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Abstract: Within the Industry 4.0 ecosystem, Inspection Robotics is one fundamental technology
to speed up monitoring processes and obtain good accuracy and performance of the inspections
while avoiding possible safety issues for human personnel. This manuscript investigates the robotics
inspection of areas and surfaces employing Unmanned Aerial Vehicles (UAVs). The contribution
starts by addressing the problem of coverage path planning and proposes a smoothing approach
intended to reduce both flight time and memory consumption to store the target navigation path.
Evaluation tests are conducted on a quadrotor equipped with a Model Predictive Control (MPC)
policy and a Simultaneous Localization and Mapping (SLAM) algorithm to localize the UAV in
the environment.

Keywords: path planning; model predictive control; simultaneous localization and mapping;
unmanned aerial vehicles

1. Introduction

Frequently, mobile robots are deployed with the primary objective of surveying their
surroundings to gather valuable information, such as creating a map or identifying the
position of an object of interest. Additionally, they can perform a detailed analysis of
the environment’s condition either through the direct reconstruction of surfaces or by
assessing the quality of its components to determine its overall health or status. Many
of the environments in which robots are deployed are complex environments, such as
multi-story buildings with connecting staircases, uneven surfaces, etc. In addition, robots
are subject to kinematic constraints and, in many applications, the environment in which
they are located is an environment about which there is very little information or even
unknown, and the combination of these aspects can make exploration a difficult task for
a ground robot. For this reason and the recent decline in their price, there has been a
great increase in the use of aerial robots (commonly known as drones), particularly mini-
drones and micro-drones. Despite their rather limited autonomy, their versatility has made
them very attractive in both the industrial and military markets as well as to the public.
Common areas of application include the agricultural sector [1], search and rescue [2],
cultural heritage [3], and industrial inspection [4].

In particular, they have become an increasingly popular tool for agriculture over the
past few years. They offer a cost-effective and efficient way to monitor crops, assess crop
health, and gather data for precision agriculture. Drones can cover large areas quickly and
capture high-resolution images and other types of data that can be analyzed to identify
issues and make informed decisions about crop management. One of the main benefits
of using drones for agricultural monitoring is the ability to gather data more frequently
and at a higher resolution than is possible with other methods, such as satellite imagery or
ground-based sensors. This allows farmers and agronomists to identify problems early and
take action to mitigate them, improving crop yields and reducing costs. There are many
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different types of sensors and data-gathering equipment that can be attached to drones,
including cameras, multispectral sensors, and thermal cameras. These can be used to
gather a wide range of data, such as plant health, soil moisture levels, and pest and disease
outbreaks. The data collected by drones can be used to create detailed maps and reports
that can help farmers optimize their operations and make informed decisions about things
such as irrigation, fertilization, and pest control. Summarizing, drones offer a valuable tool
for monitoring and managing agriculture. They allow for the collection of high-resolution
data over large areas, enabling farmers and agronomists to identify problems early and
take action to improve crop yields and reduce costs.

Apart from the agricultural sector, many other industrial applications could benefit
from drone technologies following the Industry 4.0 paradigm. Drones can be efficiently
used for activities such as monitoring and inspection in confined spaces where human
personnel has limited access [5], or for inventory generation [6] where their speed and
maneuverability can reduce overall timing and required resources.

Independently from the task to accomplish, efficient exploration of the environment
is essential. To inspect an environment in an automated manner, it is necessary to have a
plan of the path the robot will need to take within the environment. Strategies for planning
trajectories are commonly known as the Path-Planning Problem (PPP). Given the starting
and ending positions of the robot, the goal is to find a path that leads the robot from the
initial position to the final position while minimizing some costs and avoiding collisions
with possible obstacles present along the path. Depending on the specific application,
the cost to be minimized can be the time, the number of direction changes, the number
of braking, or the energy consumption. In PPP, there are no constraints regarding the
number of passages that can be made over a certain area. In contrast, the purpose of many
applications is to completely explore an environment while avoiding inspecting an area
that has already been inspected to reduce energy consumption and at the same time to
make the robot return to its initial position at the end of the exploration to make a safe
landing (in the case of UAVs) or to allow easy recovery of the robot by an operator.

Coverage Path Planning (CPP) is the problem of finding a path (if any) from a given
point to itself that passes through every part of the area of interest, avoiding collisions and
minimizing passes over areas already examined. This definition leads back to the well-
known Traveling Salesman Problem (TSP), in which the area to be inspected is modeled
as a set of nodes in a graph (i.e., waypoints), and a path is a sequence of arcs that begins
and ends at the same node. As is well known, finding the Hamiltonian cycle optimum in
a graph is part of the NP-hard class of problems; consequently, the computational cost of
solving large instances is often too high for the requirements imposed by the application.

Heuristic and meta-heuristic algorithms have polynomial complexity and are useful
since they can provide “good” admissible solutions to the CPP problem at a low compu-
tational cost. In addition, to decompose the problem into simpler subproblems, most of
the algorithms for CPP use geometric decomposition techniques: the area is partitioned
into several sub-areas, called cells, which are easily explored with simple Back and Forth
trajectories. Thanks to these geometric decomposition techniques, it is also natural to model
situations in which there is a fleet of aerial robots that has to accomplish the mission, since it
is possible to assign a defined set of cells to each of them and finally merge the information
collected at the end of the explorations.

