Real-time Scheduling for 3D
Rendering on Automotive
Embedded Systems

Von der Fakultdt Informatik, Elektrotechnik und
Informationstechnik der Universitat Stuttgart
zur Erlangung der Wiirde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Stephan Schnitzer

aus Stuttgart

Hauptberichter: Prof. Dr.rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr.-Ing. habil. Roman Obermaisser
Tag der miindlichen Priifung: 27.02.2019

Institut fiir Parallele und Verteilte Systeme (IPVS)
der Universitat Stuttgart
2019

Contents

Abstract
Zusammenfassung
Acknowledgements

1. Introduction

1.1. Overview.

1.1.1. Multiple hardware platforms

1.1.2. Limitations on features . .
1.2. Goals and Problem Statements .
1.2.1. Goals.
1.2.2. Boundary conditions . . .
1.2.3. Execution time prediction
1.2.4. GPU scheduler
1.3. Project ARAMiS
1.3.1. Background
1.3.2. Structure
1.33. Results.
1.4. Contributions

1.4.1. Requirements analysis for graphics virtualization

1.4.2. Virtualized automotive graphics system

1.4.3. Execution time prediction for 3D rendering commands

1.4.4. 3D GPU scheduler

1.4.5. Further contributions . . .

1.4.6. Related publications and contributors

1.5. Structure

2. Requirements and Architecture
2.1. Requirements
2.1.1. R1 — Input Event Handling

11

13

15

17
17
18
19
20
20
21
22
24
25
25
25
26
27
27
27
28
28
29
29
32

33
34
34

Contents

2.1.2. R2 — Restricted Window Creation and Positioning 35
2.1.3. R3 — Trusted Channel 35
2.1.4. R4 — Virtualized Graphics Rendering 36
2.1.5. Rb5 — Reconfiguration of Policies 37
2.1.6. R6 — Certifiability 38
2.1.7. R7 — System Monitoring 38

2.2. Architecture 40
2.2.1. Virtualization 40
2.2.2. Inter-VM communication 41
223, Imtegrityo 41
2.2.4. Application interfaces 42
2.2.5. GPU Scheduler 42

2.3. Demonstrator 43
2.3.1. Hardware overview 43
2.3.2. Implementation L. 44
2.3.3. Evaluation 45

2.4. Related Work 47
2.5. Summary and Appraisal 49
3. Execution Time Prediction 51
3.1. Backgroundo 52
3.1.1. EGL . . .o 52
3.1.2. OpenGLES20 52
3.1.3. Machine Learning 55
3.1.4. Model analysis oL 59

3.2. Systemmodelo 60
3.3. Prediction Architecture 61
3.3.1. OpenGL ES Context Monitor 61
3.3.2. Predictor 62
3.3.3. Execution Time Monitor 65

3.4. Prediction models for FLUSH, CLEAR, and SWAPBUFFERS 66
3.4.1. Prediction Model for FLUSH 66
3.4.2. Prediction Model for CLEAR 66
3.4.3. Prediction Model for SWAPBUFFERS 67

3.5. Prediction Models for DRAW 68
3.5.1. Fragment estimation heuristics 71
3.5.2. Shader model: based on profiling 79

Contents

3.5.3. Shader model: based on machine learning 83

3.6. Online adaption 94
3.7. Implementation o 97
3.7.1. Architecture L 97
3.7.2. Initialization of the shared library libETP 98
3.7.3. Prediction model creation 99
3.7.4. Used libraries and algorithms 100
3.7.5. Modes of operation 101

3.8. Evaluation o 102
3.8.1. Setup 102
3.8.2. Coverage factor 106
3.8.3. Fragment Heuristics 107
3.8.4. Shader execution time 110
3.8.5. Command Group prediction 112
3.8.6. Prediction overheado 124
3.8.7. Evaluation conclusion and summary 128

3.9. Related Work oo 130
3.10. Summary and future work 132
3.10.1. Summary 132
3.10.2. Future work 133

. GPU Scheduling 135
4.1. Requirements 136
4.2. System Model 138
4.3. Approach 140
4.3.1. System Architecture 140
4.3.2. Application-specific parameters for scheduling 141
4.3.3. Conceptual Design of the Scheduling Algorithm 144
4.3.4. Important Parameters, Variables, and Functions 145
4.3.5. Scheduling Algorithm 148
4.3.6. Reservation Concept and Schedulability 152

4.4. Implementation Lo 160
4.4.1. Hardware platform and Operating System 160
4.4.2. Dispatching commands 160
4.4.3. Time measurement and prediction 162
4.4.4. GPU Scheduler interface 162
4.4.5. Compositor interface 164

Contents

4.4.6. CONCUITENCY« « v v vt et e e e e e e 164

4.5. Evaluation 167
4.5.1. Setup 167

4.5.2. Effectiveness 168

4.5.3. GPU Utilization 172

4.5.4. Scheduler Efficiency oL 174

4.5.5. Evaluation conclusion and summary 174

4.6. Outlook on preemptive scheduling 176
4.7. Related Work 178
4.8. Summary and future work o000 182
4.8.1. Summary 182

4.8.2. Future work 182

5. Summary 185
Appendix 187
A. Appendix 187
A.1. Vivante GPU instruction set 187
A.2. ibETP XML profiling data file 188
A.3. Additional results for scheduler effectiveness 189
A.3.1. Influence of MPCG on scheduler effectiveness 189

A.3.2. Scheduler effectiveness with huge ETP error 190

A.3.3. Scheduling timing 191
Glossary 193
Acronyms 201
Math Terms 203
Bibliography 209

List of Figures

1.1.
1.2.
1.3.

2.1.
2.2.
2.3.
2.4.

3.1.
3.2.

3.3.
3.4.
3.5.
3.6.

3.7.
3.8.
3.9.

3.10.
3.11.
3.12.

3.13.
3.14.
3.15.
3.16.
3.17.
3.18.

Audi virtual cockpit screenshot 18
BMW 7 series self-parking surround-view 19
Dependencies of the ARAMIS subprojects 26
Architecture of a virtualized vehicular graphics system 40
Demonstrator front view with HMI devices 43
HTML5-based demonstrator control GUT 44
Setup of VCT-B and GPU scheduling, at final ARAMiS event . . 45
OpenGL ES 2.0 rendering pipeline 53
Example: Continuous piecewise linear regression model fitting half

circle 56
Error of model for auxiliary fragment shader execution time . . . 57
Example: Input values and MARS model for half sphere 57
Example of a feed-forward artificial neural network graph 58

Hardware and software components for 3D rendering with OpenGL

ES2.0 . . . 60
Execution Time Prediction Components and Models 61
OpenGL ES 2.0 rendering pipeline (concise) 68
Example of possible deviation of triangle size approximation . . . 72
Average triangle samples depending on number of rendered triangles 76
Bounding box applied on a horse model 76
Execution time of vertex shader (VS) depending on the number of

attributeso 84
Error of submodel for auxiliary vertex shader execution time . . . 88
Error of submodel for auxiliary fragment shader execution time . 89
Error of submodel for vertex shader commands execution time . . 90
Error of submodel for fragment shader commands execution time 91
Error of submodel for texture lookup calls 93
Implemented framework architecture 98

List of Figures

3.19.
3.20.
3.21.
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.

Kernel latency distribution 103
Screenshots of evaluated applications 106
Accuracy of fragment heuristics, speedometer application 108

Accuracy of fragment heuristics, glmark2-es2 “build” benchmark . 109

Accuracy of fragment heuristics, Quake 3 “demo four” application 109

Accuracy of shader execution time prediction concepts 111
Accuracy of Draw prediction, es2gears application 113
Accuracy of Draw prediction, glmark2-es2 “build” benchmark . . . 114
Accuracy of Draw prediction, glmark2-es2 “shading” benchmark . 116
Accuracy of Draw prediction, glmark2-es2 “texture” benchmark . . 117
Accuracy of Draw prediction, speedometer application 118
Accuracy of Draw prediction, quake3 “demo four” application . . . 119

Accuracy of SwapBuffers prediction, glmark2-es2 “build” benchmark120
Accuracy of Draw prediction assuming precise number of
fragments, glmark2-es2 “build” benchmark 122
Accuracy of Draw prediction assuming precise number of
fragments, glmark2-es2 “shading” benchmark 122
Accuracy of Draw prediction assuming precise number of
fragments, glmark2-es2 “texture” benchmark 123
Initial CPU time overhead for loading libETP, compared to native
execution L. 125
CPU time overhead of libETP prediction per frame, compared to
native execution Lo 126

CPU time overhead of ibE'TP prediction per frame, without DRAW

optimizationo 127
3D GPU scheduling system model 138
GPU scheduling architecture 140
Example for simple priority-based scheduling 142
Example for scheduling using etpf 143
Example for the effect of SDdelay C using MPCG=1 146
Example for the effect of SDdelay C using MPCG=2 146
GPU scheduling algorithm reservation example. 153
GPU scheduling algorithm schedulability example 156
Scheduler interface callbacks 163
Scheduler thread concurrency synchronization 164
Effectiveness (homogeneous scenario), 60 FPS 168

4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.

Al
A2
A3.
A4
ALS.
AL6.

List of Figures

Effectiveness (homogeneous scenario), 30 FPS 169
Effectiveness (homogeneous scenario), 20 FPS 169
Effectiveness (mixed scenario) 170
Effectiveness (mixed scenario), Quake 3 with 200 % predET . . . 171
GPU utilization, mixed scenario 172
Average GPU utilization and required number of scheduler runs . 173

Delay of the scheduling algorithm 173
Example for simple priority-based scheduling 176
Effectiveness (mixed scenario), MPCG=2 189
Effectiveness (mixed scenario), MPCG=10 189
Effectiveness (mixed scenario), Quake 3 with 25% predET 190
Effectiveness (mixed scenario), Quake 3 with predET =00 190
Timing diagram of a short period, MPCG=1 191
Timing diagram of a short period, MPCG=5 192

List of Tables

3.1.

3.2.
3.3.
3.4.
3.5.
3.6.

3.7.
3.8.

4.1.

Performance parameters provided by the GPU Profiler to the

prediction modelso 63
Machine learning models provided for shader prediction 63
Nomenclature of shader profiling calculations 81
Nomenclature of MARS submodel terms 87
Comparison table of 3D applications used for evaluation 105

Comparison of the measured number of fragments with the area

covered by bounding boxeso 107
Prediction errors of Glmark2-es2 “build” 115
Influence of the fragment heuristic on the mean absolute error

(MAE) of the predicted execution time 121
Application setup for mixed scenario 170

Listings

10

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.
4.3.
4.4.

Al
A2

Execution time prediction for CGs 64
Record trianlgle samples data after DRAW calls 74
Using triangle samples to predict the number of fragments 75
Code of the online adaption() function 95
Brief sketch of scheduling algorithm 144
Code of submit(CG) function 148
Code of schedule next() function 149
Code of schedulability function 157
Vivante GC2000 GPU shader instruction set 187
Vivante GC2000 GPU shader instruction set 188

Abstract

3D graphical functions in cars enjoy growing popularity. For instance, analog
instruments of the instrument cluster are replaced by digital 3D displays as
shown by Mercedes-Benz in the F125 prototype car. The trend to use 3D
applications expands into two directions: towards more safety-relevant
applications such as the speedometer and towards third-party applications, e.g.,
from an app store. Traditionally, to ensure isolation, new automotive functions
are often implemented by adding further electronic control units (ECUs).
However, in order to save cost, energy, and installation space, all 3D
applications should share a single hardware platform and thus a single GPU.
GPU sharing brings up the problem of providing real-time guarantees for
rendering content of time-sensitive applications like the speedometer. This
requires effective real-time GPU scheduling concepts to ensure safety and
isolation for 3D rendering. Since current GPUs are not preemptive, a
deadline-based scheduler must know the GPU execution time of GPU
commands in advance. Unfortunately, existing scheduling concepts lack support
for dynamic tasks, periodic real-time deadlines, or non-preemptive execution.

In this work, we present the requirements that apply to automotive HMI
rendering. Based on these requirements, we propose a Virtualized Automotive
Graphics System (VAGS), which uses a hypervisor providing isolation between
different VMs, in particular for the head unit and for the instrument cluster.

Additionally, we present a novel framework to measure and predict the
execution time of GPU commands using OpenGL ES 2.0. We propose
prediction models for the GPU commands relevant for 3D rendering such as
DrRAW and SWAPBUFFERS. For DRAW we present two heuristics to estimate
the number of fragments, two concepts to estimate the shader execution time,
and an optional online adaption mechanism. The number of fragments is
estimated either by the bounding box of the rendered model, on which the
vertex shader projection is applied, or by a subset of the triangles that is used
to estimate the average size of a triangle. To estimate the shader execution

time, we either execute them in a profiling environment with a dedicated

11

Abstract

OpenGL ES 2.0 Context, or we use a MARS (multivariate adaptive regression
splines) model trained offline. The implementation and evaluation of our
framework demonstrates its feasibility and shows that good prediction accuracy
can be achieved. For instance, when rendering a popular 3D benchmark scene,
less than 0.4 % of the samples were underestimated by more than 100 ps and
less than 0.2% of the samples were overestimated more than 100us. The
overhead introduced by our prediction is negligible on some scenarios and
typically below 25 % on the long-run. The application’s initial startup is delayed
by only about 30 ms of CPU time when using the most efficient concept.
Moreover, we present a real-time 3D GPU scheduling framework that
provides strong guarantees for critical applications while still giving as much
GPU resources to less important applications as possible, thus ensuring a high
GPU utilization. The proposed concepts for execution time prediction are used
to make good scheduling decisions and are required since current GPUs are not
preemptive. Our implementation is based on an automotive embedded system
running Linux and our evaluations show the feasibility and effectiveness of our
concepts. The GPU scheduler fulfills given real-time constraints for a dynamic
set of applications submitting arbitrary sequences of GPU command batches. It
achieves a high GPU utilization of 99% in a challenging scenario with 17
applications and fulfills 99.9% of the deadlines of the highest-priority
application. Moreover, scheduling is performed highly efficient in real-time with

less than 9 ps latency.

12

Zusammenfassung

Im Automobilbereich erfreut sich der FEinsatz von 3D-Grafik zunehmender
Beliebtheit. Beispielsweise zeigte Mercedes-Benz im F125 Autoprototypen, wie
analoge Zeiger der Kombiinstrumente durch digitale Displays ersetzt werden.
Der Trend, 3D-Anwendungen zu nutzen, geht in zwei Richtungen: Zum einen
hin zu kritischeren Anwendungen wie der Geschwindigkeitsanzeige, zum
anderen hin zu Drittanbieteranwendungen, die beispielsweise {iiber einen
Appstore bezogen werden. Um Isolationsanforderungen zu erfiillen, werden
traditionell neue Funktionen im Auto hé&ufig mittels neuer Steuergeréte
umgesetzt. Um jedoch Kosten, Energieverbrauch und Bauraum im Fahrzeug zu
sparen, sollten alle 3D-Anwendungen eine einzige Hardwareplattform und somit
auch eine einzige GPU als gemeinsame Ressource nutzen. Fiir zeitsensitive
Anwendungen wie die Geschwindigkeitsanzeige ergibt sich hierbei die
Herausforderung, Rendering in Echtzeit zu gewéahrleisten. Hierfiir sind
wirksame Konzepte fiir das Echtzeitscheduling der GPU erforderlich, welche
Sicherheit und Isolation beim 3D-Rendering garantieren kénnen. Da aktuelle
GPUs nicht unterbrechbar sind, muss ein Deadline-basierter Scheduler die
Ausfithrungszeit der GPU-Befehle im Voraus kennen. Bestehende
Schedulingkonzepte unterstiitzen leider keine dynamischen Tasks, keine
periodischen Echtzeitdeadlines, oder setzen unterbrechbare Ausfithrung voraus.

In dieser Arbeit werden die fiir HMI-Rendering im Automobilbereich
relevanten Anforderungen beschrieben. Basierend auf diesen Anforderungen
wird das Konzept des virtualisierten automobilen Grafiksystems (VAGS)
vorgestellt, welches einen Hypervisor nutzt um die Isolation zwischen
verschiedenen VMs, insbesondere fiir die Headunit und die Kombiinstrumente,
sicherzustellen.

Des Weiteren wird ein neuartiges Framework vorgestellt, welches die
Ausfithrungszeit von GPU-Befehlen misst und basierend auf OpenGL ES 2.0
vorhersagt. Hierbei werden fiir die relevanten GPU-Befehle wie DRAW und
SWAPBUFFERS Vorhersagemodelle vorgestellt. Fiir DRAW-Befehle werden zwei

Heuristiken vorgeschlagen, welche die Anzahl der Fragmente abschétzen, zwei

13

Zusammenfassung

Konzepte, welche die Ausfithrungszeit der Grafikshader vorhersagen, sowie ein
optionaler Echtzeit-Korrekturmechanismus. Die Anzahl der Fragmente wird
entweder mittels einer Bounding-Box des gerenderten Modells, auf welche die
Projektion des Vertexshaders angewendet wird, abgeschétzt, oder durch eine
Teilmenge der gerenderten Dreiecke, welche genutzt wird um die
Durchschnittsgrofe eines Dreiecks zu ermitteln. Um die Laufzeit eines Shaders
abzuschitzen, wird er entweder in einer Kalibrierungsumgebung in einem
separaten OpenGL-Kontext ausgefiihrt, oder es wird ein offline trainiertes
MARS-Modell verwendet. Die Implementierung und die Auswertungen des
Frameworks zeigen dessen = Machbarkeit ~und dass eine gute
Vorhersagegenauigkeit erreicht werden kann. Beim Rendern einer Szene des
bekannten Benchmarkprogramms Glmark2 wurden beispielsweise weniger 0,4 %
der Messproben um mehr als 100 ps unterschéitzt und weniger als 0,2% der
Messproben um mehr als 100ps iiberschétzt. Unsere Implementierung
verursacht bei langer Ausfilhrung eine zusétzliche CPU-Rechenzeit von
iiblicherweise weniger als 25%, bei manchen Szenarien ist diese sogar
vernachlassighbar. Der Programmstart verlangsamt sich beim effizientesten
Verfahren hierbei lediglich um etwa 30ms. Auf lange Sicht liegt er
typischerweise unter 25 % und ist fiir manche Szenarien sogar vernachléssigbar.

Dariiber hinaus wird ein echtzeitfihiges 3D-GPU-Schedulingframework
vorgestellt, welches kritischen Anwendungen Garantien gibt und trotzdem die
verbleibenden GPU-Ressourcen den weniger kritischen Anwendungen zur
Verfiigung stellt, wodurch eine hohe GPU-Auslastung erreicht wird.

Da aktuelle GPUs nicht unterbrechbar sind, werden die vorgestellten
Konzepte zur Vorhersage der Ausfithrungszeit verwendet um prioritatsbasiert
Scheduling-Entscheidungen zu treffen. Die Implementierung basiert auf einem
automobilkonformen eingebetteten System, auf welchem Linux ausgefiihrt wird.
Die darauf ausgefiihrten Auswertungen zeigen die Machbarkeit und
Wirksamkeit der vorgestellten Konzepte. Der GPU-Scheduler erfiillt die
jeweiligen Echtzeitvorgaben fiir eine variable Anzahl von Anwendungen, welche
unterschiedliche GPU-Befehlsfolgen erzeugen. Hierbei wird bei einem
anspruchsvollen Szenario mit 17 Anwendungen eine hohe GPU-Auslastung von
99 % erzielt und 99,9 % der Deadlines der hochstprioren Anwendung erfiillt. Des
Weiteren wird das Scheduling in Echtzeit mit weniger als 9ps Latenz effizient

ausgefiihrt.

14

Acknowledgements

I thank especially my advisor Professor Dr. Kurt Rothermel who supported my
research and my work in the distributed systems group. I would like to thank
him for his continuous guidance, help, and trust. Additionally, my thank goes
to Professor Dr. Roman Obermaisser for his support for my research and for
reviewing this thesis. My special thank goes to Simon Gansel for our tight
collaboration within our complementary research. I appreciate that he spent
lots of time reviewing this thesis and was always helpful and constructive. I also
thank my colleagues from the distributed systems group who inspired and
supported my research. To name but a few, I thank Dr.Frank Diirr for his
support and his excellent feedback on our joint publications. I also thank
Dr. Boris Koldehofe, Dr. Muhammad Adnan Tariq, Ruben Mayer, and Florian
Berg for supporting my research and sharing ideas.

Moreover, I thank the German Federal Ministry for Education and Research
(BMBF) who funded part of my research in the scope of the project ARAMiS
with funding ID 01IS11035 and allowed me to present my research on international
conferences.

I especially thank my wife for her love and her continuous support over the last
years.

This work was only possible by the grace of my god and father who listened to
the prayers of me and many friends (Bible, Psalm 66 Vers 20).

15

1. Introduction

1.1. Overview

Innovations in cars are mainly driven by electronics and software
today [EJ09, MGR"14]. 1In particular, graphical functions and applications
enjoy growing popularity as shown by the increasing number of displays
integrated into cars. For instance, the head unit (HU) uses the center console
screen to display the navigation system or displays integrated into the headrests
of the front seats to display multimedia content. Another recent trend in
modern cars is to replace the analog instruments of the instrument cluster (IC)
by digital 3D displays, for instance as shown in the Mercedes Benz F125
prototype car [Merll|. Although, in the beginning, graphical output was mainly
2D content such as movies or 2D maps, the amount of 3D graphics is steadily
increasing [Nvil3|. For example, modern navigation systems display 3D city
models [AUD15]. Also, the instruments of the vehicle are rendered 3D objects
with reflections and shadows to imitate physical instruments as close as
possible. Additionally, 3D rendering allows completely different forms of
presentation such as the speed indicator at the F125 prototype car shown on its
3D display [Merll]. Again, a “bird’s eye view” with a virtual 3D model of the
car and its surroundings supports the driver during parking [bmw15]. To render
such complex scenes with high frame rates, graphics processing units (GPUs)
are integrated into cars.

Using 3D rendering in automotive scenarios the GPU is typically accessed
concurrently by multiple applications, which is quite different to its use in
consumer products where often a single application is rendered in full screen
mode. In an automotive environment, typically multiple 3D applications run in
parallel and are constrained by ISO standards, automotive design guidelines,
legal requirements, and demands specific to the original equipment
manufacturer (OEM). 3D applications can be sorted depending on the
safety-criticality and importance of their rendering. A few examples for 3D

applications are listed next, sorted from high importance to low importance.

17

1. Introduction

e Safety-relevant IC applications such as parking assistant or displaying

instruments [Mer11,Nvil3| — stutter-free, latency-bound, high frame rates.

e OEM applications like navigation system — decent quality is important, but

low latency and high frame rates are less relevant.

e Third-party software such as a web browser executing WebGL or
applications from an app store [Forl3, QNX13, Dail3| that are not
quality-assured by the OEM — best effort, using remaining GPU resources.

In order to execute 3D applications with different requirements, the latest
high-end cars use multiple hardware platforms to ensure physically isolated 3D
rendering. Additionally, in order to save cost, many features like custom 3D
games are not yet available, since they would require additional hardware

platforms. Next, we describe these two state-of-the-art methods in more detail.

} 900k ® Purple Ram In The lD:‘ [m"“.

, = -
' ﬁ \ Let:’zelte'n;)asse‘I —
g Roen . -

&ecks\l Be
hils S\ m

SchaffbraustraBe o. 30m

10:59 210c

«m R

Figure 1.1.: Audi virtual cockpit screenshot!

1.1.1. Multiple hardware platforms

Since some applications for the IC are typically certified with ASIL B? while
the HU applications are QM?2, it is common practice to physically isolate the IC
from the HU platform. Since a few years ago, high-end HU systems are using
3D rendering, e.g., for 3D navigation or 3D menus. A relatively new trend is 3D
rendering used for the IC, e.g., by the latest Audi TT car [AUD15, AUD14]; a
screenshot of the so-called “Audi virtual cockpit” is depicted in Fig. 1.1.

1Source: http://www.audi.de/content/dam/nemo/models/tt/tt-coupe/my-2017/
1300x551-1layer-header/1300x551_0005_ATT_D_151004_1. jpg

2The automotive standards [[SO11, ISO 26262| address functional safety for vehicles, which
includes risk classification ranging from ASIL D (highest risk) to QM (no safety relevance)

18

http://www.audi.de/content/dam/nemo/models/tt/tt-coupe/my-2017/1300x551-layer-header/1300x551_0005_ATT_D_151004_1.jpg
http://www.audi.de/content/dam/nemo/models/tt/tt-coupe/my-2017/1300x551-layer-header/1300x551_0005_ATT_D_151004_1.jpg

1.1. Overview

Figure 1.2.: BMW 7 series self-parking surround-view?

Moreover, self-parking systems with sophisticated 3D-rendered surround-view,
such as in the latest 7 series of BMW [bmw15] (cf., Fig. 1.2), are also implemented
using a physically separated hardware platform like [Freld|. Thus, in today’s
high-end cars three hardware platforms (for HU, IC, and parking) are integrated,
which are potentially using rendering on dedicated 3D GPUs. Next, we describe

the second state-of-the-art method used to fulfill the automotive requirements.

1.1.2. Limitations on features

When designing a system, the fact that multiple hardware platforms are used
limits the flexibility. For instance, to display HU content such as navigation
instructions on the IC display current solutions use a LVDS channel of fixed
resolution, which can be displayed at a fixed position on the IC display, only.
Thus, getting more flexibility implies increased effort and hardware cost.
Furthermore, executing custom 3D applications from a user-selected app store
would require either proper isolation from the rendering of the OEMs’ applications
on the HU, or yet another hardware platform. To this end, OEMs do not support
this, yet. Additionally, rear-seat entertainment displays are typically showing
video streams transmitted by the HU. Therefore, they do not allow the rear-seat
passengers to run their own 3D applications, since the HU cannot prevent impact
on the applications displayed on the main HU display and physically separated

3D-enabled platforms for each rear-seat display seem to be too expensive.

3Source: http://www.bmw.com/_common/shared/newvehicles/7series/sedan/2015/
showroom/driver_assistance/7-series-sedan-surround-view-0l-en. jpg

19

http://www.bmw.com/_common/shared/newvehicles/7series/sedan/2015/showroom/driver_assistance/7-series-sedan-surround-view-01-en.jpg
http://www.bmw.com/_common/shared/newvehicles/7series/sedan/2015/showroom/driver_assistance/7-series-sedan-surround-view-01-en.jpg

1. Introduction

1.2. Goals and Problem Statements

Unfortunately, separate hardware platforms increase cost, energy consumption,
and space requirements. Therefore, there is a strong incentive to consolidate
hardware, and ultimately share a single GPU between several applications.
Additionally, hardware consolidation provides unprecedented flexibility on the
visibility of the applications graphical output, e.g., animations moving windows
between IC display and HU display. Moreover, a consolidated hardware with a
shared GPU enables support for uncertified 3rd-party applications installed by
the user, thus increasing the number of available applications by orders of

magnitudes.

1.2.1. Goals

For future cars, a single hardware platform with a powerful 3D GPU shall be able
to render the 3D content of different applications with quite different requirements
and different importance. A key requirement for safe GPU sharing in automotive
scenarios is to provide real-time guarantees for 3D rendering of safety-relevant
applications. For instance, deterministic time bounds for presenting warning
messages must be guaranteed and less important applications must not interfere
with important applications. More precisely, the following goals must be fulfilled

in order to run mixed-criticality 3D applications on a single shared GPU.
Concurrency: Typically, many 3D applications are running in parallel.

Flexibility: The set of running 3D applications is dynamic, applications can join

or leave during run-time.

Prioritization: Concerning criticality of 3D rendering, some applications are

more important than others.

Desired frame rates: Each application has specific requirements for a
(uniformly distributed) frame rate. For instance, if an application needs
to be rendered with 30 frames per second (FPS), a higher frame rate

would waste valuable GPU time.

Isolation: 3D rendering of important applications must be guaranteed and not

affected by less important applications.

20

1.2. Goals and Problem Statements

1.2.2. Boundary conditions

Historically, the typical use case for 3D GPUs are running a single trusted 3D
application (e.g., a game). While technically, also a CPU could be used for 3D
rendering (so-called “software rendering”), a 3D GPU performs this task orders of
magnitudes faster by using a highly optimized hardware architecture with many
parallel computation units. The GPU renders 3D using a rendering pipeline
where first the 3D vertex coordinates are calculated by a vertex shader and then
the color of each pixel is calculated by a fragment shader (cf. Sec. 3.1.2). The
parameters of the rendering pipeline and the shader programs are provided by
the 3D applications.

The recent trend to use 3D rendering also in a web browser via WebGL [Khrc]
brought uncertified 3D applications new attention, since allowing uncertified
applications to use the 3D GPU for rendering can result in unresponsive
graphics. Since current GPUs do not support sufficient preemption—i.e., no
upper bound for context switch latency is guaranteed—Khronos [Khrb] (the
organization publishing the OpenGL standards) states:

“If a particular draw call takes a long time to execute, because it
contains very many triangles, because the associated shaders are
computationally expensive, or for any other reason, the user’s system
may become unresponsive. This is a longstanding problem in the 3D
graphics domain, and is one which has received renewed attention
since WebGL has been released, because WebGL allows unknown

and untrusted code to access the graphics processor.” [Khrd]
In such a case, the suggested solution is to reset the GPU:

“Solutions already exist to this problem on some operating systems.
For example, Microsoft Windows Vista and later support a new driver
model which will reset the graphics processor if it spends too long on
any particular operation. The WebGL implementation can detect
that the graphics card was reset, warn the user that WebGL content
might have caused it, and prompt the user if they want to continue

running the content.” [Khrd]

Unfortunately, for automotive scenarios, resetting the GPU is not an option
since it cannot happen without delay and would even require 3D applications to
be restarted since their GPU context became inconsistent. To this end,

automotive 3D rendering can neither use explicit GPU preemption, nor reset

21

1. Introduction

the GPU to preempt it. For a GPU shader program, this implies that it must
always terminate. For OpenGL ES 2.0, the OpenGL ES Shading Language
specification [Sim09] in Appendix A.4 forbids while loops and allows only for
loops that can be unrolled at compile-time. The newer OpenGL Shading
Language (GLSL) specification for OpenGL ES 3.0 [SKBR12| contains no such
restriction. Since the possibility to create non-terminating loops can cause
unwanted behavior and system malfunction, forbidding them is common. For
instance, the most popular area where untrusted shader code is executed is the
WebGL standard [Khre|, which is based on OpenGL ES 2.0. To the extent of
our knowledge, all browsers supporting WebGL strictly follow the specification
in forbidding loops which cannot be unrolled at compile-time. Since many 3D
GPU drivers actually would not reject non-terminating shader source code, the
web browser implements a safety layer filtering out potentially non-terminating
or extremely long-running code. To this end, for automotive scenarios, only
loops that can be unrolled by the shader compiler and thus are guaranteed to

terminate can be supported.

1.2.3. Execution time prediction

Without preemption, we explicitly need to consider the execution time of
rendering jobs to ensure that low priority (non-safety critical) rendering jobs do
not prevent the timely execution of high priority (safety critical) jobs. To this
end, a non-preemptive scheduling approach is required. Non-technical
approaches to determine the execution time by certification of the 3D software
by a central authority like the OEM are not scalable since many apps are not
implemented by the OEM himself but sub-contractors or even a large number of
untrusted third-party developers of an app store. Consequently, the execution
times of the GPU commands must be predicted prior to their execution.

Existing concepts like [KLRI11] use history-based approaches in kernel space
to predict the execution time. While such approaches are easy to implement, they
are not aware of the rendering setup and the rendered scene. To this end, they
cannot predict the first commands of an application. Additionally, this approach
is based on the assumption that the same GPU commands result in the same
GPU execution time, which is not always the case since the GPU-internal state
depends on the OpenGL context and can differ [SGDR14].

The execution time of a DRAW command depends on many parameters. The

most parameters are the used shader programs and the respective number of

22

1.2. Goals and Problem Statements

instances. For instance, the input parameters of the shader programs can
influence the positions of vertices during the vertex shader execution. This

changes the number of fragments, which heavily affects the execution time.

The number of vertex shader instances is directly given by the application’s 3D
API calls. To this end, the main challenges when predicting a DRAW command

are to estimate

e the number of fragments generated by the vertex shader and the used
attribute data and

e the execution time per shader instance.

Next, we address both challenges in more detail.

Number of fragments. The number of fragments is one of the most relevant
factors of accurate prediction, since for each fragment one instance of a fragment
shader must be executed on the GPU. Unfortunately, in order to determine the
number of fragments accurately before execution on the GPU, the full vertex
processing step of the OpenGL rendering pipeline would have to be emulated on
the CPU. For medium or large 3D models, this is not feasible without severely
affecting rendering performance, since a massive overhead would be introduced
into the prediction. Consequently, a heuristic must be used, which inevitably

introduces prediction errors (addressed in Sec. 3.5.1).

