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Abstract— Digital Rights Management (DRM) is a popular approach for secure content distribution. Typically, DRM encrypts the 
content before delivers it. Most DRM applications use secure algorithms to protect content. However, executing these algorithms in an 
insecure environment may allow adversaries to compromise the system and obtain the key. To withstand such attack, algorithm 
implementation is modified in such a way to make the implementation unintelligible, namely obfuscation approach. White-box 
cryptography (WBC) is an obfuscation technique intended to protect secret keys from being disclosed in a software implementation 
using a fully transparent methodology. This mechanism is appropriate for DRM applications and able to enhance security for the 
content provider. However, DRM is required to provide a balanced protection for the content provider and users. We construct a 
protocol on implementing WBC to improve DRM system; The system does not only provide security for the content provider but also 
preserves privacy for users. 
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I. INTRODUCTION  

Secure delivery is urgently required in a content 
distribution system to guarantee that only authorized users 
can access the protected content and use it properly. Digital 
Rights Management (DRM) is a popular approach for this 
security requirement. Under this system, content is typically 
sent in an encrypted form along with the license associated 
with it. At the users' side, an application processes the 
license by means of a rights expression manager (REM), 
authenticates the users and decrypts the content using the 
corresponding decryption routine. The application can be 
implemented in hardware, such as in a set-top box for typical 
pay TV systems, or in software on the users' PC. 

Trusted media players in most DRM applications contain 
the decryption key. The key must be kept secret and 
inaccessible to users, as finding the key would allow 
someone to decrypt and access content without restriction, 
thus defeating DRM protection. Unfortunately, trusted media 
players are often running on an untrusted platform. Although 
encryption algorithms used by most DRM applications, such 
as the data encryption standard (DES) and the advanced 

encryption standard (AES), are believed to be secure, 
executing them in an insecure environment may allow 
adversaries to compromise the system and obtain 
information about the decryption key [1]-[3]. Therefore, the 
protection  scenario must be set to prevent the extraction of 
the key, even when the application is executed in an insecure 
environment.  

Keeping the decryption key from being accessible to the 
users is a major challenge for the DRM systems. An 
approach to this problem is by applying obfuscation 
techniques. In these techniques, the implementation of the 
encryption algorithm is modified so that it would be 
unintelligible. Two common techniques for such an 
obfuscation approach  are code obfuscation and white-box 
cryptography (WBC) .   

Code obfuscation is intended to protect software 
implementations. In this technique, the program (code) used 
to implement the algorithm is rewritten in such a way that 
certain characteristics of the original program are hidden and 
unintelligible. Theoretically, a probabilistic algorithm Ο is 
an obfuscator of a program P if it computes the same 
function as Ρ, and anything that can be efficiently computed 
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from Ο(Ρ), can be efficiently computed given oracle access 
to Ρ  [4]. However, obfuscation is hard to achieve. Both 
positive and negative results that determine possibility and 
impossibility, respectively, of code obfuscation, were 
investigated [5]-[12]. While general purpose obfuscators are 
currently impossible, obfuscators for simple functions may 
exist.  

In practice, obfuscation of a program (code) is applied to 
the variables used in the program. Variable names are 
scrambled, and data that was stored in a single variable is 
split into multiple variables and recombined at execution 
time. This mechanism makes a code difficult for human to 
understand, and thus effective for hiding an algorithm and 
protecting the code, but not for any encryption key used by 
the code. Additionally, code obfuscation is often integrated 
with code flattening. In code flattening, extra paths are 
introduced into the program structure. This technique makes 
the program difficult to analyze. However, it can be reverse 
engineered and, thus, fails to achieve the main goal of code 
obfuscation.  

Theoretical researches on code obfuscation are many, but 
fewer on implementations. Most of the researches produce 
conceptual decisions whether or not the obfuscator of a 
particular program exists according to a certain definition. 
However, none provides a real example on how to obfuscate 
a program if such an obfuscator provable exists. Practical 
obfuscation, on the other hand, has a less theoretical 
foundation. Because of the lack of a bridge that connects 
theoretical and practical aspects, code obfuscation is less 
applicable in the DRM implementation. 