In this context, the contribution of this manuscript aims at proposing a solution for the
common problem of inspection of an area or surface with a robot. In particular, starting from
an analysis of classical methods for generating navigation waypoints and performing CPP,
an algorithm is selected as the basis for the presented approach. The path generated by the
reference algorithm is then extended to account for the dynamics of the robot proposing an
approach intended to save memory consumption and allow for path generation at different
levels of detail. A test system, comprising an unmanned aerial vehicle, is presented
complete with a simultaneous localization and mapping (SLAM) [7] algorithm working
both in outdoor and indoor scenarios. Lastly, starting from the mathematical model of the
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UAV, a Model Predictive Control (MPC) is designed for tracking the previously generated
smooth coverage trajectory.

Summarizing, this work proposes the following:

• An algorithm to generate waypoints given an arbitrary enclosing polygon;
• A comparison of CPP state-of-the-art methods;
• A smoothing method for a generated trajectory that allows changing the level of

details of trajectory segments and that reduces the overall memory footprint;
• A robot localization algorithm combining Lidar SLAM and GPS positioning to solve

for pose estimation in both indoor and outdoor scenarios;
• The implementation of a nonlinear MPC control that allows for generating optimal

control inputs to a UAV considering state and input constraints.

The main result of the research is the flight-time reduction due to the proposed
smoothing approach. Battery duration is probably the main issue when using an aerial
vehicle, and a time reduction in the overall flight time favors the endurance of UAVs.

The remaining manuscript is structured as follows. In Section 2, the state-of-the-art
regarding CPP and UAVs applications is presented. Section 3 introduces the proposed
methods. In Section 4, the test system hardware and software components are discussed.
Section 5 is dedicated to the control system and the experimental evaluations. A conclusion
section summarizes the contribution and presents future activities.

2. Related Works

Many researchers have studied the problem of planning trajectories to cover spaces.
Comprehensive surveys on the most promising algorithms [8] and on UAV applications [9]
can be found in the recent literature. It emerges that most of the algorithms developed in
recent years use some kind of geometric decomposition to make the problem more tractable.
Ost [10] examined different types of trajectories and area decomposition and found that
the Back and Forth trajectory without area decomposition had the best results for a single
UAV performing offline path planning. Driscoll [11] developed an offline algorithm that
can accurately cover an agricultural field in O(n2). Valente [12] studied two meta-heuristic
approaches: Harmony Search (HS) [13] and Ant Colony Optimization (ACO) [14] for CPP
and found that ACO was the best approach for both online and offline systems in terms of
path length and the number of changes of direction. An original approach to the solution
of the TSP is given by Brocki in [15], where he employs a modified Self-Organizing Map
(SOM) [16]. The purpose of the SOM technique is to represent the model of a map with
a lower number of dimensions while maintaining the relations of similarity of the nodes
contained in it. The presented approach substitutes the classical grid representation with a
circular array of neurons where each node is only conscious of the neurons in front of and
behind it. The convergence is assured by introducing a learning rate parameter with decay
in a similar way to the Q-Learning approach.

To be able to make decisions about actions to be taken during exploration, it is often
necessary to construct a map of the environment. Avellar et al. [17] proposed an algorithm
for covering space to obtain a series of partially overlapping images of the underlying
terrain, using a fleet of fixed-wing drones. Each drone is equipped with a downward-facing
camera, and the altitude is adjusted based on the minimum resolution required. Avellar et al.
modeled the area (which must either be convex or the convex envelope of a nonconvex area)
as a graph and transformed the original problem into a Vehicle Routing Problem (VRP).
VRP is a generalization of TSP in which the goal is to find a set of disjoint paths, each of
them traveled by a vehicle, that traverses all nodes exactly once. The goal of the algorithm
is first, to find the number of drones that minimizes the time required to cover the area.
Secondly, it is to calculate the path for each drone that covers its assigned waypoints at
the minimum time. Di Franco and Buttazzo [18] performed three experiments to evaluate
and model the variations in the consumption of energy in different flight situations and
proposed a cost function that, when minimized, provides the optimal speed at which the
drone must travel to save energy, both in the case of constant and variable speed.
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Ongoing research in coverage path planning for UAVs presents different approaches
to improve the efficiency and effectiveness of UAV coverage operations, including mul-
tiobjective optimization techniques [19], deep reinforcement learning [20], and potential
fields [21]. According to a recent survey on the topic [22], most approaches (nearly 80%)
consider the velocity of the UAV as fixed, thus reducing the complexity of the problem [23].
The methods considering timing issues are based on potential fields or bio-inspired algo-
rithms such as ACO. This manuscript proposes an approach that exploits the full dynamics
of UAVs and tackles the NP-Hard problem by trying to reduce the flight time for the full
coverage of the environment.

3. Method

The primary objective of this work is to design a drone system able to obtain a sequence
of photographs or scans that will allow the reconstruction of a certain environment as a
whole at the lowest possible cost. The system receives as input the coordinates of the
geographic boundaries corresponding to the area to be inspected. It then subdivides that
area into rectangles partially overlapping, whose centers, called waypoints, represent the
points at which the drone is to take the photographic snapshot of the underlying surface.
Afterward, an intelligent algorithm should drive the drone to transit every single waypoint
and return to the base minimizing the motion path length. Following the calculation of
waypoints, the trajectory of the drone is then determined by solving the corresponding TSP
in which the nodes of the graph represent the waypoints to be traversed at minimum cost,
i.e., minimum length. There are two approaches chosen for solving the TSP: an evolutionary
meta-heuristic based on Ant Colony Optimization (ACO) and a modified version of the
Lin–Kernighan heuristics (LKH), i.e., a local search heuristic based on k-exchange dynamics.

