances, there is still a significant reliance on manual sampling and human observation
for crop monitoring [40]. In addition, most operations are conducted at a high flight
ceiling, preventing more accurate and localized identification of problems existing at the
site [41]. Furthermore, when using UAVs, a human operator must constantly check the
UAV trajectories and performance of the task.

Agriculture autonomous robotic system UAVs present significant challenges [42], espe-
cially considering that the agricultural environment can be unstructured and highly dynamic,
potentially including obstacles of different dimensions, such as tree branches or leaves, gusts of
wind, occlusion caused by multiple obstacles, and light variation [43]. Most studies reported
in the literature focus on UAV applications in open spaces. Applications that require high
proximity to particular targets, such as identifying insects or traps scattered along the canopies
of olive groves, demand precise navigation control near to the trees [28]. A possible approach
to achieve this objective is the use of neural networks trained to convert the inputs (e.g., vehicle
and obstacle positions) to a robot’s headings to guarantee collision-free movement [44,45],
which is the case for the research reported in this work. Several solutions have been proposed
to address mobile robots’ motion planning. For instance, Sing et al. [44] proposed using an NN
to control the mobile robot speed. Sung et al. [45] addressed NN performance depending on
the training path data. Yu et al. [46] proposed a path-planning algorithm for mobile robots
based on neural networks and hierarchical reinforcement learning. For UAVs, [47] developed
an online control algorithm whereby a base station downloads the UAS state and trains a
Hamilton–Jacobi–Bellman equation (HJB) NN that is solved in real-time, yielding a sub-optimal
control action. Their approach was validated through numerical simulation. All the studies
referred to rely on non-realistic environment simulation to test their approaches.

2.2. Online Path Planners and Reinforcement Learning Path Planners

In recent decades, several kinds of 3D path-planning approaches have been proposed,
including those described in [48–50], among others. These proposed path-planning strategies
have specific features that can be useful for different robots used in different environments.
They include Visibility Graph [51], randomly sampling search algorithms, such as Rapidly
Exploring Random Tree [48] and Probabilistic Roadmap [49], optimal search algorithms,
such as Dijkstra’s algorithm [52], A∗ [53], D∗ [54], and bio-inspired planning algorithms [55],
among others.

There are two types of NN implementation for UAV path planning. In the first
approach, the path of the UAV is based on a sample trajectory. Then, a computing method
is utilized to perform the trajectory optimization [56]. The other type of implementation
uses NNs to approximate the system dynamics, objective functions and gradients. This
reduces the size of the nonlinear programming (NLP) problem [57]. Usually, the NNs are
mixed with other algorithms, such as artificial potential field (APF), GA, PSO, etc. [58].

A path-planning strategy using an NN for a UAV in a dynamic environment was
proposed in the work of Chen et al. [59]. In their proposal, classical APF issues were
minimized (i.e., the local minimum issue). The authors of [60] designed a controller
based on a multilayer feed-forward NN for autonomous mobile robot navigation. An
interesting approach using an NN and reinforcement learning was proposed in [61]. Their
approach was to make the mobile robot learn navigation rules automatically without initial
rules settings.
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More recently, Queresh et al. [62] designed a deep neural network (DNN) based on
an iterative motion-planning algorithm for high-dimensional problems. They encoded
the given workspaces directly from a point cloud measurement. Then, an end-to-end
collision-free path was generated. The tests were evaluated using a seven DOF Baxter robot
manipulator. Shiri et al. [47] developed an online NN learning-based control algorithm
HJB for UAV. However, only numerical simulations were conducted. Another solution for
UAV was proposed by [63]. Their work involved the development of a deep-reinforcement-
learning (DRL)-technique for UAV path planning based on global situation information.

Regarding unknown and dynamic environments, some studies in the literature have
utilized reinforcement learning strategies to navigate UAVs in this kind of scenario [64–66].
An improvement in reinforcement learning can be achieved by fusing it with a deep
learning approach to avoid the curse of dimensionality, as stated by [64]. This strategy
helps when considering high-dimensional spaces.

