

Vol.7 (2017) No. 2

ISSN: 2088-5334

White-Box Implementation to Advantage DRM
Antonius Cahya Prihandoko#, Hossein Ghodosi*, Bruce Litow*

#Department of Information System, University of Jember, Jl. Kalimantan 37,Jember,68121, Indonesia
 E-mail: antoniuscp.ilkom@unej.ac.id

*Department of Information Technology, James Cook University, Townsville, QLD 4811, Australia

E-mail: hossein.ghodosi/bruce.litow@jcu.edu.au

Abstract— Digital Rights Management (DRM) is a popular approach for secure content distribution. Typically, DRM encrypts the
content before delivers it. Most DRM applications use secure algorithms to protect content. However, executing these algorithms in an
insecure environment may allow adversaries to compromise the system and obtain the key. To withstand such attack, algorithm
implementation is modified in such a way to make the implementation unintelligible, namely obfuscation approach. White-box
cryptography (WBC) is an obfuscation technique intended to protect secret keys from being disclosed in a software implementation
using a fully transparent methodology. This mechanism is appropriate for DRM applications and able to enhance security for the
content provider. However, DRM is required to provide a balanced protection for the content provider and users. We construct a
protocol on implementing WBC to improve DRM system; The system does not only provide security for the content provider but also
preserves privacy for users.

Keywords— digital rights management; content distribution system; obfuscation; white-box cryptography; security; privacy

I. INTRODUCTION

Secure delivery is urgently required in a content
distribution system to guarantee that only authorized users
can access the protected content and use it properly. Digital
Rights Management (DRM) is a popular approach for this
security requirement. Under this system, content is typically
sent in an encrypted form along with the license associated
with it. At the users' side, an application processes the
license by means of a rights expression manager (REM),
authenticates the users and decrypts the content using the
corresponding decryption routine. The application can be
implemented in hardware, such as in a set-top box for typical
pay TV systems, or in software on the users' PC.

Trusted media players in most DRM applications contain
the decryption key. The key must be kept secret and
inaccessible to users, as finding the key would allow
someone to decrypt and access content without restriction,
thus defeating DRM protection. Unfortunately, trusted media
players are often running on an untrusted platform. Although
encryption algorithms used by most DRM applications, such
as the data encryption standard (DES) and the advanced

encryption standard (AES), are believed to be secure,
executing them in an insecure environment may allow
adversaries to compromise the system and obtain
information about the decryption key [1]-[3]. Therefore, the
protection scenario must be set to prevent the extraction of
the key, even when the application is executed in an insecure
environment.

Keeping the decryption key from being accessible to the
users is a major challenge for the DRM systems. An
approach to this problem is by applying obfuscation
techniques. In these techniques, the implementation of the
encryption algorithm is modified so that it would be
unintelligible. Two common techniques for such an
obfuscation approach are code obfuscation and white-box
cryptography (WBC) .

Code obfuscation is intended to protect software
implementations. In this technique, the program (code) used
to implement the algorithm is rewritten in such a way that
certain characteristics of the original program are hidden and
unintelligible. Theoretically, a probabilistic algorithm Ο is
an obfuscator of a program P if it computes the same
function as Ρ, and anything that can be efficiently computed

460

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline at James Cook University

https://core.ac.uk/display/303786697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from Ο(Ρ), can be efficiently computed given oracle access
to Ρ [4]. However, obfuscation is hard to achieve. Both
positive and negative results that determine possibility and
impossibility, respectively, of code obfuscation, were
investigated [5]-[12]. While general purpose obfuscators are
currently impossible, obfuscators for simple functions may
exist.

In practice, obfuscation of a program (code) is applied to
the variables used in the program. Variable names are
scrambled, and data that was stored in a single variable is
split into multiple variables and recombined at execution
time. This mechanism makes a code difficult for human to
understand, and thus effective for hiding an algorithm and
protecting the code, but not for any encryption key used by
the code. Additionally, code obfuscation is often integrated
with code flattening. In code flattening, extra paths are
introduced into the program structure. This technique makes
the program difficult to analyze. However, it can be reverse
engineered and, thus, fails to achieve the main goal of code
obfuscation.

