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Abstract. Digital Twin (DT) is a pivotal application under the industrial digital transformation envisaged 

by the fourth industrial revolution (Industry 4.0). DT defines intelligent and real-time faithful reflections of 

physical entities such as industrial robots, thus allowing their remote control. Relying on the latest advances 

in Information and Communication Technologies (ICT), namely Network Function Virtualization (NFV) and 

Edge-computing, DT can be deployed as an on-demand service in the factories close proximity and offered 

leveraging radio access technologies. However, with the purpose of achieving the well-known scalability, 

flexibility, availability and performance guarantees benefits foreseen by the latest ICT, it is steadily required 

to experimentally profile and assess DT as a Service (DTaaS) solutions. Moreover, the dependencies 

between the resources claimed by the service and the relative demand and work loads require to be 

investigated. 

In this work, an Edge-based Digital Twin solution for remote control of robotic arms is deployed in an 

experimental testbed where, in compliance with the NFV paradigm, the service has been segmented in 

virtual network functions. Our research has primarily the objective to evaluate the entanglement among 

overall service performance and VNFs resource requirements, and the number of robots consuming the 

service varies. Experimental profiles show the most critical DT features to be the inverse kinematics and 

trajectory computations. Moreover, the same analysis has been carried out as a function of the industrial 

processes, namely based on the commands imposed on the robots, and particularly of their abstraction-

level, resulting in a novel trade-off between computing and time resources requirements and trajectory 

guarantees. The derived results provide crucial insights for the design of network service scaling and 

resource orchestration frameworks dealing with DTaaS applications. Finally, we empirically prove LTE 

shortage to accommodate the minimum DT latency requirements. 

Keywords Digital Twin; Edge; NFV; testbed; performance evaluation 

1 Introduction 

The Industry 4.0 revolution, also referred to as Industry of the Future, has emerged as the new paradigm 

shift in the industrial manufacturing systems. New manufacturing approaches have been developed to 

overcome the limitations of the effectiveness and repeatability of manpower employment [1]. In particular, 



industrial robots, e.g., robotic arms, and automation are increasingly being leveraged to replace human 

effort for repetitive tasks towards workerless plants, leaving efficient production planning and operation 

monitoring to manufacturing domain experts [2]. In addition, the Industry of the Future envisions the digital 

transformation of modern industries towards service-oriented industries. Manufacturing processes will 

thus become more flexible, safe, productive, cost-effective and smartly coordinated in unprecedented ways 

by being offered as on-demand services [3]. Industry 4.0 therefore requires digitized knowledge [4] about 

industrial machinery to open production environments to smart manufacturing services. 

In this regard, the Digital Twin (DT) undoubtedly stands out as a cornerstone service, as it enables the 

desired digital transformation. DT is a computerized model that replicates the state and evolution of a 

physical entity or process, with which a continuous interaction is established [5]. Hence, a DT is the living, 

smart and evolving virtual counterpart of a physical system such as robotic arms. The advantages brought 

by this breakthrough concept are innumerable. Depending on the operated service, the manufacturing DT 

can be defined as [6]: i) Monitoring DT when the virtual replica provides information about the evolving 

status of its physical counterpart, e.g., [7,8], thus enabling visualization and fault detection capabilities; ii) 

Simulation DT when simulation or predictive tools are run in the virtual world by exploiting 3D or machine 

learning-based models, e.g., [9-11]; iii) Operational DT when the interaction with the digital twin via 

frictionless interfaces is harnessed by domain experts to carry out remote motion control (i.e., the use-case 

evaluated here) and data aware management of the abstracted target, thus disrupting the interaction with 

industrial machinery. 

To provide the twinned replica with reliable information seamlessly and in real-time, the DT service must 

be integrated with the latest advances in information and communication technology [12]. Edge-

computing, Network Function Virtualization (NFV) and 5G aim to meet the requirements of Industry 4.0 and 

DT applications in terms of low latency, high reliability and bandwidth, scalability and connection density. 

Edge computing allows DT applications to offload their compute-intensive logic (e.g., object detection, 

motion planning) towards the edge of the network. This enables DT to be executed in close proximity to 

the factories offering low-latency, high bandwidth and reliability, and context aware services [13,14] while 

enabling the deployment of cost-effective robots. In turn, the NFV paradigm enables the functional 

partitioning of the DT application into a wide range of re-configurable Virtual Network Functions (VNFs) 

deployable on top of general-purpose hardware. Finally, Industry 4.0 claims 5G as a key enabler to fulfill 

the real-time Key Performance Indicators (KPIs) set by the DT achieving wire-like performance. The 5G 

networks are architectured to simultaneously support different types of service profiles in a shared 

infrastructure such as enhanced Mobile BroadBand (eMBB), massive Machine Type Communication 

(mMTC), and Ultra-Reliable Low Latency Communication (URLLC). 

