
A Framework for Industry 4.0

JOSÉ BRUNO MARTINS DA SILVA
Julho de 2017

José Bruno Martins da Silva

A Framework for Industry 4.0

Dissertation in Computer Engineering,
Area of Specialization in Software Engineering

Advisor: Professor Doutor Luís Lino Ferreira

Co-advisors: Doutor Michele Albano & Cláudio Maia

Porto
June 2017

ii

Abstract

The potential of the Industry 4.0 will allow the national industry to develop all kinds of

procedures, especially in terms of competitive differentiation. The prospects and motivations

behind Industry 4.0 are related to the management that is essentially geared towards industrial

internet, to the integrated analysis and use of data, to the digitalization of products and services,

to new disruptive business models and to the cooperation within the value chain. It is through

the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is

possible to carry out a continuous monitoring of industrial machines, as well as to apply

advanced techniques for predictive and proactive maintenance.

The present work is based on the MANTIS project, aiming to construct a specific

platform for the proactive maintenance of industrial machines, targeting particularly the case

of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs,

increase the efficiency of the process and consequently the profit. Essentially, the MANTIS

project is a multinational research project, where the CISTER Research Unit plays a key role,

particularly in providing the communications infrastructure for one MANTIS Pilot.

The methodology is based on a follow-up study, which is jointly carried with the client,

as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that

are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation

of the architecture specification; 3) implementation/development; 4) tests and validation; 5)

support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project

analysis and corrective measures to be applied in future projects.

The expected results of the development of such project are related to the integration of

the industrial maintenance process, to the continuous monitoring of the machines and to the

application of advanced techniques of preventive and proactive maintenance of industrial

machines, particularly based on techniques and good practices of the Software Engineering area

and on the integration of Cyber-Physical Systems.

Keywords: Cyber-Physical Systems; Industry 4.0; MANTIS; Solution.

iii

Resumo

O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades

para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação

competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com

uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e

utilização de dados, com a digitalização de produtos e de serviços, com novos modelos

disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É

através da integração dos sistemas ciber-físicos no processo de manutenção que é possível

proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas

avançadas para a manutenção preditiva e pró-ativa das mesmas.

O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção

de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso

em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente

trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir

todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da

produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação

multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental,

particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS.

A metodologia adotada é baseada num estudo de acompanhamento, realizado em

conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases

que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise

detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3)

implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7)

manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar

em projetos futuros.

Os resultados esperados com o desenvolvimento do projeto estão relacionados com a

integração do processo de manutenção industrial, a monitorização contínua das máquinas e a

aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas,

especialmente com base em técnicas e boas práticas da área de Engenharia de Software.

Palavras-chave: Sistemas Ciber-físicos; Indústria 4.0; MANTIS; Solução.

iv

Acknowledgements

The present work is the culmination of a cycle of 5 years of study, therefore consisting

in the development of my academic and personal life. The people who surrounded me for the

past few years, and in a daily basis, and that helped me throughout this entire cycle undoubtedly

deserve my gratitude.

First of all, I would like to thank my teacher and counselor, Prof. Dr. Luís Lino Ferreira,

who was extremely comprehensive and tolerant throughout the entire time when it was

necessary to discuss the solution, or even when the stakeholders decided to change some of the

requirements, which implied some changes in the present work, since he provided all the

support and motivation I needed to fulfil this goal of mine.

There are truly no words to describe how much Prof. Dr. Luís Lino Ferreira, Prof. Dr.

Michele Albano and Eng. Cláudio Maia were important during the development of this thesis.

Hence, I would like to thank you all for helping me and, above all, for being true friends. I will

never forget you.

To the educational institution, especially to the Director of the course, Prof. Dr. Nuno

Silva, a big thank you for the opportunity and for your understanding, as well as for providing

all the necessary resources to the fulfillment of this degree.

I am also grateful to my partner, Salete Coelho, and to my son, Daniel Silva, who I love

the most, for always being there for me. For all your support and motivation, which I needed to

achieve this important goal, thank you so much my loves.

Finally, thank you to all those people that one way or another contributed to the

conclusion of this dissertation. A sincere thank you to you all.

v

Index
1	 Introduction	..	12	

1.1								Context	..	12	
1.2								The	Problem	..	13	
1.3	 Objectives	...	19	
1.4	 Solution	Overview	..	21	

1.4.1	 Machine	...	22	
1.4.2	 Edge	Local	..	23	
1.4.3	 Edge	Server	..	24	
1.4.4	 Data	Analysis	...	24	
1.4.5	 Human	Machine	Interface	...	25	

1.5	 Development	Process	and	Work	Methodology	..	26	
1.6	 Document	Structure	..	28	

2	 Industry	4.0	..	30	
2.1	 Introduction	..	30	
2.2	 Background	...	32	
2.3	 Industrial	Concerns	...	33	
2.4	 Value	offer	..	34	
2.5	 Architectures	..	35	

2.5.1	 Reference	Architecture	Model	Industry	4.0	(RAMI4.0)	...	35	
2.5.2	 Industrial	internet	reference	architecture	(IIRA)	...	36	
2.5.3	 Service-Oriented	Architecture	(Arrowhead	Framework)	..	37	

2.6	 Components	...	40	
2.7	 Design	Principles	...	44	
2.8	 Development	Process	...	49	
2.9	 Conclusions	...	51	

3	 Evaluation	of	Message	Oriented	Middleware	solutions	52	
3.1	 Advanced	Message	Queueing	Protocol	(AMQP)	..	52	
3.2	 Message	Queuing	Telemetry	Transport		(MQTT)	...	53	
3.3	 Simple	Text	Oriented	Messaging	Protocol	(STOMP)	..	53	
3.4	 Java	Message	Service	(JMS)	...	54	
3.5	 Extensible	Messaging	Presence	Protocol	(XMPP)	..	54	
3.6	 Data	Distribution	Service	(DDS)	...	55	
3.7	 Open	Platform	Communications	Unified	Architecture	(OPC-UA)	publish-subscribe	55	
3.8	 Conclusions	...	58	

4	 Value	analysis	...	59	
4.1	 Stakeholders	concerns	..	59	
4.2	 Business	Process	and	Innovation	...	60	
4.3	 Value	offer	..	62	
4.4	 Value	of	the	Current	Market	...	64	
4.5	 Business	Model	Canvas	...	65	
4.6	 Competition	analysis	...	68	
4.7	 Conclusions	...	71	

5	 Analysis	..	72	
5.1	 Proposed	architecture	...	72	
	 Requirements	Engineering	..	74	
5.2	...	74	

5.2.1	 System	actors	..	74	

vi

5.2.2	 Use	Cases	...	75	
5.3	 Business	Modeling	..	79	

5.3.1	 Domain	Model	...	79	
5.3.2	 Event	model	&	Semantic	model	..	82	
5.3.3	 Database	..	84	

5.4	 Design	and	architectural	patterns	...	86	
5.5	 Conclusions	...	87	

6	 Design	&	Implementation	...	88	
6.1	 Machine	Subsystem	..	88	

6.1.1	 OPC-UA-Server	Component	...	89	
6.1.2	 CNC	Bender	Component	..	93	
6.1.3	 Sensors	Component	...	94	

6.2	 Mantis-PC	Subsystem	..	98	
6.2.1	 OPC-UA	Server	Component	...	99	
6.2.2	 BLE	Server	Component	..	99	
6.2.3	..	99	

6.3	 Edge	Local	Subsystem	...	102	
6.3.1	 Node-RED	Component	...	103	
6.3.2	 Middleware	Client	Component	...	106	
6.3.3	 OPC-UA	Client	component	..	107	

6.4	 Data	Analysis	Subsystem	...	108	
6.4.1	 Middleware	Client	Component	...	108	

6.5	 Edge	Server	Subsystem	...	111	
6.5.1	 Middleware	Component	..	112	
6.5.2	 Manager	Component	...	117	
6.5.3	 RabbitMQ-Core	Module	..	120	
6.5.4	 Middleware	Client	Component	...	121	
6.5.5	 History	Component	...	121	
6.5.6	 Database	Component	..	126	
6.5.7	 Email	component	...	127	

6.6	 Human	Machine	Subsystem	..	127	
6.6.1	 API	Component	..	128	
6.6.2	 Middleware-Web	Client	Component	...	129	

6.7	 Deployment	..	132	
6.8	 Conclusions	...	133	

7	 Tests	...	134	
7.1.1	 Unit	..	134	
7.1.2	 Integration	...	137	
7.1.3	 Validation	...	139	
7.1.4	 System	...	146	

7.2	 Conclusions	...	151	

8	 Conclusions	...	152	
8.1	 Accomplished	objectives	...	152	
8.2									Future	work	..	155	

9	 Bibliography	...	157	

10	 Appendixes	...	163	
10.1	 Appendix-A-	Acceptance	Tests	
11.1	 Appendix-B-	Machine	Component	(Preliminary	Solution)		
11.2						Appendix-C-	UML	class	diagram	for		History	Component	

vii

11.3	 Appendix-D-	UML	class	diagram	for	RabbitMQ-Core	
11.4	 Appendix-E-	UML	Class	Diagram	for	OPC-UA	Server	
11.5	 Appendix-F-	UML	class	diagram	for	full	Middleware	Client	(Producer/Consumer)		
11.6	 Appendix-G-	UML	Class	Diagram	for	Manager	Component	
11.7	 Appendix-H-	UML	class	diagram	for		API	Component	
11.8	 Appendix-I-	Deployment	setup	and	information	
11.9						Appendix-J-	Interoperable	and	Interconnected	CPS-populated	Systems	for	Proactive	
Maintenance	
11.10				Appendix-L-	Application	of	Sensors	for	Proactive	Maintenance	in	the	Real	World	
11.11				Appendix-N-	FlexHousing:	Flexoffer	concept	for	the	energy	manager	
11.12				Appendix-O-	Maintenance	Supported	by	Cyber-Physical	Systems	and	Cloud	Technology	

viii

Figures Index
Figure 1 – Frontal view of the machine ... 15	
Figure 2 – Bending process .. 16	
Figure 3 – CNC operator interface .. 17	
Figure 4 – The MANTIS projects concept .. 18	
Figure 7 - Innovation units of Industry 4.0 .. 30	
Figure 8 - Reference Architecture Model - Industry 4.0 35	
Figure 9 - An Arrowhead local cloud comprising an orchestrated service instance 39	
Figure 10 - Layers of a Cyber-Physical System. .. 41	
Figure 11 - Canvas business model elaborated for the current project 51	
Figure 12 - Canvas business model elaborated for the current project 66	
Figure 13 - Analytic Hierarchy Process (AHP) elaborated for the current project 68	
Figure 14 - MANTIS (ADIRA Pilot): Context Diagram for the proposed solution 72	
Figure 15 – Subsystem and component interaction for the proposed architecture 74	
Figure 17 - Domain Model for the proposed solution ... 80	
Figure 18 - Machine Event Model ... 83	
Figure 20 – Entity-Relationship model of the proposed solution ... 86	
Figure 23 - User Interface of OPC-UA server .. 91	
Figure 25 - OPC-UA server Component - UA_SERVER Start ... 93	
Figure 27 - Context Diagram for the Sensors(Arduino 101) proposed solution 95	
Figure 29 - Sensor Component - Partial Node Code .. 97	
Figure 31 - Mantis-PC Subsystem .. 99	
Figure 34 - HMI Subsystem - Sensors Soft Real-time visualization 102	
Figure 35 - Edge Local Subsystem ... 103	
Figure 38 - Node-Red component – User Interface .. 106	
Figure 39 - Data Analysis Subsystem ... 108	
Figure 42 - HMI Subsystem – Data Analysis visualization .. 111	
Figure 44 – Context Diagram of Middleware Component ... 113	
Figure 45 - Middleware Component Queues Structure .. 114	
Figure 49 - Manager Component – RabbitMQ User Interface - Based queues 120	
Figure 50 - UML Sequence Diagram - Initialize Cloud System .. 123	
Figure 51 - UML Sequence Diagram - Create Machine ... 124	
Figure 52 - History Component – HistoryService Partial Code ... 125	
Figure 53 - History Component – HMI history visualization ... 126	
Figure 54 - Email component – User email notified example .. 127	
Figure 57 - HMI Subsystem – Machine data Soft Real-time visualization 132	
Figure 59 - Testing strategy (Source: Pressman, 2011). ... 134	
Figure 60 – Middleware Unit Tests Partial Code ... 137	
Figure 61 - Middleware Integration Tests Partial Code .. 138	
Figure 62 - Z-Test - Two-tail interval ... 140	
Figure 63 – Histogram of Edge Local Subsystem - Data packets delay frequency 145	
Figure 64 - W3AF OWASP TOP 10 - Audit .. 148	
Figure 65 - Apache Jmeter - Graph Report 150 request per second 150	
Figure 66 - Apache Jmeter - Tests Graph Report 300 request per second 150	
Figure 67 - Graphical User Interface – Main Page ... 168	
Figure 68 - UML Sequence Diagram - Machine Preliminary Solution 169

ix

Tables Index
Table 1: Industry 4.0 components 40	
Table 2: Design principles of each Industry 4.0 45	
Table 4 - Representation of the benefits and sacrifices of the proposed value 63	
Table 5 - AHP – Criteria Pairwise comparison .. 69	
Table 6 - Criteria solution ... 69	
Table 7 - Criteria with alternatives pairwise comparison ... 70	
Table 8 - AHP -Final Solution .. 71	
Table 9 - Types of Databases .. 85	
Table 10 - REST Resources of the Manager Component ... 117	
Table 11 - Z Test: Two samples for Mean .. 141	
Table 12 - Descriptive analysis of the Database storage .. 141	
Table 13 - Descriptive analysis of the Middleware delay in seconds (s) 143	
Table 14 - Z Test: One samples for Mean .. 144	
Table 15 - Manager Component performance and stress tests ... 149	
Table 16 – Start Machine Internal Sensors Data - Acceptance Tests 163	
Table 17 – Start Machine External Sensors Data - Acceptance Tests 163	
Table 18 – HMI Local - Acceptance Tests ... 164	
Table 19 – HMI Web - Acceptance Tests ... 165	
Table 20 - OPC-UA server Component Setup and Information ... 176	
Table 21 - CNC Bender Component Setup and Information .. 176	
Table 22 - Sensor Component Setup and Information .. 176	
Table 23 - Mantis-PC Subsystem Setup and Information .. 177	
Table 24 - BLE server Component Setup and Information .. 177	
Table 25 - Edge Local Subsystem Setup and Information ... 177	
Table 26 - Node-Red component Setup and Information ... 177	
Table 27 - Middleware Client component Setup and Information ... 177	
Table 28 - Edge Server Subsystem Setup and Information .. 178	
Table 29 - Manager and History and components setup and Information 178	
Table 30 - API Component Setup and Information .. 178	
Table 31 - API Component Setup and Information .. 178	

Acronyms and Symbols

AHP Analytic Hierarchy Process
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
API-Key API-Key a code passed in by computer programs calling an

application programming interface (API) to identify the
calling program, its developer, or its user to the Web site.

Azure Microsoft Azure: Cloud Computing Platform & Services
BLE Bluetooth Low Energy
CAGR Compound Annual Growth Rate
CI Consistency Index
CNC Computer Numerical Control
CPS Cyber-Physical Systems
CR CR Consistency Ratio
DDS Data Distribution Service
DTO Data Transfer Object
ESB Enterprise Service Bus
FTP File Transfer Protocol
GATT General Attribute Profile
HighCharts Interactive JavaScript charts for your webpage
HMI Human Machine Interface
HTTPS Hypertext Transfer Protocol Secure
IBM International Business Machines
ICT Information and communication technology
IIoT Industrial Internet of Things
IIRA Industrial internet reference architecture
IIS Internet Information Services
IMDSS Incident Management Decision Support System
IMU Inertial measurement unit
IoS Internet of Services
IoT Internet of Things
IoT-A Architectural Reference Model
JMS Java Message Service
JSON JavaScript Object Notation
M2M Machine-to-Machine
Mimosa An Operations and Maintenance Information Open System

Alliance
MOM Message Oriented Middleware
MQTT Message Queuing Telemetry Transport
MVC Model–view–controller
NCD New Concept Development
Npm NodeJS package manager
OPC-UA Open Platform Communications Unified Architecture is a

machine to machine communication protocol

xi

PLC Programmable logic controller
PMM Proactive Monitoring and Maintenance
QoS Quality of Service
RabbitMQ Rabbit Message Queueing
RAMI Reference Architecture Model Industry 4.0
REST Representational State Transfer
RFID Radio-frequency identification (RFID) uses electromagnetic

fields to automatically identify and track tags attached to
objects. The tags contain electronically stored information.
Passive tags collect energy from a nearby RFID reader's
interrogating radio waves.

RI Random Consistency Index
SMTP Simple Mail Transfer Protocol
SOA Service-Oriented Architecture
SQL SQL is a standard language for storing, manipulating and

retrieving data in databases.
SSL Secure Sockets Layer
STOMP Streaming Text Oriented Messaging Protocol
TCP/IP Transmission Control Protocol/Internet Protocol.
TDD Test-driven development
TTL Time to live or hop limit is a mechanism that limits the

lifespan or lifetime of data in a computer or network.
UML Unified Modelling Language
UUID Universally unique identifiers
VPN Virtual private network
XMPP Extensible Message and Presence Protocol
β Bandwidth

12

1 Introduction

This chapter introduces the project context, the proposed objectives, the solution

overview within the project, the concern of the stakeholders, the expected results of the

development process and the methodology of work as well as the general structure of this

document.

1.1 Context

Industry 4.0 is one of the fastest growing research topics for both academics and

practitioners (Hermann, Pentek & Otto, 2015). It was first mentioned in 2011, consisting in a

strategic plan developed by the German federal government to transform the manufacturing

industry (Koch et al., cit. in Åkeson, 2016; Nathan, 2015). Nonetheless, there is not a

consensual definition of Industry 4.0. According to (Hermann et al., 2015), this is a major

problem, since the subject has received more and more deviant definitions each day.

Nonetheless, some organizations achieved the role of key promoters, thus strengthening the

correctness of their definition. “Plattform Industrie 4.0” (2014, cit. in Åkeson, 2016, p. 1)

defines Industry 4.0 with the following words: “Industry 4.0 is best understood as a new level

of organizational control over the entire value chain of the life cycle of products, it is geared

towards increasingly individualized customer requirements. The basis of the fourth industrial

revolution is the availability of all relevant information in real-time by connecting all instances

involved in the value chain.”

Given the fact that the definition is quite blurred, (Hermann et al., 2015) established the

key aspects and principles for the Industry 4.0 concept. Regarding the key aspects, the authors

found that there are four aspects to consider: Cyber-Physical Systems (CPS), Internet of Things

(IoT), Smart factories and Internet of Services (IoS). On the other hand, and according to (Koch

et al.,2015), the key perspectives and motivations for Industry 4.0 are:

1) The industrial internet will change the entire business and it is very important to have

dedicated management;

2) Integrated analysis and use of data are the main capabilities of Industry 4.0;

3) Digitalization of products and services (Smart products);

4) New disruptive business models;

13

5) Horizontal cooperation throughout the entire value chain.

All key aspects of Industry 4.0 have been strengthened by Mittermair (2015) and by

Nathan (2015), since both authors showed that its foundation is based on data and it is made

possible through CPS. Therefore, it is important to establish the scope of such term, which will

be now addressed.

The evolution of Cyber-physical Systems has modified several areas, from deeply

embedded systems to smart cities. Industrial systems can also benefit from the advances that

have been developed in the field of CPS in multiple areas. One area where these kind of systems

are important is on the maintenance of industrial machines. The access to large volumes of data

can be instrumental in order to forecast machines’ malfunctions, to schedule maintenance

operations (Mobley, 2002; Faisal & Mahmoud, 2003) and to determine the root cause of

failures. Nonetheless, the collection, transport and management of those large volumes of data

poses several challenges, which span from technical to organizational, the latter being

frequently related with the integration of existing industrial processes. This thesis deals with

the problem of providing an integrated solution, following the Industry 4.0 guidelines, to tackle

the problem of maintenance of industrial machines.

1.2 The Problem

The potential developed by Industry 4.0 will allow the national industry to be able to

develop new procedures, specifically at the level of the competitive differentiation, by

introducing the ability to satisfy specific requirements of customers in terms of design,

configuration, planning, manufacture and maintenance. In turn, this flexibility allows a dynamic

configuration of different aspects of the value chain, combining, simultaneously, an

optimization of the decision model to cope with the real needs of the market (Correia, 2014).

Both the reliability and the safety of industrial machines depend on their timely

maintenance. This thesis focus on providing existing industrial machines with capabilities for

extended maintenance, by acquiring detailed information about the machine operation and

storing that information locally or on the cloud. The collected information can be used to detect

and predict machine failures. Based on this knowledge it will be possible to correctly schedule

maintenance operations, detect failures when they occur and predict its occurrence supported

by detecting deviations on the machine behavior.

The integration of Cyber-physical Systems within the maintenance process, actually

enables the continuous monitoring of machines, as well as the application of advanced

14

techniques for the predictive1 and proactive2 maintenance of machines. All building blocks for

such revolution (e.g.: embedded sensors, efficient preprocessing capabilities, ubiquitous

connection to the internet, cloud-based analysis of the data using prediction and proactive

algorithms) are in place, despite having to cope with the hurdle of their application in real

scenarios, which require the integration with new and existing machines and with the existing

maintenance process. It is very important to note that industrial machines usually have a

lifecycle of more than 20 years, consequently it is of paramount importance for such a system

to be sufficiently flexible to be able to be used in machines with very advanced controllers and

old machine with minimal capabilities.

This thesis is also structured upon the Cyber-Physical System based Proactive

Collaborative Maintenance (MANTIS) European project which consists in an international

initiative that aims to build a platform for proactive maintenance of industrial machines

(Jantunen et al., 2016). In this European project, where the CISTER Research Unit (the

student’s hosting institution), plays a key role on the provision of the communication

infrastructure and data storage for the MANTIS project. The main goal of the MANTIS project

is the reduction of the maintenance costs by adopting novel monitoring techniques.

However, the maintenance requires the detection of some faults, and as early as possible,

in order to avoid failures, to predict failures, to facilitate the scheduling of the parts’

replacement and to provide tools that actually ease the diagnosis of such problems. This

particular approach reduces machine down-time, eliminates excess spare-parts’ stocks,

improves the product’s quality, increases operator safety and lowers the overall cost of

maintenance, as discussed by some authors, e.g. by (Holmberg et al., 2010). In MANTIS,

several machine learning algorithms are used, aiming to generate the prediction and detection

models. Such algorithms are parametrized according to the data that is obtained from the

sensors, which may be: i) sensors that are already in use for the control of a manufacturing

process; ii) sensors that are specifically designed and deployed to maintenance purposes, or

even iii) sensors that are temporarily installed on the machine.

1 Predictive maintenance techniques are designed to help determine the condition of in-service
equipment in order to predict when maintenance should be performed. This approach
promises cost savings over routine or time-based preventive maintenance, because tasks are
performed only when warranted.
2 Proactive maintenance is the maintenance philosophy that supplants “failure reactive” with
“failure proactive” by activities that avoid the underlying conditions that lead to machine
faults and degradation.

15

This thesis consists of two main results:

1) A generic architecture for proactive maintenance;

2) An industrial pilot, which validates and demonstrates the usefulness of the architecture.

The implementation will be based on Press Braking machine produced by ADIRA

(Figure 1). Press Braking is the process of deforming a metal sheet (workpiece) along a given

axis by pressing it between clamps (tools) (Figure 2). In order to have a finished part, a metal

sheet will be consecutively bent at several places – e.g. to make a computer box.

Brake forming can bend sheet-metal from 0.6 to 50 mm thick and lengths from 150 mm

to 8 m long. The angle and type of the bend are determined by the shape of the punch and die

and the depth with which a punch penetrates a die. The dies may have "U", "V" or channel

shapes.

A movable ram is attached to the beam and is covered by a shroud. The punch is attached

to the bottom of the ram and the die to the top of bed (covered by the lower shroud). When the

ram descends on the table, a bending force is exerted on the sheet-metal between the punch and

the die. The bending force and bending speed have to be carefully controlled in order for the

material being used to maintain their physical characteristics and insure the required bending

precision. Additionally, the machine structure deforms due to the forces involved and those

deformations have to be compensated in order to guarantee the machine precision. For more

details on the machine operation see (Ferreira et al., 2016).

Figure 1 - Frontal view of the machine

16

The machine maintenance procedures require detecting faults as early as possible to

avoid catastrophic failure, predict failures in order to facilitate the scheduling of the parts

replacement and providing tools that ease the diagnosis of the problems. This approach reduces

machine down-time, eliminates excess spare-parts stock, improves product quality, increases

operator safety and lowers the overall cost of maintenance.

Figure 2 – Bending process (source: http://sheetmetal.me/tooling-terminology/bottom-
bending/)

The machine (Figure 1), contains several different sensors and actuators. As an example

of sensors we can highlight the ram vertical positions sensors (Y1 and Y2) which allow to

determine position of the ram on both extremes of the machine. Machine failure occurs when

the difference between Y1 and Y2 is too high. More than 50 other devices are available on the

machine.

The machine is controlled by a PLC which is responsible for its execution of machine

cycles and a Numerical Controller, which is responsible for the interface between its operator

and the PLC. This interface is supported by a Windows XP based machine, which can be

connected to a network.

Data from the internal machine sensors and actuators is available on the CNC, through

RS485 connection, with the PLC making these values available to other application through

shared memory.

The machine operator interfaces with the machine using the CNCBender application,

from which we show a screenshot in Figure 3, which allows to configure the machine according

to the kind of material to be bend and the tools being used.

17

Figure 3 – CNC operator interface

For maintenance purposes, other sensors can also be added to the machine, which are

not usually available on these machines, due to their low cost/benefit ratio. An oil sensor is one

of those cases (costs between 300€ to 3000€) that can be an interesting addition to this machine,

enabling to determine the quality of the oil (e.g. by detecting water and particles).

Accelerometers, can also be used to monitor the operation of the ram and other mobile

components of the machine, detecting vibrations not compliant with the normal machine

operation.

The solution to the maintenance problem will be based on the MANTIS project

approach.

The overall concept of MANTIS is to provide a proactive maintenance service platform

architecture based on Cyber Physical Systems and on Industry 4.0 building blocks that allows

to estimate future performance, to predict and prevent imminent failures and to schedule

proactive maintenance in different types of equipment. In MANTIS Physical

systems (e.g. industrial machines, industrial processes, vehicles, renewable energy

assets) and the environment they operate in, are monitored continuously by a broad and diverse

range of sensors, resulting in massive amounts of data that characterize the usage history,

18

operational condition, location, movement and other physical properties of those systems.

These systems form part of a larger network of heterogeneous and collaborative systems

connected via robust communication mechanisms – this part will most of the focus of this thesis.

A partial objective of the MANTIS project is to support distributed processing chains

that efficiently transform raw data into knowledge while minimizing the need for

communication bandwidth. Eventually some of these sophisticated functions are performed at

different levels in a collaborative way, ranging from local nodes to locally optimize

performance, bandwidth and maintenance; to cloud-based platforms that integrate information

from diverse systems and execute distributed processing and analytics algorithms for global

decision making. Finally, users of these systems will interact with it through advanced HMI

systems. Figure 4, shows the different components.

Figure 4 – The MANTIS projects concept (Source: http://www.mantis-project.eu/)

The MANTIS project is multimillion European project with 42 partners, an overall

budget of 34 Million Euros and a total of 3900 Persons Month. The main contributions of this

thesis to the project are not only limited to the design, implementation of the communication

infrastructure of the Portuguese pilot and to the integration of new sensors on the machine, but

19

were also a decisive input to the overall MANTIS architecture, defined in deliverable D3.6

(Ferreira et al., 2017), which integrated most of features used in this pilot, since it was the most

advanced solution when the deliverable was written.

1.3 Objectives

The grand vision of the Industrial IoT (IIoT) is nowadays attainable, due to the advances

of the last decade in the areas of the Internet of Things, Big Data, embedded systems and

communications protocols. IIoT systems are actually composed by sensors and actuators that

collect data and that act upon Cyber-physical System. One of the biggest challenges of dealing

with this complex structure of connected components, which can actually be seen as a large

distributed system, is related to the way that all these components must be interconnected

concerning the exchange of information.

A Middleware that acts as an abstraction layer for a transparent data management can

facilitate such integration, more precisely by making data available to advanced processing

algorithms, by coping with the technical constraint that are related to data management in

existing industrial processes, and finally by liberating the programmer from lower-level details.

The resulting framework for a proactive maintenance of industrial machinery can be

used in several industrial monitoring contexts, some of which are analyzed in the present work.

Many of these Industry 4.0 implementations rely on industrial protocols, which are very

reliable protocols, but lack in terms of flexibility and interoperability. IoT applications are also

mostly supported by service oriented protocols. In this thesis, we want to explore solutions built

over protocols that are standard message-based protocols. Thus, we define objective 1 as:

• O1: Study and understand how existing standard message-based protocols for

middleware can cope with the IIoT requirements, with a special emphasis on industry

4.0 design principles (Interoperability, Virtualization, Decentralization, Real-Time

Capability, Service Orientation and Modularity);

One of the main initial problems was to choose an adequate message oriented

middleware that supports the communication infrastructure in an efficient manner. The market

already offers many commercial and open source solution, which have to be compared in

multiple dimensions and among which a choice has to be made. To support such decision, we

can formulate the second objective of this thesis as:

O2: Provide an analysis, supported on the Analytic Hierarchy Process of existing

middlewares;

20

This framework will only be successful in production if supported by an adequate business

model, which points out how the solution being proposed can reach the marker, that constitute

the third objective of this thesis

• O3: Analyze the Business Modelling and propose a solution;

Obviously, the analysis, design and implementation of the overall framework are the

main objective of this thesis and of the work performed on the MANTIS project. This objective

can be further divided into several sub-objectives. We can then formulate the following

objective and its sub-objectives as follows:

• O4: Analyze, design and implement all component and APIs for the framework

subsystems;

o O4.1: collecting machine data from internal sensors and actuators and handle

interconnection;

o O4.2: external maintenance-specific sensors on the machine and its

interconnection;

o O4.3: a component that has the responsibility of collecting data from machines

inside the factory, pre-processing it and sending to the cloud through a

middleware;

o O4.4: a communication middleware, on the cloud, which has the responsibility

of enabling communication and management of data between distributed

components, more specifically the Data Analysis and HMI components;

o O4.5: an interface to connect the HMI with the middleware and other

components;

o O4.6: a component to store and retrieve historical data related with the sensors

and actuators;

o O4.7: interfaces to be used by other MANTIS partners to access the middleware.

To enable the integration of all modules and components needed for the overall

MANTIS project there is also the need to implement some functionalities which allow the HMI

to integrate with the middleware, to maintain and administer the system and to support the

display of graphical data related with the accelerometers (which required a high-performance

HMI).

• O5: Support and implement some of the framework's external modules:

o O5.1: set up real time graphical libraries for HMI;

o O5.2: create library that provides the HMI with direct access to the middleware;

21

o O5.3: configure the main server with FTP, IIS, middleware and services security

(SSL/HTTPS), etc.

From the objectives stated above it is also clear that such a complex distributed system

demands thoroughly tests to all of its features. It is also required to be aware of the performance

of the system under different several loads.

• O6: Provide verification and validation tests of the framework;

The Framework must also be validated in a real scenario, showing its applicability to

different scenarios. In this case it will be applied to the machine displayed in Figure 1, the

GreenBender ADIRA Steel Sheet bending machine.

• O7: Deploy the framework in a real-world scenario at ADIRA company.

For better understanding the flow of this thesis the following section gives a high-level

overview of the solution, which is later described in detail on the following chapters.

1.4 Solution Overview

Based on the objectives defined before, this section provides the reader with an

overview of the adopted solution. This solution is then detailed on later chapters.

Figure 5 depicts a scenario of the ADIRA Pilot. This scenario is composed of a number

of components that can be grouped into 6 subsystems: Machine, MANTI-PC, Edge Local,

Edge Server, Data Analysis and Human Machine Interface (HMI) connected together by a

Communication Middleware, which can be split into a Local part, which usually belongs to the

internal network of a factory and Cloud parts (Edge Server and Data Analysis), which collects

analysis information from multiples machines, located on multiples factories, from multiple

clients.

22

Figure 5 – MANTIS (ADIRA Pilot): Context Diagram for the proposed solution

1.4.1 Machine

Data on the machine are collected by means of sensors that are part of the machine’s

control systems, or from sensors that were added specifically for maintenance purposes. This

subsystem can consist of several modules, each part of a machine’s subsystem. The number and

kind of modules depends on the machine being monitored. Usually, these modules provide

access to four different data sources: the machine CNC, which controls the machine; the PLC-

connected sensors and actuators; the Safety PLC; Maintenance Sensors.

The Machine subsystem is comprised of both pre-existing modules, and ones added

specifically for the maintenance platform itself. The PLC sensors are already part of the

machine, and are used internally to control its operation. These range from buttons and pedals

to advanced electric motor drives, with positioning information. Although used primarily for

control functions, these sensors can also be used to determine anomalous events or states, to

diagnose problems and even to infer the root cause of problems. The CNC, normally, is also

able to perform some diagnosis functions that allow the identification of some failures and the

generation of warnings on the condition of the machine.

23

The PLC works in close cooperation with the CNC, by controlling all automation

functionalities and, at the same time, it is able to send information from its sensors to the CNC.

The Safety PLC handles only safety-related functions for the machine, such as

preventing humans from being too close while the machine is working, detecting critical

conditions, etc. Data from sensors controlled by the Safety PLC are mainly used to distinguish

between component failures and safety-related events.

Finally, the Maintenance Sensors are sensors placed on the machine, usually

communicating over an independent channel (e.g. a wireless network) that only acquire specific

maintenance-related information, such as oil quality and data on the machine’s moving parts.

These data are then aggregated by the MANTIS-PC, which establishes the interface between

protocols (e.g. BLE, OPC-UA, MQTT, etc.), provide data conversion standardization, and

make the data available regarding a component to be collected by Edge Local.

1.4.2 Edge Local

The main objective of this subsystem is to isolate the factory from the outside world, at

the same time providing some functionalities at local level. From the security point of view, the

Edge Local can be seen as creating a DeMilitarized Zone (DMZ) in the sense that it is the only

module in the factory premises that has network access, and thus concentrates all the security

requirements on itself.

Data collected from multiple Machines, usually inside a factory, has to be made

available to the other subsystems of the platform. The Edge Local subsystem provides

mechanisms to support communication and management of the data acquired across multiple

heterogeneous and distributed data sources. This is accomplished by providing an abstraction

layer that detaches the application development from the intricacies of the lower level details.

It acts as a virtualization platform and as data broker that connects the Machine subsystem to

the Cloud Middleware, capable of extracting, collecting, distributing/sharing, pre-processing,

compressing, and semantically enhancing the data produced in an efficient manner. Therefore,

the one of the fundamental goals of the Edge Local subsystem is – from one side is to support

the data integration of multiple data sources and – from the other side is the provisioning of

data to the cloud where more complex and resource consuming data processing takes place.

The Edge Local subsystem is composed by several components - the Virtual Device,

the local HMI service, the Data Broker, etc. The Virtual Device is responsible for virtualizing

physical entities (machines and industrial assets) available in the shop floor. These machines

24

and assets are virtualized in terms of their capabilities to facilitate and enhance the process of

exchanging data (machine data readouts). The local HMI service is responsible for visualizing

all the necessary information generated within the Edge Local subsystem, i.e. Virtual Devices

available, machine data readouts. Finally, the Data Broker operates as a gateway allowing the

indirect connection between the machines in a factory and the Cloud Middleware, which

performs Data Analysis and supports advanced HMI features.

1.4.3 Edge Server

This subsystem manages the data, by storing and transporting them between the Edge

Local (eventually from multiple factories), and both the Data Analysis and HMI components.

The Edge Server operates through four components, the middleware, the history, the manager

and the database.

The Edge Server manages a communication middleware, which receives data from

several Edge Local devices through publish/subscribe interaction, and saves the data to a

Database Component, which is structured according to the MIMOSA/IoT-A standards.

Additionally, the publish/subscribe protocol supports the communication with the Data

Analysis and HMI subsystems, and between those two subsystems.

The Edge Server also makes available a set of services which are used by the HMI to

configure the systems. This configuration information is then permanently stored on the

database and used to support system startup and resume system operation in case of a crash. As

explained in more detail later in Analysis chapter. This solution provides an adequate level of

security and enables the isolation of data between all factories, at the same time providing a

highly scalable solution.

1.4.4 Data Analysis

The Data Analysis subsystem includes three modules. The first is a set of Prediction

Models module, used for the detection, prognosis and diagnosis of machine failures. The

models can be built for one machine family, or can be generic and adapted to different machine

families. The second module is a Prediction Application Programming Interface (API) that

outputs predictions from the models, and provides data to feed and train the models. The third

module is an Intelligent Maintenance Decision Support System (IMDSS), which is used to

manage the models (model generation, selection, training and testing), for example on reception

of training data, or when the API is contacted. The IMDSS is composed of a Knowledge Base

25

that uses diagnosis and prediction models and the data sent by sensors. On top of this

Knowledge Base there will be a Rule based Reasoning Engine which includes all the rules that

are necessary to deduce new knowledge that helps the maintenance crew to diagnose failures.

In addition to the data and algorithms, expert knowledge has been encoded as a set of

rules that are used to detect and flag possible failures. Each rule indicates what sensor and CNC

signals need to be acquired, how they are segmented, the type of analysis to be executed and

what failure is associated with these signals.

As an example, let us consider when the brake press is working in automatic mode,

terminates its bend cycle and has parked the ram on the top position waiting for the next task.

If no failure exists then the ram must remain still in the same position where it stopped. Because

the hydraulic system is constantly losing pressure, the CNC compensates for any deviation.

Normally, such deviations are minor (imperceptible to the naked eye) and occur at very low

rates. However, if a hydraulic pump fails or a hydraulics tube ruptures, leaks will cause large

deviations as the CNC compensates for the condition.

In order to detect such problem, the positions of the pistons are recorded when the

control signal indicates that the ram is at top dead center (segmentation). Statistical tests are

used to check that the deviation is within a specific tolerance threshold. This threshold is

determined via the machine learning algorithm (stream based) and is tweaked in order to reduce

the false positive and false negative rates.

1.4.5 Human Machine Interface

This subsystem provides a Human interface for the proactive maintenance system. It

has two main components, one for data visualization and another for data management.

In the visualization component it is possible to view historical and live data, which are

collected from specific machine sensors (e.g. machine status, speed, positioning and pedals

state). It is also possible to show the results generated by the Data Analysis module, more

specifically the alarms for unusual sensor data and the warnings regarding impending failures.

It is possible to match the warnings from the Data Analysis subsystem with historical data

collected from the sensors.

The Manager API Component includes all the administrative operations, like users and

roles management, as well as factories and machines setup. Role management is a very

important process that allows one to dynamically assign specific permissions to each type of

26

user (e.g. a user with the “operator” role can view historical and live data only). Factories and

machines management, allow an authorized user to setup a new factory and its machines.

The HMI follows a web-oriented design and therefore can be accessed from anywhere,

at any time and through all sort of electronic devices with the only requirement being the use

of the Internet to do so. This allows both remote (administrative) and on-site operations such as

analyzing the machine’s state or view its past performance.

1.5 Development Process and Work Methodology

The adopted methodology in the project’s management goes through a follow-up with

the customer where the ADIRA Pilot is being implemented. The objective is to adjust the

reference architectures and the business models, as well as the requirements defined in the

MANTIS European project, to the needs of the stakeholder in a real context of its own

applicability. Hence, the development process evolves through the following macro phases:

1) Detailed analysis of business needs;

2) Preparation of architecture specification;

3) Implementation/development;

4) Tests and validation;

5) Support;

6) Stabilization;

7) Corrective and evolutionary maintenance (European’ project time);

8) Final analysis of the project and corrective measures to apply in future projects.

All phases are accompanied by specific documentation, which helps to formalize the

scope of the project and to validate and measure the success of the project. The used

methodology by our team (Figure 6) is very similar to the Rational Unified Process (RUP)

(Traa, n.d.). At the moment, it was only possible to execute until macro phase 4.

27

Figure 6: The Iterative Model graph shows how the process is structured along two
dimensions (Source: Xiong, 2008).

This project was supported by a team consisting of a Project Manager (person that is

responsible for the project’s management), a Project Owner (an organization responsible for

the delivery and fulfillment of the project according to the plan and architecture), a Quality

Control (a person who assures the quality of the project ensuring the correct delivery of all

functionalities) and by the Developers (people responsible for the implementation and

executing the Test Plan of the project) (Xiong, 2008).

In this particular project, the Project Manager role was allocated to Luis Lino Ferreira;

the Project Owner was ADIRA company; the Quality Control was divided between Luis Lino

Ferreira and the author of this document; the other functions (Developer and Tests) were

allocated on the author of this document.

The project development process was performed iteratively, with periodic deliveries of

prototypes of the solution to the Project Manager, and also the Project Owner, ADIRA. The

main purpose is to provide a real context of tests, aiming to control and monitor the state of the

project and the existence of possible changes. This control will be essential to a correct

development of the solution.

28

1.6 Document Structure

The present work has a very specific structure, being divided into several chapters.

1) Introduction: current chapter, which aims to give the reader the basic information

needed, in order to facilitate the framing of the topic of the thesis. Therefore, this chapter

begins with a brief explanation of the objectives that supported the choice of the present

theme. In addition, this chapter refers to the adopted methodological and technological

approach, presents the expected/achieved results, describes the development process,

the work methodology and also the structure of the project.

2) Industry 4.0: this chapter frames Industry 4.0 in articulation with the problem’s

context, referring to its relevance and value at the industry level; introduces the most

relevant definitions as well as existing SOA-based solutions in which the author of this

document have been involved.

3) Value analysis: this chapter aims to prove the importance and necessity of a value

proposition for solving the problem at hand. A general analysis of the potential and

impact of the project is carried out, followed by the developed component, focusing on

its subsequent commercialization. Hence, the analyze the value proposition and the

value in the current market is provided, as well as defined the Canvas business model

for it will be made.

4) Evaluation of Message Oriented Middleware solutions: this chapter presents the

solutions based on Message Oriented Middleware MOM) evaluation, since the intended

solution that respond to industry 4.0 design principles, with special focus on

decentralization, modularization, real-time capability and standardization.

Analysis: this chapter presents, in a detailed manner, all phases carried out during the

process of developing a software solution, starting with the description of the

requirements that the system must fulfil, the report of the concepts of the problem

domain, and ending with its analysis and design.

5) Tests: this chapter presents the tests performed and evaluation of the solution developed

as well as the metrics and methodologies that will be involved.

6) Design & Implementation: this chapter presents the design of the solution for the

problem previously identified, as well as different alternatives as well as different

alternatives, that will be compared. Furthermore, the implementation of the use cases

that were previously identified in the Chapter 5.

29

7) Bibliography: this chapter presents all the references that supported the present work,

which were necessary to fully understand the problem in hand.

8) Appendixes: this complementary chapter includes several documents that are

considered to be essential to the present work.

30

2 Industry 4.0

This chapter presents Industry 4.0 in articulation with the problem’s context, referring

to its relevance and value at the industry level. Furthermore, introduces the most relevant

definitions as well as existing SOA-based solutions in which the author of this document have

been involved.

2.1 Introduction

Förderschwerpunkte Industry 4.0 (2017) argues that the German Federal Government

follows a particular initiative, the called “High-Tech Strategy 2020 for Germany”, which

actually aligns with the global challenges in five areas: climate/energy, health/nutrition,

communication, mobility and security. Hence, this initiative promotes key technologies, more

precisely by formulating ten future projects in order to achieve their goals and to fulfill their

visions. As a matter of fact, one of the government’s high-tech-strategy projects is the so called

“Industry 4.0”, which justifies the existence of several publications, conferences, and practical

articles that primarily focus on that project (Drath & Horch, 2014).

Figure 7: Innovation units of Industry 4.0

Furthermore, the “German Standardization Roadmap” (DKE, 2014) argues that an

innovation like Industry 4.0 requires a quite close cooperation between several elements,

namely research, industry and the standardization. As it is shown in Figure 7, research

institutions are the ones that bring the methodological foundations for a new innovation, while

31

standardization ensures stability and investment security and the Industry tests the new concepts

in a and regarding their market relevance.

Regarding the interest in Industry 4.0, there are essentially two main reasons that explain

it. The first one is related to the fact that it never before was an industrial revolution announced

a-priori and not observed ex-post. Hence, several research centers and companies had the

chance to actively form such revolution. The second reason for the interest in Industry 4.0 is

the forecast of a vast economic impact. In fact, this project has potential to develop new business

models, services and products, as well as considerably increased operational efficiency

(Kagermann, Lukas & Wahlster, 2013; Kagermann, 2014). According to Bauer, Schlund,

Marrenbach and Ganschar (2014), developments on such project will contribute as much as 78

billion euros to the German GDP by the year of 2025.

As it is explained by the Bundesministerium für Bildung und Forschung (2017), the

project Industry 4.0 essentially promotes a computerization in the field of production

technology. In addition, this project also facilitates the vision of a Smart Factory, which is

mainly characterized by mutability, resource efficiency and ergonomic design, as well as the

integration of stakeholders and business partners in value-added processes of the factory.

Therefore, the goal is that the factory extends with ideas from information technology, which

in turn will enable intelligent behavior. However, the questions regarding how factories should

actually be actually built, organized and structured in the future, and how existing factories can

adapt, are still to be answered.

Nowadays, and despite presenting a high importance for several research institutions,

companies and universities in the German-speaking area, Industry 4.0 does not have a

commonly established definition. Hence, it is quite difficult to debate such topic on an academic

level, as well as implement Industry 4.0 scenarios. As a matter of fact, all contributions of

several participants during the last past three years only made the term more unclear, instead of

clarifying it (Bauernhansl, ten Hompel & Vogel-Heuser, 2014). Organizations such as

“Platform Industry 4.0” and “Industry 4.0 Working Group” also do not provide a clear

definition of the concept, since they merely describe basic technologies, the selected scenarios

and the vision that Industry 4.0 aims at. As it is clearly stated by Hermann, Pentek and Boris

(2015), practitioners and companies need a certain systematization of knowledge in order to

identify and to implement Industry 4.0 scenarios. These same authors, in their paper, formulate

six design principles of the Industry 4.0 project, more precisely: interoperability, virtualization,

decentralization, real-time capability, service orientation and modularity, which will be later

discussed. Likewise, Hermann, Pentek and Boris (2015) also present four trends of Industry 4.0,

32

which will be later discussed as well: “Cyber-Physical Systems” (CPS), “Internet of Things”

(IoT), “Internet of Services” (IoS), and “Smart Factory”.

Kagermann, Lukas and Wahlster (2013) describe their own vision of the project in the

final report of the “Industry 4.0 Working Group”. They argue that companies of the future will

found global networks and will then be capable of incorporating their warehouse systems,

machinery and production facilities. Regarding the manufacturing environment, the so-called

Cyber-physical Systems consist of smart storage systems, machineries, and production facilities,

which autonomously exchange information, prompt actions and control each other

independently. Such automation actually implies essential advances for the industrial processes

within manufacturing, material usage, engineering, life-cycle and supply chain management.

On the other hand, products of the future will be distinctively identifiable, able to be located at

all times, and know their own history of events, current status and alternative courses to reach

their target. The networks within the embedded manufacturing factory are vertically connected

to all business processes, as well as horizontally networked to detached value networks while

being able to communicate and make decisions in real time. Therefore, and to obtain all of this,

end-to-end engineering from the moment an order is placed up to the outbound logistics is

required, more precisely throughout the entire value-chain.