Theoretical researches on code obfuscation are many, but
fewer on implementations. Most of the researches produce
conceptual decisions whether or not the obfuscator of a
particular program exists according to a certain definition.
However, none provides a real example on how to obfuscate
a program if such an obfuscator provable exists. Practical
obfuscation, on the other hand, has a less theoretical
foundation. Because of the lack of a bridge that connects
theoretical and practical aspects, code obfuscation is less
applicable in the DRM implementation.

White-box cryptography is an obfuscation technique that
is often used in the DRM applications. Though having a less
theoretical model than code obfuscation, WBC reflects more
the reality. Of the protection techniques applied in the DRM
implementations, white-box cryptography is suggested to be
the most effective protection in the DRM applications [1].
Currently, WBC is being used in real-world applications.
Several commercial companies such as Microsoft, Apple,
and Sony have announced or have shown to deploy white-
box techniques. Although there are many cryptanalysis
techniques have been published, so far in a real-world
product, there has been no white-box implementation that
has suffered from a key extraction attack. Practically,
breaking white-box implementations is hard and time-
consuming [3]. The attacks are very dependent on the
construction of the white-box implementation and the
properties of the underlying cipher [3]. Therefore, broadly
applicable attacks are difficult to deploy.

The main goal of this study is to implement the WBC
concept to advantage DRM. As a protection system, DRM
tends to put a great emphasis on content provider’s rights
and often neglects users’ privacy. However, customers’
satisfaction is an important factor in a content distribution
system. Therefore, DRM is required to provide a balanced
protection between the content provider’s right and the
users’ privacy [13]. It means that DRM should not merely
focus on achieving the security for the content provider, but

also on preserving the privacy for the users. We construct a
white-box implementation protocol that enables DRM to
provide a balanced protection for the content provider and
the users.

A. Problem Statement

Typical DRM systems for content distribution (see Fig. 1)
consist of four parties: content provider, distributor, clearing
house and consumer or user [14]. The content provider is a
content holder and wants to sell the content for profits. First
of all, the content provider needs to encrypt the content for
security purposes. The provider then passes the protected
content to the distributor and the corresponding license to the
clearinghouse. A distributor is typically a web server running
an online shop. The distributor makes the protected content
available on the web server and enables users to download it.

To be able to decrypt and use the downloaded content, a
user needs to acquire an appropriate license from the
clearinghouse. The user has to register his profile, provide
details of the purchased content, and then do the payment.
After all these steps are properly processed, the
clearinghouse releases a license containing usage rules and a
key to decrypt the content.

Most DRM systems make the protected digital content
available on their distributor servers. Users can obtain the
protected content from the distributor channel and then
request a license containing the decryption key from the
clearinghouse. Downloading content from the distributor's
channel does not seriously threaten either content provider's
security or users' privacy. Users may download content
anonymously (and even freely) so that their identity would
not be connected to the content they choose. However,
without obtaining an appropriate decryption key, users
cannot unlock the protected content.

Fig. 1 Typical DRM system

In contrast, acquiring a license from the clearinghouse
causes serious concerns over security and privacy. From the
content provider perspective, this mechanism may give a
threat to his security. If an eavesdropper steals licenses when

461

a user requests them from the clearinghouse, a great revenue
will be lost. From the users’ perspective, the mechanism
emerges a threat to their privacy. Personal information they
submit to the clearinghouse is not guaranteed to be kept
secret, as the clearinghouse may send the users’ data and
viewing detail to marketing agencies. The users expect that
they have their privacy protected and are able to access
digital content anonymously. Indeed, in many applications,
security and privacy need to be equally protected [15]. We
utilize white-box implementation to overcome the security
and privacy problems in this model.

The rest of this paper is organized as follows. Section II
describes the Material and Method. Section III provides
Result and Discussion. Finally, section IV draws concluding
remarks.

II. MATERIAL AND METHOD

White-box cryptography (WBC) is intended to implement
cryptographic primitives. The intention is to protect secret
keys from being disclosed in a software implementation. The
protection is done in such a way even when the platform on
which the application is executed is subject to the control of
potentially hostile end-users.

The term of “white-box” relates to the attack model that is
applied to examine the security of this protection
mechanism. Unlike the traditional cryptographic threat
model, black-box, which assumes that attackers can only
observe the input and output of the algorithm, the white-box
model assumes that the attackers have full control over the
whole operation and can freely observe dynamic code
execution. Despite providing a fully transparent
methodology, WBC integrates the cipher in such a way that
does not reveal the secret key. This mechanism is
appropriate for DRM applications which are often executed
in an insecure environment.