A comparison of these approaches is presented, and the best one is selected as a
basic CPP strategy. Starting from the solution provided by the best method, a smoothing
algorithm is introduced to generate a smooth trajectory for the robot motion allowing for
faster maneuvers and reduced memory consumption. At the same time, depending on the
level of smoothing, the waypoints are resampled on the trajectory while still maintaining
the full coverage properties necessary for the intended job.

3.1. Maximum Flight Height Computation

To guarantee the resolution Rd set by the user, it is necessary that the height of the
drone is calculated accordingly. When the drone takes a photograph of the terrain below,
the portion of the area framed by the camera is called the projected area. The size of the
projected area depends on the field angle γ of the camera and the flight height h of the
drone (Figure 1).

The width Lx and length Ly of the projected area are calculated as follows:

Lx = 2h · tan(γ/2) (1)

Ly = Lx/ρ (2)

with ρ representing the ratio between the horizontal and vertical resolution of the im-
age sensor.

The spatial resolution R, expressed in pixels per meter, is then given by the ratio of the
width of the image Ix to the width of the projected area Lx:

R =
Ix

Lx
=

Ix

2h · tan(γ/2)
(3)

Furthermore, to guarantee the resolution Rd, it is necessary to impose that R ≥ Rd,
and the flight height of the drone is then expressed as:

h ≤ Ix

2Rd · tan(γ/2)
(4)
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Figure 1. The projected area of the camera Lx × Ly can be defined by its field angle γ and the height
h of the drone.

3.2. Waypoints Computation

Once the flight height is computed and the coordinates of the area to be inspected
and obstacles are received, the waypoints can be calculated. The area must be divided into
equal rectangles of dimensions Lx and Ly whose centers, the waypoints, represent all the
points at which the drone has to take a photograph of the terrain below. Since the ultimate
goal of the mission is to reconstruct a map formed by the union of the photographs taken,
it is necessary that the shots are taken with a certain percentage of overlap. The waypoint
calculation is completed in two stages. In the first step, a rectangle B is constructed in such
a way that the polygon representing the area to be inspected is internal to it. Next, B is
divided into equal-sized rectangles. Starting from the first rectangle in the lower-left corner,
the first waypoint is located in the center of the rectangle itself. The process is iterated
until the end of B is reached, and finally, the calculated waypoints found to belong in the
area are placed into a list. At this point, it is likely that the waypoints just computed are
not sufficient to ensure complete coverage of the area, as can be seen in the yellow areas
in Figure 2. For this reason, additional waypoints are inserted in a second phase to cover
any areas that were not previously covered. The procedure consists in adding temporary
waypoints in the middle of the edges of the uncovered regions. A test is performed on
these augmented waypoints to verify if they belong to the inspection area, and accordingly,
they are added to the waypoints list.

Figure 2. Example generation of waypoints for a given contour area. The B enclosing rectangle is
subdivided into smaller rectangles (yellow rectangles). On the left, the resulting computation of the
first phase of the waypoints generation, where the red waypoints are placed into a list but some
uncovered regions exist (in yellow). On the right, additional waypoints (in green) are added during
the second phase of the algorithm.
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Once the coordinates of the waypoints have been obtained, it is necessary to proceed
to the calculation of the trajectory to be carried out by the drone.

3.3. CPP Methods Analysis

The following paragraphs will discuss the two heuristics that were implemented to
solve the TSP. A performance comparison of the methods has been conducted to select the
winning algorithm as the base for the proposed CPP approach.

3.3.1. ACO

The Ant Colony Optimization algorithm is based on the behavior of ants, which by
cooperating through pheromones can find the shortest path between a food source and
their nest. When an ant moves, it releases on the ground a certain amount of pheromone.
This hormone influences other ants, which will choose the path where its concentration
is highest. The shorter the path is from the nest to the food source and from the latter to
the nest, the higher the concentration of pheromone that subsequent ants will find on the
ground, as the ant that has chosen the shorter path will return to the nest before the ant
that has chosen a longer path. It is possible to formalize the above behavior by modeling
the ants’ motion as a non-complete, undirected graph G = (N, E) with a finite number
of nodes.

The adopted implementation is the Ant System (AS) variant from the ACO [24] library.
In this variant, the next waypoint j is selected starting from the current waypoint i with a
probability Pij computed as:

Pij =
( fij)

α · ( 1
dij
)β

∑w∈Nw ( fiw)α · ( 1
diw

)β
(5)

where Nw is the set of waypoints w that are reachable from i, fij represents the amount of
pheromone that is present on the arc (i, j), and dij is the distance heuristics of the arc.

A set of parameters needs to be chosen to properly use the ACO algorithm, and for
such a purpose, a parameter search has been conducted within the following ranges:

• α in the range 0.3–5.0, which represents the influence of the pheromones.
• β in the range 4.3–10.3, which represents the influence of the heuristic information.
• Q in the range 75–105, which is the total pheromone quantity on the best path found

at each iteration.
• ρ in the range 0.1–0.7, which is the evaporation coefficient of the pheromone update.
• tmax in the range 1.3–7.3, which is the maximum pheromone value on the arcs at the

beginning of the algorithm.
• The number of ants in the range 2–8.
• The number of iterations in the range 2–8.