White-box cryptography is an obfuscation technique that 
is often used in the DRM applications. Though having a less 
theoretical model than code obfuscation, WBC reflects more 
the reality. Of the protection techniques applied in the DRM 
implementations, white-box cryptography is suggested to be 
the most effective protection in the DRM applications [1]. 
Currently, WBC is being used in real-world applications. 
Several commercial companies such as Microsoft, Apple, 
and Sony have announced or have shown to deploy white-
box techniques. Although there are many cryptanalysis 
techniques have been published, so far in a real-world 
product, there has been no white-box implementation that 
has suffered from a key extraction attack. Practically, 
breaking white-box implementations is hard and time-
consuming [3]. The attacks are very dependent on the 
construction of the white-box implementation and the 
properties of the underlying cipher [3]. Therefore, broadly 
applicable attacks are difficult to deploy. 

The main goal of this study is to implement the WBC 
concept to advantage DRM. As a protection system, DRM 
tends to put a great emphasis on content provider’s rights 
and often neglects users’ privacy. However, customers’ 
satisfaction is an important factor in a content distribution 
system. Therefore, DRM is required to provide a balanced 
protection between the content provider’s right and the 
users’ privacy [13]. It means that DRM should not merely 
focus on achieving the security for the content provider, but 

also on preserving the privacy for the users. We construct a 
white-box implementation protocol that enables DRM to 
provide a balanced protection for the content provider and 
the users. 

A. Problem Statement 

Typical DRM systems for content distribution (see Fig. 1) 
consist of four parties: content provider, distributor, clearing 
house and consumer or user [14]. The content provider is a 
content holder and wants to sell the content for profits.  First 
of all, the content provider needs to encrypt the content for 
security purposes. The provider then passes the protected 
content to the distributor and the corresponding license to the 
clearinghouse. A distributor is typically a web server running 
an online shop. The distributor makes the protected content 
available on the web server and enables users to download it. 

To be able to decrypt and use the downloaded content, a 
user needs to acquire an appropriate license from the 
clearinghouse. The user has to register his profile, provide 
details of the purchased content, and then do the payment. 
After all these steps are properly processed, the 
clearinghouse releases a license containing usage rules and a 
key to decrypt the content.  

Most DRM systems make the protected digital content 
available on their distributor servers.  Users can obtain the 
protected content from the distributor channel and then 
request a license containing the decryption key from the 
clearinghouse. Downloading content from the distributor's 
channel does not seriously threaten either content provider's 
security or users' privacy. Users may download content 
anonymously (and even freely) so that their identity would 
not be connected to the content they choose. However, 
without obtaining an appropriate decryption key, users 
cannot unlock the protected content. 

 
Fig. 1  Typical DRM system 

In contrast, acquiring a license from the clearinghouse 
causes serious concerns over security and privacy. From the 
content provider perspective, this mechanism may give a 
threat to his security. If an eavesdropper steals licenses when 
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a user requests them from the clearinghouse, a great revenue 
will be lost. From the users’ perspective, the mechanism 
emerges a threat to their privacy. Personal information they 
submit to the clearinghouse is not guaranteed to be kept 
secret, as the clearinghouse may send the users’ data and 
viewing detail to marketing agencies. The users expect that 
they have their privacy protected and are able to access 
digital content anonymously. Indeed, in many applications, 
security and privacy need to be equally protected [15].  We 
utilize white-box implementation to overcome the security 
and privacy problems in this model. 

The rest of this paper is organized as follows.  Section II 
describes the Material and Method. Section III provides 
Result and Discussion.  Finally, section IV draws concluding 
remarks. 

II. MATERIAL AND METHOD 

White-box cryptography (WBC) is intended to implement 
cryptographic primitives. The intention is to protect secret 
keys from being disclosed in a software implementation. The 
protection is done in such a way even when the platform on 
which the application is executed is subject to the control of 
potentially hostile end-users.  