As mentioned by Zhang et al. [66], real-time path planning considering multiple UAVs
and information-sharing is still not well studied. Thus, they proposed using geometric
reinforcement learning (GRL) to calculate the path planning of multiple UAVs. The re-
ward matrix of the GRL is adaptively updated based on the geometric distance and risk
information shared by the robots. The perspective of using Q-Learning as a reinforcement
learning strategy is a classical solution for path-planning problems. However, in many
real-world problems, there are several possible states and action spaces. In this sense,
tabular representation cannot store all possible combinations of pair values. To mitigate this
issue, in the work of Tong et al. [64], the authors developed an improved DRL approach
based on a deep Q-network (DQN) to decompose the UAV navigation task into two simpler
sub-tasks. This approach provides robust navigation in highly dynamic environments.
Another interesting approach was proposed by [67]. They developed a solution for double
Q-network deep reinforcement learning to perform dynamic path planning in an unknown
environment. The authors of Yang et al. applied DQN for multi-robot path planning to
slow convergence and excessive randomness. They showed that their solution converged
faster than the classic DRL. Moreover, it was quicker to learn the path-planning solutions.
Therefore, this work combined RRT and DQN to eliminate drawbacks possessed by each
algorithm. DQN is difficult to implement and is not a robust method. RRT is easy and
robust but has the disadvantage of being a random sampling method. Table 1 summarizes
the advantages and disadvantages of contemporaneous path-planning methods.

Table 1. Advantages and disadvantages of contemporaneous path-planning algorithms.

Method Advantages Drawbacks References

RRT
Simple,
low computational
time

For static environments,
non-optimal paths Yang et al. [48]

PRM Can handle complex
environments

For static environments,
non-optimal,
time expensive

Yang et al. [49]

Dijkstra’s
Algorithm Easy implementation High time complexity,

for static environment Dijkstra et al. [52]

A∗ Fast searching ability
Static environment only,
heavy time burden,
non-smoothness

Hart et al. [53]

APF Fast convergence Local minima Chen & Zhang [59]
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Table 1. Cont.

Method Advantages Drawbacks References

Genetic
algorithm

Able to solve NP-hard
and multiobjective
problems

High time complexity,
premature convergence Tsai et al. [68]

CNN

Can handle dynamic
environments and
unknown
environments

High complexity,
high number of
hyperparameters,
non-optimal

Wu et al. [69]

DQN Adaptative Non-optimal,
difficult implementation Tong et al. [64]

3. Proposed Methodology
3.1. Problem Formulation

The olive fly trap inspection process using a UAV is performed by capturing images
of the traps fixed in the crop of trees along a growing space. This kind of space is non-
structured for the UAV flight, demanding a capacity for collision detection and avoidance
to assure the security of the process. Figure 1 presents a picture of an olive-growing area (a)
and the closed vision of the trap fixed in the tree crop (b).

Figure 1. Example of olive-growing space environment complexity. (a) A picture of an olive-growing
space and trees. (b) Detail of a trap fixed in the tree crop.

Capturing the trap images requires the UAV to fly between the tree crops at a height
near the mean of the tree sizes. As is possible to observe in the figure, the flight space
is complex, with some twigs projecting outside the tree crop. In addition, other kinds
of dynamic objects, such as vehicles, humans, and animals, are sometimes present in
this space, requiring a response from the flight controller to avoid them when the UAV
is moving.

A representation of the inspection process is presented in Figure 2. In this figure, it is
possible to observe the proposed behaviour of the UAV during the displacement to reach
an inspection point. The UAV receives the route program and starts moving to the target
point while scanning the environment using the LIDAR. When an obstacle is detected,
the DRL collision avoidance algorithm sets the UAV avoidance operation to bypass the
object. When the UAV arrives at the trap point, it stops, and the image is captured, before
moving to the next target point. In this work, some parameters are considered to evaluate
the proposed solution:



Agriculture 2023, 13, 354 7 of 25

• The traps are fixed in a random distribution between the spaces, with five traps per tree.
• The distance for capturing the trap picture is set to 3.0 m minimum.
• The UAV is capable of detecting obstacles in space using a planar LIDAR with 10.0 m

range and a 360-degree scanning angle.
• The position of each trap is already known and is used to set the target points to the

route planner.
• Object avoidance is only performed in the horizontal plane. No vertical direction

change is performed to avoid obstacles.