The aim was to minimize both the trajectory length and the execution timing. The
search resulted in the following optimal values: (α = 1; β = 8.3; Q = 100; ρ = 0.3;
tmax = 3.3; nAnts = 4; iterations = 6), which have been used in the experimental trials.
A result to be noted is that by increasing the number of ants or the number of iterations,
shorter paths are found but with a significant increase in the execution time. For this reason,
these two final values have been chosen to balance execution time and path length.

3.3.2. LKH

The second employed algorithm was implemented by Helsgaun in [25] based on a
modified version of the original Lin–Kernighan heuristic (LKH) [26]. LKH belongs to local
search heuristics methods, which, given an admissible solution, analyze solutions that are
“close” to it in order to find the best match. Thus, starting from an admissible solution,
in our case a Hamiltonian cycle, we analyze Hamiltonian cycles “similar” to the starting
one. This technique is called k-exchange. The principle behind LKH is to perform, at each



Electronics 2023, 12, 2310 7 of 19

iteration, k-exchange operations and evaluate whether it is convenient to continue with
operations of (k + 1)-exchange. For large instances, performing the k-exchanges on the whole
graph would be unnecessarily wasteful. Therefore, for each node, candidate sets are created
containing the arcs that, hopefully, through the k-exchange can improve the value of the
objective function. The creation of the candidate sets is based on the minimum spanning
tree (MST) and α-nearness concepts [27].

For the implementation of LKH, some parameter values have been tested, but default val-
ues appeared to be fine in general. Analyzing for instance the INITIAL_TOUR_ALGORITHM
parameter, that is the algorithm that is used to compute the initial path, all the options give
comparable results and, as such, the nearest neighbor algorithm has been selected for the
testing, while the number of maximum k-exchanges has been set to 5 and the number of
iterations has been set to 10, which provided a good trade-off between computational cost
and path length.

3.3.3. Testing

Testing sessions on the algorithms’ performance have been conducted by simulation
through the V-REP [28] simulator. The software interface allows the user to interact with the
simulation with custom scripts that could manage all the models within the created scenario.
Performance tests of the AS and LKH algorithms were performed on 6 groups of instances,
each consisting of 100 scenarios generated in a pseudo-random manner. The groups differ
in increasing instance size, while they share the following characteristics of the employed
camera: image size (Ix, Iy) = (4000, 3000) pixels, angle of the field γ = 94.4 deg, aspect ratio
ρ = 4/3, and of the methods: desired resolution Rd = 5 pixels/cm, horizontal overlapping
ovx = 24%, vertical overlapping ovy = 20%. Tests were run on a computer with an Intel
Pentium processor T4500 2.3 GHz on a Ubuntu 18.04 LTS operating system and GCC
version 7.4.0.

The results of the testing instances concerning the path length and execution time of
the methods are reported in Table 1.

The first test was performed on 100 scenarios of sizes up to 50 × 50 m. The resulting
number of waypoints was 23 ≤ wp ≤ 85. The path calculated by LKH was 10.60% shorter
than the one computed with AS. In addition, LKH turned out to be almost 6 times faster
than AS. In each successive test, the scenario was increased by up to 10 × 10 m concerning
the previous one, reaching 100× 100 m in the final test. The number of waypoints increased
as well in successive tests, reaching 105 ≤ wp ≤ 323 in the final run. The performance of
the LKH method compared to AS resulted in a nearly 20% shorter trajectory and nearly
50 times faster execution. It turned out that while the mean path length obtained from
both the methods increases linearly with the size of the area to cover and is comparable,
considering the execution time, the LKH method increases linearly while the AS timing
increases cubically.

Table 1. Result of experimental tests to compare the Ant System (AS) and Lin–Kernighan (LKH)
methods. Reported values are mean values obtained from 100 simulations each.

Scenario Ant System (AS) Lin–Kernighan (LKH)

Size (m) Path Length (m) Time (s) Path Length (m) Time (s)

50 × 50 258.37 1.64 233.6 0.28

60 × 60 351.79 3.17 313.95 0.56

70 × 70 502.57 15.33 437.26 1.16

80 × 80 674.59 61.67 576.04 2.04

90 × 90 792.47 131.09 671.75 2.85

100 × 100 1001.45 245.89 834.71 4.72
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Figure 3 depicts a generated random scenario with dimensions nearly 75 × 75 m.
According to Equation (4), the value hmax = 370.40 cm is obtained, and the projected area
size becomes Lx = 800 cm and Ly = 600 cm. Considering the chosen overlapping values,
the final number of generated waypoints is 160. From the resulting path, as shown in
Figure 4, it is evident that the trajectory generated by LKH is shorter and avoids passing
multiple times on the same cell.

Figure 3. Example of generated random scenario in V-REP. A random polygon is generated to enclose
the scenario, and a second random polygon is generated to obtain an occlusion within the scenario.
A simulated drone is shown in the environment.

Figure 4. Results of the execution of the analyzed methods on the random scenario.

The next paragraph will introduce an algorithmic procedure to arbitrarily smooth the
obtained trajectory and reduce its memory footprint for embedded usage.