Although Edge computing is envisioned as a technology to run on-demand services, in addition to 

providing high flexibility, enhanced scalability, and agile management, an effective characterization of the 

provided services is required by automated resource scaling and orchestration frameworks [15]. Assessing 



the resource profile of the service DT and exploring its dependencies are critical to reap the benefits of 

automated service resizing tools, i.e., resource usage savings and performance guarantees even in 

correspondence to service load surge. Accordingly, this research aims to carry out an experimental analysis 

of a DT as a Service (DTaaS) solution for robotic arms remote control that integrates the computing, 

virtualization and wireless technologies. To do so, a DT solution for robotic arms is decomposed into VNFs 

and deployed over an experimental testbed that integrates Software Defined Radio (SDR) link solution for 

3GPP LTE. The implementation of Edge-based DT in a real testbed allows us to observe trade-offs across 

different deployment configurations. Specifically, the main contributions of this work are the following: i) 

the edge-based, virtualized implementation of a DTaaS prototype for robotic arm; ii) an insight about the 

relationship between the resource requirements and the service demand load; iii) the study of the impact 

of the application and the workload of the robotic arm on the resource profile of the DT service. 

The rest of the paper is organized as follows. Section 2 reviews the related works and motivation. Section 

3 firstly introduces the Edge-based Digital Twin proposed as a DTaaS and then an overview about the 

evaluated command abstraction-levels imposed on the robots. The Edge-based DT solution has been 

deployed on the testbed presented in Section 4. Finally, Section 5 presents the service resource profile and 

performance evaluation results, whose main insights are discussed in Section 6 along with future plans. 

2 Background and motivation  

The operational Digital Twin primarily finds application in manufacturing robotic applications, pushed by 

growing interest from the industrial verticals. Thanks to the latest advances on Cloud first, and Edge-

computing then, as well as NFV and 5G, the manufacturing sector can benefit from the DT for the service-

oriented industries attainment. DT can be provided as a network service, which entails its flexible 

decomposition into Virtual Network Functions (VNFs) deployed on commodity hardware. Edge computing 

empowers the deployment of lightweight and cost-effective robots by offloading the intelligence in the 

Edge, compute and storage capacity is leveraged to support manufacturing applications [14]. Moreover, 

NFV and Edge-computing concepts are natively envisaged by 5G, which is embraced by Industry 4.0 as the 

first communication technology to simultaneously meet: i) flexibility, cost-effective deployment and 

maintenance, mobility support and worker safety [16] peculiar to wireless technologies, as well as ii) 

stringent real-time guarantees characteristic of such wired networks as Fieldbus [17]. These potential 

benefits come in addition to the advantages that the use of industrial robots brings, namely, large 

workspaces, flexibility, and high degree of freedom, which is why their applications are so numerous and 

continuously increasing  

It is therefore not surprising that manufacturing DT and DT -enabled robotics have recently attracted 

much attention in both industry and academia. The study in [19] takes a data-driven approach to automate 

smart manufacturing cell systems, while [20] proposes a reference model for s designing smart assembly 

processes and discusses a corresponding DT-based application framework. The work in [21], on the other 



hand, evaluates the benefits of DT-based collaborative human-robot systems for industrial assembly. [22] 

relies on the Cloud to offload a complex and novel simultaneous localization and mapping framework, while 

[23] presents a Cloud-based system for remote configuration of industrial robots. Computationally critical 

features of an industrial robotics surface blending system are detected and offloaded to the Edge in [24], 

Edge-based DT solutions for automation and metal additive manufacturing systems are presented in, 

respectively, [25] and [26]. An Edge-based prototype of a DT that integrates Edge computing, NFV and 5G 

connectivity is presented in [27] and [6] where the authors investigate different offloading strategies and 

wireless technologies (e.g., Wi-FI, LTE, 5G) to support the Edge Robotic Digital Twin. 

Nevertheless, the works in [19-21] do not discuss the role and the benefits introduced by the latest 

advances in ICT, i.e., Edge computing, NFV ad 5G. Most of the recent works [22,23] focus on Cloud 

deployments benefits, which however is prone to network dynamics and is not viable for time-sensitive 

operations. The studies in [24-26], instead, rely on the Edge for monitoring and collective robot learning DT 

applications rather then robot remote control. Finally, the works in [27] and [6] evaluate a robotic Edge-

based DT solution through prototype implementation, but, unlike our study, limit their analysis to scenarios 

with a single robot. 