Execution time per shader instance. An application provides the source
code of vertex shader and fragment shader written in the GLSL. The GLSL
supports if-statements, for-loops, and while-loops, but no non-structured
commands such as “goto”. The source code is compiled by the user space GPU
driver, which creates a shader binary with the target GPU instruction set. It
performs typical compiler optimizations such as factoring out, loop unrolling,
dead code elimination, or constant folding. The user space driver is typically
proprietary, since it often contains intellectual property of the GPU
manufacturer, which means that shader compilation is a black box. To this end,
heuristics must be used to predict the execution time per shader instance

(addressed in Sec. 3.5.2 and Sec. 3.5.3).

23

1. Introduction

1.2.4. GPU scheduler

The non-preemptive GPU scheduler is responsible to dispatch concurrently
running 3D applications such that the goals prioritization, desired frame rate,
and solation are fulfilled. Since the set of applications can change during
run-time and the required execution time is determined by execution time
prediction during runtime, scheduling algorithms for fixed sets of periodic
tasks |Liu69, LL73| are insufficient. The Shortest Process Next (SPN) algorithm
(cf. [TB14]) does not support given priorities and frame rates. Existing
approaches for 3D GPU scheduling address just fairness [DWA0S8, BDCO08| and
optionally weighted fairness with priorities [KLRI11|. However, to ensure a
guaranteed latency until a frame is rendered requires a much more sophisticated
scheduling algorithm. More precisely, the scheduling algorithm must keep track
of the dynamic frame deadlines of each application. Unfortunately, the
execution time required for an application to render its frame can change
between different frames and is not available to the scheduler before the
respective user space process has submitted all of its commands. Furthermore, a
reservation policy for future frame periods is needed, since long-running
commands of low-priority applications may not only affect the current period of
higher-priority applications, but also their future periods. While fulfilling our
goals is mandatory, the performance of our scheduling approach is extremely
important. The latency experienced by applications and the overhead
introduced by the execution of the scheduling algorithm itself thus must be very
small. Furthermore, the scheduling decisions shall result in a high GPU
utilization to ensure the available GPU resources are exploited. Our approach,
presented in Chapter 4, addresses all these challenges—as shown by our

evaluations in Section 4.5.

24

1.3. Project ARAMiS

1.3. Project ARAMIS

The contributions of this work were supported by the project ARAMiS [ARA16]
of the German Federal Ministry for Education and Research (BMBF) with
funding ID 01IS11035. In this section, we provide a brief overview of the
ARAMiIS project and how its goals are relalated to the contributions of this
work.

ARAMIS is short for “Automotive, Railway and Avionics Multicore Systems”.
Its goal was to build a technological platform to further increase safety,
efficiency, and comfort by using multicore technology in the automotive,
avionics, and railway domains. ARAMiS ran from December 2011 to March
2015 and had a planned budget of 36 million Euro.

1.3.1. Background

Historically, single-core CPUs were prevailing in PCs, servers, and embedded
systems. However, the development of new CPU generations by increasing the
clock speed turned out to be slow and inefficient. In many scenarios,
computation can be performed in parallel, which means that multicore CPUs
can often provide a significant performance improvement compared to
single-core CPUs. The rise of 3D rendering with its compute-intensive but also
highly parallelizable workload brought up 3D GPUs as specialized multicore
processing units. When using multicore systems for the automotive domain,
many requirements must be fulfilled, such as real-time, availability, functional
safety, and efficiency. Existing concepts typically do not fulfill them and are
therefore not suitable. This motivates the goal of ARAMiS to find new
architectures, methods, and concepts that allow multicore systems to be used

for automotive platforms.

1.3.2. Structure

ARAMiS was organized in multiple subprojects, which are depicted in Fig. 1.3.
Next, the subprojects are briefly described, focusing on the results relevant for

this work.
TPO provided the coordination and project management of the overall project

TP1 defined scenarios consisting of use cases and requirements, including the

requirements for virtualized 3D rendering.

25

1. Introduction

Start of project
Project results

TPO: Coordination of the overall project

Figure 1.3.: Dependencies of the ARAMiS subprojects

TP2 designed a system for a virtualized 3D rendering that fulfills the

requirements of TP1.

TP3 developed hardware concepts, focusing on heterogeneous architectures,
security, safety, certifiability, and virtualization. Since the GPU vendors
neither grant access to the hardware layout, nor do programmable chips
(e.g., FPGAs) provide sufficient performance for 3D rendering, TP3 was

not in the focus of this work.

TP4 developed software concepts, which includes virtualization, compositing,
3D execution time prediction, and real-time 3D GPU scheduling, i.e., the

main results of this work.

TP5 was a small subproject that examined tools supporting the design of
multicore systems. For virtualized 3D graphics, no relevant tools are

known.

TP6 built multiple demonstrators (2 for automotive, 2 for avionics, 1 for railway)

covering most use cases of TP1.

1.3.3. Results

The results of ARAMiS were published in more than 120 documents, more than
70 scientific publications, and 5 demonstrators. This shows the relevance of
multicore systems in the automotive, avionic, and railway domains in general,
and the relevance of a virtualized graphics system with real-time 3D scheduling
in particular. In particular, we built the automotive cockpit demonstrator
VCT-B in collaboration with Daimler. It shows a prototype of virtualized 3D
rendering of IC and HU.

26

1.4. Contributions

1.4. Contributions

In this section, we describe our contributions to the goals presented in Sec. 1.2.

1.4.1. Requirements analysis for graphics virtualization

In Section 2.1, we thoroughly analyze relevant ISO standards and legal
requirements and derive seven technical requirements for a virtualized
automotive HMI system. Such requirements have been largely neglected by
current virtualization efforts, which did not target automotive systems with
their specific requirements, in particular, with respect to safety. For OEMs, the
certifiability of automotive system functionalities is highly relevant. According
to [ISO11, ISO 26262|, for each functionality safety-criticality shall be identified
and mapped to criticality-classes*. To fulfill the criticality-level, the severity and
likelihood of failures must be determined using, for instance, failure mode and
effects analysis (FMEA) [Sta03]. Moreover, certifiability also applies to custom
third-party applications. For instance, [ISO02, ISO 15005] prohibits displaying

movies to the driver while the vehicle is in motion.

1.4.2. Virtualized automotive graphics system

In Section 2.2, we present a concept for a Virtualized Automotive Graphics
System (VAGS). To this end, we elaborate on the challenges that are due to the
identified requirements caused by consolidation of mixed-criticality graphics
electronic control units (ECUs) as used, in particular, by the HU and IC.
Although virtualization is a mature technology for general resources like CPU
or main memory, existing concepts do not provide sufficient isolation for
accessing shared graphics hardware (GPU). Our proposed architecture uses a
dedicated driver-VM, which is used as central instance by the other VMs to
present content on the displays. In particular, the driver-VM manages real-time
3D GPU scheduling, display access permissions, and input events.

In Section 2.3, we describe our automotive cockpit demonstrator, which
contains the major components of a Virtualized Automotive Graphics System
(VAGS). It shows the feasibility of our concepts and how they can be

implemented.

4 [ISO11, ISO 26262] specifies five safety requirement levels: Four ASIL (Automotive Safety
Integrity Level) ranging from ASIL-A (low criticality) to ASIL-D (high criticality), and one
no-criticality level QM (Quality Management)

27

1. Introduction

1.4.3. Execution time prediction for 3D rendering

commands

In Chapter 3, we present a framework for measurement and prediction of the
execution time of GPU command batches. Prediction is performed in user
space, which gives the huge benefit that context information can be determined
much easier, since it can be inferred from the commands transmitted through a
standardized API like OpenGL ES. The basic idea is to predict the individual
execution time of graphics commands using models that are determined either
during runtime or offline.

In particular, we propose models for the main commands relevant for 3D
rendering, namely, FLUSH, CLEAR, DRAW, and SWAPBUFFERS, using the Open
Graphics Library for Embedded Systems (OpenGL ES) standard [Khral.
FLUSH has constant execution time independent of the context. The execution
time of CLEAR (if not integrated into SWAPBUFFERS) essentially depends on
the render buffer size. The DRAW model is based on the number of vertices and
the number of fragments (possible pixels of triangles). Therefore, to predict the
DRrRAW execution time, we estimate the number of fragments and the time the
processing time per vertex and per fragment using the given shader program.
We achieve this by emulating the vertex shader either on a bounding box of the
3D model, or on a representative subset of triangles. To profile the execution
time of these commands on the specific GPU and to execute the emulation, we
propose an online approach that instruments the GPU command groups in
kernel space on the fly and an offline approach that uses machine learning
models based on platform-specific training data. Furthermore, we present a
fine-grained online correction to further improve prediction accuracy. We
implemented our prediction framework and present evaluation results that
compare our approaches with each other and an existing history-based
approach. We show that our prediction framework achieves unprecedented

accuracy that is sufficient even for challenging scheduling scenarios.

1.4.4. 3D GPU scheduler

In Chapter 4, we present a framework for real-time 3D GPU scheduling. Without
preemption, we explicitly consider the execution time of GPU command batches
to ensure that low priority (non-safety critical) GPU command batches do not

prevent the timely execution of high priority (safety critical) jobs. Our GPU

28

1.4. Contributions

scheduling algorithm considers in addition to the job execution time several other
parameters like the priority of the rendering jobs, screen refresh rate, and target
frame rate. In more detail, we make the following contributions for 3D GPU

scheduling;:

1. A system architecture and framework for 3D GPU scheduling that uses

execution time prediction of GPU rendering jobs.

2. A priority-based real-time scheduling concept that specifically addresses
desired frame rates of dynamic rendering jobs and bitblitting aligned to the

vertical synchronization of the displays.

3. An implementation of the framework and the proposed 3D GPU scheduling

concepts.

4. An evaluation showing the conformance of the implementation compared
to the setup, a high GPU utilization of about 97 %, and less than 10 us

scheduling latency.

1.4.5. Further contributions

In Chapter 2.3, we present an automotive cockpit demonstrator (VCT-B) that
was developed in collaboration with the Daimler AG in Stuttgart. It uses a
consolidated hardware platform for IC and HU, using a hypervisor for isolating
the virtual machines that contain HU and IC functionality. The input buttons
on the steering wheel and the push-and-rotary switch can be used to navigate
through menus and change modes. We demonstrate the uses cases for a VAGS,
such as a flexible display usage and isolation. To this demonstrator, the author
has contributed concepts, code, and guidance. The concepts include an access
control system for display areas, the inter-VM communication layer, efficient

compositing concepts, and the virtualization layer.

1.4.6. Related publications and contributors

In this section, we present the scientific publications by the author that are related
to this work. For each publication, we briefly describe the amount of the author’s
contribution. The author was advisor of all diploma, master, bachelor, and study
theses cited in this section. We also declare the contributions to this work that are
beyond the scope of the referenced scientific publications. All publications have

been written in collaboration with the other authors. Especially Simon Gansel

29

1. Introduction

provided lots of valuable feedback to both, the concepts, and the publication
texts. The feedback and the discussions with Prof. Dr. Kurt Rothermel and Dr.

Frank Diirr helped to tailor and improve the publications.

Focus of this work. In [GSD*13] the requirements for automotive graphics are
expounded and the concept of a VAGS is presented. The author’s contribution to
this publication was 45 %. In [SGDR14| we presented execution time prediction
using the bounding box heuristic and profiling of shaders during runtime. The
author’s contribution to this publication was 85 %, the implementation was sole
work of the author. In [SGDR16] we presented the real-time scheduling for 3D
GPU rendering. The author’s contribution to this publication was 85 %, the GPU
scheduler implementation was sole work of the author.

The diploma and master theses of Fabian Romhild, Armin Cont, and Waqas
Tanveer [Rém11, Conll, Tanl3] gave insight about the scheduling capabilities
of OpenGL and CUDA. The observed limitations justified our concept to do
GPU scheduling in kernel space. The diploma thesis of Martin Thielefeld [Thil2]
improved the knowledge how GPU execution time depends on OpenGL ES 2.0
Context, thus helping to build adequate prediction models. The study thesis
of Felix Zehender |Zeh14| helped to better understand how the 3D GPU driver
in user space (MESA, in particular) compiles and optimizes shader code. The
master thesis of Hua Ma [Mal4| provided a better understanding of the Vivante
GPU kernel driver, which helped to implement our Execution Time Monitor.
The master thesis of Robin Keller [Kell6| helped to understand the limitations
of linear regression regarding GPU execution time prediction. As a consequence,
we used a non-linear model without online learning and only for the prediction
of shader execution times.

Yaroslav Nalivayko worked as a student assistant on the execution time
prediction. He implemented requested features such as saving the prediction
parameters to XML, the triangle samples approach, and helped on debugging

and creating training data.

Completive to this work. Within the scope of the ARAMIiS project, small
parts of this work were published in [RALT15], where virtualization concepts in
the scope of ensuring safety and security in automotive systems are described.

The author contributed 10% to each of the publications about automotive
HMI access control concepts [GSGH'14, GSGH'15| and efficient compositing
[GSCT15].

30

1.4. Contributions

Ahmad Gilbeau-Hammoud contributed to [GSGH'14, GSGH'15] with his
diploma thesis [GH13| and his subsequent work as a student assistant and
research assistant. Riccardo Cecolin contributed to [GSGH'15] with his
diploma thesis [Cecl4]. The master thesis of Han Zhao [Zhal5| proposes a 3D
compositor for a VAGS that allows to combine the 3D output of different
applications. The depth information is used to determine visibility and shader
programs operating on the applications color and depth buffers are used for
customized lighting effects. Thus, this thesis provides further motivation for a
VAGS on a consolidated hardware architecture. The master thesis of Andrej
Eisfeld [Eis14] improved inter-VM communication of the OpenGL ES 2.0 and
EGL protocols, showing that efficient transmission of graphics data in a VAGS

is possible.

31

1. Introduction

1.5. Structure

The rest of this work is structured as follows. In Chapter 2 the relevant
requirements and our architecture are presented. Section 2.1 presents the
relevant automotive HMI requirements. The architecture of our proposed
Virtualized Automotive Graphics System is described in Section 2.2. To
demonstrate the scenarios of our automotive graphics virtualization, we created
an automotive cockpit demonstrator, which is described in Section 2.3.
Chapter 2 is complemented by related work in Section 2.4 and a summary in
Section 2.5.

Our main contributions are the execution time prediction—presented in
Chapter 3—and the real-time GPU scheduler—presented in Chapter 4.

Related to execution time prediction (ETP), we provide background
information about EGL, OpenGL ES 2.0, and machine learning in Section 3.1.
The system model is presented in Section 3.2. In Section 3.3, we describe the
prediction architecture and how the prediction models are used.

The rather simple models for FLUSH, CLEAR, and SWAPBUFFERS are
described in Section 3.4. The challenging DRAW command and its sub models
to estimate fragments and shaders are presented in Section 3.5. This includes
fragment estimation heuristics, performance parameter profiling, and
machine-learning-based models. The optional Online Adaption allows to correct
predictions leaning to either overestimation or underestimation and is presented
in Section 3.6.

The implementation is expounded in Section 3.7 and the evaluation results
are presented and discussed in Section 3.8. The related work for execution time
prediction in Section 3.9 is followed by a summary and an outlook on future work
in Section 3.10.

For GPU scheduling we explain the requirements in Section 4.1 and the system
model in Section 4.2. The concepts are explained in Section 4.3 and followed
by a description of the implementation in Section 4.4. In Section 4.5 we present
our evaluation results, which show feasibility, effectiveness, and performance of
our GPU scheduler. The chapter is concluded an outlook on preemptive GPU
scheduling in Section 4.6, related work in Section 4.7, and the summary and
future work in Section 4.8.

This work is concluded in Chapter 5.

32

2. Requirements and

Architecture

In this chapter, we thoroughly analyze relevant ISO standards and legal
requirements and derive seven technical requirements for a virtualized
automotive HMI system. Such requirements have been largely neglected by
current virtualization efforts, which did not target automotive systems with
their specific requirements, in particular, with respect to safety. For OEMs, the
certifiability of automotive system functionalities is highly relevant. According
to [ISO11, ISO 26262|, for each functionality safety-criticality shall be identified
and mapped to criticality-classes'. To fulfill the criticality-level, the severity and
likelihood of failures must be determined using, for instance, failure mode and
effects analysis (FMEA) [Sta03]. Moreover, certifiability also applies to custom
third-party applications. For instance, [ISO02, ISO 15005] prohibits displaying
movies to the driver while the vehicle is in motion. These specific regulations
impose challenging technical requirements to virtualization. To this end, we
elaborate on the challenges that are due to the identified requirements to
consolidate mixed-criticality graphics ECUs as used, in particular, by the HU
and IC. Although virtualization is a mature technology for general resources like
CPU or main memory, existing concepts do neither provide sufficient isolation
for accessing shared graphics hardware (GPU) and input devices (e.g., steering
wheel buttons), nor do they provide sufficient isolation for implementing the
flexible presentation of application windows.

This chapter is structured as follows. In Sec. 2.1, the requirements for
automotive graphics systems are analyzed and seven technical requirements
derived. In Sec. 2.2, we propose the architecture for virtualized automotive
graphics. The automotive cockpit demonstrator VCT-B is explained in Sec. 2.3,

followed by related work in Sec. 2.4, and a summary of this chapter in Sec. 2.5.

L [ISO11, ISO 26262] specifies five safety requirement levels: Four ASIL (Automotive Safety
Integrity Level) ranging from ASIL-A (low criticality) to ASIL-D (high criticality), and one
no-criticality level QM (Quality Management)

33

2. Requirements and Architecture

2.1. Requirements

In this section, we discuss requirements that are relevant for automotive HMI
systems. Automotive application development is constrained by ISO standards,
automotive design guidelines, legal requirements, and OEM specific demands.
The design guidelines (e.g., [AAMO06, AAM 2006], [ESO08, ESoP 2008|, [JAMO04,
JAMA 2004]) in the automotive domain are almost completely derived from the
following ISO standards.

e [ISO96, ISO 11428| Ergonomic requirements for the perception of visual

danger signals.

[ISO02, ISO 15005] Requirements to prevent impairment of the safe and

effective operation of the moving vehicle.

[ISO04, ISO 16951] Priority-based presentation of messages.

[ISO10, ISO 2575] Symbols for controls and indicators.

[ISO08, ISO 15408-2| Security in IT systems.

[ISO11, ISO 26262] Risk-based assessment of potentially hazardous

operational situations and of safety measures.

In the following, we propose seven technical requirements for automotive HMI
systems. For each of them we added references to relevant sections of the

mentioned ISO standards.

2.1.1. R1 — Input Event Handling

R1.1 — Restricted Access Control: For user input events access control is
required and it shall not violate any of the following
constraints [[SO02, ISO 15005]. Applications using dialogues shall not
require to use input devices in a way that demands removal of both hands
from the steering wheel while driving (5.2.2.2.2). Additionally, exiting a
dialog or an application shall always be possible (5.3.3.2.1) unless legally

required or traffic-situation-relevant (5.3.3.2.3).

R1.2 — Restricted Processing Time: A mazimum processing time for input
event handling shall be met. For instance, response to tactile user inputs
shall not exceed 250 ms (5.2.4.2.3).

34

2.1. Requirements

2.1.2. R2 — Restricted Window Creation and Positioning

R2.1

R2.2

— Restricted Visibility of Windows: Usually, graphical applications use
API functions to change the wvisibility of windows, e.g., to create, hide, or
position them. This functionality must be restricted, and functions not
intended to be used by the driver must be inaccessible for him [ISO02, ISO
15005] (5.2.2.2.4).

— Priority-based Displaying of Windows: If multiple windows shall be
displayed, the importance of each of them must be defined. Importance is
represented by priorities, which can depend on safety requirements and
software ergonomic aspects (5.2.4.2.4) that must be met by the system
(5.2.4.3.3). Moreover, they can depend on urgency and criticality, which
have to be defined [ISO04, ISO 16951] (3.5). Additionally, appropriate
reactions (e.g., behavior in case of conflicts) shall be enforced [ISO04, ISO
16951] (Annex B). Furthermore, country-specific legal requirements
constrain the definition of the priorities, e.g., German law requires the
constant visibility of the speedometer while the vehicle is in motion
(StVZO §57 [Janll]). Additionally, visual information must be presented
in a consistent way [ISO02, ISO 15005] (5.3.2.2.1).

R2.3 — Timing Constraints: An automotive HMI system shall enable

applications to provide important information to the driver within given
time constraints. This means that windows showing information shall be
visible within given time constraints [[SO02, ISO 15005| (5.2.4.3.4). If
applications require user interaction, e.g., if a user selects a radio channel,
the flow of information must not adversely affect driving (5.2.4.2.1).
Concretely, according to [AAMO06, AAM 2006] Section 2.1, each glance
shall not exceed 2 seconds. Hence, any kind of animation shall not run

longer than 2 seconds.

2.1.3. R3 — Trusted Channel

R3.1

— Integrity and Confidentiality: In environments where applications run
inside VMs, communication is inevitable. This holds for communication
that previously used dedicated communication hardware and is now
replaced by software-based inter-VM communication. According
to [ISO08, ISO 15408-2], communication between applications and

hardware must provide integrity and confidentiality, for both, user data

35

2. Requirements and Architecture

R3.2

(14.5.8.2) and software components providing relevant functionality
(17.1.5.3). All applications that need trusted communication shall be able
to use it (17.1.5.2).

— Authentication and Non-Repudiation: Identification shall be assured
even between distinct systems (17.1.5.1), which also applies to inter-VM
communication. A trusted channel also requires non-repudiation of origin
(8.1.1 and 8.1.6.1-3) and receipt (8.2.1 and 8.2.6.1-3). This requires
authentication and may also involve cryptographic key management
(9.1.1) and key access (9.1.7.1).

2.1.4. R4 — Virtualized Graphics Rendering

In our system, multiple VMs have shared access to a single GPU, and therefore

the VMM has to provide isolation. That is, unintended interference between

applications must not occur.

R4.1

R4.2

R4.3

36

— Priority Handling: Application windows must be assigned a priority,
which determines how GPU commands are processed [ISO02, ISO 15005]
(5.2.4.2.4 and 5.2.4.3.3), [ISO08, ISO 15408-2] (15.2.5.1-2 and 15.2.6.1-2).
For instance, a rendered speedometer must have a high priority, since the
German law regulates that it must be visible while driving and display the
current speed (StVZO §57 [Janll]).

— Rendering Time Constraints: Not only comparative requirements
(like priorities) but also absolute timing requirements have to be fulfilled.
A response to a drivers tactile input shall not exceed 250 ms [[SO02, ISO
15005] (5.2.4.2.3). Similarly, emergency signals may require constant
redraw rates to represent flashing lights [ISO96, ISO 11428| (4.2.2). This
requires appropriate CPU and GPU resources and imposes a minimum
frame rate since the delay between two consecutive frames is constraint by
an upper bound. The upper bound must be known to determine the
effectiveness of safety-critical messages [[SO04, ISO 16951] (Annex F) and
also to allow for the definition of delays after which messages are displayed
(Annex B). Additionally, OEMs (especially of premium brands) have
demanding requirements for the rendering, e.g., that the speedometer

shall be rendered stutter-free at 60 frames per second.

— GPU Resource Isolation: The GPU is a controlled resource according
to [ISO08, ISO 15408-2|. To prevent unintended interference, it must be

2.1. Requirements

possible to provide guarantees to certain applications that they are
provided sufficient GPU resources such as processing time. Therefore, it
must be possible to control which GPU resources individual windows,

graphical applications, or VMs are allowed to use (15.3.6.1 and 15.3.7.1-2).

2.1.5. R5 — Reconfiguration of Policies

A set

of permissions that apply to user input events, application windows, and the

related scheduling and isolation is called a policy. At each point in time, exactly

one policy is active, though policies are dynamically switched during runtime

depending on the system state.

R5.1

R5.2

R5.3

— Dynamic State Changes: In accordance to [ISO02, ISO 15005], a state
change happens either on user request or automatically by system-defined
rules. A state can depend on a current vehicle condition like “vehicle is in
motion”, which could require the deactivation of applications that are not
intended to be used by the driver while the vehicle is in motion (5.2.2.2.4).
Otherwise, an automotive HMI system shall provide sufficient information
and warnings to provide the driver with the intended purpose in a current
state. For every state change, specified deadlines apply to determine a
consistent and accurate transition between different states. The definition
of states and system behavior is explained in more detail in [ISO04, ISO
16951] (3.3 and Annex E).

— Dynamic Policy Changes: Authorized software components shall be
enabled to apply changes to policies during runtime. This includes
granting and revoking permissions on both, currently active and currently
inactive policies. As for R5.1, deadlines apply to dynamic policy changes.
Where applicable and allowed, the driver shall be able to change the
active policy to manipulate the flow of information [[SO02, ISO 15005|
(5.3.3.2.3).

— Presentation Enforcement: The system-defined rules shall enforce the
presentation of legally required messages and traffic-situation-relevant
messages. Presentation requires that those messages are visible and
perceivable, in particular, if state changes require driver
attention [ISO02, ISO 15005] (5.3.2.2.2). Furthermore, state-related
information shall be displayed either continuously or upon request by the

driver.

37

2. Requirements and Architecture

2.1.6. R6 — Certifiability

For an OEM, certifiability is an essential part of the software development process,
e.g., by using methods like FMEA [Sta03|. The development process for certified

software, in particular, for high criticality levels, is quite complex and expensive.

A key indicator for complexity is the number of function points that correlates

with the approximated number of software defects [EJ09]|. Hence, a system shall

be developed with respect to an easy certification according to [ISO11, ISO 26262].

2.1.7. R7 — System Monitoring

System Monitoring puts the focus on logging, detecting, and reacting to events

that possibly are relevant to provide safety.

R7.1

R7.2

R7.3

38

— Secure Boot: Derived from [[SO08, ISO 15408-2|, the system shall
provide secure boot to ensure the integrity of the system. Compromising
the system (14.6.9.1) or system devices or elements (14.6.9.2) by physical

tampering shall be unambiguously detected.

— Auditing: The auditing of all safety-critical related events shall be
guaranteed to ensure traceability of system activities in an automotive
HMI system that potentially violate safety or security. Therefore, direct
hardware access must not be permitted to ensure that auditing cannot be
bypassed. For a potential violation analysis, a fixed set of rules shall be
defined for a basic threshold detection, [ISO08, ISO 15408-2| (7.3.2). To
indicate any potential violation of the system-defined rules, the
monitoring of audited events shall also be based on a set of rules (7.3.8.1)
that must be enforced by the system either as an accumulation or a
combination of a subset of defined auditable events that are known to
threat the system security (7.3.8.2). Similarly, all changes to policies

initiated by applications shall be monitored and verified.

— Supervision of Timing Requirements: It is a requirement to regulate
the flow of information to ensure short and concise groups such that the
driver can easily perceive the information with minimal distraction [ISO02,
ISO 15005] (5.2.4.2.1). Therefore, specified time restrictions need to be
verified. This also includes the auditing of driver tactile input and system

response time, which shall not exceed 250 ms (5.2.4.2.3).

R7.4

R7.5

R7.6

R7.7

2.1. Requirements

— Detection of DoS Attacks: The occurrence of any event representing
a significant threat such as a DoS attack shall be detectable by the system
in real-time or during a post-collection batch-mode analysis [ISO08, ISO
15408-2] (7.3.2).

— Perception of Visual Signals: For the perception of visual danger
signals, visibility properties like fractions of luminances [[SO96, ISO
11428] (4.2.1.2) and colors of signal lights (4.3.2) have to be monitored.
Monitoring is also required for certain safety-critical symbols defined

in [ISO10, ISO 2575].

— Software Fault Tolerance: [ISO08, ISO 15408-2| requires the
detection of defined failures or service discontinuities and a recovery to
return to a consistent and secure state (14.7.8.1) by using automated
procedures (14.7.9.2). A list of potential failures and service
discontinuities have to be supervised by a watchdog to detect entering of
failure states. Furthermore, for a defined subset of functions that are
required to complete successfully, failure scenarios shall be specified that

ensure recovery (14.7.11.1).

— System Integrity: In case of unrecoverable failures, the system shall be
able to switch to degraded operation mode to preserve system integrity. A
list of failure types shall be defined, for which no disturbance of the
operation of the system can take place [ISO08, ISO 15408-2| (15.1.7.1).
Moreover, the system shall ensure the operation of a set of capabilities for
predefined failure types (15.1.6.1). This includes the handling of DoS
attacks and detection of illegitimate policy changes. Some events have to
be maintained in an internal representation to indicate if any violations
take or took place. This includes the behavior of system activities for the
identification of potential violations (7.3.10.2-3) like state changes
(7.3.10.1).

39

2. Requirements and Architecture

2.2. Architecture

In this section, we briefly describe the architecture of a VAGS that addresses
the identified requirements and is depicted in Fig. 2.1. While Certifiability (R6)
applies to the complete development process, all other requirements can be

fulfilled by the functionalities of the components of our architecture.

Window Manager |

GPU
Scheduler

System

Input
Monitor

Manager

|
| Permission and Policy
|
|

Management | Watchdog -
Speedo- || Tacho- Navi- Media | | TV Aop 1 ApD 2
Authentication Manager |[Auditing |[|| meter [| meter gation PP PPl
0S [1{1 0S [1{1 0S [1{1 0S |
VM (Virtualization Manager) VM (Instrument Cluster) VM (Head Unit) VM (custom apps)

Isolated Communication Channel

| Microkernel-based VMM ‘

“Input Devices| [Display 1][Display 2] ... Hardware ‘

Figure 2.1.: Architecture of a virtualized vehicular graphics system

2.2.1. Virtualization

The consolidation of graphics hardware is of high relevance in modern cars. An
increasing number of automotive functionalities and applications require highly
sophisticated graphical representations in 2D or 3D based on hardware
acceleration. For instance, the HU uses displays integrated into the backside of
the front seats and center console to display multimedia content; and displays
connected to the IC show car specific information like current vehicle speed or
warnings. To this end, HU and IC both require a high amount of CPU and
GPU resources, which makes them good candidates for hardware consolidation.
Each virtualized ECU runs in a dedicated virtual machine (VM), and a virtual
machine monitor (VMM) acts as middleware between VMs and hardware.
Besides the already mentioned general benefits, the virtualization of IC and HU
provides advantages such as the flexible placement of graphical output on
previously separated displays, which is a matter of software implementation
only. Moreover, virtualization enables OEMs to deploy custom applications
inside a dedicated VM that is isolated from HU and IC.

With respect to certifiability, we follow the approach of a microkernel-based
VMM where drivers run in user space rather than kernel space. Therefore, the

kernel code size is very small and easier to certify [EJ09]. If driver code crashes,

40

2.2. Architecture

this does not affect the VMM. The Virtualization Manager runs in a dedicated
VM and exclusively manages shared resources. It contains relevant drivers, e.g.,
for GPU and input devices. This ensures that access to all shared resources is
controlled by a single trustworthy VM. Indirect hardware access by VMs
facilitates Virtualized Graphics Rendering (R4) and System Monitoring (R7).
Additionally, the Virtualization Manager contains multiple software components
ensuring that every hardware access by VMs is in compliance with our
requirements. Note that our architecture only shows four exemplarily VMs.

However, we do not restrict the number of VMs. Therefore, it is possible to
deploy additional VMs if needed.

2.2.2. Inter-VM communication

In order to access hardware, the HU and IC VMs communicate with the
Virtualization Manager VM. For this bidirectional communication, a Trusted
Channel (R3) is required to support secure communication between the different
virtual machines. A trusted channel is provided by the cooperation of the
Isolated Communication Channel and the Authentication Manager. The
Isolated Communication Channel provides integrity and isolation for
communication (R3.1) between applications and the Virtualization Manager.
To initiate a connection, applications first have to provide valid credentials to
the Authentication Manager, to guarantee non-repudiation of origin and receipt
(R3.2). In particular, this is required for the communication between the
graphical applications located on HU or IC and the virtualization manager,

which needs to be trustworthy to ensure that the active policy is never violated.

2.2.3. Integrity

In order to guarantee Secure Boot (R7.1), the integrity of code that is loaded
must be verified, using, for instance, approaches described in [KXG12, GMO0S|.
The Auditing component (R7.2) traces all relevant system activities and
interactions. The gathered traces can be used by the Watchdog and System
Monitor components to detect inconsistencies (for R7.3 to R7.7). The Watchdog
supervises relevant system functionalities and emits signals in case of system
malfunctioning as required for R7.3 to R7.6. The System Monitor receives
signals of detected system malfunctions from the Watchdog. Rules are used to

configure its reaction on these signals.

41

2. Requirements and Architecture

2.2.4. Application interfaces

Permission and Policy Management (R5) ensures that applications are getting
their defined permissions to use functionalities or resources provided by the Input
Manager, Window Manager, or GPU Scheduler. Permissions are represented by
the active policy, which depends on the current state (R5.1), e.g., “vehicle is
parking” or “vehicle is in motion”. The policy management is configured by rules
that define transitions between policies performed whenever state changes (R5.2)
in defined time constraints (R5.3).

The Input Manager performs Input Event Handling (R1) and is responsible
for dispatching user input events to the intended applications (R1.1). Since the
processing of user input is subject to time restrictions, a minimal delivery time
for input events to the applications must be ensured (R1.2).

The Window Manager provides the functionality for creating, positioning,
and displaying windows of graphical applications. This represents a paradigm
shift from fully user-defined window management to restricted window creation
and positioning (R2). Applications with sufficient permissions interact with the
Window Manager to create windows and to modify properties like size and
position (R2.1). Moreover, the Window Manager is responsible for correct

window stacking (R2.2) and meeting rendering time requirements (R2.3).