2.2 Background

The term “Industry 4.0” was firstly presented to the public in 2011, more precisely at

the Hannover Fair, by an association of representatives from politics, academia, and business

as an approach to strength the competitiveness of the German manufacturing industry

(Kagermann, Lukas & Wahlster, 2011). In fact, the term “Industry 4.0” refers to the fourth

industrial revolution, thus being preceded by three other industrial revolutions in the history of

mankind (Posada et al., 2015). The first industrial revolution happened in the second half of the

18th century, namely with the introduction of mechanical production systems that used water

and steam power. The second one introduced, on the other hand, mass production in the 1870s,

by the division of labor (Taylorism), and the use of electric power. Finally, the third industrial

revolution introduced the used of advanced electronics and information technology, which were

used to develop to further automate production processes. Such revolution was also called the

“Digital Revolution” and happened in the 1970s (Lasi et al., 2014).

It is relevant to mention that the German federal government supported the idea of

Industry 4.0, which justifies its integration into their high-tech strategy program. Later on, the

33

government formed the “Industry 4.0 Working Group”, which published a set of

implementation recommendations in 2012. The final report of this working group was presented

in April of the following year (Kagermann, Lukas & Wahlster, 2013).

Simultaneously to the final report of the Industry 4.0 Working Group, the “Platform

Industry 4.0” actually formed out of the industry associations Bitkom, VDMA, and ZVEI. Their

main goal was to coordinate future activities of Industry 4.0. As a matter of fact, they are

currently working on a reference model to structure basic ideas of this project (Platform

Industry 4.0, 2017). Coordination and funding activities in Germany were created by the

Economic Affairs and Energy (BMWi) and the Federal Ministries of Education and Research

(BMBF).

Even though the term “Industry 4.0” is not so familiar outside the German-speaking

area, we can find similar activities throughout the entire world. As a matter of fact, in the United

States an initiative known as the Smart Manufacturing Leadership Coalition (SMLC) is also

working on the manufacturing’s future. Essentially, SMLC is a non-profit organization of

suppliers, manufacturing and technology companies, government agencies, universities and

laboratories (Shin, Woo & Rachuri, 2014). In addition, the US government also supports

research and development activities for the use of the Industrial Internet with a two billion dollar

fund and General Electric, which are precisely the names of their initiatives of the “Industrial

Internet”. According to Evans and Annunziata (2012), complex machinery with sensors and

software connected to the network are defined in order to better predict, plan and control

business and societal outcomes. Furthermore, additional similar ideas to Industry 4.0 can be

found under the terms of “Integrated industry” or “Smart Manufacturing” (Bürger & Tragl,

2014; Dais, 2014).

2.3 Industrial Concerns

Firstly, it is essential to mention that the introduction of Internet technologies in the

industry causes some quite understandable concerns for several plant operators. As a matter of

fact, their facilities combine investments, know-how, production and profitability. Therefore,

many visions of Industry 4.0 seem hardly intangible for today’s production systems, which

justifies the fact that the communication of production-relevant devices, with a called “cloud”,

is frequently perceived as a potential hazard. Hence, the industry actually sets some demands

on Industry 4.0, which establishes the following requirements for an industrial acceptance:

34

1) Security of investment: Industry 4.0 must be gradually introduced into existing

production facilities and equipment;

2) Stability: Services that are available through Industry 4.0 (IoS) must never jeopardize

the production, neither by failure or malfunction nor by uncoordinated intervention.

Actually, production systems place increased demands on characteristics such as

availability, real-time, reliability, durability, robustness, productivity, costs, security

and other so-called nonfunctional properties. That is, the demands on these properties

must remain unaffected by Industry 4.0;

3) Controllability: Access to plant-related data and services is a prerequisite for value

creation in Industry 4.0, but it has to be controllable. Write-access to production-related

equipment, machines or systems actually require a special review body, which ensures

the validity of the procedure in the context of the total production;

Security: Prevention of unauthorized access to data or services must exist (DKE, 2014).

2.4 Value offer

In the production industry, a value-chain represents all steps within the production of a

product order, more precisely as a structured string of activities (Kolberg & Zühlke, 2015).

These same activities create values, consume resources and are also connected to each other

through several processes. This concept was first published in 1985, more precisely by Michael

E. Porter, in his book Competitive Advantage. According to DKE (2014), CPS will contribute

to the autonomy of sub-processes within different value-chains in a production facility, which

will support both short-term flexibility as well as the medium-term variability in response to

the increasingly shorter and weightier external influences and, therefore, improve the resilience

of production. Figure 8 represents the four dimensions of the value-adding processes, namely

in the industrial production, which are essentially the following: business process and the

product, factory and technology life cycles (Brettel et al., 2014).

It is crucial to refer that the foundation of Industry 4.0 is the availability of all the

relevant information in real time, namely through the integration of all entities that are involved

in the value-added processes, as well as the ability to derive the optimum value flow from the

available data at all times. In fact, dynamic, real-time optimized, self-organizing enterprise

encompassing value networks are created by connecting objects, humans and systems.

Furthermore, they can be later optimized according to several criteria such as costs, availability

and consumption of resources (Lee, Bagheri & Kao, 2015).

35

2.5 Architectures

In the particular context of Industry 4.0, some architectures were identified in this

research work. The evaluation of architectures concentrates on fulfilling the industry

requirements in order to expand the modelling and standardization of the architectures for

different purposes. Furthermore, a service-oriented architecture (SoA) related to Arrowhead

Framework is presented.

2.5.1 Reference Architecture Model Industry 4.0 (RAMI4.0)

The authors of the RAMI 4.0 model developed a 3D model in order to represent all the

different types of characteristics of the technical-economic properties (Figure 8). The RAMI

4.0 model is a small modification of the SGAM (Small Grid Architecture Model) and allows

the appearance of different aspects. The small layers on the vertical axis represent different

aspects, such as information, communication and functions from an integration capacity

(Manzei, Schleupner & Heinze, 2016).

Figure 8: Reference Architecture Model - Industry 4.0 (Source: Zezulka, Marcon, Vesely, &
Sajdl, 2016).

One of the most important criteria in modern engineering is the product’s life cycle with

value flow. The left horizontal axis demonstrates this same feature, and expresses the constant

36

acquisition of data throughout life. At the horizontal and right level is the function of the

components in Industry 4.0.

The asset layer represents reality and physical components such as ideas, files,

documents, linear axes, metal parts, and diagrams. The human part is connected to the world of

virtual reality by the integration layer, the passive connection of the assets to the higher

integration layer effected through QR codes. This layer provides information about the assets

(HW/SW, components) in a form available for computer processing (Zezulka, Marcon, Vesely,

& Sajdl, 2016).

There is also computer control of the asset event generation process and contains

elements that are connected to IT. Integration of people is part of the integration layer via HMI.

The communication layer provides the standardization of communication through a

uniform data format in the direction of the information layer. It also provides integration layer

control services.

The information layer provides the runtime for event preprocessing, execution related

to events, and allows a formal description of event preprocessing rules. The following functions

ensure data integrity, consistent integration, new and higher quality data delivery and structured

data service delivery. It also receives the events and data that are available for the next layer.

The functional layer allows the formal description of functions and creates a platform

for the horizontal integration of specific functions. Contains runtime and modeling environment

for business process support services and an environment time for applications and technical

features. Rules and decision logic are generated in the functional layer. Some use cases can be

run on other layers. Although remote access and horizontal integration may occur within the

functional layer due to data integrity.

The business layer is the layer that ensures the integrity of functions in the value stream,

and allows planning the business models and the results of the overall process. The legal and

regulatory content allows the modeling of the rules that the next system creates and, at the same

time, a link between different business processes.

2.5.2 Industrial internet reference architecture (IIRA)

Industrial Internet is an internet of things, machines, computers and people, intelligent

industrial operations that use advanced Data Analysis for transformational business results. It

incorporates the convergence of the global industrial ecosystem, advanced computing and

manufacturing, penetrating detection and ubiquitous network connectivity. There are many

37

interconnected systems deployed today that combine hardware, software, and networking

capabilities to feel and control the physical world. These industrial control systems have built-

in sensors, processors and actuators that provide the ability to service commercials. These

systems have not been connected to larger systems or with the people who operate with them.

The concept of industrial internet is a concept that has evolved over the past decade to

be globally interconnected by trillions of ubiquitous devices representing the physical world.

The Internet Industrial effort will bring industrial control systems online to form large end-to-

end systems, connecting them with people and integrating them fully with business systems,

business processes and analytical solutions. These end-to-end systems are referred to as

Industrial Internet Systems (IIS). Within these IIS, operational sensor data and the interactions

of people with systems can be combined with advanced organizational or public information

and other means of data processing (for example, policies based on rules and systems). The

result of this analysis and processing will allow, in turn, advances in the optimization of

decision-making, operation and collaboration among a large number of autonomous control

systems (Robert, Bradford, 2015).

Industrial Internet Reference Architecture (IIRA) is an open architecture, to maximize

its value, it has a broad industrial applicability to drive and plan applicable technologies, and

guide technology and standards development. The description and representation of the

architecture are generic at a high level of abstraction to support the broad applicability of the

industry.

The IIRA design aims to transcend today's available technologies and, by doing so, is

able to identify technological ones based on architectural requirements. This, in turn, will boost

the development of the new technologies of the Industrial Internet community.

2.5.3 Service-Oriented Architecture (Arrowhead Framework)

Briefly, a service-oriented architecture (SoA) is an architectural pattern of information

technology in the field of distributed systems that structures and uses the services of IT systems.

Then, a special focus is towards the orientation of the business processes whose abstraction

levels are the basis for concrete service implementations. For example, a loan granted by a bank

is a service abstraction at a higher level of business processes. Behind this particular service

there is a number of people and IT-systems, such as “opening a business relationship”, “opening

of one or more bank accounts”, “credit agreement” and several others. In fact, and by an

effective orchestration of lower level services, some services of a higher abstraction level can

38

be created in a quite flexible manner, thus allowing for a maximum of reusability (Chung &

Chao, 2007).

Regarding the SoA’s goals, they are essentially the long-term reduction of costs in

software development and a higher flexibility of business processes, namely by reusing the

existing services. Also, the programming costs of the nth with the SoA realized application

should be considerably reduced, since all the necessary services are already available and only

need to be effectively coordinated. Therefore, the remaining costs are related to the cost of

business analysis and of software configuration (Douglas, 2015).

The Arrowhead project consists in a large European effort, which aimed the

normalization through SOA design and the interaction between IoT applications. Such effort

actually targeted many application domains, more precisely those that comprise industrial

production, smart buildings, electromobility, and energy production. Regarding services, they

are exposed and consumed by (software) systems, which are executed on devices that consist

in physical or virtual platforms that provide computational resources.

More specifically, these devices are grouped into local automation clouds, which are

self-contained, geographically co-located, independent from one another, and mostly protected

from external access through several security measures. Arrowhead services are frequently

considered either application services (when implementing a use case), or core services (that

provide support actions such as service discovery, security, service orchestration, and protocol

translation). Therefore, and aiming to ease the development of new application, the core

services are actually included into the common Arrowhead Framework (Varga et al., 2016).

As a matter of fact, the Arrowhead Framework is intended to be either deployed at the

industrial site, or accessed securely, for example though a VPN. Regarding distributed IoT

automation requirements, these include latency, security and packet delivery. Such application

of IoT-based automation systems (Figure 9) would greatly benefit from QoS capabilities,

including service-oriented management and monitoring of different QoS characteristics. It is

important to add that industrial applications depend on the quality of the information

communication, since they drive actions on industrial processes, which in different contexts are

inherently time dependent, require communication robustness, sufficient bandwidth, or other

stringent QoS requirements (Varga et al., 2016).

39

Figure 9: An Arrowhead local cloud comprising an orchestrated service instance (Source:
Albano et al., 2017).

The QoS Setup and the Monitor are two core services that are devoted to supporting

QoS in Arrowhead local clouds. The first one is provided by the QoS Manager system and it is

consumed by systems in order to verify that QoS requirements are feasible in a local cloud, and

to request the configuration of network activities and devices in order to grant the given QoS,

this latter including performing reservation on resources such as network bandwidth and device

processing time. On the other hand, the Monitor service, with is produced by the QoS Monitor

system, is used in order to instruct the system to collect data from network actives and devices,

regarding the performance of a specific service, and to compare it with the required QoS (Ta,

2006).

Given the current context, the person responsible for the elaboration of the present

document have been simultaneously working for the Arrowhead project, more precisely

assisting in the development of the services for the Arrowhead Framework: services of QoS, of

QoS Manager, of QoS Monitor and of Event Handler. Therefore, a demonstrator was created

in order to test the QoS on the Arrowhead Framework, using QoS Manager and QoS Monitor

capabilities, which are used on top of the Flexible Time Triggered-Switched Ethernet (FTT-

SE) technology.

Finally, the author of the present report made contributions to the paper "Quality of

Service on the Arrowhead Framework" (Albano et al., 2017).

40

2.6 Components

Aiming to structure and specify the idea of Industry 4.0, Hermann, Pentek and Boris

(2015) did an intensive literature review about the project. In fact, the authors reviewed 200

publications that could be found by applying the search term “Industry 4.0”, subsequently

identifying 15 keywords that frequently occurred in the context of Industry 4.0. Then, they

grouped the keywords into eight representative keyword groups, which are presented in Table

1. Out of the eight groups, Hermann, Pentek and Boris (2015) identified four key components

of Industry 4.0: Cyber-Physical Systems, Internet of Things, Internet of Services, and Smart

Factory. The latter four groups in Table 1 are not found to be independent key components. As

a matter of fact, Smart Products can be considered as a subcomponent of Cyber-Physical

Systems, Machine-to-Machine communication is considered to be an enabler for Internet of

Things, and Big Data and Cloud Computing are data services that use the information inside

Industry 4.0 applications, but that do not represent independent Industry 4.0 components.

Table 1: Industry 4.0 components (as identified by Hermann, Pentek and Boris, 2015).

Keyword (group) Number of publications in which

keyword (group) occurred

Cyber-Physical Systems (CPS) 46

Internet of Things (IoT) 36

Smart Factory 24

Internet of Services (IoS) 19

Smart Product 10

Machine-to-Machine (M2M) 8

Big Data 7

Cloud 5

In the next sections, the explanation of the identified Industry 4.0 components is proceed.

Furthermore, the link to Industry 4.0 is elucidated and some application examples are provided.

• Cyber-Physical Systems (CPS): Kagermann (2014) argues that a substantial element

of Industry 4.0 is the union of the physical and virtual world. Such fusion is actually

achieved through Cyber-Physical Systems (CPS). The technical committee 7.20

“Cyber-Physical Systems” and 7.21 “Industry 4.0” of the VDI-GMA(2015, cit. in

Allenhof, p. 11) describe a CPS as follows: “A CPS is a system that connects real

41

physical objects and processes with virtual objects and processes through an information

network, which is open, partly global, and continuously connected. Optionally, a CPS

uses local or external services, uses human-machine interfaces, and offers the possibility

to dynamically adapt the system at runtime”.

Furthermore, the CPS research agenda explains that CPS are comprised of embedded

systems, production, logistic, engineering, coordination and management processes and

Internet services (Mikusz, 2014). Therefore, they immediately capture physical data

through sensors and generate physical actions through actuators. Overall, the systems

are connected over digital networks, using worldwide available data and services.

Drath (2014, cited in Allenhof, 2015) presents an example of a Cyber-Physical System,

more precisely regarding future possibilities for traffic light systems. In this particular

example, the real physical traffic lights log into a centralized registration system,

instantiate a virtual copy of their identity and publish their planned schedule.

Furthermore, vehicles that participate in road traffic are also able to log into the

registration system and to download the schedules of all nearby traffic lights. They are

able to adjust their route and velocity to optimize their journey by basing on the vehicle’s

location, velocity, weather data and other traffic-sensitive information. On the other

hand, and regarding emergency vehicles, such as ambulances or police cars, they are

also able to initiate a change in the scheduled behavior of the traffic lights, thus ensuring

that those traffic lights are green as they approach them.

Figure 10: Layers of a Cyber-Physical System.

42

Essentially, Figure 10 summarizes the concept of CPS according to Drath’s (2014, cited

in Allenhof, 2015) arguments, which is subdivided in three layers. In the bottom layer

are the physical objects, which are the intelligent, self-exploratory, and self-diagnostic

assets in systems (compare to the real vehicles and traffic lights presented in the previous

example). In the middle layer are the data and models of the physical objects (virtual

instances of traffic lights). Finally, in the upper service layer are new products and

services, which will be further developed (for instance, and based on the presented

example, a service that evaluates the traffic light schedules and subsequently changes

vehicles’ velocity in order to improve the fuel consumption) (Wang et al., 2016).

• Internet of Things (IoT): Regarding the concept of Internet of Things (IoT), it derived

from the idea that the computer will progressively disappear as a device in the future,

being replaced by “intelligent objects and things” (Sadeghi, Wachsmann & Waidner,

2015). It is crucial to add that, instead of being a subject of human attention itself, such

intelligent, ever-smaller embedded objects aim to support human activities quietly in

the background, without attracting or demanding any attention. Weiser (1991) actually

explained, and for the first time, this particular vision.

In particular, the IoT designates the existing link of clearly identifiable physical objects

(or things) with a virtual representation in an Internet-like structure. In this perspective

of “Future Internet”, humans and representations of the “things” are participant (Saint-

Exupery, 2009). As a matter of fact, the automatic identification using RFID is quite

frequently regarded as the foundation of the IoT. Nonetheless, a unique identification of

objects can also be obtained through a barcode or even a 2D code. Several devices, such

as sensors or actuators, actually extend the functionality to the collection of states and

to the execution of actions. In summary, Giusto et al. (2010) argue that IoT allow for

“things and objects” to interact with each other and with their own neighboring

intelligent objects through unique addressing schemas. However, the intelligent things

and objects can be understood as CPS. Hence, IoT is essentially a network in which

CPSs communicate through quite unique addressing schemas (Anderl, 2014).

A particular example of IoT is related to the tracking of an ordered product over the

internet, since delivery services now offer the possibility to follow the ordered product

through their several delivery stages. Such process is done by a unique identification

using barcodes or 2D codes (Weyer et al., 2015).

43

• Internet of Services (IoS): Buxmann et al. (2009) argue that Internet of Services (IoS)

allows service suppliers to provide their services over the Internet. As a matter of fact,

the IoS is quite complex, since it comprises an infrastructure for services, certain

business models, the services themselves, and participants requesting the services.

These services are, on the other hand, combined into value-added services and offered

by various vendors and communicated to several users and stakeholders through

numerous channels. Such development actually enables new possibilities, more

precisely in terms of dynamic variation in the distribution of specific value-chain

activities. Furthermore, it is quite imaginable that the idea of IoS transfers from single

factories to entire value-added networks. Despite offering some production types of

their products, factories of the future could also offer some special production

technologies, which would be offered through the IoS network, thus enabling a

customer of the services to simply manufacture a specific part, or compensate for limited

production capacities (Scheer, 2013).

This concept of IoS has actually been applied in a project that was initiated by the

Ministry for Economic Affairs and Energy, within the program “Autonomics for

Industry 4.0” (Allenhof, 2015). In that same project it is presented a new distributed

production control system, which is developed for the automotive industry,

comprehending assembly stations that are of modular nature. Such concept actually

allows the flexible modification and expansion of some stations. Regarding the

transportation between the modules, it is realized through automated guided vehicles

(AGV). Considering that the project is based on a SoA, both the AGV and the assembly

stations publish their services to the IoS, which allows the products, in this particular

case the vehicles, to choose their course autonomously through the production process,

having been pre-programmed with customer specific configurations (Shafiq et al.,

2015).

• Smart Factory: According to Kagermann, Lukas and Wahlster (2013), the so-called

“Smart Factories” are a key feature of Industry 4.0. As a matter of fact, such term

constitutes the vision of a production environment in which production facilities, as well

as logic systems, largely self-organize without any type of human intervention.

Actually, the “context-aware” Smart Factory considers both the position and the status

of a product within the entire process, also assisting machines and people in the

execution of their own tasks. Briefly, it is important to mention that the technical

44

background of Smart Factories is built on CPSs, in which the systems communicate and

cooperate with each other and humans with the assistance of IoT. More specifically,

such vision addresses the communication between the product or work piece and the

manufacturing facility, where the product carries its own production information in

machine-readable form, which allows machines to retrieve their workload from the

product itself. Furthermore, these systems gather information both from the real

physical and the simulated virtual facilities in order to determine their next production

steps. Hence, physical information frequently means the position of the product or tool

of a machine, whereas information from the virtual model is the optimal tool choice for

a specific task, or the determination of optimal production schedules (Schlechtendahl et

al., 2015).

Schlick, Stephan, Loskyll and Lappe (2014) present an example of Smart Factory,

namely the “Future Urban Production” facility in Fellbach, Germany. Among all the

manufactured products in such facility are gear wheels. In the past years, the physical

transport of the goods between several delivery and pick-up spaces was done by an

electric truck that drove around the factory every hour. Such inflexible procedure has

been superseded by material supplies on demand in the framework of an Industry 4.0

pilot project. Therefore, and in order to implement a demand-driven supply, nowadays

intelligent work piece carriers are used, which basically consists of a report by the

carrier, and when the piece is actually ready to be picked-up, who assesses the status to

the transportation control unit. Such procedure is quite helpful, since it decreases the

number of transportation runs and saves personnel superfluous work.

2.7 Design Principles

Hermann, Pentek and Boris (2015), to assist organizations in the process of

identification and implementation of Industry 4.0 pilot projects, argue that specific design

principles are required in order to be defined. Their work actually derives six design principles,

which are summarized in Table 2. Furthermore, it is crucial to establish that such principles are

obtained by an evaluation of the literature review regarding the Industry 4.0 components.

Hence, Table 2 demonstrates which Industry 4.0 components lead and are linked to which

design principle.

45

Table 2: Design principles of each Industry 4.0 component, according to Hermann, Pentek
and Boris (2015).

 Cyber-

Physical

Systems

Internet of

Things

Internet of

Services

Smart

Factory

Interoperability X X X X

Virtualization X X

Decentralization X X

Real-Time

Capability

 X

Service

Orientation

 X

Modularity X

Standardization X X X

These design principles for Industry 4.0 are illustrated by an example of the key finder

plant of SmartFactoryKL in Germany (SmartFactory, 2015, cited in Allenhof, 2015). This

project is actually an initiative of the German Research Center for Artificial Intelligence, more

precisely to the development of a vendor independent technology that operates in a production

facility. Such demonstration plant assembles and processes parts for key finders. Hence, all

relevant data for the production process is saved on a RFID tag, which is directly attached to

the work piece itself. Regarding the data, it is written on the transponder in the commissioning

station of the production line. Afterwards, the production line basically consists in a milling

station, in an automated assembly and in a manual workstation. At the manual workstation two

tasks can be developed: the complete manual assembly of the product or the final manual

assembly after the automated assembly station is performed. In addition, this manual station

represents a context-sensitive work environment, which guides people with the assistance of

Augmented Reality, more precisely through the complex manufacturing processes.

• Interoperability: Since CPSs are connected with each other and humans over IoT and

IoS, interoperability is quite an important enabler for Industry 4.0. Therefore, a key

success factor in order to enable a rule-based and situation-controlled communication

between CPSs of several manufacturers will be the creation, establishment and

integration of standards. Actually, the German Commission for Electrical, Electronic &

46

Information Technologies of DIN and VDE addressed such requirement in their

publication (DKE, 2014). More specifically, its publication claims that the existing

system landscape of both technologies and structures is still not coherent and entirely

defined in a global manner. Thus, it is not sufficient to only define the emergent

behavior and additional level of integration of Industry 4.0, but also important models

of the classical architecture, which clearly needs to be overworked and integrated in

addition to Industry 4.0 (Monostori, 2014). According to the same resource (DKE,

2014), when the interoperability is address in the context of the demonstration plant at

SmartFactoryKL, all CPSs of such plant (namely assembly stations, work piece carriers

and products) communicate with each other through open nets and semantic

descriptions. As an example, the order information can be transferred from the

application system to the control of the picking station and further stored in the digital

product memory by using a recently established communication standard OPC-UA.

• Virtualization: Regarding the principle or virtualization, it basically represents the

ability of CPS to monitor physical processes. Afterwards, the monitored data is linked

to simulation plant models, thus producing a virtual copy of the physical world. In

addition, the key finder demonstration plant also contains a virtual representation of

itself, which includes the monitorization of the condition of all CPSs in the plant

(SmartFactory, 2015, cited in Allenhof, 2015). In case of occurring any errors in the

facility, a human can be notified and assisted during the resolution of such failure.

Furthermore, humans can also be supported by the system in handling the rising

technical complexity of the next working steps, maintenance, or safety arrangements

(Fast-Berglund et al., 2014).

• Decentralization: Both the progressive reduction of mass production and the increasing

demand for individual products gradually impede the central control of a production

system. Therefore, and through developments in the embedded systems, CPSs can

actually become more intelligent, being able to make decisions on their own. It is only

in the case of maintenance or failure that de CPSs need to communicate to a centralized,

higher level system. Thus, the entire production facility moves towards becoming more

decentralized. Considering the given example, the decentralization in the

SmartFactoryKL plant is realized through the RFID tag in the product, since all the

information about the individual production stages can be directly retrieved from the

product itself (DKE, 2014).

47

• Real-Time Capability: Allenhof (2015) claims that, in order to organize a factory and

to react to time critical events quite immediately, it is necessary that the Industry 4.0

collects and analyzes data in real time, considering that the increasing amount of

information that circulates in a factory sets some sophisticated demands on the

processing units. Therefore, it is also crucial to determine judicious selections and cycle

times for the data that will be collected for a further processing. Also, in the key finder

production the status of the plant is continuously tracked and analyzed. If an unpredicted

event occurs, the organization/facility must be able to react immediately and reroute

products that can get stuck in the production line of another machine.

• Service Orientation: Essentially, service orientation is a design paradigm that has

several principles that stress the separation of concerns in the software, leading to

components of software that are divided according to operational capabilities, each one

designed to solve an individual and particular problem. Also, these components can be

qualified as services. It is crucial to refer that the services of companies, humans and

CPSs are accessible over the IoS, thus being able to be used by other participants.

Nonetheless, all services can be offered both internally and globally across the

organization’s borders (Allenhof, 2015).

Regarding the example of the SmartFactory (2015, cited in Allenhof, 2015), its plant is

also designed according to a service-oriented architecture. As a matter of fact, all CPSs

in the plant post their functionalities as a web service within the factory. Therefore, the

customer order details that can be retrieved from the RFID chip on the products and a

suitable production process can actually be composed based on the available services.

• Modularity: By designing a factory in concordance to the paradigms of modularity,

companies provide the advantage to flexibly adapt to requirements, more precisely by

replacing or by expanding certain modules or CPSs in the factory. These same flexible

modules are frequently called as “plug and produce”-modules. Basically, they describe

the ability of certain machines and tools within the facility to communicate its services,

as well as location, in the factory. Furthermore, the “plug and produce”-ability, that

should also be vendor independent, sets some demands for necessary standardized

interfaces (Shafiq et al., 2015).

In the key finder facility, new modules can be added or removed, more specifically by

using the “plug and produce”-principle. Also, new CPSs can be automatically

recognized, when based on standardized hardware and software interfaces, as well as

used instantaneously by using IoS. Hence, modular systems can be easily adjusted in

48

case a product changes its characteristics or even if there are some seasonal instabilities

(Allenhof, 2015).

• Standardization: As it is demonstrated by Figure 7, standardization is considered as a

key component for new innovations, more precisely to ensure stability, security for

investments and confidence among every users and manufacturers. Furthermore,

standardization is also understood as being the entirely consensual establishment of a

recognized organization of strategies, guidelines and regulations for recurrent or general

activities. The previously established standards of standardization bodies, such as IEC

and ISO, are actually accompanied by a set of certain specifications in several forms.

As an example, these specifications can be the DIN Specifications (DIN SPEC), the

VDE Codes of practice, the Publically Available Specifications (PAS), the Technical

Specifications (TS), Industry Technical Agreements (ITA) or even Technical Reports

(TR) (DKE, 2014).

Regarding the Industry 4.0, a particular difficulty arises for both the standardization and

the terminology. In fact, and previously to defining the behavior and additional levels

of integration of this project, the existing landscape of structures and technologies needs

to be coherent, as well as entirely defined in an internationally standardized manner

(Drath & Horch, 2014).

Even though digital simulation can enable an increased variety of possibilities for tests

of several scenarios, there are still few available standards among the diversity of IT

solutions. Some of these solutions include several data models and interface protocols,

which subsequently requires an enhanced maintenance, changes and new

implementations. Also, there is a certain lack of transparency in the way that these same

changes are implemented. The most classical way to program has to be replaced by a

new system of rules, more precisely by one that sets some specifications, a coherent

terminology and libraries. For instance, new Industry 4.0 terminology could be added

to the existing specifications, such as it occurs in the specification IEC 51131-3, on

terminology for industrial automation and information that orient instrumentation and

control technology (Weyer et al., 2015).

The ever-rising information technological expenditure behind facilities in the

automation environment can limit the programmability, more precisely due to a steady

increase in its complexity and comprehensibility. Thus, it actually can lead to an

abandonment of absolute control, which requires a particular solution to ensure room

for some developments, while minimizing the described problems. Most solutions that

49

are proposed by Industry 4.0 suggest that an architecture of decentralization through a

service-oriented architecture (SoA) must be implemented (Posada et al., 2015).

2.8 Development Process

The previous explanations given on the topic regarding Industry 4.0 largely describe the

convergence of technologies that were formerly applied separately. Such combination is, and

for example, the fusion of mechanical engineering and electrical engineering into mechatronic

engineering. In the field of the production industry, a possible example is, for instance, the

development of smartphones, where the technical areas of physics, electrical engineering and

IT actually converge. This modifies competence requirements for engineers, pushing them to

become more and more interdisciplinary. However, such convergences of technologies need to

be taught to students and engineers. Zoitl (2015, cited in Allenhof, 2015) argues that the coming

industry requires engineers that are specialists in terms of having the overview over an entire

system. Furthermore, he also claims that the degree program “System Engineer” is, for instance,

one trendsetting course.

On the other hand, Geisberger and Broy (2015, cited in Allenhof, 2015) suggest that the

biggest engineering challenge is to satisfy two of the main features of CPS. In fact, engineers

must develop secure, safe and dependable systems that can also add value in a sustainable

manner. However, those systems must be open to innovation networks that facilitate new

applications, as well as networks. Furthermore, the authors argue that these procedures need an

iterative approach of exploratory work, from multi-vendor industries and research associations.

In addition, the interconnectedness and merging of all technologies and applications needs an

integrated approach, as well as the development of a new, or at least extended, engineering

concepts. Hence, a quite substantial amount of effort is required, more precisely to be devoted

to the fields regarding the integration, modelling, interdisciplinary requirement engineering and

software and systems engineering Hermann, Pentek & Boris, 2015).

Methods for Requirement Analysis, Design and Evaluation

Firstly, and for the requirement analysis, iterative design and evaluation of architectures

and solution designs, there are two methods that can currently be used. One of them is related

to the use of interactive prototypes and realistic virtual simulations, while the other is related to

the use of mathematical modelling, where a simulation of a system is applied. In the particular

context of Industry 4.0, some new challenges related to the development of open systems have

50

been arising. According to the users’ needs, the systems are quite capable of interacting in a

highly dynamic context with a global network. However, fulfilling all these requirements

involves the expansion of the research beyond the horizon and the development of new analysis

methods. Nonetheless, these new methods must be aligned to the previous separate designed

models that ensure an end-to-end verification and validation (Allenhof, 2015).

Requirements Engineering

Allenhof (2015) states that requirements engineering is the key to the conception,

design, validation and verification of CPSs. In fact, the main tasks of requirements engineering

include determining user, business, process requirements and customer, identifying potential

problems, setting targets and priorities, resolving inconsistencies and possible conflicts, as well

as establishing requirements for the architecture, components and communication methods of

a particular system. Regarding the wide range of possible Industry 4.0 scenarios, the major

requirements engineering’s concerns are essentially the identification, analysis and

specification of the needed requirements (Drath & Horch, 2014).

Human, System and Architecture Models

At last, and in order to ensure that integrated and comprehensive models of systems,

humans and architectures are adequately designed, configured and managed, several

technologies and knowledge of fields are required, namely:

1) Engineering and science, specifically in electrical and mechanical engineering,

chemistry, physics and biology;

2) Information and communication technology (ICT), sensor technology, embedded

systems, system and networks management and the Internet;

3) Neuroscience, cognitive psychology and brain research on human behavior, thought and

complex problem solving;

4) Social science and social networks (Lee, Kao & Yang, 2014).

Essentially in the field of engineering, research focuses on methods to reduce

complexity and, therefore, simplifies the design and management of CPS. The specific areas of

research are the following:

1) Human-machine systems and human factors;

2) Model-based systems engineering;

3) Virtual engineering;

51

4) Evolutionary software development;

5) Generative programming and synthesis;

6) Reuse of software product lines;

7) Formal verification, validation and testing (Monostori, 2014).

2.9 Conclusions

All the explanations given in this topic, regarding Industry 4.0, clearly describe

technologies that already exist. Therefore, the challenge lies in the structured connection of

these same technologies, in the standardization of some accomplished principles and in the

reference models. As a matter of fact, system architectures, as well as business models, need to

be created and sorted into application dependent groups. All the presented design principles

support both the scientific and practitioners’ communities, thus helping in the implementation

of scenarios and in the selection of potential use cases for future investigations.

According to Drath (2014, cited in Allenhof, 2015), Industry 4.0 is an inevitable

phenomenon. It is quite analogous to the introduction of the Internet itself, in the beginning of

1990, which subsequently brought out an unimaginable world of online stores, online

brokerage, auctions, E-mail, video streaming, Facebook and app stores. Nonetheless, the scope

of Industry 4.0 is still not graspable in its entirety.

In addition, and in order to summarize it all up, the research on the topic Industry 4.0

was essentially applied in the languages English and German. Hence, a certain limitation of the

results actually persists. Therefore, it is quite possible that other results, from journals in

different languages, may have been left unobserved in the present work. Finally, an evaluation

of middleware solutions follow the industry 4.0 design principles is given in the Chapter 3.

52

3 Evaluation of Message Oriented
Middleware solutions

In this chapter, the solutions based on Message Oriented Middleware (MOM) will be

evaluated, since the intended solution focuses on a reliable exchange of messages around a

particular network and on the use of queues as a reliable load balancer and of topics, in order

to implement the options of publishing and subscribing (Table 3).

Hence, solutions that are based on Enterprise Service Bus (ESB), which provides

Enterprise Integration Patterns for smart routing, transformation, orchestration and working

with other technologies, are not taken into consideration in the present work because of the low

performance. In this chapter an analysis of the most relevant MOMs is performed.

3.1 Advanced Message Queueing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP, 2017) is an open standard

application layer that allows message exchange between applications. Hence, this means that

AMQP is a protocol for message-oriented middleware (MOM). The most important

components of this protocol are the message brokers, with they act as a bridge between two

applications, receiving messages from producers and routing those messages to the correct

consumers. Essentially, the AMQP protocol is constituted by several entities, namely

producers, consumers, exchanges, bindings and queues. Each entity plays a distinct role

enabling the communication and cooperation between two or more applications. As a matter of

fact, producers are applications that are quite compliant with the protocol and publish messages

into the broker. Then, messages are published to an exchange in the broker (Teixeira, 2015).

The AMQP protocol presents the following characteristic:

1) Interoperable: all AMQP clients interoperate with all AMQP servers;

2) Reliable: AMQP is capable of removing communication gaps and slowdowns between

different platforms, critical systems and applications’ components, both within a

company with external systems;

3) Unified: it provides a core set of messaging patterns via a single manageable protocol;

4) Complete: AMQP provides a wire level transport for applications;

5) Open: vender and platform agnostic;

53

6) Safe: offers some of the most reliable security and authentication mechanism to do its

entities (Fernandes, 2011).

3.2 Message Queuing Telemetry Transport (MQTT)

The Message Queuing Telemetry Transport (MQTT, 2017) is a lightweight network

protocol that is used to publish and subscribe messages that are sent between devices. Basically,

the MQTT works on top of the TCP/IP protocol, being ideal for use in constrained environments

or low-bandwidth networks with limited processing capabilities, small memory capacities and

high latency. Its design actually minimizes network bandwidth requirements, while attempting

to ensure reliability on delivery (Chen, 2017).

Furthermore, the MQTT protocol provides publish-and-subscribe paradigm between

clients and a brokers. In this context, a client is any device, from a micro controller up to a

server, that has a MQTT library running and connecting to a MQTT broker. Hence, clients can

subscribe and publish on topics, the latter being the routing information for the broker. On the

other hand, a client app is the responsible for collecting information from the telemetry device,

thus connecting and publishing the information to the server. Finally, the broker is essentially

responsible for receiving all the messages, filtering all of them and routing. Afterwards, it sends

the message to all subscribed clients. In other words, brokers receive messages from publisher

clients on a certain topic, which they forward to the interested subscribers (Seebacher, 2013).

3.3 Simple Text Oriented Messaging Protocol (STOMP)

The Simple Text Oriented Messaging Protocol (STOMP, 2017) is a lightweight and

quite simple human readable text messaging protocol. STOMP provides an interoperable wire

format, in order to allow clients (publishers/consumers) to communicate to any message broker

that actually supports the protocol, which is based on the HTTP protocol. Essentially, the

messages consist in a frame header with certain properties and a frame body (Alves, 2014).

It is important to establish that this protocol does not deal with queues and topics, since

both the semantics and the detailed syntax of the destination tag are not defined in the official

specification. Therefore, different brokers can actually interpret the destination in different

manners, which compromises the protocols interoperability. At last, this protocol has several

open source implementations available for clients and brokers, which provide libraries in

different programming languages (Alves, 2014).

54

3.4 Java Message Service (JMS)

The Java Message Service (JMS, 2017) provides a standard java API to create, send,

receive and read messages. Furthermore, JMS provides:

1) Two different kinds of communication models: PTP (Point to Point) and

publish/subscribe;

2) Reliable message transport;

3) Transaction;

4) Message filtering mechanism.

Nonetheless, there are several terms used in the context of JMS, which need to be

clarified. In fact, there is the JMS provider, which basically consists in the message broker that

actually implements JMS. On the other hand, PTP is the term used to define Point to Point

messaging model, which provides durable buffering of the message in queue. The queue refers

to a message domain that contains the message, which can be consumed by only one consumer

each time. The topic, which is also related to the message domain, contains the actual message

that can be consumed by several active subscribers at the same time. The connection factory is

basically a factory object that is used to establish the connection, while the latter is established

between the client and the message broker. The term destination is related to the message

domain that is managed by the JMS provider and it stores the message that is produced by all

clients. The session is basically a thread that receives and sends messages. Finally, the term

message producer refers to the object that is created by one session to send the message, while

the message consumer is the object created by that same session in order to receive the sent

message (Yunpeng, 2010).

3.5 Extensible Messaging Presence Protocol (XMPP)

The Extensible Messaging Presence Protocol (XMPP, 2017) is a protocol for near-real-

time messaging, presence, and request-response services. This protocol uses the Extensible

Markup Language (XML) as the base format for message exchange. Basically, XMPP is a

protocol that provides an infrastructure to allow the exchange of small pieces of XML among

entities and in close real-time (Saint-Andre, Smith & Tronçon, 2009).

Because of the features that are provided by the XMPP, this protocol has been used in

order to build large-scale distributed systems, Internet gaming platforms, search engines and

video or audio conferences. It is precisely the substantial usage of XMPP in several distinct

55

applications that demonstrates how versatile, flexible and powerful this protocol can truly be

(Moffitt, 2010).

Finally, the XMPP protocol is for message-oriented middleware systems and is

categorized as a message passing paradigm, since the identity of clients are known by other

clients. As a matter of fact, and even if XMPP is used for client-server architectures or for peer-

to-peer, it can actually be extended with some new features, namely through the definition of

XMPP Extensions (XEPs), that are essential to enable XMPP to be used in different contexts

(Moffitt, 2010).

3.6 Data Distribution Service (DDS)

The Data Distribution System (DDS, 2017) for Real-Time is a standard that is mainly

used to implement the publish-subscribe communications for real-time and embedded systems,

also providing a set of QoS policies. Furthermore, it is a data-oriented middleware that is based

on the Data Centric Publish-Subscribe (DCPS) model, where it actually implements a

distributed peer-to-peer architecture that provides a reliable and efficient communication

among applications (Albano et al., 2015).

DDS provides high interoperability among heterogenous systems, more precisely

through a Global Data Space (GDS), where several applications publish messages into the GDS

(publishers) and other applications are able to access the same GDS and subscribe to the

information of interest (subscribers). However, and every time a publisher changes data in the

DDS, the latter is also responsible for propagating that changed data to all subscribers.

Finally, in DDS, the data that is available in the GDS actually follows a data model that

is based on specific structures. Each one of them is identified by a topic that uniquely identifies

the structure and a type that provides structural information that is used by the middleware in

order to perform actions on the existing data. A set of QoS policies is also provided by DDS,

aiming to guarantee the delivery of all data, the real-time systems performance, the bandwidth

reservation, redundancy and data persistence (Albano et al., 2015).

3.7 Open Platform Communications Unified Architecture (OPC-
UA) publish-subscribe

Even though OPC-Classic was quite popular, the security, the platform’s dependency

and some scalability issues led to the development of alternative standards or to a change in the

56

OPC paradigm. Therefore, the open platform communications unified architecture (OPC-UA,

2017) is essentially the collective effort of collaboration between manufacturers and OPC

Foundation. It is important to establish that OPC Classic was a merely client-server based

connectivity solution, while the OPC-UA takes the SOA (Service Oriented Approach).

Therefore, the latter introduces security, reliability, scalability and also eliminated the platform

dependency. The OPC-UA is open, thus allowing small embedded systems to be connected to

the internet in a secure and uniform manner. Some of its most important features are:

1) Platform independent: OPC-UA has a quite low sized protocol stack that is written in

ANSI C, being able to be ported on to small embedded systems. This freedom, which is

related to the platform, made OPC-UA to be considered for IoT;

2) Services: it provides a suite of standardized services for data access, events, alarms and

historicizing, among others;

3) Address space flexibility: since it is object oriented. It addresses space support methods

that can be executed from remote clients;

4) Common protocol suite: it uses common protocol suites and encodings, making it

possible to be used with the internet;

5) Information model: it defines the means to exchange useful information through its

adaptable information model, which can also be integrated with industrial data models;

6) Security: it defines a robust security model that provides application to application

security. Such security model aims to provide user authentication, access rights, secure

end to end communications, namely through encryption;

7) Process transparency: it helps representing the underlying process data transparently

to the client-side users. Therefore, users do not need to understand the underlying

technology or the data representation (Pujari, 2016).

57

Table 3 - Message Oriented Middleware (MOM) protocol

19 http://activemq.apache.org/
20 https://www.rabbitmq.com/
21 http://www.openamq.org/
22 https://qpid.apache.org/
23 https://mosquitto.org/
24 http://hornetq.jboss.org/
25 http://opendds.org/
26 http://www.prismtech.com/vortex/vortex-opensplice

 MIDDLEWARE

PROTOCOL

IMPLEMENTATION

PROTOCOL
DISCOVERY TRANSPORT

QUALITY OF

SERVICE
ENCODING OPEN SOURCE

AMQP Broker No TCP/IP Up to 3 Parameters
SASL and/or

TLS

ActiveMQ19. RabbitMQ20,

OpenAMQ21, Apache Qpid22

MQTT Broker No TCP/IP Up to 3 Parameters TLS
ActiveMQ. RabbitMQ,

Mosquitto23

STOMP Broker (Server) No TCP/IP
Application

Dependent

Text-based or

Binary
ActiveMQ, RabbitMQ, HornetQ24

JMS Broker (Server) No TCP/IP Up to 3 Parameters Binary
ActiveMQ. HornetQ, Open MQ,

Apache Qpid

XMPP Broker (Server) Yes TCP/IP None Plain Text ActiveMQ

DDS Global Data Space Yes UDP/IP or TCP/IP Up to 22 Parameters Binary
OpenDDS25, Vortex

OpenSplice26

OPC-UA publish-subscribe Broker (Server) Yes UDP/IP or TCP/IP Not defined Binary None

58

3.8 Conclusions

The proposed analysis for the Message Oriented Middleware solutions under study, was

presented in this chapter by analysing the message protocols and its properties for each solution.

Furthermore, in the subsection competition analysis of the next chapter, is compare the message

protocols of each solution, for the defined alternatives.

59

4 Value analysis

This chapter presents the identified stakeholders concerns then contextualize the 5 key

elements of Peter Koen’s model (“The New Concept Development Model” – NCD) in order to

define what is a value analysis, its importance and usefulness. This solution was developed for

the MANTIS European project but in future the commercial purposes is intended. Thus, we

proceeded to an analysis of the offer and the current market value of the project solution

followed by the canvas model to describe the proposed business ideas. Finally, the competition

analysis defines the communications layer related to the solution.

4.1 Stakeholders concerns

The identified stakeholders are the industry companies and one of the partners and

stakeholder to highlight is ADIRA. This company, formed in the year 1956 that export to more

than 40 countries worldwide, aims to predictive and proactive maintenance of their machines.

Since the new industry business models became quite popular due to the fact that it enables

some flexibility on IIoT. However, the lack of efficient solutions had a negative impact on the

exploitation of new industry business opportunities.

Since an efficient solution is intended, that reach all stakeholders, the present work

respects some critical and less technical aspects:

1) Proprietary development: The development will be done by the same company. The

technology and architecture will be documented in order to be able to be picked up by

another company and/or developers;

2) Consistency between services: The architecture must be adapted to its needs, that is, to

the corresponding service, but must also respect the main architecture design. In sum, it

must maintain consistency between all the services that use middleware;

3) Costs of development: Initial development will have a higher cost, which is necessary

to start up the project into its initial production phase. However, the present work must

have in mind the future work, in the sense of adding new services;

4) Confidentiality: Some practices must be put in place, more precisely best practices

according to security guidance. The aim is to give a sense of security to who is using

the service.

60

4.2 Business Process and Innovation

Nowadays, and considering the globalization’s complexity, the vast majority of top

managers of organizations have to try to adopt some innovation practices, specifically to gain

a competitive differentiation within their specific market, and among their competitors.

According to Armbruster et al. (2008), the organizations that present a specific focus on

innovation can actually increase their market share and profits, which emphasize the important

role that is developed by innovation within a particular organization.

Therefore, we can conclude that, to succeed in their innovation goals, top managers must

focus on innovative products, since they deliver some value. Nevertheless, it is important to

add that both the business and the innovation process must be divided into three distinct parts,

more precisely: 1) the Fuzzy Front End (FFE), which is essentially a theoretical proposal where

the pre-development activities are concentrated; 2) the development of a new product, which

consists in a transformation of the theoretical proposal into a new product; and 3) the

commercialization of the new product (Koen et al., 2001).

It should be noted that the initial phase of the product’s creation is quite determinant to

the generation and selection of ideas, considering that the dimension of resources, time, costs,

deadlines and the process quality is generated by the FFE. Furthermore, and to define the main

components of this FFE, as well as to create a common language, it is essential to use the model

that was proposed by Peter Koen, namely “The New Concept Development” (NCD) model,

which basically follows five key elements, particularly: 1) Identification of opportunities; 2)

Opportunity analysis; 3) Generation and enrichment of ideas; 4) Selection of ideas; and 5)

Definition of the concept.

Regarding the first key element, it is essentially through the identification of

opportunities that the organization, either by request or by research, identifies the main goals to

be achieved. By request, some industrial organizations know that reliability and safety of

industrial machines depend on their timely maintenance (Ardichvili, Cardozo & Ray, 2003).

Hence, the ADIRA company, where the Pilot will be tested, identified the need to satisfy its

customers, as well as other potential ones, more precisely through the creation of a Pilot.

Such need arises from the integration of the maintenance process, which allows a

continuous monitoring of the machine and the application of advanced technologies for the

preventive and proactive maintenance of the machine, specifically to create conditions for

results improvement in several organizations, which makes them more competitive.