In summary, differently from previous work, we present the experimental profile and performance 

assessment of a robotic remote control Edge-based DT solution deployed as a service, hence decomposed 

into VNFs, and offered on a small testbed setup integrating a SDR link solution for 3GPP LTE to simulated 

robotic arms. This work does not envisage an explicit industrial field or application, rather it is easily 

generalizable and extensible to all industrial applications that can benefit from the remote control and 

motion planning of industrial robotic arms. So doing, our study mainly contributes to identifying the most 

critical and computationally intensive network modules of a robotic DTaaS solution, and it provides novel 

insights on which parameters influence the overall service requirements, such as the robotic command 

abstraction level. To the best of our knowledge, no existing work has addressed this aspect. The findings 

presented here can bring significant benefits to agile and automated DT services orchestration frameworks, 

which may enable real-time service resize to realize network service cost-effectiveness and performance 

guarantees. 

3 Edge-based Digital Twin 

In this work, we focus on an Edge-based DT solution designed for the remote control of a robotic arms 

factory. It is worth stressing that this use case is of high practical relevance, as manufacturing processes are 

manageable and optimizable devising production plans to be remotely imposed on industrial machinery, 

e.g., robotic arms. In this section, we first introduce the assessed Edge-based DT solution in Section 3.1, 

then we give an overview of the eligible commands and the involved VNFs composing the service in Section 

3.2. 



3.1 The Edge-based Digital Twin service solution  

The DTaaS solution must be designed according to the NFV paradigm. To this end, while configuring the 

DTaaS solution, we first identify the largest possible extent of VNFs in which a DT service can be 

decomposed, in order to experimentally explore the service requirements with the highest possible 

granularity and, hence, determine the critical service components and profile their behavior in different 

scenarios. The assessed Edge-based DT solution is reported in Fig. 1 and includes six VNFs, as described 

below. 

Driver VNF: this module runs low-level functions that directly interface with the robot hardware and 

sensors. The Driver VNF is in charge of: i) reading data from the robot sensors and sending them to the rest 

of the VNFs, and ii) executing control commands received from the Control VNF. The Driver VNF is the only 

DT building block that cannot be offloaded from the robot (Fig. 1), in spite of the remaining virtual functions 

which enable robot control, visualization, and maintenance. 

Control VNF: it allows low-level robot manipulation by running a hard-real-time-compatible control loop 

towards the Driver VNF following a control frequency at a timescale ranging between 10 ms and 100 ms. 

The communication between Control and Driver VNFs must necessarily take place in real time, and, hence, 

has strict latency constraints. The Control VNF offloading is therefore a sensitive and demanding operation, 

and its performance can be significantly affected by the communication latency. 

State VNF: it is in charge of gathering information from the Driver VNF, hence of computing the direct 

kinematic. Namely, the State VNF keeps track of multiple coordinate frames provided by the Driver VNF 

over time, e.g., joint angles, and provides a high-level representation of the robot to the higher-level VNFs. 

Motion Planning (MP) VNF: the MP VNF is the core component for planning the robotic arm’s transitions. 

It receives as input both the current and the desired robot end-effectors configuration from, respectively, 

the State VNF and the Commander VNF, and runs the inverse kinematics and trajectory creation. This 

trajectory is composed of a series of navigation commands that are passed to the Control VNF to execute 

them towards the robot Drivers VNF. Both the inverse kinematic and the trajectory computations are 

associated with a high computational burden, making the MP VNF the best suited to offloading. 

Figure 1 Edge-based Digital Twin solution configuration scheme. 



Commander VNF: it manages all the commands issued by the Digital Twin VNF, validating the 

corresponding parameters and handling concurrent requests. As highlighted in Fig. 1, commands that 

require motion planning features, e.g., inverse kinematic computation or trajectory planning, are redirected 

to the Motion Planning VNF. Straightforward tasks are instead redirected directly to the Control VNF. The 

Commander VNF finally returns to the Digital Twin VNF potential output messages and status information. 

Digital Twin (DT) VNF: the DT VNF provides high-level abstraction of the robot and of the entire service 

stack, hosting and keeping updated robot’s virtual replica, and enabling user applications to interact with 

the robot through the DT, i.e., get human-understandable view of the robot, gather analytics data, and 

enable remote control. In the latter case, commands generated by the DT VNF are sent to the Commander 

VNF for parameters validation and concurrent requests solving. 

3.2  Robot commands overview and Service VNFs interactions 

 Clearly, command generation and transmission play a critical role in performance evaluation and resource 

profiling of the Digital Twin service for remote robot control. Undoubtedly, not all commands have the same 

complexity in terms of the associated VNF computational overhead and thus the time required to validate, 

process, schedule, and execute the robot motion. Commands differ mainly in: i) the scope of the associated 

motion trajectory, and ii) the level of abstraction of the command, the impact of which on the DT service is 

evaluated below. As depicted in Fig. 2, there are three different types of robotic arm commands, each of 

which requires a different interaction between the VNFs that form the Edge-based DT service.  