2.2.5. GPU Scheduler

The GPU Scheduler is responsible for Virtualized Graphics Rendering (R4)
according to drawing requirements and permissions of graphical applications.
To this end, applications are assigned priorities that define the amount of
dedicated GPU resources (R4.1). Besides priorities, according to (R4.2),
deadlines apply to the graphical rendering of certain applications like the
tachometer. The GPU scheduler, therefore, has to sequence graphics
commands, schedule application requests, and provide isolation between
different contexts (R4.3).

42

2.3. Demonstrator

2.3. Demonstrator

Within the ARAMIS project (cf., Sec. 1.3), multiple demonstrators were built
for the domains avionic, railway, and automotive. For the automotive domain,
two Virtual Car Telematics (VCT) demonstrators show concepts and
possibilities of HU and IC consolidated on a single hardware platform. The
VCT platform A (VCT-A) is based on a BMW vehicle and an Intel i7 platform,
the VCT platform B (VCT-B) is based on a Daimler cockpit and a Freescale
i.MX6 platform. Both VCT platforms focus on HMI on a virtualized platform.
While the focus of VCT-A is security and using available hardware acceleration,
the focus of VCT-B is safe 3D rendering on a shared GPU and safe, flexible
display sharing. Thus, VCT-B demonstrates the feasibility to build a VAGS and
relevant use cases. In this chapter, the VCT-B platform, related use cases, and

evaluations are presented.

2.3.1. Hardware overview

In Fig. 2.2, the front of the VCT-B cockpit demonstrator is depicted. The

Instrument ' Head-unit
= : . il | ‘ display

Steering wheel

buttons Push-and-rotary

switch

Figure 2.2.: Demonstrator front view with HMI devices

demonstrator has two automotive 12" displays with a resolution of 1440 by 540
pixels. They represent the instrument cluster display and the head unit display
known from today’s high-end cars. User input is received from the steering
wheel buttons and the push-and-rotary switch. The main implementation is
running on a Freescale i.mx6 SABRE automotive infotainment platform, which
features four ARM7 CPU cores running at 800 MHz, 2 GiB of RAM, a Vivante
GC2000 3D GPU, and a Vivante GC320 2D GPU. The automotive displays are
connected via LVDS to the Freescale platform. Since the LVDS connectors of

43

2. Requirements and Architecture

the platform are not compatible, adapters are used that connect one display to
the HDMI port of the Freescale platform and the other to one of its LVDS
ports. Additionally, the displays are connected to a CAN bus that is used to
switch the displays on and off. An automotive rear-view camera with a
resolution of 640 by 540 is connected via MIPI-CSI2. The steering wheel
buttons and the push-and-rotary switch are connected via CAN to a Raspberry
Pi that forwards the input events via Ethernet to the Freescale platform. For
the sake of monitoring the demonstrator state and presenting the use cases, a
HTML5-based GUI was developed, which runs on a separate Raspberry Pi and
is accessed by a web browser using Wi-Fi. The GUI shows the frame rate of
each application and whether it is active. Additionally, it allows to trigger the

scenarios of our evaluation (cf., Sec 2.3.3). Fig. 2.3 shows a GUI screenshot.

Ll States

» Story = Logs < fullscreen « connected &8 Settings

U I siep

Show car model O Show instrument cluster

"Show car"

" O Trip on instrument cluster
Restart Server Instrument Cluster Speedometer
alive yes alive no alive yes alive yes alive yes O Select Radio in Headunit Me
FPS 0.00 FPS FPS 21.96 FPS 23.00 FPS 22.96 " "
® "Show car
" " " " " O Init step
alive yes alive yes alive yes alive no alive yes
FPS 0.00 FPS 0.00 FPS 22.09 FPS FPS 0.00 O Default screen
Hoadunt] Hosens —§ auae — JEySem———
alive yes alive no alive yes alive yes alive no
FPS 0.00 FPS FPS 0.00 FPS 0.00 FPS O Restore state after warning
alive yes alive yes alive no alive no alive no O Init step
FPS 0.00 FPS 0.00 FPS FPS FPS
Default screen
VM #1 VM #2 VM #3 o
State alive State alive State alive O Show navi information

Figure 2.3.: HTML5-based demonstrator control GUI

2.3.2. Implementation

As software platform for the Freescale platform, the demonstrator uses a
PikeOS 3.3 microkernel hypervisor [Pik16]. On top of the hypervisor, three
paravirtualized Linux VMs are running, namely the Virtualization Manager
VM, the Instrument Cluster VM, and the Head Unit VM (cf., Fig. 2.1). The
Virtualization Manager VM has exclusive access to the GPUs and runs the
GPU drivers. For inter-VM communication, we configured a couple of memory
segments as shared between the VMs and use them for data transfer. We
implemented stream-based bidirectional communication protocol using
ring-buffers, which uses a small kernel module that allows a permitted process

to map the shared memory into its memory address space. Inside the Head Unit

44

2.3. Demonstrator

VM and the Instrument Cluster VM, representative 3D applications such as
speedometer, tachometer, trip control, navigation, address book, and the game
Quake 3, are executed. They connect to stub libraries for a window manager
API, EGL, and OpenGL ES 2.0, to obtain a display access permission, create a
window, and perform rendering, respectively. The stubs communicate to the
Virtualization Manager VM, which performs display access control and safe
sharing of the 3D GPU.

2.3.3. Evaluation

To demonstrate the use cases of a VAGS, multiple scenarios that contain relevant
use cases were created. The scenarios were presented at the final ARAMiS event
2015 in Hamburg. In Fig. 2.4, a picture of the setup is depicted. The main
demonstrator was the VCT-B cockpit demonstrator depicted on the right side.
On the left side, we additionally presented the effectivity of 3D GPU scheduling
using three displays connected to the same Freescale platform as used in the

VCT-B. In this section, we briefly describe three representative scenarios that

Figure 2.4.: Setup of VCT-B (right) and GPU scheduling (left), at final ARAMiS

event

show flexible HMI usage, isolation provided by the hypervisor, and the GPU

scheduler effectivity, respectively.

Scenario 1

Initial situation: speedometer, tachometer, and IC menu displayed on IC

display.

Action 1: the user selects “Contacts” in the IC menu.

45

2. Requirements and Architecture

Situation: contacts are displayed on the IC display.
Action 2: the user uses IC menu to use also the HU display.

Situation: a contact is additionally displayed on the IC display.

Scenario 1 demonstrates that the two connected displays can be flexibly used
by all applications that were granted access. The limitations of the existing
approach, which uses physically separated hardware platforms for IC and HU, no
longer apply.

Scenario 2

Initial situation: speedometer and tachometer on IC display, radio on HU

display.
Action 1: the user starts game Quake 3 using the HU menu.
Situation: the game Quake 3 is started and displayed on the HU display.
Action 2: the Head Unit VM (running Quake 3) crashes.

Situation: the Head Unit VM and Quake 3 no longer work, the IC is unaffected.

Scenario 2 demonstrates that even a crash of one of the VMs and the applications
running inside does not affect the operation of Virtualization Manager VM and
the Instrument Cluster VM. The hypervisor effectively isolates the VMs.

Scenario 3

Initial situation: no application is running, displays are blank.

Action 1: the speedometer is started with highest priority on display 1.
Situation: the speedometer runs at 60 FPS on display 1.

Action 2: two instances of Glmark2 [glm| with lower priority are started.

Situation: the rendering of the speedometer is not affected. On the displays
2 and 3, the Glmark2 instances are running. Since they have different

priorities, only the lowest priority instance is affected from high stuttering.

Scenario 3 demonstrates that our 3D GPU scheduler is able to guarantee the frame
rate for the speedometer application, which has the highest priority. Applications
with lower priority only get the available remainder of GPU resources that can

be used without affecting the rendering of higher priority applications.

46

2.4. Related Work

2.4. Related Work

The concept of microkernel-based VMMs in virtualization is well known for many
years. The focus on safety increased during the last few years, e.g., the NOVA
microkernel [SK10]. Moreover, certifiability became more important, at least in
case of the VMM [KAE*10].

A large number of work related to virtualization and graphics applications
has been described in the literature. In this section, we present related work on
windowing systems and graphics forwarding, while related work for execution
time prediction and GPU scheduling is presented in Sec. 3.9 and Sec. 4.7.
According to [JE91], the X11 Windowing System does not provide security.
Trusted X [EMP*91] has been proposed to provide security for the X
Windowing System targeting the requirements in TCSEC B3 (superseded
by [ISO08, ISO 15408-2|) but has not been certified. To provide isolation, an
untrusted X server and a window manager is deployed for each security level,
which impacts scalability. = Therefore, mutual isolation of applications is
practically impossible due to scalability issues. Nitpicker [FHO5] is a GUI server
with security mechanisms and protocols to provide secure and isolated user
interaction using different operating systems. To achieve isolation between these
OSes, Nitpicker uses the VMM L4/Fiasco [Hoh02|. The EROS Window System
(EWS) [SVNCO04] targets the protection of sensitive information and the
enforcement of security policies by providing access control mechanisms and
enforcing the user volition. A common denominator of Trusted X, Nitpicker,
and EWS is that they only focus on security and thus do not comply with Input
Event Handling (R1), Restricted Window Creation and Positioning (R2), and
System Monitoring (R5). DOpE [FHO03] is a window server that assures
redrawing rates windows of real-time applications and provides a best-effort
service for non-real-time applications. DOpE is based on L4/Fiasco [Hoh02| for
isolation and IPC. However, policies are not enforced. Common to all these
windowing systems is the fact that they do not support graphics hardware
acceleration and do not provide any timing guarantees for rendering and
displaying.

VMGL |[LCTSdLO07] is an approach to transfer OpenGL commands from an
OpenGL client to an OpenGL server using a TCP/IP connection. However,
using TCP/IP causes significant latency and overhead. Xen3D [Smo09] uses the
MESA open source graphics framework and executes only part of the graphics

stack on the Virtualization Manager (called “Dom0” in XEN). Shared memory

47

2. Requirements and Architecture

communication is used to transfer MESA-internal data between the VMs.
Unfortunately, a concept like Xen3D only works if the user space driver is open
source. The VMware hosted architecture [DS09] uses an emulated GPU
architecture, which uses the physical GPU connected to the Virtualization
Manager to achieve fast rendering. This approach has the advantage that also
proprietary GPU drivers can be used but needs additional overhead for
translating between the emulated and the physical GPU architecture.
GVIM [GGST09] uses a similar approach for GPGPU based on CUDA.

Approaches with mediated pass-through [TDC14, Int16] use the interface
between user space driver and the operating system kernel. The Virtualization
Manager therefore receives the batches of GPU opcode and is not fully aware
about what code is going to be executed on the GPU. Mediated pass-through is
popular since its overhead is quite low and a good performance can be achieved.
While such a concept provides good isolation if the user space driver crashes, it
does not prevent the creation of malicious GPU opcode, which could crash the
GPU or break isolation between VMs.

Blink [Han07] is a display system that focuses on the safe multiplexing of
OpenGL programs in different VMs. Blink uses an OpenGL Client/Server to
transmit the OpenGL commands and data via shared memory to a “Driver VM”.
The “Driver VM” is responsible for the execution of the OpenGL commands on
the GPU. Blink proposes “BlinkGL”, which increases performance, but requires
applications to be modified. In our automotive cockpit demonstrator VCT-B
described in Sec. 2.3, we used the concepts of |Eis14|, which use isolated shared
memory communication to efficiently transfer OpenGL ES 2.0 commands between
VMs.

48

2.5. Summary and Appraisal

2.5. Summary and Appraisal

In this section we presented the requirements for automotive HMI systems. From
ISO standards, automotive design guidelines, and OEM-specific demands, we
derived seven technical requirements R1 to R7. Our system model is based on a
virtualized system to consolidate HU and IC on a single hardware platform. We
proposed a VAGS, which contains the components needed to fulfill R1 to R7.

To be compliant with legal, safety, and OEM requirements, a VAGS must
fulfill many requirements. Many parts of a VAGS can already be developed
using state-of-the-art concepts. For instance, microkernel-based hypervisors
like [Pik16, Int15] target automotive scenarios and thus can be used for a VAGS.
The Authentication Manager, the Watchdog, and the System Monitor can be
implemented by automotive software developers according to ISO
26262 [ISO11]. Similarly, for the Input Manager existing concepts can be
extended. The major conceptual challenges of a VAGS are the Window
Manager and the GPU Scheduler.

Although window managers are very common in graphical user interfaces, the
existing concepts assume that the user shall be in control of the system and that
the task of a window manager is primarily to flexibly adapt to the user’s desires.
However, in the automotive domain, the visibility of many functions must be
guaranteed and even be consistent. To this end, the compliance of a window
manager with the requirements must be inherently provided by the window
manager itself. This necessitates context-based access control mechanisms for
safe display sharing. Safe display sharing—and thus the Window Manager—are
not the focus of this work but are presented in [GSGH'14, GSGH" 15, Ganl7|.

Our automotive cockpit demonstrator VCT-B shows the feasibility of a
VAGS—the motivated goal to reduce cost, installation space, and energy
consumption is achievable. Additionally, it demonstrates that the newly-gained
flexibility in display usage allows for next-generation HMI systems.

GPU scheduling is challenging in both, conceptual and technical terms. A
rendering scene is composed of a sequence of frames. In order to guarantee the
rendering of important 3D applications and ensure a smooth animation without
stuttering, a real-time 3D GPU scheduler with frame-individual deadlines is
needed. Additionally, 3D GPUs do not support preemption with a guaranteed
maximum latency. The GPU scheduler is the main focus of this work and
consists of an execution time prediction and a GPU scheduling framework,

presented in Chapter 3 and Chapter 4, respectively.

49

3. Execution Time Prediction

Applications that use the GPU for 3D rendering submit GPU command batches.
The GPU executes these batches one at a time. In Sec. 1.2.3, we presented
the goals and the problem statement for the execution time prediction of 3D
GPU command batches. In this chapter, we present our corresponding concepts
for the prediction of the execution time of 3D GPU command batches. We
propose a framework that measures and predicts the execution time on the GPU
for 3D applications that do not have to be modified. To this end, we perform
prediction in the user space, using only the OpenGL API as interface. We present
multiple heuristics and compare our results with the measured GPU execution
times. According to our evaluation results our concepts provide a good estimate
for the real GPU execution time.

This chapter is structured as follows. In Sec. 3.1, we present the background:
the used graphics APIs, machine learning, and model analysis. The system
model is described in Sec. 3.2, followed by the architecture with the components
of our prediction concepts in Sec. 3.3. The prediction models for the GPU
commands FLUSH, CLEAR, and SWAPBUFFERS are presented in Sec. 3.4. The
models for the challenging GPU command DRAW command are presented in
Sec. 3.5, which uses multiple submodels. The submodels to estimate the number
of fragments are described in Sec. 3.5.1. To estimate the execution time of
shader programs, a profiling-based approach is presented in Sec. 3.5.2 and an
approach based on machine learning is described in Sec. 3.5.3. Additionally, we
propose an optional concept for online adaption that is explained in Sec. 3.6. In
Sec. 3.7, our implementation is described. In Sec. 3.8, we evaluate the prediction

accuracy and conclude with related work in Sec. 3.9 and a summary in Sec. 3.10.

o1

3. Execution Time Prediction

3.1. Background

This section contains background information on 3D rendering and machine
learning. When an application uses the GPU for 3D rendering, it uses
standardized graphics APIs. As a vendor-independent consortium, the Khronos
Group [Khrb| publishes open standards for GPUs, including—but not limited
to—use cases for embedded systems. We provide an overview about EGL,
which connects to the native GPU platform, and OpenGL ES 2.0, which

contains the actual rendering commands.

3.1.1. EGL

The EGL API [Leel4| published by Khronos [Khrb| is commonly used to
connect rendering with the underlying native windowing system. To allow for
rendering, the following steps are performed using EGL. First, references to the
native display and native window are obtained, using, e.g., “XOpenDisplay” and
“XCreateWindow” on a Xll-based platform, or “ftbGetDisplayBylndex” and
“fbCreateWindow” on a framebuffer-based Freescale platform. Second, an EGL
context is initialized and then activated with “eglMakeCurrent”, using an
EGLDisplay (obtained using a native display) and an EGLSurface (obtained
using a native window). In this step, multiple options can be used, for instance
to define the color and depth buffer formats. As soon as a context is active, the
OpenGL ES 2.0 can be used for rendering. The selected EGL context can be
changed using “eglMakeCurrent”, which determines the render buffer and acts as
a scope for OpenGL. This means that all OpenGL calls affect the current EGL
context, only!. Eventually, if a frame has been rendered completely, the content
must be made visible at the selected window using “eglSwapBuffers”. To this
end, the call “eglSwapBuffers” manifests the EGL surface buffer to the
associated native window. If applicable, the window manager’s compositor is
notified and typically copies the content of the native window to the respective

position on a connected display.

3.1.2. OpenGL ES 2.0

The OpenGL ES 2.0 API [ML10] is widely used for 3D rendering on embedded
devices such as smartphones, automotive head units, and instrument clusters.

The latest version of OpenGL ES is 3.1 and is backward compatible down to

LOptionally, data sharing can be enabled, though.

52

3.1. Background

version 2.0. Many applications, especially those with publicly available source
code, do not use features beyond OpenGL ES 2.0.

An application that wants to perform 3D rendering, first initializes and
activates an EGLContext (see previous section). Second, it initializes 3D
rendering, for instance by activating desired features, loading 3D models into
memory, and creating an OpenGL program. Third, it starts rendering by
submitting one or more DRAW commands, typically in a so-called rendering
loop where each iteration generates one frame. Inside the loop, typically
“glClear” is used to reset the render target to the background color.
Subsequently, DRAW commands are issued and eventually, “eglSwapBuffers”
makes the rendered frame visible, typically using a Window Manager. All
OpenGL ES 2.0 API calls refer to the scope of the current OpenGL ES 2.0
Context, which is created together with each EGL context.

The actual rendering tasks are submitted via DRAW calls, which follow
multiple conceptual® in Fig. 3.1. The first step is the vertex shader, which is

OpenGL ES 2.0 API

\ 4 4
X&gﬁ?gfsﬁgg Texture data | | |
VA Y V __ ky V V
Sl el o et

Figure 3.1.: OpenGL ES 2.0 rendering pipeline

code written in GLSL [Sim09] and compiled by the user space driver for the
used GPU architecture. The input data of a vertex shader consists of constant
(as per DRAW call) parameters called uniform variables and per-vertex input
data called vertex attributes. The data for the vertex attributes can either be
provided as a simple pointer to the vertex array data, or a vertex buffer object
(VBO) can be created. Using a VBO can reduce the number of OpenGL ES 2.0
calls and the overhead of copying the vertex attributes to GPU memory (if
present). The output data of a vertex shader is the vertex position and
(optionally) so-called varying variables, i.e., user-defined input parameters for
the fragment shader. The vertex position is assigned to the special variable
“ol Position”. Next, we briefly describe the typical approach how this
calculation is performed [GPSM14, Opell|. The input vertex coordinates are

typically in object (or model) coordinates, i.e., all coordinates are given relative

2However, driver or GPU are allowed to switch order if the result is not affected.

93

3. Execution Time Prediction

to the 3D object’s center. Typically, such objects are rotated, translated (i.e.,
relocated), and scaled. These three operations can be combined into a model
matrix such that multiplying the input vertex coordinates with the model
matrix performs the three operations and produces the world coordinates. The
world coordinates are multiplied with the view matrix to produce eye
coordinates. Figuratively, the view matrix moves the camera to the desired
position and direction. Since the model matrix and the view matrix are
mathematically based on the same operations, they are often combined to a
model view matrix. The last step is the transformation to clip coordinates using
the projection matrix. This represents the perspective, i.e., what and how the
camera looks on the scene, such as the viewing angle and the aspect ratio.
Again, the projection matrix can be combined with the model view matrix to a
model view projection matrix (MVPM). In order to achieve fast vertex shader
execution, it is common to use a MVPM calculated by the CPU and passed to
the GPU as a uniform variable. The primitive assembly step creates base
primitives, for instance a triangle strip is split up into individual triangles.
Additionally, if “culling” 1is wused, back-facing triangles are omitted.
Rasterization converts the base primitives to a two-dimensional set of fragments
(possible pixels) depending on resolution and size of the render buffer and the
viewport. The fragment shader is executed for each fragment and calculates its
color. For instance, texture data can be aligned to the vertex grid in order to
create realistic-looking scenes. Textures are special kinds of uniform variables
holding image data, which is separately uploaded using API calls such as
“glTexImage2D”. According to the OpenGL ES 2.0 API, an OpenGL program
represents the compiled and linked combination of both, vertex shader code and
fragment shader code. To perform a DRAW call, first the OpenGL program
must be selected by “glUseProgram”. To use multiple OpenGL programs, an
application can therefore switch them between the DRAW calls. The OpenGL
programs are typically not created in the rendering loop but before while a
scene is loaded. The per-fragment operations contain further steps. For
instance, the scissor test allows to define a rectangular area outside of which no
fragments are drawn. If enabled, the depth test compares the current depth
value of a pixel with the depth value of the fragment to determine if the
fragment should be skipped. Since OpenGL ES 2.0 does not allow the fragment
shader to change the depth of a fragment, the GPU can increase the execution
speed by performing the depth test (a per-fragment operation) before the

fragment shader—an optimization called early depth test). Blending allows to

o4

3.1. Background

combine the color of a pixel with the color value of the fragment, e.g., to make
objects look transparently. If a fragment has passed the per-fragment
operations, the color value and (optionally) the depth value of the respective
pixel on the render target is updated. The render target is often the EGL
surface buffer, which causes the GPU to write to the associated native window.
However, it is also possible to use textures as render targets, which allows for
sophisticated 3D effects.

3.1.3. Machine Learning

Concepts for machine learning automatically learn programs from data [Dom12].
We distinguish between supervised and unsupervised learning. For supervised
learning, the machine learning knows which values are input and which values
are output, for unsupervised it does not [HTF09|. In this work, we only focus on
supervised learning. The elements of the input data used for machine learning
are called features. A feature can be a measurement or preset value or can be
calculated from one or more of the measured values. Machine learning uses the
input data—denoted as X—to predict the output data—denoted as Y. In general,
X is a column vector that contains p input values.
1

x= |
X,
The term 1 is included in X to support an intercept (also called bias). While
Y in general also is a column vector, we focus on Y as a single value. Next, we
briefly introduce linear regression, MARS, and artificial neural networks, based
on [HTF09).

3.1.3.1. Linear Regression

A linear model assumes that Y linearly depends on X. For an input vector
XT = (1,Xy,...,X,) the output Y is predicted by Y = X74. This means that
each element of the input vector X is multiplied by the corresponding weight in
(. To fit a linear model to a set of training data, typically least squares are used.
Using this method, (is selected such that the residual sum of squares (RSS)
is minimal, with RSS(8) = (Y — XB)T(Y — Xf). In this formula, X and Y
represent the training data. The (N x (p + 1)) matrix X contains N samples of

input data and the N x 1 matrix Y contains the corresponding measured output.

%)

3. Execution Time Prediction

Linear regression also supports non-linearity, if non-linear features, e.g.,
polynomial features, are used. Another option to deal with non-linearity are
continuous piecewise features. With continuous piecewise features, the range of
X is divided into continuous intervals. Each interval has one or more associated
features used to create a model where the transition between adjoint intervals is

continuous. In Fig. 3.2, an example is provided where a continuous piecewise

1.0

-0.2

Figure 3.2.: Example: Continuous piecewise linear regression model fitting half
circle

linear model with a constant interval size of 1 was fitted to training data of a
half sphere. Although the training data is obviously non-linear, the linear

models of the individual intervals provide a reasonable approximation.

3.1.3.2. MARS (Multivariate Adaptive Regression Splines)

MARS [Fri9l] is a regression-based concept that creates the needed functional
relationship between X and Y automatically. To this end, MARS generalizes
continuous piecewise linear regression by determining good intervals and the
relevant features and feature combinations for each interval. In more detail,
MARS uses the training data X to create a model M = S, + S (e x F),
with £, = 8 X [[,eycp MAX(0,¢y,) with [Y] being called degree of the term
F;. The expression e,; is either of the form (X, — ¢,;) or (¢,; — X,). Each
MARS model contains exactly one term of degree 0, i.e., 5y. When choosing the
coefficients f;, MARS wuses linear regression by minimizing the RSS.
Implementations of MARS typically allows customization through parameters.

Important parameters (for the “earth” implementation in R [Milll]) are:

degree: The maximum degree allowed for the terms. While a higher degree
could improve accuracy, if chosen too high, the model could be overfitting

and become very huge.

thresh: A model with more terms is preferred, if it improves the estimation of

the training data by at least the “thresh” value.

26

3.1. Background

nk: Maximum number of terms allowed. This stops searching for a better model,

if nk terms were found.

fast.k: Boolean value that determines whether for selecting terms a heuristic
shall be used. Using the heuristic can speed up the runtime for the MARS

algorithm, but the determined model can be worse than without using it.

Fig. 3.3 shows an example where input data following a half circle was created
and fitted by a MARS model using the implementation [Milll]. The model

Y Input samples - coefficients
Approximation by MARS model . (Intercept) 0.2200212
h(x- -0.2097) 0.7834277
h(0.9999-x) -0.1267038
h(x-0.9999) -1.3526708
h(x-1.6019) -1.0412111
. . . h(x-2.1143) 1.6108366
1 0 1 2 X
(a) Example: Input values and fitted MARS (b) Example: MARS model fitted for half
model for half circle circle

Figure 3.3.: Error of model for auxiliary fragment shader execution time

has some deviation but needs only five terms plus intercept (5p). If desired,
the optimization threshold can be specified, e.g., a lower threshold might result
in more terms but lower deviation. The function MAX(0, x) is called h(x),
here. Since this example contains only one feature, MARS behaves similarly to
continuous piecewise linear regression with automatically calculated intervals. It
tries to use as few intervals as possible to achieve the desired accuracy (specified
by the threshold).

An example with two-dimensional dependent input data is provided in
Fig. 3.4, where a half sphere is used as input data. MARS was used with a low

threshold, thus more accurately matching the input data. As a result, the

’
1777"1".':""'!’:‘ ’\
i Iy "'2\ R “

(a) Example: Input values for MARS (half (b) Example: Values fitted by MARS model
sphere)

Figure 3.4.: Example: Input values and MARS model for half sphere

57

3. Execution Time Prediction

MARS model is very accurate and shows that MARS can adapt to
multi-dimensional non-linear data. The MARS models contain many terms of
degree two that were automatically calculated based on the training data. If a
similar expressiveness would have to be achieved with continuous piecewise
linear regression with constant intervals, a two-dimensional grid of the feature
space z X y has to be created with sufficiently small grid segments. Clearly,
continuous piecewise linear regression does not scale well with the number of
non-independent features. Therefore, if a model for data is needed that contains
multiple non-independent features, MARS is a much better choice. In this case,
a MARS model can be orders of magnitudes smaller than a continuous

piecewise linear regression with constant intervals that has similar accuracy.

3.1.3.3. ANNSs (Artificial Neural Networks)

The term Artificial Neural Network (ANN) is used for many different model
concepts. Often, ANNs are used for classification, but also regression is common.
In this section, we focus on the widely-used feed-forward regression networks with
a single output unit. Note, that only a very brief introduction is presented that is
sufficient to understand the reasoning in this work. An ANN can be represented

by a network graph, such as the example in Fig. 3.5. This example contains three

Hidden layers
Features

(input)

Output unit

N

X \
NN
066
NKERLL
/’f?"‘\i?‘\‘
‘Qi?

W
&)

N\
)
t?

)
)
&)

Figure 3.5.: Example of a feed-forward artificial neural network graph

input features, two hidden layers of size 4, and a single output unit. The nodes
in the graph are called neurons and use internal weights to compute their output
value from their respective input data. A simple approach uses linear regression,
as described in Sec. 3.1.3.1. However, an ANN is more expressive since multiple
nodes (typically very many) are used in each layer and multiple layers can be
concatenated in such a way that the output of one layer serves as input to the

next layer. Additionally, ANNs use an activation function that is applied to the

_ 1
14+e=v?

tanh, and the Rectified Linear Unit ReLU (z) = max(0, x). Activations functions

typically introduce non-linearity. Although complex linear models might be able

weighted input. Common activation functions include the sigmoid o(v) =

o8

3.1. Background

to fit non-linear data to some extent, introducing non-linearity through activation
functions typically provides better accuracy at a higher efficiency (since a smaller
network graph can be used). Generally speaking, ANNs can provide a very high
expressiveness and accuracy but have the disadvantage that a high number of
weights is used, which requires a high amount of training data and significant
computation time for prediction. Moreover, the network graph and the used
types of neurons heavily affect the suitability of an ANN for a certain task and

therefore must be well-chosen.

3.1.4. Model analysis

Models such as linear regression, MARS, and ANNs, are based on training data. It
is therefore important to measure the accuracy of the mapping. In this section,
two common plot types are introduced, which can be used to determine the
accuracy of a model. The goal of a model is an accurate estimation y for given
input data. For the typical case, where the data contains jitter due to limited
measurement accuracy or side-effects, perfect accuracy is impossible. Accuracy
is therefore analyzed using statistical methods comparing a created model with a
sufficiently large set of data samples. For each data sample, the y value predicted
by the model is called fitted value. The measured y value is called residual. Next,
we briefly explain two common statistical plots, which provide a visual overview

of prediction accuracy.

Cumulative distribution plot. For each data sample, the absolute deviation
between the residual and fitted values are calculated. In a cumulative distribution
function, the deviation is laid on the x-axis. For each of x value, the proportion
(percentage) of the data set with a deviation not exceeding the x value is depicted
on the y-axis. For instance, a cumulative distribution plot shows that 95 % of the

fitted values deviated not more than some value from the residuals.

Residuals vs. Fitted plot. For each sample, the deviation between the
residual and fitted values is calculated. The fitted values are laid on the x-axis.
For each fitted value, the deviation to the residual is drawn as a point at the
respective height. A sample with a y-value of 0 means that the model perfectly
fitted the residual. A y-value higher (lower) than 0 means that the residual was
higher (lower) than the fitted, i.e., the model underestimated (overestimated)

the residual.

99

3. Execution Time Prediction

3.2. System model

The components and interfaces of our system are depicted in Fig. 3.6. Basically,
the system consists of four layers, namely, the application layer, the user space
driver layer, the kernel space driver layer, and the hardware layer. For the sake
of a concrete description and since for the evaluations in this work a variety of
3D applications is required, we consider the most common 3D rendering API for
embedded systems, OpenGL ES 2.0 [Khral. Our system model is
state-of-the-art at recent embedded GPUs, for instance from Vivante, ARM, or
Nvidia (cf., [SGDR14| (Figure 1) for the Nouveau driver [Nou|). On the

Applications

_-Graphics API: OpenGL ES 2 & EGL

Command Buffer J/ GPU Command 1
Command Group 1 L GPU Command 2

Command Group 2 GPU Command 3

Graphics application
1

EGL

I\

_________ 9_____________
Hardware w

Figure 3.6.: Hardware and software components for 3D rendering with OpenGL
ES 2.0

application layer, graphics applications use OpenGL ES 2.0 and EGL as
interfaces (@ in Fig. 3.6). Thus, graphics applications based on these common
APIs do not have to be changed. From the OpenGL ES 2.0 commands, the user
space driver creates GPU commands. Consecutive batches of GPU commands
are called command groups (CGs) and are enqueued in the Command Buffer.
The Command Buffer resides in shared memory accessible from user space and
kernel space (@ and @). Many drivers perform a system call to notify the kernel
space driver of the added CG (®). The system call can be intercepted by
instrumenting the user space driver (if its source code is available) or by
intercepting the “ioct]” function. The kernel space driver is responsible for
dispatching the CGs to the GPU and thus determines the order of execution
(®). Once the GPU starts execution, the execution of CGs cannot be
preempted.

60

3.3. Prediction Architecture

3.3. Prediction Architecture

Fig. 3.7 shows an overview of our prediction framework architecture with its
three basic components, namely, OpenGL ES Context Monitor (A), Predictor (B),

and Execution Time Monitor (C), and their embedding into the overall system.

The main component of our framework is the Predictor (B), which predicts the

OpenGL ES application

| OpenGL ES Context Monitor &

Predictor
ML Triangle Sample
mm -!s
x ML-baseq Bounding Box ‘
GPU
Profiler

GPU Scheduler
Execution Time Monitor

GPU Diriver
GPU

Figure 3.7.: Execution Time Prediction Components and Models

execution time of CGs depending on the OpenGL ES 2.0 Context. The prediction
models are based on the measurements of the real execution time of CGs, which
are provided by the Execution Time Monitor (C). Next, the three components of

execution time prediction are explained in more detail.