Figure 2. Representation of the UAV trap-inspection process. (a) Block diagram of the algorithm
agents. (b) Representation of the UAV displacement and avoidance actions.

The choice for the UAV not to execute vertical collision avoidance is because of the
LIDAR scanning model. There is no sensor embedded in the UAV to detect objects in the
top-side or up-side of the aircraft, so it is impossible to implement vertical detection to
allow the algorithm to work in this direction. This was chosen because it is expensive and
complex to embed many sensors in a real-world application in the UAV, so the choice of
working only in the horizontal plane to avoid obstacles is justified.

The path-planning concept focuses on fusing RRT and DRL techniques. The RRT
will generate the path among the aisles of olive groves and the DRL will learn and adapt
the UAV current state path to guarantee a collision-free trajectory. In the case of dynamic
obstacles, it is considered that the robot can share the space with other robots, people
working on the farm, tree branch movement, etc. As proof of concept, a model of a car is
used as a dynamic obstacle for the UAV during the simulations.

The UAV will take off from a home point, perform the inspection process, avoid
possible obstacles, and then return to the home point. In this sense, the authors believe that
the algorithms chosen in this research fit the context of the proposed research objectives,
considering that the RRT can reach a map exploration rate in a short period and that the
DRL has advantages over other techniques of control for dynamic systems and is capable
of handling highly dynamic and time-varying environments.

3.2. UAV Quadrotor Model

The dynamics of the UAV were provided by the PX4 package and are detailed and
described in Andrade et al. [70]. The UAV system considered in this work has four rotors,
as presented in Figure 3.
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Figure 3. UAV quadrotor structure.

The Euler angles presented in the figure describe the orientation of the system about
the local level surface, as well as in relation to the true north (azimuth reference). The
roll (φ) and pitch (θ) angles give the tilt of the UAV about the gravity vector, while the
yaw angle (ψ) describes the rotation around the local vertical direction. These angles, as
shown in Equation (1), are used as inputs to the forward kinematics equation to calculate
the world-to-frame conversion matrix to estimate the actual UAV position.

Rψ,θ,φ =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ·
 cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

 ·
1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

. (1)

Equation (2) gives the UAV body frame axes mathematical model.



φ̈
θ̈
ψ̈
z̈
ẍ
ÿ

 =



Iyy−Izz
Izz

θ̇ψ̇ + θ Jr
Ixx

Ωr +
l

Ixx
U2

Izz−Izz
Iyy

φ̇ψ̇ + φ Jr
Iyy

Ωr +
l

Iyy
U3

Ixx−Iyy
Izz

θ̇φ̇ + l
Izz

U4

g− cos(φ) cos(θ)U1
m

U1
m (∆ + sin(φ) sin(ψ))
U1
m (Γ + sin(φ) cos(ψ))


=



ξφ(t)
ξθ(t)
ξψ(t)
ξh(t)

0
0

. (2)

Note that ∆ = cos(φ) sin(θ) cos(ψ) and Γ = cos(φ) sin(θ) sin(ψ) are auxiliary vari-
ables, Ui|(i = 1, . . . , 4) represents the thrust and the actuation torques for the UAV move-
ments, Ωr is the engine’s residual angular speed, and, finally, ξ(φ,θ,ψ,h) are the dynamic
disturbances affecting the angles φ, θ, and ψ. Note that these variables are used in the
motor mixing (i.e., Equation (2)), which specifies the magnitude of forces that should be
applied to each motor of a multirotor. U1 is the thrust equivalence force, U2 represents the
rotational force on roll axis, U3 represents the rotational force on the pitch axis, and U4
represents the rotational force on the yaw axis. Thus, it is possible, using the motor mixing
algorithm, to analyze the Ui inputs in relation to the angular speed (Ω(1,2,3,4)). The b(Ns2)
and in Equation (3) are the impulse coefficient and the drag coefficient, respectively.
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U1
U2
U3
U4
Ωr