61

At the moment, the number of companies that have solutions to solve this particular

problem is quite small, considering that they do not present several of the functionalities that

are predicted within the project. However, and since there are still some companies that do not

use effective mechanisms in order to solve this problem, they will become potential

stakeholders (Ardichvili, Cardozo & Ray, 2003).

Hence, the technique that is used to analyze this particular key element is based on the

analysis of the customers’ trends, allowing to conclude that some companies are truly interested

in an industrial maintenance solution, since it provides a continuous monitoring that ultimately

improves their own results. Nonetheless, the remaining problem is that those companies do not

know how to effectively perform it or do not have the financial resources to implement partial

solutions that may solve such problem (Koen et al., 2001).

In terms of the second key element, it is important to firstly mention that additional

information is needed in order to translate the identification of business opportunities. In this

particular context, a solution was found, considering that it actually met the needs of companies

in general. The method that was used was actually based on the evaluation of stakeholders by

the organization, ultimately selecting potential stakeholders and determining their main needs

that still had not been reached by the existing products. The competition was also analyzed,

thus allowing the identification of the main competitors that act within the area of industrial

maintenance, as well as the determination of the product that is necessary to provide a

competitive advantage (Koen et al., 2001).

The third key element, related to the generation and to the enrichment of ideas, is

associated with the evolution of a particular idea, namely from its birth until its own realization.

Hence, it is essentially an evolutionary process, due to the fact that an idea is built through

several combinations, readjustments and remodeling. In turn, to enrich the idea the company

must follow an iterative process, discussing it with both the stakeholders and the future users

(Bhuiyan, 2011).

When the functional prototype to be developed is proposed by the stakeholders, the idea

to develop a certain performance evaluation tool, specifically by objectives, is already defined

and ready to be realized. Hence, all the prototype requirements were developed through a study

of several industrial maintenance methods, as well as by the application of distinct and

advanced techniques for the preventive and proactive maintenance of the machines. Finally, it

should be noted that the proposed solution is strictly subjected to this particular design, since

the main goal is to improve and experiment the solution before proceeding to its

implementation.

62

After generating and enriching the ideas, it is necessary to proceed to their selection,

which is the fourth key element. One of the main difficulties of this particular process is related

to the fact that the ideas to be selected need to possess a business value in order to be viable

(Hoyer et al., 2010). As it was previously mentioned, the functional prototype was requested

by the stakeholder, which validates the selected idea in terms of viability and business value.

At last, and regarding the requirements of the prototype, we selected a particular set that

includes the most relevant ones to achieve the proposed objectives.

Finally, the fifth and final key element of the model is the definition of the concept,

which involves the development of a business case. Essentially, this business case is based on

several factors, such as the investment requirements, the estimates of market research, the

customer needs and the competitive assessment. Therefore, its level of formality is related to

the own pertinence of the opportunity (new technology and market existence). To analyze this

particular key element, it is important to adopt a technique that allows an early participation of

the customer(s) in the testing of the product, since it allows to evaluate if the developed solution

actually satisfies the stakeholders needs (Edvardsson & Olsson, 1996).

4.3 Value offer

The value proposition is characterized by a particular set of products (tangible) or

services (intangible), which create value to a specific segment of stakeholders. Nonetheless, it

should be noted that the value of a product/service is only achieved when it actually satisfies

the stakeholders needs (Clarke III, 2001).

According to the stakeholders perspective, the value is defined as the difference between

the costs and the benefits of a product/service. Thus, the value is positive when the performance

(benefits) is higher than the total cost (financial costs) (Woodruff, 1997). Nevertheless, the

value is distinct for different stakeholders, namely due to the fact that they all present different

perspectives, which corroborates the discrepancy in the value of the same products/services. As

a matter of fact, the perceived value actually presents two distinct aspects, since it has a meaning

for the producer and a complete different one for the customer: the first considers the value in

terms of organizational costs and of business possibilities, while the latter regards aspects such

as costs and sacrifices, being this last one translated into benefits when the product/service

meets his needs (Sweeney & Soutar, 2001).

Overall, the value analysis aims to evaluate how it is possible to increase the value of a

product/service without sacrificing quality and at the lowest cost. Zeithaml (1988) argues that

63

the products’ development should be a continuous and interactive learning process, focusing

on customer value, considering that stakeholders are the most valuable asset, creating business

value for every organization.

In this particular project, we develop a solution that integrates the process of industrial

performance, namely to perform a continuous monitoring of machines. Therefore, this system

will be characterized, among others, by the application of advanced techniques. Despite being

linked to the industry, where it will actually be disclosed, the solution will be easily adopted by

other sectors inside organizations, more precisely by the construction, commerce, tourism and

transport. The adoption of this tool will be of particular interest to organizations, since it will

significantly contribute to the increase of their competitiveness and to the solutions that are

phased in IoT.

Furthermore, it is crucial to mention that there are some types of value that are truly

related to the implementation of the proposed solution, more specifically those that are related

to are innovation, modularity, decentralization, Interoperability and standardization,

performance (Real-Time), safety, integrity, confidence and price (Smith & Colgate, 2007).

 Table 4 - Representation of the benefits and sacrifices of the proposed value

Domain/ Scope Product/ Services Relationship

Benefit

Innovation
Performance (Real-Time)
Modularity
Virtualization
Interoperability & Standardization
Decentralization
Service Orientation

Integrity
Safety (Security &
Privacy)
Confidence

Sacrifice Quality/ Price

Effort/ Time
Conflict

Through Table 4, the time of effort associated with the creation and use of the product

and the research actually stand out as sacrifices. Conflict has also been identified as a sacrifice,

given the fact that, despite the possibility of coexistence with existing platforms in the market,

there may be some friction to change by users who already recurred to other solutions.

Nonetheless, it should not be forgotten that quality and price have been identified as

sacrifices, since the solution to the problem in question truly aims to be an industrial

environment tool.

64

Increasingly, the industry presents the need for IoT, given the fact that companies need

to address in order to expand the adoption in the following fields:

1) Recreate templates. Companies will have to redesign their organizations, partnerships

and operations. For example, agrochemical companies will have to collaborate with

software vendors, climate data providers and satellite operators in order to improve crop

yields in specific locations and conditions. Furthermore, manufacturers can also

decentralize operations, as technologies such as 3D printing enable products to be

produced closer to stakeholders;

2) Capitalize on the value of the data. This includes establishing interoperability and

security standards to ensure that data is shared with confidence among enterprises. New

financial models will also be needed to support pay-per-use and other service-based

offerings;

3) Prepare for the future work. With more access to data, decentralized work environments

will be essential to support front-line employee decision making. New organizational

structures will also be needed, more precisely to enable workers to collaborate in a more

creative manner with their own peers in partner companies (Baldassarre et al., 2010);

Given the fact that the solution consists of a system of information in the cloud, it is

crucial to guarantee its security and integrity, due to the fact that it contains confidential and

critical data (of employees of an organization – data integrity).

4.4 Value of the Current Market

Nowadays, companies need to acquire certain technology capabilities to be able to offer

Proactive Monitoring and Maintenance (PMM) products and/or services, which means that they

need to invest in technical, human and financial resources. Hence, and to achieve such purpose,

they can follow or implement different strategies, namely: in-house development, diverse

collaboration and partnership efforts and technology vendor acquisitions. As a matter of fact,

PMM implies the addition of intelligence and connectivity to the end product, requiring the

promotion of service based business models (Lu, Morris & Frechette, 2016).

According to some previsions, the global operational predictive maintenance market

will actually grow at a CAGR (Compound Annual Growth Rate) of 26.6% between 2016-2022,

foreseeing a total market value of EUR2.900 million by the end of that period. Nonetheless,

such development will be boosted by the IIoT market rise, which is growing at a CAGR of

65

42%, acting as an enabler for its rapid industrial penetration. One key sector where predictive

maintenance will have a huge impact is manufacturing. As a matter of fact, the European

manufacturing sector accounts for 2 million companies and about 33 million jobs, thus

representing 15% of the total EU GDP. Thus, and to increase this particular contribution to 20%

by 2020, European manufacturing industry faces a significant challenge (Brisk Insights, 2016).

It is important to emphasize that competitiveness goals will be achieved through a full

digitization of the European industrial ecosystems. Within such framework, the predictive

maintenance will account for a huge improvement potential to all actors, more precisely:

relevant productivity increase (users and asset), new revenue streams with higher profit margins

(asset manufacturers) and also new business opportunities that are based on analytics (asset

service providers). Finally, it is argued that predictive maintenance in factories within the

industrial sector could reduce maintenance costs by 10 to 40 percent, which leads the

manufacturer’s savings of 215 to 580 billion euros in 2025, resulting from reduced downtimes

and minimized manufacturing defects among others (Lu, Morris & Frechette, 2016).

4.5 Business Model Canvas

Some questions need to be answered in order to realize any business idea, such as:

• Who will be our clients (stakeholders)?

• What is valued by them?

• How do we get to them?

• What skills are required?

• What kind of partners should we have?

To answer these questions, and in a structured manner, the recurrence to the Canvas

business model (Figure 12) is quite useful, since it is an important tool to define the Business

Model of any single project. This particular model is divided into nine different blocks, in an

integrated and visual way, focusing on several aspects, namely key partners, key activities,

value proposition, customer relationships, customer segments, key resources, channels, cost

structure and revenue streams (Barquet et al., 2013).

66

Figure 12 - Canvas business model elaborated for the current project

67

Key Partners, who provide services, identify the Web hosting services that, in turn,

provide services in the cloud, which are necessary to fulfill the project. It is also important to

refer that the Project Partners are essential to the solution, more precisely the HMI component

and Data Analysis (Trimi & Berbegal-Mirabent, 2012).

Regarding the Key Activities, and of this particular model, they are associated with the

area of Software development for IoT and to the evolution and development of new software

functionalities. The Researcher is fundamental to the creation of innovative solutions and to the

validation of the existing ones, as well as to the security control, aiming to enhance the final

quality of the product and responding, at the same time, to the project’s needs (Osterwalder et

al., 2014).

The Key Resources to this model’s implementation are the servers, the use of softwares,

specifically of software development tools, the developed software itself and all the equipment

that is provided to this department of the company (Barquet et al., 2013). The distribution

channels for the product dissemination are the company’s website and newsletters, event

organization and social networks.

The customer relationships proceed to its establishment by the creation of new features

or improvements, more specifically through suggestions on that basis, as well as through mass

communication with stakeholders and email about possible security problems. The Customer

Segments that represent the proposed potential solution are mainly related to industrial

companies that actually want an IoT software solution (Meertens et al., 2012).

At last, Value Proposition defines Software solution in order to obtain a predictive and

proactive maintenance of industrial machines, thus proposing an innovative solution with

quality control, which is inherent in the software development process. Product characteristics

such as quality, performance, modularity, standardization, virtualization, interoperability,

decentralization, service orientation and security are focused on creating a solution that actually

follows Industry’s 4.0 Design Principles (Osterwalder et al., 2014).

Therefore, the implementation of this model with respect to the software development

process implies the quantification of the value creation through the result in applications that

offer greater security, which also provides quality control, management and time benefits by

all those that are involved. It is possible to prove what was previously argued, considering that

this process is subjected to an evaluation.

68

4.6 Competition analysis

The Analytic Hierarchy Process (AHP) was applied in order to compare different

solutions. This model was created by Thomas L. Saaty, in 1970, to validate both quantitative

and qualitative characteristics. The main focus is to prove that the best communications layer

related to the solution to create a specific design project (Saaty, 2008). The Figure 13 depicts a

list of the important criteria that this system should have, as well as a list of alternatives. It is

important to add that all criteria are evenly essential, what makes them quite easy to compare.

Possibly, some criteria were not included, since our purpose is to thoroughly analyze all

solutions, which include performance, stability, tools and technology aspects.

Figure 13 - Analytic Hierarchy Process (AHP) elaborated for the current project

Then, and using pairwise comparisons, the weight of each criteria is matched in order

to demonstrate those that are more important in this context. In this case, the used scale goes

from 1 to 9, 1 meaning equal, 3 moderate, 5 strong, 7 very strong and 9 extreme (Table 5).

69

Table 5 - AHP – Criteria Pairwise comparison

Scalability

&
Flexibility

Security &
Privacy Real-Time Price

Interoperability
&

Standardization
Scalability &

Flexibility
1 2 1 2 1

Security &
Privacy

1/2 1 1 1 1/2

Real-Time 1 2 1 2 1/2
Price 1/2 1 1/2 1 1/3

Interoperability
&

Standardization
2 2 2 3 1

To get a ranking of priorities from the pairwise comparison, it is necessary to normalize

the matrix, squaring the same and then calculating the eigenvector (to 4 decimal places),

summing up all rows and normalizing the rows by diving the row sum by the row totals.

Such process is repeated until the eigenvector is the same as the previous iteration. The

results are the following:

Table 6 - Criteria solution

Criteria Score Preference
Consistency

(product of Score
vs Criteria)

Consistency divided
by Preference

Price 0,223 2 1,241 5,558

Compl. & Light 0,135 3 0,722 5,341

Flexibility 0,202 3 1,074 5,319

Security &
Privacy 0,106 4 0,565 5,325

Scalability 0,334 1 1,773 5,315

λmax (average) 5,372

The previous eigenvector gives the score for each criteria (Table 6), which allows us to

conclude that the bigger is the score is the better is the result. In this case, Scalability is the most

important criteria.

In order to prove that the values are consistent, the Consistency Index (CI) must be

calculated:

70

!"	 = 	 (&'()	– 	+)	/	(+ − 1) (1)

!"	 = 	 (5,3718 − 	5)	/	(5 − 1) 	= 	0,093

According to Thomas Saaty’s (2008) table, the Random Consistency Index is:

7"(5) 	= 	1.12

Finally, the Consistency Ratio (CR) can be calculated:

!7	 = 	!"	/	7" (2)

!7	 = 		0,093/	1.12	 = 	0.083

Since the CR, 0.083, is lower than 0.1, it can be assumed that the values of the weight

of each criteria and the eigenvector are both consistent.

The previous process is repeated for all alternatives under each criteria, which results in

an eigenvector for each alternative vs criteria.

Final result (AHP)

For the final result, a matrix with the eigenvectors from the previous step is squared with

the eigenvector from the criteria (Table 7). Thus, is possible to conclude that the biggest value

refers to the best choice.

Table 7 - Criteria with alternatives pairwise comparison

 Scalability
& Flexibility

Security
&

Privacy
Real-Time Price

Interoperability
&

Standardization
JMS 0,152 0,140 0,159 0,185 0,135

XMPP 0,224 0,218 0,203 0,192 0,168

OPC-UA 0,134 0,251 0,158 0,184 0,320

DDS 0,135 0,169 0,182 0,186 0,176

AMQP/MQTT 0,355 0,221 0,297 0,253 0,200
Criteria

Eigenvector 0,223 0,135 0,202 0,106 0,333

71

Table 8 - AHP -Final Solution

Alternatives Product with Criteria
eigenvector Preference

JMS 0,150 5
XMPP 0,197 3

OPC-UA 0,222 2
DDS 0,168 4

AMQP/MQTT 0,263 1

Therefore, the final result (Table 8) proves that the solutions that are based on

“AMQP/MQTT” are the preferred ones under such criteria and alternatives.

4.7 Conclusions

All the stakeholder's concerns were identified regarding the business process and

innovation following the Peter Koen’s model. Therefore, the analysis of the offer defined the

benefits and sacrifices of the proposed value for a specific segment of stakeholders. Besides,

was defined the current market value proactive monitoring and maintenance (PMM) where the

of the project solution is part of were provide. The business model was defined through a canvas

business allowing to define the business idea. Finally, the competition analysis defined the

communications layer related to the solution and prove through an analytic hierarchy process

(AHP) and will be studied in more detail in previous chapter.

72

5 Analysis

This chapter presents the proposed architecture of this solution and describes the steps

that were taken throughout the development process of the software solution that supports this

thesis. It follows the Rational Unified Process (RUP), namely, identification of the system

requirements, business modelling, and architectural patterns.

5.1 Proposed architecture

Software architecture development is an activity that refers to the organization of the

software components of a particular system and how they communicate with each other. Such

activity is essential, since any subsequent changes to the architecture later in the software

development process may be difficult to realize, implying high costs either in time and

resources (Tang et al., 2010).

In this section, we establish a connection between the overview of the proposed

architecture given in Chapter 1 and its representation in a more formal and detailed way (see

Figure 14), specifically as a UML component diagram (see Figure 15)

Figure 14 - MANTIS (ADIRA Pilot): Context Diagram for the proposed solution (equal to
Figure 5 present in the Chapter 1)

73

The proposed architecture relies on seven different subsystems with a complex

communication layer involving 7 different communication protocols, as described next:

• Mantis-PC: contains a BLE server component that communicates with the external
sensors of the controlled Machine via BLE protocol and an OPC-UA server component
that communicates with an OPC-UA client in the Edge Local subsystem via OPC-UA
protocol.

• Machine: contains an OPC-UA server that communicates with an OPC-UA client in an
Edge Local subsystem via OPC-UA protocol. Moreover, within the Machine
subsystem there is a component named CNCBender (detailed in the Chapter 6) whose
internal state is monitored by OPC-UA server.

• Edge Local: contains two Node-Red client components: (1) one that communicates with
the Middleware component via AMQP, the Middleware Client; (2) one that may
communicate with several Machines and several Mantis-PC components via OPC-UA
client.

• HMI: contains a Middleware-Web-Client component that communicates with the

Middleware component via STOMP (Websockets27); a Manager API component (for

simplicity in the figure and further in this report we use the term API) that communicates

with the Manager Component existing in the Edge Server subsystem via HTTPS and

the Database via TPC/IP protocol.

• Data Analysis: contains a Middleware-Client component that communicates with the

Middleware in the Edge Server via AMQP protocol.

• Edge Server: contains a Manager Component that communicates with the API

component of the HMI subsystem and Middleware via HTTPS protocol; a History

component that communicates with a Database via TPC/IP protocol; a Middleware

component that communicates with the Data Analysis and Edge Local subsystems via

AMQP protocol; and finally, the Middleware component also communicates with the

HMI subsystem via STOMP (Websockets).

• Email: this subsystem communicates with the Manager Component in the Edge Server

subsystem via SMTP protocol.

27 WebSockets is designed to be implemented in web browsers and web servers, but it can be
used by any client or server application. The WebSocket Protocol is an independent TCP-
based protocol. Its only relationship to HTTP is that its handshake is interpreted by HTTP
servers as an Upgrade request.

74

Figure 15 depicts all the subsystem and component interactions as described above.

Figure 15 – Subsystem and component interaction for the proposed architecture

5.2 Requirements Engineering

Requirements engineering is a software engineering process that creates, analyzes,

develops and maintains both functional and non-functional requirements that must be satisfied

by a system in order to solve a given problem. Specifically, it aims at understanding and

documenting the needs of the stakeholders in order to minimize the risk in the development of

a certain software product. Thus, the requirements process started by extracting the

requirements in the work package 1 (deliverable of the MANTIS platform requirements) of the

MANTIS project (Jantunen et al., 2016).

In this subsection, the systems actors28 are identified together with the mapping of

functional requirements into use cases.

5.2.1 System actors

Each system actor has its own access profile which determines what features it is able

to use. Moreover, each system actor can access two distinct levels, namely, the Local level (in

Figure 16 the local level encompasses the two represented Factories) managed by the OPC-

28 An actor of a system represents any entity (e.g., person, machine, external system, etc.) that
interacts with the system under analysis (Sommerville, 2011).

75

UA servers at the Machine subsystem (within a factory there may be several OPC-UA servers

with centralized permissions, where each server has the same configuration), and the Cloud

level which is managed by the Middleware component. Each level has its own set of actors as

described next.

The Cloud actors that were identified in this research work are the following:

• Edge Server: it is the Middleware component administrator being responsible for all

the Middleware component parameterization (e.g., configuration, users, access

permissions, etc.).

• Data Analysis: acts as a consumer for the Middleware component, being responsible

for the consumption of the information of the queues. In fact, this actor is both a

producer and a consumer of data.

 Data Analysis and Edge Local: act as producers for the Middleware component through the
usage of queues where the produced data is inserted. The	Local	actors	that	were	identified	are	
the	following:	

• Edge-Local: it is the entity responsible for the execution of the available methods and

for receiving the information from one or more OPC-UA servers within the Machine

and Mantis-PC subsystems.

• Human: it is the Machine’s subsystem user and is responsible for controlling the

Machine according to the information received from one or more OPC-UA servers.

5.2.2 Use Cases

Functional requirements correspond to the functionalities of a system. That is, they

describe how the system should react (i.e., generate outputs) according to the given inputs.

Moreover, functional requirements can be mapped into UML use cases in order to not only

show system functionality but also to define system boundaries. Therefore, in order to present

the functional requirements of the system, a use case diagram was elaborated, as depicted in

Figure 16.

76

Figure 16 - Use Case Diagram for the proposed solution

According to Figure 16, there are 18 use cases divided in two distinct environments (as

identified in the previous section): the factory environment including the Local actors at the

Local level and the cloud environment including the Cloud actors at the Cloud level. Below,

each of the use cases identified in Figure 16 is described in detail.

• UC01: Start Cloud-System: A user accesses the system and initiates the Cloud-System

using the HMI. This action configures the entire system (e.g., user, permissions, queues

and history). If the system has already been started and there is configuration data in the

database, this will trigger the actions of UC3, UC5 and UC8. The History system starts

and configures the middleware queues according to the Data Analysis system.

77

• UC02: Stop Cloud-System: A user accesses the system and terminates the Cloud-

System using the HMI. This action eliminates all basic system configurations (e.g.,

user, permissions, queues and history). In particular, this action does not trigger UC4,

UC6 and UC9 actions, due to safety rules. However, the entire history system is deleted.

• UC03: Create Factory: A user accesses the system and creates a factory using the HMI.

This action configures the system for that factory (e.g., user, permissions, queue and

history). The system, when creating the user access permissions, sends an email with

the user credentials.

• UC04: Delete Factory: A user accesses the system and deletes a factory using the HMI.

This action erases the system settings for that factory (e.g. user, permissions, queue and

history). It should be noted that all database content is preserved.

• UC05: Create Machine: A user accesses the system and adds a machine, using the HMI.

This action configures the system for that machine (e.g. queues and history). Each

machine can have up to two queues, one for internal sensors and another for the internal

database.

• UC06: Delete Machine: A user accesses the system and deletes a machine using the

HMI. This action erases the system settings for that machine in the middleware and the

history service stops. The database data is maintained.

• UC07: View Soft Real-time Machine Internal Sensor Data: A user accesses the system

and visualizes data from the machine's internal sensors using the HMI. This action

generates a graph in real time using the selected sensors. A direct link is created between

the HMI and the middleware. This use case depends on UC13, UC14, UC01, UC03 and

UC05.

• UC08: Create Sensor: A user accesses the system and adds an external sensor using the

HMI. This action configures the history system for this sensor.

• UC09: Delete Sensor: A user accesses the system and deletes an external sensor using

the HMI. This action erases the history system for that sensor. The database data is

maintained.

• UC10: View Soft Real-time Machine External Sensor Data: A user accesses the system

and displays data from the machine's internal sensors using the HMI. This action

provides a graph in real time using the selected sensors. A direct link is created between

the HMI and the middleware. This use case depends on UC13, UC14, UC01, UC03 and

UC05.

78

• UC11: View History Data: A user accesses the system and displays a machine's internal

or external sensors’ history data, using the HMI. This action provides a graph with data,

within a defined time interval. The history service is responsible for inserting data into

the database, data which is then depicted by the HMI. This use case depends on UC13,

UC14, UC01, UC03 and UC05.

• UC12: View Analysis Data: A user accesses the system and views Analysis Data from

a machine’s internal or external sensor, using the HMI. This action provides a graph of

the error or alarm detected by the Data Analysis subsystem. The history service is

responsible for inserting data into the database, data which is then depicted by the HMI.

This use case depends on UC13, UC14, UC01, UC03 and UC05.

• UC13: Start Machine Internal Sensor Data: A user accesses the machine and starts the

software using the CNC. This action starts the machine software, which has the

responsibility of reading the internal sensor values of the machine and sending them to

the Local Edge.

• UC14: Start Machine External Sensor Data: A user accesses the Mantis-PC computer

and initiates the external sensor software. This action initiates external sensor software,

which is responsible for reading the values from the machine's external sensors and

sends them to the Local Edge. All external sensors use wireless technology.

• UC15: View Real-time data: A user accesses the Edge Local computer. This action

starts the software, which has the responsibility of connecting with the internal and

external sensors of the machines and collecting data values, making them available in

real time. This use case depends on UC13 and UC14.

• UC16: Send data to files: A user accesses the Edge Local computer and configures the

software (delay, join, sensor, file type, etc.). This action starts the software, which has

the responsibility of connecting with the internal and external sensors of the machines

and collecting the values and adding the information to the files. This use case depends

on UC13 and UC14.

• UC17: Receive data to analyze: A Data Analysis computer connects to the Middleware

to receive data from internal and external sensors of the machines. This action starts the

software that has the responsibility of analyzing all data and starting UC18, if necessary.

This use case depends on UC13, UC14, UC01, UC03, UC05 and UC08.

• UC18: Send alarms and errors of data analysis: A Data Analysis computer connects to

the Middleware to send data. This action initiates the software, which is responsible for

79

the errors or alarms related to the analyzed data of the internal and external sensors of

the machines. This use case depends on UC13, UC14, UC01, UC03, UC05, UC08 and

UC17.

As a side note, in this work we have also identified non-functional requirements as well.

However, we opted to not cover them all in this work but to only focus on the most relevant

categories into which they fit. Therefore, the most important non-functional requirements fit

into the following categories:

• Reliability: refers to the system’s integrity and conformity . The possibility of

forecasting with accuracy the average time of failures, as well as their frequency and

severity;

• Performance: evaluates the system’s development requirements. Several aspects can

be used as measurements, such as: response time, memory consumption and CPU

utilization.

5.3 Business Modeling

Given the complexity of the problem under study, it is important to understand the

problem domain and the main business entities that are part of it. Therefore, in a joint effort

with the project partner UNINOVA (Instituto de Desenvolvimento de Novas Tecnologias), the

 Domain Model, Event, Semantic and Data models were created.

5.3.1 Domain Model

The domain model, also designated by a conceptual class model, is an artifact that is

used in the business modeling discipline of RUP in order to decompose the problem domain

into different concepts. Therefore, it represents the conceptual entities of the domain and their

relations, thus allowing the definition of the domain’s vocabulary (Fettke & Loos, 2007).

The domain model diagram of the proposed solution is presented in Figure 17. Below

the entities of the domain model and their relations are described following a bottom-up

approach. This model is based on IoT-A model29 and has as its ambition the use of static

29 The IoT-A model provides a reference architecture for the Internet of Things with
applicability in industrial maintenance processes.

80

information through the transformation of the model Information that is represented by the

semantic model of the Chapter 6.

Figure 17 - Domain Model for the proposed solution (based on IoT-A model)

Let us start by defining the Attribute entity. Each Attribute has a specific name

(attributeName), a semantic type (attributeType) and one or more values (Value Container).

The Association entity keeps the information about the relation that is established between

Cyber Entity and the Functional Description entity, specifically through a Functional

Description – Cyber Entity association.

Each Value Container entity groups a single Value and zero or more Metadata

information units that belong to a given Value. Moreover, a Value is considered as a

measurement unit of a particular datatype, for example, a certain value can represent the oil

temperature of a give machine. The Metadata entity can be used in order to save the timestamp

of the Value, as well as other quality parameters, such as accuracy or the measurement unit.

The Functional Description entity stores information about the functionality of the

Cyber Entity. The Cyber Entity refers to an identifiable part of the physical environment that

potentially could be used by users to accomplish their goals. The connection between an

Attribute of a Cyber Entity and the Functional Description is only modeled through a

specific Association (e.g., the Functionality could act as a “get” function for an Attribute value

of the Cyber Entity).

81

The Device Description describes the Native Communication Library, which is

exposed by the Functionality. Nonetheless, the Resource Description might contain some

information regarding the Physical Entity, more precisely on which the Resource is hosted (e.g.:

the Physical Entity Description).

The User entity is a quite transparent one, considering that it refers to a human person

or to some kind of a Digital Artifact (such as a service, an application or a software agent) that

interacts with a certain Physical Entity. The Digital Artifact entity can be active or passive. It

is active when the artifact actively runs software applications, agents or services that may access

some other services or resources, and it is passive when the Digital Artifact is essentially a

passive software element, such as database or other digital representations of the Cyber Entity.

 A Cyber Entity is the representation of Physical Entities existing in the digital world

and/or in the cyber-space. These Cyber Entities present two fundamental properties, namely:

1) They may use the interfaces exposed by the Digital Artifacts, and through the User

entity they may interact with one or more Physical Entities. On the other hand, Physical

Entities are associated to different Cyber Entities. It is essential that each Cyber

Entity has one and only one ID, in order to univocally identify each Cyber Entity;

2) Cyber Entities are synchronized representations of a particular set of properties of the

Physical Entity. This means that all the relevant digital parameters that represent a

Physical Entity are included in the Cyber Entity.

Therefore, the Cyber-Physical System entity represents the composition of Cyber

Entities and Physical Entities. In other words, the Cyber-Physical System entity enables

everyday objects and/or devices that interact with the real world to be included in the system

under analysis.

The concept of Resource includes all entities that actuate over the Physical Entities.

Given the fact that it is the Functionality entity that makes a Resource accessible, the relations

established between Resources and Cyber Entities are modeled as associations between

Cyber Entities and Functionality. Resources can be classified into:

1) Network resource: includes the resources that are available through a network, as for

instance a database in a cloud system;

2) Native Communication Library: includes the resources that accesses sensor

information.

The Device extends the Physical Entity, thus allowing the latter to be a part of the

digital world. It provides the technological interface (Native Communication Library) to

82

interact with the Physical Entity. It is important to emphasize that Devices can be aggregations

of several devices of different types.

Finally, and complementing what has been previously presented, the Functionality

allows the user to indirectly interact with the Physical Entity. Therefore, it allows one to act

on Physical Entities and/or to provide certain information about them. However, the user needs

a client in order to access a particular functionality, such as a software with an accessible user

interface.

5.3.2 Event model & Semantic model

This subsection focuses on the event and semantic models for one the Machine

subsystem. Thus, the design of a generic event system which allows the registration of several

event handlers, describes the event flow and provides basic contextual information for each

event.

Thus, two standardized models were proposed in the project, namely the IoT-A model

and the Mimosa 30 . Mimosa model is oriented towards operations and maintenance in

manufacturing. However, the Mimosa Model has not been designed for Internet of Things

reason why it was not used. Although the adopted model is the IoT-A model the presented event

models and semantic model that are part of this section provide a partial mapping with the

Mimosa model. The diagram in Figure 18 specifies the proposed event model for the Cyber

Entity identified in the previous section. In this instantiation of the model, the Cyber Entity

represents the Machine subsystem identified in Subsection 1.1. In a machine’s context, the

machine itself generates events which are consumed by other entities in the system.

The relevant information related to each event is described below and depicted in the

Figure 18.

30 http://www.mimosa.org/

83

Figure 18 - Machine Event Model (based on Mimosa/IoT-A models)

Each event produced by a Cyber Entity has a timestamp, a unique identifier named

eventId, a sensor attribute (e.g., name, type) that has a unique identifier, and a container that

has a unique container identifier (containerId) and stores a data value (e.g., raw data from a

sensor). There is also location (i.e., physical space where the Cyber Entity is located) and a

unique identifier named eventDescriptionID that matches the static information with the event

itself. Through the usage of static information the amount of data transferred through the cloud

may be decreased.

Furthermore, the use of static information (Figure 19) allows the amount of data to be

reduced. This technique because we have a large amounts of data with very short acquisitions.

Figure 19 depicts the metadata (static information) modelling relative to the machine

event model Figure 18. In this way, the model refers to a sensor atribute that is part of a cyber

entity (Machine) and has as metadata the name, type, etc. The container also has associated

metadata and this metadata may have another associated metadata.

Finally, there should be metadata related with functional and resource descriptions

which would be added in the configuration of this component by the HMI.

84

Figure 19 - Machine Sensors Semantic Model (based on Mimosa/IoT-A models)

5.3.3 Database

The proposed solution uses a database to store the system information. This way and

following the SOA strategy, it is possible to choose the type of database according to the

business needs. As for the different types of databases, we highlight the relational databases

(the ones that use SQL as its main query language), the document databases (the ones that use

85

noSQL as its query language) and finally, the graph databases (there is no standard query

language yet adopted by this type of databases).

In the scope of this thesis there was the need of selecting a database engine to be used

by the several subsystems identified above. The process of selection that was used is based on

the strengths of each database type. Table 9 presents proposed types of databases that could be

adopted for the proposed solution.

Table 9 - Types of Databases

Subsystem – Information to store Type of database
HMI - Authentication Database Relational
Sensors (internal and external) - Metadata,
Other relevant information

Documental

Data Analysis - Data Analysis Information Relational or Graph

According to the context, there are more suitable databases than the relational-type. For

instance, document-type databases are more suitable for content catalogues, since they enable

faster readings. As for the graph-type ones, these are ideal to represent both the data and their

connections. Hence, these are quite useful when constructing the mechanism that allows the

access to detection, prediction and diagnosis models (Fong, Wong & Cheng, 2003).

Despite the proposed databases, all the partners involved in this project decided to use

a single type of database in order to improve the development speed. This reason justifies the

choice of a relational-type database, along with its Entity-Relationship model31.

Figure 20 presents the Entity-Relationship model that represents the Cyber-Physical

System universe depicted in the domain model of subsection 5.3.1. As a side note, the structure

of the HMI and Data Analysis subsystems is not contemplated in the proposed model below,

as they are developed by other partners.

31 The Entity/Relationship model is constituted by several entities and by the relationships
that are established between them.

86

Figure 20 – Entity-Relationship model of the proposed solution

5.4 Design and architectural patterns

Throughout this thesis several architectural patterns were used in different parts of the

system. The relevant patterns are identified next:

• Single Responsibility Principle: This pattern determines that each module or class

must bear responsibility for a well-defined part of the features provided by the

application. This pattern is applied in the development of all the system components.

• N-Layer: This pattern separates the responsibilities in different layers. This pattern is

applied in the development of the History and Manager Components.

• Inversion Control (or Dependency Injection): This pattern allows the creation of a

modular application, which facilitates testing. This pattern is applied in the development

of the Manager Component.

• Broker pattern: This pattern provides access to all the distributed services, through the

high-level message exchange between software objects. This pattern is applied in the

Middleware component.

87

5.5 Conclusions

The proposed analysis for the problem under study was presented in this chapter by

establishing a connection between the proposed architecture, system actors and system

components. The subsystems, components and communication protocols were identified and

described. Moreover, the business model for the problem under study was presented, including

the main business entities.

Next chapter details the design and implementation of the entities identified in this

chapter.

88

6 Design & Implementation

In RUP, after the Requirements Engineering phase there is the discipline of Analysis

and Design. In the previous chapter the Analysis was covered. In this chapter, we present the

adopted design decisions, the used patterns and rules, followed by a discussion of the design

alternatives. Furthermore, in RUP, the implementation phase of the life cycle of a software

product follows the Analysis phase. Hence, in this chapter we also cover the implementation

details, including the hardware/software requirements of the installation, examples of the

component’s instantiation and their functionalities.

All of its components followed the principle of single responsibility, more precisely to

avoid the attribution of several responsibilities to a single class and the unwanted coupling and

resistance to change when introducing those new attributes.

In the following subsections, each subsystem and its components are described in detail

(please refer to Figures 14 and 15 for a visual guide on the components diagram) and ends with

the deployment view of the solution. Since implementation and design cover many components

of each subsystem that have been integrated into work packages deliverables of the MANTIS

project, only the most relevant details are presented.

6.1 Machine Subsystem

This subsystem depicted in Figure 21 is composed by several components, such as the

OPC-UA-Server that communicates with the OPC-UA-Client in an Edge Local subsystem via

OPC-UA protocol. Moreover, within the Machine subsystem there is a component named

CNCBender which is monitored by OPC-UA-Server. Furthermore, ADIRA request a

preliminary solution for the Machine subsystem and a description of the implementation is

available in Appendix B. The preliminary solution provides limited functionalities that are

covered by the solution of this thesis.

89

Figure 21 - Machine Subsystem

6.1.1 OPC-UA-Server Component

The class diagram of the OPC-UA-Server component is presented in Appendix-E. The

base class is the Server class which contains information about credentials and network

parameters. This base class incorporates elements of the File and Menu classes. The

ShareMemory class is not represented in the class diagram since it was developed in partnership

with an employee of the ADIRA company.

The use of a server by a user triggers a complex sequence of operations, more precisely,

the ones related to the reading of several parameters that are written within the files’ properties

and to the storing of those same parameters in the memory (Figure 22).

Furthermore, this functionality is responsible for the integration of the Information

Model within the Server Address Space, as well as for the static writing of this same model,

more precisely by reading the shared memory of the log files.

90

Figure 22 - UML sequence diagram that presents the initialization of the OPC-UA server

Furthermore, this specific component uses the primitive Data Types of the OPC-UA

protocol, namely the UA_TYPES_STRING, the UA_TYPES_INT32, the UA_FALSE or the

UA_TRUE and the UA-DATETIME, thus not being necessary to create specific object types.

Regarding its connection, it is established by TCP/IP, by using a Secure Channel and a Session

with the same structure of the OPC-UA binary messages.

The graphic interface (Figure 23) of the OPC-UA servers provides the following

functionalities:

1) Start Server

2) Stop Server

3) Connected Clients

4) Access Credentials

5) User Manual

6) Development Guide

7) Copyright

91

Figure 23 - User Interface of OPC-UA server

The implementation used the C++ Programming Language, which created an

application project that used, in turn, the NetBeans IDE. It is essential to add that such

application project was developed in the Windows 10 operating system, more precisely by using

the Cygwin10 compiler, which targets the Windows XP operating system to be complaint with

CNC Bender Component.

Furthermore, this project also used some external libraries, specifically Boost and

Cppunit, which were installed via Cygwin (therefore, they must be compiled in the target

Operating System). Even though the OPC-UA implementation (open6254132) was developed

in the C language, there were no compatibility issues in the integration of the project.

It is quite important to add that this component uses a configuration file (config.ini)

which defines several parameters of the software, specifically files, connection, settings and

variables (Figure 24).

32 https://open62541.org/

92

Figure 24 - OPC-UA server Component - Config File

All the data were modelled according to the OPC-UA standard, thus resulting in the

following information model33, which was, in turn, modelled in the Address Space Server34:

1) Device root

a. machineId - UA _STRING

b. timestamp - UA_DATETIME

c. sensorsarray - UA _INT32 (array)

As soon as it starts, this software defines the structure of the information model and

loads the values for that same structure, providing default values for the timestamp and

sensorsarray of the Share Memory and of the Log files. Furthermore, this software also uses a

thread, to execute and load all the data in a loop (which is defined in the config.ini file), as it is

shown in Figure 25.

33 https://open62541.org/doc/0.2/information_modelling.html
34 https://open62541.org/doc/current/types.html

[files]
dir=files
tmpdir=files\tmp
currentFile=12052017.log
currentLine=26265
[connection]
port=16664
username=adira
password=mantis
[settings]
machineId=M0000017
dataAccess=files
period=1000
[vars]
var1type=UA_DateTime
var1isArray=false
var1Name=timestamp
var2type= UA_ DATETIME
var2isArray=false
var2Name=machineId
var3type=UA _INT32
var3isArray=true
var3Name=sensorsarray

93

Figure 25 - OPC-UA server Component - UA_SERVER Start

6.1.2 CNC Bender Component

Regarding this component’s responsibility, it has been previously described, in the

Machine Subsystem’s section 6.1. Nonetheless, it is important to specify that it uses a Windows

XP operating system, which no longer is supported. Security is a very relevant factor and the

OPC-UA server Component uses an authentication method to restrict access on the exposed

data.

This component uses the AdControl50 version. Afterwards, which were collected about

this particular software, considering that they conditioned the choice of the used technology in

the OPC-UA server Component. We can easily verify that the Operating System is

discontinued, bringing security problems, and that the hardware (processor, memory and hard

disk) actually influences the performance.

/**
 * Starts the UA_Server with the appropriate config,
 * executes the manually Define Device information model
 * and a thread that writes Static Variables
 * @return UA_StatusCode
 */
UA_StatusCode Server::start_ua_server() {
 UA_StatusCode retval;
 this->running = true;
 try {
 signal(SIGINT, stopHandler); /* catches ctrl-c */
 this->nl = UA_ServerNetworkLayerTCP(UA_ConnectionConfig_standard, this->port);
 config = UA_ServerConfig_standard;
 config.networkLayers = &this->nl; // NetworkLayer TCP
 config.networkLayersSize = 1;
 // defines the user authentication
 config.enableUsernamePasswordLogin = UA_TRUE;
 config.usernamePasswordLogins->username = UA_STRING(this->username);
 config.usernamePasswordLogins->password = UA_STRING(this->password);
 config.enableAnonymousLogin = UA_FALSE;

 this->_server = UA_Server_new(config);
 this->manuallyDefineDevice(this->_server);
 // thread that handle the static variables of the infoemation model
 this->thread_server_writeSV = new boost::thread(&Server::writeStaticVariables,
this, this->_server);
 this->thread_server = new boost::thread(&Server::runUA, this);

 } catch (const std::exception& e) {
 cout << "\n\n Error Server::start UA server " << e.what() << endl;
 this->running = false;
 return retval;
 }
 return retval;
}

94

6.1.3 Sensors Component

The Sensor Component is constituted by two accelerometers, which are essentially off-

the-shelf sensors, monitoring the blade that actually performs the bending of the metal sheet.

The Machine Subsystem is where the two sensors are highlighted, considering that the sensors

collect the data from the own movement of the blade in the press, especially from the vibration

patterns that are caused by the hydraulics. In fact, and given the fact that the vibratory pattern

can be associated to the condition of the machine’s bending motors, the collected data can be

used in order to perform PM of the machine.

For instance, if the hydraulic pistons start malfunctioning, possibly due to the existence

of some particles in the oil, then a different vibration pattern can be detected. Nonetheless, these

same sensors can be placed on a different machine location, for example for malfunction

diagnosis.

One of the project’s requirements was related to the use of specific sensors with

Bluetooth 4.0 in order to measure both the noise and the acceleration. Therefore, after analysing

and testing the available hardware, the Micaz and TelosB sensors using the Tinyos operating

system, we concluded that they did not meet the mentioned requirements due to battery

consumption problems.

Hence, we selected the new Arduino 101 based on its specifications, such as its low

energy consumption, its reasonable CPU and its memory capabilities.

The specifications of Bluetooth 4.0 introduce the Bluetooth Low Energy (BLE). BLE is

optimized for low power use at low data rates, and was designed to operate from simple lithium

coin cell batteries.

The Bluetooth LE protocol operates on multiple layers. General Attribute Profile

(GATT) is the layer that defines services and characteristics and enables

read/write/notify/indicate operations on them. The Figure 26 depicts the interaction between

peripheral and the central, where the peripheral is the GATT server (since it provides the

services and characteristics), while the central is the GATT client.

95

Figure 26 - BLE - General connected topology

Despite our architecture considers that the BLE devices connect to a single Mantis-PC

(Central Device), the GATT protocol would allow the Peripheral Devices to connect to multiple

Mantis-PCs when and if necessary.

Figure 27 - Context Diagram for the Sensors (Arduino 101) proposed solution

Figure 27 depicts accelerometers (2 x Arduino 101) broadcasts the Inertial Measurement

Unit (IMU) of the data collected by the accelerometers, using the GATT protocol via BLE for

Mantis-PC (Raspberry PI 3 Model B).

The sensors are prepared to only initiate the sending data once they are paired with the

Central Device (Mantis-PC). They must use Arduino Low Power strategy, in order to make

better use of the battery. For the present project, two sensors are used to detect unevenness

96

between axis of the machine as well unexpected vibration. They are able to perform self-

calibration, synchronization and security by validating the UUID of the exposed services.

The sensors are based on the Arduino 101 platform, which provide a 3-axis

accelerometer with a maximum amplitude range of 8g. They are powered by two 9V batteries

(Figure 28), to ease the components’ installation and testing. In this pilot case, the sensors were

configured for a lower measurement range (between 0 and 2g), aiming to attain a better

accuracy. The CurieBLE library35 is used to support communication between the sensors and

the Mantis-PC by using of the Generic Attribute Profile (GATT). According to some

preliminary experiments, the maximum distance for this technology is 30 meters, which is

compatible with what is stated in the BLE specifications.

Figure 28 - Sensor Component Hardware

Regarding the data conversion, raw values are mapped to the 2g range (-2g maps to a

raw value of 32768 and +2g maps to a raw value of 32767), as it is depicted in Figure 29. This

module sends information to the BLE server Component of the Mantis-PC Subsystem, which

forwards that same information to the Edge Local Subsystem, witch is the exit point to the

Cloud. On the other hand, the HMI Subsystem makes available an interface that is based on

the Highcharts36 library, enjoying the “full-responsiveness” capability and providing data.

35 https://www.arduino.cc/en/Reference/CurieBLE
36 https://www.highcharts.com/

97

#define IMU_NODE1_SERVICE_UUID "2947ac9efc3811e586aa5e5517507c66"
#define ACC_NODE1_CHAR_UUID "2947af14fc3811e586aa5e5517507c66"
// compare and correct values
unsigned long microsPerReading, microsPrevious; float a[3];

// Arduino 101 acts as a BLE peripheral
BLEPeripheral blePeripheral;
// IMU data is registered as a BLE service
BLEService imuService(IMU_NODE1_SERVICE_UUID);
// Each IMU data point is its own characteristic
BLECharacteristic accChar(ACC_NODE1_CHAR_UUID, BLERead | BLENotify, 12);
// Assign pin to indicate BLE connection
const int INDICATOR_PIN = 13;
int aix = 0; int aiy = 0; int aiz = 0; long previousMillis = 0;
int gix, giy, giz; // error in readMotionSensor

void setup() {
 Serial.begin(9600); // console write
 // Initialize IMU
 CurieIMU.begin();
 CurieIMU.autoCalibrateAccelerometerOffset(X_AXIS, 0);
 CurieIMU.autoCalibrateAccelerometerOffset(Y_AXIS, 0);
 CurieIMU.autoCalibrateAccelerometerOffset(Z_AXIS, 1);

 // Set the accelerometer range to 2G
 CurieIMU.setAccelerometerRange(4);
 // initialize variables to pace updates to correct rate
 microsPerReading = 1000000 / 25;
 microsPrevious = micros();

 // Initialize BLE peripheral
 blePeripheral.setLocalName("IMU");
 blePeripheral.setAdvertisedServiceUuid(imuService.uuid());
 blePeripheral.addAttribute(imuService);
 blePeripheral.addAttribute(accChar);
 const unsigned char initializerAcc[12] = { 0 };
 accChar.setValue(initializerAcc, 12);
 ...
 // Now, activate the BLE peripheral
 blePeripheral.begin();
}

void loop() {
 // Check if the connection to the central is active or not
 BLECentral central = blePeripheral.central();

 if (central) {
 unsigned long microsNow

 microsNow = micros();// check if it's time to read data and update the filter

 digitalWrite(INDICATOR_PIN, HIGH);

 while (central.connected()) {
 if (microsNow - microsPrevious >= microsPerReading) {
 updateImuData();}
 ...
 // increment previous time, so we keep proper pace
 microsPrevious = microsPrevious + microsPerReading;
 ...}
 ...
 digitalWrite(INDICATOR_PIN, LOW);}
...

Figure 29 - Sensor Component - Partial Node Code

98

At an early stage, a simulator was created in order to facilitate the testing of the two

Sensor Components. Furthermore, the tests also assessed real-world scenarios, specifically at

ADIRA (Figure 30). The obtained data, which comprehended different periods (20/30 and

100ms) were truly important to assess the sensors’ precision, as well as the intensity of the noise

that was detected.