3.3.1. OpenGL ES Context Monitor

The execution time of OpenGL ES 2.0 commands depends on their OpenGL ES
2.0 Context. For instance, the execution time of the DRAW command is
context-dependent. As described in Sec. 3.1.2, a DRAW command uses the
OpenGL rendering pipeline whose execution time depends on many parameters
previously defined by OpenGL commands. The OpenGL ES Context Monitor of
our framework intercepts all OpenGL ES 2.0 and EGL API calls to create and
maintain a local copy of the relevant parameters of the OpenGL ES 2.0
Context. To this end, we allocate a data structure for each created context. A
thread-local variable holds a reference to the currently active context. The
context data structure contains all relevant parameters and is updated by

subsequent OpenGL ES 2.0 calls by the application. For instance, if the

61

3. Execution Time Prediction

application calls glBindBuffer, the OpenGL ES Context Monitor assigns the id
of the chosen buffer to the currently active context data structure, thus
determining the buffer data source or target for subsequent OpenGL ES 2.0

commands.

3.3.2. Predictor

The Predictor is the main component of our execution time prediction and uses
several models to predict different types of GPU commands. It determines the
execution time of the GPU commands based on the current OpenGL ES 2.0
Context and the prediction models. It is notified when calls to the OpenGL ES
2.0 functions of the GPU driver actually emit a CG. The predicted execution time
of a CG is then calculated by summing up the execution times of the included
GPU commands. It is attached to the CG and serves as input to a GPU scheduler.

3.3.2.1. GPU Profiler

The GPU Profiler determines the performance of the 3D GPU through profiling.
To this end, we create suitable sequences of OpenGL commands, which are
passed to the native driver and finally glFlush is called to submit all commands
to the GPU. After that, we wait until the Execution Time Monitor detects that
the GPU has finished execution. Subsequently, the measured execution times
are read from the Execution Time Monitor. The GPU performance is then
calculated based on multiple measurements using either the respective average
or linear regression. The performance parameters can by classified into
system-specific performance parameters and OpenGL program-dependent
performance parameters. System-specific performance parameters depend on
the specific hardware platform, such as GPU type, GPU speed, CPU speed, and
memory speed. However, they do not depend on the OpenGL program used by
an application. Therefore, it is sufficient to run the profiling benchmarks just
once. The application-dependent performance parameters in our concept are
used for the profiling-based shader model (cf., Sec. 3.5.2), where the GPU
Profiler is profiling each OpenGL program. All other performance parameters
are system-specific. The GPU Profiler persistently stores the determined
performance parameters. This avoids re-running the GPU Profiler, if the
knowledge is already available from an earlier run.

For the shader model that is based on machine learning, tailored 3D profiling

applications are used, which execute a huge variety of shaders. The shader

62

3.3. Prediction Architecture

parameters and the measured execution times are recorded by the Execution
Time Monitor and used as training data to create machine learning models (cf.,
Sec. 3.5.3).

3.3.2.2. Prediction Models

A GPU has a hardware-specific instruction set. Many instructions change
internal GPU state or set register variables and are so fast that their execution
time cannot be measured and therefore are not predicted. For the remaining
GPU commands—namely, FLUSH, CLEAR, SWAPBUFFERS, and DRAW—the
Predictor uses the models shown in Fig. 3.7. The prediction models use the
parameters provided by the GPU Profiler depicted in Table 3.1. The ML-based

Table 3.1.: Performance parameters provided by the GPU Profiler to the
prediction models

Parameter depends on Used by

DCush system FLUSH model

DPCclear[btypes) system CLEAR model

DCswapbuffers system SWAPBUFFERS model

DCdraweonst system Profiling-based shader model for DRAW

DCdepth system Profiling-based shader model for DRAW

PChlending system Profiling-based shader model for DRAW
PUvertex_shader | OpenGL program | Profiling-based vertex shader model for DRAW
PUtragment_shader | OpenGL program | Profiling-based fragment shader model for DRAW

shader model is calculated using machine learning (ML), which provides and
uses the models depicted in Table 3.2. The rather simple models for FLUSH

Table 3.2.: Machine learning models provided for shader prediction

ML model | depends on | Used by

MemdsVS system ML-based vertex shader model for DRAW
MauxVs system ML-based vertex shader model for DRAW
MemdsFS system | ML-based fragment shader model for DRAW
TMauxFS system | ML-based fragment shader model for DRAW
Miexld system ML-based shader model for DRAW

(model maysh), CLEAR (model mejear), and SWAPBUFFERS (model mgwapbuffers)
are described in Section 3.4. The challenging DRAW command (model mgyay)
and its sub models to estimate fragments and shaders are presented in
Section 3.5. The optional Online Adaption allows to correct predictions leaning

to either overestimation or underestimation and is presented in Section 3.6.

63

3. Execution Time Prediction

Listing 3.1: Execution time prediction for CGs

1l on receive of a Flush:

2 et_flush += maush()

3on receive of a Clear call:

4 et_clear += Melear(blypes, sib)

5on receive of a call:

6 if coming from eglSwapBuffers:

7 et_sb += mswapbuffers(srb)

8 else:

9 et_draw += mswapbuffers(srb)

10 on receive of a Draw(vertexList) call:
11 vertices += vertexList

12 on change or end of a rendering scene:
13 et_draw += Mdraw(Ncals, vertices, ctx)

14 vertices = ()

15 on submission of nextCG:
16 nextCG.pred_ET = online_adaption()

The Predictor uses these models to predict the execution time of CGs as
described in Listing 3.1. The execution time for FLUSH commands—estimated
by the model mg.,—is aggregated in the variable “et flush” (Lines 1-2).
Likewise, the variable “et clear” aggregates the execution time for CLEAR
commands (Lines 3-4), which is modeled by mgiear. The model mgyapbufters (Seb) 18
used for so-called buffer resolves (cf., Sec. 3.4.3). The typical case is a
SwapBuffers command, but buffer resolves can also occur in the context of
DRrRAW calls. The estimated execution time of the model Msyapbuffers(Sib) 18
therefore aggregated either in the variable “et draw”, or in the variable “et sb”
(Lines 5-9). For the DRAW command, we perform the prediction that uses the
model Mgpaw (Ncans, vertices, ctx) on batches of OpenGL DrAW calls. To this
end, DRAW calls are not directly predicted, but the respective vertices are
accumulated in the set “vertices” (Lines 10-11). For applications that use many
OpenGL DRAW calls, this batch prediction reduces the CPU overhead
introduced by execution time prediction significantly. DRAW call batches have
to render the same rendering scene, e.g., they must share the same model view
projection matrix, viewport, depth range, primitive mode, and GL capabilities.
If the rendering scene changes or is ended by the imminent submission of a CG,
the current batch is complete and gets predicted (Lines 12-14). When the CG is
eventually about to be submitted to the kernel space, the function
“online _adaption()” returns its predicted execution time (Lines 15-16). If online
adaption—which is optional—is disabled, the function “online adaption()”
returns the sum of the four kinds of predicted execution times. If online

adaption is enabled, history-based smoothing is applied (cf., Sec. 3.6).

64

3.3. Prediction Architecture

3.3.3. Execution Time Monitor

To create and verify our prediction models, we use execution time measurements
of CGs. To this end, we need to know when the GPU execution of a CG starts and
when it has finished. Doing these measurements in user space would be inaccurate
if the CPU is loaded, since any delay in context switches would affect measurement
accuracy. Therefore, the Execution Time Monitor takes the timestamps as close
to the GPU as possible, i.e., in the kernel space driver.

In order to detect in kernel space when a CG has finished, we use a similar
technique as described in [KLRI11]: we let the GPU acknowledge the execution of
each CG. To this end, we append a GPU instruction to each CG that makes the
GPU create an interrupt each time a CG has finished execution. Additionally, we
take the timestamp when dispatching of a CG is finished, i.e., directly before the
GPU can start executing it. If the GPU is idle, the execution time is the interval
between this timestamp and the time of the respective interrupt request. If the
GPU is not idle, the time interval between two consecutive interrupt requests is

used as execution time.

65

3. Execution Time Prediction

3.4. Prediction models for Frust, CLear, and

SWAPBUFFERS

3.4.1. Prediction Model for FLusH

A FLUSH is a special case, since it represents the constant time needed for the
execution of a CG on the GPU. The emission of a CG can be caused by multiple
APT calls, e.g., glFlush, glFinish, or eglMakeCurrent. Since FLUSH does not
depend on parameters and has no context dependencies, its execution time is
constant for a given system, i.e., it only depends on the specific speed of the
system. Therefore, the execution time for the FLUSH command can be estimated
by the following simple model mgyg (), where pcgyush is a system-specific constant

provided by the GPU Profiler.

MAysh () = DCfush (3 1)

3.4.2. Prediction Model for CLEAR

Next, we consider a more complex prediction model of a context-sensitive
command, namely, the CLEAR command. The CLEAR command sets the active
render buffer to the color previously specified by the “glClearColor” command.
Moreover, the CLEAR command takes as parameter a bit mask that specifies
which one of the three possible buffers, color buffer, depth buffer, and stencil
buffer, should be cleared. As shown in [GSC*15|, the execution time to clear a

3 in pixels denoted as sy.

buffer linearly depends on the render buffer size
Moreover, the number of bits per pixel influences the amount of data that has
to be transferred to memory per pixel. Thus, the predicted time to clear a

certain set of buffers can be modeled by

Mclear (btypesa Srb) = pcclear[btypes] X Srp- (32)

The term pcelearfbtypes] 18 the execution time of the permutation of buffers to be
cleared. If no bit is set in the mask btypes, no buffer is cleared, and we assume
the execution time to be zero. Otherwise, we calculate the clear time for the
given set of buffers btypes using the size of the currently active render target,

according to Equation 3.2.

35,4 actually represents the size of the viewport

66

3.4. Prediction models for FLUSH, CLEAR, and SWAPBUFFERS

3.4.3. Prediction Model for SwarpBUFFERS

The SWAPBUFFERS command indicates that the result of the previous rendering
commands shall become visible. To the extent of our knowledge, there exist two

technically different approaches how GPUs implement SWAPBUFFERS:

1. The GPU renders directly to the render target: SWAPBUFFERS only flushes

the GPU pipeline and—if used—notifies the window manager. Example:
nVidia Quadro 500.

2. The GPU renders to a proprietary target buffer, which often includes
caches: SWAPBUFFERS reads, converts, and copies the data of the
proprietary target buffer to the render target. This is called a buffer
resolve. Example: Vivante GC2000.

Obviously, the execution time of the first approach is almost negligible, while the

second involves reading and writing a significant amount of data. Our model

Mgwapbuffers (Srb) = DCswapbuffers * Srb (3 3)

depends on the copying speed per pixel data pCswapbufrers and the size of the render
buffer s, in pixels. For the first approach, pcswapbufrers = 0. Moreover, we apply
this prediction model also if DRAW commands are executed while the render
target is set to a texture. In this case, the GPU driver implicitly performs a
buffer resolve from the rendered content to the texture (i.e., the render target)
when the render target is switched. Additionally, some GPU drivers also perform
a buffer resolve to convert uniforms such as the model view projection matrix. To
this end, the model Mgyapbuffers (Sb) s used for all buffer resolve GPU commands.
Since buffer resolves that realize SWAPBUFFERS are the typical use-case, our
model was labeled SWAPBUFFERS.

67

3. Execution Time Prediction

3.5. Prediction Models for Draw

The most challenging command in terms of execution time prediction is the DRAW
command since it depends on various context parameters and has a complex
multi-step processing model. The processing of a DRAW command follows a
pipeline model (i.e., the OpenGL rendering pipeline), as depicted in Fig. 3.8.
The execution time heavily depends on the selected OpenGL programs. The

Vertex y Fragment
shader, ol o) shader J

o |0 X gmmmms
A S v
o .
e Z—»|P. A|Rasterizer »| Fragment
Operations Operations
~ a =~ ~ \9 \F/ 9 _
tVS th

Figure 3.8.: OpenGL ES 2.0 rendering pipeline (concise)

OpenGL rendering pipeline takes as input data the vertex attributes for a set of
n, vertices, where n, is a parameter of the OpenGL ES 2.0 DRAW calls. At the
first stage (@ in Fig. 3.8), the vertex shader of the active program is executed for
each vertex. The vertex shader transforms the vertex position, typically, using a
4 x 4 model view projection matrix, which is multiplied with each vertex to move,
resize, or rotate the vertex and create the clip coordinates [GPSM14, Opell].
In the second stage (@), the vertices are processed by the Primitive Assembly
(P. A.), which prepares for rasterization. Then, the Rasterizer calculates the
pixels (i.e., fragments) of the render buffer that are covered by primitives (e.g.,
triangles). The number of fragments created by the Rasterizer is denoted as
ng. For each of these fragments, the fragment shader is executed in the third
stage (@) to assign colors to pixels, for instance, using textures. Additionally,
the per-fragment operations step applies a couple of post-processing steps, such
as depth test or blending, to the fragments. Finally, the output is used to update
the render buffer. Many OpenGL applications use a sequence of multiple DRAW
commands to render a scene. This implies that CGs can contain more than one
DrAW command. In order to keep the prediction overhead low, the model allows
to predict any number of DRAW commands in one step.

To this end, the number of DRAW commands is provided as ngqus and
multiplied by the constant overhead per DRAW call (pCarawconst)- Lhis improves
the performance of the prediction since a sequence of multiple DRAW commands

can be predicted by a single model pass. We additionally introduce the

68

3.5. Prediction Models for DRAW

submodel myp (ctx), which estimates the execution time per vertex for the
Vertex-dependent part of the OpenGL rendering pipeline, tyg. Likewise, we
introduce the submodel mpp(ctx) to estimate s agmentshader(Fs)- Both
submodels depend on the current OpenGL ES 2.0 Context ctx, which contains,
e.g., the fragment shader fs, the vertex shader vs, the vertex input data, and
other parameters of the OpenGL rendering pipeline. In order to predict the
execution time of the DRAW command, we introduce the model depicted in

Equation 3.4.

Mgraw (HCaHs; VeI'tICGS, CtX) = N¢Calls X PCdrawconst

+ vertices.count X myp (ctx) (3.4)

+ myp (vertices, ctx) X mgp (ctx)

As depicted in Fig. 3.8, we assume that the execution time of the Primitive
Assembly (P. A.) linearly depends on the number of vertices and therefore is
considered as part of tyg and myp(ctx). This is justified, since P. A. is
performed on primitives such as triangles whose number depends on the number
of vertices. Additionally, we assume that rasterization and the per-fragment
operations depend linearly on the number of fragments, which is provided by
the model myp(vertices, ctx). Therefore, our model does not consider them as
explicit terms but as part of the execution times represented by myp (ctx) and
mpp (ctx). These assumptions provide a reasonable abstraction of the execution
time. Typically, OpenGL ES 2.0 applications implement their main rendering
functionality using sophisticated shaders. Thus, the impact of the

post-processing steps is usually comparatively small, cf. Sec. 3.8.

In order to evaluate the execution time model of the DRAW command, we
need the submodel myp(ctx) and mpp(ctx) for the vertex processing and
fragment processing, as well as the input parameters neqys, vertices, and myg.
The parameters ngo.s and vertices are trivial since they are directly given by
the application’s OpenGL API calls.

In contrast, the number of input fragments created by the rasterization step
is not available a priori when the DRAW function is called. To obtain the exact
number of fragments, we could emulate the vertex shader and the rasterization
on the CPU. However, this would introduce high CPU overhead since the CPU
would thus basically replace the GPU. To this end, we propose two heuristics
for myr to estimate the number of fragments with low computational overhead.

They are described in Sec. 3.5.1. The basic idea is, to approximate the size of a

69

3. Execution Time Prediction

triangle instead of emulating rasterization and additionally to reduce the number
of vertex shader instances emulated on the CPU.

Furthermore, the model mg,ay (ncans, vertices, ctx) requires submodels for the
vertex processing myp(ctx) and the fragment processing mpp(ctx), i.e.,
submodels for the execution times of vertex shader and fragment shader. To
this end, we propose two kinds of submodels. The first uses the GPU Profiler
for profiling the shaders online when the Predictor sees them for the first time.
Unfortunately, profiling online inherently suffers from the fact that dispatching
profiling CGs could impact concurrently running 3D applications. As motivated
in Sec. 1.4.4, the GPU Scheduler uses the predicted execution time to ensure
that low priority (non-safety critical) CGs do not prevent the timely execution
of high priority (safety critical) jobs. Since a program’s performance parameters
are mandatory for prediction, they would be needed before they were actually
determined—a chicken-and-egg problem. The execution time of profiling CGs is
unknown and if the GPU Scheduler dispatches them, this could result in missed
deadlines of high-priority applications. This effectively limits the use of profiling
of the parameters depending on the OpenGL ES 2.0 Context to cases where no
new applications join during runtime and therefore profiling can safely be
performed for all applications at deploy time or at system startup. We propose
a second kind of submodel, which does not require to profile each shader, even
for applications which are unknown at the time of system startup and join later
(such as applications newly downloaded from a third-party app store). We use
machine learning in order to train submodels that provide the execution time of
the shaders depending on the native GPU instruction set. The two kinds of
submodels for shader prediction are presented in Sec. 3.5.2 and Sec. 3.5.3,
respectively.

For some rendered scenes, the predicted execution time might lean to either
overestimation or underestimation. As an optional improvement, we propose

online adaption, which detects and corrects that, cf., Sec. 3.6.

70

3.5. Prediction Models for DRAW

3.5.1. Fragment estimation heuristics

In this section, we propose two heuristics to estimate the number of fragments
by the model m,r. When an application submits a sequence of DRAW calls for
a frame, each CG typically contains multiple DRAW calls. This implies that the
fragment estimation heuristic should support multiple DRAW calls per CG to
keep the prediction overhead low. However, the number of fragments is
influenced by the vertex shader setup, namely the used vertex shader program
and the uniform variables that influence the vertex coordinates. Therefore, if
the application changes the vertex shader setup, the current batch of DRAW

commands is predicted and a new batch starts.

3.5.1.1. Approximating triangle size

The size of a triangle in a 2D coordinate system can be calculated with
Equation 3.5 (see [FT09], page 34), using the x and y coordinates of the

triangle’s vertices a, b, and c.

ar ay 1
area(a, b, c) = 3 bx by 1
cx cy 1
_axx(by—cy)+bxx(cy—ay)+tcrx(ay—Dby)
2

(3.5)

For the rare case when a triangle intersects with the border of the render buffer,
we clip it to the render buffer boundaries and use the intersection points to create
a new convex polygon. The area is then calculated by summing up the areas of the
constituent triangles of the convex polygon. The respective algorithm is straight
forward, but lengthy and thus omitted for the sake of readability.

The principle how GPUs create fragments is specified by the OpenGL ES 2.0

standard as follows.

“The rule for determining which fragments are produced by polygon
rasterization is called point sampling. The two-dimensional projection
obtained by taking the x and y window coordinates of the polygon’s
vertices is formed. Fragment centers that lie inside of this polygon

are produced by rasterization.” ([ML10], page 57)

Rasterization is a discretization of the continuous 2D space assumed by
Equation 3.5. This implies that with OpenGL ES 2.0 the number of fragments

71

3. Execution Time Prediction

produced by a triangle can vary depending on the triangle translation.
Unfortunately, this means that the exact number of fragments of a triangle can
only be determined exactly by emulating the Vertex Operations and the
Rasterizer (cf., Fig. 3.8). Since this would require way too much CPU resources
for the prediction, we use Eq. 3.5 with clipping to approximate the size of a
triangle. Next, we discuss the potential inaccuracy introduced by this
approximation.

Due to the discretization of the fragments, the number of fragments can be

either overestimated or underestimated by our approximation. Fig. 3.9 depicts

Figure 3.9.: Example of possible deviation of triangle size approximation

an example which contains a small render buffer that is 4 pixels wide and 4
pixels high. Its 16 squares represent the areas covered by the 16 fragments. The
center of each fragment is marked by a cross. As quoted from the OpenGL ES
2.0 specification, a fragment is created, iff its center is covered by a triangle. In
our example, triangle “a” covers four centers of fragments and thus would show
up as a row of four fragments. However, the actual size of the triangle is much
smaller than four, i.e., the number of fragments would be underestimated in this
case. In contrast, triangle “b” covers no center of any fragment and thus would
not show up at all on the render buffer. Although triangle “b” is actually larger
than triangle “a”, it results in much less fragments due to the discretization of
fragments. For non-malicious applications (i.e., applications that do not
intentionally try to create wrong estimations), all these examples are
statistically irrelevant and do not result in significant approximation errors. The
cases of malicious applications that try to achieve overestimation are not
critical, since they would lead to an overestimation of the execution time of a
CG, which is disadvantageous to these applications, only. However, applications
that try to achieve underestimation of the number of fragments could be

critical. For instance, for potentially malicious third-party applications, thin

72

3.5. Prediction Models for DRAW

triangles could be detected and be overestimated using the longest side and all

size values could be rounded up.

3.5.1.2. Emulating the vertex coordinates calculation

In the vertex shader code, the vertex coordinates are assigned to the special
variable “gl Position”. In order to determine the size of a triangle, the three
coordinates of “gl Position” must be known. To this end, we emulate the vertex
coordinate calculation on the CPU and then calculate the window coordinates.
The window coordinates represent the pixel coordinates on the render target.
Fortunately, the calculations of varying variables—which is often much more
complex—must not be emulated. In order to obtain window coordinates from

the vertex input data, three steps are required:

1. Emulate the calculation of the “gl Position” of the vertex shader code to

obtain the vertex coordinates? x, v, z, and w.

2. Calculate the normalized device coordinates x4, y4, and zq [MGS09], i.e.,

T
Td w
— Y

Ya |l = | »
z

Zd v

3. Calculate window coordinates using the viewport parameters (as given by
the “glViewport” API call) [GPSM14]:

<$w> B <wvi812up07‘t X g + Toiewport + wm;pm)

Yo\ P X Ya ot Yuiewport +

Function emulates: For later use, we define the function emulates, which
calculates the area of the projected triangle based on a triangle’s input vertex
data. The function first calculates the window coordinates from the vertex
input data for each of the triangle’s three vertices. As described in Sec. 3.5.1.1,
the window coordinates (which depend on the vertex shader) are used to
estimate the size of the triangle. In this calculation, the OpenGL state for
culling (“GL_CULL_FACE”) and facing (“GL_FRONT_ FACE”) are
considered properly. The calculated triangle area is returned by emulates. If

the calculated area is negative, the triangle is not facing towards the camera

and will not produce any fragment; in this case emulatea returns 0.

4The values z and w are optional and default to 0 and 1, respectively.

73

3. Execution Time Prediction

Listing 3.2: Record trianlgle samples data after DRAW calls

1 function record triangle(triangle T, int vecSize)

2 recordedTriangles++

3 IF (random int() MOD p~{-1}) = 0)

4 IF (samplesInBuffer >= BUF_SIZE)

5 IF (p - pmin):

6 TSarea += emulatea(unify (T, vecSize), vertex
shader)

7 numTS++

8 return

9 FOR i=2 TO BUF_SIZE — 1 STEP 2:

10 TSbuf[i/2] = TSbuf[i]

11 p=1p/2;

12 samplesInBuffer = (BUF_SIZE / 2)

13 TSbuf[samplesInBuffer| = unify (T, vecSize)

14 samplesInBuffer4++

Next, we present two heuristics that estimate the number of fragments using

window coordinates and the triangle size approximation presented in Sec. 3.5.1.1.

3.5.1.3. Triangle samples heuristic

The triangle samples heuristic approximates the number of fragments by using a
typically small, randomly selected subset of the rendered triangles. For these
randomly selected samples we emulate the vertex coordinate calculation (cf.
Sec. 3.5.1.2) and estimate the size (cf. Sec. 3.5.1.1). From the DRAW calls we
know the total number of rendered triangles, which is used to extrapolate the
area covered by the selected triangle samples. The size of the subset is quite
important for good prediction accuracy, since a small subset typically implies
low accuracy. For small models, the additional challenge is, to use a subset that
contains a sufficiently high number of triangles (must obviously be greater than
0). We therefore propose to use a triangle buffer of a fixed size and a varying
probability at which triangle samples are selected.

Next, we describe the approach in more detail. If the triangle samples mode
is active, after a DRAW call has been forwarded to the native driver the function
“record triangle” is called for each rendered triangle. The “record triangle”
function, depicted in Listing 3.2, is called for each triangle that has been passed
to the OpenGL API using a DRAW call. The number of rendered triangles is
counted in “recordedTriangles” (Line 2). A triangle is selected as a sample with

probability p (Line 3). For a new DRAW batch, initially p = 1, which allows to

74

3.5. Prediction Models for DRAW

Listing 3.3: Using triangle samples to predict the number of fragments

1 function trace triangles buf (vertex shader)

2 FOR i=0 TO samplesInBuffer:

3 TSarea += emulatea(TSbuf[i], vertex shader)

4 numTS++

5 estimatedArea = (TSarea / numTS) * recordedTriangles

6 p=1

7 samplesInBuffer = TSarea = numTS = recordedTriangles = 0
8

return estimatedArea

accurately predict 3D objects with few triangles. Since p is only reduced by
half, p~! is always an integer of the form 2*. The buffer used to store the
triangle samples has a size limit of BUF SIZE (256 by default). If all slots are
occupied (Line 4), the probability is either reduced by half, or if the minimum
probability p, (Line 5, pnm = 277 by default) is reached, further samples
(beyond the buffer capacity) are selected with probability p.,. Selecting a
sample means to estimate its area with emulates and to increment the samples
counter numTS (Lines 6-7). If p > puin, every second element of the buffer is
removed (Lines 9-10), the probability p and the buffer’s samples counter are
reduced by half (Lines 11-12). A unified copy of the triangle is then kept in the
buffer and the buffer’s samples counter is incremented, accordingly
(Lines 13-14). The parameter vecSize of the function “unify” denotes how many
coordinate elements the vertex shader uses for each vertex and is between 2 and
4 (depending on whether “z” and “w” values are given). Since all later
calculations expect a 4-component vector (x,y,z,w), “unify” returns a triangle
consisting of three 4-component vectors. If an application uses only 2 or 3

[{)]

components, the “z’ or “w” attributes default to 0 and 1, respectively
(cf., [ML10]).

When a DRAW batch is complete, e.g., if the CG is submitted or the vertex
shader changes, the estimated number of fragments is calculated by the function
“trace_triangles buffer” depicted in Listing 3.3. For each triangle sample in the
buffer, its area is calculated and the samples counter numTS is incremented
(Lines 2-4). The estimated area is calculated by extrapolating the average
triangle size of all samples to the number of recorded triangles (Line 5). Since
now the DRAW batch is complete, the probability p is reset to 1 and all other
state variables are reset to 0 (Lines 6-8).

Fig. 3.10 shows the relation between the number of triangles in a DRAW batch
and the average number of triangle samples. For up to BUF SIZE = 256

1)

3. Execution Time Prediction

Average numper or triangie sampies

250
200
150
100

0 5000 10000 15000 20000 25000 30000 35000
Number of rendered triangles

Figure 3.10.: Average triangle samples depending on number of rendered triangles

triangles p = 1 (each triangle is a sample). For more triangles, the probability
decreases by 50 % in each step until the defined minimum p,,;, = 277 is reached.
Then, the line continues in red color to indicate that the buffer is full and samples
beyond buffer capacity are selected with p = pyin.

The triangle samples (TS) approach tries to prevent underestimation. If an
application draws a mixture of big and small triangles of ratio r, the set of

samples likely contains big and small triangles of a ratio close to r.

3.5.1.4. Bounding box heuristic

An alternative heuristic for m,r uses a bounding box that encloses all vertices.
Instead of calculating the area of actually rendered triangles, this approach
performs the geometric transformation of the vertex shader only on the eight
vertices of the bounding box, as depicted in Fig. 3.11. The result is the
projected bounding box. Typically, vertex shaders multiply the vertex data with
one or two 4x4 matrices, which limits the changes of each vertex to translation,

scaling, and rotation [MGS09]. This implies that all vertex coordinates

Vertex input data BB, Bounding box BB Projected bounding box

BB
______________ projected ‘3. SmnEE _BBy4

! EBB B§7E area\‘b:, I] - =S BBB

create BB Transformation H
E & &
£ i | Rasterization i aam
5 GH = asi
i i BB PHg TR 2B
BB1 BB BBgs 5

Figure 3.11.: Bounding box applied on a horse model

76

3.5. Prediction Models for DRAW

computed by the vertex shader are contained in the projected bounding box. In
the last step, we calculate the number of pixels that cover the rasterized 2D
area of the projected bounding box. Since typical models try to minimize
overpainting, this number can typically be used for m,r. Next, we describe in

more detail how the bounding box is created and how its area is calculated.

When the application issues a DRAW call, each rendered triangle is traced.
Tracing means the minimum and maximum values of the z, y, and z values are
tracked. If the vertex data is a four-component vector, the x, y, and z components
are normalized by dividing each of them by the w component [MGS09|. The
bounding box BB is created as depicted in Equation 3.6.

1 2 3 4 5 6 7 8
z | Tmin Tmaz Lmar Tmin Tmin Tmaz LTmazr Lmin
BB - Y Ymin Ymin Ymaz Ymaz Ymin Ymin Ymaz Ymaz (3.6)
z Zmin Amin “min Amin “mar “max Amar “maz
w 10 10 10 10 10 10 1.0 1.0
BBy represents the bottom left front vertex of the bounding box. The front

rectangle is represented by the BB; to BB, in counter-clockwise order. Similarly,
BBs5 to BBg represent the back rectangle in counter-clockwise order. The forth
component w is always 1, either because it is missing in the input data, or because
it was already used to normalize =, y, and z. The area covered by the bounding

box is calculated by aggregating the area covered by all six faces, cf., Eq. 3.7.

1: BBarea =emulateaA(BBy, BBy, BB3) +emulateA BB;, BB3, BBy)
2: +emulateA(BBy, BBg, BB7) +emulateA BB, BB7, BB3)
3: +emulatea(BBg, BBs, BBg) +emulateA(BBg, BBs, BBr)
4: +emulateaBBs, BBy, BB;) +emulates BBs, BBy, BBg)
5: +emulates BBy, BB3, BB;) +emulates BBy, BB7, BBg)
6: +emulates(BBs, BBg, BBs) +emulateA(BB, BBy, BBy) (3.7)

The Lines 1 to 6 represent the front, right, back, left, top, and bottom faces,
respectively. For each face, the area is calculated using the function emulates on
its two spanning triangles. The area covered by the bounding box is an upper
bound to the area covered by pixels. However, the actually covered area is often

smaller. For instance, in the example in Fig. 3.11 about 30 % of the projected

7

3. Execution Time Prediction

bounding box area is covered by a rendered pixel. However, part of covered
pixels was rendered by multiple fragments, i.e., areas where one part of the horse
overlaps another and the front fragment is rendered after the hidden fragment.
We reflect this in our prediction model m,r by a coverage factor that is multiplied
with the number of pixels covered by the bounding box to obtain the estimated
number of fragments.

The bounding box (BB) approach tries to provide a good average accuracy.
To this end, m,r is determined such that for different kinds of applications, the
average error is small.

The use of the BB approach is restricted to vertex shaders where the calculation
of “gl Position” is equivalent to multiplications of the vertex input data by model
matrix, view matrix, or projection matrix. While this is the typical case for almost
all existing shader programs, there exist exceptions (e.g., the “jellyfish” scene of
glmark?2). In such cases, the BB approach should not be used®, since pixels could

be rendered outside the area covered by the bounding box.

50ur implementation would detect that and prevents using the BB approach by mistake.

78

3.5. Prediction Models for DRAW

3.5.2. Shader model: based on profiling

In this section, we describe how profiling is used for the prediction of the vertex
processing time and the fragment processing time, represented by the models

myp (ctx) and mgp (ctx), respectively.

3.5.2.1. Prediction model

For the profiling-based shader prediction submodels, the following simple vertex

shader model is used.

myp (CtSL’) = PUvertex_shader (38)

In Equation 3.9, the fragment shader model is depicted.

PCdepth, if ctx.dt DChlending; if ctx.blending
mFP(Ct:C) = pvfragment_shader+ +
0, otherwise 0, otherwise

(3.9)
It uses the shader execution times pvyertex shader @A PViragment shader determined
by the GPU Profiler and the overhead introduced by depth test and blending.
Both, depth test and blending, are only considered if they are enabled by the 3D
application for the current OpenGL ES 2.0 Context ctx, which is determined by
the OpenGL ES Context Monitor. We did not include Blending in this submodel,
since in our evaluations we observed that Blending does not depend linearly on
the number of fragments and thus requires a more expressive model (such as our

MARS model in Sec. 3.5.3.3).

3.5.2.2. Profiling of shader execution time

In this section, we describe how the GPU Profiler determines pvyertex shader and
DViragment_shader- BOth parameters are OpenGL program-dependent and therefore
must be determined for each OpenGL program before its CGs can be predicted.
When a OpenGL program is seen for the first time, the GPU Profiler executes it
in an instrumented profiling mode. The profiling function performs the following

major steps to measure the shader performance.

1. Query the program’s attributes and uniforms since data must be provided
for them.

Used OpenGL command: glGetProgramiv.

2. Activate vertex shader profiling, configure the OpenGL context dedicated
for profiling.

79

3. Execution Time Prediction

Used OpenGL commands: eglMakeCurrent, glUseProgram, glEnable, and
glDepthFunc.