The basic notion of white-box implementations (see Fig.
2) is to rewrite a key so that all information related to the key
is hidden. External encoding can be used so that the
encryption and decryption software require encoded inputs,
and produce encoded outputs. This encoding mechanism can
be done by replacing the encryption function Ek with the
composition Ek' = G ○ Ek ○ F-1. Input encoding function F
and output decoding function G-1 must not be on the same
platform that computes Ek' so that the white-box
implementation cannot be used to compute Ek. This means
that encoding input and decoding output have to be kept
secret. At this point, white box implementation cannot stand
alone; it should be used in conjunction with other techniques
to provide protection against key recovery attacks [16].
Although this scenario is not standard, such an approach is
useful for many DRM implementations.

Fig. 2 Basic notion of white-box implementation [3]

A. Security and Feasibility of White-Box Cryptography

Security of white-box implementation is relative; there is
no system that is absolutely secure. A system is secure
relative to a security model which may depend on an
adversary's goal and the resources that can be accessed by
the adversary [16]. In the white-box scenario, it is much
more difficult to determine the resources of an attacker as
they are endless. The best effort in such an implementation is
to prevent all known relevant threats in an effective way. A
secure protection, for example, can be achieved by
combining the effect of the secret key with some
implementation specific data using a mathematical operation
that is extremely hard to invert [17]. This mechanism allows
constructing a system that operates similarly to the
asymmetric encryption algorithm, with a performance level
close to the symmetric algorithm [18]. The security also
depends on the implementation --- a strong cryptographic
algorithm is not necessary for a poor implementation.

Despite the robustness of practical white-box
implementations, performance, memory size and security are
still the main concerns for current applications. Low
performance and high-consumed memory size limit the
application of WBC, especially for mobile devices.

Although no attack on commercial white-box
implementations has been found, it does not exclude the
possibility of successful attacks in future. Additionally, the
effectiveness of the white-box implementation is limited
when an attacker can observe the execution of the DRM
program. Therefore, it is not enough to only protect an
application against key extraction; the application must also
be hard to invert. Furthermore, adding hardware protection is
extremely effective, but costly.

462

B. Constructed Model

To implement WBC in the DRM applications, we propose
to employ smart cards. A smart card contains an embedded
microprocessor so that it can be used not only to store data
but also to process the data [19]. Since a smart card carries
both processing power and information, it does not need
access to the remote database at the time of a transaction. A
smart card may contain programs and mobile databases that
can be modified, updated or deleted through embedded
program functions. The microprocessor is also used for
security purposes. Data are never directly available to the
external applications as the microprocessor controls data
handling and memory access according to a given set of
conditions.

The white-box implementation works by obfuscating the
original encryption and decryption keys. Suppose E is the
encryption function. Two random functions F and G are
generated to obfuscate E. Instead of using E(X), cipher text
X’ is computed using diffused function .
Composition is called internal function, while G-1
and F are external functions. The provider then passes the
protected content along with the internal function to the
distributor and corresponding external functions to the smart
cards manufacturer. The smart card is used to store the
external keys and the original encryption key, compute their
inverse and do external encoding-decoding. The
manufacturer produces smart cards and delivers them to the
distributor that will make them available to purchase.

A model of the smart card needs to be defined to make the
scheme works. In this model, a smart card memory has two
parts: accessible area and inaccessible area. User’s device
can only communicate to the former part but cannot
approach the latter. Data structure and mobile database are
stored in the inaccessible area. In this case, external
functions G-1 and F must be inaccessible. These items are
only accessible by external encoding and decoding
mechanisms defined in the accessible area. The inverses of
G-1 and F are computed prior to encoding input and decoding
output of the internal decryption, respectively. The
manufacturer then sends the created smart cards to the
distributor who then makes the corresponding protected
content available online.

A user can download the chosen content from the
distributor server and purchases the corresponding smart
card. To unlock the protected content, the user’s device must
be connected to a compatible card reader. User’s device has
two functions: runs the internal decryption and plays the
decrypted content. The decryption protocol involves the
communication between user’s device and the smart card
(see Fig. 3).