Figure 30 - Sensor Component - Simulator and Tests in real-world scenarios (ADIRA
company)

6.2 Mantis-PC Subsystem

This subsystem is composed by two distinct components (Figure 31), namely the OPC-

UA server Component and the BLE server Component, which run in different instances and

exchange information through sockets.

In terms of its responsibilities, the BLE server Component receives data from the

Sensors Component, sending it to the OPC-UA server Component, which in turn places the

data in the Address Space Server. Regarding the hardware of this subsystem, it is important to

emphasize that an economic version was used, namely to test the component (the same that

occurs in the Sensor Component). If it is necessary to pre-process the data or to perform a local

history, then the hardware must be improved.

These components act as an intermediate point collecting the data obtained by the

machine's external sensors. Afterwards, the converted data is sent to the local Edge, with a

minimum period of 30 milliseconds, using the OPC-UA protocol and the OPC-UA data

structure. In the present project, we use the Raspberry PI 3 Model B hardware (Figure 28) with

the Raspbian Operating System, which is based on Debian distro.

99

Figure 31 - Mantis-PC Subsystem

6.2.1 OPC-UA Server Component

This particular component presents the same structure of the OPC-UA Server

Component, which was described in the Machine Subsystem section 6.1. Nonetheless, all data

that is loaded into the Server Address Space is realized through the BLE server component. In

turn, the communication between components is fulfilled through socket.

6.2.2 BLE Server Component

This component is responsible for receiving data from the sensors, as well as for the

conversion and sending of that data to the OPC-UA server Component of this Subsystem.

Considering that we use a new technology, there is only one library in Node.JS37 that is

capable of acting as a BLE server (Central Device). Therefore, such component uses a server

side JavaScript program, which is built over Node.JS, and the library collects values from both

sensors. However, this particular functionality is also responsible for the connection with the

Socket server that is provided by the OPC-UA server Component, which is represented in

Figure 32, thus sending all the messages that it receives from the Machine Subsystem Sensors

Components.

37 https://nodejs.org/en/

100

Figure 32 - UML Sequence Diagram for BLE server

Furthermore, the noble library was used to instantiate the BLE server (Figure 33) that

connects it to the peripherals that have the service adequately registered (SERVICE_UUID).

This is one way to ensure that no malicious software connects to the central.

Another responsibility of this component is to convert the received raw values (-2g maps

to a raw value of 32768 and +2g maps to a raw value of 32767) and to send them to the OPC-

UA server Component by the net library.

101

Figure 33 - BLE server Component - Partial noble Code

/*
 |--
noble
A Node.js BLE (Bluetooth Low Energy) central module.
 */
// #peripheral's service and characteristic UUIDs - node 1#
var IMU_NODE1_SERVICE_UUID = '2947ac9efc3811e586aa5e5517507c66';
var ACC_NODE1_CHAR_UUID = '2947af14fc3811e586aa5e5517507c66';

// #peripheral's service and characteristic UUIDs - node 2#
var IMU_NODE2_SERVICE_UUID = '11a6779eb70b11e680f576304dec7eb7';
var ACC_NODE2_CHAR_UUID = '11a67a64b70b11e680f576304dec7eb7';

noble.on('stateChange', function (state) {
 if (state === 'poweredOn') {
 // BLE scan..
 ...
 noble.startScanning([IMU_NODE1_SERVICE_UUID, IMU_NODE2_SERVICE_UUID], false);
 ...
 } else {
 // Cannot scan... state is not poweredOn
 noble.stopScanning();
 }
});

// #Discover the peripheral's IMU service and corresponding characteristics#
noble.on('discover', function (peripheral) {
 noble.stopScanning(); // avoid block
 ...
 peripheral.on('disconnect', function () {
 peripheral.disconnect();
 });
 peripheral.connect(function (error) {
 if (error) {
 peripheral.disconnect();
 console.log(error);
 }
 // Connected to peripheral
 peripheral.discoverServices([IMU_NODE1_SERVICE_UUID, IMU_NODE2_SERVICE_UUID],
function (error, services) {
 var imuService = services[0];
 // Discovered IMU service
 imuService.discoverCharacteristics([], function (error, characteristics) {
 ...
 characteristics.forEach(function (characteristic) {
 // Emitting Sensor Data
 emitSensorData(characteristic, peripheral.uuid);
 });
 });
 ...

102

Figure 34 - HMI Subsystem - Sensors Soft Real-time visualization

In Figure 34 we can verify the visualization of the sensors’ data in soft real-time. These

data were sent by two Sensors Components and transmits with a period of ~30ms and sent to

the Edge Local Subsystem (OPC-UA Client Component) through the OPC-UA server

Component. Afterwards, the Edge Subsystem sends them to the Middleware Component, which

allows the HMI to access the Middleware Component and to receive those data (some details

regarding this implementation/integration are presented in the subsection on the Human

Machine Subsystem implementation).

6.3 Edge Local Subsystem

This subsystem is composed by three components (Figure 35): the Node-Red, the OPC-

UA Client and the Middleware Client. The Node-Red is responsible for instantiating and

connecting all the entities (both machines and industrial assets) that are available in the shop

floor. Such machines and assets are virtualized in terms of their capabilities in order to facilitate

and enhance the process of exchanging data (machine data readouts). On the other hand, the

HMI service module is responsible for provide a web application with all necessary information

that is generated within the Edge Local Subsystem (Devices available and machine data

readouts). At last, the Middleware Client operates as a gateway, allowing the indirect

connection between the machines in a factory flow and the Middleware, which performs Data

Analysis and supports advanced HMI features.

103

The Edge Local Subsystem is composed by three different components, namely the

Node-Red Component, the OPC-UA Client Component and the Middleware Client Component,

being these last two added by the first one.

Considering their responsibilities, we can conclude that the Node-Red Component and the

OPC-UA Client Component receive data from the Address Space Server, from one or more

OPC-UA server Components, while the Middleware Client Component sends data to the Cloud

(Middleware Component).

Figure 35 - Edge Local Subsystem

6.3.1 Node-RED Component

This component uses a software tool that was developed by IBM, specifically to wire

hardware devices, APIs and online services as a part of IoT environment (the Node-Red

provides a user interface that is quite revolutionary in the field, matching with the Local HMI

(Figure 36).

The Node-Red creates an application by using Nodes, which present special capabilities

individually. As an example, there are several Nodes that are capable of reading and writing

files, http pages, emails, twitter messages and connects to Middleware Clients. At the present,

the Node-Red has about 40 out-of-the-box Nodes. With a simple drag-and-drop operates a

workflow it is possible to create a Node within the application, as well as to configure it and

connect it with the remaining Nodes, thus forming a network. Figure 36 presents an illustration

of the workflow of the message states among the several Nodes.

104

Figure 36 - UML state diagram for Node-Red component

This Workflow is responsible for instantiating a Node at the OPC-UA Client, which

actually listens to 3 different types of inputs (in the defined Information Model), joins them,

eliminates all duplicates, aggregates several messages (that are received 30ms and are

aggregated in to 1s arrays), filters the data for and sends to files, instantiates Interoperability

Models (Boukouchi et al., 2013) and sends them to the Cloud, namely by using the Node related

to the Middleware Client.

Furthermore, it is relevant to add that in this same flow there are Nodes with different

delays, being also possible to configure its graphics according to different cache sizes.

However, the Nodes that are presented in this particular Workflow are the Middleware Client

and the OPC-UA Client components, which are a part of this subsystem.

This component has a “Node-Red” dependency that provides a flow with several Nodes,

following the structure that is defined in the design.

In order to satisfy the needs of the solution, the following flow was created (Figure 36),

where we can visualize these Nodes:

• Sensorsarray, machineld and timestamp, that are of type Inject Node, configured with

the adequate topic (e.g.: ns, datatype) and a repeat interval that defines the period of

pooling (e.g.: 100ms);

• OPC-UA Client is of type OPC-UA Client Node, using the appropriate End Point

settings and the credentials of the OPC-UA server Component. Furthermore, this Node

105

uses the previous one to point to the Address Space Server variables of its OPC-UA

server Component;

• Clean-Payload is of type Function Node, being responsible for the removal of characters

(e.g.: “;”), which are incompatible with the topic conversion with the JSON format;

• Join is a Join Node type, being responsible for the aggregation of Nodes messages. In

this particular case, it would be the payload of the Inject Nodes per key/value;

• PayloadY1, PayloadX1, and PayloadZ1 are of type Function Nodes, and in this

particular flow they serve as an example of filtering one or more variables of a join;

• Delay is a type of Delay Node, being responsible for the creation of the desired delay in

the graphics;

• All Value* and Chart* are of the Gauge Node and Chart Node respectively, being

responsible for making the data of different types available on the dashboard (Figure

37);

• Merge-Payload and Erase-duplicate-Payload are of the Function Node type and are

responsible for pre-processing the data (e.g.: clearing repeated and invalid data) and for

transforming the OPC-UA model into an Interoperability model (MIMOSA/IoT-A);

• Logs and csv (“json to csv converter” are not used for incompatibility issues of the

different topics) are of File Node type and have the responsibility of sending the payload

message to files of different formats;

• Msg. payload is of type Debug Node, being responsible for debugging one or more

Nodes;

• RabbitMQ is the AMQP Out Node type and is responsible for sending messages to the

Cloud (Middleware Component).

106

Figure 37 - Node-Red component - Flow

In order to visualize the graphs (Gauge and Chart), a dashboard plugin was used to

create a web page, which is presented in Figure 38. The figure features examples of those same

graphs, even though they are differently configured. The graph can show the delay (refresh

rate), the number of variables (second column has two variables, Y1 and X1) and cache (data

history time).

Figure 38 - Node-Red component – User Interface

6.3.2 Middleware Client Component

This component acts as a gateway that connects to the Cloud, to the Middleware

Component, which is a part of the Edge Server Subsystem with the OPC-UA Client

component.

107

After conducting a specific analysis, the “Node-Red AMQP38” was chosen, due to the

fact that it only works with the Producer. Essentially, the Node-Red AMQP is a Node-Red

package that directly connects to an AMQP server (e.g.: RabbitMQ), containing an input, an

output and a configuration node in order to connect to the AMQP exchanges or queues to the

Node-Red.

Delivers incoming the message payload to the specified exchange or queue. It expects

an object called msg containing the following fields:

• msg.payload: string or an object containing the content of the AMQP message to be

sent;

• msg.topic: string containing the routing-key of the AMQP message to be sent;

• msg.options: object containing specific AMQP properties for the message to be sent,

see the amqplib publish documentation for more information.

If a topic is defined in the output node definition, that it is sent as a routing-key instead

of the msg.topic. If the msg.payload field does not exist, the whole msg object is sent. In the

settings, it is only possible to define the exchange type or queue, as well as its name. Hence, if

it is necessary to use an exchange or a queue with some specific settings, it is possible to define

the exchange or queue in the topology tab of the AMQP server configuration node. Thus, the

output node uses the exchange or queue that was previously defined in the topology.

6.3.3 OPC-UA Client component

This component is responsible for the connection to the OPC-UA servers through

TCP/IP with the OPC-UA protocol, namely by using the OPC-TCP binary as a transport. After

some analysis, it was concluded that there was only one implementation of a “node-red-contrib-

opcua” client for the Node-Red, which is, in turn, based on node-opcua.

The Node-opcua is a Node-Red package that takes advantage of the asynchronous nature

of the node.js, creating highly responsive applications. Furthermore, it has been developed

using Test-driven development (TDD) and other benefits from more than 1200 unit tests and

96% code coverage. It is also relevant to add that the NodeOPCUA 39 uses Travis as a

continuous integration service.

Let’s highlight the following functionalities:

38 https://www.npmjs.com/package/node-red-contrib-amqp
39 http://node-opcua.github.io/

108

• Discovery Service

• Secure Channel Service

• View Service

• MonitoredItems Service

• Subscription Service

6.4 Data Analysis Subsystem

This subsystem is constituted by the Analysis component developed by another project

partner and the Middleware Client Component developed by the author of this document

(Figure 39).

Figure 39 - Data Analysis Subsystem

6.4.1 Middleware Client Component

The Middleware Client Component acts as producer and consumer of the Middleware

Component. The consumer receives data from all sensors in the several plants through the

Middleware Component, which is later on processed by the Analysis Component.

Finally, the producer sends the detection of the prognosis and of the diagnosis of all the

identified machine failures to the Middleware Component.

In the Middleware Client class diagram of Appendix-F presents the structure that allows

an ease integration with different types of messages, as well as the simple integration of this

same component into an existing project, which also allows its own configuration through a

configuration file.

On the other hand, Figure 40 illustrates the Consumer of the Middleware Client

Component, more precisely in the context of the system of messages exchange between several

objects.

109

Figure 40 - UML Sequence Diagram - Middleware Client Component (Consumer)

This component was developed in the Java language using Netbeans IDE, and uses the

AMQP protocol, more precisely a client of the RabbitMQ implementation. Regarding the

message topology, it is based on AMQP topics for sake of flexibility, as defined by the

Middleware Component.

The main capabilities and responsibilities of these components are:

• Configuring properties in file, namely, Server IP address, files export paths, queues,

exchanges, routing keys;

• Connecting to queues using AMPQ Server and collecting or sending data;

• Making a request using a data interval to collect data from the RPC Server using RPC

messages pattern;

• Converting the messages to interpret data;

• Collecting data into CSV files (optional).

According to all the specifications presented so far, this implementation followed good

practices of programming and design patterns. In Figure 41 we can see the Endpoint class,

which is responsible for creating the connection to the Middleware Component, specifically

through a ConnectionFactory. Therefore, this class can be used by both clients

(producer/consumer) of this component.

110

Figure 41 - Middleware Client Component - Partial Client Connection Code

Finally, it is mentioned that this component actually allows the integration of the Data

Analysis Subsystem with the HMI Subsystem, which makes it possible to visualize the

errors/alarms in the analyzed data, specifically through a graph (Figure 42).

...
public abstract class EndPoint {
 // The config file parameters
 protected Map<String, List<String>> valueMap;

 protected Channel channel;
 protected Connection connection;
 protected String ROUTING_KEY;
 /**
 * Instantiates a new end point.
 *
 * @throws Exception the exception
 */
 public EndPoint(String type) throws Exception {
 this.valueMap = Configs.getParametersMap();
 ConnectionFactory factory = new ConnectionFactory();
 // hostname of your rabbitmq server
 factory.setUri(valueMap.get(type).get(0));
 factory.setRequestedHeartbeat(60);
 factory.setConnectionTimeout(
 Integer.parseInt(valueMap.get("CONNECTION_TIMEOUT").get(0)));

 // attempt recovery every 10 seconds
 factory.setNetworkRecoveryInterval(10000);
 factory.setAutomaticRecoveryEnabled(true);

 // getting a connection
 connection = factory.newConnection();
 // creating a channel
 channel = connection.createChannel();
 //declare exchange, queue, binding
 channel.exchangeDeclare(valueMap.get("EXCHANGE_NAME").get(0), "topic");

 }

 /**
 * Close.
 *
 * @throws IOException Signals that an I/O exception has occurred.
 */
 public void close() throws IOException {
 this.channel.close();
 this.connection.close();
 }
...

111

Figure 42 - HMI Subsystem – Data Analysis visualization

6.5 Edge Server Subsystem

This subsystem is composed by several components, such as History, Manager,

Database and Middleware, as well as the HMI Subsystem with the respective components

(Figure 43).

In order to be able to develop and implement the proposed subsystem, the first step is

related to the configuration of the Windows server 2012, both for the project and its services:

• IIS: web server (Microsoft), where the HMI subsystem is deployed;

• FTP: to transfer files, thus facilitating the deployment/configuration of all components;

• RabbitMQ (Middleware Component): it is a message broker that works as the primary

node. The remaining cluster nodes are located on other servers;

• SQL (Database Component): it is a database relational that is used by the History

Component and by the HMI Subsystem.

It should be noted that, even though Appendix-G suggests the hardware for this

component, this server should be easily scalable, which justifies the suggestion of using, for

example, a server that is hosted in the Azure10.

112

Figure 43 - Edge Server Subsystem

6.5.1 Middleware Component

This component manages the data by storing and transporting them between the Edge

Local, the Data Analysis and HMI modules. The communication used in this component obeys

the message-oriented paradigm, and messages between components are transported over an

Advanced Message Queuing Protocol (AMQP) messaging bus (defined on chapter: “Evaluation

of solutions and Existing Approaches”).

Of the four most popular AMQP implementations, namely ActiveMQ, RabbitMQ,

OpenAMQ, Apache’s Qpid the choice fell on the RabbitMQ platform. RabbitMQ is an open

source platform that implements all the features of AMQP protocol, provides user-friendly

configuration tools and useful extensions to the protocol. Furthermore, it enables secure

communication between applications and includes interfaces for several major programming

languages, enabling them to communicate through the same message broker.

Initially manufactured by Rabbit Technologies Ltd., RabbitMQ increased its market

penetration after being released to the open source community. Since then it has offered

scalable, robust messaging with flexible routing and high availability. This platform fits the

requirements of the project primarily for its routing capabilities using the queue structure, and

for being equipped to handle a high volume of concurrent operations.

The basic elements used to build message distribution systems are the exchange and the

queue. The exchange is the recipient of a message from a message producer, and its duty is to

113

deliver the message to one or more queues, the latter being buffers from which the message

consumers must pull the messages. An exchange can be connected to multiple queues, and the

exchange can be configured to treat messages in different ways, such as relaying the messages

to the queues in a round-robin fashion or broadcasting the messages to all the queues. Finally,

the decision on which queue(s) receives each message from the exchange, is done by means of

a routing key, which is a meta-datum assigned to each message.

The RabbitMQ platform is fault tolerant since, if a message delivery fails, the queue

buffers the messages and retransmits them when the message consumer is back online.

Moreover, if the broker malfunctions, messages in the queues are not lost since they can be

saved in the persistent memory of the broker.

In order to provide data acquisition from machines in different locations, and as

suggested in RabbitMQ documentation, the Producer/Consumer design pattern should be used,

together with a clear definition of the message format.

Figure 44 – Context Diagram of Middleware Component

In the implemented communication subsystem, RabbitMQ is the AMQP Broker the

Figure 44 exemplifies multiple Producers publishing messages using different routing keys to

the topic and the topic, these messages are redirected to each queue and finally are delivered to

the respective consumers. Remote Procedure Call (RPC) mechanism is also utilized, it allow

running program functions on remote computers.. Finally, the management rest API is available

and provide the configuration on the Middleware Component via HTTP/HTTPS.

114

Figure 45 - Middleware Component Queues Structure

The middleware was configured using a topic exchange topology since it supports

various publish/subscribe patterns that facilitate message routing. More specifically, this

topology can route the same message to multiple queues by matching the message routing key

and a queue pattern. Consequently, this allows sending the same message to all queues whose

pattern matches the routing key. This is required because several modules must consume the

same data. Figure 45 depicts the queues, the modules publishing to those queues and the

module consuming from those queues.

Each factory (identified by its FID tag) monitored by this system has its own set of

independent queues to where its data is published with different encryptions keys by each

factory. The queuing system, for each factory, is composed by three queues (CPSSensorsFID,

MachineSensorsFID, MachineInfoFID) and a unique topic exchange. This configuration allows

the separation of data from different factories, which may belong to different owners. Thus,

coping with privacy concerns of the factory owners which do not allow sharing production-

related information with other concurrent in the same markets. Additionally, it provides

115

increased flexibility if in the future there is the need to support the middleware over a computing

cluster – i.e. this solution supports the scalability of the system.

The MachineSensorsFID queue handles data from the internal sensors of all CNC

machines in a factory. The MachineInfoFID handles data from the CNC machine databases.

This database contains information about the operations performed by the machines and any

event detected by its control program. The CPSSensorsFID queue handles data from sources

externals from the Machine, whose data is collected by the Mantis-PC Subsystem. By the way,

sensors publishing information to this queue are wireless devices that collect information

related to the moving parts of the machine, and are not integrated into the machine control

system.

The communication infrastructure also comprises queues to feed data into the Data

Analysis Subsystem and from this module to the HMI Subsystem. The Data Analysis

Subsystem receives a copy of the data published to the CPSSensorsFID and

MachineSensorsMID queues from each factory, which is used to run a series of different

analysis on the data and publishes results concerning alarms and errors to the CPSSensorsDA

and MachineSensorsDA queues. The StatusMsg queue handles data sent from the Data

Analysis Subsystem to the HMI Subsystem, convening information regarding the data that has

been processed by the Data Analysis Subsystem. Note that this processing can be time

consuming.

All data are stored on a database, structured upon the MIMOSA /IoT-A open standard

for operations and maintenance in manufacturing. Due to its volume, historical data is only

stored for ~ 5 months before being deleted or backed up. The calculations leading to this design

decision are detailed in the section.

The Factory ID (FID) parameter referred in each queue, identifies the factory from

where data comes from. It is unique and allows, together with other credentials (user name,

password, etc.) for the Edge Local in a factory to connect to the middleware. Similarly, data

consumers must also know the FID and connect with their own credentials.

Furthermore, the HMI is able to configure all these queues for each factory through a

Representational State Transfer (REST) API, being able, for example to create a factory queue

structure, as described above.

The queues are configured to temporarily retain messages for a given time to live (TTL)

period of 3 hours, thus avoiding an excess of in-memory data if no subscriber reads the

messages.

116

Also note in Figure 46 that the connections in green represent the usage of the STOMP

over WebSockets protocol in order for the Web-based HMI to be able to connect with

Middlware. All other connections in grey colour are supported over AMQP protocol.

As a matter of fact, it has been configured to use SSL and its supporting plugins. It is

important to add that the Management Plugin provides a User interface, as well as the REST

API that is consumed by the RabbitMQ-Core via HTTPS. Several tests were performed on

different Operating Systems (Windows/Linux), on which the Middleware always responded

without failing, considering that its installation is an easy process. However, and for security

reasons, the Guest (default) was removed and the default port was changed, through the use of

the rabbitmq.config File.

In order to provide a test for scalability, we created a cluster (Figure 46), where a Disk

and a RAM Node were created. Afterwards, we disconnected the Disk node without affecting

the system’s functioning. The results show that even if a node fails the system continuous to

work properly.

Figure 46 - Middleware Component - Middleware Cluster example

117

6.5.2 Manager Component

This Component functions as a gateway between the HMI Component, with the

Middleware Component, and the History Component through a REST architecture. Therefore,

it is possible to disaggregate such Components without impairing any system functionalities or

even without adding more responsibilities to it.

In Table 10 the routes that are defined for each service and the type of request are

presented. However, it is important to refer that this particular component works with the

HTTPS protocol (SSL) and with an API-Key, more precisely to guarantee a better security and

privacy.

Table 10 - REST Resources of the Manager Component

Resource URI Request

User

/api/createUser/{apikey} POST

/api/deleteUser/{apikey} POST

/api/createUserPermission/{apikey}

POST

Factory

/api/createFactory/{apikey}

POST

/api/deleteFactory/{apikey}

POST

/api/reloadFactory/{apikey}

POST

/api/getFactorySatus/{apikey}

GET

Machine

/api/createMachine/{apikey}

POST

/api/deleteMachine/{apikey}

POST

Sensor

/api/createSensor/{apikey}

POST

/api/deleteSensor/{apikey}

POST

System

/api/initCloudSystem/{apikey}

POST

/api/closeCloudSystem/{apikey}

POST

/api/getSystemStatus/{apikey}

GET

In the Manager Component class diagram Appendix-G, is depicted the structure that

allows to access History through HistoryProvider, provide RestService which provides all the

118

resources described in the Table 10 and a ManagerService that is responsible for manipulating

all the functionalities RabbitMQ-Core.

There is also a package domain that represents all models and the package helper that

contains all static functions that support. Java 8 is used, it is possible to have global variables

through an interface (GlobalConstants interface).

When creating a factory, there are several operations that are involved, such as the

validation of the requests, the setting up of the Middleware Component, specifically by using

the Rabbit-MQ-Core Module, the generation of credentials, the sending of an email to the user

and the initiation of the service’s history through the History Component. Hence, the particular

workflow of these same operations is presented Figure 47.

Figure 47 - UML Sequence Diagram - Create Factory

This component uses a REST architecture, which is mainly used by the HMI

Subsystem, and delegates the work to the History and Middleware Components. Hence, a

Maven MATIS-IIOT project was created, where the Edge Server Module, with the respective

Java Application Projects (History, Manager and RabbitMQ-Core), was added, specifically to

unselect the projects for a parallel development and without any dependencies or reuses in

future projects.

Furthermore, this component also uses the Grizzly library to create the HTTPS server

and the Jersey library to make the REST Service available, all with the appropriate resources,

as it was previously argued in the design section.

119

In this project, it was necessary to inject the History Component and the RabbitMQ-

Core Module as dependencies, considering that they are actually used.

As it can be seen in Figure 48, Java 8 functionalities (Lambda Expressions, Streams,

Optional, etc.) were used, especially whenever it was possible.

Figure 48 - Manager Component - Partial initCloudSystem Code

As it was previously mentioned in the design section, this component provides a REST

interface that is consumed by the HMI Subsystem API Component. In Figure 49 we can see

that, as an example, a call from the API Component to the initCloudSystem use case creates the

Queue Basis in the Middleware. Hence, and since the Middleware (RabbitMQ) has been

configured with the Management Plugin, we can observe all the settings that are established by

the Manager Component.

// get properties (user/Permission)
String values = ManagerService.getRabbitMgmtService().getValueMap().get("USERS");
List<List<String>> usersAndPermissions;
 try{
 usersAndPermissions = Configs.getLists(values);
 // create Middleware user and Permission
 usersAndPermissions.stream().forEach((userP) -> {
 ManagerService.getRabbitMgmtService().createUser(userP.get(0), userP.get(1));
 ManagerService.getRabbitMgmtService().setPermission(userP.get(0));
 });

 }catch (IOException ex) {
 Logger.getLogger(ManagerService.class.getName()).log(Level.SEVERE, null, ex);
 }
 // get all Factories from the Database
 List<String> factories = DAO.db.queryFactories();

 factories.stream().forEach((factory) -> {

 // get all Machines in a Factory from the Database
 Map<String, Boolean> machines = (Map<String, Boolean>) DAO.db.query(factory);

 // create Exchange and queues for each Factory
 ManagerService.getRabbitMgmtService().exchanges().create(new Exchange(factory));
 ManagerService.getRabbitMgmtService().queues().create(new Queue(factory, SENSOR_QUEUE,
VHOST, true, false));
 ManagerService.getRabbitMgmtService().bindings().create(new Binding(factory,
SENSOR_QUEUE));

 // create queues for each machine
 machines.entrySet().stream().forEach((entry) -> {
 if (entry.getKey() != null) {
 ManagerService.getRabbitMgmtService().createMachine(factory,entry.getKey(),
entry.getKey(), entry.getValue());
 }
 });
...

120

Figure 49 - Manager Component – RabbitMQ User Interface - Based queues

6.5.3 RabbitMQ-Core Module

This module allows the connection and use of the Middleware Component (REST) API,

with provide the next functionalities:

• List virtual hosts to which they can log in via AMQP;

• View all queues, exchanges and bindings in "their" virtual hosts;

• View and close their own channels and connections;

• List all virtual hosts, including ones they could not log in to via AMQP;

• View other users connections and channels;

• Create and delete virtual hosts;

• View, create and delete users;

• View, create and delete permissions;

• Close other users' connections.

All the mentioned features can be modelled as objects, as it is shown in the package

models represented in the Appendix-D. Particularly, there is a package helper that actually

contains all the static functions that support and configure the files. Additionally, the builder

pattern is also presented, since it is responsible for the instantiation of the objects

GsonMessageHandler (DTO), BasicAuthClientProvider and RabbitProvider, which handles all

the logic and client requests that use HttpContext.

Furthermore, the class Polymorphism was used, namely on Basefluent class, which can

derive in type: ConnectionOperations, ExchangeOperations, NodeOperations,

QueueOperations, ParametersOperations, PermissionOperations, VirtualHostOperations,

BindingOperations or UserOperations. Nonetheless, it is important to mention that this

particular module is prepared to easily add some new functionalities, which are provided by the

121

REST API, more precisely those that are related to policies and global statistics for all the

virtual hosts.

This module is integrated in the Maven project, thus consisting in an Edge Server

module. Essentially, it is a Java Application Project, making part of the Manager Component

and working as a client of the REST Middleware service. Thus, it makes available all the

functionalities that were defined in the design section of this same Module.

6.5.4 Middleware Client Component

This Middleware Client Component is used by the History Component, acting solely as

a consumer of the Middleware Component. The consumer receives data from all the sensors

through the Middleware Component. This component also uses the same class structure as the

Middleware Client Component that was presented in the Analysis Subsystem, thus allowing the

configuration through a specific configuration file.

6.5.5 History Component

This particular component is responsible for creating a permanent record of all the data

that is sent by the Mantis-PC Subsystem, namely through the Middleware Component. This

entire configuration is done by the HMI Subsystem, which uses an API created for this purpose.

In order to respond to all the requests that are received in the Manager Component, this

component creates several Workers, being responsible for their connection with the

Middleware Component. Afterwards, it uses the Strategy pattern to respond to different

requests and to save them into a database, thus recurring to the Database Component. It should

be noted that this module performs many tasks simultaneously to the concurrent access to the

database, which, in a certain way, makes scalability quite limited.

This component provides for the following functionalities:

• Handle Delivery for Machine sensors Alarms/Errors send by Data Analysis Subsystem;

• Handle Delivery for external Sensors Alarms/Errors send by Data Analysis Subsystem;

• Handle Delivery for Status Messages Alarms/Errors send by Data Analysis Subsystem;

• Handle Delivery for Machine sensors send by Edge Local Subsystem;

• Handle Delivery for Machine internal database send by Edge Local Subsystem;

• Handle Delivery for external Sensors send by Edge Local Subsystem.

122

It should be noted that this component provides a Consumer Contract that defines the

implementation of new Handle Delivery functionalities.

Several patterns are used in the class diagram of Appendix-C namely strategy patterns

(ConsumerFactoty class that uses ConsumerContract interface, This interface can be

implemented by type classes ConsumerMessage, ConsumerSensor, ConsumerMAD,

ConsumerLogs and ConsumerAlarms), the builder pattern that is responsible for instantiating

the objects

HistoryService, ConsumerService e ProducerService and the repository pattern which

is represented in the package DAL. There is also a package model that represents all models

and the package helper that contains all static functions that support. Java 8 is used, it is possible

to have global variables through an interface (GlobalConstants interface).

In order to illustrate the beginning of the Cloud System and the creation of a Machine

as regards exchange of messages between several objects, in an orderly way and at the very

moments in which the messages between the objects are sent, two sequence diagrams are shown

in Figure 50 and 51.

123

Figure 50 - UML Sequence Diagram - Initialize Cloud System

The diagramof Figure 50, relates to the History Component feature that has the

responsibility to create the history service, after the Component Manager has configured

Middleware Component. This configuration creates the basic users (HMI and Data Analysis

Users) and base queues (CPSSensorsDA, MachineSensorsDA and StatusMsg) in Middleware

Component.

124

Figure 51 - UML Sequence Diagram - Create Machine

The Create Machine feature, as discussed in the Sequence diagram of Figure 51, has the

responsibility of creating queues for the machine, namely the queue for internal machine

sensors and the queue for the internal machine database, through Manager Component which,

in its turn, configures the Middleware Component.

History Component then creates the history service for both queues. This component is

integrated into the Maven project, consisting in an Edge Server module. Overall, it consists in

a Java Application Project, thus being a part of the Manager Component that works as a service.

Therefore, it provides all the functionalities that were defined in the design section, involving

problems that are related to parallelism and competition.

For example, whenever the Manager Component delegates to the History Component

the task of creating a Machine with MAD (internal database), the History Component actually

has to create two Threads (Callable<Worker>) that run in parallel and that connect to the

Middleware Component, more precisely to receive data (consumer) and to access the Database

Component, aiming to correctly write them.

As a matter of fact, if we create 50 machines in the system, the History Component may

have to run to 100 Threads. Hence, the way to scale up to this node would be justified by the

existence of several nodes within this component and by the distribution that is performed

through a load balancing, which truly improves the distribution of workloads.

125

This implementation used the Executor Service, namely by adding a List<Future<?>>

in order to control the Callable<Worker> (Figure 52). On the other hand, the Worker is

dependent on the RabbitMQ Client and has the responsibility of connecting to the Middleware

and receiving data.

Figure 52 - History Component – HistoryService Partial Code

This feature allows the HMI to receive data from the Database Component, making

them available on a graph (Figure 53) or even in a table.

/** Class HistoryService
 * @package pt.cister.services */
public class HistoryService implements GlobalConstants{

 // init the static builder
 public static Builder builder() {...}
 // provides methods to manage termination and methods that can produce a Future for
 //tracking progress of one or more asynchronous tasks.
 private final ExecutorService threadExecutor;
 private List<Future<?>> listProducers; // Object type Producer
 private List<Future<?>> listWorkers; // Object type Worker
 // config properties
 private Map<String, List<String>> valueMap;
 // constructor with Builder
 public HistoryService(Builder builder) throws Exception {
 super();
 ...}
 // init the cloud system
 public boolean init() {
 // get all Machines from the Database
 Map<String, Boolean> lists = DAO.db.queryMachines();
 lists.entrySet().stream().forEach((entry) -> {
 try {
 String queue = entry.getKey();
 // create a Worker with an ID and add it to the respective List<Future<?>>
 this.addWorker(new Worker(queue+ GlobalConstants.MACHINE_QUEUE.logs,
queue));
 ...}
 ...
 // add a Producer or Worker to the respective List<Future<?>>
 public void addProducer(Producer producer) {...}
 public void addWorker(Worker worker) {...}

 //removes a element of List<Future<?>>
 public boolean removeWorker(String id) {.. }

 //before removes a Worker from List<Future<?>>it is necessary to stop
 // the middleware consumer Service
 private boolean closeConsumerService(String id, List<Future<?>> listRemoveFutures,
boolean valid) {
 for (Future<?> index : listWorkers) {
 try {
 Worker worker = (Worker) index.get();// get a Worker
 if (worker.getId().equals(id){
 worker.consumerService.close();();// stop consumer Service
 listRemoveFutures.add(index); // remove Worker from List<Future<?>>
 valid = true;
 }
 } catch (...)...}
 return valid; }

 // get the Worker List size, is essential to control the List<Future<?>> of this object
 public int getWorkerListSize() {...}
 // stop the cloud system
 public void close() {}
 // specifies an abstract interface for creating parts of a HistoryService object.
 public static class Builder {...}

126

Figure 53 - History Component – HMI history visualization

6.5.6 Database Component

This database is used by several components, namely the HMI Subsystem and the

History Component, which is structured according to the MIMOSA/ IoT-A standard. Due to

the simplification of the creation of the base structure of such standard, a relational SQL

database was used, which also creates performance constraints when compared to a non-SQL

database such as MongoDB.

The History Component creates an abstraction layer in the data access layer through

Repository Interfaces so that the database management system can be easily changed if it is

changed.

This component uses a relational database (Microsoft SQL Server 2012), being used, in

turn, by the History Component and by the HMI Subsystem. Considering that it is a centralized

database, such as several read/write accesses in very short periods of time, this feature questions

the performance and the scalability of the entire system. Therefore, we propose an exchange to

a documental and decentralized database. Even though this technique is used as an index

definition or even as cache, the performance is still quite low. Additionally, it should be added

that this database still does not follow the proposed data model (IoT-A), since HMI Subsystem

has not yet been updated for this new structure.

127

6.5.7 Email component

This component is responsible for using the SMTP email protocol to send emails (Figure

54). In this way, it is possible, for example, when creating a factory, to send the user credentials

to the respective recipient through this Component.

In order to respond to a use case UC03 functionality (create factory) for the notification

of the user’s credentials, the Gmail provider was used, namely to provide the SMTP protocol.

Furthermore, and to use this same component in the Manager Component, by recurrence to the

Java Programming Language, the native “javax.mail” was used.

Figure 54 - Email component – User email notified example

6.6 Human Machine Subsystem

This subsystem is constituted by a Middleware-Web-Client component that

communicates with the Middleware Component via STOMP (Websockets) and a Manager API

Component (for simplicity in the figure and further in this report we use the term API) that

communicates with the Manager Component existing in the Edge Server subsystem via

HTTPS.

The author of this document developed the API Component, the Middleware-Web Client

Component and provide the API module for the real-time graph visualization for this

Subsystem. The HMI Subsystem web interface and other functionality were developed by a

project partner. Due to the fact that only the API Component and the Middleware-Web Client

Component have been developed by the author of this project, the remaining components of

this subsystem, such as the HMI interface and other services, are not described from an

implementation perspective. Similarly, it should be emphasized that the Graph Module was also

developed to support the HMI interface (Graphs of Soft Real-time visualization).

128

6.6.1 API Component

This component is related to the REST architecture and to the separation of concerns,

which is essentially the principle behind the client-server constraints.

Therefore, it provides a Service Contract that corresponds to the Endpoints of the

Manager Component. Such implementation also facilitates the addition of new features, despite

allowing the use of an API-key and the serialization of the objects that must be integrated in the

Data Transfer Object.

As it is shown in Appendix-G, all of the above features are modelled into 6 different

class/interface objects:

• Service Contract: interface that defines all the functionalities of the contract between

the Manager Component and HMI;

• Management Service: responsible for manipulating all the functionalities related to

factories, machines, sensors, system, etc.;

• Security: hold the API-key essential to ensure more security;

• Helper: contains all static functions that support;

• Helper EndPoint: contains all static Endpoint of the Manager Component (of the HMI

.Net MVC project);

• BootStrap: contains all static information for testing purpose.

The API Component was developed in Visual Studio, in order to make the integration

with the project compatible, which was, in turn, integrated within the main project (HMI

interface). Hence, the component was made available with an example, thus following the same

MVC structure of the main project.

Considering that we are integrating a REST architecture via HTTPS, a contract was

created to ensure an assertion in the code. This implementation was integrated to the services

layer of the HMI interface project, despite responding to all the functionalities that defined in

Table 10 of the Manager Component (Figure 55).

129

Figure 55 - API Component – Partial Contract Code

6.6.2 Middleware-Web Client Component

This component uses a different protocol when compared to the Middleware Client

Component, which is designated by the STOMP protocol. However, and considering that it is

a web application, a WebSocket API needs to be used to directly connect the HMI Component

to the Middleware Component, thus being able to acquire data in soft real-time. After

conducting a thorough analysis, it was possible to conclude that the STOMP protocol library

namespace GECAD_Web.Services
{
 interface ServiceContract
 {
 /// <summary>
 /// Creates a factory topic in the MOM,
 /// the based queue/s, and the User
 /// The defined email will receive the password
 /// for the MOM
 /// </summary>
 /// <returns/> ResponseContent with message
 ResponseContent CreateFactory(string factoryID, string email, string Permissionype,
string regex);

 /// <summary>
 /// Deletes a factory topic in the MOM,
 /// the based queue/s and the User
 /// </summary>
 /// <returns/> ResponseContent with message
 ResponseContent DeleteFactory(string factoryID, string email);

 /// <summary>
 /// Create a Machine queue/s in the MOM
 /// and start the History for the define queue/s
 /// </summary>
 /// <returns/> ResponseContent with message
 ResponseContent CreateMachine(string factoryID, string machineID, bool hasAlarms);

 /// <summary>
 /// Init the Cloud System with the default queues
 /// and Users in the MOM. Also creates the history for
 /// the default queues
 /// </summary>
 /// <returns/> ResponseContent with message, result(bool) and resultType
 ResponseContent InitCloudSystem();

 ...
 // ------------------------------------- SuperAdmin access

 /// <summary>
 /// Create a User in the MOM
 /// </summary>
 /// <returns/> ResponseContent with message
 ResponseContent CreateUser(string userName, string password);
 ...
 /// <summary>
 /// Create Create User Permission in the MOM,
 /// define the type (write/read/all) and
 /// regular expressions
 /// </summary>
 /// <returns/> ResponseContent with message
 ResponseContent CreateUserPermission(string userName, string type, string regex);
 ...

130

presents a security problem, considering that it exposes the client-side access credentials.

Hence, it is highly recommended to change the protocol, for example to the MQTT, aiming to

solve such problem.

This component was developed in IntelliJ, by using the npm as a dependency manager.

As it was previously mentioned in the design section of this component, the choice of this

protocol (STOMP over Websocket) presents some security problems (Figure 56). Nonetheless,

the partners have decided on the protocol, thus creating the component and integrating it in the

main project (HMI interface).

Since we are integrating an interface with a JavaScript component, we can conclude that

the integration was quite trivial. On the other hand, and considering that we are providing a

significant volume of data in a single graph, it was necessary to collect and redraw some

techniques, especially by using a set of data rather than a single point (setData: Apply a new set

of data to the series). Hence, we managed to have Soft Real-time data with periods shorter than

200ms, avoiding the browser’s overload.

131

Figure 56 - Middleware-Web Client Component with Graph Module - Partial Code

// create Stomp socket client
var ws = new WebSocket('ws://193.136.60.47:15674/ws');
var client = Stomp.over(ws);

// RabbitMQ SockJS does not support heartbeats so disable them
client.heartbeat.outgoing = 0; client.heartbeat.incoming = 0;

/*
 |--
Graph highcharts
 */
var pointsNodeX = []; var pointsNodeY = []; var pointsNodeZ = []; var pointsNodeT = [];
...
/**
 * Add points to series chart node 1 and use setTimeout function
 * @method requestDataNode1
 */
var requestDataNode1 = function () {
 var chart = $('#containernode1').highcharts();

 var series = chart.series;
 series[0].setData(pointsNodeX); series[1].setData(pointsNodeY);
 series[2].setData(pointsNodeZ); series[3].setData(pointsNodeT);
 setTimeout(requestDataNode1, 200); // 200ms
 chart.redraw();

};
...
$(function () {
 // Create the chart for a node
 $('#containernode1').highcharts('StockChart', {
 ...
 });
});
// connect to the server
var on_connect = function (x) {

 id = client.subscribe("/queue/"+ @ViewBag.sensorId, function (m) {
 // here is the loop with the data
 var obj = JSON.parse(m.body);
 /*
 |--
 | Parse DTO
 |--
 */
 var date = new Date().getTime();
 if (obj.type == @ViewBag.UUID) {
 pointsNodeX.push([date, obj.values.ax]);
 ...
 document.getElementById('az-node1-value').innerText = obj.values.az;
 ...
 });
};
// debug funtion
client.debug = function (e) {};
// this function is passed on client.connect and catch all errors
var on_error = function (error) {};

// this function connect to client and exposes the user and pass - this user have limit
rights (only read from queues)
// in future we will use the MQTT protocol the grant more security
client.connect('gecad', '7ecec341e14481debea8917cee063580', on_connect, on_error, '/');

132

At last, it is important to add that this component actually allows the integration of the

HMI interface with the Middleware Component, being possible, for example, to visualize all

the data that are related to the sensors/machines in Soft Real-time through a graph (Figure 57).

Figure 57 - HMI Subsystem – Machine data Soft Real-time visualization

6.7 Deployment

The deployment diagram of the architecture presented in Figure 15 of subsection 5.1 is

shown in the Figure 58. In particular, Figure 58 depicts the setup and information of subsystems

and components of this solution.

Considering that the software to be developed has a local part, which is located within

the companies (the Machine, Mantis-PC and Edge Local subsystems), and another part in the

Cloud (the Edge Server, HMI and Email subsystems), which in turn is located in ISEP, by

using a Windows Server 2012 and the IIS service it is possible to support the HMI that was

developed in .NET. Furthermore, in Appendix-I the deployment setup and information is

presented for all component of each subsystem.

133

Figure 58 - UML Deployment View diagram for the proposed solution

6.8 Conclusions

All the components of each subsystem were designed and implemented regarding the

requirements. Consequently, the analysis of the previous chapter that improves the

understanding of the previously established requirements. The justify the adopted design

decisions using patterns and rules followed by a discussion of the design alternatives were

provide whenever the component requirements defined it. Furthermore, technical details and

the hardware/software requirements of the installation were provided following the deployment

of the solution.

134

7 Tests

In this chapter, the software testing is one element of a broader spectrum, which is often

referred to as verification and validation (Figure 59). The check refers to the set of activities

that ensure that the software correctly implements a specific function. The validation refers to

a different set of activities, which ensures that the built software meets the Stakeholders

requirements.

Verification - Are We Building The Product Properly?

Validation - Are we building the right product?

The tests effectively offer the ultimate stronghold in which quality can be assessed and,

more pragmatically, errors can be discovered. Quality is incorporated into the software during

the software engineering process. Proper application of methods and tools, effective formal

technical revisions, and solid management and measurement lead to quality standards that are

confirmed during testing (Pressman, 2011).

Figure 59 - Testing strategy (Source: Pressman, 2011).

7.1.1 Unit

Unit testing focuses on the smallest software design unit: the software component or

module. Using the component-level design description as a guide, important control paths are

135

tested to discover errors within the module boundaries. The relative complexity of the tests and

errors discovered is limited by the restricted scope established for the unit test (Pressman, 2011).

These tests focus on an internal processing logic and on data structures, within the limits

of a component, and were conducted in parallel for various components. Furthermore, all

components have been tested and performed before coding, following the adopted agile

methodology (RUP). Figure 60 depicts the partial code of the Middleware Component unit

tests focusing on important control paths.

public class MiddlewareAssert {
 ...

 /** Assert that Middleware has the specified node.
 * @param nodeName Name of the node to ensure exists.
 * @param matchers Modifies the assertion by adding criteria to match.
 * @return this. */
 @Test
 public MiddlewareAssert hasNode(String nodeName, NodeMatcher... matchers){
 Optional<Node> node = mgmt.nodes().get(nodeName);
 assertTrue(String.format("Node '%s' does not exist.", nodeName), node.isPresent())

 if (matchers != null && matchers.length > 0) {
 MatchResult result = isMatch(node.get(), matchers);
 assertTrue(result.getReason(), result.isMatch());
 }
 return this;
 }

 /** Assert that Middleware does not have the specified node.
 * @param nodeName Name of the node that should not exist.
 * @param matchers Modifies the assertion by adding criteria to match.
 * @return this. */
 @Test
 public MiddlewareAssert doesNotHaveNode(String nodeName, NodeMatcher... matchers){

 Optional<Node> node = mgmt.nodes().get(nodeName);
 if (node.isPresent()){
 if (matchers != null && matchers.length > 0) {
 MatchResult result = isMatch(node.get(), matchers);
 assertFalse(result.getReason(), result.isMatch());
 }
 else {
 fail(String.format("Node '%s' should not exist but does.", nodeName));
 }}
 return this;
 }

 /** Assert that Middleware has the specified Virtual Host.
 * @param vhostName VHost that should exist.
 * @return this.*/
 @Test
 public MiddlewareAssert hasVHost(String vhostName){

 Optional<VirtualHost> vhost = mgmt.vhosts().get(vhostName);
 assertTrue(String.format("VHost '%s' shou exist but does not.", vhostName), vhost.isPresent());
 return this;
 }

 /** Assert that the specified VHost does not exist in the Middleware cluster.
 * @param vhostName Name of the vhost that should not exist.
 * @return this. */
 @Test

136

 public MiddlewareAssert doesNotHaveVHost(String vhostName){

 Optional<VirtualHost> vhost = mgmt.vhosts().get(vhostName);
 assertFalse(String.format("VHost '%s' should not exist but does.", vhostName), vhost.isPresent());
 return this;
 }

 /** Assert that Middleware has the specified User.
 * @param username Name of the user that should exist.