3. Generate VBOs for vertex shader profiling and fragment shader profiling.
Used OpenGL command: glGenBuffers.

4. For each vertex attribute, the data type and the number of components
are obtained and used to create vertex attribute data.
Used OpenGL commands: glGetActiveAttrib, glGetAttribLocation,
glBindBuffer, and glBufferData.

a) For vertex shader profiling, the data is a sequence of a high number of

minimum-sized triangles (to produce 0 fragments).

b) For fragment shader profiling, the data is a sequence of a small number

of huge triangles, each covering half of the viewport.

5. For each uniform variable, the data type and number of components are
obtained and used to create uniform variable data.

Used OpenGL commands: glGetActiveUniform and glGetUniformLocation.
a) For uniform variables of type “GL_SAMPLER 2D”, a dedicated

texture based on dummy data using constant width, height, data
format, and data type is used.

Used OpenGL commands: glGetUniformLocation, glBindTexture,
glTexImage2D, glActiveTexture, and glUniform1i.

b) Uniform variables of type “GL_SAMPLER CUBE” are handled the
same way as “GL_SAMPLER_2D” except that a single dedicated
texture is used for all six sides of the cube.

Used OpenGL commands: glGenTextures, glBindTexture,
glTexImage2D, glActiveTexture, and glUniform1i.

c¢) For all other data types, the required amount of data—depending on
type and number of vector elements—is used for the respective
“olUniform™” call.
Used OpenGL commands: glUniform*f, glUniform*fv, glUniform*i,
glUniform*iv, and glUniformMatrix*fv (a “*’ represents the numbers
1 through 4).

6. The vertex shader profiling issues a defined number of DRAW commands,

cach followed by a “glFlush()”, which emits a CG. Used OpenGL

80

commands:

3.5. Prediction Models for DRAW

glBindBuffer, glVertexAttribPointer,

glEnableVertexAttribArray, glDrawArrays, and glFlush.

7. Activate fragment shader profiling.
Used OpenGL commands: glDisableVertexAttribArray.

8. The fragment shader profiling issues a defined number of DRAW

commands, each followed by a “glFlush()”.

Used OpenGL

commands: glBindBuffer, glVertexAttribPointer,

glEnableVertexAttribArray, glDrawArrays, and glFlush.

9. Free all allocated resources and switch back to the native context of the

application.

Used OpenGL commands: glDisableVertexAttribArray, glDeleteBuffers,
glDeleteTextures, and eglMakeCurrent.

After a CG has finished execution, the Execution Time Monitor provides its

measured execution time and the number of emitted CGs. To calculate

DPVvertex_shader @0d PViragment shader, the terms in Table 3.3 are used.

Table 3.3.: Nomenclature of shader profiling calculations

Term Description

tos Total measured execution time of all CGs of the vertex
shader profiling

tfs Total measured execution time of all CGs of the
fragment shader profiling

#VS CGs Number of CGs emitted during vertex shader profiling

#FS CGs Number of CGs emitted during fragment shader
profiling

#VS DRAWS Number of Draw commands (i.e., profiling samples)
emitted during vertex shader profiling

#FS DRAWS Number of Draw commands (i.e., profiling samples)

emitted during fragment shader profiling

#VS TRIANGLES

Number of triangles rendered at vertex shader profiling

#FS TRIANGLES

Number of triangles rendered at fragment shader
profiling

Srb

Size of the render buffer in pixels

81

3. Execution Time Prediction

The measured execution time t,, of the vertex shader profiling is used to

calculate

., tes — #VS_CGs x mayen() — #VS_DRAW S X parawconst
PUvertex _shader = #VS_TR]ANGLES 3 .

(3.10)
The term #VS DRAWS represents the number of DRAW commands. FEach
DrAwW command draws #VS TRIANGLES triangles, each consisting of 3
vertices. The number of CGs is represented by numcgs, since the GPU driver
might emit more than one CG per DRAW call, e.g., if the command buffer needs
to be switched.

The measured execution time t¢; of the fragment shader profiling is used to

calculate
by — #FS_TRIANGLES X 3 X pUyertex_shader — f sub
PUfragment shader = #FS_TRIANGLES * % :
(3.11)
where

fsub=#FS CGs x mausn() — #FS_DRAWS X pCarawconst

Since OpenGL does not allow to run fragment processing separate from vertex
processing, the time ¢, includes also a small amount of vertex processing time.
The determined parameter pvyertex shader; Which estimates the execution time per
vertex, and the number of vertices (using #FS_TRIANGLES) is used to calculate
this vertex processing time. The overhead to flush a CGs and the number of

DRAW commands is again also considered.

82

3.5. Prediction Models for DRAW

3.5.3. Shader model: based on machine learning

For the prediction of Draw commands, obtaining the performance parameters
that depend on the OpenGL ES 2.0 Context is mandatory. In Section 3.5.2.2 we
describe how profiling during runtime can be used to determine them. An
implementation based on profiling during runtime can be easily used for
different GPUs and platforms since often none or only minor changes are
required. However, it suffers from the fact that dispatching profiling CGs could
violate a deadline of an application that has higher priority. For cases where
new applications can join during runtime of important 3D applications, the
proposed profiling during runtime cannot be used safely. In this section, we
therefore describe a machine-learning-based approach to determine the
performance parameters that depend on the OpenGL ES 2.0 Context without
profiling. Our models determine the execution time per vertex myp(ctx) and
per fragment mgp (ctx) (cf., Sec. 3.5). These models are tailored for the specific
GPU model and platform, including determining and extracting the relevant
features. However, this one-time effort is often justified by the achieved benefits,
since for an automotive scenario in a given vehicle model the used GPU and
platform are changed rarely.

We thoroughly analyzed the GPU behavior to determine suitable features for
a machine learning algorithm. This analysis needs to be done for each GPU
platform, since GPU behavior might differ between models or vendors. The model
presented in this section is based on the analysis of the Vivante GC2000 3D GPU
integrated into a Freescale .MX6 SABRE Automotive platform. However, the
general approach can also be used to create an adapted model for further GPU

platforms.

3.5.3.1. Introduction and Overview

Choosing the right machine learning concept for a problem is crucial to get
reasonable results. In Section 3.1.3, we introduced the relevant machine learning
concepts. The desired output is the estimated execution time. Thus, supervised
learning is preferred over unsupervised learning. For supervised learning, many
concepts exist (cf., Sec. 3.1.3). We analyzed, whether a linear regression model
can be used for execution time prediction. In Fig. 3.12, we depict the execution
time of a simple vertex shader that does not produce any fragments and uses a
varying number of “ADD” commands. Additionally, we used between 1 and 4

vertex attributes of type vecd. Each curve starts with a range where a more

83

3. Execution Time Prediction

4x vecd -----

il i ST T Bxvecd e]
2p — T S o S S . 2xvec4]
L . . o . . A - Ixvecd N
0 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90

Number of ADD commands in shader

Figure 3.12.: Execution time of VS depending on the number of vertex attributes

complex computation (i.e., more ADD commands) does not increase execution
time; after that it continues linearly. The constant execution time, as well as
the point of transition to linear execution time, are unfortunately depending on
the vertex attributes. In more detail, the following behavior of the Vivante
GC2000 GPU was observed and needs to be considered at model creation:

e The set of vertex attributes in the vertex shader defines a minimum vertex

shader execution time (Fig. 3.12).

e The set of varying variables influences the speed of GPU instructions in the

vertex shader.

e The set of varying variables and fragment post-processing parameters define

a minimum fragment shader execution time.

e To a minor degree, the set of varying variables influences the execution

speed of fragment shader instructions.

e Accessing textures involves memory access, which depends on memory
latency and interferes with other memory-related executions of the

shaders.

Although linear regression can support piece-wise linear functions, the
transition points must be constant. Since Fig. 3.12 shows that the transition
point of vertex shaders depends on the input data, a single linear model is
insufficient. To cope with this situation, a combination of two linear models
could be used where one predicts the minimum execution time and the other

the part that depends on the used GPU instructions. However, the latter

84

3.5. Prediction Models for DRAW

depends also on the set of varying variables. Therefore, for each possible
combination of vertex attributes a feature would have to be created. Let
numVarsy ax be the maximum supported number of varying variables. For
each of the 97 different GPU instructions and up to numVarsyax varying
variables, > " Varsmax (4+Z_1) features would be required to predict the part of
the vertex shader execution time that depends on the used GPU instructions.
E.g., for numVarsyax = 5 (supporting up to 5 varying variables), 12222
features would be required. This is quite much, since for each prediction a
feature vector of this size would have to be created and evaluated on the
embedded system—a quite compute-intensive undertaking. Additionally, this
approach suffers from the fact that a maximum number of varying variables
numV arsprax must be specified. If the number of varying variables should be
higher than numVarsy;ax, no knowledge would be available. Therefore, linear
regression is not expressive enough for this GPU model. Solutions with
sufficient expressiveness are non-linear models such as multivariate adaptive
regression splines (MARS) [Fri91] or continuous piecewise-linear neural
networks (CPLNN) such as [WHJO0S].

When choosing a machine learning algorithm, we considered—besides
expressiveness—the expected CPU time for prediction

Using multi-layered CPLNNs not only requires much more training data but
also ends up in a much bigger model with many neurons and many input
parameters. While the training can be performed on high-performance compute
clusters, the prediction must be performed on the embedded platform, which
has constrained resources. For cost reasons, reducing resource consumption is a
major goal of the automotive domain. For this reason, CPLNNs and deep
learning were not considered.

We decided to use MARS |[Fri91| models for the following reasons. When a
MARS model is created, all terms of low significance are removed and therefore
do not cause computational effort at prediction. Additionally, MARS provides
just the right amount of expressiveness for the GPU behavior observed. Note,
however, that for other GPU models, other machine learning concepts might
suite better. To create our MARS models, we used the “earth” implementation
in R [Milll]. R is a widely-used software environment for statistical computing
and evaluations [RPr17, MB10]. We always used the option “fast.k=0”, which
disables a heuristic that speeds up model creation but often failed to identify
important terms. For a similar reason, we used ‘nk=1000" to use a large search

space. The execution time of a shader instance depends on the time consumed

85

3. Execution Time Prediction

by a GPU shader core and auxiliary time. The time consumed by a GPU
shader core linearly increases with the number of GPU commands, for which we
introduce the submodels mepqsvs(ctx) and mepgsps(ctx). If a shader contains
texture lookup commands such as “texture2D”, this introduces memory access
overhead, for which we introduce the submodel myeyq(shader). The auxiliary
time represents the effort of loading the respective input data (vertex attributes
or varying variables) and performing Primitive Assembly or fragment
post-processing. For this purpose, we introduce the submodels m,uxvs(ctx) and
Myuyrs (ctx). Our measurements show that the GPU performs this effort in
parallel to the execution performed by the GPU shader cores and thus
constitutes the minimum execution time. If the auxiliary time is higher than
the GPU shader core time, the utilization of the shader cores is reduced.
Similarly, if the auxiliary time is lower, the respective hardware subsystems are
repeatedly idle. In order to keep the model complexity—and thus the
computational effort of prediction—small, for both, vertex and fragment shader,
the following combined models are therefore used to estimate the draw

execution time Mgpay (Ncans, vertices, ctx) (cf., Sec. 3.5):

myp (ctx) = mazr(Mauxys (CtX), Memasvs (CtX) + Myexia (ctz.vs))

mpp (ctx) = max(Mauxrs (CtX), Memases (CX) + Myexia(ctz. f5))

To obtain good models, a huge number of different shaders is required. Since the
set of available existing 3D applications and their shaders is orders of magnitudes
too small, we created tailored training data for supervised learning by varying the
parameters used for features. The output vector always has only one element: the
relevant part of the measured execution time. Parts of the execution time that
were not relevant, were subtracted from the actually measured execution times,
namely pcush, Mcails X PCdrawconst; and the unavoidable vertex shader execution

times of the fragment shader training data.

86

3.5. Prediction Models for DRAW

Nomenclature The submodels use the terms listed in Table 3.4. These terms

Table 3.4.: Nomenclature of MARS submodel terms

Term Description

H#Ay, #As, #A3, #A4 Number of vertex attributes of type float, vec2, vec3, vecd
numAttrs #Ay + #As + #As + #A; (number of vertex attributes)
numAttrFloats A4# Ay + 3#A3 + 2#As + #A; (vertex attribute components)
#Vy, #Va, #V3, #V, Number of varying variables of type float, vec2, vec3, vecd
numVars #Vy + #Vs + #Vy + #V; (number of varying variables)
numVarFloats 44V + 3#Vs + 2#4Vy + #V; (varying variable components)
#VSemds € N°7 GPU instructions per vertex shader instance

#FSemas € N7 GPU instructions per fragment shader instance

were carefully selected based on the observed GPU behavior on large training
data, as suggested by others (e.g., |GEO03]). Next, we present our five MARS

submodels.

3.5.3.2. Predicted Auxiliary Vertex Shader Time

As discussed earlier, the auxiliary vertex shader time depends on the set of used
vertex attributes. For few commands, the execution time does not depend on
the number of commands. For more commands, it moves on to a linear
dependency. Next, we explain the respective submodel m,s(ctx). We
analyzed how the permutation of vertex attributes influences the execution time
and created training data using all possible permutations of one to four vertex
attributes (typical applications use between one and three vertex attributes).
The order in which the vertex attributes were defined had no impact.
Therefore, we used #A;, #A, #Asz and #A, as features. Additionally, we
used numAttrs and numAttrFloats, which allows MARS to build a model with

less terms without compromising accuracy. We created the submodel
Mauyvs (ctx) with degree = 6 and thresh = le — 08 (cf., Sec. 3.1.3.2). With 34
terms, a very good prediction was achieved. The cumulative

distribution—depicted in Fig. 3.13a—shows that 95% of the values have an
error of less than 0.2ns per shader instance and the worst error observed was
below 2ns. The estimations were in the range of about 4ns to 33ns. The
residuals vs. fitted plot (Fig. 3.13b) shows that for the vast majority,

underestimation is of similar order than overestimation.

87

3. Execution Time Prediction

Proportion of samples [%] Residuals [ns]
100
80 — 1 4) .
60 0 - 5:1' :’i l'.li 'll‘l I||
40 A
20 — ~1 7
0 —
T T T T 1 T T T T T T
0.0 0.5 1.0 15 2.0 5 10 15 20 25 30
abs(residuals) [ns] Fitted [ns]
(a) Cumulative distribution (b) Residuals vs. fitted

Figure 3.13.: Error of submodel for auxiliary vertex shader execution time

3.5.3.3. Predicted Auxiliary Fragment Shader Time

For a fragment shader, the varying variables serve as input, comparable to what
vertex attributes are for the vertex shader. The auxiliary fragment shader time
depends on the set of used varying variables. Therefore, the submodel of the
auxiliary fragment shader time my.ps(ctx) is similar to the submodel of the
auxiliary vertex shader time m,.vs(ctx). Next, we explain the respective model
Myurs (ctx). The auxiliary fragment shader time depends on the used varying
variables, only. We therefore analyzed how the permutation of varying variables
influences the execution time and created training data using all possible
permutations of one to four varying variables. The order in which the varying
variables were defined had no impact. Therefore, we used #V;, #V,, #V3, and
#V, as features. Additionally, we used numAttrs and numAttrFloats, which
allow MARS to build a model with less terms without compromising accuracy.
Moreover, blending and depth test were used as binary features, i.e., a 0 means
“disabled”, a 1 means “enabled”. For m,.rs(ctx), 38 terms were selected. The
features representing Depth test and Blending were determined as the most
important. This indicates that they introduce overhead due to additional
memory operations. The cumulative distribution of the absolute error is given
in Fig. 3.14a and shows that 95% of the samples are fitted with an absolute
error of less than only about 0.1ns. Given that the fitted values go up to about
5.12ns (cf., Fig. 3.14b), the achieved accuracy is good.

88

3.5. Prediction Models for DRAW

Proportion of samples [%)] Residuals [ns]
100
1.0
80 T :
0.5 b o v
60 — ot ;o i
0.0
40 —
-0.5 —
20
-1.0
0 —
T T T T T T T T T T T T T T
00 02 04 06 08 10 1.2 15 20 25 3.0 35 40 45 5.0
abs(residuals) [ns] Fitted [ns]
(a) Cumulative distribution (b) Residuals vs. fitted

Figure 3.14.: Error of submodel for auxiliary fragment shader execution time

3.5.3.4. Predicted Vertex Shader Command Time

Next, we describe how the submodel for the vertex shader commands mepgsvs (ctx)
was created. We measured all permutations of one to four varying variables and 1
to 20 repetitions of 33 OpenGL Shading Language expressions creating different
GPU commands. We ignored all CGs that did not clearly exceed the auxiliary
vertex shader time myuvs(ctx). The execution time of a vertex shader that
exceeds the auxiliary vertex shader time depends on the number of the respective
GPU commands and the set of varying variables. It is independent from the used

vertex attributes, though.

Therefore, we used #V;, #Vi,, #V3, #V,, and the number of occurrences
of all available GPU commands #VS..qs as features. Additionally, using the
features numVars and numVarFloats allowed MARS to achieve good accuracy
using less terms. As an exception, we did not include the “MOV” command in
the set of features. The “MOV” command copies data and is—according to our
observations—often executed in parallel to other command types. For instance, a
sequence of “MOV”/“ADD” command pairs takes about as long to execute as the
same number of “ADD” commands without interleaving “MOV” commands. The
submodel was created with degree = 4 and thresh = 0.0000005. Additionally,
the set of all features representing numbers of GPU commands was passed in
the parameter linpreds to indicate that these terms shall enter only linearly into
the submodel. Limiting the number of occurrences of GPU commands to linear
dependencies is indicated by the data and significantly speeds up model creation.
A total of 465 terms were selected. Each term contains no more than one feature

representing the number of a GPU command. Each of those GPU command

89

3. Execution Time Prediction

Proportion of samples [%] Residuals [ns]
100 50 - !
80 2.5
60 —
0.0
40 —
20 -2.5
0 -5.0
| | | | | | | | | | |
0 1 2 3 4 5 0 100 200 300 400
abs(residuals) [ns] Fitted [ns]
(a) Cumulative distribution (b) Residuals vs. fitted

Figure 3.15.: Error of submodel for vertex shader commands execution time

features was used in up to 20 terms: One that depends only on the number of
command occurrences, the others depending on numVars and numVarFloats. For
about 95 % of the cases, the deviation from the submodel is normally distributed
with an error of less than 1.7ns (cf., Fig. 3.15a). Since the GPU behavior is
quite complex, the achieved maximum error of less than 5.4 ns is very good. The
residuals vs. fitted plot depicted in Fig. 3.15b shows that this small error was

achieved notwithstanding the residuals reach up to about 430 ns.

3.5.3.5. Predicted Fragment Shader Command time

In this section we describe how the submodel for the fragment shader commands
Memasrs (ctx) was created. We measured all permutation of one to four varying
variables and 1 to 20 repetitions of 34 OpenGL Shading Language expressions
creating different GPU commands. We ignored all CGs that did not clearly exceed
the auxiliary fragment shader time m,,yrs(ctx).

The fragment shader command time depends mainly on the number of executed
GPU instructions. Therefore, we used the vector #FS.,qs as feature, which
contains for each possible GPU instruction the number of executions per shader
instance. Since texture instructions additionally depend on the number of used
varying variables (although the impact is smaller compared to vertex shaders),
we additionally used #V;, #V,, #V3, #V,, numVars, and numVarFloats. Note
that one conclusion of our analysis is that executing the very same code in a
fragment shader is typically faster than in a vertex shader.

We created the submodel meyqsps(ctx) using “degree=6", “thresh=0.0000002",
and specified all components of #FS.4s in “linpreds” (cf., Sec. 3.1.3.2). As for

Memasvs (ctx) (cf., Sec. 3.5.3.4), providing “linpreds” reduces the search space for

90

3.5. Prediction Models for DRAW

MARS and is valid since all evaluations confirm a linear dependency on the
number of GPU instructions. A total of 44 terms were selected. The majority of
32 terms with degree 1 express the execution time per GPU instruction. Although
the GPU instruction set contains 97 different instructions (cf., Appendix A.1),
we were only able to produce about a third of them. This is mainly due to the
fact that many instructions such as bit operations or atomic operations are not
supported by OpenGL ES 2.0 shaders. The few terms with degree greater than
1 represent the execution time of texture commands depending on the varying

variables. As depicted in Fig. 3.16a, the prediction error was below 250 ps for

Proportion of samples [%] Residuals [ns]
100
1.5
80 1.0
60 — 0.5
0.0 e mde
20 -1.0
-1.5
0 —
T T T T | | | |
0.0 0.5 1.0 15 0 50 100 150
abs(residuals) [ns] Fitted [ns]
(a) Cumulative distribution (b) Residuals vs. fitted

Figure 3.16.: Error of submodel for fragment shader commands execution time

95 % of the samples and always below 1.9ns, which again is a very good result.
The residuals vs. fitted plot (Fig. 3.16b) shows that the fitted values are in the
range of up to about 170ns. In few cases, the fitted values of texture commands
show linear errors of small magnitude. These errors could be reduced by using a
lower threshold. We did not do this since the accuracy of meyqsrs (ctx) is sufficient

and lower thresholds tend to overfitting.

3.5.3.6. Predicted Texture Lookup Time

In this section, we describe how the submodel myeyq (shader) was obtained, which
predicts the overhead of texture lookups exceeding the time needed to lookup
a texture of width=1 and height=1. This is due to the fact that the execution
time for a texture lookup of size 1x1 is already included in mepgsvs(ctx) and
Memasrs (ctx). Thus, the submodel myeyq(shader) only represents the overhead
caused by texture memory read operations.

Many OpenGL programs use textures to create realistic 3D scenes. Typically,

coordinates calculated by the vertex shader are used in the fragment shader to

91

3. Execution Time Prediction

lookup the corresponding color value stored in the texture. Since the
GPU-internal cache for texture data is limited, looking up texture data might
imply reading data from memory (system memory or dedicated GPU memory).
Especially with embedded GPUs, the caches are small and many lookups imply
memory reads. As a matter of fact, the execution time of a texture lookup is
not always constant but depends on the ratio of cache hits to read operations.
In our evaluations, we observed that memory lookups by a texture unit can run
in parallel to the shader code placed after the texture lookup call. However, if
the shader code later reads the result of the texture lookup, it seems to be
blocked until the result is ready.

More precisely, the overhead introduced by shader lookups depends at least on

the following parameters:
e The exact place of the lookup calls in the shader code
e The size of the texture

e The probability of looking up a cached value, which depends on:

— the distribution of the lookup coordinates

the lookup frequency
— the exact permutation, if multiple textures are used

— the position in the shader code the value is first read (if exists)

Creating a model that considers all relevant parameters is unfortunately not
feasible. Using other machine learning approaches, like deep learning, would
increase both, the required number of samples, and the CPU overhead needed
for prediction, by orders of magnitudes. Additionally, the GPU cache hit ratio is
not available unless the OpenGL rendering pipeline would be emulated on the
CPU, first. To this end, we created a worst-case submodel that assumes that
texture lookups occur always at the end of a shader and thus no code runs in
parallel (which would decrease the overhead). We created training data that
uses between 1 and 3 texture lookups at the end of the shader code. For the
texture width and height, 18 different values were used, respectively, creating
324 different texture sizes. The execution time of size 1x1 was used as offset,
according to the purpose of myexq. The submodel myeqgq(shader) is used for
both, vertex and fragment shaders. To this end, we count the number of texture
lookups of the respective shader that is provided to the submodel as shader.

Since vertex and fragment shaders show a quite similar behavior in this regard

92

3.5. Prediction Models for DRAW

and the overestimation of texture lookups is typically high, a separate submodel
is not justified.

We created a MARS submodel for a texture lookup burst of numTexld lookup
calls and a texture with width w pixels and height h pixels. We used the features
numTezld, log(w), log(h), log(w x h), and 1/(w x h). In many evaluations, this
feature set turned out to fit well while keeping the size of the submodel small. A
total of 15 terms were selected with log(w X h) being the most relevant feature.
As depicted in Fig. 3.17b, the fitted values were between about 1.4 ns and about

4.9ns. The residuals show outliers, which are typically positive and caused by

Proportion of samples [%)] Residuals [ns]
100 -

80 0.5 o

60 LG

0.0

40 —

20 — -0.5

o —

| | | | | | | | | | | |
0.0 0.2 0.4 0.6 0.8 15 20 25 30 35 40 45
abs(residuals) [ns] Fitted [ns]
(a) Cumulative distribution (b) Residuals vs. fitted

Figure 3.17.: Error of submodel for texture lookup calls

interfering memory access. The cumulative distribution, depicted in Fig. 3.17a,
shows that 95 % of the samples were fitted with less than 50 ps error. Given that
memory access is subject to manifold interference, the achieved accuracy is very
good. Using more terms (e.g., created by using a lower threshold) did not provide

a significant improvement in accuracy.

93

3. Execution Time Prediction
3.6. Online adaption

For some rendered scenes, the predicted execution time might lean to either
overestimation or underestimation. The concept of online adaption presented in
this section is an optional improvement, which detects and corrects that. Online
adaption assumes that a prediction deviation that occurs for rendering a certain
scene with an OpenGL program, will typically occur also for the rendering of a
similar scene in the future, e.g., when rendering the next frame.

The measured execution time of a CG is available after its execution is
finished. We described in the Sections 3.5.2 and 3.5.3 how the measured
execution time is used to profile performance parameters and to create training
data for machine learning models. A further use of the measured execution time
is online adaption. This means, we trace for each CG the predicted execution
time, and, after the measured execution time is available, the respective
correction factor is updated. Each prediction uses the current value of the

respective correction factor to improve prediction accuracy.

In Listing 3.4 the code is depicted that runs when the execution time of a CG
is predicted, after the other prediction models presented earlier. As shown earlier
in Listing. 3.1, the function “online adaption()” returns the execution time for
a CG. Since the concept of online adaption is optional, the “online adaption()”
function returns the prediction execution without adaption in the case that online
adaption is not used. If this is the case, the sum of the four different kinds of
execution times is returned (Lines 1-2). According to Listing. 3.1, the variables
et flush, et clear, et sb, and et draw contain the execution times of our models
for FLusH, CLEAR, SWAPBUFFERS, and DRAW, respectively.

If online adaption is enabled, we first check all CGs that have finished since
the previous execution time prediction (Line 3). CGs with an execution time
below UPDATE THRESHOLD are skipped (Line 4), since measurement errors
would have a too high impact and changing the correction factor is not justified
in such a case. The correction factor that would have predicted the correct
value is computed as tCF (Line 5). When a 3D application changes the
OpenGL program, this often indicates that a different scene or partial scene is
rendered. To this end, dedicated correction factors for each program are used.
Since different prediction models are used for the different CG types—such as
SWAPBUFFERS and DRAW—, we additionally use dedicated correction factors
for each CG type. We distinguish between the predicted execution time of a CG
of its type (predET _of type) and auxiliary execution time (predET aux). We

94

3.6. Online adaption

Listing 3.4: online adaption() (Calculates the predicted execution time of a
CG, with or without online adaption)

1 if online adaption disabled:

2 return (et flush + et clear + et _draw + et sb)

3 for each CG finished in the meanwhile:

4 if CG.measuredET > UPDATE THRESHOLD:

5 tCF = (CG.measuredET — CG.predET aux) / CG.predET_ of type
6 newCF = CG. program .CF|[CG. type| x SMOOTHINGFACTOR

7 + (tCF x (1 — SMOOTHINGFACTOR))

8 if (newCF > CG.program.CF[CG. type])

9 CG.program .CF[CG. type]| =

10 MIN (newCF, CG.program.CF|[CG. type|+CF_MAX INCREASE)
11 else

12 CG. program .CF|[CG. type| = MAX(0.000001,

13 MAX(newCF, CG.program.CF[CG. type|*CF _MAX DECREASE))

14 nextCG.type = determine type() // UNKNOWN, EVENT, DRAW, SB
15 nextCG . predET aux = et flush

16 nextCG . predET of type = 0

17KF =1

18 nextCG . program = current gl program

19 if nextCG.program:

20 KF = nextCG. program .CF[CG. type |

21 if nextCG.type = DRAW:

22 nextCG.predET of type = et draw

23 nextCG.predET aux 4= et clear + et _sb
24 if nextCG.type = SB:

25 nextCG.predET of type = et _sb

26 nextCG.predET aux 4= et clear + et draw

27 return (nextCG.predET of type % KF) + nextCG.predET aux

then use exponential smoothing to calculate newCF (Lines 6-7). Exponential
smoothing was first presented by Brown [Bro56|. In order to prevent extreme
changes caused by single prediction deviations, we extended Brown’s concept by
restricting changes to the correction factor (Lines 8-13). More precisely, the

parameters CF_MAX INCREASE and CF_MAX DECREASE define the

maximum allowed change of a correction factor per executed CG.

In the second part, starting in Line 14, we assign the adapted execution time,
i.e., using the respective correction factor. To this end, we determine the type of
the CG and the current OpenGL program. For the rare case where no OpenGL
program is currently used (e.g., at OpenGL initialization), no correction factor
applies (Lines 17 and 19). The correction factors are applied only to the respective
part (i.e., predET of type) of the execution time, the remaining time (e.g.,
DCaush) s assigned to predET aux (Lines 21-27).

95

3. Execution Time Prediction

Online adaption allows a fine-grained adjustment of the prediction to the
rendered scenario and application. The prediction models presented in the
Sections 3.4 and 3.5 predict the execution time even for completely unknown
applications. These concepts can be combined with our proposed online

adaption concept to improve the average accuracy.

96

3.7. Implementation
3.7. Implementation

We have implemented our concepts for the Freescale . MX6 embedded platform
using a Yocto 1.8 Linux distribution with Linux kernel 3.14. The OpenGL ES
Context Monitor and the Predictor with the Prediction models (cf., Fig. 3.6)
are implemented in a shared library called “libETP”. It consists of 16502 lines of
C code and 1847 lines of comments in 42 .c and .h files (determined by “cloc”).
The Execution Time Monitor is implemented in kernel space and uses the
timestamps taken in the 3D GPU’s interrupt service routine (ISR). Since we
perform time measurement within an ISR, kernel latency directly affects
precision of timestamps. To this end, we applied the preempt-rt patch to the
Linux kernel to improve latency. Additionally, the priority of the 3D GPU’s
ISRISR was increased from 50 to 95, to prevent other threads (including other
ISRs) from delaying or interrupting the 3D GPU’s ISR.

3.7.1. Architecture

The implementation of our framework extends the existing Linux architecture.
The shared library LibETP intercepts OpenGL ES 2.0 and EGL calls and
performs the prediction. The kernel space driver is extended to measures the
execution time of each CG. A bi-directional interface between libETP and the
kernel space driver provides the kernel space with the estimated execution time
of each CG and informs libETP about the measured (i.e., real) execution time
after the GPU finished execution. The architecture of our framework is depicted
in Fig. 3.18. To exchange data between libETP and the kernel module, we use a
shared memory segment (ETP data). This shared memory is allocated by the
kernel module for each application thread accessing the GPU. It can be mapped
into user space using a mmap call on the modules’ associated character device.
The shared memory segment is viewed as an array of structs where each struct
contains the predicted execution time (assigned in user space) and the measured
execution time (assigned in kernel space). The segment index represents the
array index containing the data for the arriving CG. The user space part of the
prediction is encapsulated in the shared library 1ibETP, which is binary
compatible to libGLESv2 (for OpenGL ES 2.0) and libEGL (for EGL) libraries.
It intercepts all API calls of these libraries and traces them within the
prediction module (@ in Fig. 3.18) to keep track of the current OpenGL ES 2.0
Context. Subsequently, it forwards the calls to the native GPU driver libraries.

97

3. Execution Time Prediction

Graphic application

EGL GLESv2
EGL-stub GLESv2-stub

1 I R .
— ——r— libETP
D e, Tk
2
EGL § GLESv2
user Space

kernel space

Linux —_—_—__I
kernel{ m

Figure 3.18.: Implemented framework architecture

Eventually, the native GPU driver wants to flush the current CG to the kernel,
which is implemented by calling the “ioctl” function. In ibETP we intercept the
call to “ioctl” and invoke a callback function (@). The callback function
completes the current DRAW batch, calculates the predicted execution time,
and writes it to the next unused shared memory segment. Finally, the callback
function invokes the native “ioct]” function with the respective parameters ().
Each time the GPU driver module in kernel space receives a syscall with a new
CG, it reads the predicted execution time from the associated shared memory
ETP data. Thus, a GPU scheduler can use the predicted execution time for
scheduling decisions (see Chapter 4). Before sending a CG to the GPU (which
is labeled as @), the kernel GPU driver always appends a GPU
operation—similar to what was proposed in |[KLRI11]—which causes the GPU
to send an interrupt after that CG has been executed. The ISR in the GPU
driver module takes the current time stamp, calculates the CGs execution time,
and writes it to the ETP data. This allows the prediction module to read the
execution times from the ETP data (®). Next, we describe in more detail how

libETP is implemented, and especially how the prediction module works.

3.7.2. Initialization of the shared library libETP

When the application issues its first EGL or OpenGL ES 2.0 command, libETP

performs the following steps:

e Read prediction parameters, such as prediction model, or evaluation modes

98

3.7. Implementation

e Initialize measurement traces and log file output

e Initialize internal data structures and prediction cache

e Map native OpenGL ES 2.0 and EGL symbols

e Map the shared memory (ETP data) from the kernel module

After that ibETP traces all relevant EGL and OpenGL calls to internally keep

the current state.