High-level commands: the intended robotic arm position is expressed in the robotic workspace. With 

regard to the robotic arm use case, the command is composed of 6 entries, half of which are the positions 

in the Cartesian space, while the remaining ones express the rotation and inclination of the gripper (roll, 

pitch, and yaw). The resolution of the inverse kinematics is therefore required when this command is issued 

by the Digital Twin VNF, as the workspace position is required to be mapped in the joint space. Only at the 

end of the inverse kinematics computation the MP VNF has gathered the information required for the 

trajectory computation, which will be conveyed to the Controller VNF. Hence, since the time requirements 

Figure 2 Flow graph of the interactions between the VNFs composing the Edge-based DT service, when high-level, 
middle-level and low-level commands are generated by the DT application. 



involved in motion planning are negligible, the high-level commands are particularly suitable for 

applications that do not require high precision in position control, e.g., polishing, grinding, and welding [18]. 

When the navigation trajectory execution ends, the Motion Planning VNF gets notified, which in turn 

informs the Digital Twin VNF. The resulting workflow is reported with a red solid line in Fig. 2.  

Middle-level command: in this first case study, the desired position of the robot is expressed as end-

effectors configuration, i.e., through the intended angles of the axes making up the mechanical arm. Such 

a command needs to be at first validated by the Commander VNF, then conveyed to the Motion Planning, 

which in turn computes the navigation trajectory for the robotic arm. The inverse kinematics computation, 

i.e., the joint configuration corresponding to a given end-effector pose and orientation in the workspace, is 

not required in this scenario. As in the high-level command case, the Digital Twin VNF is informed about the 

command execution completion by the Motion Planning VNF. Thus, the involved workflow is the same as 

the high-level command’s one and it is reported with a green dashed line in Fig. 2.  

Low-level command: in this last low-level case study, the desired robotic arm position is again expressed 

as intended end-effectors configuration, but in contrast with the middle-level command scenario, the 

command it is directly forwarded to the controller, as highlighted in Fig. 2 with blue line. Being the MP VNF 

not involved, its functionalities are lost: since a suitably safe and smooth trajectory for the robot transition 

is not computed, there is no guarantee that the saturation limits and the resonant modes of the controlled 

robotic arm are not, respectively, violated and excited by the joint generalized forces exerted by the 

actuators during the transition, incurring the risk of a mechanical failure. Consequently, this command finds 

application when the robots are issued with repetitive and well-know safe transitions, or additional security 

mechanisms are present. On the other side, being the MP VNF the most computationally expensive 

component of the DT service, the overall Edge requirements are mitigated, making this low-level case study 

especially suitable for scenarios requiring low response and execution times, along with high precision, e.g., 

waterjet cutting, drilling, and milling processes. The first use-case in fact requires low response times since 

the pressure of the waterjet can cause deviations in the positions of the robots, while drilling and milling 

processes deal with large machining forces and durable materials to cut, thus requiring high path accuracy 

[18]. 

4 Testbed design and implementation  

In order to experimentally evaluate the Edge-based Digital Twin service described above, we have designed 

and configured a lab testbed setup. The testbed is depicted in Fig. 3 and consists of two main blocks: the 

edge host, which we will refer to as Edge Machine, in charge of offering computational resources to the DT 

service, as well as providing LTE connectivity to the second block of the architecture termed Robots 

Machine, i.e., the physical robots that conversely request and consume the service. The Edge Machine is 

equipped with 16GB RAM and an Intel(R) Core(TM) i7-7700HQ 4CPU@2.80 GHz processor. Conversely, the 



Robots Machine was supplied with 16GB RAM and an Intel(R) Core(TM) i7-8550U 4CPU@1.80 GHz 

processor. 

Each of the VNFs composing the Edge-based Digital Twin service is deployed over a dedicated Virtual 

Machine (VM), running Ubuntu Server 20.04 LTS and provided with 2GB of RAM and 1vCPU. The Digital 

Twin, Commander, MP, State and Controller VNFs are deployed at the Edge Machine. The VNF driver is 

instead hosted on the Robots Machine. 

Connectivity between the Edge and Robots Machines is based on srsRAN [24], an open-source SDR LTE 

full-stack implementation. Precisely, each physical machine is provided with an ETTUS Universal Software 

Radio Peripheral (USRP) B210 board using USRP Hardware Driver (UHD) v3.15. srsRAN enables 5G NSA 

solution, which however is not suitable for the current testbed, and the LTE Release 9 compliant 

implementation of virtualized EPC, eNB and UE functions. It can handle up to 20MHz FDD channels. 

The remotely controlled robots deployed in the testbed are Niryo One1 simulated robotic arms. Niryo 

One is a 6-axis open source collaborative robot designed for R&D. Niryo One leverages on the open-source 

Robot Operating System (ROS) [25], the widely recognized as de-facto standard middleware for robotic 

systems. ROS envisages the definition of a peer-to-peer network over TCP among ROS nodes, i.e., 

computing processes. One ROS node across the stack serves as master, thus acting as a nameservice. The 

Niryo One ROS stack is compliant with the service splitting presented in 3.1. For each robot registering to 

the service, an instance of each VNF composing the Niryo One ROS stack is deployed on Docker containers 

hosted by the corresponding VM. In our design, the DT VNF acts as the ROS master node. 