 * @return this. */
 @Test
 public MiddlewareAssert hasUser(String username){

 Optional<User> user = mgmt.users().get(username);
 assertTrue(String.format("User '%s' should exist but does not.", username), user.isPresent());
 return this;
 }
 ...
 /** Assert that the current authenticated user
 * (interacting with the Management Console) is the one specified.
 * @param username Name of the user that should be interacting with the console.
 * @return this. */
 @Test
 public MiddlewareAssert iAm(String username){
 User clientUser = mgmt.users().whoAmI();
 assertEquals(String.format("Current user should be '%s', but is actually '%s'.",
 username, clientUser.getName()), username, clientUser.getName());
 return this;
 }
 /*** Assert that the User has the specified configure permission.
 * @param vhost Virtual Host with the permission.
 * @param user Name of the user.
 * @param permissionExpression Value of the permission.
 * @return this. */
 @Test
 private MiddlewareAssert userHasPermission(String vhost, String user, String permissionExpression, int
permissionType){

 Optional<Permission> permission = mgmt.permissions().get(vhost, user);
 assertTrue(String.format("User '%s' does not have permission '%s' on vhost '%s'",
 user, permissionExpression, vhost),
 permission.isPresent());
 String actualPermission;
 String permissionTypeDescription;
 switch (permissionType){
 case 1:
 actualPermission = permission.get().getRead();
 permissionTypeDescription = "read";
 break;
 case 2:
 actualPermission = permission.get().getWrite();
 permissionTypeDescription = "write";
 break;
 default:
 actualPermission = permission.get().getConfigure();
 permissionTypeDescription = "configure";
 break;
 }
 assertEquals(String.format("User '%s' permission '%s' should be '%s' but is '%s' on vhost '%s'.",
 user, permissionTypeDescription, permissionExpression, actualPermission, vhost),
 permissionExpression, actualPermission);
 return this;
 }

 /** Assert that Middleware has the specified queue.
 * @param vhost Name of the vhost with the queue.
 * @param queueName Name of the Queue.

137

 * @param matchers Modifies the assertion by adding criteria to match.
 * @return this. */
 @Test
 public MiddlewareAssert hasQueue(String vhost, String queueName, QueueMatcher... matchers) {

 Optional<Queue> queue = mgmt.queues().get(vhost, queueName);
 assertTrue(String.format("Queue '%s' does not exist and should on vhost '%s'.", queueName, vhost),
queue.isPresent());

 if (matchers != null && matchers.length > 0) {
 MatchResult result = isMatch(queue.get(), matchers);
 assertTrue(result.getReason(), result.isMatch());
 }
 return this;
 } ...

Figure 60 – Middleware Unit Tests Partial Code

7.1.2 Integration

Integration testing is a systematic technique for constructing the software architecture,

while at the same time testing is performed to discover errors associated with the interfaces.

The objective is, from unit-level tested components, to build a program structure determined

by the project (Pressman, 2011).

Following the unit tests, integration tests were created and it should be noted that there

are two types of integration: top-down integration and bottom-up integration. Top-down

integration was used because the high-level modules are tested and integrated first, allowing to

quickly find high-level logic and data flow errors; In this way, we use stubs, which are

considered as false modules/components that always simulate the low-level

modules/components.

Figure 61 depicts the partial code of the Middleware Component integration test using

stubs as the Middleware Client component.
public class MiddlewareIntegrationTest {

 // middleware configuration
 private static final String URI = "SERVER";
 private static final String QUEUE = "TEST";
 private static final String ROUTING_KEY = "FULL.#";
 // services for 2 producers and 2 consumers
 private static ProducerService producerService1;
 private static ProducerService producerService2;
 private static ConsumerService consumerService1;
 private static ConsumerService consumerService2;

 // class used to compare the sent data received by the producers/consumers
 private static SimpleCache cache = new SimpleCache();

 /**
 * Executed prior any tests cases contained in this implementation unit
 * Initiates the producers/consumers services
 */
 @BeforeClass
 public static void startup() {
 try {
 // factories and channels instantiation

138

 producerService1 = new ProducerService.Builder(URI, QUEUE, ROUTING_KEY).build();
 producerService2 = new ProducerService.Builder(URI, QUEUE, ROUTING_KEY).build();
 consumerService1 = new ConsumerService.Builder(URI).build();
 consumerService2 = new ConsumerService.Builder(URI).build();
 } catch (Exception ex) {
 Logger.getLogger(MiddlewareIntegrationTest.class.getName()).log(Level.SEVERE, null, ex);
 }

 }

 /**
 * Executed after any tests cases contained in this implementation unit
 * Shutdown the producers/consumers services
 */
 @AfterClass
 public static void tearDown(){
 try {
 producerService1.close();
 consumerService1.close();
 } catch (IOException ex) {
 Logger.getLogger(MiddlewareIntegrationTest.class.getName()).log(Level.SEVERE, null, ex);
 }
 }

 /**
 * Assert that the consumers have the SimpleCache content with all the
 * data of numNames array send by the producers.
 * Assert that the consumers receive the messages in the right order.
 */
 @Test
 public void cacheWithNumNamesArrayData() {

 try {
 //------------Consumer 1------------//
 ConsumerHandler1 consumer = new ConsumerHandler1(consumerService1.getChannel(URI), cache);
 consumerService1.setConsume(consumer);
 //-----------Consumer 2-------------//
 ConsumerHandler2 consumer2 = new ConsumerHandler2(consumerService2.getChannel(URI), cache);
 consumerService2.setConsume(consumer);

 // populate the queue (QUEUE) with the numNames content using 2 producers
 for (String num : numNames) {
 producerService1.publish(Message.builder().payload(num).build(), null);
 producerService2.publish(Message.builder().payload(num).build(), null);
 }

 Thread.sleep(3000); // This, ensures that consumers receive all messages

 // collect data from comsumers
 List<CacheEntry> cacheContent = ConsumerHandler1.cache.getContent();
 List<CacheEntry> cacheContent2 = ConsumerHandler2.cache.getContent();
 // assert that collect data from comsumers have the same size as numNames array
 assertEquals(38, cacheContent.size());
 assertEquals(38, cacheContent2.size());

 // assert that both consumers receive the first message in the right order
 assertEquals(new CacheEntry(numNames[0], 0).getText(), cacheContent.get(0).getText());
 assertEquals(new CacheEntry(numNames[0], 0).getText(), cacheContent2.get(0).getText());
 } catch (InterruptedException ex) {
 Logger.getLogger(MiddlewareIntegrationTest.class.getName()).log(Level.SEVERE, null, ex);
 }

 }
 …

Figure 61 - Middleware Integration Tests Partial Code

139

7.1.3 Validation

Validation tests begin at the end of the integration test, when individual components

have already been drilled, the software is completely assembled as a package and interface

errors have been discovered and fixed. In validation or at the system level, the distinction

between conventional and object-oriented software disappears. The test focuses on user-visible

actions and user-recognized system outputs (Pressman, 2011).

Normally, validation can be defined in multiple ways simultaneously, but it only

becomes successful when the software works in a way that can reasonably be close to what the

customer expects.

The validation of the proposed solution is described, more precisely through the

identification of the quantities that need to be used in order to evaluate the developed work, to

test the proposed hypotheses, to evaluate the selected methodology and to apply the statistical

tests to those same hypotheses.

• Accelerometers Accuracy Analysis: For this test, two sensors are used (Arduino 101)

to measure the acceleration and the noise in the machine. So, it is necessary to prove

that the sensors are reliable, namely from a precision point of view.

The sensors were configured at 2G (g-force) intervals (-2G maps to a raw value of -

32768 and + 2G maps to a raw value of 32767). Furthermore, samples of both sensors,

with a size of 4999, were collected, and for calibration reasons, and considering that a

3-axis accelerometer is used in order to minimize external noise, the analyzed values

will translate the sum of the value of the 3-axis.

Therefore, one can use the hypothesis test, and considering that the variables are

independent both samples are actually random. Since the population variance is Known

and that samples are greater than 30, it can be concluded that the use of Z-Test of two

samples for Mean (Figure 62) is the most appropriate test.

140

Figure 62 - Z-Test - Two-tail interval

Is there enough evidence (at α = 0,05) to conclude that accelerometers mean

precision does not differ significantly?

1) Hypothesis: H0: :1(sensor1) = :2(sensor2) or H1: :1	 ≠ 	:2

2) Rejection Region: < = 0,05 and reject Z:H0 if = < −1,96	@A	= > 	1,96

3) Test Statistic: C	 = 	0,33

4) P-value =0,75

Decision/Conclusion:

§ z = 0,33 is in the rejection region, the H0 is not rejected

§ P-value > < , the H0 is not rejected

§

There is not enough evidence to conclude that accelerometers mean precision

does not differ significantly.

The Z-Test of two samples for Mean values are depicted in Table 11.

141

Table 11 - Z Test: Two samples for Mean

Z Test: Two samples for Mean

 Node 1 Node2
Mean 1,0142 1,0006
Known Variance 0,0001 8,456
Observation 4999 4999
Hypothesized Mean 0
z 0,3286
P(Z<=z) one-tail 0,3711
z critical one-tail 1,6448
P(Z<=z) two-tail 0,7423
z critical two-tail 1,9599

• Database storage analysis: For this particular analysis, it is necessary to define the

limit of the database storage, since there is Big data, and the ones that present limited

hardware resources.

There is a relational database with 80 Gigabyte (GB) of storage limit, being necessary

to analyze the data limits that need to be saved in the database, which represents the data

history period. We use samples of the disk space consumption within a period of 8 days

and from a single machine.

Hence, a descriptive analysis will be firstly conducted (Table 12), followed by an

analysis of the worst-case limit.

Table 12 - Descriptive analysis of the Database storage

DESCRIPTIVE ANALYSIS

MEAN 243,375 MB
MEDIAN 264 MB
RANGE 330 MB
MINIMUM 69 MB
MAXIMUM 399 MB
SUM 1947 MB
COUNT 8 Samples

Considering that the worst case presents a value of ~399 Megabyte (MB), this will be

the value used to calculate the maximum history period without compromising the

142

integrity of the system. Given the fact that the database stores other smaller data, 10%

of the total size will be safeguarded.

80	×	0,90	 = 	72EF

The available total space has been reduced to 72GB. Furthermore, and for purely

indicative purposes, it can be verified, and within a period of 8 days, that approximately

1947 MB of space was used.

However, and according to the analysis of the worst case:

399 GF 	×	8 H = 	3192	GF

With the sample of only one machine, the difference is not very significant. Nonetheless,

and if we considered 1000 or more machines, the deviation would be very high.

Conclusion:

IJ'JK = 	
72	EF
399GF 	≅ 	180	H(MN

The maximum historical data period with the available resources for a machine will be

of 180 days.

• Middleware delay Analysis: For this test, the RabbitMQ middleware, which is located

on the Edge Server Subsystem, is used. Although the used infrastructures guarantee

bandwidth(β), it is necessary to prove that stability exists, in order to guarantee the

quality of service (QoS). Even though the system is made up of more Subsystems, these

tests will focus on the middleware, considering that it is the central point and that it is

responsible for receiving and delivering all the messages of the system.

Hence, samples were collected from ten consumers, and with a size of 7200MB. The

samples collected were sent by ten producers, with a frequency of 1 s and with the same

volume of data. It is essential to mention that there were no sending / receiving failures.

To obtain more reliable results, the Network Time Protocol service was used, more

precisely to synchronize the clocks of all the computers.

As an example, the used data in all tests represent a variable number of data type object,

each object presenting values from 50 sensors with a single timestamp:

1:37:41.579 [main] INFO eu.mantis.tests.ConsumerTest - [x] Received '

[{"file":"10052016.log","id":""},

143

{"data":"12:25:01:062:;250039;250031;199988;0;44;2107465;2292519;0;-
256;256;0;0;0;0;0;1;0;0;0;1;1;1;1;0;0;1;0;1;1;0;0;0;0;0;0;286;66;59;34;16;32;29;66;59
;1;0;2022;2046;2037;2026"},

{"data":"12:25:01:250:;250010;250000;199988;0;44;2107465;2292519;0;-128;-
128;0;0;0;0;0;1;0;0;0;1;1;1;1;0;0;1;0;1;1;1;0;0;0;0;0;286;67;56;38;17;31;29;67;56;0;0;
2023;2043;2037;2030"},....]

Therefore, a descriptive analysis will be firstly conducted, which can be visualized in

the table 13.

Table 13 - Descriptive analysis of the Middleware delay in seconds (s)

DESCRIPTIVE ANALYSIS

MEAN 1,0430s
MEDIAN 1,043s
MODE 1,06s
STANDARD
DEVIATION

0,0249s

SAMPLE
VARIANCE

0,0006s

RANGE 0,086s
MINIMUM 1s
MAXIMUM 1,086s
SUM 75086,983s
COUNT 71990 Samples

The worst case presents a value of 1.086s, considering that the delay is quite relevant

when providing Soft real-time data on the Cloud environment. However, it will be

important to verify, namely through a Hypothesis test, whether the system behaves

linearly in a real-time environment.

In this context, one can use a hypothesis test, and due to the fact that the variable is

independent, the sample is random, the population variance is Known and the sample is

greater than 30. Thus, it can be concluded that the use of Z-Test of one sample for Mean

is the most appropriate test.

Is there enough evidence (at α = 0,1) to conclude that middleware mean delay does

not differ significantly from 1s?

144

1) Hypothesis: H0: :1(delay) = 1,05 or H1: :1	 ≠ 	1,05

2) Rejection Region: < = 1 and reject Z:H0 if 	= < −1,65	@A	= > 1,65

3) Test Statistic: C	 = 	−0,69

4) P-value =0,49

Decision/Conclusion:

§ C	 = 	−0,69 is in the rejection region, the H0 is not rejected

§ P-value > < , the H0 is not rejected

There is no enough evidence to conclude that middleware mean delay does not differ

significantly from 1s. The Z-Test of one sample for Mean values are depicted in Table

14.

Table 14 - Z Test: One samples for Mean

Z Test: One samples for Mean

 Consumers
Mean 1,0430
Known Variance 0,0006
Observation 71990
Hypothesized Mean 1
z -0,6980
P(Z<=z) one-tail 0,2425
z critical one-tail 1,2815
P(Z<=z) two-tail 0,4851
z critical two-tail 1,6448

• Edge Local Subsystem scalability analysis: The Edge Local Subsystem is located

within each company, functioning as an entry-point between the local and the cloud

elements of the system. Even though the infrastructures that are used within the

companies are able to ensure a stable bandwidth, it is also necessary to define a

machine's limit per factory.

There is a single point of exit (router), with 1 megabit per second of fixed upload rate.

Since there may be some network noise, as well as other interferences, the upload rate

will be reduced to 5% (margin safety) of the total size.

It is possible to conclude that there may be up to 67 machines to send data at the same

time, with QoS guarantees at the Edge Local Subsystem delivery level.

145

Hence, samples with a size of 6000MB and from one producer were collected. The

collected samples were sent, and at the same time, with a frequency of 1s and without

any sending and receiving failure.

Figure 63 – Histogram of Edge Local Subsystem - Data packets delay frequency

Afterwards, the size of the sent packets will be analyzed, namely by a Histogram (Figure

63), which depicts the frequency of occurrence of the values of a particular set of data.

It can be concluded that there is no normal distribution of frequency of data packages

with groups of data that present a size of 200MB. There are frequencies between 19

(group 15991-16201) and 405 (group 1351-13261). The use of an intermediate value

would constitute a risk, since the range of the frequencies presents a very high value.

Therefore, we assume the worst case (16100 bytes) in order to ensure the maximum

reliability.

Measurement calculations :

0.95	Megabit/s		×	1	000	000	 ≈ 950	000	bits

950	000	bits				×	
1	byte			
8	bits = 	118	750	bytes

18	750	bytes	×	
1	Kilobyte
1024	bytes = 115.9667	Kilobytes/s

146

16100	bytes data	packet 	×	
1	Kilobyte
1024	bytes = 1.7226	Kilobytes/s

 	aab.cdd	efghijklm/m	(khkng	opghnq	inrqsfqkt)	

a.uvv	d	efghijklm/m	(lnwt	xnkn	pnwylk)
= 	67	(machines)

It is possible to conclude that there may be up to 67 machines to send data at the same
time, with QoS guarantees at the Edge Local Subsystem delivery level.

• Acceptance Tests: To test the software and find errors, acceptance tests will be

performed to different components of the framework. These tests focus on visible

actions with user inputs and system outputs. All acceptance tests performed are

available in Appendix-A.

It should be noted that, since several components have been developed containing many

features, the documented tests focus on the most relevant features in the context of the

framework. However, all functionalities have been properly tested in order to validate

or even to avoid errors on nonlinear scenarios. Finally, the acceptance tests were

recorded in video format and shown at one of the MANTIS project meetings in the city

of Helsinki in Finland.

7.1.4 System

System tests are actually a series of different tests whose main purpose is to thoroughly

exercise the computer-based system. Although each test has a distinct purpose, everyone works

to verify that the elements of the system have been properly integrated and perform the

functions assigned to them (Pressman, 2011).

These tests are divided into different sections: recovery, safety, performance and stress

tests.

Since the performance and the security of the solution are important aspects of the non-

functional requirements that the application must support, and considering that it is expected to

have a large volume of data, tests will be presented in order to prove that they fulfil the

requirements.

147

Since statistical tests are not applied, the tests will be carried out through certified tools,

namely w3af 40and Apache JMeter41.

• Security Testing of the REST components:

To perform security tests, the web application Security Scanner w3af (Figure 64)) was

used, namely to audit the platform's Manager Component and through its "OWASP

TOP 10" analysis tools. The goal was to find security issues and errors. The w3af

application offers the following tests in the "OWASP TOP 10"42 section:

1) A1 Injection;

2) A2 Broken Authentication and Session Management;

3) A3 Cross-Site Scripting (XSS);

4) A4 Insecure Direct Object References;

5) A5 Security Misconfiguration;

6) A6 Sensitive Data Exposure;

7) A7 Missing Function Level Access Control;

8) A8 Cross-Site Request Forgery (CSRF);

9) A9 Using Components with Known Vulnerabilities;

10) A10 Unvalidated Redirects and Forwards.

The w3af application is mostly used to attack platforms that are in the Cloud. Therefore,

and after the discovery of the existing vulnerabilities through audit processes, plugins are

integrated to develop attacks. Thus, this is the main functionality that justifies why the

w3af application is considered as an added value to the development of security tests.

The w3af has been configured through the OWASPTOP10 menu. However, Figure 64

depicts that the only change to the base configuration was the change of the auth (basic

access authentication) to false, which means that this test type is not performed. The

change occurred since the authentication is not used, considering that we applied an API-

Key.

The obtained results revealed some vulnerabilities, more precisely at the level of

permissions of files and folders, which is why they have been properly corrected. It should

40 http://w3af.org/
41 http://jmeter.apache.org/
42 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

148

be noted that the success of the results is due to the use of the stable version of grizzly

and jersey, as well as to good programming practices, which were combined with the use

of validation techniques in order to minimize security vulnerabilities.

Figure 64 - W3AF OWASP TOP 10 - Audit

Finally, it is important to add that the tests will also take place in the final stage, more

precisely to guarantee the exact same results.

Performance and stress tests of the REST components: In the performance and stress

tests, the Apache JMeter tool was used, specifically in its "3.2" version. Figure 65 e 66

depict that both tests were performed on different Manager Component routes, as well

as analyzed by the use of graphs and tables.

The tests were performed with 150 and 300 requests per second, for a period of 10

minutes and a 100 Megabit/s upload/download. It is important to specify that a fiber

optic connection was used.

The Graph Results generated a simple graph that combines all the sample’s times. Along

the bottom of the graph, the current sample (black), the current average of all samples

149

(blue), the current standard deviation (red), and the current throughput rate (green) are

displayed, more precisely in milliseconds.

However, it is crucial to emphasize that the throughput number represents the actual

number of requests/minute handled by the server. This calculation includes any delays

that are added to the test, as well as JMeter's own internal processing time.

In the graphs of the figures is depicted the following information:

o Data - plot the actual data values (Not active to avoid noise);

o Average - plot the Average;

o Median - plot the Median (midway value);

o Deviation - plot the Standard Deviation (a measure of the variation);

o Throughput - plot the number of samples per unit of time;

o The value displayed on the top left of graph is the max of 90th percentile of

response time.

The tested Manager Component routes were the following: Create Enterprise, Delete

Enterprise, Create Machine, Delete Machine, Create Sensor, Init Cloud System, Close

Cloud System, Get System Status and Reload Factory.

Thus, through the graphs, as well as through the summary report, we can observe the

values that are represented in Table 15

Table 15 - Manager Component performance and stress tests

Requests
Seconds

Samples

Average

Response

Time
Milliseconds

Min

Response

Time
Milliseconds

Max

Response

Time
Milliseconds

Std.

Deviation
Milliseconds

Error

%
Throughput

bit/sec

150 42182 1885 1837 1941 15 0 4.757,314

300 48026 3756 1992 3836 190 8,3 4.772,494

We can conclude that, with 150 requests, the component does not present failures,

meeting an acceptable response time (average 1885ms). However, and by increasing the

value up to 300 requests, the component actually presents ~8,3% of errors and a double

response time (average 3756ms). Another important fact is related to the conclusion that

the samples only increased by 13.9% when the requests were doubled.

Hence, this component presents a problem for the system, in terms of performance,

being highly suggested to update the contracted hosting server (Azure) in order to have

150

a scalable solution, or even to purchase a Virtual Server (VPS), with at least 4 CPUs, 4

GB ram and a port speed > 100 Megabit/s to achieve better results.

Figure 65 - Apache Jmeter - Graph Report 150 request per second

Figure 66 - Apache Jmeter - Tests Graph Report 300 request per second

The code related to the tests of the implemented components can be consulted in the

Bitbucket repository of the present project, and it is under constant updates.

151

7.2 Conclusions

The software testing referred to verification and validation applied to a set of activities

ensuring that the software correctly implements the specific functionalities and that meets the

stakeholder's requirements. Thus, several tests were performed in order to test the main

functionalities of the system with successful results.

Finally, since several components have been developed, it will be necessary to evaluate

the need to perform additional tests, validation and to guarantee more code coverage.

152

8 Conclusions

This chapter summarizes the work that has been highlighting its main contributions. In

this section, we provide answers to the questions that are presented in the beginning of the

present work and describe the future work to be accomplished regarding the implementation

and delivery of the solution to cover all its requirements, which, ultimately, meet the principles

of Industry 4.0.

8.1 Accomplished objectives

The present work has been very appealing, since it was possible to explore a new way

of attesting the acquired competences and to perceive the that is being followed by the Industry

in its path to digitalization in a real context.

At the start of this work it was necessary to understand the general architecture of the

existing ecosystem, the processes that are associated with it, the development methodology

which would allow the integration of this part with the overall MANTIS project and with the

existing legacy infrastructure existing on the machines.

After analysing the state of the art, it was required to evaluate the possible solutions for

the middleware, also to provide a Value Analysis on the different hypothesis and to elaborate a

Business Model for the exploitation of the solution.

Overall, we can argue that the present project groups a set of functionalities related with

the context of the Industry 4.0 which completely fulfils all the objectives defined in Chapter 1.

The following list resumes the results achieved for the framework in relation with the objectives

04 and 05:

• O4.1: A OPC-UA component, running on the machine, that has the responsibility of
collecting machine sensors and actuators data and places it on the middleware through
the Edge Local;

• O4.2: The Sensor Component uses a wireless accelerometers which are able to monitor
the machine’s moving parts. It transmits that information via Bluetooth to the Mantis-
PC, which, by its turns connects with the middleware through the Edge Local;

153

• O4.3: The Edge Local a component has the responsibility of collecting, pre-processing
and sending data to cloud through a middleware, securely isolating a machine inside the
factory from the Internet. This component can also provide some other advanced
functionalities (e.g. conversion between protocols) and an interface (HMI) with data
visualization;

• O4.4: The Middleware Component on the Edge Server subsystem, which has the
responsibility of enabling communication and management of data between distributed
components, namely the Middleware Client component from Data Analysis, the History
and Manager Components from Edge Server subsystem and Middleware Client
component from Edge Local subsystem;

• O4.5: The Manager Component is an interface that works as a gateway between the

Component HMI, with the Middleware Component and the History Component;

• O4.6: The History Component which enables the storing of historical data on a database.

 Interfaces that have the responsibility of consuming and producing data to and from the

middleware, which can be integrated by the HMI and Data Analysis modules;

• O4.7: The Middleware Client component that has the responsibility of consuming and

producing data to and from the middleware.

Furthermore, to integrate the HMI to with the middleware, to maintain and administer

the system and to support the display of graphical data related with the accelerometers (which

required a high-performance HMI). Support and implement some of the framework's external

modules were developed:

• O5.1: The graphical libraries for HMI with soft real-time;

• O5.2: The library in the HMI subsystem with direct access to the middleware in order

to collect with soft real-time;

• O5.3: The configuration the Edge sever with FTP, IIS, middleware and services security

(SSL/HTTPS), etc.
In sum, we can conclude that the implemented solution was based on a modular and

flexible architecture, which makes it possible to only integrate part of the components or

services. This work had an important component in the analysis of the solutions (mostly

focusing on open source and free tools), which can be available, in the context of Industry 4.0

and allowed, the identification of existing limitations regarding the scalability of the solution:

• Relational database should be switched to a document database;

• The History Component must be provided with load balancer, which allows it to run on

multiples machines;

154

• The Edge Server subsystem of the solution should be deployed a web server that

provides maximum quality of service, for example Azure.

Finally, some papers were published aiming to report the results of the work that has been

developed during this dissertation and some other which are not directly related with this thesis,

but were performed in collaboration with the authors.

• The Industrial Internet of Things (Albano, Silva & Ferrreira, 2017)

o AUTHORS: Michele Albano, José Silva, Luís Lino Ferreira

o CONFERENCE: Demo in 22º Seminário da Rede Temática Comunicações

Móveis (RTCM 2017). 18, Jan, 2017, Session III. Lisboa.

• A Pilot for Proactive Maintenance in Industry 4.0 (Ferreira, et al., 2017)

o AUTHORS: Luis Lino Ferreira, Michele Albano, José Silva, Diogo Martinho,

Goreti Marreiros, Giovanni di Orio, Pedro Maló, Hugo Ferreira

o CONFERENCE: Accepted in 13th IEEE International Workshop on Factory

Communication Systems (WFCS 2017). 31, May to 2, Jun, 2017. Trondheim,

Norway.

• Interoperable and Interconnected CPS-populated Systems for Proactive

Maintenance (Appendix-J)

o AUTHORS: Giovanni Di Orio, Pedro Maló, Csaba Hegedus, Michele Albano,

Luis Lino Ferreira, José Silva, Pal Varga and Istvan Moldovan.

o CONFERENCE: 22nd IEEE International Conference on Emerging

Technologies and Factory Automation - ETFA 2017.

• Application of Sensors for Proactive Maintenance in the Real World (Appendix-

L)

o AUTHORS: Michele Albano, Luis Lino Ferreira, José Silva, Edgar M. Silva,

Pedro Maló, Godfried Webers, Jarno Junnola, Erkki Jantunen, Luis Miguel

Vega.

o CONFERENCE: 22nd IEEE International Conference on Emerging

Technologies And Factory Automation - ETFA 2017.

• Quality of Service on the Arrowhead Framework (Albano, et al., 2017)

o AUTHORS: Michele Albano, Paulo Barbosa, José Silva, Roberto Duarte, Luis

Lino Ferreira, Jerker Delsing.

155

o CONFERENCE: 13th IEEE International Workshop on Factory

Communication Systems (WFCS 2017). 31, May to 2, Jun, 2017. Trondheim,

Norway.

• FlexHousing: Flexoffer concept for the energy manager (Appendix-N)

o AUTHORS: Joss Santos, Michele Albano, Luis Lino Ferreira, José Silva, Petur

Olsen and Luisa Matos

o CONFERENCE: 22nd IEEE International Conference on Emerging

Technologies and Factory Automation - ETFA 2017.

• Maintenance Supported by Cyber-Physical Systems and Cloud Technology

(Appendix-O)

o AUTHORS: Michele Albano, Luis Lino Ferreira, José Silva, Erkki Jantunen,

Jarno JunnolaUnai Gorostegui.

o CONFERENCE: 22nd IEEE International Conference on Emerging

Technologies and Factory Automation - ETFA 2017.

In the next subchapter, we present some ideas of what might be done in the future, more

precisely within the context of this thesis and regarding other projects that are quite similar to

the developed work.

8.2 Future work

It may be necessary to adjust several theoretical aspects, more precisely to better match

the needs of stakeholders and allow to add more features. One of the main objectives will also

be related to providing the source code that is available on a project sharing platform, such as

Github, especially collaboration for further development and testing of this solution.

There is little work ahead in order to complete and make available the solution

developed during this dissertation. The architecture and the developed prototype present good

results, considering that they are being tested in a real context. Nonetheless, some adjustments

to the software might be necessary. Additionally, and since several components have been

solely developed by the author of the present project, it will be necessary to evaluate the need

to perform additional tests, validation and to guarantee more code coverage.

It should also be noted that the HMI should be more flexible, specifically in the

implementation of the interoperability models and in the guarantee of the integration’s

resilience. As it was previously described, performance issues, optimizations and adjustments

in services must be considered.

156

Finally, and since there are several components to deploy, it is essential to provide

support in order to create a stable solution. Hence, the ideal would be to take a corrective and

evolutionary approach to maintenance, in order to further evolve the solution.

157

9 Bibliography

Douglas, B.,David, Dick. (2013) Web Services, Service-Oriented Architectures, and Cloud Computing, Second

Edition: The Savvy Manager's Guide (The Savvy Manager's Guides), CA: Morgan Kaufmann Publishers

Åkeson, L. (2016). Industry 4.0: Cyber-Physical Systems and their impact on business models. Master thesis

presented at the Karlstads Universitet, Sweden.

Albano, M., Barbosa, P., Silva, J., Duarte, R., Ferreira, L., Jerker, D. (2017). Quality of Service on the Arrowhead

Framework. 13th IEEE International Workshop on Factory Communication Systems, WFCS

Albano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Message-oriented middleware for smart

grids. Computer Standards & Interfaces, 38, 133-143.

Allenhof, S. (2015). Implementation of an example application facilitating Industrie 4.0. Sweden: Chalmers

University of Technology.

Alves, P. G. (2014). A distributed security event correlation platform for SCADA. Coimbra: University of

Coimbra.

AMQP (2017). Advanced Message Queueing Protocol. Available at: https://www.amqp.org/. Accessed on

27/04/2017.

Anderl, R. (2014). Industrie 4.0- Advanced engineering of Smart Products and Smart Production. Technological

Innovations in the Product Development, 19th International Seminar on High Technology, Brazil.

Ardichvili, A., Cardozo, R., & Ray, S. (2003). A theory of entrepreneurial opportunity identification and

development. Journal of Business Venturing, 18(1), 105-123.

Armbruster, H., Bikfalvi, A., Kinkel, S., & Lay, G. (2008). Organizational innovation: The challenge of measuring

non-technical innovation in large-scale surveys. Technovation, 28(10), 644-657.

Baldassarre, C., Daga, E., Gangemi, A., Gliozzo, A., Salvati, A., & Troiani, G. (2010). Semantic scout: Making

sense of organizational knowledge. Knowledge Engineering and Management by the Masses, 272-286.

Barquet, A. P. B., Oliveira, M. G., Amigo, C.R., Cunha, V. P., & Rozenfeld, H. (2013). Employing the business

model concept to support the adoption of product-service systems (PSS). Industrial Marketing Management, 42(5),

693-704.

Bauer, W., Schlund, S., Marrenbach, D. & Ganschar, O. (2014). Industrie 4.0 – Volkswirtschaftliches Potenzial

für Deutschland. Available at: https://www.bitkom.org/Themen/Digitale-Transformation-Branchen/Industrie-

40/index.jsp. Accessed on 27/04/2017.

Bauernhansl, T., ten Hompel, M. & Vogel-Heuser, B. (2014). Industrie 4.0 in produktion, automatisierung und

logistik : Anwendung, technologien und migration. Berlin: Springer Vieweg.

Bhuiyan, N. (2011). A framework for successful new product development. Journal of Industrial Engineering and

Management, 4(4), 746-770.

Boukouchi, Y., Marzak, A., Benlahmer, H., & Moutachaouik, H. (2013). Comparative study of software quality

models. International Journal of Computer Science Issues, 10(6), 309-314.

Brettel, M., Friederichsen, N., Keller, M. & Rosenberg, M. (2014). How virtualization, decentralization and

network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of

Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(1), 37-44.

158

Brisk Insights (2016). Operational predictive maintenance market by component (solutions, services), by

deployment type (cloud deployment, by on premises deployment), by application (automotive, energy and utilities,

healthcare, manufacturing, government & defense, transport and logistics), industry size, growth, share and

forecast to 2022. Available at: http://www.briskinsights.com/report/operational-predictive-maintenance-market.

Accessed on 5/05/2017.

Broy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S., & Wild, D. (2009). Automotive architecture

framework: Towards a holistic and standardized system architecture description. Munich: Technische Universität

München.

Bundesministerium für Bildung und Forschung (2017). Industrie 4.0. Available at:

https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html. Accessed on 27/04/2017.

Bürger, T. & Tragl, K. (2014). SPS-Automatisierung mit den technologien der IT-Welt verbinden. In T.

Bauernhansl, M. ten Hompel & B. Vogel-Heuser, Industrie 4.0 in produktion, automatisierung und logistik :

Anwendung, technologien und migration. Berlin: Springer Vieweg, p. 559-569.

Buxmann, P, Hess, T. & Ruggaber, R. (2009). Internet of services. Business & Information Systems Engineering,

pp. 341-342.

Chen, Y. (2017). Performance of message queue telemetry transport protocol and constrained application protocol

in wireless sensor networks. Oxford: University of Mississippi.

Chung, J.-Y. & Chao, K.-M. (2007). A view on service-oriented architecture. SOCA: Service Oriented Computing

and Applications, 1(2), 93-95.

Clarke III, I. (2001). Emerging value propositions for M-commerce. Journal of Business Strategies, 18(2), 133-

148.

Correia, M. A. S. (2014). Industrie 4.0: Framework, challenges and perspectives. Master Thesis presented to the

Faculty of Engineering, University of Applied Science, Rüsselsheim.

Dais, S. (2014). Industrie 4.0 – Anstob, vision, vorgehen. In T. Bauernhansl, M. ten Hompel & B. Vogel-Heuser,

Industrie 4.0 in produktion, automatisierung und logistik : Anwendung, technologien und migration. Berlin:

Springer Vieweg, p. 625-634.

DDS (2017). Data Distribution Service. Available at: http://www.omg.org/spec/DDS/. Accessed on 27/04/2017.

DKE (2014). The German standardization roadmap Industrie 4.0. Available at:

https://www.dke.de/de/std/documents/rz_roadmap%20industrie%204-0_engl_web.pdf. Accessed on 27/04/2017.

Drath, R. & Horch, A. (2014). Industrie 4.0: Hit or hype? IEEE Industrial Electronics Magazine, 8(2), 56-58.

Edvardsson, B. & Olsson, J. (1996). Key concepts for new service development. The Service Industries Journal,

16(2), 140-164.

Evans, P. C. & Annunziata, M. (2012). Industrial Internet: Pushing the boundaries of minds and machines.

Available at: http://www.ge.com/docs/chapters/Industrial_Internet.pdf. Accessed on 27/04/2017.

Faisal, I. K. & Mahmoud, M. H. (2003). Risk-based maintenance (RBM): a quantitative approach for

maintenance/inspection scheduling and planning. Journal of Loss Prevention in the Process Industries, 16(6), 561-

573.

Fast-Berglund, A., Âkerman, M., Karlsson, M. Hernández, V. G. & Stahre, J. (2014). Cognitive automation

strategies. Variety Management in Manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing

Systems.

159

Fernandes, J. L. (2011). Web services approach for ambient assisted living in mobile environments. Master thesis

presented at the University of Beira Interior, Portugal.

Ferreira, L, Dam P., Loopstra K., Tijsma B., Zurutuza U., Pradera O., Bergmann A., Sprong H. (2017). D3.6

Report on sensors selected and to be developed. Derivable related to Work Package 3 - Smart sensing and data

acquisition technologies of the MANTIS European project.

Ferreira, L, Topan, E., Tijsma, B., Dam, P., Terwee, Daan. (2016). D3.1 Report on sensors selected and to be

developed. Derivable related to Work Package 3 - Smart sensing and data acquisition technologies of the MANTIS

European project.

Ferreira, L., Albano, M., Silva, J., Duarte, R., Martinho, D., Marreiros, G., Orio, G., Maló, P., Ferreira, H. (2017).

A Pilot for Proactive Maintenance in Industry 4.0. 13th IEEE International Workshop on Factory Communication

Systems, WFCS

Fettke, P. & Loos, P. (2007). Reference modeling for business systems analysis. USA: Idea Group Publishing.

Fong, J., Wong, H. K., & Cheng, Z. (2003). Converting relational database into XML documents with DOM. Info.

& Soft. Tech., 45, 335-355.

Förderschwerpunkte Industrie 4.0 (2017). Federal Ministry of Education and Research in Germany. Available at:

http://www.softwaresysteme.pt-dlr.de/de/industrie-4-0.php. Accessed on 27/04/2017.

Giusto, D., Iera, A., Morabito, G. & Atzori, L. (2010). The internet of things. Berlin: Springer Vieweg.

Gordijn, J. & Akkermans, J. (2003). Value-based requirements engineering: exploring innovative e-commerce

ideas. Requirements Engineering, 8(2), 114-134.

Hermann, M., Pentek, T. & Boris, O. (2015). Design principles for Industrie 4.0 scenarios: a literature review.

Dortmund: Technical University Dortmund.

Holmberg, K., Jantunen, E., Bellew, J., Albarbar, A., Starr, A., & Al-Najjar, B. (2010). Maintenance today and

future trends. E-maintenance, 5-37. DOI: 10.1007/978-1-84996-205-6_2.

Hoyer, W. D., Chandy, R., Dorotic, M., Krafft, M., & Singh, S. S. (2010). Consumer cocreation in new product

development. Journal of Service Research, 13(3), 283-296.

Jantunen, E., Zurutuza, U., Ferreira, L., & Varga, P. (2016). Optimising maintenance: what are the expectations

for Cyber-physical Systems. 3rd International IFIP Workshop on Emerging Ideas and Trends in Engineering of

Cyber-Physical Systems, Vienna, Austria.

Jantunen, E.,Barbella, Michele., Sannino, P.,Garcia, A., Jantunen, E., Herman, M., Pal, V., Maló, P., Stefano, V.,

Mario, R., Bence, P., Anja, V., Silva, E., Hegedűs, C. (2016). D1.6 MANTIS Platform Requirements. Derivable

related to Work Package 3 - WP1 - Service platform architecture requirement definition.

JMS (2017).

Kagermann, H. (2014). Chancen von Industrie 4.0 nutzen. In T. Bauernhansl, T. ten Hompel & B. Vogel-Heuser,

Industrie 4.0 in produktion, automatisierung und Logistik. Anwendung, Technologien und Migration. Berlin:

Springer Vieweg, p. 603-614.

Kagermann, H., Lukas, W.-D. & Wahlster, W. (2011). Industrie 4.0: Mit dem internet der dinge auf dem weg xur

4. Industriellen revolution. Available at : http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-

Mit-Internet-Dinge-Weg-4-industriellen-Revolution. Accessed on 27/04/2017.

Kagermann, H., Lukas, W.-D. & Wahlster, W. (2013). Final report of the Industrie 4.0 working group.

Recommendations for implementing the strategic initiative Industrie 4.0.

160

Koch, V., Kuge, S., Geissbauer, D.R. & Schrauf, S. (2015). Oppertunities and challanges of the industrial internet.

Available at: http://www.strategyand.pwc.com/reports/industry-4-0 Accessed on 28/04/2017

Koen, P., Ajamian, G., Burkart, R., Clamen, A., Davidson, J., D’Amore, R., et al. (2001). Providing clarity and a

common language to the “Fuzzy Front End”. Research-Technology Management, 44(2), 46-55.

Kolberg, D. & Zühlke, D. (2015). Lean automation enabled by Industry 4.0 technologies. IFAC-PapersOnLine,

48(3), 1870-1875.

Lasi, H., Peter, F.,Kemper, H.-G., Feld, T. & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems

Engineering, 6(4), 239-242.

Lee, J., Bagheri, B. & Kao, H.-A. (2015). A cyber-physical systems architecture for Industry 4.0-based

manufacturing systems. Manufacturing Letters, 3, 18-23.

Lee, J., Kao, H.-A. & Yang, S. (2014). Service innovation and Smart analytics for Industry 4.0 and big data

environment. Procedia CIRP, 16, 3-8.

Meertens, L. O., Iacob, M. E., Nieuwenhuis, L. J. M., Sinderen, M. J., Jonkers, H., & Quartel, D. (2012). Mapping

the business model canvas to ArchiMate. Proceedings of the 27th Annual ACM Symposium on Applied

Computing, Italy.

Mikusz, M. (2014). Towards an understanding of cyber-physical systems as industrial software-product-service

systems. Procedia CIRP, 16, 385-389.

Mittermair, M. (2015). Industry 4.0 Initiatives. SMT: Surface Mount Technology, 30(3), 58-63.

Mobley, R. K. (2002). An introduction to predictive maintenance. (2nd ed). St.Louis: Butterworth-Heinemann.

Moffitt, J. (2010). Professional XMPP programming with JavaScript and jQuery. New Jersey: John Wiley & Sons.

Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia

CIRP, 17, 9-13.

MQTT (2017).

Nathan, S. (2015). Getting to grips with Industry 4.0. Engineer (00137758), 296(7867), 30-34.

Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value proposition design. How to create products

and services customers want. Hoboken, NJ: Wiley.

Platform Industrie 4.0 (2017). Platform Industrie 4.0. Available at http://www.plattform-

i40.de/I40/Navigation/DE/Home/home.html. Accessed on 27/04/2017.

Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., Amicis, R., Pinto, E. B. et al. (2015). Visual

computing as a key enabling technology for Industrie 4.0 and industrial internet. IEEE Computer Graphics and

Applications, 35(2), 26-40.

Pressman, Roger S. (2011) Engenharia de software: uma abordagem profissional. 7. ed. Porto Alegre: AMGH

Pujari, P. (2016). Enabling Omron’s IPC for Industry 4.0, M2M and IIoT. Master thesis presented at the Eindhoven

University of Technology, Eindhoven.

Robert, A., Bradford, W. (2015). Technical Report of Industrial Internet Reference Architecture. DOI:

10.13140/RG.2.2.18076.90249.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Services Sciences, 1(1), 83-98.

Sadeghi, A.-R., Wachsmann, C. & Waidner, M. (2015). Security and privacy challenges in industrial internet of

things. Design Automation Conference DAC.

161

Saint-Andre, P., Smith, K., & Tronçon, R. (2009). XMPP: The definitive guide – building real-time applications

with Jabber technologies. Farnham: O’Reilly.

Saint-Exupery, A. (2009). Internet of Things. Strategic Research Roadmap. Available at: http://www.internet-of-

things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf. Accessed on 27/04/2017.

Scheer, A.-W. (2013). Industrie 4.0. Wie sehen Produktionsprozesse im Jahr 2020 aus? IMC AG: Saarbrücken.

Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A. & Verl, A. (2015). Making existing production

systems Industry 4.0-ready. Production Engineering, 9(1), 143-148.

Schlick, J., Stephan, P., Loskyll, M. & Lappe, D. (2014). Industrie 4.0 in der praktischen Anwendung. In T.

Bauernhansl, T. ten Hompel & B. Vogel-Heuser, Industrie 4.0 in produktion, automatisierung und Logistik.

Anwendung, Technologien und Migration. Berlin: Springer Vieweg, p. 57-84.

Seebacher, R. T. (2013). Messaging challenges in a globally distributed network. Master thesis presented at Open

Systems, Switzerland.

Shafiq, S. I., Sanin, C., Szczerbicki, E. & Toro, C. (2015). Virtual engineering object/virtual engineering process:

A specialized form of Cyber-physical System for Industrie. Procedia Computer Science, 60, 1146-1155.

Shin, S.-J., Woo, J. & Rachuri, S. (2014). Predictive analytics model for power consumption in manufacturing.

Procedia CIRP, 15, 153-158.

Smith, J. B. & Colgate, M. (2007). Customer value creation: A practical framework. Journal of Marketing Theory

and Practice, 15(1), 7-23.

Sommerville, I. (2011). Software Engineering (9 Ed.), Pearson

STOMP (2017).

Sweeney, J. C. & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale.

Journal of Retailing, 77(2), 203-220.

Ta, X. (2006). A quality of service monitoring system for service level agreement verification. Australia:

University of Sydney.

Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Babar, M. A. (2010). A comparative study of architecture

knowledge management tools. Journal of Systems and Software, 83(3), 352-370.

Teixeira, C. R. S. (2015). Middleware for large-scale distributed systems. Master thesis presented at the Instituto

Superior de Engenharia do Porto, Portugal.

Traa, J. W. A. (n.d.). Rational Unified Process vs. Microsoft solutions framework: A comparative study. The

Netherlands: Erasmus University Rotterdam.

Trimi, S. & Berbegal-Mirabent, J. (2012). Business model innovation in entrepreneurship. International

Entrepreneurship and Management Journal, 8(4), 449-465.

Varga, P., Blomstedt, F., Ferreira, L. L., Eliasson, J., Johansson, M., Delsing, J., & Soria, I. M. (2016). Making

system of systems interoperable – the core components of the Arrowhead Framework. Journal of Network and

Computer Applications, 1-26.

Wang, S., Wan, J. W., Li, D. & Zhang, C. (2016). Implementing Smart Factory of Industrie 4.0: An outlook.

International Journal of Distributed Sensor Networks, 1-10.

Weiser, M. (1991). The computer for the 21st century. Available at:

https://www.ics.uci.edu/~corps/phaseii/Weiser-Computer21stCentury-SciAm.pdf. Accessed on 27/04/2017.

162

Weyer, S., ScHMItt, M., Ohmer, M. & Gorecky, D. (2015). Towards Industry 4.0 – Standardization as the crucial

challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine, 48(3), 579-584.

Woodruff, R. B. (1997). Customer value: The next source for competitive advantage. Journal of the Academy of

Marketing Science, 25, 139.

Xiong, R. (2008). Leadership in project management. Georgia: Georgia Institute of Technology.

XMPP (2017).

Yunpeng, X. (2010). A message queue based event notification system: Football lottery system. Master thesis

presented at the Department of Electrical and Computer Engineering of the University of Stavanger, Norway.

Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of

evidence. Journal of Marketing, 52(3), 2-22.

Zezulka, F., Marcon, P., Vesely, I., Sajdl, O. (2016). Industry 4.0 – An Introduction in the phenomenon. IFAC-

PapersOnLine 49-25, 008–012

163

10 Appendixes

10.1 Appendix-A- Acceptance Tests

Table 16 – Start Machine Internal Sensors Data - Acceptance Tests

Features:

11 OPC-UA server Component; CNCBender Component
Objective: Test OPC-UA server start/stop and data acquisition from the machine

sensors using the shared memory of the CNCBender component.
Test Method: Manual

Scenario Test Expected result Validation
The employee
initiates the OPC-UA
server

Start the executable and
click the “start server”
option menu

Receives an event message with
information about the server
endpoint

True

The employee checks
the clients connected
to the server

Click the “check
connected clients” option
menu

Receives an event message with
information about the connected
clients

True

The employee stops
the OPC-UA server

Click the “stop server”
option menu

Receives an event message with
information about disconnected
clients and turns off the server

True

Table 17 – Start Machine External Sensors Data - Acceptance Tests

Features: Sensors Component; BLE server Component; OPC-UA server Component of
the Mantis-PC Subsystem

Objective: Test sensors start/stop and data acquisition from the BLE Server. Next,
the that then sends the data to the OPC-UA Server of the Mantis-PC
Subsystem.