3.7.3. Prediction model creation

In order to create the offline models for the system-specific performance
parameters and the MARS models, we created a small interface for evaluation
applications. More precisely, ibETP exports the following functions, which can
be accessed by applications running on top. The function
“getCurrentDatalndex” returns the next index of the SHM ETP data. It is
called before and after one or more CGs have been submitted (e.g., by calling
glFlush). These two calls provide the range of ETP data indices and are passed
to the function “getMeasuredExecutionTimeOfRange”, which sleeps until all
CGs have finished execution and returns the aggregated values of the measured
execution time and the measured number of fragments. Since the MARS models
must not contain the system-specific performance parameters, these parameter
values can be queried from libETP using the “getConstPredictionParameters”
function.

To be aware of the current render buffer resolution, libETP uses the first call for
egllnitialize to keep the current EGLDisplay handle. When the application calls
eglCreateWindowSurface, before returning to the application, libETP creates an
internal data structure entry for the native surface. It contains the relevant data,
e.g., width and height of the window, and a pointer to the native window.

For profiling during runtime, a dedicated window surface and OpenGL ES 2.0
Context are created. For the profiling we use a render buffer size of 1024 by 768
pixels. When an OpenGL program is used the first time for rendering, depending
on the prediction mode, MARS-based or profiling-based models are used. If
profiling during runtime is used, libETP checks whether an XML settings file
exists that contains the matching profiling-based performance parameters. An
example of such a file is depicted in Appendix A.2. If the XML settings file exists

and contains the profiling parameters for this particular OpenGL program, those

99

3. Execution Time Prediction

cached values are used and the profiling during runtime must not be executed
again. Otherwise, the profiling during runtime as described in Sec. 3.5.2.2 is
executed. For the profiling of the execution time of vertex operations ty g we draw
30000 vertices that are rasterized to 0 fragments. For profiling the execution time
of fragment operations tpg we draw 3 triangles, each covering half of the render
buffer, we therefore render 3 x 393216 fragments.

When the Vivante GPU driver receives an eglSwapBuffers call, it does not
directly insert the respective GPU instructions into the command buffer.
Instead, the GPU driver first flushes the staged GPU instructions as a CG and
subsequently inserts the GPU instructions that perform the SWAPBUFFERS
operation. This means that the first CG submitted after an eglSwapBuffers call
actually does not contain any SWAPBUFFERS instructions, but the subsequent
CG. This is due to the fact, that GPU drivers realize SWAPBUFFERS typically
in dedicated CGs.

In our implementation for Vivante, the execution time of a buffer resolve
command is not estimated by the render buffer size as provided by the OpenGL
ES Context Monitor, but by directly tracing the corresponding buffer resolve
commands in the command buffer. Whether a CG is of type “Draw” or of type
“SB” (which is relevant for the online adaption concept presented in Sec. 3.6),
can easily be determined by taking the GPU driver behavior upon a
“eglSwapBuffers” call into account. When a “eglSwapBuffers” call is detected by
the OpenGL ES Context Monitor, the next CG is of type “Draw”, followed by a
CG of type “SB”.

3.7.4. Used libraries and algorithms

Our libETP shared library depends on the following shared libraries:
EGL: The native GPU driver for EGL.

GLES2: The native GPU driver for OpenGL ES 2.0.

xml2: An open source library providing XML support.

m: The standard math library.

rt: The real-time extensions library.

As described in Sec. 3.5.1.1, we calculate the size of the projected triangle. Since

a triangle potentially intersects with the order of the render buffer, we calculate

100

3.7. Implementation

the intersection, i.e., the area of the triangle clipped to the boundaries of the
render buffer. To this end, we use the Sutherland-Hodgman clipping algorithm
[SH74].

3.7.5. Modes of operation

A couple of parameters are supported by libETP that can change the default
behavior. Next, we briefly describe the parameters used in our evaluations:
MODE (default “BB”) selects the prediction model:
BB bounding box heuristic with profiling-based shader prediction
TS triangle samples heuristic with profiling-based shader prediction
MARS bounding box heuristic with MARS-based shader prediction
COMPARE Run the three previous modes in parallel and dump results.

Additionally, the history-based prediction is executed for comparison.

PROFILING FB NUM (default 3) Number of the framebuffer used for
profiling.

OVERPREDICT FACTOR (default 1.0) The predicted execution time is

multiplied with this factor before passing it to the kernel space.

REAL NUM _ FRAG_ MODE (default “no”) Evaluation mode that allows for
a fair comparison between profiling and MARS. If enabled, libETP ensures
that each CG contains not more than one DRAW batch. The prediction of
this DRAW batch is performed after the CG has finished execution and is

aware of the real number of fragments, measured by the GPU.

EXIT AFTER _NUM _ DRAWS (default co) The process is terminated after
the specified number of DRAW CGs was rendered.

PROFILING XML _FILE (default “~/libetp_ profiling.xml”) Full path to the
XML profiling data file. Each application process uses its own XML file.

101

3. Execution Time Prediction

3.8. Evaluation

In this section, we present the evaluation setup and discuss the results.

3.8.1. Setup
3.8.1.1. System

For the evaluation of our execution time prediction concepts we used the
implementation described in Sec. 3.7. We also implemented the history-based
execution time prediction approach proposed by Kato et al. [KLRI11], which
serves as a comparison to our approaches. As hardware platform we used a
Freescale i.MX6 SABRE Automotive Platform. The board features a quad core
ARM CPU running at 800 MHz, 2 GB of RAM, and a Vivante GC2000 GPU for
3D rendering. We used a Yocto 1.8 system image based on Linux kernel 3.14.28
patched by Freescale with preempt-rt patches and the Vivante driver
V5.0.11.p4.25762. For evaluation we used the FIFO algorithm of our GPU
scheduler (cf., Chapter 4), which does not synchronize to the screen’s refresh
rate and therefore does not slow down the applications. For more details on the
platform and the GPU scheduler, see Sec. 4.5.

3.8.1.2. Measurement accuracy

Accurate time measurements of the GPU execution are very important.
Measurement errors during profiling or at creating training data can lead to
wrong predictions. Since the timestamps of finished CGs are taken in the 3D
GPU’s ISR, a delayed execution of the ISR would directly affect measurement
accuracy. Measurement errors also add inaccuracy to measurements of the
prediction error. Execution of an ISR by the operating system can be delayed
due to context switches or non-interruptible kernel code. To measure this
latency of the Linux kernel, commonly the tool “cyclictest” of the rt-tests tool
suite [rt-18] is used. In Figure 3.19, we depict the Linux kernel latency
distribution—summarized over all four CPU cores—created by “cyclictest”S.
The red curve shows the Linux kernel latency, if only cyclictest was running. An
average latency of about 20 ps and a maximum of 50 ps was observed. These are
actually quite good results, which are even significantly better than the results
observed by OSADL on a Vanilla kernel with preempt-rt patches [OSA|, where

6Used parameters: “cyclictest -1100000000 -m -Sp99 -i200 -H2000 -’

102

3.8. Evaluation

leg - ™ During 3D rendering
Without rendering

le7 |
le6
le5
led |
le3

le2

Number of latency samples

lel |

1e0 L | L
0 20 40 60 80 100

Latency [ps]

Figure 3.19.: Kernel latency distribution

the average and worst-case latencies are significantly higher. Thus, the latency
of the Linux kernel version published by Freescale is much better, yet. We
additionally evaluated the latency while the 3D GPU driver was under heavy
load and depicted the results as blue line in Fig. 3.19. We executed 20 instances
of the small “es2gears” benchmark program and activated FIFO scheduling,
which just dispatches the small CGs as fast as possible. The 3D dispatching was
active during the whole time cyclictest was active (about 5.5 hours). According
to our results, dispatching 3D CGs has a significant impact on the latency,
which increases to about 26 s on average and 115pus in the worst-case. This
shows that the used implementation of dispatching and ISRs leave much room
for improvement concerning low latency. Actually, the latency measured by
cyclictest is the latency for user space processes, which, e.g., includes the time
for the CPU scheduler to select the process and the time needed for the context
switch from kernel to user space, which explains the minimum latency of about
11ps. Since the time critical components of our GPU scheduling framework are
all implemented in kernel space, especially the overhead for context switch to
user space does not apply, and the minimum latency might be a bit smaller
than what was observed with cyclictest. Nevertheless, our results indicate that
the measurement accuracy on the used platform is limited to the order of tens
of microseconds. This directly affects our measurements of the execution time of
CGs in Sec. 3.8.5, including the effectiveness of online adaption. Thus, the
limited accuracy of the Linux kernel shows up as a prediction error in our

measurement results that cannot be avoided.

103

3. Execution Time Prediction

3.8.1.3. System-specific parameters

We calculated the system-specific performance parameters (cf. Sec. 3.3) using
linear regression. The training data was created by rendering 10000 triangles
with 2 vertex attributes of size vec4”. The number of DRAW calls was varied
between 1 and 10000. Since the driver’s command buffer is limited in size, higher
numbers of DRAW calls result in multiple CGs. For instance, in the evaluation
data, 10000 DRAW calls were split up by the driver into 10 CGs. Using linear

regression, we obtained the two parameters

PCush = 34.49 ns
PCdrawconst = 0.421 Bs.

The system constant for the SWAPBUFFERS command was determined using the

rounded average of the evaluations described later in this section as

DPCswapbuffers = 1.85ns.

For the used hardware architecture, our evaluations determined

PCclear[btypes] = Os
PCdepth = —0.474 ns

pcblending = 1.382ns.

3.8.1.4. Online adaption parameters

Our online adaption algorithm (cf., Listing 3.4) uses three parameters that
affect smoothing. We compared the prediction error distributions of different
combinations of these parameters. Based on the observed error distributions, we

used the following default parameters in our evaluations.

SMOOTHINGFACTOR = 0.9
CF_MAX INCREASE =1.1
CF _MAX DECREASE =0.9

“Increasing the number of vertex attributes increased the amount and magnitude of outliers
but did not reveal as relevant feature.

104

3.8. Evaluation

3.8.1.5. Applications

For our evaluations, we used a wide choice of OpenGL ES 2.0 applications. In
Sec. 3.8.4, we used a full run of the benchmark glmark2-es2, provided by [glm].
In Sec. 3.8.3 and Sec. 3.8.5, we used the applications listed and briefly described

in the following. In Fig. 3.20, a screenshot for each application is depicted.

(a) es2gears, a demo provided by MESA [mes]. Uses 280 DRAW commands and

1360 vertices to render one frame that consists of 3 rotating gearwheels.

(b) glmark2-es2 “build”: The “build” scene rotates a given 3D model, by default

a horse containing 21516 vertices.

(c) glmark2-es2 “shading™ The “shading” scene uses a more sophisticated
fragment shader for improved lightning and rotates a cat model with
43044 vertices.

(d) glmark2-es2 “texture™ Maps a texture on the 3D object, by default a simple

cube consisting of 36 vertices.

(e) Automotive speedometer application (resolution 456x456): Uses two
textures, each mapped on a square of two triangles, to display an indicator

needle showing the current speed. It uses about 260000 fragments.

(f) Quake 3 “demo four” (resolution 1440x544): OpenGL ES 2.0 port of the

open source game ioquake3® (resolution 1440x540).

Additionally, a comparison of the selected applications is provided in

Table 3.5. Our selection of applications consists of existing applications that are

Table 3.5.: Comparison table of 3D applications used for evaluation

Number of Shader Uses window
Application draws | vertices | scenes | complex. | textures | blending | VBOs | MVPM | size
es2gears high | medium 3 low no no no yes | medium
glmark2-es2 “build” low | medium 1 medium no no yes yes | medium
glmark2-es2 “shading” | low high 1 medium no no yes yes | medium
glmark?2-es2 “texture” low low 1 high yes no yes yes | medium
speedometer low low 2 medium yes yes no no small
Quake 3 “demo four” | medium | high | many | medium yes yes no yes big

publicly available. The only exception is the speedometer application, which

was written for the ARAMiS demonstrator (cf., Sec. 2.3), and intentionally also

8git ://github.com/1libv/ioquake3;branch=limare;rev=033a8a09546fcbc07e71accd6381191089e8bfe8

105

git://github.com/libv/ioquake3;branch=limare;rev=033a8a09546fcbc07e71accd6381191089e8bfe8

3. Execution Time Prediction

a) es2gears (c) glmark2-es2 “shading”

d) glmark2-es2 “texture” e) speedometer (f) Quake 3 “demo four”

Figure 3.20.: Screenshots of evaluated applications

covers the uncommon but valid case that no MVPM is used. Since it is not
possible to cover all possible combinations of 3D application features, we
selected these 6applications that represent combination and let us perform a
quite diverse and representative evaluation of our execution time prediction
concepts.

If not stated otherwise, the resolution is 800x600. All applications are patched
to use the platforms native framebuffer devices instead of X11. We evaluated for
application 10000 CGs using the COMPARE mode of libETP. The COMPARE
mode executes the implemented prediction methods in parallel and dumps it in
a separate file. Since writing to this file is flushed after each completed CG and
due to the amount of written data—in particular a hex dump of the command
buffer content—the applications are significantly slowed down. This, however,
only applies to the COMPARE mode, while in normal operation the prediction

introduces only little overhead.

3.8.2. Coverage factor

As explained in Sec. 3.5.1.4, the fragment heuristic based on bounding boxes
uses the coverage factor, which specifies the expected ratio between the area
covered by the projected bounding box and the number of fragments processed
during rendering on the GPU. Since the coverage factor significantly influences the

accuracy of the respective fragment heuristics, we evaluated the coverage for the

106

3.8. Evaluation

applications presented in Sec. 3.8.1.5. Table 3.6 shows for these applications the

average area covered by the bounding boxes. Additionally, the measured number

Table 3.6.: Comparison of the measured number of fragments with the area
covered by bounding boxes

Average number of fragments
Application / scene Measured | of the BBs| Ratio
es2gears 44585 70914 | 62.9%
glmark2-es2 “build” 51349 184078 | 27.9%
glmark2-es2 “shading” 91011 225935 | 40.3%
glmark2-es2 “texture” 157292 157292 | 100.0 %
speedometer 129959 146878 | 88.5%
Quake 3 “demo four” 62929 157189 | 40.0%

of fragments is depicted, which allows to calculate the ratio between the size
covered by the bounding box and the actual number of fragments, i.e., the best
coverage factor for each application. This mix of application has an average ratio
of about 60 %. Therefore, for our evaluations we used a coverage factor of 0.60.
We are aware, that this might not be accurate for all scenarios or applications.
However, the coverage factor targets a good estimate for applications unknown
so far. After an application has rendered a couple of CGs, its prediction accuracy
can be improved using the actually measured execution time and online adaption
(cf. Sec. 3.6).

3.8.3. Fragment Heuristics

The number of fragments has a very high impact on the execution time. In
this section, the accuracy of our bounding box (BB) heuristic is evaluated and
compared to our triangle samples (TS) heuristic. We compare both values with

the real number of fragments as provided by the Vivante profiler®.

3.8.3.1. Speedometer application

The results of the fragment heuristics for the speedometer application are
depicted in Fig. 3.21. Each frame is rendered using two CGs. The first CG
draws the background texture (207936 fragments), the second CG draws the
indicator texture (about 52000 fragments), as observed in Fig. 3.21b. For the

9We use the Vivante profiler field “ra_ valid pixel count”

107

3. Execution Time Prediction

Samples [%] Samples [%]

| TS heuristic S o N PO S S o | o]

90 BB heuristic -----) %0 ‘ ‘ ‘ ‘ ‘
TO o R ----------- A 70 PR PR R N EEEEE .
] S it et RS Aso po
ol SO0 AU SRR RS 0 P I S
o B T SIETY I B S

[i i i i i i
-150 -100 -50 0 50 0 50 100 150 200 250

Error [1000 fragments] Number of fragments per CG [1000]

(a) Error distribution of prediction (b) Measured number of fragments

Figure 3.21.: Accuracy of fragment heuristics, speedometer application

background CG, the BB approach determines the exact area of the texture, but
since the coverage factor 0.6 is applied, it is off by 40 %, cf. Fig. 3.21a. Thus,
the BB approach underestimates every second CG by about 104 000 fragments.
The underestimation of the foreground indicator texture depends on its angle
since the speedometer application performs the multiplication with the model
view projection matrix on the CPU instead of the GPU. Therefore, the BB
approach creates bounding boxes of different sizes depending on the angle,
which results in an error between —20 631 fragments and 10392 fragments (i.e.,
—39.7% to 20.0 % of the size of the indicator texture). The TS approach, which
does not use a coverage factor, predicts always the almost exact number of
fragments for both CGs. The highest error observed with the TS approach was
66 fragments (0.13 %) and is caused only by the small error introduced by our

triangle size approximation (cf., Sec. 3.5.1.1).

3.8.3.2. Glmark2 benchmark application

The results of the fragment heuristics for the glmark2 “build” benchmark are
depicted in Fig. 3.22. Each frame is rendered using only one DRAW command
that is contained in one CG. As depicted in Fig. 3.22b, the rotation varies the
number of fragments between 37164 and 61098. For this specific application,
the average ratio between bounding box area and number of fragments is 0.279 %
(cf., Table 3.6), since much space of the bounding box created by the horse model
is not covered by any fragment. Therefore, the used coverage factor of 0.6 is too

high. As observed in Fig. 3.22a, this leads to an average error of the BB approach

108

3.8. Evaluation

Samples [%] Samples [%]
ool o/ e]
70 - o EEREE SRR SR ST R SRR —470 - SREREETEETE s SRR v fe S
TS heuristic ' : : ; ; ; 2
>0 BB heuristic: - - - - - o S 0 R S A
ol s S
T T T T N (T
i Lot i i i i i i i i i
0 20 40 60 80 100 0 10 20 30 40 50 60
Error [1000 fragments] Number of fragments per CG [1000]
(a) Error distribution of prediction (b) Measured number of fragments

Figure 3.22.: Accuracy of fragment heuristics, glmark2-es2 “build” benchmark

of 220 % (59 772 pixels). The error of the TS approach is quite small and due to
random selection of the samples from the 7172 triangles of the horse model with
the probability p = 275 = 3.125%. The TS approach shows very good average
accuracy, except for a minor overprediction caused by small, overpainted regions

in the horse model.

3.8.3.3. Quake 3 “demo four” application

The results of the fragment heuristics for the Quake 3 “demo four” are depicted
in Fig. 3.23. Fig. 3.23b shows that many CGs produce very few fragments, while

few CGs produce many fragments, up to a maximum of about 3.25 million. As

Samples [%] Samples [%]

% ' Jeo b]
70 Lo]
e 1
) I s

. TS heuristic - '
10 _, >>>> CTTTT T ‘ BB heuristic ==---- 40 SO >>>> >>>>> —

L Chl 1 1 1 1 1 1 1 1 1 1 1 1

-1 0 1 2 3 4 5 6 7 0 0.5 1 1.5 2 2.5 3
Error [1000000 fragments] Number of fragments per CG [1000000]

(a) Error distribution of prediction (b) Measured number of fragments

Figure 3.23.: Accuracy of fragment heuristics, Quake 3 “demo four” application

109

3. Execution Time Prediction

depicted in Fig. 3.23a, the worst-case overestimation of the T'S approach is about
7327 502 fragments, for BB it is up to about 7300000 fragments. Additionally,
BB underestimates up to 1.6 million, while T'S only up to 0.9 million. For the
majority of CGs, both heuristics are very good. However, these CGs are easy to
predict since they have only few fragments. A significant challenge with Quake 3
is the effect of the early depth test, which does not create a fragment that will not
pass the Depth test, anyway. On the other hand, unfortunate order of the vertices
can result in a high overpainting rate, which explains why up to 3.25 million
fragments can be rendered to a render target that has a size of only 777 600 pixels.
This is the main reason, why the BB approach underestimates about 10 % of the
CGs. On the other hand, the TS approach rarely underestimates but significantly
overestimates about 10 % of the CGs, since TS, simply speaking, does not consider
that early depth test is used. A challenging application such as Quake 3 shows the
limitations of heuristics predicting the number of fragments. It also demonstrates
that the TS approach has very little underestimation but often overestimates,

which is less critical for real-time scheduling.

3.8.3.4. Summary of Fragments Heuristics

The evaluations show that TS prevents underestimation very well but suffers
from overestimation if the GPU uses the early depth test to reduce the number
of fragments. The BB approach is a lean alternative, which often provides a
good accuracy and has no clear tendency to either overestimation or
underestimation. In general, for complex multi-layered 3D scenes, especially of
untrusted applications, TS is preferred in favor of overprediction. For
single-layer 3D scenes, the BB approach is often the better choice, especially
since the vertex shader must be emulated for only 8 vertices, instead of up to

256 (for huge models even more) with T'S.

3.8.4. Shader execution time

Predicting the execution time of vertex and fragment shader instances is a
major prerequisite for a good overall execution time prediction. We presented a
profiling-based concept in Sec. 3.5.2 and a machine-learning-based approach
using MARS in Sec. 3.5.3. In this section, we show the effectiveness and
accuracy of both prediction concepts. To this end, we executed the OpenGL ES
2.0 benchmark glmark2-es2 [glm| using its default mode, which sequentially

runs all benchmark scenes. In order to achieve a fair comparison with the

110

3.8. Evaluation

Execution time [ms]
100

T T
ET using calibrated model =—1
Measured ET mm—
ET using MARS model C—1

10:— E

N N N
15 20 25 30

Program sequence number

Figure 3.24.: Accuracy of shader execution time prediction concepts

measured execution times, we provided both approaches with the accurate
number of fragments, which is provided to libETP by the kernel space driver.
To this end, we run libETP in the REAL NUM FRAG_ MODE mode
(cf., 3.7.5), where the CGs are first executed and prediction is done actually
after the execution has finished and the real number of fragments is available.
In Figure 3.24, the results for the first 30 shader programs are depicted. Further
shader programs show similar behavior. The occasional overestimation of

MARS is due to the following reasons:

e In the training data for the MARS model for texture load commands
(Myexaa) all texture load commands were at the very end of the shader
code. However, if other commands follow, the memory read operations
actually execute in parallel, which reduces the overall execution time

compared to Myexd-

e Texture lookup coordinates of the MARS training data were fully random,
which makes the texture cache as inefficient as possible. However, for
typical scenarios, close-by fragments are more likely to read the same

texture coordinates.
The rare cases where MARS underestimates are caused by:

e Memory operations that could not run concurrently in some parts of the
shader code (observed at the sequence numbers 6, 7, and 29) caused an
error of up to about 13%. Without a sophisticated prediction model for

concurrent memory access speed, this error cannot be avoided.

111

3. Execution Time Prediction

The MARS-based approach rarely underestimates and only by small percentage.
However, the worst-case assumption used for myeqq causes high overestimations
in some of the cases where texture lookup commands occur. Nevertheless, the
MARS-based submodel is a competitive alternative to the profiling-based
approach.

The profiling-based approach typically underestimates. This is mainly due to
the fact that the parameters during profiling differ from the real execution.
E.g., for profiling a fixed-size texture is used, since the actually used texture size
is not known at profiling time and profiling all combinations of texture sizes is
not feasible during runtime. To reduce underestimation, using a large texture
size during profiling would change this—with the consequence that the
profiling-based approach would also tend to overestimation, as it is the case
with the MARS-based model. In our evaluations, we nevertheless observed that
the MARS-based approach is more effective in preventing underestimation while
the profiling-based approach is more effective in preventing overestimation.

The MARS-based approach has the huge advantage that no profiling during
runtime is needed. For new applications, profiling would have to be done while
other (perhaps critical) applications are executed. To prevent impact, the
execution time of profiling CGs must also be known in advance, which would be
hard to achieve. Additionally, profiling consumes many GPU resources, for
instance some of the GLSL programs took more than 10s for profiling. If other
important applications are running during profiling, the GPU could not be fully
utilized by profiling, which would cause the profiling to run much
longer—severely impacting usability. The MARS model thus often provides a
better, both, efficient, and accurate method to estimate the shader execution

time.

3.8.5. Command Group prediction

In this section, the evaluation results for the prediction accuracy of complete
CGs under realistic conditions are presented. We compare the profiling-based
shader model with the two available fragment heuristics BB and TS. For the
sake of clarity, the MARS-based shader model is evaluated with the BB
heuristic, only. Thus, TS can be compared to BB, and a profiling-based
approach can be compared to a machine-learning-based approach. Additionally,
the evaluations show also the effect of activated online adaption (cf. Sec. 3.6).

In general, the results without online adaption represent the accuracy of new

112

3.8. Evaluation

applications or scenes, while active online adaption represents situations, where

a scene has already been rendered for a couple of frames.

3.8.5.1. Es2gears application

In Figure 3.25, the evaluation results for es2gears are depicted. Most CGs take

CG samples [%] CG samples [%]
' Prof./TS ===-- ' : : : : : :
90 Prof./BB ====- : : : : 90 - R | S
| MARS/BB o : : .o dap L U & o
80 Prof./TS w. OA 80 : :
70 | Prof./BB w. OA 70F - A -
MARS/BB w. OA . .
60 I History-based — — ! : : : : 60 - S C
50 f e ke 5 | S LU SRR RS
T A ST e e R T
30 e LEFEEEE EERRR s e S LN SRR AR
20 S = J : : oqo S
10 - Lo TR s : : : : 10 -/ L -
il P i i
300 200 0 200 400
Error [ps] ET per CG [us]

Figure 3.25.: Accuracy of DRAW prediction, es2gears application

about 375pus. The number of fragments were estimated by the BB approach
with an average error of only —4.5%, while the TS approach had an average
error of 32.8%. This explains why the profiling-based TS approach estimated
smaller execution times than the profiling-based BB approach. Since the
BB-based fragment heuristic is very accurate for this application, the
underestimation of the profiling-based BB approach is due to insufficient
accuracy of the profiling-based shader model. In contrast, the MARS-based
shader model, which is based on a huge amount of training data, achieves great
accuracy, even without online adaption. If online adaption is used, all
approaches are very accurate. The history-based approach predicted only about
12% of the CGs using its history, for the other about 88 % of the CGs, the
maximum execution time was predicted. Since the execution time of the CGs
containing the SWAPBUFFERS command were much higher (up to 1350ns),

their maximum execution times were used for about 88 % of the CGs.

113

3. Execution Time Prediction

3.8.5.2. Glmark2-es2 “build” benchmark
In Figure 3.26, the evaluation results for the glmark2 “build” scene are depicted.

The rendered horse model is overpredicted by the MARS model by about 30 %,

CG samples [%] CG samples [%]

Prof./TS ===-- :
92 - Prof./BB - ---- El o ©
L MARS/BB I —
80 Prof./TS w. OA 80 1 1
70 | Prof./BB w. OA ; 70] .
MARS/BB w. OA 7 . :
60 - History-based — —' : : : 60 IR R T
50 - S e I o S50 e T
R S o e 4ol
30 - R AR SRREEEEEEE S P B0 =
20 i T TR SRR 20
b oo I S AT Aol
i esablo oo - i i
600 -400 0 500 1000

Error [us] ET per CG [us]

Figure 3.26.: Accuracy of DRAW prediction, glmark2-es2 “build” benchmark

since the bounding box is a too big and therefore the coverage factor 0.6 is
significantly too high (a coverage factor of 0.279 would be perfect in this case,
see Table 3.6). The profiling-based shader model massively underestimates the
execution time per shader instance (cf., program sequence number 1 in
Figure 3.24). Although the T'S approach overpredicts the number of fragments
by only about 3%, the error of the profiling-approach leads to a significant
underestimation of the profiling-based TS approach of about 45%. The
profiling-based BB approach underestimates about 10% less since the
overestimation of the BB heuristic compensates the shader execution time error
to some degree. The triangle samples approach has a higher jitter in the
prediction of the number of fragments, since on average only about 2.8 % of the
triangles are used to extrapolate the number of fragments. Since jitter cannot
be compensated by online adaption, the standard deviation is significantly
higher than for the bounding box approaches. With online adaption and the
profiling-based bounding box approaches, less than 1% of the samples were an
underestimated by more than 42ps and less than 1% of the samples were
overestimated by more than 38 pus. Table 3.7 shows further error rates, showing

that significant prediction errors rarely occurred.

114

3.8. Evaluation

Table 3.7.: Prediction errors of Glmark2-es2 “build”

Prediction mode | Error < 200 pus | Error < 100 ps | Error > 100 ps | Error > 160 ps
Prof./BB w. OA 0.15% 0.36 % 0.13% 0.00%
Prof./TS w. OA 0.17% 0.39% 0.16 % 0.00%
MARS/BB w. OA 0.11% 0.34% 0.13% 0.00%

3.8.5.3. Glmark2-es2 “shading” benchmark

Figure 3.27 depicts the evaluation results for the glmark2 “shading” scene.
Without online-adaption, the profiling-based approaches underestimate
significantly by about 50%. The underestimations of the profiling-based
approaches are caused by an imprecise profiling that uses different vertex
attribute values than the real application. More precisely, the vertex shader
uses the vertex attributes “position” and “normal”, where “normal” are used as
normal coordinates to calculate the fragment color. Our profiling does not know
the semantic of each vertex attribute and therefore the same constant dummy
data is used for all vertex attributes (cf. Sec. 3.5.2). For this shader in
particular, the “Color” varying variable typically has the same value. The GPU
seems to detect that the fragment shader code is supposed to be executed with
the very same input data multiple times and applies a live optimization by
executing the fragment shader only once for multiple fragments and then
duplicating the result. Unfortunately, this effect makes profiling execute
significantly faster than the real application. The bounding box heuristic with
profiling is slightly better, since it slightly overestimates the number of
fragments. The MARS-based approach also underestimates the shader
execution time, but only by a few percent and therefore is much better than
profiling. Looking at the results for active online adaption, the two bounding
box approaches are able to keep the error very low. In contrast, for the
TS-based approach the online adaption still shows a significant error. This is
because the triangle samples are selected from the 14348 triangles with p,,in,
where the set of selected samples differs between different DRAW calls. This
introduces jitter to the estimated number of fragments that cannot be
compensated by online adaption. Since the scene (a rotating cat)—as well as
the bounding box—changes slowly, the bounding-box heuristic is smoothed by
online adaption better than the TS approach.

115

3. Execution Time Prediction

CG samples [%]

) IR BV RS NI/ P N

O FTZAE TR, s s 0 ~oJdeo b S T
: Qo : : : | ' ' : :

7O i N Prof./TS ===-- j 70 - R S

ST QoL Prof./BB ----- o e b] .

60 - . 60 —
: s MARS/BB ' : :

50 i +-7 Prof./TS w. OA 50 - IS R s
: « " Prof./BB w. OA 1 1

40 - MARS/BB w. OA 40 = S A S

30 --:--.s .+: History-based — — 0L A -

20 oottt a0

10 foo et SEEEEEE SRR RN) RO LA EELEEE S LA SR N
P i i i i / i i i i

-1000 -800 -600 -400 0 1000 2000
Error [us] ET per CG [us]

Figure 3.27.: Accuracy of DRAW prediction, glmark2-es2 “shading” benchmark

3.8.5.4. Glmark2-es2 “texture”’ benchmark

In the glmark2 “texture” scene, the profiling-based approaches without online
adaption show a huge underestimation, cf. Fig. 3.28. The “texture” benchmark
uses a simple cube model with a high-resolution texture. Since the bounding
box approach fits the rendered 3D model but uses a coverage factor of 0.6, the
estimated number of fragments is almost exactly 60 % of the real number of
fragments, i.e., underestimated by 40 %. The triangle samples heuristic is very
accurate: its worst-case error was only 134 fragments (0.085%). This explains,
why the error of the Prof./BB approach is about 90 us higher than the error of
the Prof./TS approach. The error of the profiling-based approaches is caused by
the parameters that differ between profiling and real execution. In particular,
during profiling textures of a fixed size are used (cf., Sec. 3.5.2) that are—in
this case—much smaller than the one used in the “texture” benchmark. This
demonstrates a strength of the MARS approach, which uses the texture size
of texture lookup commands for prediction. However, since the texture lookup
model of MARS is a worst-case estimation (cf., Sec. 3.5.3.6), MARS shows an
overestimation of roughly 700 ps. Using online-adaption, all approaches achieve
similar, much better prediction accuracy. However, for the “texture” benchmark
scene, online adaption is less effective than for many other applications (such
as, e.g., the “shading” benchmark scene discussed in the previous section). This
is due to the fact that at the 3D cube that is rendered for the “texture” scene,

the number of fragments changes quite fast when a cube side surface becomes

116

3.8. Evaluation

CG samples [%] CG samples [%]

: R : : 7 _ : .
M- R : ---------- R R R R SRR »,7»{-»-—90 ------- AR i
8O f B S R e o b R
70 L profTs e [S ELl SN RS

A et Prof./BB =-=--- . | B I B oo deo b U L
60 - e 460 | .

o MARS/BB L7 : : :

50 oo S8 Prof/TSW. OA ——— - f oo SRR e 50 |- T o

A Prof./BB w. OA I ; : : :
A # MARS/BBw. OA —— oo AR S RO R o S
30 - '/ .. History-based — — | AU g R 30 A -
20 : : | 20F S . .
10 0F - . .