Fig. 3 Decryption protocol

• Upon receiving the encrypted content X’, user’s
device records its internal key and passes it to the
smart card.

• The smart card encodes the cipher text X’ using
function G, and send G(X’) as an input for the internal
decryption mechanism in the user’ device.

• The device uses the inverse of the internal function to
decrypt the input and send the output FE-1G(G(X’))
back to the smart card.

• The smart card then decodes this output using
function F-1 to obtain the content X. The content X is
now playable to the user’s device.

III. RESULT AND DISCUSSION

A. Analysis of Security and Privacy

Our mechanism improves the DRM model for content
distribution (see Fig. 4). Instead of employing a clearing
house, the system involves a smart card manufacturer. This
mechanism makes the system more efficient. Users can
obtain content and its corresponding smart card from one
party, i.e. the distributor. Assuming the smart card is a
tamper-proof device, security and privacy of the scheme can
be analyzed as follow.

Theorem 1. Security
Assuming that the smart card is a tamper-proof device, the
mechanism achieves security for the content provider.

463

Fig. 4 Advantaged DRM system

Proof: In this mechanism, digital content is protected, and
the decryption key is hidden behind the obfuscated
encryption function. The essential functions (external
functions) that can be used to reveal such the secret key are
stored in the inaccessible smart card’s memory. Knowing
only the internal function is not adequate to unlock the
content, as the internal decryption mechanism has to
collaborate with external encoding-decoding operations
which are undertaken inside the smart card. The smart card
is only allocated to the user who has made the payment for
it. Therefore, the user can only access the content
corresponding to the smart card he purchased.

Theorem 2. Privacy
Assuming that the smart card is a tamper-proof device, the
mechanism preserves the privacy of the users.

Proof: To be able for unlocking the downloaded content, a
user does not need to provide his personal data for the
license. Instead, he needs to purchase the corresponding
smart card anonymously. The content and its associated
smart card will not be connected to the user’s identity.
Therefore, the user can privately consume the content and,
thus, his privacy is protected.

B. Applications of the White-Box Implementation Scheme

The advantage of a smart card helps white-box
implementation to achieve security for the content provider
and preserve privacy for the users of a content distribution
system. The white-box implementation scheme can be
applied in both off-line and online business scenarios.

1) Off-Line Content Distribution Scenario: Content
provider encrypts digital content and passes the protected
content to the distributor and all usage rules to the smart card
manufacturer. The usage rules contain the external keys (G-1
and F), the original encryption key (E), all mechanisms on
how and when these function can be retrieved, and external
encoding-decoding function that has to be performed by the

corresponding smart card. Once smart cards are completed,
the manufacturer sends them to the distributor.

The distributor is typically an off-line retailer. The
distributed content could be digital movies or songs. The
retailer wraps the protected content (stored in mass storage
devices such as CD's or DVDs) along with its corresponding
smart card and then makes them available to purchase. Users
can purchase this package anonymously from the shop. This
means that the distributor will not record the users' identity
nor connect it to the purchased item. Thus, the users can
privately play back the content on their smart card equipped
players or computers connected with a smart card reader.

2) Online Content Distribution Scenario: In the context
of an online content distribution scenario, the role of smart
cards could be filled by a secure distributor server. The
external and the original encryption keys are stored securely
in the server. The distributor provides the protected content
online and available to download. Users could download the
protected content anonymously (and also maybe freely), but
they cannot unlock the content unless they purchase passing
codes. Two pass codes have to be used to unlock protected
content. These codes are the outputs of the external encoding
and decoding mechanisms which are undertaken inside the
distributor server.

To keep anonymity, the purchasing passing codes can be
done using an electronic cash scheme [20]. Before
requesting passing codes, a user has to purchase adequate
unit tokens from the distributor. The tokens can be used to
purchase multiple items. Assuming that a user has
downloaded protected content, the online content decryption
is then performed through protocol 1. With this scenario,
users can do an online transaction anonymously. Thus, while
the content provider can securely distribute the protected
assets, the users' privacy is also preserved.