The term of “white-box” relates to the attack model that is 
applied to examine the security of this protection 
mechanism. Unlike the traditional cryptographic threat 
model, black-box, which assumes that attackers can only 
observe the input and output of the algorithm, the white-box 
model assumes that the attackers have full control over the 
whole operation and can freely observe dynamic code 
execution. Despite providing a fully transparent 
methodology, WBC integrates the cipher in such a way that 
does not reveal the secret key. This mechanism is 
appropriate for DRM applications which are often executed 
in an insecure environment. 

The basic notion of white-box implementations (see Fig. 
2) is to rewrite a key so that all information related to the key 
is hidden. External encoding can be used so that the 
encryption and decryption software require encoded inputs, 
and produce encoded outputs. This encoding mechanism can 
be done by replacing the encryption function Ek with the 
composition Ek' = G ○ Ek ○ F-1. Input encoding function F 
and output decoding function G-1 must not be on the same 
platform that computes Ek' so that the white-box 
implementation cannot be used to compute Ek. This means 
that encoding input and decoding output have to be kept 
secret. At this point, white box implementation cannot stand 
alone; it should be used in conjunction with other techniques 
to provide protection against key recovery attacks [16]. 
Although this scenario is not standard, such an approach is 
useful for many DRM implementations.  

 

 
Fig. 2  Basic notion of white-box implementation [3] 

 

A. Security and Feasibility of White-Box Cryptography 

Security of white-box implementation is relative; there is 
no system that is absolutely secure. A system is secure 
relative to a security model which may depend on an 
adversary's goal and the resources that can be accessed by 
the adversary [16]. In the white-box scenario, it is much 
more difficult to determine the resources of an attacker as 
they are endless. The best effort in such an implementation is  
to prevent all known relevant threats in an effective way. A 
secure protection, for example, can be achieved by 
combining the effect of the secret key with some 
implementation specific data using a mathematical operation 
that is extremely hard to invert [17]. This mechanism allows 
constructing a system that operates similarly to the 
asymmetric encryption algorithm, with a performance level 
close to the symmetric algorithm [18]. The security also 
depends on the implementation --- a strong cryptographic 
algorithm is not necessary for a poor implementation. 

Despite the robustness of practical white-box 
implementations, performance, memory size and security are 
still the main concerns for current applications. Low 
performance and high-consumed memory size limit the 
application of WBC, especially for mobile devices. 

Although no attack on commercial white-box 
implementations has been found, it does not exclude the 
possibility of successful attacks in future. Additionally, the 
effectiveness of the white-box implementation is limited 
when an attacker can observe the execution of the DRM 
program. Therefore, it is not enough to only protect an 
application against key extraction; the application must also 
be hard to invert. Furthermore, adding hardware protection is 
extremely effective, but costly. 

 

462



B. Constructed Model 

To implement WBC in the DRM applications, we propose 
to employ smart cards. A smart card contains an embedded 
microprocessor so that it can be used not only to store data 
but also to process the data [19]. Since a smart card carries 
both processing power and information, it does not need 
access to the remote database at the time of a transaction. A 
smart card may contain programs and mobile databases that 
can be modified, updated or deleted through embedded 
program functions. The microprocessor is also used for 
security purposes. Data are never directly available to the 
external applications as the microprocessor controls data 
handling and memory access according to a given set of 
conditions. 

The white-box implementation works by obfuscating the 
original encryption and decryption keys. Suppose E is the 
encryption function. Two random functions F and G are 
generated to obfuscate E. Instead of using E(X), cipher text 
X’ is computed using diffused function . 
Composition  is called internal function, while  G-1 
and F are external functions. The provider then passes the 
protected content along with the internal function to the 
distributor and corresponding external functions to the smart 
cards manufacturer. The smart card is used to store the 
external keys and the original encryption key, compute their 
inverse and do external encoding-decoding. The 
manufacturer produces smart cards and delivers them to the 
distributor that will make them available to purchase. 

A model of the smart card needs to be defined to make the 
scheme works. In this model, a smart card memory has two 
parts: accessible area and inaccessible area. User’s device 
can only communicate to the former part but cannot 
approach the latter. Data structure and mobile database are 
stored in the inaccessible area. In this case, external 
functions G-1 and F must be inaccessible. These items are 
only accessible by external encoding and decoding 
mechanisms defined in the accessible area. The inverses of 
G-1 and F are computed prior to encoding input and decoding 
output of the internal decryption, respectively. The 
manufacturer then sends the created smart cards to the 
distributor who then makes the corresponding protected 
content available online.  