- i i
-1500 -1000 -500 0 500 1000 0 1000 2000
Error [us] ET per CG [ps]

Figure 3.28.: Accuracy of DRAW prediction, glmark2-es2 “texture” benchmark

visible. Depending on the viewing angle, the cube has at least 147912 fragments
and at most 164 680 fragments. For many other applications, such as the cat
model rendered for the “shading” scene, the number of fragments changes over
time more slowly. The history-based approach was able to achieve a cache hit
in only 19 out of the 10000 CGs and thus almost always predicted the highest

execution time observed.

3.8.5.5. Speedometer application

The results for the speedometer application are depicted in Fig. 3.29. The
rendering of the speedometer combines two scenes: the background texture and
the pointer texture indicating the speed. The two scenes are rendered in
separate CGs of similar execution times. However, the CG drawing the pointer
texture has about 25% of fragments compared to CG drawing the background
texture, which results in two classes of CGs. While the TS heuristic quite
accurately predicts the number of fragments (maximum error below 0.13 %), the
BB heuristic underestimates the CG drawing the background texture by 40 %
due to the coverage factor of 0.6. This explains the lower error of the
profiling-based TS approach for 50 % of the samples. The two textures used for
the speedometer have a high resolution, significantly higher than the resolution
used while profiling. This causes the profiling-based approaches to
underestimate the fragment shader execution times. The MARS-based approach
overpredicts the texture operations due to its worst-case model. Since the two

classes of CGs differ by their amounts of fragments, MARS overpredicts the

117

3. Execution Time Prediction

CG samples [%] CG samples [%]

; - [/ / : : : : :
0 AR /A o D o 1°7r T
80 i RN SRR [e R P 180 ----- R S
70 [FEREE SRS R Foboee e S e 70 SRR
60 i f b SRR SRR SRR 160 |- S

. o ._l I . . : : . .

50 _ _________ .:;:._»,’ ____________ ’ - LRI -1 50
40 |- S | N S L © Prof. /TS ===--- - 40
: : : I : Prof./BB = ----

30 AR S R R UEREE e MARS/BB ~ 30

: ' . : : Prof./TS w. OA
20 I N I """"" - Prof./BB w. OA 7120
10 . : R L S MARS/BB w. OA - 10

: : : ; ; Hisltory-baseq —_—

500 1000 1500 2000 500 1000
Error [us] ET per CG [us]

Figure 3.29.: Accuracy of DRAW prediction, speedometer application

CGs drawing the background texture much more than the other ones.

Using online adaption, the TS-based approach shows a lower deviation than
the BB-based approaches, since the number of pixels is predicted always very
accurately. In contrast, the BB-based approaches predict the CG drawing the
pointer texture with changing accuracy. This is because the speedometer
application does not use a model view projection matrix and therefore the
bounding box created for the vertices changes its size with the angle of the
speed-indicating pointer. To this end, online adaption continuously adapts the
correction factor for the pointer scene, which slightly reduces accuracy for 50 %
of the samples. The history-based approach was able to use its cache for the
prediction of only 40 out of the 10000 CGs. This shows again, that using a

history for prediction is not a generic solution at all.

3.8.5.6. Quake 3 “demo four” application

The evaluation results for the Quake 3 “demo four” application are depicted in
Fig. 3.30. The majority (more than 93 %) of the CGs had an execution time
below 1 ms, the remaining CGs were below 6.1 ms. This distribution explains why
the majority of CGs are predicted with small error and a small amount of CGs
suffer from errors of several milliseconds. When comparing the BB-based with
the T'S-based fragment heuristic, the earlier observations (Fig. 3.23) apply again.
Namely, the BB-based approach prevents high overestimation of the number of
fragments since overlapping areas are not considered, and the TS-based approach

prevents underestimation for the opposite reason. Since the sequence of CGs

118

3.8. Evaluation

CG samples [%] CG samples [%]
of g el
B8O S S N S T so o
70 | e ERRERIRE s AT e TOf
60 SR oo S R SRR 60 [R
Y RO Lo e, R o
a0 b S T " Prof /TS ----- dao kb - U

: : | : : Prof./BB - - - - - : :
30 R | R SRR e MARS/BB 430 F - R Lo

: : | : : Prof./TS w. OA]
20 o ;;L """"" S """ Prof./BB w. OA 120 S
10 SR B SO .. MARS/BB w. OA HETY . L S

: :). - History-based — — : ;

i edecai | L | ! 1 i i

-4 -2 0 2 4 6 8 0 10 20

Error [ms] ET per CG [ms]

Figure 3.30.: Accuracy of DRAW prediction, quake3 “demo four” application

is extremely heterogeneous—both, huge overlapping parts and sparse areas are
drawn with the same shader program—the effect of online adaption is limited.
This is due to the fact that Quake 3 uses just two generic OpenGL programs
that are used to draw very different parts of the scene, such as background,
walls, and players. This implies that for online adaption of drawing very different
parts of a scene, the same correction factor is used. In this particular case,
the correction factor used most of the time is on average a little greater than
1 for the profiling-based approaches and smaller than 1 for the MARS-based
approach. Thus, online adaption shifts the profiling-based approaches slightly
towards overestimation, while the MARS-based approach is significantly shifted
towards underestimation. Essentially, these evaluation results point out that our
concept for online adaption is not effective if CGs very different parts of a scene all
use the same correction factor. The TS-based approach again is very effective in

preventing underestimation but has a higher overestimation than BB or MARS.

The history-based approach again could use its cache for only 5CGs and
therefore almost always predicted the maximum observed execution time. This
lead to an overprediction of at least 24 ms for more than 99.5% of the CGs'®.
On the other hand, some of the few cache hits resulted in an underestimation
since the first of the two identical CGs belonged to a different GPU context. For

instance, one CG was predicted with 0.2ms but took 1.1 ms due to this reason.

10This high overestimation was due to a single CG early during the start of Quake 3 that had
an execution time of about 30 ms.

119

3. Execution Time Prediction

CG samples [%]

CG samples [%]
" Prof.+MARS =-==== | N ; IV .
90 I~ Prof.+MARS w. OA e SR i R 490]
go | Mistorybased — — [T T g0 b
TO o | L L Lo 470 - ------- -
60 f R T L) SETIEros e
e T S s e Py SR
a0 p g | o
R S T SR DO B u o B
20 oo 20 [
R S Kt T 1 R o S e M LI ey
i I i jmmmm=- 4 i i i i i
0 500 1000

Error [us] ET per CG [us]

Figure 3.31.: Accuracy of SWAPBUFFERS prediction, glmark2-es2 “build”

benchmark

3.8.5.7. SwapBuffers

When an application calls eglSwapBuffers, the respective GPU command is
issued in a separate CG. In Fig. 3.31 we depict the prediction error and the
absolute execution time of CGs that contain the SWAPBUFFERS operation. The
presented results were obtained from the “build” scene of the glmark2-es2
benchmark, other programs show very similar results for our concepts. The
execution time of the CGs depends on the size of the framebuffer, and—to a
minor degree—on the number of pixels not updated by preceding DRAW
commands. Thus, the execution time can be predicted quite accurately using
profiling. For the profiling-based predictions and the MARS-based predictions,
the same analytical model was used (cf. Sec. 3.4.3). The prediction without
online adaption overpredicts by about 130 s on average, which is mainly caused
by different loads on the system bus between the different applications and the
term pCswapbuffers represents the rounded average over all applications. In our set
of evaluated 3D applications, errors of up to about 20 % were observed. If online
adaption is used, the prediction is very accurate. The small errors are caused by
different loads on the system bus, which can also be observed at the right plot
that shows the execution time per CG. Concurrent memory operations affect
the execution time of SWAPBUFFERS-CGs, since the GPU shares the main
memory and the system bus.
The history-based approach worked—in contrast to DRAW-CGs—quite well for
SWAPBUFFERS-CGs: almost 84 % of the CGs were predicted using a cached value.

120

3.8. Evaluation

It benefits from the fact that rendering of the “build” scene of glmark2-es2 is very
homogeneous. For less homogeneous applications, the history-based approach
often fails to use cached execution times. For instance, at the evaluation of
Quake 3 its cache hit ratio was below 3% and none of the cache hits did occur
during normal game rendering but only during the animations shown while the

game was loading.

3.8.5.8. Impact of fragment heuristics on prediction accuracy

We additionally evaluated the prediction accuracy that would be achieved if the
number of fragments would be known precisely. This was achieved with the
LibETP mode REAL NUM FRAG MODE (cf., 3.7.5), where the prediction is
performed after the execution on the GPU and the real number of fragments is
available. These evaluations provide a better understanding about how much
accurate shader prediction contributes to the accurate prediction of DRAW
CGs. The REAL NUM_ FRAG_MODE implies that upon change of the
rendering scene libETP injects a “gl Flush” call that puts different rendering
scenes in different CGs. In this section, we evaluated glmark2-es2 benchmarks,
since they render only one scene per frame. This implies that the sequence of
CGs is equivalent to evaluations without REAL NUM FRAG MODE, which
allows to compare the results of this section with the evaluation results in the
earlier sections.

In Table 3.8, the mean absolute error (MAE) of the predicted execution times
of CGs is depicted. The columns entitled “BB” and “T'S” show the MAE from
the prediction accuracy results depicted earlier in Fig. 3.26, Fig. 3.27, and
Fig. 3.28. The columns entitled “real” show the MAE if the real number of

fragments was used. The prediction accuracy results using the ibETP mode

Table 3.8.: Influence of the fragment heuristic on the mean absolute error (MAE)
of the predicted execution time

profiling-based MARS-based
Application / scene | w. OA BB TS real BB real
glmark2-es2 “build” no 234.4ps| 316.3ns| 294.2ps|211.0ps| 30.1ps
glmark2-es2 “shading” | no 788.61s| 850.1us| 792.3ps|110.3ns| 188.4pus
glmark2-es2 “texture” | no 1452.3 ps | 1363.211s | 1325.6 ns | 782.2 ps | 2394.6 s
glmark2-es2 “build” yes 9.8 s 15.8 s 8.0ps| 9.6ps 7.4 s
glmark2-es2 “shading” | yes 18.8ps| 38.4ps 14.5pns| 18.7ps| 13.4ps
glmark2-es2 “texture” | yes 81.2ps| 799ps| 35.5ps| 75.5ps| 33.0ps

121

3. Execution Time Prediction

REAL NUM FRAG_ MODE are depicted in Fig. 3.32, Fig. 3.33, and
Fig. 3.34, respectively.

CG samples [%] CG samples [%]
ol S [S Jeol B -
: : IO 1 Profiling ===-- : :
60 [S S o 3 MARS 160 | I S
a0k LA C..........}" Profiling w. OA da0 b) -
: : ' : I MARS w. OA : :
20 o s o cor 220 e .
i il i i i i ' i
-600 -400 -200 0 200 400 0 500 1000
Error [ps] ET per CG [ps]

Figure 3.32.: Accuracy of DRAW prediction assuming precise number of
fragments, glmark2-es2 “build” benchmark

CG samples [%] CG samples [%]
80k - R o S S foo 48l S -
DLt Profiling ----- : i : : :
60 --------- F MARS S - -~ 60 |- R R s
40k S Profiling w. OA N 1o 1 Y
R MARS w. OA . | . . .
20_ """ _.' """"" """""" :_ 20_ """ """ _
- i i i i /i i i i
-800 -600 -400 -200 0 200 0 1000 2000
Error [ps] ET per CG [ps]

Figure 3.33.: Accuracy of DRAW prediction assuming precise number of
fragments, glmark2-es2 “shading” benchmark

Having the exact number of fragments significantly improved the effectiveness
of online adaption, since the fragments heuristics introduce jitter by the random
selection of triangles (TS approach) and the approximation of rasterization
described in Sec. 3.5.1.1. However, having the exact number of fragments does
not always improve the overall prediction accuracy. For instance, at the “build”
scene, the profiling-based approach has a MAE of 234.4ps with the BB
heuristic, but a MAE of 294.2ps with the real number of fragments. The
profiling-based shader model underestimates the shader execution time, which is
slightly compensated by the overestimation of the number of fragments by the
BB heuristic (cf., Fig. 3.26 and Table 3.6). Using the real number of fragment
removes this compensation and increases—in this particular case—the MAE
(cf., Fig. 3.32). Similarly, the number of fragments of the “texture” scene is
underestimated by the BB heuristics, which also leads to a higher MAE if the

real number of fragments is used (cf., Fig. 3.34). Clearly, the number of

122

3.8. Evaluation

CG samples [%] CG samples [%]

80 - S S L g0l o -
: O : ' Profiling ==---- : : ; ;

60 T [MARS IR S U o S

40 - U R . Profiling w. OA RS odao k- A -
N : : [MARS w. OA

20 R Lo e e 20 e 0N AR o
S i i /i i i i i i i i

-1500 -1000 -500 0 500 1000 1500 2000 2500 0 1000 2000

Error [us] ET per CG [us]

Figure 3.34.: Accuracy of DRAW prediction assuming precise number of
fragments, glmark2-es2 “texture” benchmark

fragments has a significant influence on the predicted execution time. However,

an error in the shader execution time might often have more impact.

3.8.5.9. Summary of CG prediction accuracy

The previous evaluation results show that our execution time prediction concepts
work for existing applications. The prediction of the SWAPBUFFERS command
is based on a quite simple linear model that showed errors of up to about 20 %.
These errors are mainly caused by different loads on the system bus between the
different applications. For the complex DRAW command, we used the submodels
for the number of fragment (myp(vertices, ctx)) and the shader execution time
(myp (ctx) and mpp (ctx)). For myp (vertices, ctx), we evaluated the TS approach
and the BB approach. The TS approach showed only marginal underestimations
but can—in some scenes—significantly overestimate the number of fragments.
The BB approach cannot prevent underestimations but also is limited concerning
overestimation by the size of the render target. In general, if underestimation
must be prevented and the application behavior is not known, the TS approach
is the better choice. Otherwise, the BB approach is a good alternative. Our
evaluations showed that the number of fragments is an important number to
achieve accurate prediction but typically the accuracy of the shader execution
time has still more impact.

In our evaluations, we compared the profiling-based shader execution time
model with the MARS-based shader execution time model. Profiling sometimes
significantly underestimated the shader execution time since the used profiling
environment did not exactly match the 3D application’s environment. In
contrast, the underestimation of MARS did not exceed about 15% and, given
that no textures are used, was very accurate. However, significant

overestimations of up to about 300% were observed (at the speedometer

123

3. Execution Time Prediction

application, Fig. 3.29), since MARS uses a worst-case model to predict the
overhead introduced by texture lookups (cf., Sec. 3.5.3.6). For real-time
scheduling, preventing underestimations might often be more important than
preventing overestimation.

For many scenarios, online adaption could significantly improve accuracy.
However, online adaption inherently assumes that the rendered scene does not
change fast. Since this assumption is not always valid, online adaption is
considered optional and whether it can be used must be carefully decided.

The history-based approach could not benefit from its cache only for a small
amount of CGs, since just a small change such as a different model view
projection matrix is sufficient to make a CG look different on GPU instruction
level. Consequently, this can lead to arbitrarily high overestimations.
Additionally, the history-based approach is not aware of the GPU context which
occasionally leads to high underestimations if a CG is identical than a cached

one but belongs to a different GPU context.

3.8.6. Prediction overhead

The prediction performed by libETP increases the CPU load. Especially on
embedded systems, CPU execution time is a valuable resource. Therefore, we
measured the CPU time overhead introduced by the execution time prediction
of libETP. In order to achieve comparable results, we rendered a defined
number of frames for the different approaches, both, with and without libETP
being loaded. To this end, new command-line options were added to the
speedometer, glmark2, Quake 3, and es2gears applications, which allow to
specify the number of frames after which the program terminates. We executed
the speedometer application, the “build” benchmark of glmark2, the Quake 3
“demo four”, and es2gears with both, exiting after 1 frame and exiting after
1000 frames. All four applications and libETP were compiled with the compiler
flag “~O2"—the typical compiler optimization level for high speed. The CPU
time was measured with the “time” program available on Linux, which provides
the process statistics of the Linux kernel with a granularity of 10ms. To
improve measurement accuracy caused by the limited resolution of the “time”
program and side-effects from the Linux system, we used the “time” program on
sequences of 100 subsequent runs. From these measurements we calculated the
one-time CPU time, which includes the time the program needs to initialize and

we additionally calculated the CPU time per rendered frame. In Fig. 3.35, the

124

3.8. Evaluation

CPU overhead [ms] CPU overhead [%]
600 L Prof./TS mmmmm | Prof./TS
Prof./BB mmmmm | 250 Prof./BB
500 - MARS/BB B - 5 MARS/BB ===
400
150
300 .
200 | 100
100 4 50
0 0 | -
Speedom. glmark2 Quake 3 es2gears Speedom. glmark2 Quake 3 es2gears
(a) Overhead in ms (b) overhead in percent

Figure 3.35.: Initial CPU time overhead for loading libETP, compared to native
execution

one-time overhead—compared to a native execution without libETP—is
depicted. The one-time overhead represents the delay introduced at application
startup when using LibETP, such as initializing the OpenGL ES Context
Monitor, loading the XML configuration file, and mapping the shared memory
from the kernel space. The XML configuration file contained already the
profiling parameters of the used shader programs. The overhead in time is
depicted in Fig. 3.3ba. The profiling-based approaches have a significantly
higher initial overhead, since the profiling data is stored in an XML file that is
parsed initially. For Quake 3 and the speedometer application, this happened
twice, since they use two shader programs instead of one, which explains why
the profiling-based approaches have a higher initial overhead, there. Our current
implementation for loading and saving the XML files use “libxml” and obviously
has lots of room for improvement. The MARS-based prediction, which does not
use the XML file, delays startup of the application by not more than 50 ms. In
Fig. 3.35b, we additionally provide the overhead in relation to the application
startup without libETP. Without libETP, the speedometer, glmark2-es2, and
es2gears applications start very fast in 173 ms, 243 ms, and 125 ms, respectively.
Quake 3 needs 2614 ms before it can start rendering its first frame. This means
that the relative overhead for Quake 3 is very low and, when using MARS, it is

almost negligible.

The CPU time overhead per frame is depicted in Fig. 3.36. The speedometer
application has only few triangles, but since two different shader programs are
used, the Mgy (Deans, vertices, ctx) is used twice per frame. The overhead per
frame is only about 250ps for all three approaches, which is about 11% of
native execution time. The glmark2 benchmark uses a vertex buffer object,

which allows to parse the set of vertices (either the bounding box, or the set of

125

3. Execution Time Prediction

CPU overhead [ms] CPU overhead [%]
18 - prof/TS 7 80 prof/TS mm— 7
16 - prof./BB 7 70 | Prof./BB mmmmm -
14 - MARS/BB === 7 60 - MARS/BB === -
12 - L -
1 50
3 . 7 40 1
6 L | 30 5
4 b 4 20 5
oL B 10]
o o LI

Speedom. glmark2 Quake 3 es2gears Speedom. glmark2 Quake 3 es2gears

(a) Overhead in ms (b) Overhead in percent

Figure 3.36.: CPU time overhead of libETP prediction per frame, compared to
native execution

selected triangles) just once, making prediction extremely fast. The overhead
per frame was measured as about 0s. The Quake 3 “demo four” uses many
DRAW calls with different model view projection matrices and does not use
VBOs. Thus, the TS approach takes many triangle samples and has the highest
overhead. The BB-based approaches have less overhead, since the vertex
position calculation must be emulated only for 8 vertices instead of the typically
higher number of vertices the TS approach uses. Therefore, the CPU execution
time of Quake 3 increases significantly, for the MARS/BB approach by 9ms,
which is about 39% of the native execution time of Quake 3. Given the
complexity of Quake 3’s rendering, this is an impressive result. Additionally,
rendering 3D objects with many triangles without VBOs—like Quake 3 does—is
wasting CPU resources also for a native execution. The es2gears application
uses no vertex buffer object, but hundreds of DRAW calls. This requires libETP
to calculate the bounding box or the sample triangles again for each frame and
is the reason for the overhead of about 1.3ms to 3.3ms. Since natively each
frame takes about 6.1ms, the relative overhead is up to 54 %. A scene such as
the gears drawn by es2gears would have a much lower CPU overhead if vertex

buffer objects were used for both, native and libETP execution.

As explained in Sec. 3.5, our model for DRAW allows predicting multiple
OpenGL DRAW API calls in one step to keep the prediction overhead low. More
precisely, we collect the vertices OpenGL DRrRAW API calls and perform the
prediction if the rendering scene changes (cf., Sec. 3.3.2.2). Therefore, we
additionally evaluated the overhead without this optimization, i.e., with ncqys
in the model mgyay (ncans, vertices, ctx) always being 1. For this evaluation,
Line 12 of Listing 3.1 was removed and the Lines 13-14 were also executed “on

receive of a Draw(vertexList) call”. The results are depicted Fig. 3.37b.

126

3.8. Evaluation

CPU overhead [ms] CPU overhead [%]
20 L Prof/TS mmmm 1 140 | Prof/TS i
Prof./BB 120 Prof./BB
MARS/BB = | MARS/BB ===]
15 | 7 100 -
16 80 - -
60 - -
5+ 4 40 _
20 A
0 o LI | |
Speedom. glmark2 Quake 3 es2gears Speedom. glmark2 Quake 3 es2gears
(a) Overhead in ms (b) Overhead in percent

Figure 3.37.: CPU time overhead of libETP prediction per frame, without DRAW
optimization

Without DRAW optimization, the speedometer application and the glmark2-es2
benchmark show almost the same results as with DRAW optimization enabled.
This is due to the fact that DRAW optimization cannot reduce the number of
predictions in these cases. For instance, the glmark2-es2 "build” benchmark uses
just a single DRAW call anyway and thus the number of DRAW predictions is the
same. The Quake 3 demo benefits from DRAW optimization only slightly, since
for many of its DRAW commands also the scene—particularly, the model view
projection matrix—changes. The es2gears application benefits most from DRAW
optimization, since it uses many DRAW calls and without DRAW optimization 280
DrAW predictions per frame are performed by libETP, but DRAW optimization
reduces to only 3 DRAW predictions. The profiling-based TS approach increased
from 54 % to 79 %, mainly because with DRAW optimization the TS heuristic
could select triangle samples with p = 0.5, whereas without DRAW optimization
all triangles were used as samples (i.e., p = 1). The most significant benefit
can be observed at es2gears and the BB-based approach where the overhead per
frame increased from about 22 % to about 155 %. The reason is simple: For each
of the 280 DRAW commands—each rendering only between 2 and 5 triangles—a
much more complex bounding box consisting of 8 vertices and 12 triangles is
calculated. These results show that our DRAW optimization concept contributes

to a low CPU overhead of our execution time prediction.

The prediction overhead introduced by libETP is quite small and the DRAW
optimization can significantly improve performance for applications that use
many DRAW calls. A low constant overhead was not the main goal of our
implementation and could be reduced significantly, if needed. For automotive
scenarios, the overhead per frame is much more important since this overhead is

directly related to the complexity of the prediction models. Our concepts for

127

3. Execution Time Prediction

execution time prediction empowers a GPU Scheduler to provide isolation. To
spend a few percent of CPU execution time is reasonable. Moreover, the current
implementation of libETP leaves significant room for improvement. For
instance, the different modes of operation listed in Sec. 3.7.5 result in many

conditional jumps that could be removed for production use-cases.

3.8.7. Evaluation conclusion and summary

The accuracy of the execution time prediction mainly depends on the number of
fragments (which is predicted by a heuristic), and the execution time per shader
instance.

We evaluated the BB (bonding box) and the TS (triangle samples) fragment
heuristics. The BB heuristic is good on average, but heavily depends on the
coverage factor, which represents an average of quite different 3D scenes. Clearly,
this cannot perfectly match all scenes, nor can it avoid underestimation. The TS
heuristic shows only very small underestimations, caused by the random selection
of triangles. However, for scenes that include many fragments that do not pass the
depth test, it overestimates. This could only be avoided by emulating the depth
test on the CPU, which would additionally require to emulate the full vertex
processing and rasterization on the CPU, which is not possible in real-time on
resource-limited embedded hardware.

For the execution time per shader we evaluated the profiling-based approach
and the MARS-based approach. The profiling-based approach runs the shader
programs in an emulation environment that is as close to the actual execution
as possible. Since the sizes of textures are not known at compile-time of the
shader, a default size is used. This default texture might be too small or too big,
which has a significant impact on accuracy. To create the MARS models, large
sets of training data were used. In our evaluations, we did not underestimate
by more than 13%. However, it occasionally overestimated, since the memory
operations, which to some degree run concurrently to the other GPU instructions,
were not accurately reflected in the submodels. In contrast to the profiling-based
approach, MARS tends to overestimate. The evaluations of the MARS-models
show that it is possible to achieve competitive accuracy by using an offline-trained
model. This works without profiling during runtime, which potentially affects the
scheduling of high-priority applications.

The evaluation results for the execution time per CG showed that the BB

heuristic and the profiling-based approach sometimes cause underestimation. On

128

3.8. Evaluation

the other hand, the TS heuristic and the MARS-based approach (the BB heuristic
also, but to a minor degree) sometimes cause overestimation. Online adaption
significantly reduces the prediction error if the scene changes rarely. However,
for programs like Quake 3 that use the same shader for very different scenes,
it compensates bias but is much less effective. The overhead introduced by our
prediction is relatively small, even on an embedded system with limited CPU
resources. For optimized 3D applications such as the glmark2-es2 benchmark, it
is even negligible.

The history-based approach proposed by [KLRI11| suffered from rare cache
hits, and—even worse—some of the few cache hits belonged to different context,
which was not detected by the history-based approach and lead to wrong
estimations even if the cache could provide the predicted execution time.

In an automotive context, critical applications such as 3D instruments on the
IC are typically very homogeneous, since certifiability is required (cf. Sec. 2.1.6),
and according to [[SO03, ISO 17287| the HMI system’s interference on the driver
must be assessed and limited. For these applications, online adaption is very
effective and the prediction error rarely exceeds 100 ps. This prediction error is
small compared to the typical refresh rate of 60 Hz and therefore can be easily
compensated by always using a slightly overpredicted execution time for GPU
scheduling (we did so in our evaluations of the GPU scheduling, see Sec. 4.5.1).
Non-critical applications such as 3D games played someone else than the driver,
might not be very homogeneous. In such cases, using a prediction model that
avoids underestimation, such as the combination of TS and MARS, can be a

solution.

129

3. Execution Time Prediction

3.9. Related Work

To enable real-time GPU scheduling, prediction mechanisms for GPU CGs were
proposed in several works. Bautin et al. [BDC08, DWAOQS| designed a system for
GPU multi-tasking including a priority-based scheduler, called Graphics Engine
Resource Manager (GERM). To this end, GERM collects statistics of the
execution time of GPU CGs to calculate an average execution time per CG
using a polling mechanism, which is less accurate and needs more CPU
resources than our interrupt-driven approach. For each process, they estimate
the average execution time per vertex and predict by multiplying with the
number of vertices contained in a CG. This prediction model is accurate, if the
number of fragments per vertex has low jitter and the used shader programs
have similar execution time. Unfortunately, this is not true for the majority of
applications. For instance, if each frame of an application (e.g., Glmark2) is
rendered using multiple shader programs, their execution time will likely differ.
Furthermore, rendered 3D objects often have heterogeneous vertex density (e.g.,
comparing plain walls of a building with sophisticated vehicle models) or are at
different distance from the camera (closer objects typically produce more
fragments). In contrast to our approach, their prediction does not consider the
OpenGL ES 2.0 Context nor the actual set of GPU commands inside the CGs

resulting in inaccurate predictions.

Kato et al presented another real-time GPU scheduler called
TimeGraph |[KLRI11]. Our approach borrowed their concept of accurately
measuring the execution time of CGs using GPU to CPU interrupts. For
prediction, they propose a history-based approach that uses the recorded
execution time of previously executed CGs. The prediction algorithm then
checks whether a record for the same CG binary code exists. If this is the case,
the recorded execution time is used as prediction; otherwise, the maximum
execution time is assumed. To rely solely on history-based prediction means
that unknown CGs cannot be predicted. Using the maximum observed
execution time in such cases might lead to drastic overestimations of the
execution time. Furthermore, history-based prediction is not aware of the
execution context. For instance, two glClear commands may result in binary
equivalent GPU instructions, although they refer to render buffers of different
sizes and thus different execution times [SGDR14|. As shown by the authors,
this leads to significant prediction errors for complex dynamic scenes, which

occur in many rendering applications today.

130

3.9. Related Work

In [YZQ'13], Yu et al. propose a resource management framework called
Virtualized GPU Resource Isolation and Scheduling (VGRIS) targeted at cloud
gaming systems. VGRIS provides three scheduling algorithms for different kinds
of GPU computation tasks, namely, Service Level Agreement (SLA)-aware
scheduling, proportional-share scheduling, and hybrid scheduling that combines
the former two. The SLA policy aims to provide a stable average frame rate. To
this end, the computation time of the Present command (similar to the
eglSwapBuffers command of EGL), which represents the execution of one frame
on the GPU, has to be predicted. Similarly to Kato [KLRI11]|, the authors use
history information about the last Present commands of the application. More
precisely, they use the average time of the last twenty Present commands to
predict the next Present command. Hence, VGRIS is actually less accurate
than [KLRI11], since only fully rendered frames are measured and scheduled
rather than GPU CGs (typically, a frame is rendered using multiple CGs).
Furthermore, they assume that the applications are well known and have a
homogeneous rendering behavior. Therefore, an application never calling the
Present command would be granted infinite GPU execution time, possibly
blocking all other applications.

Igehy et al. propose to extend the graphics API to allow for better
parallelization [ISH98|. Large rendering tasks are split up to batches of vertices
and tiles. Since fragment processing is separated from vertex processing, the
number of fragments is inherently given and must no longer be predicted. The
concepts used in their “Argus” implementation could thus replace our concepts
in Sec. 3.5.1. Unfortunately, Argus uses slow software rendering, since their
concept is not supported by existing 3D GPUs. As an alternative to software
rendering, [ODKT00]| proposes to use custom hardware, i.e., an Imagine stream
processor, for rendering. Approaches like parallelized
WireGL [BHH00, HEB'01] use the parallel graphics extension from Igehy et al.
to use a cluster of multiple nodes for rendering. This approach is improved by
Chromium [HHN*08| and AnyGL [YSJZ02]. All the concepts mentioned in this
paragraph have in common that they intercept OpenGL API calls, alter them,
and stream them to other nodes. Although the focus differs, the idea to
intercept OpenGL API calls is also used in this work.

131

3. Execution Time Prediction

3.10. Summary and future work

3.10.1. Summary

In this chapter, we presented our concepts for the prediction of the execution
time of 3D GPU Command Groups (CGs). Our framework is implemented in
a shared library called libEE'TP, which intercepts OpenGL ES 2.0 API calls and
uses the OpenGL ES 2.0 Context and information from the native GPU driver in
user space. Additionally, the Execution Time Monitor in kernel space provides

the accurate execution time of CGs after execution.

The DRAW command that is used to perform 3D rendering tasks, depends on
the OpenGL ES 2.0 Context, which includes the processing time on the GPU
for both, vertex processing and fragment processing. The vertex processing time
and the fragment processing time depend on the number of vertices and
fragments, and the processing time per vertex and fragment, respectively. To
estimate the number of fragments, we presented the triangle samples (TS)
approach, which randomly selects samples, emulates the vertex position
calculation of the vertex shader, and calculates the covered area. Additionally,
we presented the bounding box (BB) approach, which calculates the bounding
box of all vertices, emulates the vertex position calculation for the eight vertices
of the box, and calculates the size of the covered area. To estimate the vertex
shader and fragment shader processing time, we presented a profiling-based
approach that executes the shaders in an instrumented benchmarking mode and
measures the execution time. Moreover, we presented an alternative approach
that uses MARS-based non-linear machine learning models trained for the
target system to estimate the shader execution time prior to their first
execution. To compensate small prediction errors, an online adaption concept

using exponential smoothing was proposed.

Our evaluations show that the bounding box provides a good average
accuracy, while the triangle samples approach prevents from significant
underestimations but tends to overestimate in some scenes. We also showed
that the profiling-based concept for the prediction of vertex and fragment
processing works well but that the MARS-based approach can achieve
comparable accuracy without interfering with applications that run
concurrently to the profiling. For typical 3D scenes, which change rarely, our
online adaption significantly improves prediction accuracy and the prediction

error rarely exceeds 100ps. Additionally, the overhead introduced by the

132

3.10. Summary and future work

prediction is low for both, application startup and its frame-based 3D rendering.
Thus, the achieved prediction accuracy is sufficient for many use cases of

real-time 3D GPU scheduling on automotive embedded systems.