The term of privacy protection in these applications,
especially in the off-line scenario, is confined to the fact that
the users' identity is not officially recorded nor connected to
the purchased item. However, in real practice, an off-line
retailer will know who is purchasing which item, as the
customer directly comes to the shop. The privacy can be
perfectly protected if the content provider has a package
containing N protected items and the user is allowed to opt K
out of these N items. In this case, the user must not be able to
access more than K items, and the content provider must not
be able to determine which items are selected by the user.
This scenario is known as the oblivious transfer concept.

Protocol 1

• At the time of acquiring the passing codes, the user
has to submit the downloaded content's ID (it could
be the serial number) and an adequate amount of
tokens.

• After verifying the payment, the distributor server
performs external encoding according to content's ID
submitted by the user. This process outputs the first
passing code.

464

• This passing code enables user's player to partially
decrypt the content. The user then sends the output of
this decryption to the server.

• The server performs external decoding based on the
partial decryption's output submitted by the user. This
decoding process yields the second passing code.

• Finally, the second passing code allows the user's
player to fully decrypt and play the content.

The illustration of these applications can be used to ease
engineering technology students to connect mathematical
concepts and technological applications. To achieve this
goal, the illustration can be integrated in a relevant effort like
in [21].

C. Comparative Evaluation

This section compares our proposed White-box
implementation scheme to existing obfuscation approach
literature. The literature includes two common techniques ---
code obfuscation and white-box cryptography.

Code obfuscation is intended to protect software
implementation. Theoretical study of the software protection
was initiated by Goldreich and Ostrovsky [22], who
provided a hardware-based theoretical treatment. This study
motivated the emergence of code obfuscation ideas. The first
contribution for a formalization of code obfuscation was
provided by Hada [23], who presented a notion of
obfuscation based on the simulation paradigm for zero
knowledge. However, the formal definition of obfuscation
was initiated by Barak et al. [4]. According to their
definition, a probabilistic algorithm O is an obfuscator of a
program P if it satisfies:

• Functionality . O(P) is a program that computes the
same function as P.

• Virtual Black Box Property (VBBP) . Anything that
can be efficiently computed from O(P) can be
efficiently computed given oracle access to P.

Obfuscation, however, is hard to achieve. Barak et al. [4]
showed there exist some predicates that can be efficiently
computed when having access to an obfuscated
implementation O(f), but, given oracle access to f, no
efficient algorithm can compute the predicate much better
than by random guessing. As a result, a generic obfuscator,
i.e. an obfuscator that protect any given program, does not
exist.

The first positive results in code obfuscation referred to
the set of point functions as the obfuscatable family [5]. A
point function can be obfuscated by random oracles because
the output of a random oracle hides all information about
the input that produced it. The use of random oracles for
obfuscation was motivated by the expectation that given
access to an idealized building block, it would be feasible to
obfuscate some functions. However, the existence of the
idealized block allows the construction of a natural class of
functions that are impossible to obfuscate and programmable
random oracles, in practice, are difficult to realize [6].

Moreover, under cryptographic assumptions, obfuscators o
point functions with multi bit output can be constructed
without a random oracle [9]. A best-possible obfuscation
may not hide all information [6]. An obfuscated code may
leak as little information as any other code, meaning that any
information that is not hidden by the obfuscated code is also
not hidden by another program with the same size and
functionality.

Other positive results of code obfuscation were also
applied to cryptographic primitives. First of all, the
simulation-based obfuscation [11], which allows obfuscating
point function, converting secret-key cryptography into
public-key cryptography and transforming message
authentication codes (MAC). The obfuscation of an
indistinguishability under chosen plaintext attack (IND-
CPA) secure symmetric encryption scheme results in an
IND-CPA secure asymmetric scheme. Similar results hold
for the obfuscation of MAC algorithms into digital signature
schemes. However, these results do not apply to
indistinguishability under chosen ciphertext attack (IND-
CCA) secure schemes. Another positive obfuscation for
traditional cryptography was applied to widely used re-
encryption functionality [12]. This functionality takes a
ciphertext for message m encrypted under a party's public
key and transforms it into a ciphertext for the same message
encrypted with the other party's public key. Overall, code
obfuscation is less applicable in the DRM applications than
white-box cryptography.