A user can download the chosen content from the 
distributor server and purchases the corresponding smart 
card. To unlock the protected content, the user’s device must 
be connected to a compatible card reader. User’s device has 
two functions: runs the internal decryption and plays the 
decrypted content. The decryption protocol involves the 
communication between user’s device and the smart card 
(see Fig. 3). 

 

 
Fig. 3  Decryption protocol 

• Upon receiving the encrypted content X’, user’s 
device records its internal key and passes it to the 
smart card. 

• The smart card encodes the cipher text X’ using 
function G, and send G(X’) as an input for the internal 
decryption mechanism in the user’ device. 

• The device uses the inverse of the internal function to 
decrypt the input and send the output FE-1G(G(X’)) 
back to the smart card. 

• The smart card then decodes this output using 
function F-1 to obtain the content X. The content X is 
now playable to the user’s device. 

III.  RESULT AND DISCUSSION 

A. Analysis of Security and Privacy 

Our mechanism improves the DRM model for content 
distribution (see Fig. 4). Instead of employing a clearing 
house, the system involves a smart card manufacturer. This 
mechanism makes the system more efficient. Users can 
obtain content and its corresponding smart card from one 
party, i.e. the distributor. Assuming the smart card is a 
tamper-proof device, security and privacy of the scheme can 
be analyzed as follow.   
 
Theorem 1. Security 
Assuming that the smart card is a tamper-proof device, the 
mechanism achieves security for the content provider.  
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Fig. 4  Advantaged DRM system 

 
Proof: In this mechanism, digital content is protected, and 
the decryption key is hidden behind the obfuscated 
encryption function. The essential functions (external 
functions) that can be used to reveal such the secret key are 
stored in the inaccessible smart card’s memory. Knowing 
only the internal function is not adequate to unlock the 
content, as the internal decryption mechanism has to 
collaborate with external encoding-decoding operations 
which are undertaken inside the smart card. The smart card 
is only allocated to the user who has made the payment for 
it. Therefore, the user can only access the content 
corresponding to the smart card he purchased. 
 
Theorem 2. Privacy  
Assuming that the smart card is a tamper-proof device, the 
mechanism preserves the privacy of the users.  
 
Proof: To be able for unlocking the downloaded content, a 
user does not need to provide his personal data for the 
license. Instead, he needs to purchase the corresponding 
smart card anonymously. The content and its associated 
smart card will not be connected to the user’s identity. 
Therefore, the user can privately consume the content and, 
thus, his privacy is protected.   
 

B. Applications of the White-Box Implementation Scheme 

The advantage of a smart card helps white-box 
implementation to achieve security for the content provider 
and preserve privacy for the users of a content distribution 
system. The white-box implementation scheme can be 
applied in both off-line and online business scenarios. 

1) Off-Line Content Distribution Scenario: Content 
provider encrypts digital content and passes the protected 
content to the distributor and all usage rules to the smart card 
manufacturer. The usage rules contain the external keys (G-1 
and F), the original encryption key (E), all mechanisms on 
how and when these function can be retrieved, and external 
encoding-decoding function that has to be performed by the 

corresponding smart card. Once smart cards are completed, 
the manufacturer sends them to the distributor. 

The distributor is typically an off-line retailer. The 
distributed content could be digital movies or songs. The 
retailer wraps the protected content (stored in mass storage 
devices such as CD's or DVDs) along with its corresponding 
smart card and then makes them available to purchase. Users 
can purchase this package anonymously from the shop. This 
means that the distributor will not record the users' identity 
nor connect it to the purchased item. Thus, the users can 
privately play back the content on their smart card equipped 
players or computers connected with a smart card reader. 

