209 research outputs found

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Real-time scheduling for 3D rendering on automotive embedded systems

    Get PDF
    Im Automobilbereich erfreut sich der Einsatz von 3D-Grafik zunehmender Beliebtheit. Beispielsweise zeigte Mercedes-Benz im F125 Autoprototypen, wie analoge Zeiger der Kombiinstrumente durch digitale Displays ersetzt werden. Der Trend, 3D-Anwendungen zu nutzen, geht in zwei Richtungen: Zum einen hin zu kritischeren Anwendungen wie der Geschwindigkeitsanzeige, zum anderen hin zu Drittanbieteranwendungen, die beispielsweise über einen Appstore bezogen werden. Um Isolationsanforderungen zu erfüllen, werden traditionell neue Funktionen im Auto häufig mittels neuer Steuergeräte umgesetzt. Um jedoch Kosten, Energieverbrauch und Bauraum im Fahrzeug zu sparen, sollten alle 3D-Anwendungen eine einzige Hardwareplattform und somit auch eine einzige GPU als gemeinsame Ressource nutzen. Für zeitsensitive Anwendungen wie die Geschwindigkeitsanzeige ergibt sich hierbei die Herausforderung, Rendering in Echtzeit zu gewährleisten. Hierfür sind wirksame Konzepte für das Echtzeitscheduling der GPU erforderlich, welche Sicherheit und Isolation beim 3D-Rendering garantieren können. Da aktuelle GPUs nicht unterbrechbar sind, muss ein Deadline-basierter Scheduler die Ausführungszeit der GPU-Befehle im Voraus kennen. Bestehende Schedulingkonzepte unterstützen leider keine dynamischen Tasks, keine periodischen Echtzeitdeadlines, oder setzen unterbrechbare Ausführung voraus. In dieser Arbeit werden die für HMI-Rendering im Automobilbereich relevanten Anforderungen beschrieben. Basierend auf diesen Anforderungen wird das Konzept des virtualisierten automobilen Grafiksystems (VAGS) vorgestellt, welches einen Hypervisor nutzt um die Isolation zwischen verschiedenen VMs, insbesondere für die Headunit und die Kombiinstrumente, sicherzustellen. Des Weiteren wird ein neuartiges Framework vorgestellt, welches die Ausführungszeit von GPU-Befehlen misst und basierend auf OpenGL ES 2.0 vorhersagt. Hierbei werden für die relevanten GPU-Befehle wie Draw und SwapBuffers Vorhersagemodelle vorgestellt. Für Draw-Befehle werden zwei Heuristiken vorgeschlagen, welche die Anzahl der Fragmente abschätzen, zwei Konzepte, welche die Ausführungszeit der Grafikshader vorhersagen, sowie ein optionaler Echtzeit-Korrekturmechanismus. Die Anzahl der Fragmente wird entweder mittels einer Bounding-Box des gerenderten Modells, auf welche die Projektion des Vertexshaders angewendet wird, abgeschätzt, oder durch eine Teilmenge der gerenderten Dreiecke, welche genutzt wird um die Durchschnittsgröße eines Dreiecks zu ermitteln. Um die Laufzeit eines Shaders abzuschätzen, wird er entweder in einer Kalibrierungsumgebung in einem separaten OpenGL-Kontext ausgeführt, oder es wird ein offline trainiertes MARS-Modell verwendet. Die Implementierung und die Auswertungen des Frameworks zeigen dessen Machbarkeit und dass eine gute Vorhersagegenauigkeit erreicht werden kann. Beim Rendern einer Szene des bekannten Benchmarkprogramms Glmark2 wurden beispielsweise weniger 0,4 % der Messproben um mehr als 100 μs unterschätzt und weniger als 0,2 % der Messproben um mehr als 100 μs überschätzt. Unsere Implementierung verursacht bei langer Ausführung eine zusätzliche CPU-Rechenzeit von üblicherweise weniger als 25 %, bei manchen Szenarien ist diese sogar vernachlässigbar. Der Programmstart verlangsamt sich beim effizientesten Verfahren hierbei lediglich um etwa 30 ms. Auf lange Sicht liegt er typischerweise unter 25 % und ist für manche Szenarien sogar vernachlässigbar. Darüber hinaus wird ein echtzeitfähiges 3D-GPU-Schedulingframework vorgestellt, welches kritischen Anwendungen Garantien gibt und trotzdem die verbleibenden GPU-Ressourcen den weniger kritischen Anwendungen zur Verfügung stellt, wodurch eine hohe GPU-Auslastung erreicht wird. Da aktuelle GPUs nicht unterbrechbar sind, werden die vorgestellten Konzepte zur Vorhersage der Ausführungszeit verwendet um prioritätsbasiert Scheduling-Entscheidungen zu treffen. Die Implementierung basiert auf einem automobilkonformen eingebetteten System, auf welchem Linux ausgeführt wird. Die darauf ausgeführten Auswertungen zeigen die Machbarkeit und Wirksamkeit der vorgestellten Konzepte. Der GPU-Scheduler erfüllt die jeweiligen Echtzeitvorgaben für eine variable Anzahl von Anwendungen, welche unterschiedliche GPU-Befehlsfolgen erzeugen. Hierbei wird bei einem anspruchsvollen Szenario mit 17 Anwendungen eine hohe GPU-Auslastung von 99 % erzielt und 99,9 % der Deadlines der höchstprioren Anwendung erfüllt. Des Weiteren wird das Scheduling in Echtzeit mit weniger als 9 μs Latenz effizient ausgeführt