 =


b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

b(−Ω2
2 + Ω2

4)
b(Ω2

1 −Ω2
3)

d(−Ω2
1 + Ω2

2 −Ω2
3 + Ω2

4)
−Ω1 + Ω2 −Ω3 + Ω4

. (3)

3.3. Path-Planning Algorithms
3.3.1. Rapidly Exploring Random Tree Algorithm

RRT is an algorithm based on decision trees and random sampling searches around a
determined state space. This space of search is described by Z, wherein a three-dimensional
environment Z is a subset of the R3. The space occupied with objects is Zocc, and the free
one is Z f ree. The main objectives of this algorithm are to create a path between Zstart ⊂ Z f ree
and Ztarget ⊂ Z f ree without collision, in the least possible time and with least path cost.
Equation (4) shows the relation between these three spaces.

Z f ree =
Z

Zocc
· Ztarget. (4)

In this work, the authors focused on using the RRT algorithm to tackle the problem
of finding a reliable path between some given waypoints (states) that belong to Z f ree. For
the 3D path planning, the waypoints are defined by S(x, y, z) ⊂ Z f ree. The generated path
should link all these states but only sometimes be optimal. Since RRT is a sample algorithm,
there is no guarantee of finding the optimal solution to the problem. The authors then
use specific criteria to stop the algorithm using N the numbers of max iterations and J the
minimal distance path. Algorithm 1 provides a description of how it works.

Algorithm 1 Rapidly Exploring Random Tree

1: Path← Empty_Array
2: Waypoints← Insert_Waypoints()
3: for Zstart, Ztarget in Waypoints do
4: end for
5: Rtree ← Begin_Tree()
6: Rnode ← Begin_node(Z f ree, Zstart, Rtree)
7: for i = 0 to i = N do
8: end for
9: if random() < 0.10 then

10: else
11: end if
12: Zrandom = random(Znear_target)
13: Zrandom = random(Z f ree)
14: Znear ← Nearest(Rtree, Zrandom)
15: if Path_collision_free(Znear, Zrandom) then
16: end if
17: Rtree ← Zrandom
18: if Norm(Zrandom − Ztarget) <= J then
19: end if
20: Path ← Get_minimal_path(Rtree)
21: Break

3.3.2. Deep Reinforcement Learning and Deep Q-Network

The DQN algorithm is a DRL method. The rationale for using the DQN algorithm is
that it can combine deep learning and reinforcement learning algorithms. In this sense, the
DQN algorithm effectively solves the problems and challenges faced by the deep learning
and reinforcement learning fusion process by combining the Q-learning algorithm and
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empirical playback mechanism and generating a target Q value based on a convolutional
neural network [71]. DQN is based on Q learning and, for this, uses a convolutional neural
network (a deep neural network) to represent the action value function. The network is
trained based on reward feedback from the game. Like other neural network machine
learning approaches, DQN can be seen as a three-step challenge.

First, there is the training phase. Second, there is the validation. The final step is
about testing the performance. In this work, the DQN algorithm is applied to dynamically
adapt the UAV’s previous trajectory (actuation stage) when random objects are en route to
collision with the agent.

A DRL algorithm in an autonomous navigation task aims to find the optimal balance
to guide the UAV to its target position through interaction with the environment. These
methods represent the navigation process as a Markov decision process (MDP) that uses the
sensor observation as a state, aiming to maximize the expected performance of the action.
DRL-based navigation has the advantages of solid learning ability and low dependence
on sensor accuracy. The DRL algorithm, when integrating with a given agent, can replace
the localization and map construction module, being able to move to the destination point,
avoiding static or dynamic obstacles present in the environment [72].

The main idea of the present study is to develop a trajectory planning methodology for
UAVs based on RRT and DRL algorithms. The proposed method in this research consists
of two main stages. The UAV starts its navigation system in an unknown environment
by traversing the location to collect information through the RRT offline path-planning
algorithm. The RRT creates points at random locations throughout the existing state space
in the flighting area of the UAV and quickly grows a “tree” from the start point to the end
point, thus creating multiple paths that the UAV can traverse.