The first introduced white-box implementations were
applied to the DES and AES [24], [25]. The Advance
Encryption Standard (AES) consists of Nr rounds; where Nr
= 10 for AES-128. A basic round has four parts: SubBytes,
ShiftRows, MixColumns and AddRoundKey. An
AddRoundKey operation occurs before the first round, and
the MixColumns operations are omitted in the final round.

The general notion of the white box AES implementation
[25] is to merge several steps of the cipher into a network of
lookup tables and obfuscate the results using random input-
output encoding. First of all, the partial evaluation technique
is deployed to hide the key. The key is integrated into the
SubBytes transformation by constructing 160 8×8 (i.e. 8-bit
in,8-bit out) lookup tables Ti,j

r.

Ti,j
r = S(x ⊕ ki,j

r) for i = 0,...,3; j = 0, ...,3; r = 1,...,9 (1)
Ti,j

10 = S(x ⊕ ki,j
10) ⊕ ki,j-i

11 for i = 0,...,3; j = 0, ...,3 (2)

Here S is the AES S-box, and ki,j
r is the AES subkey byte

in i-th row and j-th column at round r. These T-boxes
comprise the SubBytes step with the previous round's
AddRoundKey step. Each output of the T-box and the
ShiftRows step contributes to 4 bytes of the state array
after the MixColumns step. This contribution can be
described by a 32×8 submatrix MCi of the 32×32 bit matrix
MC representing MixColumns. The entire function can be
described as a 32×8 bit lookup table. This lookup table
needs to be obfuscated with 4-bit nibble encodings.
To add to the diffusion, 8×8 affine mixing bijections are

465

inserted before Ti,j
r and a 32×32 affine bijections MB is

inserted after the MixColumns. The mixing bijection is
canceled out by the preceding MC (round r – 1), which
includes the inverse. Hence, the inversion step is diffused
over several lookup tables. To cancel out the effect of the
MB mixing bijection, an additional lookup table is
implemented. Finally, the external input and output
encodings are implemented. A 128×128 mixing bijection is
inserted prior to the first T-box and a different 128×128
mixing bijection after the last T-box computation. Thus
instead of AESk, NO ○ MG ○ AESk ○ MF ○ NI is implemented.
MF and MG are the affine input and output respectively, and
NI and NO are the input and output non-linear nibble
encodings respectively.

Comparison of standard AES and white-box AES (see
Fig. 5) shows that to obfuscate the AES algorithm, each of
its parts is diffused into several lookup tables. The sequences
of lookup tables S1 to S4, MC1 to MC4 and A1 to A4 are
functionally equivalent to SubBytes, MixColumns, and
AddRoundKey, respectively. The Shift operation,
however, is not undertaken as a lookup table due to its
nature. White-box AES implementation provides a secure
protection of a secret key in a cryptographic module but has
a slow performance. The size and performance comparisons
between standard AES and white-box AES implementation
are presented in Table 1.

Fig. 5 Comparison of Standard AES and White-box AES [1]

TABLE 1

SIZE AND PERFORMANCE COMPARISON [25], [26]

Description Standard AES White-box AES

Memory size
Operation
Encrypt 1 MB data

4352 bytes
300 lookups and xors
< 0.5 seconds

770048 bytes
3104 lookups
> 3 seconds

The white-box AES implementation [25] has been broken

using an algebraic cryptanalysis technique [27], with the
worst time complexity of 230. Nevertheless, the
implementation can still provide an effective key protection
by increasing the attacks' time complexity. One technique for

increasing such complexity is Medusa [28], a software
tamper resistance technique which makes a binary program
code tamper resistant by incorporating the code into the key
of a white-box implementation. This technique increases the
integrity of the white-box implementation; if an adversary
modified the implementation, the results would be wrong. As
a result, the attack time complexity can be much higher.

In response to the algebraic cryptanalysis, a new
construction beyond the lookup table strategy, called
perturbations strategy [29], was introduced. This strategy is
an improvement of the traceable block cipher scheme [30].
However, this construction was proven to be insecure by De
Mulder et al. [31], and there has been no improvement made
for the perturbations strategy up to now.