Niryo provides the opportunity to run its collaborative robot arms in simulation mode. In the latter case, 

the hardware layer, as well as its functionalities and dependencies, is disabled, and the commands and the 

trajectories given to the robot are perfectly executed. Even though the robotic arms are simulated, their 

obligations, namely, the saturation limits for the generalized forces exerted by the actuators (e.g., torque) 

and the corresponding excitation of the structure’s resonant modes, are acknowledged. Additionally, a 3D 

human understanding view of the simulated robotic arm is provided by means of the Rviz module and the 

Niryo One Studio graphical HMI. Although the interaction with this avatar allows for direct control of the 

physical robots, we interfaced with the latter via the programming interface on the ground of automation 

and reproducibility. In our experiments, we set the robotic arm speed to its maximum value of 0.4 m/s for 

	
1 https://niryo.com/product/niryo-one 



horizontal and vertical movements and of 90°/s for rotation. The closed-loop frequency has been set to 50 

Hz. 

The high and the middle abstraction level commands can be configured in ROS with, respectively, “move 

pose” and “move joints” commands by leveraging the ROS Python API. Moreover, the ROS API enables low-

level commands by means of JointTrajectory messages addressed to the Control VNF through the action 

server exposed by the Commander VNF. Hence, low-level commands will be referred to as “ROS API” 

commands. All the traffic between Edge VNFs and Driver VNFs is routed through the LTE radio link. 

However, since Edge VNFs and Driver VNFs belong to unrelated private networks, it has been necessary to 

leverage on a tunneling protocol. 

Wired testbed: Before performing experimental evaluations on the testbed described above, we 

considered a simplified scenario without LTE connectivity to analyze and evaluate a broader range of 

scenarios. Undoubtedly, replacing the communication medium between Edge and Robots Machines with 

an Ethernet cable has mitigated two crucial limitations of the wireless connectivity implemented in the 

testbed. First and foremost, no computational resources are required to run srsRAN and keep the LTE radio 

link active, which enables the simulation of a higher number of Niryo One robotic arms. Furthermore, the 

wired channel provides guarantees of latency and stability, enabling longer-lasting experiments over time, 

and, hence, the achievement of as consistent as possible resource profiling. In the wired testbed, a 16GB 

RAM and Intel(R) Core(TM) i7-8550U 4CPU@1.80 GHz Edge and a 8GB RAM and Intel(R) Core(TM) i7-8250U 

4CPU@1.60 Robots Machines have been connected to the same network through a router, by means of 

Gigabit Ethernet cables. At last, we mention that the VMs have been bridged to the same network, and that 

each of the VMs has been assigned 2GB of RAM and 2vCPUs. In this configuration, the system was able to 

support a maximum number of robots equal to 8 and 10 in the cases of high and medium command 

abstraction-levels, respectively. 

5 Edge-based DT Service Profiling and Experimental Analysis 

Figure 3 Testbed architecture. The Edge machine hosts Control, State, Motion Planning (MP), Commander and 
Digital Twin (DT) VNFs, while offering Digital Twin service and providing LTE connectivity to the Robot Machine. 
The latter hosts Driver VNF consuming the Edge-based Digital Twin service. 



In this section, we first outline and justify the experimental setup we chose and whereby we obtained our 

profiling and experimental results (Section 5.1). We then present a CPU (Section 5.2) and memory usage 

(Section 5.3) profiling to investigate the requirements of the VNFs building up the DT service; further, we 

examine the execution times entailed by the commands under study (Section 5.4). This initial collection of 

experiments was conducted based on the wired testbed. We also present the configuration of the testbed 

including LTE connectivity and we explore the corresponding resource requirements by simulating a 

maximum number of 3 Niryo One robotic arms (Section 5.5). We evaluate the system performance in terms 

of latency at both the network and the application level (Section 5.6). Finally, we elaborate on the various 

potential types of industrial fields and applications that can benefit the most from this work (Section 5.7). 

5.1  Experimental settings 

In response to the need to gather knowledge about DT services required by enhanced and agile network 

resource orchestrator frameworks, we aim to experimentally evaluate and characterize an Edge-based DT 

solution for the remote control of manufacturing robotic arms. Our analysis therefore aims not only to 

obtain a resource profile of the service under study in relation to the service demand load, but also to 

inspect new trade-offs such as the one presented in Section 3.2. The results of such an analysis will 

contribute to the development of novel tools for resource scaling, and thus to the fulfilment of the benefits 

introduced by recent advances in network and service virtualization, namely, high flexibility, enhanced 

scalability and agile management, in addition to resource savings and performance guarantees. 