In the second step, the DQN algorithm is applied to dynamically adapt the trajectory
of the UAV, seeking optimized routes for UAV navigation. Suppose the path that the
UAV is taking is not free—in that case, the DRL obstacle avoidance algorithm is initialized,
preventing the agent from entering a collision course, either by static or dynamic obstacles.

Figure 4 illustrates the methodology proposed for this research. Faced with an un-
known scenario, namely scenario A, the UAV starts the trajectory planning algorithm by
exploring multiple path options in a complex and unstructured environment. Once the
RRT algorithm has calculated all possible routes, optimized route planning is performed
based on the DQN and DRL algorithms, making it possible to deal with changes in the
environment in real time, as illustrated in scenario B.

Based on the proposed methodology, the objective of the present study is to implement
an offline system with reduced computational capacity, rapid convergence for decision-
making in highly dynamic environments, and reduced path length to be traversed by
the UAV.

The authors designed two different environments for this work in the Gazebo soft-
ware [29]. One is applied during the training DQN phase and the other tests the applica-
tion’s robustness. They are shown in Figures 5 and 6, respectively.

It is possible to observe the clearness of the training environment when facing the
complexity of the test one. This is to improve the simulation time step, which improves
the time spent training the model. The training environment has only twenty two models,
including UAV (Figure 7), pickup (Figure 5b), and olive trees (Figure 5c). The olive trees are
the static models, while pickup can move in the Z f ree plane changing acceleration ~Pa and
velocity ~Pv by every agent’s iteration with the environment. Equation (5) shows how these
two vectors are described, using (Θ, Φ) as a random vector to describe the orientation and
(X1, Y1) (X2, Y2) to determine the module.
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~Pa(Θ) = Θ | Θ ∈ Z and 0 ≥ Θ ≤ π,
~Pv(Φ) = Φ | Φ ∈ Z and 0 ≥ Φ ≤ π,

‖~Pa(X1, Y1)‖=
√

X1
2 + Y1

2 | (X1, Y1) ∈ Z and 0 ≥ (X1, Y1) ≤ 2,

‖~Pv(X2, Y2)‖=
√

X2
2 + Y2

2 | (X2, Y2) ∈ Z and 0 ≥ (X2, Y2) ≤ 2.

(5)

Figure 4. Overall idea of the proposed methodology. In Figure (a), the UAV starts the trajectory
planning algorithm by exploring multiple path options in a complex and unstructured environment.
Figure (b) illustrated when the RRT algorithm calculated all possible routes, and the optimized route
planning was performed based on the DQN and DRL algorithms, making it possible to deal with
changes in the environment in real-time.
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Figure 5. Environment built in the Gazebo software. (a) Simplified world used for training DQN.
(b) Pickup model. (c) Olive-tree model.

Figure 6. Olive-growing environment simulation.

Figure 7. IRIS UAV used in the simulation.

3.3.3. Training Phase

The authors decided to split the training phase into two different scenarios. The first is
a random simulated environment that does not simulate any kinematics or physics during
the simulation. The second is the previously discussed environment, with all the physics
and kinematics provided by the PX4 ROS package and Gazebo software [29].
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The main reason for this split is the time consumed during the training. Therefore,
the authors decided to first test neural network structures and hyperparameters on the
non-realist simulation and to fine-tune them in the complex environment.

Simple Simulation

In this implementation, the environment Z is split into grids of 1 m3 each, the UAV
has the exact size of one grid, and each obstacle fills N numbers of grids. The UAV actual
pose and objects compose the Zocc space. The space of states is described by Sstate and
comprises information about the surrounded UAV grids, the difference between the UAV
header angle Dα and targets T(x, y, z) ⊂ Z f ree, and the output DQN is the next action the
UAV will take in the next step. Algorithm 2 shows the entire implementation.

Algorithm 2 Simple environment DQN implementation.