3.4. Toward a Smooth Trajectory

Any function, vector, or signal f can be represented with a change of coordinate
system as a linear combination of a set of axes φn (basis):

f = ∑
n

anφn (6)

where an are the coordinates of f in the new system. By choosing a proper set of axes that
are orthogonal to each other and that have more and more detail as n increases, it is possible
to exploit such representation to reduce the memory consumption for storing the path
and to smooth the original trajectory, making it dynamically feasible. The coordinate system
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that fulfills the above-mentioned requirements is the trigonometric family of functions,
namely the Fourier series:

φn(x) = ejnx (7)

Thanks to the perpendicularity between axes, to obtain the coefficients an, it is sufficient
to perform a dot-product between the vector f and the axes, such as when applying a
rotation matrix to a vector. Rotating the vector f by the matrix φn,m, it is possible to
transform its representation and store in memory just the coefficients an and no more
the function f . It is important to notice that higher-order axes represent the detailed
structure of f , while its global structure is mostly projected into the lower order axes.
In real-world scenarios where large amounts of data are produced to continuously explore
the environment, it could suffice to store the global shape of a trajectory and discard the
rest of the information. This can be obtained by storing a few of the coordinates an and
still obtaining good approximations of the original trajectories. In summary, there are
two steps of storage reduction: the first is the transformation of the whole trajectory in
a set of coefficients that could be compressed as well, for example considering that the
last coordinates will be smaller than the first ones. The second source of reduction is the
partial storage of the coefficients. Empirically testing shows that reducing the coefficient
by 20–30% generates a quite unnoticeable difference in the majority of trajectories, while
for many trajectories, it is possible to reduce the data over 80% while still maintaining
efficient results. A second aspect to consider is that by using trigonometrical functions
and lower-order coefficients, the trajectory smooths out automatically removing trajectory
points with discontinuous accelerations or jerks.

Figure 5 shows an example of the application of the presented method on a simple
trajectory. The example trajectory is described by 50 waypoints and a traversal path
generated with the LKH algorithm. The trajectory can be represented and stored in the
navigation system with the full representation requiring 50 coefficients or with a reduced
number of coefficients. It is possible to see that even with a small portion of the original
data, the trajectory resembles the original one, and the result obtained with 39 coefficients
is almost coincident with the full representation. Moreover, lower-order representations
present smoother paths.

Figure 5. Example trajectory composed of 50 waypoints (red dots) and corresponding smoothed
trajectories reconstructed using a reduced number of coefficients n (12, 22, 39, 50).

On the contrary, when there is the need to exactly pass on the specified waypoints but
also the constraint of generating a dynamically smooth trajectory, it is possible to use the
inverse Fourier transform and interpolate between the points to achieve a smooth path.

4. Unmanned Aerial System

The introduced algorithms are expected to be executed by an embedded processing
unit on board an Unmanned Aerial Vehicle (UAV). The selected platform for the setup of
the overall system and the testing session is a ducted fan quadrotor designed by Cyber
Technology, The CyberQuad MAXI. It has four brushless motors suitable to be used in
critical environments [29] and a control board by MikroKopter that integrates a gyro,
a three-axis accelerometer, a barometric sensor, and a compass. A camera is mounted
on a pan–tilt base which automatically stabilizes the pan with respect to the horizontal
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direction and allows the user to adjust the tilt toward the desired direction. Two sonars
(XLMaxSonarEZ4) and a Hokuyo laser (UTM-30LX) complete the sensor setup for indoor
exploration, while a GPS module is used in outdoor scenarios. Figure 6 shows the drone
equipped with the sensors and the low-power control board based on the OMAP4430
processor from Texas Instruments (PandaBoard).

Figure 6. The UAV system is composed of a CyberQuad MAXI quadrotor, a Hokuyo laser range
finder, a GPS module, two sonars, a pan–tilt camera, and a PandaBoard.

To maintain a stable flight during the inspection task, the system acquires information
from the environment by means of a laser range finder (LRF) and two distance measuring
sensors for indoor scenarios, while it employs a GPS antenna for outdoor inspections. This
information is processed by a SLAM component that feeds the current position and the asset
of the UAV to an MPC controller. The software components involved in the UAV control
loop are shown in Figure 7. The trajectory generation module that has been previously
described is responsible for the generation of the reference trajectory for the quadrotor.
The MPC controller (described in Section 5) produces an optimal input to make the UAV
follow the reference trajectory under specific constraints. The last element in the control
loop is a localization module that starting from sensors readings produces estimations on
the state of the robot. The next paragraph will discuss in detail this module.

Figure 7. System control loop. A reference trajectory is generated with the presented CPP algorithm.
An MPC controller produces inputs for the UAV system and localization algorithms are used to
estimate the state of the UAV that is fed back to generate an error signal as input to the controller.

Localization and State Estimation

The UAV is equipped with proprioceptive sensors that can measure local physical
phenomena, such as the inertial sensors that measure the linear and rotational acceleration
of the body. Other sensors extract information from the surrounding (exteroceptive sensors),
such as ultrasound and laser sensors that can measure the distance from objects in the
environment. Fusing these measurements, it is possible to obtain a good estimation of
the UAV state (position and orientation in world coordinates). In the case of outdoor
applications, the use of an additional global positioning system (GPS) antenna allows
the system to reconstruct the position of the robot in world coordinates, while in indoor
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scenarios, this information should be estimated with some algorithms. In this context,
the proposed system localizes itself in the environment, employing two independent
SLAM algorithms.