    A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis

    Get PDF
    The concept of Industry 5.0 (I5.0) promotes the human-centricity as the core value behind the evolution of smart manufacturing systems (SMSs), based on a novel use of digital technologies in the design and management of modern industrial systems to take up the socio-technical challenges. In this context, the paper proposes a Smart Manufacturing Systems Design (SMSD) framework enabling I5.0, based on the human-automation symbiosis. Thanks to an 'Augmented Digital Twin' (ADT) able to integrate and digitize all the entities of the factory (i.e. machines, robots, environments, interfaces, people), AI-driven applications can be built to support the user domain and make people and machines co-evolve thanks to a systematic data sharing between physical and digital assets (e.g. digital twin, virtual mock-ups, human-machine interfaces), optimizing factory productivity and workers wellbeing. In this framework, machines and humans can both generate knowledge and learn from each other, generating a virtuous co-evolution, supporting the understanding of the human-machine interplay and the creation of an effective collaboration between people and SMSs. The framework was conceived and validated involving four industrial companies, belonging to diverse sectors, interested in overcoming the current limits of I4.0 lines by including the human factors for future SMS management

    Integration of Cutting-Edge Interoperability Approaches in Cyber-Physical Production Systems and Industry 4.0

    Get PDF
    Interoperability in smart manufacturing refers to how interconnected cyber-physical components exchange information and interact. This is still an exploratory topic, and despite the increasing number of applications, many challenges remain open. This chapter presents an integrative framework to understand common practices, concepts, and technologies used in trending research to achieve interoperability in production systems. The chapter starts with the question of what interoperability is and provides an alternative answer based on influential works in the field, followed by the presentation of important reference mod4els and their relation to smart manufacturing. It continues by discussing different types of interoperability, data formats, and common ontologies necessary for the integration of heterogeneous systems and the contribution of emerging technologies in achieving interoperability. This chapter ends with a discussion of a recent use case and final remarks

    The Synergic Relationship Between Industry 4.0 and Lean Management: Best Practices from the Literature

    Get PDF
    Industry 4.0 promises to make manufacturing processes more efficient using modern technologies like cyber-physical systems, internet of things, cloud computing and big data analytics. Lean Management (LM) is one of the most widely applied business strategies in recent decades. Thus, implementing Industry 4.0 mostly means integrating technologies in companies that already operate according to LM. However, due to the novelty of the topic, research on how LM and Industry 4.0 can be integrated is still under development. This paper explores the synergic relationship between these two domains by identifying six examples of real cases that address LM-Industry 4.0 integration in the extant literature. The goal is to make explicit the best practices that are being implemented by six distinct industrial sectors such as automotive, paper, furniture, healthcare, apparel, and machine manufacturing.Fundação para a Ciência e Tecnologia (FCT) and C-MAST (Centre for Mechanical and Aerospace Science and Technologies), under project UIDB/00151/2020info:eu-repo/semantics/publishedVersio

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed

    Resource Requirements of an Edge-based Digital Twin Service: An Experimental Study 