The most recent improved scheme is proposed by Yoo et
al. [26]. To address the performance problems, Yoo et al.
combined white-box AES and standard AES; they used a
white-box AES only once in the beginning, and then applied
standard AES to the rest of the scheme. They claimed that
their scheme has the same performance as the standard AES
and is robust to withstand white-box attack. This claim,
however, needs to be criticized. If white-box is only
implemented in the first round and the subsequent rounds
remain in standard AES, the scheme will be exposed to
white-box attacks as the standard one as additions with
round key information can easily be distinguished. The
scheme may be secure to withstand black-box attacks but
may fail to preserve security against software attacks.

Our proposed white-box implementation scheme directly
adopts the basic notion presented in Fig. 2. For security
purposes, the content key is obfuscated by a composition of
internal and external keys which are stored separately. The
external keys are essential --- without these keys, the content
decryption key is hard to reconstruct. To keep the external
keys secret, they are stored in an inaccessible area of a smart
card's memory. With this mechanism, our proposed scheme
requires a simpler computation than many white-box
implementations proposed in the literature. The security of
our scheme relies on the physical security of smart cards. To
preserve users' privacy, the smart card can be purchased
anonymously. This mechanism makes the scheme achieve
content provider's security and users' privacy simultaneously.

IV. CONCLUSION

DRM is mainly employed by the content provider to
combat piracy. Not surprisingly, the DRM systems put more
attention to the content provider’s security and often neglect
the users’ privacy. However, the users’ privacy needs to be
fairly protected as the users’ satisfaction is important in a
content distribution system. Additionally, the significant
threat to both security and privacy may emerge in typical
DRM model.

White-box cryptography (WBC) is suggested to be the
most effective protection technique in the DRM applications.
Despite having a transparent methodology, WBC integrates
the cipher in such a way that does not reveal the decryption
key. This mechanism is appropriate to protect software

466

implementation, even when the software is executed in an
insecure environment. WBC is potential to enhance security
for the content provider.

Our approach integrates white-box implementation and
smart card application to advantage DRM. The smart card
handles the external decoding which is a part of the white-
box implementation and essential to hide the secret
decryption key. The communication protocol between the
smart card and the user’s device enhances the content
provider’s security. Moreover, the use of smart card in the
content distribution system also allows the users to consume
the content anonymously and, thus, their privacy is
protected. Our advantaged DRM model provides a balanced
protection for the content provider and users.

ACKNOWLEDGMENT

This paper is a revised and extended version of our paper
entitled Obfuscation and WBC: Endeavour for Securing
Encryption in the DRM Context, presented at the 2013
International Conference on Computer Science
and Information Technology (CSIT-2013) on June 16-18,
2013 at Yogyakarta, Indonesia.

REFERENCES
[1] R. Schultz. (2012, April) The Many Facades of DRM. MISC HS 5

Magazine. 58-64. Available:
http://whiteboxcrypto.com/files/2012_misc_drm.pdf

[2] B. Wyseur, "White-box Cryptography," PhD PhD Thesis,
Elektrotechniek-Esat, Katholieke Universiteit Leuven, Leuven, 2009.

[3] B. Wyseur. (2012, April) White-Box Cryptography: Hiding Keys in
Software. MISC HS 5 Magazine. 65-72. Available:
http://whiteboxcrypto.com/files/2012_misc.pdf

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.
Vadhan, and K. Yang, "On the (Im)possibility of Obfuscating
Program," in Advance in Cryptology - CRYPTO 2001: 21st Annual
International Cryptology Conference, Santa Barabara, California,
USA, 2001, pp. 1-18.

[5] B. Lynn, M. Prabhakaran, and A. Sahai, "Positive Results and
Techniques for Obfuscation," in International Conference on the
Theory and Applications of Cryptographic Techniques -Advances in
Cryptology - EUROCRYPT 2004, Interlaken, Switzerland, 2004, pp.
20-39.

[6] S. Goldwasser and G. N. Rothblum, "On Best-Possible Obfuscation,"
in TCC 2007, Amsterdam, The Netherland, 2007, pp. 194-213.

[7] N. Bitansky and R. Canetti, "On Strong Simulation and Composable
Point Obfuscation," in CRYPTO 2010, 2010, pp. 520-537.

[8] N. Bitansky, R. Canetti, S. Goldwasser, S. Halevi, Y. T. Kalai, and G.
N. Rothblum. (2011, 22 June). Program Obfuscation with Leaky
Hardware. Available: http://eprint.iacr.org/2011/660.pdf

[9] R. Canetti and R. R. Dakdouk, "Obfuscating Point Functions with
Multibit Output," in EUROCRYPT 2008, Istanbul, Turkey, 2008, pp.
489-508.