We study the requirements and performance of the Edge-based DT service VNFs and their correlation 

with two parameters playing a crucial role in the intended analysis. The first parameter whose impact is 

analyzed in this work is the number of robots concurrently requesting the Digital Twin service. Specifically, 

we want to: i) analyze its correlation with service VNFs demand of resource; ii) investigate the relationship 

with the involved latency at different network architecture logical levels. The same analysis is carried out in 

relation to the three-command case study outlined in Section 3.2 and imposed on the robots. 

To fairly perform the latter study, we ensured that the robots followed the same trajectory regardless of 

the command entity imposed, even if it was computed by the motion planning VNF, i.e., in the "move joints" 

and "move pose" use cases, or precomputed, i.e., in the case of commands over the ROS API. 

The commands are sent by the DT VNFs, each of which executes a Python script conveying instructions 

to the corresponding robotic arm. More precisely, a new instruction is formalized by the DT VNFs once the 

previous one is completely carried out by the robotic arm, keeping the robots in continuous motion, without 

introducing intervals of inactivity between instructions. Concurrently, the virtual machines hosting the 

service VNFs execute Python-based benchmarking code, thus collecting information about the CPU and 



RAM usage of the virtual systems. The library exploited for system monitoring is psutil2, a multi-platform 

library for the collection of information about systems or running processes resource consumption. 

5.2  CPU profiling 

Here we examine the VMs’ computational requirements when hosting the offloaded DT service VNFs. In 

our analysis, we thereby account for the overhead involved by the instantiation of the Docker containers 

to implement the VNFs, so as to characterize the DT service in its thoroughness. We emphasize that for this 

first analysis we relied on the wired testbed as described in Section 4. 

Fig. 4 shows how the CPU time required by the VMs varies when a variable number of Niryo One robots 

are controlled by the Edge-based DT service; in particular, the following cases are considered: (a) idle (i.e., 

the robotic arms are registered to the service without receiving any instruction), (b) receive "ROS API" 

instructions, (c) receive "move joints" instructions, and (d) receive "move pose" instructions. This “idle” 

analysis aims to provide a resource demand reference, as it highlights the effort required to support a robot 

registered to the DT application, therefore to keep up the containerized VNFs and the peer-to-peer ROS 

network, besides supporting the control closed-loop which is always up and running. Also, notice that in 

Fig. 4 the CPU time has been normalized with respect to the experimental measurement time (i.e., 15 

minutes) and to the number of vCPUs assigned to each virtual machine. So doing, a 100% CPU time 

measurement indicates the saturation of all the assigned vCPUs throughout the entire duration of the 

system tracing. 

By comparing Fig. 4(a) and Fig. 4(b), we observe that the only VNF to require a greater allocation of 

resources when the robots are instructed via “ROS API” commands instead of standing idle is the Digital 

Twin VNF. The consumption of the latter is in fact slightly, but systematically, higher with moving robots. 

(a) VNFs CPU consumption with robots in idle state 

	
2	https://pypi.org/project/psutil/	

(b) VNFs CPU consumption with robots receiving “ROS 

API” commands



(c) VNFs CPU consumption with robots receiving “move 

joints” commands 

(d) VNFs CPU consumption with robots receiving “move 

pose” commands

Figure 4 VNFs CPU consumption (y axis) by varying the number of served simulated robots (x axis) and the command 

abstraction-level. Control VNF consumption is reported in blue, State VNF in orange, Motion Planning VNF in green, 

Command VNF in red, Digital Twin in brown. 

This is due to the execution of Python scripts used to instruct the robots. Conversely, by looking at Fig. 4(c) 

and, in particular, in Fig. 4(d) the virtual machine being notably proved is the one hosting Motion Planning 

VNFs. As outlined in Section 3, in fact, the Motion Planning VNFs are required to plan the movement 

trajectory in the "move joints" use case, to which the Inverse Kinematics is added in the case of "move 

pose" commands. In fact, the latter scenario involves the highest computational load. Specifically, the CPU 

time associated with the VM hosting MP VNFs serving 8 robotic arms is, on average, 17.05% when the 

robots “move joints” commands are imposed; 35.13% with “move pose", instead. In the latter scenario, it 

is not possible to continuously support 10 robotic arms. In order to examine this constraint, we report in 

Fig. 5 the CPU consumption temporal evolution of the MP VM when 8 Niryo One robots are remotely 

controlled through their Digital Twin replica by means of “move joints” (green curve) or “move pose” (blue 

curve) commands. The CPU consumption has been sampled with a 500-ms periodicity. We observe that the 

Motion Planning VM’s CPU consumption is characterized by a standard deviation σ, which is substantial 

when processing commands expressed in the workspace, i.e., for "move pose", σ = 25.8%. Conversely, the 

standard deviation associated with CPU consumption is significantly lower when commands are expressed 

in the joint space, i.e., for "move joints", σ = 10.5%. Finally, we note that the CPU consumption peaks 

approach the computational capacity in the first case, indicating that indeed it is not possible to simulate 

10 robots unless a larger amount of computing resources were available. 