    Get PDF
    Digital Twin (DT) is a pivotal application under the industrial digital transformation envisaged by the fourth industrial revolution (Industry 4.0). DT defines intelligent and real-time faithful reflections of physical entities such as industrial robots, thus allowing their remote control. Relying on the latest advances in Information and Communication Technologies (ICT), namely Network Function Virtualization (NFV) and Edge-computing, DT can be deployed as an on-demand service in the factories close proximity and offered leveraging radio access technologies. However, with the purpose of achieving the well-known scalability, flexibility, availability and performance guarantees benefits foreseen by the latest ICT, it is steadily required to experimentally profile and assess DT as a Service (DTaaS) solutions. Moreover, the dependencies between the resources claimed by the service and the relative demand and work loads require to be investigated. In this work, an Edge-based Digital Twin solution for remote control of robotic arms is deployed in an experimental testbed where, in compliance with the NFV paradigm, the service has been segmented in virtual network functions. Our research has primarily the objective to evaluate the entanglement among overall service performance and VNFs resource requirements, and the number of robots consuming the service varies. Experimental profiles show the most critical DT features to be the inverse kinematics and trajectory computations. Moreover, the same analysis has been carried out as a function of the industrial processes, namely based on the commands imposed on the robots, and particularly of their abstraction-level, resulting in a novel trade-off between computing and time resources requirements and trajectory guarantees. The derived results provide crucial insights for the design of network service scaling and resource orchestration frameworks dealing with DTaaS applications. Finally, we empirically prove LTE shortage to accommodate the minimum DT latency requirements

    A Novel Method for Adaptive Control of Manufacturing Equipment in Cloud Environments

    Get PDF
    The ability to adaptively control manufacturing equipment, both in local and distributed environments, is becoming increasingly more important for many manufacturing companies. One important reason for this is that manufacturing companies are facing increasing levels of changes, variations and uncertainty, caused by both internal and external factors, which can negatively impact their performance. Frequently changing consumer requirements and market demands usually lead to variations in manufacturing quantities, product design and shorter product life-cycles. Variations in manufacturing capability and functionality, such as equipment breakdowns, missing/worn/broken tools and delays, also contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Events which are difficult for traditional planning and control systems to satisfactorily manage. For manufacturing scenarios such as these, the use of real-time manufacturing information and intelligence is necessary to enable manufacturing activities to be performed according to actual manufacturing conditions and requirements, and not according to a pre-determined process plan. Therefore, there is a need for an event-driven control approach to facilitate adaptive decision-making and dynamic control capabilities. Another reason driving the move for adaptive control of manufacturing equipment is the trend of increasing globalization, which forces manufacturing industry to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. One of the crucial objectives for Cloud Manufacturing is the coordinated planning, control and execution of discrete manufacturing operations in collaborative and networked environments. Therefore, there is also a need that such an event-driven control approach supports the control of distributed manufacturing equipment. The aim of this research study is to define and verify a novel and comprehensive method for adaptive control of manufacturing equipment in cloud environments. The presented research follows the Design Science Research methodology. From a review of research literature, problems regarding adaptive manufacturing equipment control have been identified. A control approach, building on a structure of event-driven Manufacturing Feature Function Blocks, supported by an Information Framework, has been formulated. The Function Block structure is constructed to generate real-time control instructions, triggered by events from the manufacturing environment. The Information Framework uses the concept of Ontologies and The Semantic Web to enable description and matching of manufacturing resource capabilities and manufacturing task requests in distributed environments, e.g. within Cloud Manufacturing. The suggested control approach has been designed and instantiated, implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. In these systems, event-driven Assembly Feature Function Blocks for adaptive control of robotic assembly tasks have been used to demonstrate the applicability of the control approach. The utility and performance of these prototype systems have been tested, verified and evaluated for different assembly scenarios. The proposed control approach has many promising characteristics for use within both local and distributed environments, such as cloud environments. The biggest advantage compared to traditional control is that the required control is created at run-time according to actual manufacturing conditions. The biggest obstacle for being applicable to its full extent is manufacturing equipment controlled by proprietary control systems, with native control languages. To take the full advantage of the IEC Function Block control approach, controllers which can interface, interpret and execute these Function Blocks directly, are necessary

    Sustainable engineering challenges towards Industry 4.0: A comprehensive review

    Get PDF
    This article reviews Industry 4.0, its emerging phase, implementation, challenges, benefits, etc. It combines various fields where it has any influence and leaves some changes and where it requires some adaptation. Papers from the last 4 years are taken and analyzed, what is written about this topic in various countries with different backgrounds and economic development. Industry 4.0 affects the production environment by introducing new technologies which require a better-educated workforce so it affects education and requires some changes in curricula and ways of teaching. It brings new challenges and asks for a new approach from management to be able to handle fast and big changes in the business environment and to implement such innovation in production effectively
    corecore