The first SLAM algorithm is used to determine the robot pose on a plane (x, y, ψ) and
estimate features location on such plane, while the second SLAM algorithm is used to
estimate the altitude of the UAV from the terrain (floor). Fusing both pieces of information,
the complete 3D pose of the multirotor can be obtained. The first algorithm assumes
that the robot flies with an asset almost parallel to the ground reference frame. This
assumption is easily fulfilled when the platform moves at low speed and thus avoids
aggressive maneuvers. Thanks to this assumption, it is possible to recover the robot pose
in a plane employing an LRF sensor. The robot altitude, on the other hand, has to be
obtained separately.

The SLAM algorithm employed for the UAV pose localization on a plane is a Rao–
Backwellized particle filter (RBPF) [30], which approximates the posterior probability by
a set of sample particles drawn from the posterior where each particle represents a robot
path and a map. The key idea of RBPF is to decompose the joint posterior probability
into a posterior probability of the map M and a posterior probability of the trajectory X.
In particular, the solution implements Montemerlo’s factorization [31], resulting in

p(Xt, M|Zt, Ut, Dt) = p(Xt|Zt, Ut, Dt)
N

∏
n=1

p(mn|Xt, Zt, Ut, Dt) (8)

where t represents the time instant, and M is composed of N features {m1, m2, . . . , mN}.
Zt is the measurements set at time t, Ut is the control sequence of the robot and Dt is
the data association. Thanks to this factorization, it is possible to estimate the N features
independently by employing low-dimensional Extended Kalman Filters (EKFs) [32]. Hence,
the posterior probability of the trajectory is computed by a particle filter and then the map is
updated according to the current measurements and the trajectory’s posterior contribution.

The map M is defined as a collection of features or landmark points. Considering
that the majority of indoor environments are typically enclosed and divided by walls or
elements that could be assimilated to walls, the SLAM algorithm uses as map features a
special set of parameters (Hessian representation) that are used to define walls [33].

Each k particle in the SLAM particle set is described by its pose xk
t and its own map

with Nk features represented by the mean and covariance pair ( f k
n,t, Fk

n,t).
The drone height is computed from upwards and downwards-looking sensor data

using a SLAM algorithm consisting of Kalman filters. The altitude estimation method is
designed for an indoor multi-story building exploration [34] and adds upwards-looking
sensor data to the formulation by Grzonska et al. [35]. In the algorithm, a model prediction
step is used to compute the drone height and vertical velocity. A measurement prediction
step computes the ground and ceiling elevation beneath and above the drone. The algorithm
tries to match the new measurements with existing map levels and merges them into a
single-level elevation. Each level is represented in the levels map L by its own pose and
uncertainty. After merging, levels elevations above and beneath the drone are updated
using Kalman filtering. At this point, new levels are inserted in L, and a routine checks if
levels are close to each other and merges them into a single level.

5. Model Predictive Control

MPC [36] is a control approach that provides optimal inputs to a system by using the
logic of minimizing a specific cost function. The goal is to determine the control action
by solving an excellent open-loop control problem with a temporal horizon, ensuring
adherence to the restrictions. This calculation is performed for each iteration within the
predetermined time horizon, and only the first element is applied to the system to be
controlled. The problem is then reset for the following step, using the new state as the
beginning condition.
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The disadvantage of MPC is the amount of computational work normally needed to
solve the underlying optimal control problem (OCP) online, which typically restricts the
use of nonlinear MPC to suitably slow or low-dimensional processes. If state constraints are
taken into account, the computational complexity further increases. To overcome these lim-
itations, unconstrained optimization techniques can be employed to improve computation
times. In the work of Käpernick and Graichen [37], a transformation is applied to a class of
constraints with input affine systems, where the state constraints have a clearly defined
vector relative degree in the sense of nonlinear geometric control [38]. The transformation
method entails a normal form transformation at first, which is followed by the replacement
of the constraints by means of saturation functions. The new OCP formulation that results
from this coordinates change naturally satisfies the original constraints.

In this paper, we follow the latter approach working on nonlinear multiple input
systems in input affine form

ṡ = F(s, u) = f (s) +
m

∑
i=1

gi(s)ui (9)

with state s ∈ Rn, control u ∈ Rm, functions f , g : Rn → Rn, and the following constraints

ci(s) ∈ [c−i , c+i ], ui ∈ [u−i , u+
i ], i = 1, . . . , m (10)

with general nonlinear state constraint functions ci(s) and box constraints for the control u.
The MPC problem tries to find iteratively a solution of the following OCP:

min
u

J(u, sk) = V(s(tk + T)) +
∫ tk+T

tk

L(s(t), u(t))dt (11)

s.t. ṡ(t) = F(s(t), u(t)), s(tk) = sk (12)

s ∈ {s|(9)}, u ∈ {u|(9)}, t ∈ [tk, tk + T] (13)

where T > 0 is the prediction horizon, and V, L are positive definite cost functions. The ini-
tial condition sk is the observed state at time k. To reduce the computational complexity,
terminal constraints are not considered in the MPC formulation.