Test Method: Manual
Scenario Test Expected result Validation

The employee places
the sensors in the
machine and go to
the Mantis-PC starts
the BLE Serve and
the OPC-UA server

Starts the executables on
the Mantis-PC and click
the “Pair Devices" option
menu

Receives an event message with
information about the Pairing
success

True

The employee
removes the sensors
in the machine and
go to the Mantis-PC

On the Mantis-PC Click
the “re-calibrate” option
menu

Receives an event message with
information about the calibration
success

True

The employee
removes the sensors
in the machine and
go to the Mantis-PC
stops the BLE Serve
and the OPC-UA
server

Stops the executables on
the Mantis-PC

Receives an event message with
information about the unpairing
devices

True

164

Table 18 – HMI Local - Acceptance Tests

Features: Sensors Component; BLE server Component; OPC-UA server Component of
the Mantis-PC Subsystem; OPC-UA server Component of the Machine
Subsystem; OPC-UA Client Component; Middleware Component;
Middleware Client Component

Objective: Test data visualization and data acquisition for files in the HMI. The
data is received from the internal and external sensors of the machine.
Next, configure the HMI to send data for the cloud.

Test Method: Manual
Scenario Test Expected result Validation

The employee views
the machine internal
sensors data in Real-
Time

Accesses the Local
Subsystem and through
the Node-Red dashboard
click on the "view
webpage machine" option

Receives data in real-time
graphs with adjustable cache in
the browser

True

The employee views
the machine external
sensors data in Real-
Time

Accesses the Local
Subsystem and through
the Node-Red dashboard
click on the "view
webpage sensors" option

Receives data in real-time
graphs with adjustable cache in
the browser

True

The employee views
the data in files

Accesses the Local
Subsystem and through
the Node-Red dashboard
click on the "view file"
option

Receives a green light on the file
icon True

The employee sets up
the flow in the
dashboard in order to
send the data to the
cloud

Accesses the Local
Subsystem and through
the Node-Red dashboard
Resets the flow to connect
the incoming data input to
the Middleware Client
output

Receives a green light on the
Middleware Client icon

True
(The

middleware
was started
before the

tests)

165

Table 19 – HMI Web - Acceptance Tests

Features: Sensors Component; BLE server Component; OPC-UA server Component of the
Mantis-PC Subsystem; OPC-UA server Component of the Machine Subsystem;
OPC-UA Client Component; Middleware Component; Middleware Client
Component; History Component; Manager Component; HMI API; E-mail
Component

Objective: Test all the HMI features provided by the Framework (Start Cloud-System,
Stop Cloud-System, Create Factory, Delete Factory, Create Machine, Delete
Machine, View Soft-Real-time Internal Machine Sensor Data, Create Sensor,
Delete Sensor, View Soft-Real-time External Machine Sensor Data, View
History Data, View Analysis Data).
It is assumed that the employee is using a browser on a computer and
already insert the IP/DomainName of the HMI Web.

Test Method: Manual
Scenario Test Expected result Validation

The employee
starts the cloud
system

In the HMI click on the
"start system" option of the
System menu

Receives an event message with
information about the starting
cloud-system success and the
property configuration of the entire
system base (e.g., user, permissions,
queues and history)

True

The employee
stops the cloud
system

In the HMI click on the
"stop system" option of the
System menu

Receives an event message with
information about the stopping
cloud-system success and the
elimination of the basic system
configuration (e.g., user,
permissions, queues,
history)

True

The employee
creates a factory

In the HMI click on the
"add factory " option of the
Factories menu

Receives an event message with
information about the factory
creation success and the
configuration the system for that
factory (e.g. user, permissions,
queue, history)

True

The employee
deletes a factory

In the HMI click on the
"delete factory " option of
the Factories menu

Receives an event message with
information about the machine
deletion success and the elimination
of the configuration the system for
that factory (e.g. user, permissions,
queue, history)

True

The employee
creates a
machine

In the HMI click on the
"add machine" option of the
Machines menu

Receives an event message with
information about the machine
creation success and the
configuration of the system for that
machine (e.g. queues and history)

True

The employee
deletes a
machine

In the HMI click on the
"delete machine" option of
the Machines menu

Receives an event message with
information about the factory
deletion success and the elimination
of the system for that machine (e.g.
queues and history)

True

The employee
creates a sensor

In the HMI click on the
"add sensor" option of the
Sensors menu

Receives an event message with
information about the sensor
creation success and the
configuration the history system for
this sensor

True

The employee
deletes a sensor

In the HMI click on the
"delete sensor" option of the
Sensors menu

Receives an event message with
information about the sensor
deletion success and the elimination
of the history system for this sensor

True

166

The employee
visualizes the
internal machine
sensor data in
Soft-Real-time

In the HMI click on the
"machine live data" option
of the MachineActions
menu

Receives data in soft-real-time
graphs with adjustable cache in the
browser and other option

True

The employee
visualizes the
external machine
sensor data in
Soft-Real-time

In the HMI click on the
"sensors live data" option of
the MachineActions menu

Receives data in soft-real-time
graphs with adjustable cache in the
browser and other option

True

The employee
visualizes the
history data

In the HMI click on the
"history data" option of the
MachineActions menu and
insert an interval

Receives data in a graph within a
defined time interval

True

The employee
visualizes the
analysis data

In the HMI click on the
"data analysis" option of the
MachineActions menu and
choose an error/alarm

Receives data in a graph of
error/alarm detected by the Data
Analysis subsystem

True

167

11.1 Appendix-B- Machine Component (Preliminary Solution)

This component was implemented Java language, a project application was created

using the NetBeans IDE. It was developed in the operating system Windows 10 using JDK 843,

being platform independent.This project used the Java swing library44 to create the User

Interface.Because it was necessary to read files with a lot of data(300Mb), With concurrent

access, it was necessary to use Java Streams45 in order to resolve the problem.

Since access to share memory was done via DLL, Java Native Access (JNA)46 was

required to access the functions provided by the DLL.In addition, it was necessary to use the

UCanAccess47 library to access the Microsoft Access Database that stores the information of

the Machine.

The main features and responsibility of the Preliminary Solution are:

• Configuring properties in file, namely, Server IP, Log file and database paths, queues,

exchanges, routing keys, etc.;

• Gathering the values from start and stop bottom in the shared memory and activate log

file executable;

• Reading the values from log files with a periodicity of 300 milliseconds and catch N

lines;

• Analysing data and creating new Comma Separated Values (CSV) files using a pattern

to erase dump data;

• Creating a Data Transfer Object (DTO), with data from log files, using JSONArray48

and sending it over the internet using AMPQ Server;

• Collecting all inserts in the AlarmDB Database on table Alerts and send it over the

internet using AMPQ Server;

• Providing a user-friendly and responsive Graphical User Interface (Figure 6767) to

define the state of the Internet connection and access shared memory, configure

properties, erase data, etc.

43 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
44 https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
45 http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
46 https://github.com/java-native-access/jna
47 http://ucanaccess.sourceforge.net/site.html
48 http://docs.oracle.com/javaee/7/api/javax/json/JsonArray.html

168

Figure 67 - Graphical User Interface – Main Page

For the point of view of the objects arranged in the detailed time sequence of the CNC

Machine Preliminary Solution, which is a data producer, was designed the diagram of Figure

6868 that shows the main features of this solution in a high-level view.

169

Figure 68 - UML Sequence Diagram - Machine Preliminary Solution

170

11.2 Appendix-C- UML class diagram for History Component

171

11.3 Appendix-D- UML class diagram for RabbitMQ-Core

172

11.4 Appendix-E- UML Class Diagram for OPC-UA Server

173

11.5 Appendix-F- UML class diagram for full Middleware Client
(Producer/Consumer)

174

11.6 Appendix-G- UML Class Diagram for Manager Component

175

11.7 Appendix-H- UML class diagram for API Component

176

11.8 Appendix-I- Deployment setup and information

Table 20 - OPC-UA server Component Setup and Information
Type Details
Project IDE Netbeans Version: 8.2

Dependencies Boost; Cppunit

Operating system (target) Windows XP Pro SP3

OPC-UA implementation Open62541- Version: 0.2
Compiler Cygwin - Version: 2.5.2
Software (OPC-UA server) Version: 0.5
Software (OPC-UA server) -
Size

7,1 MB

Programming Languages C and C++
Protocol OPC-UA

Table 21 - CNC Bender Component Setup and Information
Type Details
CNC Bender Version 6.00.30h CN

Kvara (Shared memory module) Version: 5.2.29.23

Operating system Windows XP Pro SP3

Processor Intel Atom N270 1.60GHz
Memory 1GB RAM
Hard Disk 500GB

Table 22 - Sensor Component Setup and Information
Type Details
Project IDE ARDUINO 1.8.3

Sensor Arduino 101

Microcontroller Intel Curie
Input Voltage (recommended) 7-12V
Flash Memory 196 kB
Features Bluetooth LE, 6-axis accelerometer/gyro
Box Arduino 06RBARD16 Box

Fixationility Double-sided 1.5 mm
Software (Sensor Component) Version: 0.2
Programming Languages C and C++
Protocol BLE

177

Table 23 - Mantis-PC Subsystem Setup and Information
Type Details
Mantis-PC Raspberry PI 3 Model B

SD Card Size 8GB

Operation System Raspbian Jessie Lite - based on Debian

Dependencies npm; bluetoothctl

Table 24 - BLE server Component Setup and Information
Type Details
Project IDE IntelliJ IDEA 2017
BLE server Component Server-side JavaScript - NodeJS
Dependencies npm; noble; async; buffer-dataview; net
Software (Sensor Component) Version: 0.3
Programming Language JavaScript
Protocol BLE

Table 25 - Edge Local Subsystem Setup and Information

Type Details
Operating system Windows Server 2012 Essentials
Processor i7 CPU 4th generation (suggestion)
Memory 16GB RAM
Hard Disk 1TB
Dependencies npm; node-red; node-red-contrib-opcua; node-

red-dashboard; node-red-contrib-amqp

Table 26 - Node-Red component Setup and Information
Type Details
Node-Red Version 0.16
Dependencies npm; node-red; node-red-contrib-opcua; node-

red-dashboard; node-red-contrib-amqp
Programming Language JavaScript

Protocols OPC-UA and AMQP

Table 27 - Middleware Client component Setup and Information

Type Details
Project IDE Netbeans 8.2
Middleware Client
(producer/consumer)

Version 1.2

Dependency manager Maven
Development Kit (SDK) Version 8
Programming Language Java
Protocol AMQP

178

Table 28 - Edge Server Subsystem Setup and Information
Type Version
Operating system Windows Server 2012 Essentials
Processor i7 CPU 4th generation (suggestion)
Memory 16GB RAM
Hard Disk 1TB
Dependencies IIS;FTP; RabbitMQ;SQL
Protocols AMQP; HTTPS; STOMP; MQTT;TPC/IP

Table 29 - Manager (with modules) and History and components setup and Information

Type Version
Manager Version 0.7
Project IDE Netbeans 8.2
Dependency manager Maven
Development Kit (SDK) Version 8
Programming Language Java
Dependencies Mavens; grizzly; jersey; junit; gson; sqlserver;

rabbitmq; slf4j; mockito; History Component;
RabitMQ-Core Module

Protocols AMQP; HTTPS;TPC/IP
Database Microsoft SQL Server 2012
Database Space 80 GB

Table 30 - API Component Setup and Information

Type Details
Project IDE Visual Studio 2015

API Version 0.1

Dependency manager Nuget
Architecture REST
Protocol HTTPS
Programming Language C#

Table 31 - API Component Setup and Information

Type Details
Project IDE IntelliJ IDEA 2017

Middleware-Web Client Version 0.1

Dependency manager npm
Dependencies npm;stompjs;highcharts
Protocol STOMP over Websocket
Programming Language JavaScript

179

11.9 Appendix-J- Interoperable and Interconnected CPS-
populated Systems for Proactive Maintenance

Interoperable and Interconnected CPS-populated
Systems for Proactive Maintenance

Giovanni Di Orio, Pedro Maló
Dep. De Eng. Eletrotécnica, FCT-UNL

UNINOVA-CTS
Lisboa, Portugal

{gido, pmm}@uninova.pt

Michele Albano, Luis Lino Ferreira, José Silva
ISEP/INESC-TEC, CISTER
Polytechnic Institute of Porto

Porto, Portugal
{mialb, llf, jbmds}@isep.ipp.pt

Csaba Hegedűs
Telecommunications Division

AITIA International Inc.
Budapest, Hungary
hegeduscs@aitia.ai

Pál Varga, István Moldován
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
{pvarga, moldovan} @tmit.bme.hu

Abstract— Cyber-Physical Systems (CPS) are creating new
market opportunities and business models for all kind of
European Industries. CPS-based platforms are increasing in their
size and target application areas in a steady manner. However,
even if progress is made every day supported by continuous
technological advancements, CPS application and deployment is
still challenging. Many solutions have been made available or is
currently under development in several research projects/
initiatives. Typically, these solutions show no interoperability
between each other and are tailored to a specific application
context. Thus, there is an urgent need for a clear definition of what
a CPS-populated system actually is. This will provide a common
ground for designing and building interoperable CPS-populated
systems. Interoperability represents one of the most challenging
problems for such systems essentially due to their intrinsic
characteristics: heterogeneity, distribution and networked. These
must be addressed to allow the cooperation and collaboration
between all the actors of the system. In this landscape, the
MANTIS project is aimed to provide a reference model for
interoperable and interconnected CPS-populated systems for
maintenance-related ecosystems, which is the focus of this paper.

Keywords—Cyber-Physical Systems; Service Orientation; OPC-
UA; MIMOSA; Interoperability

I. INTRODUCTION

The wider dissemination of intelligent devices in all aspects
of human life is producing extremely complex environments
that are, in turn, characterised by heterogeneity and distribution.
The next wave in this era of computing envisions the active
presence of physical objects/entities on the network [1]. As
explained in [2][3], current technological advances are radically
changing the way systems in different domains are designed
and deployed, monitored and controlled. Especially the CPS
approach is opening the doors to a new generation of systems,
where information transparency, efficient and effective
management, high availability, adaptability and (re-
)configurability of assets and resources are the key
characteristics.

As stated in [4], three main converging streams are pushing
enterprises into the world of “smartness & connectivity”. One
of them – smart embedded systems, mobile services and
pervasive computing – is contributing to the establishment of a
cyber space [5] where data coming from assets and resources
can be potentially used to: i) enable more and more exclusive,
efficient and sustainable systems to assure a more efficient and
effective management of the resources; and ii) create new and
powerful business opportunities through the tighter integration
of all the steps/stages of the product lifecycle management
(PLM), and the provisioning to the customer of new product-
service solutions [6].

As stated in [7]: “Through CPS, the development of new
business models, new services are expected which may change
many aspects of our life”. Nevertheless, CPS are becoming
critical to the business success of many enterprises as confirmed
in [8]: “In transportation, manufacturing, telecommunications,
consumer electronics, health and medical equipment, and
intelligent buildings the value share of electronics, computing,
communications, sensing, and actuation is expected to exceed
50% the end of the decade”. However, CPS application and
deployment is still challenged by set of technical, institutional,
and societal issues.

This paper presents how the MANTIS project is building
interoperable and interconnected CPS-populated systems for
proactive maintenance for enabling service-based business
model and improved asset availability at lower costs through
continuous process and equipment monitoring and analysis.

II. THE MANTIS PROJECT

A. The Project Background
Nowadays, conventional systems and processes are evolving

into CPS. As stated in [9], the term “Cyber-Physical Systems”
have been coined in 2006 and specifies a system consisting of
computational, communication and control components
combined with physical processes [10]. This definition

indirectly points out the core elements and/or characteristics of
a CPS, extended from [11], [12]:

x Enhancement of physical entities with Cyber
capabilities;

x Networked at multiple and extreme scale;
x Dynamic behaviour (plug and unplug during

operation);
x High degrees of automation, the control loops are

typically closed;
x High degree of autonomy and collaboration to achieve

a higher goal; and
x Tight integration between devices, processes,

machines, humans and other software applications.
The elements and/or features of a CPS intrinsically identify

a set of research challenges that need to be addressed to
accelerate the progress and deployment of CPS in real
application context. The research challenges here summarized
are the ones related with the MANTIS project ambition and
clustered according to [13]:

x Science and engineering foundations: a reference
architecture for interoperable and interconnected CPS-
populated systems in cross-sector applications;

x System performance, quality and acceptance: to create
large, adaptive and resilient networked systems that are
capable to operate in the specific environments where
the physical entities are installed while delivering the
required functionality in a reliable way; and

x Applied development and deployment: to provide
methodologies for virtualization of physical entities
and integration of heterogeneous systems. To deliver
technology foundation for building interconnected and
interoperable CPS-populated systems.

B. The Project Vision
The overall aim of the MANTIS1 project [14] is to develop

platform for interoperable and interconnected CPS-populated
systems for proactive maintenance ecosystems, i.e. for
facilitating the implementation of predictive and proactive
maintenance strategies. The MANTIS platform will provide a
practical mean for implementing collaborative maintenance by
taking advantage from:

a. the omnipresence of intelligent devices – that combine
physical entities with computational and
communication capabilities – in modern processes,
machines and other distinct application domains; and

b. the maturity level reached by cloud-based
infrastructure, as well as, the huge amount of
computational and storage resources that are available
and usable “on-demand”.

Intelligent devices are the ones directly connected and/or
installed to the physical resources and assets. They can
potentially optimize and improve current maintenance activities
and their related management systems by providing (often live)
data – gathered during operation – that can be analysed (low
level data analysis) to understand the behaviour of the related
physical resources and assets. Furthermore, the data gathered
from physical resources and assets can be also combined and
analysed globally (high level data analysis) by using

1 http://www.mantis-project.eu

computational resources and complex algorithms running over
the cloud (high level) to understand the collective behaviour of
group of resources and assets. Therefore, within the MANTIS
platform the data extraction, transforming, loading and pattern
analysis will take place at different levels, namely (see Fig. 1):

a. Low level: extraction, transforming, loading and
analysis of simple signals to model and understand the
behaviour of selected physical resources and assets.
The following algorithms, methods and methodologies
are considered: sensor data fusion (feature fusion,
decision fusion), noise elimination and erroneous data;
this can be implemented by stochastic methods,
Kalman filter, fuzzy logic, logical links or rule-based
methods. Additionally, it will also reduce bandwidth
requirements.

b. High level: extraction, transforming, loading and
analysis of complex data – typically the results of the
low level – to model and understand the global
behaviour of physical resources and assets. The
following algorithms, methods and methodologies are
considered: data mining (classification, cluster
analysis, associations and regression analyses),
intelligent assessment of data; includes recognition of
outliers, k-means-algorithms and machine learning.

Since data sources are typically characterized by
distribution, heterogeneity, and a high degree of dynamicity (e.g.
data sources like sensors can be plugged and unplugged any
time), then the design of the MANTIS architecture has been
driven by the following main requirements:

1. Integration of complex and heterogeneous large-scale
distributed systems from different application domain;
and

2. the design of CPS-populated systems to enable
collaborative proactive maintenance strategies.

It is easy to understand that the design of interoperable and
interconnected CPS-populated systems become a key element of
the MANTIS implementations to allow to dynamical and on-
demand addition or removal of data sources in/from the
MANTIS platform to gather most of the maintenance relevant
information automatically from the environment.

Fig. 1 MANTIS overall concept idea and data processing levels

III. SUPPORTING CONCEPTS

A. Relevant Paradigms and Technologies
1) Edge and Cloud Computing

The architectures supporting CPS-populated systems has
been subject to strong research activities, to converge to an
approach that allows interoperability, performance and
resilience. CPS is having disruptive effect on the way enterprise
are structured while motivating the need to find a standard, well-
structured and defined concept for modelling and describing
implementation of CPS-populated systems.

Nowadays, cloud technologies are creating the foundations
for breeding CPS-populated systems through:

1. an elastic infrastructure for CPS integration, i.e.
services and/or atomic functionalities provided by CPS
can potentially be accessed/used over the internet by
other CPS or applications; and

2. a huge amount of computational and storage resources
that are available within the cloud and can be used “on-
demand”.

Specifically, the cloud computing architectural model
enables ubiquitous, on-demand network access to a shared pool
of resources that are – thus – available and provided as services.
This model typically relies on:

x processing offerings: provides all the required
functionalities to execute the work load;

x storage offerings: provide all the necessary
mechanisms to store data into the cloud; and

x communication offerings: provide all the necessary
mechanisms to enable the information exchange
between cloud applications.

Even if cloud environments are by nature distributed the
architectural model is highly centralized.

 Next to cloud computing, fog/edge computing architectural
model has been introduced. This model is aimed to extend the
cloud computing paradigm to the “edge” of the network for
those applications that are latency-sensitive and – thus – have
strict delay requirements [15]. Therefore, fog/edge computing is
about pushing intelligence, data analytics and knowledge
generation in smaller clouds, between physical devices and
traditional cloud computing data centres, and – thus – closer to
source of the data [16] while supporting glocalisation, i.e.
location awareness and distribution. Fog/edge computing
architectural model reflects better then cloud the complexity,
heterogeneity and distribution of CPS-populated systems and
their ecosystems.

2) Service Oriented Architecture for Cyber Physical
Systems

Firstly referred in [17], Service-oriented Architecture
(SOA) paradigm has emerged and rapidly grown as a standard
solution for publishing and accessing information in an
increasingly Internet-ubiquitous world. SOA establishes an
architectural model that aims to enhance the efficiency,
interoperability, agility, and productivity of an enterprise by
positioning services as the primary means through which
solution logic is represented in support of the realization of
strategic goals [18]. The increasingly interest in SOA has been
stimulated by an influential industry trend: Web Services
technology [19]. In this landscape, Web Services are helping to

bring SOA to a wider audience, while SOA concepts and
principles will contribute to more successful web services
initiatives [20].

Nowadays, there are several technologies and standards that
can be used to develop web services for networked-based
software architectures. Regardless to the specific technology
and standard used, web services can be classified into two main
categories: Simple Object Access Protocol (SOAP) and
Representational State Transfer (REST). On the top of these
several SOA solutions have been created that are suitable for
hardware virtualization, i.e. for cyber-physical integration, the
most prominent ones include: DPWS, OPC-UA and
Arrowhead.

a) OPC-UA
The OPC UA (Unified Architecture) is the new version of

the vastly deployed OPC architecture originally designed by the
OPC Foundation to connect industrial devices to control and
supervision applications as explained by [21], [22]. Considering
the application context, the focus of OPC is on getting access to
large amounts of real-time data while ensuring performance
constraints without disrupting the normal operation of the
devices. The original OPC specifications were based on
Microsoft COM/DCOM meaning that they are becoming
obsolete and are rapidly being replaced by the newer standards
on interoperability (e.g. Web services). Thus, the main visible
transformation when looking at OPC and its newer architecture
OPC-UA is the shift to cross-platform capable web services
[23]. From a technological point of view, OPC-UA can be
mapped using widespread Web standards, including XML,
WSDL, SOAP and other WS-* specifications, along with other
OPC UA defined specifications for UA native communications.
Moreover, the criticality of the industrial process imposes
security as a fundamental requirement. In this, scenario OPC-
UA provides configurable security mechanisms to allow
security not to impact too much on the system performance.
Finally, OPC UA provides a homogeneous and generic meta-
model and defines a set of web services interfaces to represent
and access both structure information and state information in
a wide range of devices.

b) Arrowhead Framework
The Arrowhead Framework [24] is the result of a large

European effort that aimed at normalizing the interaction
between industrial IoT applications by the means of Service
Oriented Architectures. The approach targeted at number of
application domains comprising industrial production, smart
buildings, electro mobility, and energy production. Services are
exposed and consumed by (software) systems, which are
themselves executed on devices. These devices are grouped into
local automation clouds, that are self-contained, geographically
co-located, independent from one another, and mostly protected
from external access through security measures.

Services are considered either application services (when
implementing a use case), or core services (that provide support
actions such as service discovery, security, service orchestration,
and Quality of Service). The approach considers the
interoperability of the involved devices as one of the most
important issues, and thus trust all these core services to a
common Arrowhead Framework, which operates using

registries containing formal descriptions of the devices, systems
and services that are present in that local cloud instance.

The technical stance of Arrowhead involves either the
deployment of a set of core services at the industrial site, or the
secure connection (e.g.: through a VPN) to a set of existing core
services. Particular support is given to the orchestration of
services, allowing the creation of distributed applications that
build over existing ones, for example to create building
automation applications that connect to the Virtual Market of
Energy [25]. To this aim, the Orchestration core service makes
use of a engine that is able to match the requirements on the
orchestrated service with the formal description of the available
services, while taking into account non-functional requirements
such as Quality of Service, and geographical localization of the
devices offering the services.

B. Focusing on Standards: MIMOSA
To achieve useful maintenance procedures and strategies

information from large numbers of smart devices and systems
needs to be collected and analysed. In this scenario, standards
provide a set of terms, concepts, data formats, document styles
and techniques so that the information collected can be easily
processed by data analytics tasks, routines, algorithms within
different computer program. Thus, the provisioning and usage
of standard models is a fundamental step to achieve
interoperability by assuring that products and services – that
comply with them – can communicate and exchange
information.

One challenge in designing and developing integrated
system health monitoring and service maintenance platforms is
the strong presence of vast amounts of data from heterogeneous
resources which are exchanged over a heterogeneous collection
of communication channel at different levels ranging from
local-nodes to cloud applications. This is clearly the case of any
CPS-populated system. As stated in [33], the success of these
systems strictly depends on an open, uniform, and performance-
optimized solution for data management. A solution that
includes: data definition, data communication, and data storage.

The Machinery Information Management Open Systems
Alliance (MIMOSA) is a not-for-profit trade association
composed of industrial asset management system providers and
industrial asset end-users [28], [29]. The goal is to develop
information integration specifications to enable open,
integrated solutions for managing complex high-value assets.
MIMOSA's open standards enable collaborative asset lifecycle
management in both commercial and military applications. Its
primary domains are registry, condition monitoring, reliability,
maintenance and work management functions. MIMOSA
provides two open standards:

x Open System Architecture for Condition Based
Maintenance (OSA-CBM): focused on facilitating the
information acquisition processes, i.e. to support
interoperability between different components.

x Open System Architecture for Enterprise Application
Integration (OSA-EAI): focused on supporting
integration between application at enterprise level.

If from one side the MIMOSA standards support a large range
of asset management data types that allow them to be used in
many asset management integration processes. From the other
side they are complex, intricate and not well-documented. The
MIMOSA standards are still immature. This lack of maturity
makes the process of building and maintaining MIMOSA-based
solutions too expensive for any organization. Moreover, the
documentation is sparse and incomplete.

IV. ENGINEERING OF CPS FOR MAINTENANCE: THE MANTIS

APPROACH

A. The MANTIS-ARM
1) Edge devices according to MANTIS

The MANTIS platform aims to provide all previously discussed
capabilities both on the low and high level analytic planes. To
this end, various components, technologies and concepts should
appear in the MANTIS-ARM that was presented in the previous
sections. Fig. 2 depicts the overview of the architecture.
All edge devices are connected to the MANTIS platform. They
are generally connected to the physical world – and can be
categorized based on their capabilities and resources as:

x A constrained device,
x A smart and intelligent sensor node,
x A complex cyber-physical system, or
x A local automation cloud on its own.

Constrained devices are merely sensors with restrained
processing and communicational capabilities. This can involve
a cellular or other wireless connection, and that the device itself
is an embedded system. Hence, it is possibly striving for low
energy consumption or for staying in sleep mode. However, it
must communicate directly with the MANTIS platform,
primarily to send in their read outs. Since the connection might
be metered based on traffic, the implemented edge-cloud
interface must use the shortest possible messages.

Smart and intelligent sensor nodes not just possess
significantly higher processing power, but feature low-level
implemented algorithms and analytics on the sensory data. In
here, high frequency readouts might be extracted into smaller
descriptors (or fingerprints) and local storage of the
measurements might also be implemented. Therefore, the edge-
cloud interface must feature two-way communications, and be
suitable for data streaming and bulk transmissions as well.

Complex cyber-physical systems differ from sensor nodes
in all aspects. They might feature high level analytic
capabilities on their own, and are not restrained in any sense.

If there are multiple CPS-s and a whole local automation
environment is to be handled as one entity (from the platform’s
point of view). This could be achieved using a MANTIS-
capable gateway that makes use of the proper ontologies and
provides interoperability between local CPS-s and the analytics
platform.

2) Cloud modules
MANTIS cloud analytic platform features the modules:
x Edge servers – brokers,
x Stream processors for real time analytics,
x Central database,
x Batch processors for offline analytics.

The purpose of the edge servers (or brokers if message-
oriented middleware is used for implementation) is to collect,
aggregate and queue up the inbound traffic from the edge level.
This entity must be highly scalable and therefore might be
implemented using load balancers and redirectors. Its output is
forwarded to the central storage (with the proper pre-processing
per the storing policy), and to the online stream processor unit.

The task of the stream processor is to receive the inbound
traffic from the edge and process, detect or predict events in the
data stream (e.g. as a time series).

These events are connected to the primary objectives of the
platform: i) tracking the remaining useful life (RUL) of assets,
ii) early detection and prediction of failures and iii) conduction
of root cause analysis (RCA) in case of a failure.

The output of the stream processor is also related to these
maintenance-related objectives and runtime. These can include
the notification of the appropriate personnel through HMI, or
the triggering of the offline analytics engine. For example, if the
stream processor is detecting a failure, it can trigger the RCA

The offline batch processors can execute more complex and
demanding algorithms (e.g. machine learning – training phase),
that are required for the stream processor’s runtime (e.g.
parameter estimation and model creation for RUL). This entity
is then triggered by the online analytics engine, for example
when a maintenance related decision cannot be made by the
stream processor. This entity has the time to collect historical
data from the database, collect additional data from external
systems and make decisions based on them.

3) Arrowhead integration
As per the Service Oriented Architecture (SOA) design

pattern, these interfaces and communication can and are
abstracted as services. To utilize the i) loose coupling, ii) late
binding and iii) the dynamic discovery of services provided by
the Arrowhead Framework, the MANTIS platform is organized

as a collection of services provided by each of the above-
mentioned modules. Therefore, Arrowhead acts as a system
integrator, and provides run-time (re-)configurability of the
networked devices. For example, edge devices can look up the
appropriate edge broker they are supposed to connect to.

B. MANTIS Interoperability Perspective
Interoperability represents a perspective of the MANTIS-

ARM reference architecture building block. A perspective
defines a collection of activities, tactics, and guidelines that are
used to ensure that a system exhibits a particular set of related
quality properties that require consideration across a number of
the system’s architectural views [30]. Therefore, interoperability
perspective is something orthogonal to the several views defined
within the MANTIS-ARM reference architecture building
block. Fulfilling qualitative requirements through the
architecting process inevitably leads to design challenges,
related design decisions and design choices. Since there is
usually more than one solution to each of the design challenges,
the MANTIS ARM cannot guarantee interoperability between
any two concrete architectures, even if they have been derived
from the same requirement set. Nevertheless, the MANTIS
ARM is an important tool in helping to achieve interoperability
between MANTIS-compliant systems and within the MANTIS
concrete platform itself.

In MANTIS, interoperability issues are framed in two levels:
x Edge level: focuses on a set of physical entities

belonging to the same local system. At this level the
data extracted from physical entities is used to model
and analyse the behaviour of the local system. The
edge level also includes a sublevel that is the
component level where physical entities are analysed
singularly.

x Cloud level: focuses on the information exchange and
data integration in the cyberspace. At this level the
data coming from the edge level is organized in order

Fig. 2 – Overview of the MANTIS platform

to be processed to analyse the overall system
behaviour.

Furthermore, there are several interoperability issues that are
orthogonal to the considered interoperability levels, i.e. models,
guidelines and specifications that can be applied to all the
interoperability levels without any restriction, namely:

1. The definition of the communication protocol and
message exchange pattern to use in both edge and
cloud levels;

2. The definition of an ontology of events to support
systems interactions at both edge and cloud levels.

The above topics reveal interoperability issues that are related
on how CPS are connected and, thus, on how CPS can exchange
data/information. To enable interoperability between CPS a
standard-based approach is the way to follow. However, to
apply this approach it is necessary to reduce drastically the cost
of creating and establishing standard-based solutions. To
promote and take advantage from the usage of MIMOSA open
standards, in CPS-based applications, a set of meta-models
have been designed to reduce the MIMOSA complexity while
hiding its own intricacies. The provided models are here
presented in sections B.1) and B.2).

1) Semantic Data Representation and Exchange Model for
MANTIS CPS

The semantic data representation and exchange (see Fig. 3
left) is aimed to describe the structure of all the data and/or
information handled by cyber entities at a network level. It
means that once a physical entity is virtualized, the related
cyber entity should be designed and developed to cope with the
semantic data representation and exchange model. As a matter
of fact, once a link between physical and cyber entity is created
the data extracted from the environment should be organized
and structured within the cyber entity to be transmitted to other
cyber entities within the MANTIS platform. Thus, the provided
model details the way information should be modelled to
guarantee that all the data circulating within the MANTIS
platform cyberspace satisfies a well-defined structure to assure
interoperability. The model is inspired from the IoT information
model that has been designed and developed in the scope of the
IoT-A project [31]. The obvious similarities between IoT and
CPS-based systems are always pushing a merging of the two
research streams. The main aspects are represented by the
elements Cyber Entity, Functionality Description and
Association. A Cyber Entity models a Physical Entity and
Functionality Description describes a service that serves
information about the Physical Entity itself or the environment.
Through an Association, the connection between an Attribute
of a Cyber Entity and the Functionality Description is modelled,
e.g. the Functionality could act as a “get” function for an
Attribute value. Every Cyber Entity needs to have a unique
identifier (identifier). Furthermore, a Cyber Entity can have
zero to many different attributes (Attribute). Each Attribute has
a name (attributeName), a type (attributeType), and one to
many values (Value Container). The attributeType specifies the
semantic type of an attribute, for example, that the value
represents temperature. It can reference some ontology
concepts. This way, one can for instance, model an attribute,

e.g. a list of values, which itself has several values. Each Value
Container groups one Value and zero to many metadata
information that belong to the given Value. The metadata can,
for instance, be used to save the timestamp of the Value, or
other quality parameters, such as accuracy or the unit of
measurement. The Cyber Entity is also connected to the
Functionality Description via the Functionality Description –
Cyber Entity association. A Functionality Description describes
the relevant aspects of the functionality provided, including the
interface (e.g. description of the service endpoint interface).
Additionally, it may contain one (or more) Resource
Description(s) describing, in this case, the Native
Communication Library that is exposed by the Functionality.
The Resource Description might contain information about the
Physical Entity on which the Resource is hosted, i.e. the
Physical Entity Description

2) Event Model for System Interactions between MANTIS
CPS

Significant actions, incidents or episodes need to be
registered and stored. The MANTIS platform – by promoting
monitoring and data analysis for performance improvement –
demands an event model to define event-based interactions
between CPSs at both edge and platform levels.

The event model for system interactions between MANTIS
CPS (see Fig. 3 right) is inspired from the IoT event model that
has been designed and developed in the scope of the IoT-A
project [31]. It relies on the Abstract CEP Event base type of all
events (where CEP stands for Complex Event Processing)
which is abstract and defines some basic information that must
be contained in any instance of any other event type or object
(e.g. DateTime, EventDescription, MeasurementLocation). The
classes DateTime and MeasurementLocation are defined to
adhere to the OSA-CBM standard (the same is for the UUID
type). There are only two other event types in the model that are
directly derived from Abstract CEP Event. These are Simple
CEP Event, that contains atomic event information and
Complex CEP Event that contains information derived by a
complex event processing application. This model has been
considered generic enough to enable the description of any
event within the MANTIS platform. Therefore, within
MANTIS we decided to adhere to the IoT-A event reference
model which allow the creation of two types of events. The
Value Container, Value and MetaData classes are used to model
the content of each event that in turn can be as simple as a
temperature value to complex string with serialized java
objects.

V. HOW IT IS DONE

A. Deployment in Real Application Scenario
1) Application Scenario Description

The efforts of the MANTIS project were driven by its pilots,
which on its part facilitated the early adoption of the techniques
under study. One of the pilots is centred on the continuous
monitoring of a press brake machine. The model targeted by the
pilot is a hybrid system powered hydraulically and electrically,
and controlled via a fluid pumping sub-system. A blade is
moved vertically, and presses on the metal workpiece to be bent.

The process is very complex since the type of the deformation,
and the forces to be applied, depend on the material of the
workpiece, on its initial and desired shapes, and on the physical
phenomena that can verify and which must be compensated for.
For example, it is possible that a metal part provides spring-back
effects, and uneven loads on the length of the blade.

The machine ends up being quite expensive, and its market
cannot be considered local to the factory building it. Thus, upon
a machine fault, it is necessary to ship spare parts from the
factory to the site where the machine is operated, leading to a
downtime of the machine that can be measured in terms of days
and that causes substantial economic losses. The benefit of a
proactive monitoring platform would reside in the capability of

shipping the spare parts in advance, and thus dramatically reduce
the downtime of the machine.

2) Proposed Approach
This scenario provides for obvious interoperability issues.

To identify such issues and – thus – extract the main
requirements for interoperability approach depicted in Fig. 4.
has been applied.

By looking Fig. 4, the approach can be divided into two main
phases. The phase 1 is about requirements analysis and is
intended to characterize the concrete system with the objective
of identifying interoperability needs and location. During this
phase, the following steps are performed:

i. Use Case Analysis: characterization of the use case
concrete architecture in which the MANTIS
platform will be integrated;

ii. Cloud Interoperability needs: identification of the
interoperability issues at cloud level;

iii. Edge Interoperability needs: identification of the
interoperability issues at edge level;

iv. Component Interoperability needs: identification of
the interoperability issues at component level; and

v. Base technology: identification of the base
technologies.

The phase 2 is about interoperability models’ application and
is intended to apply the provided interoperability specifications
to respond to the interoperability requirements gathered during
phase 1. During this phase, the following steps are performed:

i. New Tools and technology: to identify tools and
technologies that could potentially help/facilitate
the integration of the MANTIS platform within the
pilot ecosystem;

Fig. 3 – Left: MANTIS Semantic Data Representation and Exchange. Right: MANTIS CPS Event Information Model

Cloud�
Interoperability�

needs

Edge�
Interoperability�

needs

Component�
Interoperability�

needs

Base�Technology

Platform�
Interoperability�
reference�model

Edge�
Interoperability�
reference�model

Component�
Interoperability�
reference�model

New�Tools�and�
Technology

Use�Case�Analysis
Specification�and�
Guidelines�for�
Interoperability

A
bs
tr
ac
tio

n�
Le
ve
l

Generic

Concrete

Fig. 4 - MANTIS Interoperability proposed Approach

ii. Component Interoperability model: to apply the
provided models at the component level to enable
integration between physical entities and cyber
entities to create CPS;

iii. Edge Interoperability model: to apply the provided
models at the edge level, i.e. between several
components within the same local network

iv. Cloud Interoperability model: to apply the provided
models at the cloud level, i.e. integration between
cloud digital artefacts that are responsible to
process the data provided by CPS;

v. Specification and guidelines for interoperability:
the results of the previous steps have been used to
compile a set of specifications and guidelines and
guidance for facilitating interoperability between
the pilot ecosystems and the MANTIS platform.

3) Pilot Existing Architecture
The considered press brake machine is an industrial asset by

the main Programmable Logic Controller (PLC) that controls all
the machine operations, the safety PLC, several Input/Output
modules (connected to the main PLC) to sense and actuate
from/on the real world, and the Computer Numerical Controller
(CNC). Above the main controller there are no more monitoring
platforms. In the case under study, many sensors were already
present in the machine, and their data were stored in a file on the
CNC. Anyway, data was used for online control of the machine,
for example for fine-tuning of the machine operations and for
safety, and for basic monitoring of the machine.

4) Pilot Architecture enhanced with MANTIS platform
The MANTIS project enhanced the existing architecture

with both new sensors, and with capabilities based on cloud
processing of the data.

To promote the interoperability of the solution, a well-
defined architecture was composed with three of the
mechanisms described in this paper: the OPC-UA protocol, the
AMQP/MQTT communication mechanisms, and the meta-
models for integrating MIMOSA-based semantics. The resulting
architecture is aligned with the reference architecture presented
in section IV.A and can be divided into logical blocks: the
Factory, the Edge Broker, the Human Machine Interface (HMI),
and the Data Analysis.

The machines under analysis, together with their PLCs and
CNCs, existing and newly installed sensors, a MANTIS PC
gateway for each machine, and the edge gateway computer, are
part of the Factory logical block. The PLCs communicate with
the CNC by means of 4-20 mA analogue communication, and
the CNCs interact with the MANTIS PC using RS-485
technology. Thus, the MANTIS-PC is the interface of a machine
to the rest of the MANTIS architecture.

Newly installed sensors comprise elements to monitor the oil
quality and condition, and accelerometers for measuring the
bending blade vibrations. The oil monitoring sensors focus on
evaluating the temperature of the oil, and the presence of wear
particle that would give away the presence of fractures in the
machine. The accelerometers detect the vibration pattern of the
bending blade while it is performing its function, since the
vibration patterns can be related to the health status of the
actuators of the machine.

Multiple machines provide, through MANTIS-PCs, their
data to a local message broker that enables the concentration of
the data into a edge gateway computer. From here on,
interoperability with other machines is supported by the
solutions adopted by the MANTIS project. In fact, the
mechanisms used for the interaction through the message broker

Fig. 5 – Pilot Architecture enhanced with MANTIS platform

are based on MQTT/AMQP, and the data is exchanged as per
the OPC-UA protocol, which is also used to grant to edge
gateway the ability to discover and configure the machines,
through their MANTIS-PCs. The edge gateway performs pre-
processing operations on the data, and it is connected to the
logical block called Edge Broker.

The Edge Broker comprises a central messaging bus, where
the edge gateway registers itself as OPC-UA Publishers, and the
other two logical blocks (HMI and Data Analysis) act as OPC-
UA Subscribers. While the Factory (edge gateway) and the Data
Analysis interact by means of full AMQP/MQTT channels, the
HMI interacts with the central Edge Broker using
AMQP/MQTT over websockets.

The HMI acts as OPC-UA subscriber to provide online
visualization of the data exchanged in the system, and subscribes
to data from both the Factory, and the Data Analysis logical
blocks. While in the first case the HMI uses the data to provide
online access to either raw sensor data or simply pre-processed
data pertaining to a single Factory, in the second case the HMI
allows to visualize the results of Data Analysis operations.

The Data Analysis block is located on the cloud, and
performs advanced analysis of the data. Machine learning
algorithms are applied to compute profiles of the data, with the
goal of characterizing automatically the behaviour of machines
as either healthy, or leading to a fault in the close future.
Moreover, the Data Analysis contains a database that hosts both
the parameters of the models used to profile machine
behaviours, data from the Factory logical block, and the results
of the analysis. The database is based on MIMOSA-compliant

ontologies responding to its OSA-CBM standard. Being based
on this standard, all operations related to integration between the
MANTIS system and other existing and future platforms can be
based on the application of the approach depicted in Fig. 4 to the
MIMOSA ontologies and to the data mapped onto them, thus
easing interoperability efforts.

5) Pilot Architecture enhanced with MANTIS platform:
CPS Message Structure

Within the pilot architecture all the messages are structured
according to the models in Fig. 3. These models are used as meta
models for enabling the easy and smoth utilization of MIMOSA
standard. The Fig. 6 shows the instantiation of the MANTIS CPS
Event Information Model. The concepts, relations and
hierarchies, presented in Fig. 3, are included in the instantiation
but it adds additional model levels and attributes to better cope
with the specific application domain.

A Simple CEP Event is presented that encapsulates the value
of a sensor reading as well as its location mapped according to
the MIMOSA standard. The sensor reading is represented by the
Attribute concept. The Attribute concept has two values
(encapsulated in the Value Container concept) that are used to
encapsulate the information from the environment and the
location (SENSOR_LOCATION) of the asset/resource. In
particular, the location (structured according to the OSA-CBM
standard) contains ids that are used to allow the mapping of the
information within the MIMOSA database. Finally, the Value
Container concepts are characterized by MetaData concepts that
in turn define the class of the value as well as all the information
used to describe the value itself.

Fig. 6 – Applying the event model for sensor reading: integrating the reading location according to the OSA-CBM

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

CPS provide the necessary technological background and
approach to facilitate the design and implementation of
distributed networked complex systems. CPS-populated
systems could potentially have a tremendous impact in all the
application domain. In the industrial context (the one depicted in
this paper), they could support the optimization of all the
activities associated to the production process as well as
implement new customer-centric business models. However,
this is true only if sophisticated and efficient information models
and exchange mechanisms are in place to guarantee that all the
actors of a CPS-populated system are capable to exchange and
use the information exchanged or in other words are
interoperable. Nowadays, the interoperability problem is far to
be solved and the dissemination and proliferation of new
technologies and devices is growing more and more its
complexity. One way to address this problem is to standardize
and homogenize the way data are represented and structured to
cope with the problem of integrating data from multiple vendor-
based systems for the sake of data and information exchange.

In this paper, the MANTIS approach has been described. It
is based on the notion that open standards for exchanging
maintenance data about assets and resources can lead to a raft of
possibilities for implementing advanced maintenance paradigms
and strategies in enterprises. However, open standards (like
MIMOSA) are not fully mature and require the design and
development of meta-models to facilitate the implementation of
interoperable solutions.

Future developments include the refinement of the proposed
interoperability models, the instantiation in other application
domain as well as the definition of a methodology on how data
needs to be described within the models to easily and seemly
enable the mapping with the MIMOSA standards.

ACKNOWLEDGMENT

This work has been developed with the support of funds made
available provided by the European Commission in the scope
of ECSEL/H2020 MANTIS Research and Innovation Action
(Project ID: 662189) and by the Portuguese Fundação para a
Ciência e a Tecnologia (FCT, I.P.) in the framework of project
UID/EEA/00066/2013 PEST (Strategic Plan for Science and
Technology) for the Centre of Technology and Systems (CTS).

REFERENCES
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions,” ArXiv E-
Prints, vol. 1207, p. arXiv:1207.0203, Jul. 2012.
[2] G. Di Orio, G. Cândido, and J. Barata, “The Adapter module: A building
block for Self-Learning Production Systems,” Robot. Comput.-Integr. Manuf.,
vol. 36, pp. 25–35, Dec. 2015.
[3] G. D. Orio, D. Barata, A. Rocha, and J. Barata, “A Cloud-Based
Infrastructure to Support Manufacturing Resources Composition,” in
Technological Innovation for Cloud-Based Engineering Systems, L. M.
Camarinha-Matos, T. A. Baldissera, G. D. Orio, and F. Marques, Eds. Springer
International Publishing, 2015, pp. 82–89.
[4] Cyber-Physical Systems - Driving force for innovations in mobility, |
acatech | Springer. 2011.