Ultimately, we point out that the choice of commands, used to remotely control the robot, has not a 

large impact on the remaining VNFs. Indeed, i) since the direct kinematics resolution is not required by the 



application under study, the State VNFs never get overloaded; ii) the Commander VNF feature, i.e., 

validating the commands given by the Digital Twin VNF, is not a resource-intensive task. 

5.3  RAM profiling 

Table 1 reports the average RAM usage associated with the DT service VNFs measured via the psutil library 

and averaged over a 15-minute time interval. Unlike what was observed above about the computational 

demand, RAM usage is not correlated with the motion imposed to the robots, i.e., the RAM occupancy 

remains unchanged whether the Niryo One robots are in idle state or whether they are controlled remotely. 

Furthermore, comparing the memory usage when 1 or 8 robots are connected to the Edge-based DT service, 

we note that the RAM does not exhibit any scalability problem. 

 

Table 1 VNFs RAM usage when 1 or 8 robots are registered to the service and for different command abstraction-levels. 

 RAM usage [MB] 

 1 Niryo One robot 8 Niryo One robots 

 Idle Joints Pose ROS API Idle Joints Pose ROS API 

Control VNF 475 MB 474 MB 477 MB 475 MB 1060 MB 1110 MB 1029 MB 1084 MB 

State VNF 341 MB 342 MB 343 MB 338 MB 727 MB 727 MB 728 MB 727 MB 

MP VNF 344 MB 345 MB 345 MB 342 MB 781 MB 788 MB 789 MB 784 MB 

Commander VNF 591 MB 587 MB 594 MB 592 MB 997 MB 979 MB 996 MB 940 MB 

Digital Twin VNF 742 MB 810 MB 801 MB 794 MB 925 MB 827 MB 867 MB 829 MB 

5.4  Command execution time 

Next, we investigate the command execution times, namely the time elapsed since the generation of the 

command and the notification of its correct execution. We compare again the three commands under 

study, in order to experimentally demonstrate strengths and weaknesses of each of them. To complete this 

Figure 5 Evolution over time of the CPU consumption associated to the VM hosting Motion planning VNFs when 8 
robots registered to DT service are receiving “move pose” (blue line) or “move joints” (green line) commands. 



evaluation, we rely again on the wired testbed. Fig. 6 shows the average execution times as the number of 

robots registered for the service varies. 

Above all, we observe that the command execution time is not affected by the number of robotic arms 

consuming the service, suggesting that as long as the correct amount of resources is allocated and 

guaranteed for the service, the robots enjoy the same quality of experience. We also note that execution 

times differ considerably by changing the way to interact with the robots: i) firstly, the time requirement 

difference between "move joints" and "move pose" commands is given by the inverse kinematics 

computation; ii) the "ROS API" commands, since they do not invoke the Motion Planning VNF to which the 

most resource-intensive features are associated, involve a significantly limited execution time, proving that 

"ROS API" commands are more suitable for tasks where low execution times and high precision are 

required. 

5.5  LTE profiling 

In the implemented testbed (see Fig. 3), we have configured the Edge to offer a 10-MHz LTE connectivity to 

the Niryo One robots in order to provide the Digital Twin service. Since the performance assessment of the 

service in relation to LTE channel quality is beyond the scope of this work, we considered in our experiments 

an ideal communication channel characterized by a signal-to-noise-ratio (SNR) that is always higher than 

27dB, both in uplink and in downlink. Under such a testbed configuration, we were able to simulate the 

remote control of up to 3 robotic arms. 

In order to fully-characterize the edge requirements, we profile the SDR LTE full-stack implementation 

offered by srsRAN. Table 2 presents the CPU time of the virtual eNB by varying again the number of robots 

with an instantiated Digital Twin replica and remotely interaction method. The CPU time has been 

normalized according to the duration of the experiment, which lasted 3 minutes. Thus, a 100% CPU time 

measurement indicates the saturation of a single CPU supplying the Edge machine during the entire 

duration of the system tracing. The measurements reported in the table show that srsRAN computational 

requirements marginally grow with the number of connected robots. The reason behind this behavior lies 

Figure 6  Command execution time (y axis) by varying the number of served simulated robots (x axis) and the 
command abstraction-level. “move joints” command is reported in blue; “move pose” command is reported in 
orange; “ROS API” command is reported in green. 



in the traffic loads involved in the analyzed scenarios. In fact, for 1, 2 and 3 robots consuming the service, 

traffic loads of respectively about 1.1, 1.8 and 2.4 Mbps were measured. 

Table 2 Virtual srsRAN eNB CPU time variation when 1,2 or 3 robots are registered to the service, by varying the command 

abstraction-level. 