To reformulate the constrained MPC scheme into an unconstrained equivalent, the two-
stage transformation presented in [37] is applied. The transformation starts by reformu-
lating the dynamical system (9) into a Byrnes–Isidori normal form [38] by means of a
change of coordinates. The normal form representation is used to successively replace
the state constraints by means of saturation functions and obtain a new system dynamics
representation to which corresponds a new unconstrained OCP that is equivalent to the
original formulation:

min
ū

J̄(ū, s̄k) = V̄(s̄(tk + T)) +
∫ tk+T

tk

L̄(s̄, ū) + ε‖ū‖2dt (14)

s.t. ˙̄s(t) = F̄(s̄(t), ū(t)), s̄(tk) = s̄k, t ∈ [tk, tk + T] (15)

where s̄ and ū are the unconstrained counterpart of the state and input variables, and the
integral cost of the new functional J̄ contains a regularization term that depends on the
parameter ε > 0. Once a solution to the new OPC has been found, the trajectories can be
transformed back into the original variables to obtain the actual control to be fed to the
system. It has to be noticed that the derivation of the transformation between constrained
and unconstrained variables involves an analytical preprocessing step that is solved offline.

5.1. Mathematical Model

The dynamic model used for the analysis and development of the control algorithms
is a simplified model of a quadrotor based on the original work by Hehn and D’Andrea [39]
and augmented with dynamical aerodynamic elements from the work of Martinez [40].
Considering the world and the UAV reference frames as in Figure 8, the robot position
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x, y, z is measured in the inertial system O. The orientation of the vehicle in the body-fixed
coordinate system V is described by the yaw angle ψ, the pitch angle θ, and the roll angle
φ. The control inputs of the quadcopter are the total mass-normalized thrust ν of the four
propellers and the angular velocities ωx, ωy, ωz. The simplified dynamical model can be
written as:

ẍ = (cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ)) ν− k1 ẋ (16)

ÿ = (cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)) ν− k2ẏ (17)

z̈ = cos(φ)cos(θ) ν− g− k3ż (18)

ψ̇ = (cos(ψ)ωx + sin(ψ)ωy)/cos(θ) (19)

θ̇ = −sin(ψ)ωx + cos(ψ)ωy (20)

φ̇ = cos(ψ)tan(θ)ωx + sin(ψ)tan(θ)ωy + ωz (21)

where g represents the acceleration due to gravity and ki represents mass-normalized
aerodynamic drag coefficients.

The constraint transformation approach-based MPC method is applied to the quadro-
tor nonlinear model, and a gradient algorithm designed for real-time MPC [41] has been
chosen for implementation.

Figure 8. Reference frames and control inputs.

The constraints that should be imposed on the control commands, the vertical velocity
of the drone, and its orientation angles are as follows:

ż ∈ [−1, 1] m/s, ψ, θ ∈ [−1, 1] rad, φ ∈ [−0.5, 0.5] rad (22)

ν ∈ [0, 11]
m
s2 , ωx, ωy ∈ [−50, 50]

deg
s

, ωz ∈ [−10, 10]
deg

s
(23)

It is hence possible to represent the dynamics of the system in the normal form under
a suitable choice for the change of coordinates rearranging (16)–(21) into:

˙̂y1
˙̂y2
˙̂y3
˙̂y4

 =


k3ŷ1 − g

0
0
0

+


cφcθ 0 0 0

0 cψ/cθ sψ/cθ 0
0 −sψ cψ 0
0 cψtθ sψtθ 1




ν
ωx
ωy
ωz

 (24)


˙̂z1
˙̂z2
˙̂z3
˙̂z4
˙̂z5

 =


ẑ2
−k1ẑ2

ẑ4
−k2ẑ4

ŷ1

+


0

cφsθcψ + sφsψ
0

cφsθsψ− sφcψ
0

ν (25)

where the trigonometric functions sin(a), cos(a), tan(a) are replaced with the symbols
ca, sa, ta for readability purposes.
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At this point, new saturation functions are introduced, obtaining the relation ŷ = hŷ(ξ)
with the new unconstrained variable ξ. This, in turn, allows us to formulate the new
unconstrained system dynamics (15) where s̄ = [ξT , ẑT ]T . For a detailed explanation of the
mathematical passages, the reader should refer to [37].

5.2. Trajectory Control

The purpose of the MPC control is to make the UAV follow a determined trajectory
defined as a set of waypoints either generated by a CPP algorithm or sampled from a
smooth function. To this aim, at a given time instant t, the desired goal will be constituted
by a vector sdes corresponding to the waypoint’s location and zero orientation angles to
allow an optimal acquisition of the image to be captured (in the case, the camera is mounted
facing toward the ground). Another desired behavior is to have a stationary control input
udes = [g, 0, 0, 0]T . Hence, it is possible to define an integral cost

L(s, u) = sTQs + (u− udes)
T R(u− udes) (26)

with Q and R diagonal weighting matrices with q(5,5) = 10, r(1,1) = 0.1 and all the other
diagonal terms equal to 1. The terminal cost is defined as

V(s, u) = sT Ps (27)

where P is obtained by solving the Riccati equation

AT P + PA− PBR−1BT P +
1
2

Q = 0 (28)

with A and B representing the matrices of the linearized system about the origin regarding
the state and the input, respectively.