2) Online Content Distribution  Scenario: In the context 
of an online content distribution scenario, the role of smart 
cards could be filled by a secure distributor server. The 
external and the original encryption keys are stored securely 
in the server. The distributor provides the protected content 
online and available to download. Users could download the 
protected content anonymously (and also maybe freely), but 
they cannot unlock the content unless they purchase passing 
codes. Two pass codes have to be used to unlock protected 
content. These codes are the outputs of the external encoding 
and decoding mechanisms which are undertaken inside the 
distributor server. 

To keep anonymity, the purchasing passing codes can be 
done using an  electronic cash scheme [20]. Before 
requesting passing codes, a user has to purchase adequate 
unit tokens from the distributor. The tokens can be used to 
purchase multiple items. Assuming that a user has 
downloaded protected content, the online content decryption 
is then performed through protocol 1. With this scenario, 
users can do an online transaction anonymously. Thus, while 
the content provider can securely distribute the protected 
assets, the users' privacy is also preserved. 

The term of privacy protection in these applications, 
especially in the off-line scenario, is confined to the fact that 
the users' identity is not officially recorded nor connected to 
the purchased item. However, in real practice, an off-line 
retailer will know who is purchasing which item, as the 
customer directly comes to the shop. The privacy can be 
perfectly protected if the content provider has a package 
containing N protected items and the user is allowed to opt K 
out of these N items. In this case, the user must not be able to 
access more than K items, and the content provider must not 
be able to determine which items are selected by the user. 
This scenario is known as the oblivious transfer concept. 

 
Protocol 1 

• At the time of acquiring the passing codes, the user 
has to submit the downloaded content's ID (it could 
be the serial number) and an adequate amount of 
tokens. 

• After verifying the payment, the distributor server 
performs external encoding according to content's ID 
submitted by the user. This process outputs the first 
passing code. 
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• This passing code enables user's player to partially 
decrypt the content. The user then sends the output of 
this decryption to the server. 

• The server performs external decoding based on the 
partial decryption's output submitted by the user. This 
decoding process yields the second passing code. 

• Finally, the second passing code allows the user's 
player to fully decrypt and play the content. 

The illustration of these applications can be used to ease 
engineering technology students to connect mathematical 
concepts and technological applications. To achieve this 
goal, the illustration can be integrated in a relevant effort like 
in [21].  

C. Comparative Evaluation 

This section compares our proposed White-box 
implementation scheme to existing obfuscation approach 
literature. The literature includes two common techniques --- 
code obfuscation and white-box cryptography. 

Code obfuscation is intended to protect software 
implementation. Theoretical study of the software protection 
was initiated by Goldreich and Ostrovsky [22], who 
provided a hardware-based theoretical treatment. This study 
motivated the emergence of code obfuscation ideas. The first 
contribution for a formalization of code obfuscation was 
provided by Hada [23], who presented a notion of 
obfuscation based on the simulation paradigm for zero 
knowledge. However, the formal definition of obfuscation 
was initiated by Barak et al. [4]. According to their 
definition, a probabilistic algorithm O is an obfuscator of a 
program P if it satisfies: 

• Functionality . O(P) is a program that computes the 
same function as P. 

• Virtual Black Box Property (VBBP) . Anything that 
can be efficiently computed from O(P) can be 
efficiently computed given oracle access to P. 

Obfuscation, however, is hard to achieve.  Barak et al. [4] 
showed there exist some predicates that can be efficiently 
computed when having access to an obfuscated 
implementation O(f), but, given oracle access to f, no 
efficient algorithm can compute the predicate much better 
than by random guessing. As a result, a generic obfuscator, 
i.e. an obfuscator that protect any given program, does not 
exist. 

The first positive results in code obfuscation referred to 
the set of point functions as the obfuscatable family [5]. A 
point function can be obfuscated by random oracles because 
the output of a random oracle  hides all information about 
the input that produced it. The use of random oracles for 
obfuscation was motivated by the expectation that given 
access to an idealized building block, it would be feasible to 
obfuscate some functions. However, the existence of the 
idealized block allows the construction of a natural class of 
functions that are impossible to obfuscate and programmable 
random oracles, in practice, are difficult to realize [6]. 