[5] J. Soldatos, S. Gusmeroli, P. Malo, and G. Di Orio, “Internet of Things
Applications in Future Manufacturing,” in Digitising Industry - Internet of
Things Connecting the Physical, Digital and Virtual Worlds, River Publishers,
2016.
[6] S. Cavalieri and G. Pezzotta, “Product–Service Systems Engineering: State
of the art and research challenges,” Comput. Ind., vol. 63, no. 4, pp. 278–288,
May 2012.
[7] L. Monostori, “Cyber-physical Production Systems: Roots, Expectations
and R&D Challenges,” Procedia CIRP, vol. 17, pp. 9–13, Jan. 2014.
[8] S. Bensalem, M. Cengarle, R. Passerone, A. Sangiovanni-Vincetelli, and M.
Torngren, “CPS Technologies,” Public D4.2, Sep. 2014.
[9] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation based
on cyber-physical systems technologies: Prototype implementations and
challenges,” Comput. Ind., vol. 81, pp. 11–25, Sep. 2016.
[10] M. Cengarle, S. Bensalem, J. McDermid, R. Passerone, A. Sangiovanni-
Vincetelli, and M. Torngren, “Characteristics, capabilities, potential
applications of Cyber-Physical Systems: a preliminary analysis,” D2.1, Nov.
2013.
[11] B. X. Huang, “Cyber physical systems: a survey,” Jun-2008.
[12] T. Sanislav and L. Miclea, “Cyber-Physical Systems - Concept, Challenges
and Research Areas,” J. Control Eng. Appl. Inform., vol. 14, no. 2, pp. 28–33,
Jun. 2012.
[13] Steering Committee, “Strategic R&D Opportunities for 21st Century
Cyber-Physical Systems, Connecting computer and Information systems with
physical world,” 2013.
[14] E. Jantunen, U. Zurutuza, L. L. Ferreira, and P. Varga, “Optimising
maintenance: What are the expectations for Cyber Physical Systems,” in 2016
3rd International Workshop on Emerging Ideas and Trends in Engineering of
Cyber-Physical Systems (EITEC), 2016, pp. 53–58.
[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, New York, NY, USA, 2012, pp. 13–
16.
[16] R. LaMothe, “Edge Computing.” Pacific Northwest National Laboratory,
Jan-2013.
[17] “Service Oriented’ Architectures, Part 1.” [Online]. Available:
https://www.gartner.com/doc/302868/service-oriented-architectures-.
[Accessed: 12-Nov-2015].
[18] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.
[19] W3C, “Web Services Activity,” Web Services Activity, 2002. [Online].
Available: http://www.w3.org/2002/ws/.
[20] N. Josuttis, Soa in Practice, First. O’Reilly, 2007.
[21] T. Hadlich, “Providing device integration with OPC UA,” in Industrial
Informatics, 2006 IEEE International Conference on, 2006, pp. 263–268.
[22] S.-H. Leitner and W. Mahnke, “OPC UA–service-oriented architecture for
industrial applications,” ABB Corp. Res. Cent., 2006.
[23] G. Candido, F. Jammes, J. B. de Oliveira, and A. W. Colombo, “SOA at
device level in the industrial domain: Assessment of OPC UA and DPWS
specifications,” in 2010 8th IEEE International Conference on Industrial
Informatics (INDIN), 2010, pp. 598–603.
[24] J. Delsing et al., “The Arrowhead Framework architecture,” book chapter
of IoT Automation: Arrowhead Framework, pp. 45–91, 2017.
[25] L. L. Ferreira et al., “Arrowhead compliant virtual market of energy,” in
Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA), 2014, pp. 1–8.
 [27] E. Gilabert, E. Jantunen, C. Emmanouilidis, A. Starr, and A. Arnaiz,
“Optimizing E-Maintenance Through Intelligent Data Processing Systems,” in
Engineering Asset Management 2011, J. Lee, J. Ni, J. Sarangapani, and J.
Mathew, Eds. Springer London, 2014, pp. 1–9.
[28] J. Delsing, IoT Automation: Arrowhead Framework. CRC Press, 2017.
[29] “MIMOSA - An Operation and Maintenance Information Open System
Alliance.” [Online]. Available: http://www.mimosa.org. [Accessed: 03-Feb-
2017].
[30] N. Rozanski and E. Woods, Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2012.
[31] Enabling Things to Talk - Designing IoT solutions with the | Alessandro
Bassi | Springer. .

180

11.10 Appendix-L- Application of Sensors for Proactive
Maintenance in the Real World

Application of Sensors for Proactive Maintenance in
the Real World

Michele Albano⇤, Luis Lino Ferreira⇤, José Silva⇤, Edgar M. Silva†, Pedro Maló†,
Godfried Webers‡, Jarno Junnola§, Erkki Jantunen§, Luis Miguel Vega¶,

Iosu Gabilondok, Mikel Viguera⇤⇤, Gregor Papa†† and Franc Novak††
⇤CISTER/INESC-TEC, ISEP, Portugal, †UNINOVA-CTS, Universidade Nova de Lisboa, Portugal,
‡Philips Healthcare, Netherlands, §VTT Technical Research Centre of Finland, ¶InnoTecUK, UK,

kIkerlan, Arrasate-Mondragón, Spain, ⇤⇤Koniker, Arrasate-Mondragón, Spain, ††Jožef Stefan Institute, Slovenia

Abstract—Nowadays, collecting complex information regard-

ing a machine status is the enabler for advanced maintenance

activities, and one the main players in this process is the sensor.

This paper provides an analysis of the sensors that are currently

in use for advanced maintenance of industrial machines. It

considers different maintenance strategies, and discusses the

sensors that can be used to support them. In this context,

the paper categorizes different kinds of sensors spanning from

common off-the-shelf sensors, to specialized sensors monitoring

very specific components and also to virtual sensors. Later on, the

paper provides real world examples of project pilots that make

use of the described sensors in the context of reactive, preventive,

predictive and proactive maintenance.

Index Terms—advanced maintenance, predictive maintenance,

virtual sensors, use cases, pilots

I. INTRODUCTION

The advances in industrial electronics are the leading forces
for the fourth industrial revolution. In fact, while most fac-
tories have traditionally made heavy use of electronics and
information technology to automate production (third indus-
trial revolution), the novel paradigm aims at maximizing the
benefits of information by the integration between multiple
data sources, and by the ubiquitous fruition of the information
itself [1].

A field that has gained momentum is the monitoring of
industrial systems, since it is on the verge of profound changes.
In the close future, maintenance of industrial systems will
feature the revolution from traditional monitoring, based on
the reaction to malfunctions, to advanced techniques that allow
to greatly reduce response time even to zero by predicting
faults. The most advanced maintenance paradigm is Proactive
Maintenance (PM), which leverages information collected on
the machines, and historical data, to infer the proper time to
apply each maintenance action.

Building a proactive maintenance service platform is the
goal of the MANTIS Project [2], which is a European initiative
that aims to enable novel maintenance strategies of industrial
machines pertaining to different industries. The project is
focused on real life application of the developed techniques,
and its pilots are centred on machines/installations that are
based on existing designs, but got adapted for the inclusion
of novel maintenance techniques. In this sense, the pilots are
the testing grounds for the innovative functionalities of the

proactive maintenance service platform architecture, and for
its future exploitation in the industrial world.

This paper focus on the sensors which have been identified
with interest for MANTIS project pilots and how they are
being used in this project.

In Section II, this paper focuses on defining what PM is, and
then proceeds to describe the first step of its workflow: the col-
lection of data through advanced sensing techniques. Section
III delves into describing hardware and virtual sensors, and
Section IV showcases the application of sensing techniques to
maintenance in real pilots of the MANTIS project. Section V
draws some conclusions on the topic at hand.

II. MAINTENANCE OF INDUSTRIAL MACHINES

Major industries around the world are investing into new
machine maintenance techniques. They think that it is time
to throw out old ideas, such as reactive maintenance a.k.a.
breakdown maintenance [1].

The right maintenance program can improve efficiency,
reduce downtime and save money. Four different maintenance
plans of increasing complexity are used today: 1) reactive
maintenance; 2) preventive maintenance; 3) predictive main-
tenance; and 4) proactive maintenance [3].

Reactive maintenance can be described as a fire-fight ap-
proach, meaning that equipment is only replaced or repaired
after it breaks. It has the advantage of minimizing manpower
to keep things running. Disadvantages reside in large levels
of scrap, unpredictable production capacity and high overall
maintenance costs.

Preventive maintenance, which includes both time and
usage-based maintenance, relies on periodic maintenance ex-
ecution that can range from equipment lubrication to replace-
ment. Maintenance tasks are performed based on specific
periods of time or amount of machine usage (number of
working hours). This approach requires production stop for
maintenance, but it improves equipment lifetime and it reduces
malfunction probability [4].

Predictive maintenance, or condition-based maintenance,
relies on physical measurements of the equipment condition
(e.g.: temperature, vibration, noise, lubrication, corrosion [5]).
When these measurements reach a certain level, preventive

Fig. 1. General Architecture

maintenance is applied. In this sense, maintenance only hap-
pens in a need-based when a certain threshold is overcome.

Proactive Maintenance (PM) includes different actions, from
system design phase, workmanship, scheduling and mainte-
nance procedures, to the usage of communication technolo-
gies, feedback information and optimization techniques [6].
PM benefits from the two previous maintenance strategies,
since preventive and predictive methods are also applied. PM
goes further by focusing on the causes of the problems, and
dealing with them before problems occur.

A PM service platform should have distributed processing
chains, which distil raw data into knowledge, while minimiz-
ing bandwidth usage. Therefore, need arises for an integrated
domain knowledge system that includes key technologies
such as (see Figure 1): Smart sensors, actuators and cyber-
physical systems; Robust communication systems for harsh
environments; Distributed machine learning for data validation
and decision-making; Cloud-based processing, analytics and
data availability; HMI to visualize information.

The foundation of such service platform is the sensing
capability, which is bestowed unto sensors and has the re-
sponsibility of nourishing the system with vital information
from machinery. In fact, PM relies on item/equipment con-
stant condition monitoring and evaluation to avoid machine
failures. Condition monitoring is achieved through sensor data
collection and analysis, which enables, in-time, the prediction
of equipment failures.

In general, sensors should be robust enough to withstand
harsh industrial environments, cheap, and able to sense the
wanted phenomenon. There might be also measurement lo-
cations where multiple phenomena must be measured at the
same time.

Being on the first step of the maintenance process, sensors
should be precise, accurate and reliable, and these character-
istics cannot be traded off in favour of cheaper sensors. On
the other hand, the choice on the measurement locations to
monitor is a fundamental part of the trade-off between costs
and benefits. Currently, the moderate high cost of the sensors
leads to the measurements of few locations that are important,
for risks for health or production. In the future, as sensors
get cheaper, it will be possible to monitor lower cost-effective

locations with benefits overcoming the losses.
Electronic devices have limitations and real sensors are no

exception. An important aspect of sensor application in system
maintenance is ageing. Sensor characteristics are degraded
with time and for this reason they should be monitored as
well. This problem can be mitigated by protecting the sensor
from the rigours of industrial environments (see Figure 2 for
an example of a protected sensor), still operation in harsh en-
vironmental conditions (high temperature, aggressive medium,
location, frequency and intensity of loadings) still accelerates
the ageing rate of sensors, which manifests in deterioration
of material and the defects in the sensing structure. For
example, thick-film piezoresistive pressure sensors are prone
to accelerated ageing when under mechanical loads [8], and
humidity has long-term effects on the sensors’ response [9].

Hence, there is often a need for optimization of sensors
for specific conditions, particularly for the use in harsh envi-
ronments. A reasonable solution to this problem can be the
right choice of a suitable sensor technology together with the
implementation of an appropriate measurement (monitoring)
strategy and proper intelligent interpretation of sensor data
(e.g., this might be part of the virtual sensor functionalities
described in Subsection III-C).

III. SENSORS FOR MACHINE MAINTENANCE

Sensors used in advanced maintenance operations can be
classified into two types: hardware and virtual. Whilst the first
type concerns physical sensors that are added or already exist
on the machine, the second type of sensors derive new results
by means of signal processing of data from one or several
physical sensors.

The rest of the section starts by discussing physical sensors,
and in particular focuses on the most common mass-produced
sensors (Subsection III-A), and then briefly describes custom
sensors that are created for specific maintenance applications
(Subsection III-B). Later on, the section copes with virtual
sensors and their current implementation (Subsection III-C).

A. Off-the-shelf Sensors
The work in [7] examined more than 300 devices in 12

different applications, and obtained a distribution of the sensor
types by application usability and sensor nodes availability
(see Figure 3). In particular, seven sensor types were identified
as being the most common sensors, namely temperature, accel-
eration, light, force, audio, humidity and proximity. The anal-

Fig. 2. Encapsulated wireless sensor node & PCB

Fig. 3. Distribution of Sensor Types

ysis takes into account that most sensor nodes offer multiple
physical data sources (e.g.: pressure, light and temperature).

Temperature effects can take place on materials (solids
or fluids) and components. These effects can have a very
significant impact on machines operation by causing increased
wear, hydraulic systems degradation, materials expansion, etc.
Temperature sensing allows for continuous analysis of temper-
ature variation or its stability. For example, scanning bearing
housing on motors can prevent major failures. Monitoring
fluids’ temperature is also useful, since some properties of
fluids degrade when temperature increases.

Since mechanical systems are composed by moving parts
that deteriorate over time and generate vibration, collecting
acceleration data allows early detection of roller elements
bearing faults, gear wear, etc.

Measuring pumps pressure can reveal physical changes in
the pumps. Operating conditions, such as fluid type, tempera-
ture and speed, affect the pressure, and if pressure takes a value
outside a given range, there is the possibility of damaging
parts. Moreover, pressure variation can lead to cavitation
(creation of vapour cavities in a fluid), which can lead to
material damage [3]. Cavitation can be sensed by means of
pressure, vibration or acoustic emission measurement.

Usage of light sensors may include the detection of material
cracks and object detection. By placing an object between a
light source and a light sensor, cracks can be detected by the
amount of light that goes through the object. Moreover, it
is possible to detect an unwanted object in a certain area,
for example, a person near a cutting material machine and
shutdown the machine safely.

Acoustic (audio) monitoring is strongly related to vibration
sensors. While audio sensors listen a component, vibration
sensors register the motion of the component they are rigidly
attached to. Acoustic sensors are commonly used to mon-
itor bearing and gearboxes, in order to detect any work-
ing/movement variation.

Monitoring the percentage of humidity in a certain environ-
ment can be useful, since for example, high levels of humidity
in an injection molding process line can add moisture to
resins, potentially impeding that parts are molded properly.
In gearboxes, the accumulation moisture can lead to gearbox
corrosion, reduced efficiency and breakdown.

Proximity sensors can be used to measure parts displace-
ment, improper presence of objects, or even vibration in
rotational components. Another feature is the non-contact
measurements, which makes use of sonar or infrared light
emission to detect the presence of objects in a area.

B. Custom sensors
Many other kinds of sensors can be found in specific

applications. Usually, these sensors are not mass produced,
their structure presents a high degree of customization, and
they retrieve very specific environmental data. Among the
plethora of the custom sensors, there are sensors capable of
performing crack detection, torque measurement, analyse wear
of material and retrieve oil status [10].

The early detection of cracks, allows the prevention of
fracture failures. These cracks can be produced by an applied
stress concentration, excessive stress over time, overload, de-
fective assembly, or environmental conditions. Crack detection
(through non-destructive methods) can be performed using
different techniques like radiography, ultrasonic, penetrating
liquid, magnetic particle inspection, etc.

Several sensing techniques and technologies can be applied
to estimate or compute torque measures. Through components
speed is possible to calculate torque and torque brake; an
alternative method is using pressure sensors to correlate torque
brake.

Other custom sensors can target deviation of torque, brake
torque and friction values from the normal values, since they
can detect shaft misalignment or the presence of wear parti-
cles, which in turn are predictors for equipment malfunction.

Another type of custom sensor is the oil sensor. Oil sen-
sors can be divided into different groups based on the data
under measurement, such as oil condition, oil temperature
and oil pressure. Oil condition sensors have the capability
to detect ferrous particles, water, viscosity changes, etc. Oil
condition monitoring allows detection of lubricant related
engine wear and lubricant quality degradation, among other
problems. Early problem detection leads to on-time, preventive
adjustments that reduce machinery downtime.

C. Virtual Sensors
The virtual sensor is a technology used to retrieve more

effective and accurate information from collected data [11].
Virtual sensors make use of readings collected either by
multiple networks, or from a single sensor. Data are combined
from multiple sources (e.g. temperature, humidity, CO2) and
process models are applied to compute new outputs, based on
not only on current sensor values but also on its time series.

The Virtual Sensor Architecture, whose view is represented
in Figure 4, can retrieve sensor data in two common ways:
in an event-based acquisition, meaning that physical sensors
will make the data available (generate events) when certain
conditions are met, or in a time-based fashion, where the
virtual sensor will periodically inquire the physical sensors for
new data. This step is accomplished in the Acquisition Method
module.

Fig. 4. View on the Virtual Sensor Architecture

The Aggregation Functions module has the task of applying
common mathematical functions (e.g. temperature average of
different sensors in a same room) or complex models (e.g.
wear prediction model). The entity/user managing the virtual
sensor has the capability (through the Dynamic Configurator
module) to change threshold parameters used to generate
outputs or to change signal evaluation parameters. Configu-
ration parameters are kept in the Virtual Sensor Parameters
module, and are used by the Signal(s) Evaluation module to
perform an analysis of the results achieved in the Aggregation
Functions module. Finally, similar to the Acquisition Method,
the Response Method module is able to generate the virtual
sensor output, by the same two common paradigms, i.e.
through events or in a time-based manner.

IV. USE CASES

This section presents four pilots in which the usage of
PM can facilitate maintenance interventions, cost reduction,
equipments lifetime, and in general provide added value to the
monitoring process. All use cases feature real world factories
and installation, and therefore provide a connection between
the role that PM is supposed to hold, and what is actually
happening in real installations as technology evolves and our
economy and society change with it.

The first pilot (Subsection IV-A) exploits the composition
of data from off-the-shelf and custom sensors, the second one
(Subsection IV-B) focuses on the use of custom sensors, the
third one (Subsection IV-C) features virtual sensors, and the
fourth one (Subsection IV-D) uses a set of sensors deployed
dynamically by using a robotic platform.

A. Monitoring of a Sheet Metal Bender

The Sheet Metal Bending Process use case, whose architec-
ture is represented in Figure 5, involves detection, prediction
and diagnosis of malfunctions in a sheet metal bender machine
that pertains to the Greenbender family, manufactured and
commercialized by ADIRA (see Figure 6). The machine is
able to exert a force up to 2200 kN using 2 electric motors of
7.5 kW each, and it is able to bend metal with high precision.

Fig. 5. Monitoring architecture for Sheet Metal Bender

The use case considers two scenarios. In the first scenario,
pertaining to reactive maintenance, a malfunction in a com-
ponent raises the need for the replacement of component(s),
and the goal of the work is to allow the monitoring subsystem
to detect a potential failure in the industrial process, perform
proper analysis, and communicate the replacement operation
that must be implemented. The second scenario aims to predict
machine failures before they occur, by means of applying
machine learning techniques to data collected from the sensors,
thus realizing PM for the machine.

Collection of data can either be direct or indirect, the
latter involving the access to the data already stored on the
machine monitoring subsystem. On the other hand, direct data
collection involves receiving data from sensors, which can be
either already present in the machine, or deployed purposely
for PM roles. Two sets of new sensors were installed.

Sensors responding to the Custom Sensors category (see
Subsection III-B) are applied to the oil that lubricates the
machine’s hydraulic circuits. The sensors monitor the tem-
perature of the oil and its quality, being the latter related with
presence of water particles and other impurities in the oil.
The system that analyses the oil temperature and condition
(contaminations like water, particles, glycol, etc.) consists of
two parts. The first part is the sensor unit (Hydac Sensor
AS1008) and the second a data acquisition and computation
board.

The sensor reads temperature from -25 to 100 Celsius
degrees, and saturation from 0 to 100 percent. Both signals
are given by the sensor in current using a 4-20 mA interface.
The data acquisition/computation module receives the signals,
convert them, and can export the data through two interfaces,
as an analogic voltage signal with a range from 0 to 10
Volts, or through a RS485 communication protocol after an
analog-to-digital conversion process. In the specific use case,
the analogic voltage signals can be provided to the machine
numeric controller for on-site view or direct analysis by the
machine PLC, and the digital data can be sent to the MANTIS-
PC.

The second set of sensors is made of two accelerometers,
which are off-the-shelf sensors (section III-A) and monitor
the blade that performs the bending of the metal sheet. The
machine is depicted in Figure 6, where the two sensors are
highlighted. The sensors collect data from the movement of the

Fig. 6. Frontal view of the machine with two IMU

blade of the press, and from vibration patterns caused by the
hydraulics. In fact, the vibratory pattern can be related to the
condition of the machine’s bending motors, and the collected
data can thus be used to perform PM of the machine. For
example, if the hydraulic pistons are starting to malfunction,
due to the existence of particles in the oil then a different
vibration pattern can be detected. These sensors can also
be placed on a different machine location for malfunction
diagnosis.

The sensors are based on the Arduino 101 platform that
provides a 3-axis accelerometer with a maximum amplitude
range of 8g, and are powered by two 9 Volt batteries in
order to ease components’ installation and testing. In the
specific case of this pilot, the sensors were configured for
a lower measurement range (0g to 2g) to attain a better
accuracy. The CurieBLE library is used to send data from IMU
(Inertial Measurement Unit) to the MANTIS-PC wirelessly
via Bluetooth Low Energy (BLE) using the Generic Attribute
Profile (GATT) [15]. Preliminary experiments have confirmed
that the maximum distance for this technology is 30 meters,
as stated in the BLE specifications.

The MANTIS-PC is a Raspberry Pi 3 Model B that acts
as a BLE server, a data-converter, a simple Human Machine
Interface (HMI) and a middleware client. The component
uses a server-side JavaScript program built over Node.js and
the noble library to collect values from both sensors with a
period of 30 milliseconds, and sends them to cloud using a
Middleware based on the AMQP [16] protocol. In terms of
data conversion, raw values are mapped to the 2g range (-2g
maps to a raw value of -32768 and +2g maps to a raw value of
32767). The simple HMI presented by the MANTIS-PC uses
a server-side/client-side JavaScript based on Node.js to send
warnings to management personnel. The interface is based on
the Highcharts library and it enjoys the ”full-responsiveness”
capability of the Highcharts.

B. Press Machine Maintenance
A second use case focuses on press machine maintenance,

monitored continuously by a broad and diverse range of

Fig. 7. Wireless torque sensor node block diagram

intelligent sensors that keep track of its operational conditions.
A stamping press is a metal working machine used to shape
or cut metal by deforming it with a die.

A mechanical press, during its active lifetime, might be
capable of giving more than 40 million strokes, insofar as
it is used and maintained appropriately. The machine under
study belongs to Fagor Arrasate, whose customers demand
products with high levels of quality and availability. These
latter characteristics are in contrast with the production down-
times caused by maintenance and repair operations. Therefore,
it was decided to incorporate cyber-physical systems in the
most critical components, to facilitate predictive and proactive
maintenance activities.

This pilot applies novel maintenance strategies that are
enabled by a cloud service platform, which on the other hand
leverages on data captured continuously, monitored, transmit-
ted, stored and analyzed by intelligent sensors responding to
the Custom Sensor category (see section III-B). In particular,
two applications collect data from multiple data sources related
to press structural health, cranks forces and wearing of gears
and bushings.

A first application is focused on Structural Health moni-
toring by means of an early detection of cracks/fissures in
the press’ head and caps, which enables to prevent dam-
aging fracture failures caused by press’ damping and stress
concentration in certain parts of the structure. Both crack
gauges and conductive inks are being used, the last allowing
higher surface measurements based on the change of the
conductivity/resistivity of the drawn circuit. In this case, the
cracks on the target make the ink that is spread on the surface
break and thus increase the resistivity of the circuit. The
change in conductivity is measured by collecting the value
of the current as an analog input and comparing it with a
threshold.

The second application is represented in Figure 7, and it
implies the sensorization of a gear shaft. A shaft-adapted wire-
less sensor node [12] comprises a transducer (torque oriented
gauges), a signal conditioning circuit and a signal processing
software, the latter allowing a local preprocessing and treat-
ment of the collected data, by means of intelligent functions.
In fact, a couple of approaches are implemented. First, a
finite iteration based auto-zeroeing algorithm is applied, which

setups the proper gain and offset values for the system, taking
into account gauge’s signal and measured signal feedback,
settling the gauge’s signal to a desired point (virtual ground),
thus enhancing system’s dynamic range and avoiding signal
saturation. Secondly, digital data is retrieved and preprocessed,
reducing its payload by means of averaging. These rough data
is transmitted to a gateway based on the Beagle Bone platform
via a specific approach to industrial protocols, as standard
ones either lack of deterministic features (e.g. IEE802.15.4) or
scalability (e.g. IEEE 802.15.1). Moreover, industrial solutions
(e.g. ISA 100.11a) do not provide tools for guaranteeing sam-
pling synchronization, which is critical for certain applications
(e.g. SHM), therefore, a TDMA MAC has been placed on top
of the physical layer and specific synchronization elements
have been added for obtaining synchronized ADC conversions
in nodes [14]. Finally, the necessary calculations to obtain
torque values (Nm) are done in a computer connected to the
gateway.

The fact that it has to be applied in a rotatory and shaky
shaft (working at approximately 88 rpm) implies, on one
hand, the need to develop a robust housing to protect it from
vibrations and lubrication oiliness [13]. On the other hand,
a power friendly approach must be considered, such that the
wireless sensor can work without external grid power. Current
design allows a finite duration of the measurement process,
as the system is powered with a small Li-Ion battery. Thus,
supplementary solutions such as wireless power or energy
harvesting can be analysed, in order to provide a parallel power
source besides the battery. Additionally, energy optimization
techniques can be implemented at microcontroller level to
lower down system’s power consumption and enhance the
duration of the measurement process and sensor’s autonomy.

C. Maintenance of Medical Devices

Modern medical devices have a large number of embedded
hardware sensors and virtual sensors, which are used for
monitoring their condition and contribute to predictive and
proactive maintenance of the device. In the context of this
pilot, represented in Figure 8, hardware sensors cover the
complete range of off-the-shelf sensor type (section III-A), and
data are distilled into more advanced information by means of
virtual sensors (section III-C) executed on a stand-alone sensor
box called e-Alert controller and manufactured by Philips.

Sensed data reveal physical phenomena that may lead to
part failure or even device failure. The sensor data by itself
has limited information, but its combination of sensor data
with service data (such as maintenance records) can create the
information that is needed to develop PM on-device and off-
device. Availability of high quality service data is as essential
as the availability of device sensor data.

The e-Alert controller monitors autonomously environmen-
tal and operational conditions of the medical device, and
generate electronic notifications to the different stakeholders
of the medical device. The e-Alert controller is based on
a Raspberry Pi platform and can sample connected sensors,

Fig. 8. Sensor box context diagram

for example, temperature sensors, humidity sensors, magnetic
field sensors.

The physical sensors are off-the-shelf one-wire sensors and
are connected to an interface box that can support up to 8
sensors each. The interface box is connected to one of the
inputs of the e-Alert controller box. Multiple interface boxes
can be daisy-chained, providing a scalable sensor platform
that can be tailored for the specific device under monitoring.
A mini-UPS can be used to power the e-Alert controller in
case of power failures so that it can continue to monitoring
environmental conditions. The mini-UPS provides an electrical
interface to indicate that the controller is running on battery
power.

The e-Alert controller box acquires sensor values once per
minute and checks these values against configured thresholds.
To avoid false positives, a sensor value must be out-of-spec for
a number of consecutive samples before an alert is raised. If a
sensor value remains outside the configured threshold, the e-
Alert controller box sends an Email or SMS alert to configured
alert receivers.

The e-Alert controller software provides a web-based user
interface to configure sensors, thresholds, Email/SMS server,
and Email/SMS receivers. The e-Alert controller is connected
to the hospital network, and healthcare facility staff can access
the user interface of the e-Alert controller, which provides
capabilities to view the history of sensor values for root cause
analysis. The development of intelligent on-device schemas
aims to detect devices operating outside operational limits at
the earliest and in an optimized workflow. Specific workflows
are required to fulfil the different needs and match the different
capabilities of the users of the medical device.

The e-Alert controller also provides a capability to inter-
face with the medical device manufacturer. For this purpose,
connectivity to Philips Remote Service (PRS) can be config-
ured. With this interface, sensor values can be aggregated by
means of more virtual sensors and analyzed statistically. This
enables the manufacturer to determine an operational profile,
specific to that medical device. This information can be used
to fine-tune the configured alert thresholds for that specific
device.Moreover, the aggregated data of the medical device
are made available for offline data processing and analysis, to
determine the minimal data set that is useful for PM,with the

Fig. 9. Wind Turbine area of interest

goal of saving bandwidth when transferring data for PM.

D. Monitoring of a Wind Turbine

This use case considers monitoring the status of a wind
turbine, represented in Figure 9, by means of a set of Acoustic
Emission sensors (AE) placed on the tower next to its joint
with the nacelle.

The monitoring process is represented in Figure 10. Typ-
ically, all rotary equipment produces an acoustic signature
(Acoustic Emission) which is propagated through the material.
The purpose of the presented technique is, by means of AE
sensors, to acquire those signals, process them and compare
them over time to verify the structural health of the wind
turbine. The wind turbine structural noise is the basis for
the degradation analysis. Such noise is composed by the
contribution of each wind turbine rotary components, the
mechanical forces generated by the blades movement, and
wind.

During the normal operation of the turbine, all the compo-
nents are rotating and producing fairly constant and stable sig-
nals. Those are treated as benchmark signals and considered as
background or Gaussian white noise. If a malfunction occurs
and one of the rotary components is permanently damaged,
the acoustic signature would change. It is possible to identify
three main different structural changes: a) Degradation of
the bearings/gearbox that increases the friction forces applied
on the rotary shaft and reduces the power transmission ratio
while producing higher floor levels of noise. b) Shaft and/or
bearing misalignment, which produces periodic acoustic signal
patterns that can be detected and analysed. c) Mechanical
cracks, which generate new frequency harmonics, can be
visualized as spikes outstanding from the regular noise.

To undertake the signal processing supported by the theory
stated below, the signals are amplified and their mean levels
are removed before being acquired by an analogue digital
converter. The pre-amplifiers are installed as close as possible
to the acoustic emission sensors in order to improve the signal
noise ratio (SNR). The analogue digital converter (ADC) is

Fig. 10. Wind Turbine Monitoring Process

connected directly to a PC used to run the signal processing
algorithms and export the signal to be further processed.

The condition monitoring system implements two different
measurement strategies. The Periodic and Automatic Periodic
Monitoring (PAPM) strategy considers that the monitoring
subsystem is permanently installed and attached on the top
part of the wind turbine tower, and the monitoring process
is periodically executed according to the schedule previously
defined by the end user. The Spot Measurement (SM) strategy
considers that the measurement process is executed whenever
the end user requests it, disregarding the previously defined
schedule; this implies the interaction with the end user, but
on the other hand it allows executing multiple measurement
when a problem is expected.

The actual inspection is undertaken by means of a robotic
platform able to climb up to the area of interest using magnetic
adhesion. Once the position has been reached, the AE Sensors,
which are installed on board, are deployed and so the signal
acquisition begins. The acquisition is done through a Red
Pitaya which makes the analogical-digital conversion. The data
are transferred in real time to the ground control box where
there are two possible options: a) Real time signal processing
can be executed to visualise and assess in situ the status of
the wind turbine. b) The data can be uploaded into the cloud
for post processing.

V. CONCLUSIONS

The paper discussed the different maintenance strategies
that are used nowadays, and provided a taxonomy of existing
sensors. Later on, it presented four different real world pilots
that showcase advanced maintenance operation.

Future work will develop the single use cases, finalize their
implementation and compare the benefits obtained by means

of different maintenance strategies, as described under each
use case.

ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within the
CISTER Research Unit (CEC/04234); also by FCT/MEC and
the EU ECSEL JU under the H2020 Framework Programme,
within project ECSEL/0004/2014, JU grant nr. 662189 (MAN-
TIS).

REFERENCES

[1] K. Schwab, The fourth industrial revolution, World Economic Forum,
Geneva, Switzerland, 2016.

[2] E. Jantunen, U. Zurutuza, L. L. Ferreira, P. Varga, Optimising Main-
tenance: What are the expectations for Cyber Physical Systems, The
3rd International IFIP Workshop on Emerging Ideas and Trends in
Engineering of Cyber-Physical Systems (EITEC’ 16). Vienna, Austria
on April 11-14, 2016.

[3] E.C. Fitch, Proactive Maintenance for Mechanical Systems, Dr. E.C.
Fitch technology transfer series, Elsevier Science, ISBN: 9781856171663,
1992.

[4] L. Swanson, Linking maintenance strategies to performance, International
Journal of Production Economics, 18 April 2001, Vol. 70, Issue 3, pp
237-244.

[5] R. Eade, The importance of predictive maintenance, Iron Age New Steel
13 (9), 1997, pp 68-72.

[6] B. S. Dhillon, Engineering Maintenance: A Modern Approach, CRC
Press, Boca Raton, 2002.

[7] M. Beigl, A. Krohn, T. Zimmer, C. Decker, Typical Sensors needed
in Ubiquitous and Pervasive Computing, in Proceedings of the First
International Workshop on Networked Sensing Systems (INSS ’04), 2004,
pp. 153-158.

[8] M. S. Zarnik, V. Sedlakova, D. Belavic, J. Sikula, J. Majzner, P. Sedlak,
Estimation of the long-term stability of piezoresistive LTCC pressure
sensors by means of low-frequency noise measurements, Sens. Actuators
A Phys. 199, 2013, pp 334 343.

[9] M. S. Zarnik, D. Belavic, The effect of humidity on the stability of LTCC
pressure sensors, Metrol. Meas. Syst. XIX(1), 2012, pp 133-140.

[10] C. W. De Silva, Sensors and Actuators: Engineering System Instrumen-
tation, CRC Press, 2015.

[11] L. Lichuan, S. M. Kuo, M. Zhou, Virtual sensing techniques and their
applications, Int. Conf. on Networking, Sensing and Control, ICNSC ’09,
Okayama, 2009, pp. 31-36.

[12] Z. Herrasti, I. Gabilondo, J. Berganzo, I. Val, F. Martı́nez, Wireless
Sensor Nodes for acceleration, strain and temperature measurements,
30th Eurosensors Conference (EUROSENSORS ’16), 2016

[13] M.Tijero, E. Arroyo-Leceta, Z. Herrasti, I.Gabilondo, I. Reinares,
J. Anduaga, J. Berganzo, Wireless Energy-data Transmission and
Packaging Solution for Smart Systems to Monitor Industrial Com-
ponents, Procedia Engineering 168:1589-1592, December 2016, DOI:
10.1016/j.proeng.2016.11.467

[14] Z. Herrasti, I. Val, I. Gabilondo, J. Berganzo, A. Arriola, F. Martı́nez,
Wireless sensor nodes for generic signal conditioning: Application to
Structural Health Monitoring of wind turbines, Original Research Article,
Sensors and Actuators A: Physical, Volume 247, 15 August 2016, Pages
604-613

[15] Kuor-Hsin Chang, Bluetooth: a viable solution for IoT? [Industry
Perspectives], IEEE Wireless Communications 21.6 (2014): 6-7.

[16] Michele Albano, et al, Message-oriented middleware for smart grids.
Computer Standards & Interfaces 38 (2015): 133-143.

181

11.11 Appendix-N- FlexHousing: Flexoffer concept for the energy
manager

FlexHousing: FlexOffer concept for the energy
manager

Joss Santos, Michele Albano,
Luis Lino Ferreira, Jose Silva

CISTER Research Center
Polytechnic Institute of Porto

Rua Dr. António Bernardino de Almeida
4200-072 Porto, Portugal

Email: {jodos, mialb, llf, jbmds}@isep.ipp.pt

Petur Olsen
Center for Embedded Software

Systems (CISS)
Department of Computer Science

Aalborg University, Aalborg, Denmark
Email: petur@cs.aau.dk

Luisa Matos
Virtual Power Solutions
Instituto Pedro Nunes

Rua Pedro Nunes - Edifcio D
3030-199 Coimbra

Portugal
Email: lmatos@vps.energy

Abstract—Energy management in buildings can provide mas-
sive benefits in financial and energy saving terms. It is possible
to optimize energy usage with smart grid techniques, where the
benefits are enhanced when the energy consumer can trade the
energy on energy markets, since it forces energy providers to
compete with each other on the energy price. Anyway, two hur-
dles oppose this approach: energy markets limit trading activities
to large quantities of energy, thus impeding access for small
consumers, and the devices providing control over appliances
do not interoperate with each other. This work considers using
the FlexOffer (FO) concept to allow the consumer to express its
energy needs, and FO-related mechanisms to aggregate energy
requests into quantities relevant for energy markets. Moreover,
the presented system, called FlexHousing, is based on the Arrow-
head framework, and exploits its Service Oriented mechanisms
to provide interoperability. The implemented FlexHousing system
uses multi-level FO aggregation to empower either the final user,
for example the owner of an apartment, to manage his own
energy by defining his flexibilities, or to offload this responsibility
to an energy manager who takes care of all the apartments in a
building or set of buildings.

Index Terms—Arrowhead, Service Oriented, Prosumer, Smart
Grid, Interoperability

I. INTRODUCTION

Energy management in buildings can provide massive ben-
efits, with regards to financial gains, pollution reduction, and
total energy saving, since the energy consumed in buildings
is one of the major factors in global energy expenditures. For
example, it is estimated [1] [2] that energy consumption by
the residential and commercial sectors cover together 39% of
the total energy consumption in the US, and that most of that
energy is consumed in buildings.

The application to buildings of techniques from the smart
grid paradigm, such as remote control of appliances and au-
tonomous acquisition of energy, can provide dramatic savings
[3], especially when energy is bought from energy markets,
since this forces energy providers to compete with each other
on the energy price. Current advances are contributing to the
feasibility of this vision, since communication protocols are
converging to a standardized vision of the last mile of the
smart grid [4], and there is increased competition between
energy utilities, leading to consumers’ savings. On the other

hand, two hurdles oppose the application of the smart grid
to buildings: energy markets limit their trading activities to
large quantities of electricity, thus impeding access for small
consumers, and the devices providing control over appliances
do not provide interoperability with each other.

This work considers using the FlexOffer (FO) concept to
allow the consumer to express its energy needs [5]. FOs aim
to balance energy demand and response by synchronizing
consumption with production. They permit exposing demand
and supply loads with associated flexibilities in time and
quantity for energy commerce, load levelling, and different
use-cases. To put it in a simple way, a FO specifies an amount
of energy, a duration, an earliest begin time, a latest finish time,
and a price, e.g., ”I want 50 kWh over 3 hours between 5 PM
and 12 PM, at a maximum price of 0.25e/ kWh”.

In order for the FO to be relevant for the Energy Market, the
FO concept considers that FOs can be combined or aggregated
together when they are on the same energy grid. A system
called Aggregator receives the FO from all the house-holds,
combines them, and sends a unique aggregated FO to the
Market. Multiple Aggregators can be employed in sequence,
thus creating tree-shaped topologies, and producing FOs that
are large enough to be sent to the Market. When the Market
reply arrives, the responsibility of each Aggregator is to
redistribute the energy between the underlying Aggregators,
until it is delivered to the house-holds supervised by the
bottom-layer Aggregators.

To take care of the second hurdle–the interaction with the
appliances–this work made use of the Arrowhead Framework
[6], which normalizes the interaction between systems in a
distributed system by means of services, which are consumed
and produced by software systems executed on devices. In
fact, all the systems related to FOs are already Arrowhead-
compliant, and past work [7] had already studied how to
extend the Arrowhead Framework to custom protocols by
means of adapters.

The present work makes use of smart plugs that obey
custom protocols, but which can be driven by the interaction
with a simple Service Oriented Architecture (SOA) interface,
to which the Arrowhead Framwork was extended easily. The

employment of these plugs allowed to enforce the energy
consumption schedule sent back from the Aggregator, and to
collect data regarding energy consumption of the appliances.

Two main types of Energy Markets exist, the day-ahead and
the intraday. While the second kind allows to buy energy that
is delivered by the grid in close to real-time, the first kind
requires the buyer to plan ahead, since energy is delivered
a day from the placement of the order. On the other hand,
the day-ahead markets provide two important advantages: the
price of the energy is lower, and it allows the bulk energy
producers to optimize energy production and thus to refrain
from using peaking power plants, which are more expensive
and pollutant.

The implemented system, named FlexHousing, allows the
application of the FO concept to buildings in real settings.
The multi-level approach enabled by the Aggregator empowers
either the final user, for example the owner of an apartment,
to manage his own energy by defining his flexibilities, or to
offload this responsibility to an energy manager who takes care
of a whole building or set of buildings. Other Aggregator will
take care of aggregating the FOs of multiple buildings until
they reach a magnitude of interest for the Energy Market.
Moreover, FlexOffers can be created at different times, thus
allowing the use of the day-ahead markets as much as possible,
while still providing the flexibility of the intraday market.

The rest of the paper is structured as follows. Section
2 provides background information, in particular regarding
the FlexOffer concept, the Arrowhead platform that is used
to provide FlexOffer-related services, and on related work.
Section 3 describes the architecture of the FlexHousing system
of systems, and Section 4 provides implementation details.
Section 5 is devoted to the test results obtained while exper-
imenting with the implemented system, and Section 6 draws
some conclusions on the topic at hand.

II. BACKGROUNG INFORMATION

A. FlexOffer Concept

A FlexOffer is a data structure for expressing flexibility in
energy consumption (or production). A FlexOffer contains a
number of slices, each representing a minimum and maximum
consumption for a given time period. A set of slices is called
a profile, and can be used to express the consumption profile
for a device.

A FlexOffer allows the profile to be shifted in time by spec-
ifying an earliest start time and a latest end time. This provides
two types of flexibility to a FlexOffer: energy flexibility in the
bounds of the slice, and time flexibility in the start and end
time.

A Schedule can be attached to a FlexOffer. The schedule
includes a start time and an assigned energy amount for each
slice. Figure 1 shows an example of a FlexOffer. The green
area shows the flexible energy, the grey area is minimum
required energy. The red lines show the final schedule, sent
by the Aggregator.

Fig. 1. Example of a FlexOffer

A FlexOffer is intended to be used on a Virtual Market
of Energy. The actors on the market are energy sellers and
buyers, and flexibility sellers and buyers.

The energy buyers are private homes or companies, which
have devices that can be controlled in order to utilize their
flexibility. This way, the energy buyers act as flexibility sellers,
which generate FlexOffers based on the profiles and possible
flexibility in their flexible resources. The FlexOffer is also
associated to a default schedule that will be followed in
case the FlexOffer is not sold. Along with the FlexOffer,
the flexibility seller sends pricing information for the cost
of deviating from its default schedule. This price can be
calculated from local energy prices or loss in efficiency.

The energy sellers are energy producers that act as buyers
with regards to flexibility, in order to shift energy consumption
away from a possible grid overload. The pricing information is
used to evaluate how much flexibility it is worth to buy. A new
schedule is assigned based on the sold flexibility and the buyer
compensates the seller based on the price. If a schedule is sold
but is not followed, then the flexibility seller is penalized.

Since a single home or small company does not consume
much energy compared to the capacity of the grid, the amount
of flexibility offered is relatively small and therefore not very
interesting to the buyers. For this reason, Aggregators are put
in between the sellers and the market. The Aggregator receives
several FlexOffers from different sellers and aggregates them
into larger FlexOffers, which are of interest to the buyers.

The FlexOffer concept was originally introduced in the
MIRABEL project [5]. It has been further developed in the
Arrowhead and TotalFlex projects [8]. Some research has
been done to quantify the benefits of flexible resources on
the energy grid [9].

B. The Arrowhead Framework

The FlexHousing system was developed on top of the
Arrowhead framework [6], which facilitates the development
of service oriented distributed CPS applications.

The Arrowhead approach simplifies design and implemen-
tation of distributed application by means of normalizing
communication via services. Every communication of the
distributed application is mediated through services, exposed

and consumed by systems. A system can both provide and con-
sume application services, and thus implement the functional
requirements of a specific use case, or provide core services,
which are diagonal to the use cases and provide support to
non-functional requirements such as service registry, service
discovery, Quality of Service and security. The set of systems
that provide core services are delivered in the form of the
Arrowhead Framework.

The systems of an Arrowhead distributed application are
organized into a System of Systems (SoS), which is deployed
into the form of a local cloud, which is a bounded set of
computational resources used by stakeholders to attain a goal.
Supported by the Arrowhead Framework, the devices are able
to set up protected communication that enable the execution of
critical applications. Among them, there is the Virtual Market
of Energy [8], which implements a service-oriented interface
to trade energy and flexibility on one or multiple energy
markets.

The rationale is that the systems of the SoS register them-
selves, together with the list of services they produce or
want to consume. The Orchestrator system collects all the
data regarding the SoS and matches systems and services to
satisfy both the functional (which services are consumed) and
non-functional (QoS, security, geographical localization of the
system producing the consumed service) requirements.

The extension of the Arrowhead Framework to non-
Arrowhead compliant components is done by means of
adapters, which can act at different levels:

• Communication paradigm: since Arrowhead is service-
oriented, an adapter can be used to interact with com-
ponents that for example exchange message through
publish/subscribe systems such as XMPP [10];

• Ontologies: Arrowhead considers devices, systems and
sevices are the actor in communication scenarios.
Adapters and stubs should be used to hide a group of
systems behind a unique Arrowhead system, or to relate
a service to consider a system as built by a number of
Arrowhead virtual systems, each able to provide services;

• Semantics: some framework associate timing character-
istics to the communications, which assume semantics
relevance. Since Arrowhead does not use this technique,
an adapter can be necessary for mediating interactions;

• Syntax: the format of the messages can be different, thus
a translation operation can be needed.

As described in Section IV, the SoS presented in this
paper interacts with custom smart plugs and sensors through
a service-oriented interface, and the adapter has to perform
just a syntax translation between the protocols, easying up the
adaption for a large measure.

C. Related Work

The field of energy management in buildings is very active,
and many competing solutions have been devised. In fact, it is
sufficient to look at the many surveys published on the topic
[2], [11]–[13] to acknowledge the research efforts that aim at
innovating in the application area.

Fig. 2. Architecture of the FlexHousing System of Systems

This paper provides novelty regarding the tools used to
improve the state-of-the-art: the FO concept, and SoS based
on the Arrowhead Framework.

III. SYSTEM ARCHITECTURE

The system architecture that was devised as support to the
FlexHousing functions is a SoS (see Subsection II-B) and it
based on a number of systems, as depicted in Figure 2. In
the Arrowhead sense, three of them, FlexHousing Middle-
ware (FHMW), FlexHousing Frontend (FHFE) and FlexOffer
Aggregator, are application systems, since they implement
the use case. All the systems interact at some point with
the Arrowhead Framework, for example to perform service
discovery to find the other systems. The FlexOffer Aggregator
interacts with other Aggregators, and finally with the Virtual
Market of Energy. Moreover, the FHMW interacts with the
smart plug housing the sensors and actuators of the house to
manage energy consumption.

A. FlexHousing Middleware (FHMW)

The FHMW is responsible for the integration of the systems
involved in the FlexHousing environment, and to facilitate the
creation of FlexOffers. The FHMW takes care of automating
the emission of FOs and the actuation on the appliances
depending on the schedule that was retrieved from the Ag-
gregator. The flow of energy will be enabled depending on
the Schedule that is active on a plug.

In particular, as far as FOs are concerned, the FHMW
allows the FHFE to create FOs, takes care of providing
them to the Aggregator, receives energy schedules, drives
energy consumption based on the schedules, and takes care of
collecting energy data to be used to verify schedules execution
and facilitate the creation of future FOs.

We consider that the FHMW is capable of retrieving the
data resulting from the monitoring of energy of the appliances
connected to the plugs, as well as online information regarding
the actuation on non-Arrowhead compliant appliances that
have a plug attached to them. The retrieved data is used for the
recognition of usage patterns of the appliance during a certain
period. Using clustering mechanisms, such as an unsupervised
neural network, certain patterns can be discovered. The net

result is a catalog of scenarios. Each scenario represent the
energy behavior of a user depending for example of the
weekday (working days vs holidays). Those patterns can then
be used to facilitate the creation of FlexOffers, by providing
default patterns at FlexOffer creation time, to allow the user to
create a FlexOffer corresponding to his normal energy usage
in a given scenario, without the effort of defining manually
energy consumption profiles.

The timeline of the provisioning of FOs to the Aggregator
is studied to maximize the usage of day-ahead energy markets.
In fact, the FHMW uses an heuristics to evaluate how much
time it needs to send all configured FOs, and starts the process
a number of minutes before midnight to be sure to complete
it before the end of the day.

B. FlexHousing FrontEnd (FHFE)

The web-based front-end FHFE provides a means to drive
the capabilities of the FlexHousing environment, and of the
FHMW in particular. This interface supports multiple users
(and their respective roles, i.e. home owner, energy manager),
allowing them to verify a room’s or device’s current energy
consumption, turn a device on/off, and create and send FOs
for an appliance in the simplest way possible.