1: Events← Number of events
2: Steps← Number of steps
3: Zocc ← IniciatileOjs(N)
4: Starts← random.starts(Z f ree)
5: Targets← random.targets(Z f ree)
6: Dqn← InitializeNeuralNetwork()
7: for pose, goal in Starts, Targets do
8: for e in events do
9: NewPose = pose

10: for s in steps do
11: readings← Readings()
12: Sstate = De f ineState(Dα, readings)
13: Dqn.reward← GetReward(Sstate)
14: Dqn.memory← ConstructMemory(Sstate, NN.reward)
15: Action← Dqn.output(Sstate)
16: NewPose = NewPose + Action
17: if Dqn.memory.size > samples then:
18: BatchState, BatchReward← random.sample(Dqn.memory, samples)
19: Dqn.TrainModel(BatchState, BatchReward)
20: end if
21: end for
22: end for
23: end for
24: Dqn.SaveModel()

1 . InitializeObjs(N): This function only receives the number of the grid that will be
random pop from Z f ree space and add to Zocc.

2 . random.targets(Z f ree), random.starts(Z f ree): Each function returns a list of arrays,
random gets from Z f ree space.

3 . InitializeNeuralNetwork(): Construct the DQN class and its model’s parameters.
Input size, output size, numbers of layers, neurons, activation functions, memory, and
optimizer are some of them.

4 . Readings(): Returns an array with the surrounded area information if there is a
grid that belongs to Zocc a piece of this array gets the value 1. If not, it receives 0.

5 . GetReward(): Based on the agent’s state, it returns the reward. For this simulation,
the reward is a negative value based on how distant the actual state is from the target and
if the state is equal to it, returns a positive reward.

6 . ConstructMemory(): Push into the memory array (initialize with InitializeNeural-
Network()) the presented knowledge experimented by the agent.
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4. Results and Discussion
4.1. Hardware and Environment Setup

The simulations were performed on a notebook with 8GB RAM and a 2.7 GHz Core-
i5-5200 processor. The operating system distro was a 64 bits Ubuntu 18.04 bionic with a
desktop environment LXDE. All algorithms were implemented using Python3.10. All codes
and related information are available at https://github.com/gelardrc/RRT_DQN_PATH_
PLANNING.git (accessed on 10 December 2022). Figure 7 shows the IRIS UAV used in the
Gazebo software simulation. The Gazebo is a complete software simulation that provides
many built-in models for the designer to construct a realistic environment. Gazebo not only
contributes to the visual aspects, but also enables setting up of a whole dynamic interface,
including gravity, wind, dynamic elements, etc.

Figure 6 presents the designed scenario for testing the proposed methodology. Note
that this UAV included a PixHawk PX4 flight controller unit (FCU). The MavLink com-
munication protocol was used for telemetry and offboard controllers. ROS Kinetic was
used for developing the controller, the trajectory calculation, and camera node packages in
the Python programming language. The MavLink was simulated through the MavROS
package. Figure 8 shows an overview of the implementation.

Figure 8. Framework overview. Gazebo simulates all the environments which interact with the UAV
FCU PX4. DQN algorithm controls the agent via ROS/MAVROS.

4.2. Integration

To integrate the whole system, three ROS nodes were created. One was to control the
action of the UAV based on DQN (agent). The other two were for running the RRT algo-
rithm (RRT mission planner) and controlling the environment in Gazebo (world builder).
Figure 9 shows the node structure and messages used to communicate. All nodes commu-
nicate with each other through messages sent by 1 kHz.

https://github.com/gelardrc/RRT_DQN_PATH_PLANNING.git
https://github.com/gelardrc/RRT_DQN_PATH_PLANNING.git
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Figure 9. ROS node structure.

