733 research outputs found

    White-box implementation to advantage DRM

    Get PDF
    Digital Rights Management (DRM) is a popular approach for secure content distribution. Typically, DRM encrypts the content before delivers it. Most DRM applications use secure algorithms to protect content. However, executing these algorithms in an insecure environment may allow adversaries to compromise the system and obtain the key. To withstand such attack, algorithm implementation is modified in such a way to make the implementation unintelligible, namely obfuscation approach. White-box cryptography (WBC) is an obfuscation technique intended to protect secret keys from being disclosed in a software implementation using a fully transparent methodology. This mechanism is appropriate for DRM applications and able to enhance security for the content provider. However, DRM is required to provide a balanced protection for the content provider and users. We construct a protocol on implementing WBC to improve DRM system. The system does not only provide security for the content provider but also preserves privacy for users

    Filtering, Piracy Surveillance and Disobedience

    Get PDF
    There has always been a cyclical relationship between the prevention of piracy and the protection of civil liberties. While civil liberties advocates previously warned about the aggressive nature of copyright protection initiatives, more recently, a number of major players in the music industry have eventually ceded to less direct forms of control over consumer behavior. As more aggressive forms of consumer control, like litigation, have receded, we have also seen a rise in more passive forms of consumer surveillance. Moreover, even as technology has developed more perfect means for filtering and surveillance over online piracy, a number of major players have opted in favor of “tolerated use,” a term coined by Professor Tim Wu to denote the allowance of uses that may be otherwise infringing, but that are allowed to exist for public use and enjoyment. Thus, while the eventual specter of copyright enforcement and monitoring remains a pervasive digital reality, the market may fuel a broad degree of consumer freedom through the toleration or taxation of certain kinds of activities. This Article is meant largely to address and to evaluate these shifts by drawing attention to the unique confluence of these two important moments: the growth of tolerated uses, coupled with an increasing trend towards more passive forms of piracy surveillance in light of the balance between copyright enforcement and civil liberties. The content industries may draw upon a broad definition of disobedience in their campaigns to educate the public about copyright law, but the market’s allowance of DRM-free content suggests an altogether different definition. The divide in turn between copyright enforcement and civil liberties results in a perfect storm of uncertainty, suggesting the development of an even further division between the role of the law and the role of the marketplace in copyright enforcement and innovation, respectively

    Privacy-preserving digital rights management

    Get PDF
    Digital Rights Management (DRM) is a technology that provides content protection by enforcing the use of digital content according to granted rights. DRM can be privacy-invasive due to many reasons. The solution is not easy: there are econòmic and legitimate reasons for distributors and network operators to collect data about users and their activities, such as traffic modelling for infrastructure planning or statistical sampling. Furthermore, traditional PET -such as encryption, anonymity and pseudonymity- cannot solve all the privacy problems raised by DRM, even if they can help. Privacy and security considerations should be included in th e design of DRM from the beginning, and they should not be considered as a property that can be added on. PET is considered as technology for privacy protection, in different fields. However, PET solutions are not the only ones to be considered useful to complement DRM systems. The contrary is also true: DRM systems are adapted as technical platforms for privacy. In short, there is a deep change in PET related to the web 2.0, and it is also true for P2DRM: transparency and other new techniques are preferred, or at least added, to anonymity, authentication and other traditional protection

    Secure Dynamic Cloud-based Collaboration with Hierarchical Access

    Get PDF
    In recent years, the Cloud has emerged as an attractive way of hosting and delivering services over the Internet. This has resulted in a renewed focus on information security in the case where data is stored in the virtual space of the cloud and is not physically accessible to the customer. Through this thesis the boundaries of securing data in a cloud context, while retaining the benefits of the cloud, are explored. The thesis addresses the increasing security concerns of migrating to the cloud andutilising it for data storage.The research of this thesis is divided into three separate areas: securing data in an untrusted cloud environment, ensuring data access control in the cloud, and securing data outside the cloud in the user's environment. Each area is addressed by separate conceptual designs. Together these comprise a secure dynamic cloud-based collaboration environment with hierarchical access. To further validate the conceptual designs, proof of concept prototypes have been constructed.The conceptual designs have been devised by exploring and extending the boundaries of existing secure data-storage schemes, and then combining these with well-known security principles and cutting-edge research within the field of cryptography. The results of this thesis are feasible conceptual designs for a cloud-based dynamic collaboration environment. The conceptual designs address the challenges of secure cloud-based storage and allow the benefits of cloud-based storage to be utilised. Furthermore, this thesis provides a solid foundation for further work within this field

    Blockchain for video streaming : opportunities, challenges and open issues

    Get PDF
    Blockchain, Quality of Experience (QoE), and Video Streaming have all received much attention from both academia and industry so far, although they have not been jointly addressed for prospective applications yet. While the industry has already adopted blockchain-based video streaming platforms, other stakeholders, e.g., academia, government, regulators, and service providers, could contribute more to develop protocols, technologies, and standards to help grow this niche technology and support its implementation in media streaming applications. This paper reviews the current technologies, industrial advancements, and critically identifies the current research activities and future research opportunities

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules
    corecore