Moreover, under cryptographic assumptions, obfuscators o  
point functions with multi bit output can be constructed 
without a random oracle [9]. A best-possible obfuscation 
may not hide all information [6]. An obfuscated code may 
leak as little information as any other code, meaning that any 
information that is not hidden by the obfuscated code is also 
not hidden by another program with the same size and 
functionality. 

Other positive results of code obfuscation were also 
applied to cryptographic primitives. First of all, the 
simulation-based obfuscation [11], which allows obfuscating 
point function, converting secret-key cryptography into 
public-key cryptography and transforming message 
authentication codes (MAC). The obfuscation of an 
indistinguishability under chosen plaintext attack (IND-
CPA) secure symmetric encryption scheme results in an 
IND-CPA secure asymmetric scheme. Similar results hold 
for the obfuscation of MAC algorithms into digital signature 
schemes. However, these results do not apply to 
indistinguishability under chosen ciphertext attack (IND-
CCA) secure schemes.  Another positive obfuscation for 
traditional cryptography was applied to widely used re-
encryption functionality  [12]. This functionality takes a 
ciphertext for message $m$ encrypted under a party's public 
key and transforms it into a ciphertext for the same message 
encrypted with the other party's public key. Overall, code 
obfuscation is less applicable in the DRM applications than 
white-box cryptography.  

The first introduced white-box implementations were 
applied to the DES and AES [24], [25]. The Advance 
Encryption Standard (AES) consists of Nr rounds; where Nr 
= 10 for AES-128. A basic round has four parts: SubBytes, 
ShiftRows, MixColumns and AddRoundKey. An 
AddRoundKey operation occurs before the first round, and 
the MixColumns operations are omitted in the final round. 

The general notion of the white box AES implementation 
[25] is to merge several steps of the cipher into a network of 
lookup tables and obfuscate the results using random input-
output encoding. First of all, the partial evaluation technique 
is deployed to hide the key. The key is integrated into the 
SubBytes transformation by constructing 160 8×8 (i.e. 8-bit 
in,8-bit out) lookup tables Ti,j

r. 

Ti,j
r =  S(x ⊕ ki,j

r)  for i = 0,...,3; j = 0, ...,3; r = 1,...,9  (1) 
Ti,j

10 = S(x ⊕ ki,j
10) ⊕ ki,j-i

11   for i = 0,...,3; j = 0, ...,3  (2) 
 

Here S is the AES S-box, and ki,j
r is the AES subkey byte 

in i-th row and j-th column at round r. These T-boxes 
comprise the SubBytes step with the previous round's 
AddRoundKey step. Each output of the T-box and the 
ShiftRows step contributes to 4 bytes of the state array 
after the MixColumns step. This contribution can be 
described by a 32×8 submatrix MCi of the 32×32 bit matrix 
MC representing MixColumns. The entire function can be 
described as a 32×8 bit lookup table. This lookup   table   
needs   to   be   obfuscated   with   4-bit  nibble encodings. 
To add to the diffusion, 8×8 affine mixing bijections are 
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inserted before Ti,j
r and a 32×32 affine bijections MB is 

inserted after the MixColumns. The mixing bijection is 
canceled out by the preceding MC (round r – 1), which 
includes the inverse. Hence, the inversion step is diffused 
over several lookup tables. To cancel out the effect of the 
MB mixing bijection, an additional lookup table is 
implemented. Finally, the external input and output 
encodings are implemented. A 128×128 mixing bijection is 
inserted prior to the first T-box and a different 128×128 
mixing bijection after the last T-box computation. Thus 
instead of AESk, NO ○ MG ○ AESk ○ MF ○ NI is implemented. 
MF and MG are the affine input and output respectively, and 
NI and NO are the input and output non-linear nibble 
encodings respectively.  

Comparison of standard AES and white-box AES (see 
Fig. 5) shows that to obfuscate the AES algorithm, each of 
its parts is diffused into several lookup tables. The sequences 
of lookup tables S1 to S4, MC1 to MC4 and A1 to A4 are 
functionally equivalent to SubBytes, MixColumns, and 
AddRoundKey, respectively.  The Shift operation, 
however, is not undertaken as a lookup table due to its 
nature. White-box AES implementation provides a secure 
protection of a secret key in a cryptographic module but has 
a slow performance. The size and performance comparisons 
between standard AES and white-box AES implementation 
are presented in Table 1.  