4.3. Simulation Results

The first set of simulation results is shown in Figure 10. For an environment with
[0, 0, 0] ≤ Z ≤ [10, 10, 10] and N = 15, the authors decided to try different DQN models
to improve results, including the one proposed by de Castro et al. [73]. Table 2 shows
the information about the four NN architectures with the best performance for these
methodologies. It is possible to observe that the number of events, learning rate (lr), and
discount factor 2000, 0.001, and 0.99, respectively, are fixed. Other values were tried for
these parameters, but, since the results were poor, the authors decided just to set these
parameters as a base and to fine-tune the other parameters. By analyzing Figure 10, it is
possible to observe that Model 3 has a more stable response than the others. However,
it has one of the least exploration factors. Model 1 has almost identical results but is
slightly different during the exploitation phase. Even at that stage, the model keeps trying
exploration in near states.

Model 4 has the worst response. It does not achieve the stable reward phase and
keeps exploring the environment but cannot learn about it. Figure 11 elucidates these
comparisons; Table 3 presents a comparison in terms of the total mean average.

Table 2. DQN models and hyperparameters set during the training phase.

Events = 2000, lr = 0.001, γ = 0.99

Hidden Layers Neurons Steps

Model 1 1 30 1000

Model 2 1 100 500

Model 3 3 [100,60,30] 500

Model 4 1 [81,212,29] 500
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(a)

(b)

(c)
Figure 10. Cont.
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(d)

Figure 10. Reward returns for different DQN models with 2000 events and learning rate equal to
0.001. (a) Model 1 with one hidden layer 30 neurons, step size of 1000. (b) Model 2 with one hidden
layer, step size of 500 and 100 neurons. (c) Model 3 with three hidden layers with 100, 60, and
30 neurons, respectively, and a step size of 500. (d) Model 4 has three hidden layers with 81, 212, and
29 neurons, respectively, and a step size of 500.

Table 3. Comparison of Model 1, 2, and 3.

Total Mean Reward Exploration Phase End (Event)

Model 1 −12.28 20

Model 2 −12.32 750

Model 3 −12.30 40

(a)

Figure 11. Cont.
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(b)

(c)

Figure 11. Comparison between the best three models, where the green line shows how the model
is performing in an eighth of the training, the yellow line marks the end of the exploration phase,
and the red line is the variation in exploration in the exploitation phase. (a) Model 1. (b) Model 2.
(c) Model 3.

4.4. Gazebo Simulation Results

The Gazebo simulation was implemented with almost the same Algorithm 2 presented
in the last section, with just a few differences. The first one is the reward function. For this
implementation, the reward is a function based on the difference between the Dα (UAV’s
velocity angle) and the Tα (RRT routes angle). The second change is that the action is no
longer deterministic. The authors added a chance of 10% that the DQN output action could
take any direction. The reason for this approach is to punish states that can put the agent in
danger. The third is the number of steps and events. Due to the the slow training process
and the results found during the simple simulation, the authors decided to adopt a strategy
with fewer events and steps to reduce the training time. The last difference is the behavior
of some objects.

The simulated UAV mission goal is to visit all four determined inset traps spread
aleatorily inside the map using the proposed methodology to guarantee a free collision
route; after visiting these points the UAV takes a free collision minimum path to return to
its home position and then land. A successful experiment is when the agent achieves all
these objectives.
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A total of twenty experiments were simulated in the olive grown Gazebo world, with
the dynamics of the objects and the insect trap poses changed in each different scenario.
Figure 12 shows the position of the four insect traps in one of these simulations and the
paths generated using the RRT algorithm to link them.

It is important to note that the RRT algorithm only has information about the static
objects, so its path is not guaranteed to be free of collision. The line angles between the
waypoints were sent via an ROS topic to the agent and then, the DQN algorithm was
activated for obstacle avoidance.

In all the experiments, the proposed methodology successfully realizes the mission.
Figure 13 presents how the header UAV angle differs from the angular coefficient of RRT
paths during the validation tests. On average, these variations are between −1◦ and 1◦ and
have a bigger divergence when the agent needs to avoid the moving obstacles.