[10] R. Canetti, G. N. Rothblum, and M. Varia, "Obfuscation of
Hyperplane Membership," in TCC 2010, 2010, pp. 72-89.

[11] D. Hofheinz, J. Malone-Lee, and M. Stam, "Obfuscation for
Cryptographic Purposes," in TCC 2007, Amsterdam, The Netherland,
2007, pp. 214-232.

[12] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan,
"Securely Obfuscating Re-encryption," in TCC 2007, 2007, pp. 233-
252.

[13] A. C. Prihandoko, B. Litow, and H. Ghodosi, "DRM's Rights
Protection Capability: A Review," in The First International
Conference on Computational Science and Information Management,
Medan, Indonesia, 2012, pp. 12-17.

[14] Q. Liu, R. Safavi-Naini, and N. P. Sheppard, "Digital Rights
Management for Content Distribution," presented at the Australian
Information Security Workshop on ACSW Frontiers'03, 2003.

[15] M. H. Shaikh and N. A. Ansari, "Examining a Norwegian Client's
Response over Information Security and Privacy Policy," International
Journal on Advanced Science Engineering Information Technology,
vol. 5, pp. 165-169, 2015.

[16] M. Joye, "On White-Box Cryptography," in Security of Information
and Networks, 2008, pp. 7-12.

[17] A. Saxena, B. Wyseur, and B. Preneel, "Towards Security Notions for
White-Box Cryptography," presented at the Information Security ISC
2009, 2009.

[18] SafeNet. (2012, 24 July). Understanding White Box Cryptography.
Available: www.safenet-inc.com

[19] Z. Chen. (2000). Java Card Technology for Smart Cards: Architecture
and Programmer's Guide.

[20] D. Chaum, A. Fiat, and M. Naor, "Untraceable Electronic Cash," in
CRYPTO'88, 1988, pp. 319-327.

[21] N. Bakri, T. S. Salleh, and Z. M. Zin, "Designing an Integrated
Teaching and Learning of Mathematics and Image Processing in
Engineering Technology," International Journal on Advanced Science
Engineering Information Technology, vol. 6, pp. 548-552, 2016.

[22] O. Goldreich and R. Ostrovsky, "Software Protection ans Simulation
on Oblivious RAMs," Journal of the Association of Computing
Machinery, vol. 43, pp. 431-473, 1996.

[23] S. Hada, "Zero-Knowledge and Code Obfuscation," in ASIACRYPT
2000, 2000, pp. 443-457.

[24] S. Chow, P. Eisen, H. Johnson, and P. C. v. Oorschot, "A White-Box
DES Implementation for DRM Applications," presented at the DRM
2002, 2003.

[25] S. Chow, P. Eisen, H. Johnson, and P. C. v. Oorschot, "White-Box
Cryptography and an AES Implementation," presented at the SAC
2002, 2003.

[26] J. Yoo, H. Jeong, and D. Won, "A Method for Secure and Efficient
Block Cipher using White-Box Cryptography," presented at the 6th
International Conference on Ubiquitos Information Management and
Communication, 2012.

[27] O. Billet, H. Gilbert, and C. Wch-Chatbi, "Cryptanalysis of a White
Box AES Implementation," presented at the SAC 2004, 2005.

[28] W. Michiels and P. Gorissen, "Mechanism for Software Tamper
Resistance: An Application of White-Box Cryptography," in 7th ACM
Workshop on Digital Rights Management, 2007, pp. 82-89.

[29] J. Bringer, H. e. Chabanne, and E. Dottax, "Perturbing and Protecting
a Traceable Block Cipher," in the 10th Communications and
Multimedia Security (CMS) 2006, 2006, pp. 109-119.

[30] O. Billet and H. Gilbert, "A Traceable Block Cipher," in Advances in
Cryptology - ASIACRYPT 2003, Taipei, Taiwan, 2003, pp. 331-346.

[31] Y. D. Mulder, B. Wyseur, and B. Preneel, "Cryptanalysis of a
Pertubated White-Box AES Implemenation," presented at the Progress
in Cryptology - Indocrypt 2010, 2010.

467