 Virtual eNB CPU time [%] 

Number of active robots “move joints” “move pose” “ROS API” 

1 29.56% 29.13% 28.95% 

2 31.65% 30.43% 30.00% 

3 33.45% 32.33% 31.35% 

5.6  Network and Application latencies 

Fig. 7 reports the round-trip time (RTT) values at network (a) and application (b) levels, and measured when 

leveraging on the LTE-based testbed. As expected, in light of the traffic load reported in the preceding 

section, along with the ideal channel hypothesis which guarantees near-to-zero packet losses over TCP, we 

note that the latency values are not affected by the number of robots requesting the service. However, we 

point out a crucial insight about the LTE limitations when supporting a Digital Twin service. The network 

and application RTT values that were measured in our experiments are comparable to the Niryo One control 

period, which was set to its minimum configurable value i.e., 20 ms. From this observation we conclude 

that when leveraging 4G, the robotic arm remote control through its Digital Twin replica is viable only 

depending upon the chosen control frequency. When the robot use case scenario requires low control 

periods, i.e., under 30 ms, hence high precision in the trajectory execution is mandatory, LTE cannot be 

serviceable. This paves the way towards the most recent radio access technologies, e.g., 5G or Wi-Fi 6E, 

which establish themselves as the most promising wireless technologies to meet the latency requirements 

involved by Digital Twin applications. 

(a) Network RTT (b) Application RTT

Figure 6 Network (a) and Application (b) level RTT (y axis) by varying the number of served simulated robots (x axis) and 

the command abstraction-level. “move joints” command is reported in blue; “move pose” command is reported in orange; 

“ROS API” command is reported in green. 

5.7  Application scenarios of the experimental results 



Despite relying on a specific robotic arm model (i.e., 6-axis Niryo One collaborative robotic arms), the 

obtained results are easily generalizable and extensible to all industrial applications that can benefit from 

advanced path planning and motion control capabilities of industrial robotic arms. Such applications are 

innumerable and continuously growing in every manufacturing sector, including automotive, food, wood, 

plastics, and electronics [28]. The most common industrial applications encompass assembly processes (i.e., 

part gripping, placement and welding), subtractive manufacturing systems (e.g., polishing, grinding, 

machining, milling), manufactured products inspection and packaging, as well as material handling (e.g., 

sorting and grouping, pick and place). 

Hence, the global manufacturing sector can benefit primarily from the Edge-based Digital Twin solution 

for remote control of robotic arms presented in Section 3, which further encourages the deployment of 

advanced network-based manufacturing robotic solutions. The DTaaS design can in fact be easily readjusted 

regardless of the robotic system. Moreover, smart industrial processes can be refined by leveraging the 

accomplished experimental results and the drawn insights. Specifically, the presented novel trade-off 

between the robotic arm’s workload and position control accuracy results in an informed choice of 

command abstraction-levels. Finally, the manufacturing processes will be able to benefit from a DTaaS 

made highly flexible and scalable thanks to agile and automated resource scaling and orchestration 

frameworks defined on the basis of the resource profile here presented. 

6 Conclusion and Future work 

We presented the experimental evaluation and profile of an Edge-based Digital Twin solution designed for 

the remote control of robotic arms. The service was split into virtual network functions, deployed on a 

laboratory setup and offered to 6-axis Niryo One simulated robotic arms.  

In an initial measurement campaign, the robotic arms leveraged Gigabit Ethernet cables to join the 

service, to investigate the interconnection between the resources occupied only by the service and the 

number of remotely controlled robots. Our results show that the most critical function of the Digital Twin 

as a Service is the inverse kinematics computation, followed by the movement trajectory plan. Both these 

functions are taken over by the Motion Planning VNF. We then analyzed the impact of the commands 

imposed on the robots on the service profile. Particularly, measurements proved that the exploitation of 

low abstraction level commands can lead to relevant computational resources savings, thus great 

performance benefits; however, additional safety mechanisms are required if the trajectories are not 

predictable. Finally, in a second measurement campaign, LTE shortage in accommodating real-time DT 

applications has been empirically proved. 

For future research, the testbed is going to integrate enhanced radio communication technologies, e.g., 

5G and Wi-Fi 6E, in order to meet the stringent real-time latency requirements involved by the operational 

DT. Moreover, in accordance with the results derived in this work, the need for an agile and automated 

network orchestration framework emerges to enhance resource usage efficiency and provide performance 



guarantees. We then intend to design and deploy an automated smart network service orchestrator able 

to ensure resource utilization and energy consumption optimization while avoiding running into service 

disruptions caused by shortage of allocated resources. In this regard, in compliance with the underlying and 

driving idea of 5GB and 6G, Artificial intelligence (AI) and Machine Learning (ML) may provide the key tools 

to achieve the aforementioned goals. ML, in particular, can support and leverage network slicing capabilities 

at best, in order to logically isolate resource pools dedicated to different industrial vertical applications. 
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