5.3. Experimental Results

The system has been first tested indoors by generating a CPP trajectory for acquiring
the images of an 8× 6 m scenario. Choosing a reference height of 1.5 m from the ground,
with an aperture γ = 90◦ of the camera and a ratio ρ = 1 of the image sensor, from each
waypoint, it is possible to acquire a 3 × 3 m area image according to Equation (1). Con-
sidering a 33% overlap of the images, a minimum number of 12 waypoints are generated,
and a trajectory is computed with the LKH algorithm (see Figure 9). The path starts from
the resting position of the drone with a take-off toward the first waypoint. It follows a
back-and-forth trajectory to reach the inspection area border and a linear trajectory to return
to the starting point where the drone could land. The sampling time has been set to 1 ms,
and the prediction horizon is set to 1.5 s. The controller has been implemented with the
gradient-based method GRAMPC [41] deriving the unconstrained formulation equations
with MATLAB. Results show that the generated trajectory fulfills the requirements reaching
the desired positions and attitudes defined above, respecting the constraints on the state
and the inputs as formulated in the control problem. Figures 10 and 11 show the resulting
angular values and the velocities of the quadrotor in world coordinates.

The smoothing approach presented above can be employed to reduce the trajectory
information to be stored within the system. Figure 12 shows possible approximations of
the presented trajectory by reducing the number of coefficients to represent the original
curve and also an example of interpolation to obtain a smooth curve (in the case of n = 7).
Figure 13 shows a plot of the generated trajectories selecting 7 coefficients and varying the
interpolation point from the original number of 12 (trajectory in red) to an example with 256
points (trajectory shown in black). The plot shows the 8× 6 m terrain to be acquired and
the camera field of view projected dimension from each of the interpolated 12 waypoints
generated with the proposed method. Having chosen a proper initial overlap, the newly
generated waypoints trajectory satisfies the desired coverage to acquire the whole terrain.
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Figure 9. Resulting UAV trajectory by applying the constrained MPC control with the reference
waypoints from a back-and-forth CPP trajectory.

Figure 10. Angular trajectories of the UAV generated by the MPC controller.

Figure 11. UAV Velocities generated by the MPC controller.

A second test has been conducted outdoors, on the field, to acquire a piece of land
for inspection (Figure 14). In particular, a target area has been chosen for the outdoor
test resulting in the generation of 133 waypoints. Figure 15 shows a satellite image of
the selected field and the results of applying the presented approaches for the acquisition.
The reference waypoints path is shown in dashed green in the figure. This trajectory has
been generated by slightly altering the waypoints’ coordinates generated by the LKH
algorithm over a manually picked target area to account for some peculiarities of the
underneath terrain. However, the introduction of this ”noise” in the reference trajectory
does not alter the experimental test’s results. Employing such a trajectory as a reference
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for the MPC control, the drone moved along the path shown in black. By adopting the
smoothing approach with a choice of using just 25 coefficients, the drone followed the
trajectory shown in red. From a direct comparison of the approaches, it turns out that
the smoothed trajectory still covers the acquisition area but requires 80% less memory
(25 coefficients against 133 waypoints) and half the time to complete (200 s against 400 s),
thus largely reducing the battery consumption.

Figure 12. Example of possible different trajectories generation using the Fourier approach. The dia-
gram shows the 12-waypoints trajectory employed in the experimental test, which is represented
using a different number of coefficients n with a fixed number of evaluation points (12). For the
case n = 7, a trajectory with 256 interpolated points is shown to demonstrate the capability of the
approach to arbitrarily smooth the trajectories even with a reduced number of coefficients.

Figure 13. Superposition of the original trajectory (dashed) with reduced storage trajectories gener-
ated from n = 7 coefficients with 12 (red) and 256 interpolation points (black). The plot shows the
camera fields of view from the 12 generated waypoints of the smooth trajectory. The images cover
the whole terrain (cyan plane) to be acquired.
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Figure 14. The UAV captured during the landing phase of the flight over the cultivation field
employed for the outdoor experimental test.

Figure 15. Outdoor test scenario for the acquisition of a crop field. The reference waypoint trajectory
is shown in dashed green. The drone motion with direct MPC control is shown in black. The drone
motion using the smoothed approach with a reduced number of coefficients and the MPC control is
shown in red.

6. Conclusions

This manuscript presented an approach for generating a navigation trajectory for
UAVs fulfilling the requirements of coverage path planning and trying to reduce the timing
of the flight and the memory footprint embedded into the vehicles. The proposed approach
starts by generating waypoints for arbitrary enclosed polygonal areas. From the generated
waypoints, an analysis of existing CPP methods is performed to choose a base algorithm for
the smoothing approach. A system comprised of SLAM localization algorithms and MPC
control has been designed for testing the proposed approach. The smoothing approach
demonstrated an evident reduction in memory consumption and a good advantage in the
overall flight time.

Since the development of electronic devices has progressed rapidly, reducing memory
usage is no longer a top priority. However, battery endurance and flight time remain
critical concerns. Most AUV platforms can currently only fly for 15–20 min, making it
essential to explore novel approaches that reduce the time required to survey an area.
To address this challenge, a smoothing approach has been developed to tackle the NP-
Hard problem of achieving full coverage of an environment while optimizing flight time
using the full dynamics of UAVs. This contribution represents a step forward in this area,
and future research will investigate additional smoothing algorithms in combination with
novel MPC strategies.
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