 
Fig. 5 Comparison of Standard AES and White-box AES [1] 

 
TABLE 1 

SIZE AND PERFORMANCE COMPARISON [25],  [26] 
 

Description Standard AES White-box AES 

Memory size 
Operation 
Encrypt 1 MB data 

4352 bytes 
300 lookups and xors 
< 0.5 seconds 

770048 bytes 
3104 lookups 
> 3 seconds 

 
The  white-box AES implementation [25] has been broken 

using an algebraic cryptanalysis technique [27], with the 
worst time complexity of 230. Nevertheless, the 
implementation can still provide an effective key protection 
by increasing the attacks' time complexity. One technique for 

increasing such complexity is Medusa [28], a software 
tamper resistance technique which makes a binary program 
code tamper resistant by incorporating the code into the key 
of a white-box implementation. This technique increases the 
integrity of the white-box implementation; if an adversary 
modified the implementation, the results would be wrong. As 
a result, the attack time complexity can be much higher. 

In response to the algebraic cryptanalysis, a new 
construction beyond the lookup table strategy, called 
perturbations strategy [29],  was introduced. This strategy is 
an improvement of the traceable block cipher scheme [30]. 
However, this construction was proven to be insecure by De 
Mulder et al. [31], and there has been no improvement made 
for the perturbations strategy up to now. 

The most recent improved scheme is proposed by Yoo et 
al. [26]. To address the performance problems, Yoo et al. 
combined white-box AES and standard AES; they used a 
white-box AES only once in the beginning, and then applied 
standard AES to the rest of the scheme. They claimed that 
their scheme has the same performance as the standard AES 
and is robust to withstand white-box attack. This claim, 
however, needs to be criticized. If white-box is only 
implemented in the first round and the subsequent rounds 
remain in standard AES, the scheme will be exposed to 
white-box attacks as the standard one as additions with 
round key information can easily be distinguished. The 
scheme may be secure to withstand black-box attacks but 
may fail to preserve security against software attacks. 

Our proposed white-box implementation scheme directly 
adopts the basic notion presented in Fig. 2.  For security 
purposes, the content key is obfuscated by a composition of 
internal and external keys which are stored separately. The 
external keys are essential --- without these keys, the content 
decryption key is hard to reconstruct. To keep the external 
keys secret, they are stored in an inaccessible area of a smart 
card's memory. With this mechanism, our proposed scheme 
requires a simpler computation than many white-box 
implementations proposed in the literature. The security of 
our scheme relies on the physical security of smart cards. To 
preserve users' privacy, the smart card can be purchased 
anonymously. This mechanism makes the scheme achieve 
content provider's security and users' privacy simultaneously. 

IV.  CONCLUSION 

DRM is mainly employed by the content provider to 
combat piracy. Not surprisingly, the DRM systems put more 
attention to the content provider’s security and often neglect 
the users’ privacy. However, the users’ privacy needs to be 
fairly protected as the users’ satisfaction is important in a 
content distribution system. Additionally, the significant 
threat to both security and privacy may emerge in typical 
DRM model. 

White-box cryptography (WBC) is suggested to be the 
most effective protection technique in the DRM applications. 
Despite having a transparent methodology, WBC integrates 
the cipher in such a way that does not reveal the decryption 
key. This mechanism is appropriate to protect software 

466



implementation, even when the software is executed in an 
insecure environment. WBC is potential to enhance security 
for the content provider.  

Our approach integrates white-box implementation and 
smart card application to advantage DRM. The smart card 
handles the external decoding which is a part of the white-
box implementation and essential to hide the secret 
decryption key. The communication protocol between the 
smart card and the user’s device enhances the content 
provider’s security. Moreover, the use of smart card in the 
content distribution system also allows the users to consume 
the content anonymously and, thus, their privacy is 
protected. Our advantaged DRM model provides a balanced 
protection for the content provider and users.   
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