The authors also validated the proposed methodology with an experiment to compare
the DQN model and other path-planning algorithms in terms of run time. Table 4 shows the
mean results for 10 simulations created with N = 10 and (0, 0, 0) ≤ Z(x,y,z) ≤ (30, 30, 30)
and random start and stop points. Due to the randomness of the experiment, the measure
run time was calculated for one single step of these algorithms in each simulation. Dijkstra’s
algorithm has the best results in terms of time, but, since it is a graph search algorithm, it
relays on grid (1m) solutions, which returns rough paths. The Genetic Algorithm has the
worst results, but returns a smoother path than the others. Finally, RRT and RRT+DQN
provide continuous solutions and a smooth path, but RRT+DQN has the advantage of only
calculating the RRT path for the first step and then uses DQN with 1.7 ms of run time to
adjust the route for every new step when facing new obstacles.

Table 4. Path planning algorithm mean run time with 10 obstacles in a 300 m³ area.

Algorithms Run Time (ms)

RRT+DQN 8.2

GA 8.7

Dijkstra’s algorithm 2.4

RRT 6.5

It is important to note that the authors created the simulation trying to match reality,
adding non-deterministic environments, non-stochastic agent actions, and random func-
tions to change the velocity of objects dynamically. The important issue is the robustness
of the algorithm. It is difficult to affirm that this methodology implementation is flawless.
Even during the validation phase, when the authors forced the agent to face the most chal-
lenging environments with larger spaces of Z (>400 m3) and N (>20), the DQN’s response
tended to be far from optimal. These facts do not invalidate the proposed method.

In fact, in most farmer’s environments, there will only be humans, animals, big
machines, or other UAVs in a sparse space, which allows plenty of room to split UAV
missions into mini-missions and to tackle the environment as cells. For these tasks, the
proposed method can be applied and, most of the time, would work as a contingency
semi-optimal obstacle avoidance letting RRT lead the path.
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Figure 12. Insect trap poses (A–D) and paths generated by the RRT path-planning algorithm
linking them.

Figure 13. Angle difference between RRT path, and UAV header.

5. Conclusions and Future Work

This work presents a methodology to automate inspections on insect traps in olive-
grown cultures using UAVs. Due to the dynamic nature of the environment, a strategy to
guarantee the safety of the UAV and to successfully accomplish the inspection, embedded
path planning, was presented in this work.

To validate this strategy, the authors created a whole simulation in Gazebo/ROS
to mimic a real olive-grown culture, adding dynamic objects, UAV kinematics and non-
stochastic characteristics to the UAV’s movement. Twenty different scenarios were created
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with random insect trap poses and object dynamics. A successful mission is when the UAV
takes off, navigates to each inset trap, returns to its home location and then lands without
suffering damage during the route. The simulations showed that the proposed approach
succeeded in accomplishing the mission in all the experiments.

The authors also simulated twenty other scenarios, but this time comparing the
proposed methodology with other well-established path-planning algorithms in run-time
terms. Although the time spent on the DQN+RRT methodology was the second highest, it
presented an acceptable solution, producing smooth routes in a continuous space, different
from Dijkstra, which was faster but relied on space simplification strategies, and from
RRT, that had a similar run time step but became slower as the number of dynamic
objects increased.

In terms of evaluation, this research work opens up several future possibilities. For
instance, improvements in the training phase and validation of the learning-based planning
algorithm are required. Additionally, further work is needed to test the proposed solution
in a real UAV, fusing different kinds of sensors, such as a depth camera, LIDAR, and sonar,
which will require expanding the training by including more scenarios.

This work is part of a larger project that will be implemented in a similar olive-grown
culture, but using heterogeneous collaborative robots to perform inspections. Another part
of this main project has already been published in [74]. The present work represents a
solution to some of the future investigations suggested in [74].
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Abbreviations
The following abbreviations are used in this manuscript:

APF Artificial Potential Field
LR Learning Rate
CNN Convolutional Neural Network
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DQN Deep Q-Network
GRL Geometric Reinforcement Learning
HJB Hamilton–Jacobi–Bellman
IOT Internet of Things
LiDAR Light Detection and Ranging
NN Neural Network
UAV Unmanned Aerial Vehicle
UAG Unmanned Ground Vehicle
RRT Rapidly Exploring Random Trees
ROS Robotic Operating System
SITL Software in the loop
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