When it comes to creating a FO, this process is divided into
three steps: introducing basic details, choosing what kind of
pattern to use, and creating the energy pattern for the FO. The
first step requires the user to input the FlexOffer’s name and
the time period in which it must be applied. The second step
requests the user to define the energy consumption pattern,
which can be done either manually through the graphical
interface, or based on one of the default patterns that are
created based on the user profile computed by the FHMW.
By choosing to create it manually, in the third step the user
can select the duration of the pattern and define the energy
consumption for each 15 minute interval, by dragging the bars
in the chart with the mouse. When using a default consumption
pattern, the user can modify a pattern that is predefined based
on the device’s consumption data.

The FHFE allows for three roles: the normal user who
can visualize his energy consumption, the power user who
can configure his own energy usage by setting up FlexOffers,
and the energy manager who is entitled with the management
of multiple houses in a complex. This latter role is used to
relieve the homeowner from the work-load of configuring his
energy usage by means of FOs. Using the same options and
features the energy manager sets up and customizes the FOs
in the same way as the power user, after deciding which of
the FHMW, such as apartment complexes, industrial facilities,
or condominium, he is actually configuring by means of the
same FHFE.

The authentication and authorization module for the man-
ager is handled by the Arrowhead Framework, which also
provides the addresses of the FHMWs that a specific FHFE
can handle and control.

C. FlexOffer Aggregator

The Aggregators receives FOs from FHMWs, combines
them with FOs from other sources into larger FOs and then
either sends them to other Aggregators, or to the Virtual
Market of Energy. Note that FOs need a significant magnitude
to be interesting on the Energy Market.

Afterwards, the aggregator receives a response from the
Virtual Market of Energy, which can be a refusal, or an energy
schedule. In the latter case, the Aggregator disaggregates the
response and sends downwards the consumption schedule.
Many types of Aggregators may exist, some may be specific
for a use case, such as the management of electrical motors,
whereas others may be more generic. In addition, selecting
the most adequate aggregator additionally depends on the
geographic region.

D. Arrowhead Framework

The Arrowhead Framework provides services to support
other systems with respect to security, system and service
registration, and service discovery and orchestration (see Sub-
section II-B). The local cloud providing FlexHousing services
requires a number of basic core services that enable fundamen-
tal SOA properties like service registration, service discovery,
authentication and authorization plus orchestration of SoS. The
ServiceRegistry system allows a system to expose a service
it is producing to the cloud, and allows consumer systems
to discover services they wish to consume. The Authoriza-
tion system is responsible to controlling which service can
consume a certain producer. The Orchestration system allows
coordination (orchestration) of which producer will a certain
consumer be able to employ/use.

E. Energy Market

The Aggregators are able to schedule energy consumption
by allocating it through a virtual market of energy, which
communicates with appliances through FOs. The Energy Mar-
ket allow to trade both energy and flexibility. (see Subsection
II-A).

The Energy Market secures the balance in a logical sub-
domain within the grid, i.e. ensure that consumption is equal
to production. It utilizes the aggregated FOs from Aggregators
for an internal energy balancing, and places FOs on the flexi-
bility market for trading with energy producers, which end up
being the flexibility consumers. The Energy Market minimizes
total costs by scheduling energy loads while respecting the
constraints contained in the FOs (minimum/maximum power,
earliest/latest start of energy consumption, etc.). In the case of
the energy consumer, the net result of the interaction of the
Aggregator with the Energy Market is to buy energy while
selling the consumer’s flexibility, attaining the goal of saving
the consumer’s money and supporting the energy producer in
flattening off consumption peaks.

F. Actuators and Sensors in the User’s Home

Common household appliances cannot be controlled re-
motely, and thus aren’t fitted to FO compliance. One of the

Fig. 3. Implementation of the FlexHousing SoS

solutions to tackle this issue is to attach to the appliances
an IoT device called smart plug. The smart plug is placed
between the appliance and the electrical outlet, and from there
on the plug is able to control the flow of electricity towards
the appliance. Sensors are also installed in the plug, capable of
collecting data regarding the energy usage and other metrics.

The FlexHousing SoS considers that devices are either smart
plugs equipped with both sensors and actuators, or more com-
plex devices that provide also smart plug functionalities. The
actuator of the smart plug allows to remotely switch on and off
the appliance it is installed onto. Moreover, through its sensor,
the smart plug can collect data regarding energy consumption,
to inform the user regarding energy consumption, regarding the
correct execution of FlexOffers, and to allow for the creation
of FlexOffers based on past consumption. The FlexHousing
SoS considers that an API is provided, capable of receiving
requests and forwarding them back to the plug. The API can
be exposed on the plug, or on an external service platform.

In the most common topology, a central hub called gateway
is installed in the customer’s premises to provide the connec-
tivity required to interact with the smart plugs from the local
cloud. The requests are sent to an external service provider,
and then received by the gateway that, in return, sends the
commands to each specific plug.

IV. THE IMPLEMENTATION

The FlexHousing SoS applies FO concepts to the real-life
management of appliances based on FOs. The SoS allows a
user to create FOs upon devices, and lets the power usage
of the device be dictated by the aforementioned FOs. The
house of the user is modeled as a set of devices, organized

into rooms (kitchen, living room, garage ...) that pertain to
buildings/houses. Each device is equipped with sensors and
actuators to measure and control energy consumption of the
appliances, respectively.

The FlexHousing SoS comprises the Arrowhead Frame-
work, which provides core services such as service registry,
orchestration, security, the Virtual Market of Energy applica-
tion service, and two novel systems, the FHMW, responsible
for the FOs and devices management, and the FHFE, which
is a graphical interface for the setup of user configurations
and all-around managing of the building/house. The FHFE is
hosted by a web server and interacts with the FHMW through
the services the latter provides.

A context diagram of the SoS of the pilot is depicted
in Figure 3. All the systems of the SoS are considered
to interact with the Arrowhead Framework, and thus these
interactions are not represented. The users access the FHFE,
which interacts with the FHMW only, since the latter contains
the business logic and the information for the management
of the FOs and of the smart plug. The FHMW interacts with
the Aggregator’s services, which are Arrowhead application
services. The FHMW also communicates with the VPS API,
which is not Arrowhead-compliant. The VPS API is exposed
by an external service provider and communicates with the
Cloogy gateway (the device with the infinity symbol in Figure
3) to interact with the smart plugs attached to the appliance.
Being already a service-oriented interface, the VPS API’s
adaptation onto the Arrowhead Framework was as easy as the
provisioning of a one-to-one mapping to the Arrowhead and
the VPS API protocols.

Fig. 4. Overview page of the FHFE.

In the following, the Arrowhead Framework is not de-
scribed, but details can be found for example in [6].

A. Implementation of the FHMW

The FHMW is built around the components required for
communication. As such, it employs 3 different solutions, one
for each communication path available.

For the interaction with the Aggregator, a DER agent was
implement [8], which is responsible for the emission of FOs
using the XMPP protocols [10] used by the Aggregator, and
the retrieval of Schedules through the same mechanism. The
application is coded in Java, using the Maven dependency
Maven to handle dependency issues from other software
components. Derby Apache was selected to host the data due
to its easy integration into a Java application. For the services
exposure, a mix of Grizzly - for the HttpClient - and Jersey -
for the service resources - was implemented.

There is no direct contact between the FHMW and the user,
and the MW exposes all the services through an API that is
used by the FHFE. Those services are mostly CRUD actions
around the rooms, devices, FlexOffers and schedules.

For Aggregator purposes, the FHMW implements all the
methods that allow the registration of the middleware on the
Aggregator, the emissions of the FOs and the retrieval of the
Schedules.

For the interaction with the VPS services, a HTTP client
was implemented, which executes all the request involving
the query or interaction with the smart plugs and sensors.

Even though most of the data is stored in the database,
the FHMW keeps the most used/requested objects in cache
to avoid excessive database queries. Any modification on the
objects is reflected on the copy in cache but also in the
database. This allows for the persistence of the data in the
case of a power outage.

The FHMW system and the FHFE system are executed on
Windows environments. In the same local network, there are
the deployments of the Cloogy gateway (the gateway to VPS)
and the VPS smart plug.

Fig. 5. Creation of a FlexOffer in FHFE: manually creating a consumption
pattern.

B. Implementation of the FHFE

The web-based front-end FHFE provides a responsive,
cross-browser compatible, graphical user interface to demon-
strate the capabilities of the middleware. The FHFE is an MVC
application, where its back-end is built in PHP, using Laravel
5.4 as its framework, while its front-end is built with HTML5,
CSS3, and JavaScript, using the Bootstrap framework.

The FHFE supports multiple users (and their respective
roles, i.e. home owner, energy manager), allowing them to
check a rooms or devices current energy consumption, turn a
device on/off, and create and send FlexOffers of a device in
the simplest way possible. Therefore, the FHFE is composed
of several sections: the overview page, the rooms section, and
the devices section.

The overview page provides insights on the total used
energy, the number of FOs set up for each device, and other
global statistics.

The rooms section allows to decide on which room (see
Figure 4), and later on on which device, to work on to define
involved FOs.

Figure 5 shows the process of creating a FO manually, (see
Subsection III-B). In the third step, the user can select the du-
ration of the pattern (whilst respecting the time period defined
in the previous step) and define the energy consumption for
each 15-minute interval, by dragging the bars in the chart with
the mouse. A similar interface is used to tune up a FO created
using a pattern based on the device’s past consumption data.

In the case of the Energy Manager role, the FHFE allows the
same simplicity for the setup as the homeowner but without the
constraints of having to constantly having to swap credentials.

This is achieved by enabling a dropdown list at the top of each
view. The list contains the name/identification of all the houses
the manager can operate on, acquired through the Arrowhead
Framework. Swapping house, the FHFE refreshes all the data
concerning the objects of the FHMW system (Rooms, plugs,
FlexOffers,), updating them to reflect the ones of the current
house.

C. Aggregators deployment

The setup at Aalborg University (AAU) in Aalborg, Den-
mark contains the communication infrastructure, the Aggrega-
tor, and the Energy Market implementation. All services are
exposed through the Arrowhead framework.

The communication infrastructure consists of an XMPP
server [10] to facilitate the HTTP-over-XMPP communication
between the actors in the system. The Aggregator receives
small FlexOffers from multiple consumers and aggregates
them into (possibly multiple) larger FlexOffers. FlexOffers
are aggregated using different algorithms e.g. [14] [15]. The
aggregated FOs are sent to the Energy Market as selling bids,
expressing flexibility being sold on the market.

The Energy Market receives selling bids from Aggregators
or directly from energy consumers. It also receives buying
bids from buyers, which are energy producers. At set intervals,
the market will be cleared. The interval could for instance be
15 minutes for an intra-day market, or daily for a day-ahead
market. The clearing algorithm will match buyers and sellers
such that highest buyers and lowest sellers will be favored.

Once the Energy Market is cleared, the winning bids are
sent back to their owners. The Aggregator will distribute the
sold flexibility among the flexible energy consumers and send
schedules back.

D. VPS Services

An external API is provided by the manufacturer of the
smart plugs and sensors - and gateways - used in the energy
consumer’s Home Area Network. The API is service-oriented,
and adheres to the RESTful principles of the HTTP protocol,
thus providing a machine friendly, robust and predictable
interface to the system functionalities.

The FHMW has a module to account for the location of
each sensor and smart plug, and it uses the information to send
messages to the correct component. Communication with the
VPS Services is performed using a TCP/IP connection that
hosts a HTTPS session, which exchanges data encoded using
the JSON data format.

Each controlled device can provide several parameters (cur-
rent, power, etc.) and send the data that has been read to the
VPS Services. The VPS Services store data, which can be
queried - and cached - by the FHMW, either when verifying
that a consumption Schedule is being respected, or when
building the profiles used as default FOs when the FOs are
set up.

Fig. 6. Energy consumption pattern for a refrigerator

V. TEST RESULTS

Some preliminary tests were executed on the implemented
platform, to verify its correctness, and to ensure its perfor-
mance characteristics.

A. Consumption patterns

The plugs used in the FlexHousing SoS are equipped with
sensors, which allow to retrieve the consumption of any
particular plug, independently if a FO was applied to it or
not. In fact, as soon as a plug is registered in the SoS, it starts
collecting data. Data is kept both on the cloud of VPS services,
accessible through measurement queries, and cached onto the
FHMW after queried.

Figure 6 reports the result of a proof-of-concept data col-
lection performed on a refrigerator. This test verified that the
FlexHousing SoS is able to collect data with a reasonable
granularity, to use them to build an energy consumption
profile. The values were collected during a business day and
during a weekend day, allowing to verify that human actions
affect the energy consumption pattern for the appliance. In
fact, during a business day the refrigerator is used on a regular
basis, while during the weekend, especially on Sunday, the
refrigerator is kept close, thus requiring less energy to maintain
its cold temperature.

The energy usage matches with the theoretical consumption
of the refrigerating cycle (Vapor-compression cycle) [16]. The
periodicity is the same: between each peak, theres a period
of no consumption, matching the idle state of the refrigerator.
Aside from small statistical fluctuation in the data, the only
difference between the days is the local maxima of each
individual peak. While the weekend day averaged around
14.5Wh, the business day averaged at 18.5Wh.

B. Communications tests

This test targeted the latency between the systems dur-
ing communication. Since the latency inside the Arrowhead
Framework was already targeted by analysis [6], this paper
studied the latency for an actuation over a smart plug.

This test executed 30 request of actuation over a single plug.
Two batches were performed, one by requesting the VPS API
directly for the operation, and the other executed through the
FHMW. The results of the tests are depicted in Figure 7.

The blue series represents the data collected when the
request is directed to the VPS Services platform, and the
orange series is related to mediating the interaction through the

Fig. 7. Latency for actuation on a smart plug.

FHMW. The delay is less than 210ms and 270ms respectively,
and it can be concluded that the FlexHousing internals do not
impair the performance of the SoS.

VI. CONCLUSIONS

This paper presented the FlexHousing System of Systems,
which is a platform for energy management in buildings. It
is based on the Arrowhead Framework and on the FlexOffer
concept, and it allow either the fine-grained management
of energy by a power user that is knowledgeable regarding
Energy Markets, or by the professional services of an energy
manager.

The paper provided insights regarding how the systems are
implemented, and some results regarding experimental tests.

In the future, the FlexHousing System of Systems will
be extended to different smart plugs that obey to different
interaction patterns, and data regarding the energy saved in
real-world deployments will be collected.

ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT/MEC (Portuguese Foundation for Science and
Technology) and co-financed by ERDF (European Regional
Development Fund) under the PT2020 Partnership, within the
CISTER Research Unit (CEC/04234); also by FCT/MEC and
the EU ECSEL JU under the H2020 Framework Programme,
within project ECSEL/0004/2014, JU grant nr. 662189 (MAN-
TIS) also by FCT/MEC and the EU Artemis JU within project
ARTEMIS/0001/2012 - JU grant nr. 332987 (ARROWHEAD)

REFERENCES

[1] EIA, Annual Energy Review 2015, http://www.eia.gov/totalenergy/data/
annual/

[2] Tuan Anh Nguyen, and Marco Aiello, Energy intelligent buildings based

on user activity: A survey. Energy and buildings 56 (2013): 244-257.
[3] Thibaut Le Guilly, et al. ENCOURAGEing results on ICT for energy

efficient buildings. IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). 2016.

[4] Michele Albano, Luis Lino Ferreira, and Luı́s Miguel Pinho, Convergence

of Smart Grid ICT architectures for the last mile. IEEE Transactions on
Industrial Informatics 11.1: 187-197. 2015.

[5] M. Boehm, et al. Data management in the MIRABEL smart grid system.
In: Proceedings of the 2012 Joint EDBT/ICDT Workshops. EDBT-
ICDT’12, ACM, 95-102. 2012.

[6] Delsing, Jerker, et al., The Arrowhead Framework architecture., chaper 3
of IoT Automation: Arrowhead Framework. CRC Press, 2017.

[7] L. L. Ferreira, M. Albano, and J. Delsing, QoS-as-a-Service in the Local

Cloud., IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), 2016.

[8] Luis Lino Ferreira, et al. Arrowhead compliant virtual market of energy,
Emerging Technology and Factory Automation (ETFA), IEEE, 2014.

[9] Bijay Neupane, Torben Bach Pedersen, and Bo Thiesson. Evaluating the

value of flexibility in energy regulation markets. Proceedings of the 2015
ACM Sixth International Conference on Future Energy Systems. ACM,
2015.

[10] P. Saint-Andre, K. Smith, and R. Troncon, XMPP: The Definitive Guide,
O’Reilly, 2009

[11] Pervez Hameed Shaikh, et al. A review on optimized control systems for

building energy and comfort management of smart sustainable buildings.

Renewable and Sustainable Energy Reviews 34: 409-429. 2014
[12] Alessandra De Paola, et al. Intelligent management systems for energy

efficiency in buildings: A survey. ACM Computing Surveys (CSUR) 47.1:
13. 2014

[13] Douglas Harris. A guide to energy management in buildings. Routledge,
2016.

[14] L. Siksnys, et al. Aggregating and disaggregating flexibility objects.

IEEE Transactions on Knowledge and Data Engineering 27.11: 2893-
2906. 2015.

[15] E. Valsomatzis, et al. Towards constraint-based aggregation of energy

flexibilities. Proceedings of the Seventh International Conference on
Future Energy Systems Poster Sessions. ACM, 2016.

[16] Piotr Domanski, and David Didion. Computer modeling of the vapor

compression cycle with constant flow area expansion device. Final Report
National Bureau of Standards, Washington, DC. National Engineering
Lab. 1983.

182

11.12 Appendix-O- Maintenance Supported by Cyber-Physical
Systems and Cloud Technology

Maintenance Supported by Cyber-Physical Systems
and Cloud Technology

Erkki Jantunen, Jarno Junnola
VTT Technical Research Centre

of Finland Ltd
Espoo, Finland

Unai Gorostegui,
University of Mondragon,

Mondragon, Spain

Michele Albano, Luis Lino
Ferreira, José Silva

CISTER, ISEP/INESC-TEC
Polytechnic Institute of Porto,

Portugal

Abstract—The paper discusses about the application of
Cyber-Physical Systems (CPS) and cloud technology to
maintenance. In fact, the heavy utilization of large quantity of
data collected on machines, and their processing by means of
advanced techniques such as machine learning in the cloud,
enable novel techniques such as Condition-Based Maintenance
(CBM). Fairly new sensor solutions that could be used in
maintenance and in interaction with CPS are also presented.
Data models are an important part of these techniques because of
the huge amount of data that are produced and that must be
processed. The Machinery Information Management Open
System Alliance (MIMOSA) Open System Architecture for
Condition-Based Maintenance (OSA-CBM) standard
architecture supports streamlining the modeling of collected data
and transferring information, and in this sense OSA-CBM is
discussed in this paper. Finally, current and future directions for
application of CPS and cloud technologies to maintenance are
discussed.

Keywords—Cyber-Physical Systems; CPS; Cloud; MEM;
Piezofilm; MIMOSA; OSA-CBM

I. Introduction	
The increase of complexity and cost of current industrial

equipment is becoming an important factor that is helping to
change the maintenance from a corrective to a preventive
maintenance strategy and more specifically to the CBM. This
change is given more emphasis also by the increase in the
requirements and the availability, performance and quality
while trying to reduce the cost of the production equipment
during its whole life cycle. A CBM system is based on
monitoring the different parameters of an asset to compare to
previously gathered data through various mathematical
algorithms to do a diagnosis on the health level of the
equipment and predict how it will behave in the future. This
way, the downtimes of the machines can be programmed so
that they affect in the least the production, decreasing the
unpredicted production standstills and increasing the
availability and consequently the Overall Equipment
Effectiveness (OEE). The ultimate goal of a CBM system is to
link it with the Computerized Maintenance Management
System (CMMS), which is a software package that maintains
a computer database of information about an organization's

maintenance operations, which on its part is used to schedule
maintenance operations in a factory, and supports decisions
regarding maintenance (e.g.: comparing cost of early
preventive maintenance vs machine breakdown) in the
broadest sense. Thus, CBM takes part in the maintenance
process by creating action reports for the technicians or
shutting down a machine or reducing the speed if the system
predicts it necessary.

The introduction of new technologies such as Micro
Electro Mechanical Systems (MEMS) sensors and the constant
price drops of these have enabled maintenance strategies such
as CBM to become more and more popular and achievable
during the last few years. Another aspect to take into account
is the Internet of Things (IoT) that has allowed the
communication between machines and the components that
take part in an industrial plant. The IoT, while connected to
the cloud technology, permits the users access the data from
the CPS from anywhere and a wide range of devices. The
focus of this paper is to reinforce the idea that a maintenance
system supported by CPS and Cloud Technology can be
beneficial in the increasing of the OEE and reducing the
maintenance costs.

II. Cyber-Physical	Systems	
The main objective of a CBM system is not only to

monitor an asset but also to take direct action in its
maintenance. If this requirement is fulfilled, the whole system
responds to the definition of a Cyber-Physical System (CPS),
since it integrates the monitoring of the equipment by
computer-based algorithms with the internet and its users. It is
hard to see the difference between CPS, machine to machine
(M2M) and Wireless Sensors Networks (WSN) under the
architecture of Internet of Things (IoT) but CPS is seen as an
evolution of M2M systems [10]. Another term that can be
associated to the ones mentioned above is e-maintenance (11).
There exists a number of definition for this term see e.g.
Karim’s doctoral thesis [12]. However, the simplest one is to
define e-maintenance as a technology that supports
maintenance by means of information collected by IoT.
Consequently, e-maintenance can be seen as a sub-category of
IoT concentrated in to support maintenance activities, and in

particular CBM. Furthermore, CPS would fit into this
framework as the technology where the hardware and software
form an intelligent solution that can perform task that are
needed to carry out efficient CBM under the e-maintenance
umbrella.

According to the U.S. National Science Foundation, “the
term cyber-physical systems refers to the tight conjoining of
and coordination between computational and physical
resources”. The CPS in this case would consist of various
components. A transducer or sensor that would measure a
meaningful parameter of the asset to be monitored, linked to a
data acquisition equipment, where, using mathematical
algorithms the gathered signals are processed to obtain
important data. Once the data are acquired, a diagnosis is
made to evaluate the health level of the asset at that moment.

The aforementioned diagnosis is based both on
mathematical models of the real systems and also the
previously gathered data that are stored in a database. The
system should then be able to predict the future health states
and the possible failure modes based on the current health
level as well as historical data. It is worth mentioning that
some companies are already offering solutions as a software
platform that implement the data analysis and pattern
recognition algorithms to help the integration of a CBM
strategy with their system [16][17]. Typically, these
commercial solutions are able to carry out diagnosis of the
condition of a certain set of components and fault types
associated with them i.e. there is no prognosis element that
would predict the future development of these faults.

With the diagnostics and prognostics information, the
system could take pertinent actions to optimize the life of the
asset. These actions could vary depending on the outcome of
the system, from shutting down the engine, to creating an
action report with the instructions to change a component and
send it to the maintenance technician that is available (closest)
at that moment. The following will give an example of CPS:

“A filter was starting to get clogged causing an increase in
the power consumption of the motor and an increase on the
temperature. If the motor were to keep working at this level,
soon the temperature would get to a point that was not
permitted or could cause a breakdown or a risky situation. The
system realized this and sent the maintenance technician a
report with medium priority stating that the filter needed to be
changed, gave definition of the location of the machine,
reserved the tools needed for the repair and the spare parts that
were going to be needed. It also scheduled maintenance for
that equipment outside its working hours, so that the
downtimes were reduced.”

Today, it is possible to build a system that fully
automatically caries out the above described tasks. In the
Dynamic Decisions in Maintenance project which is
documented in the E-Maintenance book [11] all the necessary
elements were covered. Naturally, since that project was
completed the development of low cost sensors and low cost
processors has been very rapid. Even though technically
possible and today at a lower cost the above type of fully
automatic solutions are not often used for other than very
basic fault types for very cheap spare parts. In case of more

sophisticated machines humans are always linked to the
process so they can check that everything is going as it should.
Also, the total number of solutions where the expected
lifetime of components is predicted with reasonable accuracy
is still rather limited.

III. Sensors	for	CBM	
MEMS sensors are becoming more and more popular.

With different MEMS sensors it is possible to measure a lot of
different phenomena from the physical environment, including
temperature, acceleration, pressure, inertial forces, chemical
species, magnetic fields, radiation, etc. [1]. MEMS sensors
can be found from multiple different devices including
handheld devices like mobile phones [2]. The name Micro
Electro Mechanical System already reveals that MEMS are
components that combine microelectronics and
micromechanical parts together to a same packet. MEMS
sensors are manufactured using the same methods as with
Integrated Circuits (IC) and thus the price of individual sensor
is relatively low [3] and its size can be extremely reduced.

According to MEMS manufacturers the price difference
between, for example, accelerometers can be really significant
for MEMS accelerometers in relation with piezoelectric
accelerometers (which are more commonly used in condition
monitoring). The price of MEMS accelerometers is around
tens of dollars and the price of piezoelectric accelerometers is
measured in hundreds or even thousands of dollars [4]. MEMS
sensors are light in weight, tiny, usually highly integrated
devices, have low power consumption and works with low
voltage [1]. The tininess of MEMS sensors is a huge
advantage when sensors need to be integrated to small devices
or measurements have to be made in tiny locations. In figure 1
we show, from left to the right, a MEMS accelerometer
ADXL001 from Analog Devices attached to a printed circuit
board, a tiny MEMS accelerometer KX122-1037 from Kionix
and a piezofilm accelerometer ACH01 from TE Connectivity.

Fig. 1. Accelerometers from left: ADXL001, KX122-1037 and ACH01.

However, it should be noted that when choosing a sensor
great care must be taken that the sensor in question fulfils its
tasks i.e. that is suitable for the monitoring purpose in question

so that it is technically good enough to detect the early
indications of faults, which quite often are hidden under other
influencing factors.

Vibration monitoring is very often used in CBM or
predictive maintenance and it is especially suitable for
monitoring the wear of the components of rotating machinery.
This is due to the fact vibration measurements basically offer
the opportunity to monitor both the amplitude and the
frequency of the dynamic signal thus enabling the opportunity
to distinguish between various fault types especially by
looking at the frequency they influencing. Examples of such
fault types are unbalance (seen at rotational speed),
misalignment (seen at the harmonics of the rotational speed),
bearing faults (seen at the so-called bearing frequencies), and
gear faults (seen the gear tooth frequencies), etc.

 MEMS accelerometer seems to be an obvious choice
instead of the more common piezoelectric accelerometer
because of the price, but MEMS accelerometers has it
downsides also: usually MEMS accelerometers suffers from
lower bandwidth, lower resonance frequency, poorer “off-the-
shelf” protection against harsh and difficult measuring
environment and higher noise, when compared against
piezoelectric accelerometers. Depending on the demands of
measurements, MEMS accelerometers might be more than
good enough to replace piezoelectric accelerometers in some
vibration measurement events. However, the opposite might
also be true i.e. in case a very typical use the monitoring of
bearing faults the demands for the sensor are very high
because the impact a bearing fault causes in the beginning is
very small and thus very difficult to detect [6]. At the same
time the demand for early detection might be very demanding
e.g. in case of offshore wind turbines the goal is to detect
bearing fault a year ahead they would stop the turbine.

Another option for piezoelectric accelerometer in vibration
monitoring is the piezofilm accelerometer. Piezofilm
accelerometers are usually made of polyvinylidene fluoride
(PVDF / PVF2) which is shaped in thin layers and those layers
are coated with metal electrodes and plastic which protects the
accelerometer [7]. Piezofilms are light, bendable, flexible,
deformable, mechanically durable and easy to form for
specific measuring location [8]. In figure 1 is shown ACH01
piezofilm accelerometer which is in a cover. Piezofilm
accelerometers are valued in few dollars according to a big
MEMS manufacturer Analog Devices and so they are even
cheaper than MEMS accelerometers [4]. According to some
piezofilm accelerometer data sheets it is possible to find quite
promising accelerometer options for piezoelectric
accelerometers which have high resonance frequencies (up to
35 kHz), wide bandwidth (for example 2 Hz - 20 kHz) and a
low noise level that approaches the noise level of conventional
piezoelectric accelerometer [9]. Even though these values look
very promising, the experience with piezofilm sensor is still
limited when compared to the long history with piezoelectric
sensors.

As indicated earlier in this paper care should be taken
when choosing a sensor. This means that it is important to
understand the function of the sensor and what kind of wear
phenomena it is expected to pick up. When a clear

understanding of the above exits theoretically and on paper the
new sensor types will explode the use of sensors for condition
monitoring purposes and this with the concept of CPS.

IV. Cloud	Technology	
A. Cloud Service Providers

There are many different cloud service providers and
among them are the big players Microsoft Azure, Google
Cloud and Oracle. Cloud services are internet-based services
that provide all the things that computer systems can offer.
With cloud services, it is possible to get an access to high
performant computing resources without the need of expertise
of managing the computer system yourself. Cloud services can
be accessed with any device that has an internet connection
which is a big advantage. Cloud services typically offer
protection against malicious programs which releases
companies’ resources to other duties.

B. Local Clouds
The concept of local clouds is focused to industry, while

cloud is targeted also to the general public, and thus has not
gained much publicity. A local cloud is an intranet solution
that provides computational services internally to the company
itself, and its business partners. In such a system, only the
computers that are inside the local cloud have full access to
the services, which in principle are similar to the large
commercial cloud systems mentioned earlier. In some cases,
the local clouds can be accessed also by outsiders, but when
allowing this the IT departments of companies tend to have
very strict rules and limitations.

From IoT, e-maintenance, and CBM point of this access to
data within local clouds is an important question. For example,
a machine tool manufacturer would like to provide
maintenance services for the machine tools they have sold. In
order to carry out maintenance in an efficient way they would
like to use CBM strategy and thus follow the machine tools
with CPS which in turn means that they need access to the
data from the machine tools which as such can be considered
as local clouds within the local clouds the end user has at their
plant.

A number of collateral issues are related to local cloud,
such as the ownership of the data and security, and solutions
to these issues are not yet mature for many environments. A
great deal of discussions on these issues can be for example
found in [13], which presents the results of a recent European
project called Arrowhead in terms of theoretical findings and
developed solutions, as well as open software that can be used
as basis in order to provide a solution to some of the above-
named challenges.

C. Communication Protocols
Usually, cloud service providers provide a web-based

interface, which provides services that strengthens the security
between both the cloud and the web services. Web-based
services make it possible to share the data from cloud servers
to graphical user interfaces (GUI) for the end-user applications

through the internet. Usually GUIs are used through web
browsers. Web-based services integrate Web applications
through the internet and they are created using server-side
scripts (ASP, PHP, etc.) and client-side scripts (JavaScript,
HTML, Flash, etc.). In figure 2 is a diagram of web-based
service which shows the basic structure of web-based service.

There are Web services that are made more for industries
like Open Platform Communications Unified Architecture
(OPC UA). OPC UA is an industrial machine to machine
(M2M) communication protocol developed by OPC
foundation and as a web service it consists of an OPC client
that interacts with an OPC server. OPC UA increases
interoperability and is designed to be able to have real-time
data access, historical data for analytics and reporting of data
or events, and alarms, and conditions to notify when the
alarm-trigger goes off.

Fig. 2. Cloud computing [14]

OPC UA offers multi-threaded operations, a multi-
platform implementation (ANSI C, Java, .NET) and new
standard based security among others. High level of security
of OPC UA includes, among others, sequencing, the use of
end-to-end encryption, auditing and redundancy. The OPC
foundation also provides members with Compliance Test
Tools (CTTs) for test-case specifications, automated testing or
interoperability workshops for tests with different vendors.

Another web service is representational state transfer
(REST) which offers interoperability between computer
systems on the internet. REST fully relies on the HTTP
standard and thus it is usable by any device that support the
HTTP standard and makes it easy to connect old and new
devices as the protocol keeps the same. As REST fully relies
on the HTTP it is compatible with intermediate components
like firewalls, proxies and gateways.

D. Meta Data Model
A CBM system is composed of different elements, and

each company might use a distinct way of connecting these

elements and transmitting the information through them. This
way to interconnect the different elements and pass the
information has been called the “Meta Data Model”. The
solution to this problem is the standardization of the data
models.

However, it can be claimed that standardization and meta-
models are not the same way to ensure the interoperability in
the exchanges of data during CBM processes. Indeed, three
approaches can contribute to the improvement of inter-
operability:

• the integrated approach based on the use of standard
formats

• the unified approach which requires the definition of
meta-models

• the federal approach which is based on the definition of
ontologies whose implementations enable the
dynamical adaptation of the systems

Machinery Information Management Open System
Alliance (MIMOSA) produced Open System Architecture for
Condition-Based Maintenance (OSA-CBM), represented in
figure 3, which is one of the most important open standard for
information exchange between the plant and the machinery
information systems. One of the advantage of using a standard
is that components from different companies become
interoperable and the compatibility issues disappear.

Even though MIMOSA is presented as defining standard
format for the data exchange, it also provides the Meta Data
Model structure together with the definition of the ontologies
of the data. In fact, one of the greatest benefits in using
MIMOSA is this definition of semantics and ontologies so the
party that is developing their CBM solution does not need to
worry about how different types of information need to get
linked together.

Fig. 3. MIMOSA OSA-EAI Architecture [18]

It can even be claimed that the whole foundations of a
Computerized Maintenance Management System (CMMS)
can be found defined in MIMOSA. Naturally, the one thing
that is missing from MIMOSA so that it cannot be claimed to
be a CMMS solution is the user interface which is the key
factor in enabling the easy and efficient use of an CMMS

solution in field i.e. the maintenance technicians cannot be
expected to be using a database engine in their everyday work.

It should be noted that maintenance and especially
condition monitoring data are very hierarchical i.e. when
something is measured it needs to be linked to a component of
a machine that is monitored. The component in turn needs to
be linked into to the machine that is monitored. Also, the
component needs to be linked to maintenance history data.
Measured condition monitoring signal often needs to be linked
with the measured process parameters so that the measuring
condition can be defined. Then follow the signal analysis,
diagnosis, and prognosis phases with the associated data.
Further on the prognosis should lead to actions i.e.
management of work orders and spare parts and so on. The
UML descriptions that are available in www.mimosa.org give
a nice inside view on this. It seems that quite often all of this is
actually forgotten when new condition monitoring solutions
are developed together with new data structures.

OSA-CBM comes from the words Open System
Architecture for Condition-Based Maintenance and it is a
standard architecture for transferring information in CBM
systems. OSA-CBM was developed in 2001 by an industry led
team (participants from Boeing, Caterpillar, Rockwell
Automation, different universities etc.) and it was partially
funded by the Navy through a Dual Use Science and
Technology (DUST) program. OSA-CBM was developed to
standardize information exchange specifications within the
community of CBM users and through that ideally drive the
CBM supplier base to produce interchangeable hardware and
software components and thus result to a free market for CBM
components.

OSA-CBM has multiple benefits including cost reduction,
increased specialization, increased competition and on the
other hand it gives also a possibility to increase cooperation.
Cost reduction comes through eliminating the need of system
integrators and vendors to spend time creating new or
proprietary architectures and through increased competition.

 The OSA-CBM consists of multiple interoperable
functional blocks as shown further and thus the whole CBM
system doesn’t have to be ordered from a single vendor but
instead every block can be competed with different vendors.
Also, smaller companies which are not capable to offer the
whole CBM can take part of CBM system through providing
functional blocks. On the other hand, interoperable functional
blocks can increase cooperation. These multiple functional
blocks give possibility to concentrate on smaller areas of CBM
and so increase the quality of the whole CBM system.

OSA-CBM follows the ISO-13374 Condition monitoring
and diagnostics of machines -- Data processing,
communication and presentation -- -standard from the
International Organization for Standardization. Table 1 shows
the data-processing and information-flow blocks that are
presented in ISO-13374 and that OSA-CBM also follows. The
following paragraph will discuss about the individual blocks:

TABLE 1. OSA-CBM Functional blocks [15].

• Data Acquisition: The data acquisition is the first

step in the different stages. It consists on getting the
real world data into an electrical signal that can later
be processed in a computer. This is done by
transducers or sensors that can measure a wide range
physical phenomena such as acceleration, position,
temperature, pressure, etc. The signal that comes
from the sensor needs to be suited and cleaned for an
accurate representation of the physical phenomena,
so it goes through different amplification or filtering
stages as well as an analog to digital converter when
necessary. Data is usually refined in a local server
and then sent to the maintenance information center.

• Data Manipulation: Here the signal analysis is
performed, where the meaningful descriptors from
the gathered signals are computed and the virtual
sensor readings are created from the raw signals from
the Data Acquisition block.

• State Detection: It creates a “baseline” and compares
the new data to the previously created profiles to
detect if there are any abnormalities, and, if so, which
profile the data belong to.

• Health Assessment: It diagnoses the faults and the
current health level. It is usually done by analyzing
the previously collected information such as health
story trends, operational status or loading and
maintenance history.

• Prognostic Assessment: This stage determines the
future health state and the Remaining Useful Life
(RUL) of the monitored asset. To be able to apply
this stage, a wide range of initial data are needed on
the possible failure types of the asset. The prognostic
stage can be approached in two different ways: a
model that describes the physical phenomena of
degradation or a data-driven model where a pattern
recognition system is implemented alongside
machine learning techniques. Both approaches have
their advantages and disadvantages, but often, both
methods are combined to get the best result.

• Advisory Generation: It provides the information on
what actions have to be carried out, or takes part in

the actions required to optimize the life cycle of the
asset or increase the Overall Equipment Effectiveness
(OEE) of the plant by decreasing the downtimes of
the equipment or the process.

V. ADIRA	case	study	
This section describes a case study that applies the

envisioned approach to CBM. In particular, the case study
uses sensors to monitor an industrial machine, collects and
transmits data by means of efficient middleware, and process
the data in the cloud.

The Greenbender (figure 4) [19] is a metal sheet bending
machine commercialized by ADIRA, The press brake model
in this case study is a hybrid system that is powered both
hydraulically and electrically, and is controlled via a fluid
pumping sub-system. The hydraulics drive two pistons located
on a pair of beams that serve as actuators. These actuators
move a ram vertically up and down onto a die that is fixed on
the machine’s base. The ram holds a punch. The workpiece is
placed between the punch and the die, acting as clamps, so
that it can be deformed.

The architecture for the CBM solution of the Greenbender
is depicted in figure 5, which first of all divides the solution
into 2 main parts, one local to the company hosting the
machine, and another in the cloud, and which exposes an HMI
accessible via web.

The components that build the local part of the solution are
the machine under study, the MANTIS-PC, the edge local, and
the local HMI. The machine, apart from being the target of the
monitoring actions, comprises a number of data sources, some
of them pre-existing such as a CNC and a Safety PLC, and
some that were specifically added for the maintenance
platform, for example Arduino-based accelerometers that
monitor the bending blades for both acceleration, and
vibrations.

The pre-existing sensors are accessible through the CNC
of the Machine, while the new sensors needed a data
concentrator, which is located on the MANTIS-PC. Each
machine has got its own MANTIS-PC, and this latter
component collects data from the new sensors, and afterwards
converts them and sends them to the Edge Local. The
MANTIS-PC is implemented on a Raspberry PI 3 Model B
platform and communicates via Bluetooth Low Energy with
the sensors, and through the OPC-UA protocol with the Edge
Local.

The Edge Local component provides mechanisms in order
to support communication and management of the data
acquired across multiple heterogeneous and distributed data
sources using OPC-UA protocol, and acts as the OPC-UA
client in the interaction with the OPC-UA servers located on
the MANTIS-PCs. The Edge Local is meant to be unique in
each factory, and it performs preprocessing of collected data,
and it represents the only connection with the Cloud, by acting
as an AMQP client for the AMQP server located in the cloud.

Fig. 4. The Greenbender machine, featuredd in the ADIRA case study

The local HMI is a simple application that allows the user
to view and monitor both the raw data collected in the factory,
and the preprocessed information computed by the Edge
Local.

The Edge Server subsystem is located on the cloud, and
comprises a Middleware, a Database module, and the server
for the HMI. The Middleware manages the data, more
precisely by storing and transporting them between the Edge
Local, the Data Analysis and HMI modules. The Middleware
is message-oriented and is built over a AMQP messaging bus
server. The Edge Local afterwards, saves received data on the
Database (DB) Component, which is structured according to
the MIMOSA/ IoT-A standard.

The Data Analysis Component comprises three modules.
The first one is a set of Prediction Models, which is used for
the detection, prognosis and diagnosis of machine failures.
The models can be built specifically for one machine family or
can be generic and further adapted to different machine
families. The second module is the Prediction Application
Programming Interface (API), which allows clients to request
predictions from the models and provides data to feed and
train the models involved. The final module is the Intelligent
Maintenance Decision Support System (IMDSS), which is
used to manage the models (model generation, selection,
training and testing), for example on the reception of training
data or when the API is contacted.

The HMI modules is a Human Machine Subsystem that
allows for data visualization and management. The HMI
allows to view historical and live data as it is received from
the Middleware, inspect the results from the Data Analysis
subsystem, (alarms for unusual data, warnings of impending
failures, etc)

Fig. 5. CBM architecture for the ADIRA case study

VI. Discussion	
The application of new technologies such as new sensors,

CPS and cloud technology are stimulating an enormous
change in how CBM can be taken in everyday use in the
industry even in Small and Medium Size Enterprises (SMEs),
and in that context their economic potential is huge. In the
forefront of this introduction of new technology is the
manufacturing industry that produces intelligent production
machinery.

The whole service business can, in the future, be based on
these new technological solutions. Consequently, the OEE can
be raised to a new level i.e. from 60 % to levels around 90 %.
For the European industry, this is especially meaningful as
there are numerous SME companies that rely on this type of
production machinery.

By increasing the OEE to one and a half times what it has
been is really a dramatic change which can be benefitted from
in the global markets. As explained in the previous chapters
the backbone of this change is the fact that with the new
technologies all machines can be monitored and the
maintenance can be based on the need and not on some

statistics or guessing and at the same time sudden stoppages of
production can be avoided.

The new technology can be used by personnel that are not
experts of signal analysis or diagnosis and in cases where
detailed and sophisticated knowledge is needed expert help
can be called through the cloud and web services. It should be
noted that the new technologies also remove the adverse
influence of poorly done maintenance which today often is the
cause failures.

First when following CBM strategy maintenance is not
done in vain. With the new technology maintenance is always
carried out to the right components using always the correct
type of spare parts. The actual maintenance work can also be
supported by new technological solutions like Virtual Reality
(VR). Again, here it has been interesting to see how quickly
the price of the needed hardware such as 3D glasses has
dropped into a level where they can be used even at home for
e.g. gaming purposes.

When considering what are the challenges in the
introduction of the new technologies there are some:

• There will be high competition i.e. who will be the
first to really introduce these new solutions in
numbers.

• High competition might mean that not always the
right technological solutions are made.

• Making the wrong solution might be expensive and a
lot of time could be lost.

• When working in a hurry there is always the risk that
short cuts are looked for and the results might then be
very discouraging.

• If there will be numerous examples where the goals
are not reached this will discourage the whole
manufacturing industry.

• There are still technical challenges that have to be
kept in mind e.g. even if all technology works the
physics behind the need for maintenance have to be
understood.

• When new technology is introduced companies are
anxious to get financial benefit from it and it might
be again discouraging if the time is longer than was
originally expected.

VII. Conclusion	
The paper describes the concept of CBM and CPS and

how they are integrated together with the cloud computing in a
maintenance system. Implementing a CPS will lead the
industry to have more information on the monitored assets
and, thus, more control over them. Not only this will help to
reduce the downtime and increase the OEE, but it will also
help the designers to create better equipment if the weak
points are known.

As mentioned before, the new technologies such as MEMS
sensors and the drop on the price of high processing power
enable this type of maintenance strategy to be growing more
popular. This, at the same time, allows the creation of new
tools for said strategy, such as more powerful sensors or
specific software. Current trends suggest that the price of these
devices is going to keep decreasing in the near future. Taking
a look at the evolution of the industry, there is a high chance
that the CPS are going to become a must in the sector.

Data processing done by means of cloud-based advanced
techniques can provide an edge for the implementation of
CBM, and this is enabled by means of robust data models, and
open standards.

Novel techniques are being experimented with by using
demonstrators and pilots applied to real scenarios, speeding up
innovation and proving the technological and economic
potential of CBM for all the involved.

In summary, the implementation of such a system will help
increase the automation of the plant while carrying out the
maintenance with as little disruption as possible and improve
the design of the equipment.

Acknowledgment	
This work has been developed with the support of funds made

available provided by the European Commission in the scope of
ECSEL/H2020 MANTIS Research and Innovation Action (Project
ID: 662189), by the Portuguese Fundação para a Ciência e a
Tecnologia (FCT, I.P.) in the framework of project
UID/EEA/00066/2013 PEST (Strategic Plan for Science and
Technology) for the Centre of Technology and Systems (CTS), by
the Finnish Funding Agency for Innovation Tekes, and by Ministerio
de Industria, Energía y Turismo (Spain).

References	
[1] MEMSNET, What is MEMS Technology?. Available:

https://www.memsnet.org/about/what-is.html [01/04, 2017].
[2] M.J. McGrath & C.N. Scanaill, C.N., Sensor technologies: Healthcare,

wellness, and environmental applications. Sensor Technologies:
Healthcare, Wellness, and Environmental Applications, Apress, Open
Access ISBN 978-1-4302-6013-4, DOI 10.1007/978-1-4302-6014-,1
2013.

[3] R. Frank, Understanding Smart Sensors, Artech House, Boston, ISBN 0-
89006-311-7, 2013

[4] J. Doscher, “Accelerometer Design and Applications”, Available:
http://elpuig.xeill.net/Members/vcarceler/articulos/jugando-con-el-
wiimote-y-gnu-linux/sensor971.pdf/at_download/file [11/13/2016].

[5] K. Agoston, “Accelerometer characteristics, errors and signal
conditioning”, The 6th edition of the interdisciplinarity Conference,
Editura Universitatii "Petru Maior" of Tirgu Mures, 2012, pp. 276-281.

[6] I. El-Thalji & E. Jantunen, “Fault analysis of the wear fault development
in rolling bearings”, Engineering Failure Analysis, Vol 57, 2015, pp.
470-482.

[7] Piezo Film Sensors Technical Manual, Measurement Specialities Inc.,
1999.

[8] J. Fraden, Handbook of modern sensors: physics, designs, and
applications, 5(th) ed., Springer, ISBN 978-3-319-19302-1, 2016.

[9] TE Connectivity, ACH 01 Sensor Specifications. Available:
http://www.te.com/usa-en/product-CAT-PFS0014.html [11/7/2016].

[10] C. Rad, O. Hancu, I. Takacs & G. Olteanu, “Smart Monitoring of Potato
Crop: A Cyber-Physical System Architecture Model in the Field of
Precision Agriculture”, Agriculture and Agricultural Science Procedia,
6, 2015, pp. 73-79.

[11] K. Holmberg, A. Adgar, E. Jantunen, J. Mascolo, A. Arnaiz, & S.
Mekid, E-maintenance, Springer, London, ISBN 978-1-84996-204-9,
2010.

[12] R. Karim, A service-oriented approach to eMaintenance of complex
technical systems, Dctoral Thesis, Luleå University of Technology,
ISSN: 1402-1544, 2008.

[13] J. Delsing, IoT Automation: Arrowhead Framework, CRC Press, ISBN
9781498756754, 2017.

[14] Cloud image: https://commons.wikimedia.org/wiki/File:Cloud,
[16/7/2016].

[15] MIMOSA OSA-CBM Available: www.mimosa.org/mimosa-osa.cbm
[16] Expert Microsystems, Available: http://expmicrosys.com/
[17] National Instruments, Conditon Monitoring. Available:

http://www.ni.com/condition-monitoring/
[18] MIMOSA OSA-EAI, http://www.mimosa.org/mimosa-osa-eai
[19] L. L. Ferreira, et al. "A Pilot for Proactive Maintenance in Industry 4.0."

13th IEEE International Workshop on Factory Communication Systems
(WFCS 2017). 31, May to 2, Jun. 2017.