3.10.2. Future work

The current implementation of libETP lacks support for a few less important
OpenGL functions. For instance, support for glGenerateMipmap should be
implemented. It essentially consists of memory operations and its execution
time depends on the dimensions of the source buffer. Additionally, the
execution time of the vertex processing is not exactly linear, as assumed by our
model Mgyay (Neans, vertices, ctx). As shown in [Thil2|, vertices seem to be
processed in batches, which implies that vertex processing linearly depends on
the number of batches. For small numbers of vertices, this can lead to a slightly
inaccurate prediction. Therefore, it should be analyzed how the number of
vertices per batch can be determined. In principle, the same issue exists with
fragment processing, although side-effects from the rasterizer and the tiled
alignment of the render target (cf., [Mal4]) makes it more challenging.
Additionally, the online adaption concept could improve in some scenarios, if

additionally a correction factor for the number of fragments is used.

133

4. GPU Scheduling

In this chapter, we present our concepts for the scheduling of 3D GPU CGs.
The proposed framework uses asynchronous dispatching of CGs, which means
that CGs submitted to the kernel space via a system call are not directly
dispatched (behavior of typical drivers), but extracted and passed to the
scheduler for asynchronous dispatching. The GPU scheduler maintains the set
of active 3D processes and its associated scheduling parameters. Given that the
execution time prediction is correct, the scheduling policy prevents that a CG is
dispatched that can violate a deadline of an application of higher priority.
Additionally, the scheduler uses sophisticated mechanisms to achieve a high
GPU utilization. Our scheduling concept was implemented and evaluated on an
embedded automotive platform. Our evaluation results show that our concepts
are effective in fulfilling the requirements for a GPU scheduler described in
Sec. 2. Additionally, our concepts feature a very small CPU overhead and a
high GPU utilization.

This chapter is structured as follows. In Sec. 4.1 we discuss the requirements.
The system model is presented in Sec. 4.2. The scheduling algorithm is depicted
and described in Sec. 4.3, followed by a description of the implementation in
Sec. 4.4. The evaluation setup and the evaluation results are described in Sec. 4.5.
The chapter concludes with an outlook on scheduling with preemptive GPUs in

Sec. 4.6, related work in Sec. 4.7, and a summary and future work in Sec. 4.8.

135

4. GPU Scheduling

4.1. Requirements

As described earlier (Sec. 2.1), the requirements for rendering in automotive

scenarios stem from several sources:

e Direct legal requirements. Example: as regulated by German law (StVZO
§57 [Janll]), the speedometer must be visible and display the current speed.

e Implicit requirements from standards and automotive guidelines like [[SO11,
ISO 26262| and [ESO08|. Example: Maximum delays for updates of the

screen for applications used while driving.

e OEM-defined requirements. Example: The speedometer shall be rendered
stutter-free at 60 FPS.

The requirements imply that a user (e.g., the driver of a vehicle) is not allowed to
freely customize the system behavior. The two major aspects of GPU rendering

are

1. Guaranteed location and visibility of applications® graphical contents — in
|[GSGH'14,GSGH™15] we have proposed access control mechanisms for safe
display sharing.

2. Guaranteed real-time 3D rendering.

Next, we discuss in detail the requirements to guarantee real-time 3D rendering,
which necessitates 3D GPU scheduling.

Each 3D application is associated with a priority, as presented in
Requirement R4.1 (cf., Sec. 2.1.4). The priority is used to guarantee preference
to more important or more safety-relevant applications. For instance, in an
automotive HMI system, the speedometer could get a high priority, the
navigation system a medium priority, and custom third-party applications a low
priority.

As pointed out in Sec. 4.2, the GPU driver notifies about each vsync event.
A vsync event represents the time when compositing starts. The compositor
obviously can only bitblit frames that have finished before compositing starts,
i.e., the vsync event. For the applications, this means that vsync events are
possible deadlines for 3D rendering, in order to make the content appear on the
display in time. We denote the time interval between two consecutive vsync

events as the vsync period.

136

4.1. Requirements

According to Requirement R4.2 (cf., Sec. 2.1.4), some automotive
applications require rendering with a high frame rate, which is represented in
the unit frames per second (FPS), and defines the delay between two
consecutive frames. For the frame rate only values with vsync period being an
integer multiple of the frame rate are allowed. This restriction is because
intermediate values only increase computational overhead without providing a
better user experience. For instance, for a refresh rate of 60 Hz, allowed values
for the frame rate are 60 FPS, 30FPS, 20FPS, and so on. The respective
distance between two consecutive frames are one vsync period, two vsync
periods, three vsync periods, and so on. In contrast, 45 FPS are not allowed,
since the distance between two consecutive frames would be sometimes one
vsync period and sometimes two vsync periods, giving a visual experience to
the user that is comparable to only 30 FPS but with a computational effort of
45 FPS. To this end, the desired frame rate is a crucial parameter of each 3D
application since it determines the amount of required GPU resources.

As motivated in Sec. 1.2.1, the scheduling algorithm needs to support a mixture
of 3D applications of different importance. For instance, a 3D speedometer is
important and requires a high frame rate for stutter-free rendering, while the 3D
navigation system is of medium importance and a 3D game is less important. To
this end, each application has a priority, which represents its importance.

The goals of our scheduling algorithm are to

1. guarantee correct handling of the priority, i.e., the requirements of an

application with higher priority are more important,
2. guarantee the desired (uniformly distributed) frame rate,
3. achieve a high GPU utilization, and
4. be very fast, i.e., the CPU overhead introduced by scheduling shall be small.

The first goal is considered more important than the second, i.e., if the GPU
resources are insufficient to fulfill the desired frame rate of all applications,
higher-priority applications precede lower-priority applications. The third and
the forth goals are not hard requirements, but optimization goals.

For our concept, we expect the priorities of applications to be unique. For
use-cases where more than one application is considered as most important,
unique priorities can be used, nevertheless. If this set of most-important

applications is schedulable and the applications’ (unique) priorities are higher

137

4. GPU Scheduling

than the priorities of all other applications, the scheduling algorithm has to

fulfill the desired frame rate for each of the most-important application.

4.2. System Model

Before we present our technical contributions, we first introduce our system
model and assumptions. Rendering using a GPU is a hierarchical process, where
applications commit command groups (CGs), i.e., batches of GPU commands,
to the GPU. For this purpose, applications typically use a standardized graphics
API such as OpenGL or DirectX. This abstraction layer is implemented by the
GPU driver, which is partitioned into a set of user space shared libraries, and a
kernel space part (e.g., a kernel module). The user space part keeps track of the
graphics API’s state, compiles shader programs, and creates GPU binary code.
The kernel space part initializes the GPU hardware, ensures isolation between
different processes, switches between different rendering contexts and performs

event handling (e.g., signals a process, that GPU execution has finished). The

Native 2D GPU driver

Commit sync
syscall) | (syscall)

user space
kernel space

Figure 4.1.: 3D GPU scheduling system model

components and interfaces of our system are depicted in Fig. 4.1. Basically, the
system consists of three layers, namely, application-layer, user space driver, and

kernel space.

138

4.2. System Model

The graphics application (e.g., “App. 1”) uses the native 3D GPU driver for
rendering (@ in Fig. 4.1). Since the GPU is not preemptive, the GPU scheduler
needs to know the execution time of each CG in advance. To this end, the
FExecution Time Prediction predicts the execution time and attaches it to the CG,
as described in Chapter 3. From the OpenGL commands, the native 3D GPU
driver in user space creates a CG in a command buffer (@) and then notifies
the kernel about it (®). The kernel space 3D GPU driver and scheduler access
this data (@) and place an entry in the 3D GPU’s command queue (®). From
there, the GPU fetches the CGs and renders them into the application’s dedicated
off-screen render buffer.

The Compositor is responsible for copying the contents of the off-screen render
buffers at the right place into the screen buffer. To achieve this, it waits for a
synchronized notification from the GPU scheduler. Modern TFT displays operate
at a constant refresh rate, typically 60 Hz. The display is connected to a display
interface, which streams the screen content (e.g., using HDMI) to the display at
this refresh rate. If the content of the screen buffer changes while its content
is streamed, this effect would be visible to the user as tearing. Tearing is a
visual artifact, where parts of multiple consecutive frames are stringed together
on the display. In order to prevent this unwanted effect, GPU drivers support
vertical synchronization (vsync), which allows to update the content of the screen
buffer after its content was fully streamed and before streaming starts again, thus
avoiding those unwanted artifacts. The GPU driver notifies each time a vsync
event occurs, which is used by the GPU scheduler to create compositing tasks (i.e.,
a set of application windows needing an update). After the compositor receives a
task, it uses the API calls of the 2D GPU to create a 2D GPU command batch and
to commit it to the 2D kernel space driver (®), which puts it into the 2D GPU’s
command queue. From there, the 2D GPU fetches and executes the commands
that bitblit (i.e., copy) to the determined place on the screen buffer, which is
read by the IPU and displayed on the connected display screens (@). To allow
the 3D GPU to render the next frame while the 2D GPU performs bitblitting,
each application uses two alternated buffers (called “double buffering”). Next, we

describe our concepts for real-time 3D GPU scheduling in automotive scenarios.

139

4. GPU Scheduling

4.3. Approach

In this section, we present our system architecture and scheduling algorithm.
Next, we discuss the components of the GPU scheduler and their interaction.

Then, we discuss especially the scheduling parameters and the scheduling

algorithm.
Compositor |l App 1 § App 2 e
await Execution time prediction
compositing
user space task

~kernel space—

(App 1) (App2) .
prio | etpf Ml prio | etpf GPU o 3D G_PU
frame_rate [l frame_rate [iES{elcle[VI[ET] M j‘;;‘w“:“‘” rh driver

submit CG

scheduling |l scheduling EX?%‘QO” diSpfﬁCh
queue 1 queue 2 ame command group
v

GPU command queue

Scheduling Algorithm

events

Figure 4.2.: GPU scheduling architecture

4.3.1. System Architecture

Our architecture is presented in Fig. 4.2. As discussed earlier, non-preemptive
real-time 3D GPU scheduling requires that the execution times of GPU CGs are
known in advance. Our execution time prediction estimates the execution time
of each CG in user space in a shared library located between the user space
program and the 3D GPU driver in the user space (cf., Sec. 3.3). The 3D GPU
driver in user space inserts GPU instructions into its command buffer. Once the
CG is complete, it uses a system call to submit it to the 3D GPU driver in the
kernel space. Without a GPU scheduler, the GPU driver in kernel space

140

4.3. Approach

dispatches the CG as part of the system call execution. Dispatching means that
the CG and associated data from the user space process are verified and
inserted into the GPU’s command queue in a specific format understood by the
GPU. The GPU then executes the CGs exactly in the order in which they were
inserted. Consequently, if the GPU scheduler is disabled, the order in which
CGs are submitted to the kernel space GPU driver is the same as the order of
execution on the GPU. If the GPU Scheduler is enabled (i.e., by loading the
GPU scheduler kernel module), it registers with the GPU driver kernel module.
This changes the driver behavior such that CGs are no longer directly
dispatched but forwarded to the GPU scheduler module instead. For each
application, the GPU scheduler maintains a scheduling queue (such as
“scheduling queue 1”7 in Fig. 4.2) for managing the submitted CGs. The
Scheduling Algorithm uses these scheduling queues, as well as the parameters,
such as priority, frame rate, the timestamps of the vsync events, and the
internal state (e.g., the next target deadline) to select the CG that is dispatched
next. Eventually, the selected CG is dispatched using the dispatch function of
the GPU driver. The Execution Time Monitor keeps track of the relevant
timestamps, e.g., when a CG was inserted, when it was dispatched, and when it
has finished execution. These timestamps are used by the scheduler to trigger
the Scheduling Algorithm to submit new CGs but also for accounting of already

consumed GPU resources.

4.3.2. Application-specific parameters for scheduling

As mentioned in Sec. 4.1, each application has a priority and a frame rate.
However, to use only these two parameters for scheduling would imply a
negative impact on the GPU utilization. If a low-priority application did submit
its CGs faster than a high-priority application, scheduling any of the
lower-priority applications now could cause a high-priority CG to get dispatched
too late since the dispatched low-priority CG cannot be preempted. Such a
delayed submission can be due to unfortunate CPU scheduling or slower
application code. Moreover, each time an application enqueues a
SWAPBUFFERS CG, it is delayed at least until the next vsync event occurs.
Thus, the vsync events are a knowledge horizon, which makes it impossible to
estimate what comes beyond. Since low-priority applications often cannot be
scheduled, this means that the GPU would inevitably be idle for a significant

percentage of time. To exemplify the mentioned disadvantage, we depict in

141

4. GPU Scheduling

Fig. 4.3 a possible situation, where both aspects can be observed. The Lines P2
and P1 depict the enqueued CGs, in which estimated execution times are
represented by the length of the yellow bars and the beginning of the blue arrow
lines represent the time at which the applications submitted the CGs,

respectively. In this example, the scheduler first receives the command groups

Iy | ' | | | | 2y |

o T cG3 | ! Lo :

P2 — T T

| T ———— | | 1 1 1 1 1

- cat | [caz] | : : : :
somep BB @
apU S B I N N N
| | | | | | | | | P

Figure 4.3.: Example for simple priority-based scheduling

CG1 and CG2 from the lower-priority process P1. The Scheduling Algorithm
immediately executes “a” and detects that the higher-priority process P2 did
not yet finish its frame and did not submit the next CG. In order to eliminate
the risk of P2 not meeting its deadline, the scheduler must not schedule CG1 or
CG2 from P1. After CG3 from P2 is received, the scheduler immediately
dispatches it “b”. After this CG has finished execution, the scheduler checks
again at “c”. However, the CG1 of P1 would not finish before vsync event 2 (red
dotted line). In the worst-case, P2 could submit CGs for the next frame directly
after vsync event 2 and demand almost all of the available GPU time. Thus,
again CG1 must not be scheduled. While strong guarantees to high-priority
applications are provided, the GPU is idle most of the time due to the lack of
knowledge about the execution times of high-priority CGs not received, yet.

In order to increase the GPU utilization, we introduce the demanded
execution time per frame (etpf) of an application. The idea is, to tell the
scheduler the amount of GPU execution time it is supposed to reserve for each
frame of an application. For future frames and while not all CGs of the current
frame were received, the scheduler reserves the respective amount of GPU
execution time for the application. The execution time per frame (etpf) can be
determined as part of the software assessment performed by the OEM. To

facilitate different rendering scenes of an application, the etpf can be updated

142

4.3. Approach

1v I I I I I I I I2v I I

: | | L | | | | | : | |

. . R R R

e S S L N T A S

: CG1 V[cee ' ' ' ' '

P1 : 1 1 1 ‘\ Tr-o | : : : : :
N I Dy R L I I I

AL | | ® | | | | |

SCHED 4 I I b I I I c I I I
: | | | | | | | . | I

: cG1 | ce3 CG2Z | |

GPU T T T T T T T T 1
. I I I I | I I I I |

1 1 1 1 } 1 1 1 1 It

Figure 4.4.: Example for scheduling using execution time per frame (etpf)

during runtime using a system call. It might be objected, that the etpf is hard
to determine for an arbitrary third-party application, where no software
assessment takes place. However, in automotive scenarios, third-party
applications will have the lowest (or at least a very low) priority assigned. For
the lowest-priority application, the etpf value is irrelevant, since the etpf of an
application only affects applications that have lower priority. Additionally,
applications can also use etpf= 0 if priority-based scheduling of the current
frame—without reservations for future frames—is sufficient. In Fig. 4.4, we
depict the same sequence of received CGs as in Fig. 4.3 to explain how the
scheduler can benefit from an etpf parameter. We assume that P2 uses
etpf= 4. At “a”, the scheduler checks, whether CG1 (the only command group
available then) can be scheduled, i.e., whether the higher-priority process P2
thereby cannot miss its deadlines. To this end, it checks whether the estimated
execution time of CG1 plus the etpf of P2 ends before P2’s deadline (vsync
event 2, red dotted line). Since this is the case, CG1 is dispatched. After CG1 is
finished, at “b”, CG3 is available and immediately dispatched, since, otherwise,
P2 would miss its deadline. After CG3 is finished, the scheduler checks at “c”
whether the time when CG2 would finish leaves at least the etpf of P2 before
vsync event 3 (not depicted). Since this is the case, CG2 can be dispatched. We
observe that using etpf can drastically reduce GPU idle time.

To summarize, each application has the following scheduling parameters. Each
of these parameters can be changed during runtime and immediately affects the

applications CGs.

e Unique priority

143

4. GPU Scheduling

e Desired frame rate

e Demanded execution time per frame, called etpf

4.3.3. Conceptual Design of the Scheduling Algorithm

In this section, we present the brief conceptual design of our scheduling algorithm.
The detailed algorithm is explained later in Sec. 4.3.5. As explained in Sec. 4.3.1,
the CGs submitted by the 3D applications are enqueued into dedicated scheduling
queues. The scheduling algorithm is executed asynchronously in a dedicated
kernel thread. In each run, it selects—if possible—the scheduling queue whose
tail CG shall be dispatched next.

The major constraint for all scheduling decisions is
(A) a CG must not be dispatched if this can violate a higher-priority deadline.
Within constraint (A) we try to achieve a high GPU utilization by

(B) scheduling the earliest deadline, since first scheduling a higher-priority later
deadline could result in a missed deadline of the lower-priority application

having the earlier deadline.

In Listing 4.1 we depict a brief sketch of the scheduling algorithm to show the
basic principle. In Line 1, we calculate the point in time at which the CG that
is selected and dispatched next by the scheduling algorithm will start executing

on the GPU. This point in time is the reference for the subsequent calculations

Listing 4.1: Scheduling algorithm: sketch how the next CG is selected

1 Calculate time at which next CG will start executing
2 candidate = none

3 For scheduling queue Q from highest to lowest prio:
4 if Q is not empty:

5 calculate time at which next dispatched CG must have finished
6 calculate the available time, i.e., the delta between Line 1 and Line 5
7 if Q’s next CG would fit into the available time:
8 if the CG’s deadline is earlier than the deadline of the existing candidate:
9 candidate = Q’s next CG
10 else
11 return candidate

12 reserve execution time for Q
13 return none

144

4.3. Approach

of the algorithm. Next, we iterate through the scheduling queues starting with
the one with the highest priority, i.e., the most important one (Line 3). Starting
with the scheduling queue of the highest priority, we check whether it contains
at least one CG waiting for dispatch, i.e., is not empty (Line 4). If this is the
case, we calculate the point in time at which the next dispatched CG must have
finished in order to prevent violation of higher priority deadlines (Line 5). In
this calculation, we consider reserved execution times of previous iterations of
the loop in Line 3.

The available time calculated in Line 6 is the contiguous amount of time from
the time the GPU will have finished previously dispatched CGs and the point in
time one of the higher-priority scheduling queues needs to start executing on the
GPU such that all higher-priority deadlines can be met. In Line 7, we then simply
check whether Q’s next CG would fit into the available time. If this is the case,
and its deadline is earlier than the deadline of the existing candidate (Line 8), this
CG is considered as (so far) best candidate for dispatching. If the available time
is insufficient and the best candidate (ensured by Line 3 and Line 9) is returned
(Line 11). It is possible that in Line 11 “none” is returned. This happens if no CG
was found that cannot violate a deadline of a higher-priority scheduling queue
and consequently the GPU might become intentionally idle for a short period of
time.

In Line 12, the execution time on the GPU required to meet QQ’s deadlines is
imputed as reserved. There, Q’s etpf, frame rate, and—if available—the
remaining predicted execution time of its current frame is considered. This
calculation is used in Line 5 to determine if dispatching a CG of lower priority

could violate deadlines of Q).

4.3.4. Important Parameters, Variables, and Functions

In order to calculate correctly whether deadlines are met, we have to consider
not only the execution time on the GPU, but also the CPU execution time of the
scheduling algorithm and the GPU driver’s dispatch function. The CPU time of
the scheduling algorithm and the dispatching by the GPU driver is represented by
SDdelay, which is a conservative estimation, i.e., the upper bound. Additionally,
the number of unfinished CGs in the command queue is limited by an upper bound
that can be configured by the parameter MPCG. For MPCG=1, the GPU is idle
while the scheduling algorithm or the GPU driver’s dispatch function is running.

In Fig. 4.5, we show a small example where three CGs of very short execution time

145

4. GPU Scheduling

are executed with MPCG=1. Since the GPU queue length is one, scheduling and

Figure 4.5.: Example for the effect of SDdelays using MPCG=1

dispatching on the CPU cannot run in parallel to execution of a CG on the GPU.
Therefore, the time needed to execute all three CGs, takes their actual execution
on the GPU plus three times the delay introduced by scheduling and dispatching,
SDdelays. If MPCG is increased to two, SDdelayc on the CPU overlaps with
GPU execution time. Fig. 4.5 shows an example with MPCG=2, where two

processes submit CGs. Process P1 submits CGs of very short execution time,

| | | | | | | | | | |

m | | | | | | | |

| | | | | |

M2 M4 M6 I I I I I I

P2 T \|\ T = T T T T T T i

1 I I N I [I I I I I I I

[| N I RN I I I I I I

1 AN I T~ I I I I I I

1{M3[{M5 N ~

1 I I I S I I I I I

Pl TR SSEEE T] T o]]]] |

1 P s ‘r—\-___“‘r———_____\ I I I I

N ~ = = - - = = - - 1

Dde Dde Dde Dde Dde Dde !

SCHED — I I I I I I I I I

I I I I I I I I I

l M2 M1| l M4 M3| M6 M5|l

GPU] A S
1 1 1 1 L 1 1 1 1 L Jt

Figure 4.6.: Example for the effect of SDdelays using MPCG=2

while P2 submits CGs of higher execution time. While having the GPU run in
parallel to scheduling and dispatching provides a significant speed-up, the GPU is
still idle for some time. We observe that not only CGs of an execution time below
SDdelays can cause the GPU to be temporarily idle, but also CGs with higher
execution times (M2, M4, and M6 in the example) might be delayed. In the
example, the start of M4 (and M6) is delayed by SDdelayc minus the execution
times of M1 (or M3). Fortunately, such idleness is very rare in typical scenarios,
since the vast majority of CGs takes longer than SDdelayq to execute. However,

to be on the safe side, the worst-case must be considered, i.e., the situation

146

4.3. Approach

where some CGs have extremely small execution times. We denote the smallest
possible execution time of a CG by ety;;n. From the two presented examples, we
derive Eq. 4.1, which calculates the worst-case time that has to be reserved for

an enqueued CG and additionally define the helper functions Eq. 4.2—4.4.

etdelayed(predET et) = et + max(0,SDdelayc — (MPCG — 1) X etprry) (4.1)

t
to_periods(time t) = — (4.2)
vsync_perio

to_time(periods p) = floor(p x vsync_period) (4.3)

refresh_rate

stride(Q) (4.4)

- ().frame_rate
The function to_periods converts a point in time to the unit “periods”. The
value is rounded to floor in order to obtain a discrete integer value for the period.
The function to_time calculates the point in time where a period starts. The
function stride calculates the number of vsync periods between two consecutive
frames based on an application’s desired frame rate.

Variables representing a sequence number of a specific vsync period have “#” as
a suffix. The major variables and terms are listed and explained in Math Terms
at the end of this work. For each scheduling queue, the scheduling algorithm

maintains the following state variables.

reserved GPU execution time that is reserved for the scheduling queue to meet

its next deadline.

enqueued Sum of the predicted execution times of the CGs submitted by the

application.

dispatched Sum of the predicted execution times of the CGs already dispatched

for the next frame.
currentz The sequence number of the current vsync period.

target# Sequence number of vsync period until which the frame shall be

completed.

desired7t Sequence number of vsync period until which the next frame must
have finished such that the desired frame rate is fulfilled. Used only for

statistics and monitoring.

147

4. GPU Scheduling

finish# Sequence number of vsync period at which the previous frame was
actually completed, i.e., the period at which the GPU signaled completion
of the CG completing the last frame.

4.3.5. Scheduling Algorithm
Next, we explain the scheduling, which consists of four steps.
1. Submission of CGs by applications (Listing 4.2).
2. Update the scheduling data (Listing 4.3, Lines 1-6).
3. Select the CG with the earliest possible deadline (Listing 4.3, Lines 7-37).
4. Dispatch the selected CG (Listing 4.3, Lines 38-48).

The first step—depicted in Listing 4.2—is executed by an application thread.
The Scheduling Algorithm—depicted in Listing 4.3—is executed by the scheduler
kernel thread and consists of Steps 2 through 4. Each step is explained in the

following.

4.3.5.1. Command submission by applications

In Listing 4.2, we depict the code executed when an application submits a new

CG. In Line 1, we increment the aggregated execution time by the CG’s predicted

Listing 4.2: submit(CG)

1CG.Q.enqueued += et geiayed (CG. predET)

2 if OG.is_SwapBuffers

3 CG.Q. reserved = (CG.Q.enqueued

4 sleep until next incipient arrival time

5 else

6 CG.Q.reserved = max(CG.Q.etpf, CG.Q.enqueued)

execution time. The variable enqueued holds the aggregated execution time of all
CGs submitted for the current frame. If the CG is of type SWAPBUFFERS, the
amount of demanded execution time per frame, the etpf, is no longer needed and
the predicted values of enqueued are used (Line 3), and, additionally, the process
sleeps until the next incipient arrival time (Line 4). The process will then be
woken up, triggered by the interrupt handler of the display driver running each
time a vsync event occurs. If the CG is not of type SWAPBUFFERS, at least the
etpf of the scheduling queue Q is used as reserved time (Line 6, cf., Sec. 4.3.2).

148

4.3. Approach

Listing 4.3: schedule next() (selects and dispatches next CG)

1 for each CG finished in the meanwhile:

© 00 N O U W N

R R R R R R R R W W W W W 0 0 W W W N NN DN DN DN DN NN e e e e e e s
0O 3 O UL i W NP O O©WOoO Ut ik Wh O O©WOWNOUOU ibh W HOOWOW-NO U w4+~ O

busyUntiles += CG.measuredET - CG.predET¢

busyUntilp += CG.measuredET - CG.predETo

if CG.is_SwapBuffers
CG.Q.target# = max (CG.Q.desired#, CG.Q.finish#) + stride(CG.Q)
CG.Q.desired# = CG.Q.target#

tRefr = max(busyUntile, NOW + SDdelayc)
tRefp = max(busyUntilp, NOW + SDdelayp)
max# = current# + FPLA

res[] = res2[] = Qdis = 0

for priority p = MAX TO MIN:

if

Qlp] . target# = max (Q[p] .target#, to_periods (tRefp))
if (Q[p] not empty):
earliest# = to_periods(tRefp + Q[p]l.nextCG.predETp)
Qlp] . target# = max (Q[p].target#, min(earliest#, max#))
sum_periods = accounted_time = 0
for i = (max#) TO current# STEP -1:
accounted_time = max(accounted_time, sum_periods)
sum_periods += vsync_period
accounted_time += res[i]
if (res[i] > O OR res2[i + 1] > O:
accounted_time = min(accounted_time, sum_periods)
accounted_time += res2[i]
accounted_time += tRefo
if (Qlp].nextCG.predET¢ + accounted_time <= sum_periods):
if (Qdis = 0 OR Q[p].target# < Qdis.target#):
Qdis = Qlp]
else if (accounted_time > sum_periods):
break loop
if (stride(Qlpl) = 1):
res [Q[p] . target#] += Q[p].reserved - Q[p].dispatched
for i = (Qlp].target# + 1) TO (max#):
res[i] += Q[p]l.etpf
else:
res2[Q[p] . target#] += Q[pl.reserved - Q[p].dispatched
for i = Qlp].target#+stride (Q[p]) TO max# STEP stride (Q[pl):
res2[i] += Q[p].etpf
Qdis > O:
if Qdis.nextCG.is_SwapBuffers:
Qdis .dispatched = 0
Qdis .reserved = Qdis.etpf
Qdis.target# += refresh_rate / Qdis.frame_rate
else:
Qdis .dispatched += Q[p].nextCG.predET¢
dispatch(Qdis.nextCG)
busyUntiles = max(busyUntile, NOW) + Qdis.nextCG.predET¢
busyUntilp = max(busyUntilp, NOW) + Qdis.nextCG.predETp
dequeue (Qdis.nextCG)

149

4. GPU Scheduling

4.3.5.2. Update the scheduling data

First, the scheduling algorithm (Listing 4.3) updates scheduling times using the
finish times of CGs that have finished since the previous run of the scheduler
(Line 1). The variable busyUntil holds the timestamp at which the GPU has
finished (or will finish) all previously dispatched CGs, either using the
conservative busyUntilo or the optimistic busyUntilp predicted execution times.
The purpose of having a conservative and an optimistic estimation is discussed
in Sec. 4.3.6.4. Using the measured execution time of the CG, we correct a
possible prediction error in busyUntil (Lines 2-3). If the finished CG was of
type SWAPBUFFERS, which means that the respective application just
completed a frame, its next target deadline and desired deadline are updated for
the application’s next frame using the desired frame rate. If the application did
not meet its desired deadline, its next deadline is deferred, using finish#.
Similarly, if the frame was completed a vsync period earlier than required, the
next deadline is set using desired# (Lines 5-6). The desired deadline (desired#,
Line 6) is used for monitoring and evaluating the correctness of the algorithm,

since desired# < finish# implies a missed deadline.

4.3.5.3. Select the CG with the earliest possible deadline

Our scheduling algorithm guarantees—provided that the prediction is
correct—that it will never dispatch a CG that could violate a deadline of any
other application that has higher priority. In order to achieve a high GPU
utilization, it selects the earliest possible deadline that can be scheduled safely,
i.e., without violating higher-priority deadlines. =~ The two tRef variables
(Lines 7-8) hold the timestamp at which the next selected CG starts executing,
either based on busyUntil, or—if the GPU is idle—based on the current time.
The delay of the scheduling algorithm itself plus the delay introduced by
dispatching are denoted by SDdelay and postpone tRef. In order to limit the
number of vsync periods we have to look into the future, we use the scheduling
parameter FPLA as the maximum number of periods we have to look into the
future to be sure that no higher-priority deadlines are violated. Depending on
the allowed frame rates, the FPLA must be set properly, as explained in
Sec 4.3.6.4. The variable max+#, which is based on FPLA, holds the maximum
period we have to check (Line 9).

In Line 11, we iterate in the main loop through all available scheduling

queues, ordered from highest to lowest priority. At the beginning of the loop, we

150

4.3. Approach

ensure that the target deadline is not set before the next CG can start
executing (Line 12), since this would result in unjustified reservations that could
prevent lower-priority queues from being dispatched. If a scheduling queue Q[p/
is not empty (Line 13), it might be a candidate for dispatching. In this case, the
predicted execution time of the next CG is available and the earliest possible
next deadline for this queue is the finish time of this CG, if it would be
dispatched next (Lines 14-15). In the Lines 16-23, the scheduling algorithm
calculates the accounted time, i.e., the amount of time that is reserved from the
future periods. The reservation concept is presented in detail in Sec. 4.3.6.2.
Besides the reservations, also the time tRefs is not available for dispatching and
therefore added to accounted time (Line 24). If sum_periods is greater than
the accounted time, the difference is available time that could be occupied by
the application’s next CG, which is therefore a candidate (saved in Qdis,
Line 27). Additionally, Line 26 ensures that the earliest possible deadline is
selected. Otherwise, if there is no available time at all, no lower-priority CG can
be dispatched and therefore we leave the main loop (Lines 28-29).

In the Lines 30-37, we merge the execution times of the current scheduling
queue Q[p/ into res|| and res2|] to prevent that scheduling one of the lower-priority
queues checked next can result in a deadline miss of Q[p].

The stride denotes the number of vsync periods between the deadlines of two
consecutive frames of the application. If stride = 1, the reservations are added
to res[], whereas if stride >= 2, the reservations are added to res2|].

For the application’s current frame we reserve Q’s field reserved minus Q’s
field dispatched (Line 31 and Line 35). If the application did not yet enqueue a
SWAPBUFFERS CG, at least its etpf is reserved (cf., Listing 4.2, Line 6). The
variable dispatched holds the aggregated execution time of CGs already
dispatched for the current frame. For all future frames of the application, its
etpf is used with the stride as step size (Lines 32-33 and Lines 36-37).

4.3.5.4. Dispatch the selected CG

Finally, in the Lines 38 to 48, we dispatch the selected CG. If the CG is of
type SWAPBUFFERS (Line 39), we additionally reset the reserved and dispatched
execution times (Lines 40-+41) and increment the target deadline. Thus, the next
time the algorithm executes, the etpf of QQdis is correctly accounted for the next
target deadline. Moreover, the target# is updated to the queue’s next deadline
(Line 42). If the CG is not of type SWAPBUFFERS (Line 44), this means the

151

4. GPU Scheduling

frame is not yet fully dispatched and the variable dispatched is incremented by
the execution time of the selected CG. In Line 45 the CG is actually dispatched
using the native 3D GPU driver. The GPU driver provides us the exact time at
which the CG is submitted to the GPU. This time (denoted as NOW) is used
to update the busyUntil variables to the expected finish time of the dispatched
CG (Lines 46-47). Eventually, the CG is dequeued from the scheduling queue
(Line 48).

4.3.6. Reservation Concept and Schedulability

In this section, we briefly discuss correctness and schedulability tests of our
approach. As motivated in Sec. 1.2.1 and Sec. 1.2.2, our scheduler needs to be
non-preemptive, isolate higher from lower priorities, consider the desired frame
rates, and support dynamic task sets.

By implication, the scheduler must be idling, since non-idling scheduling
approaches could also dispatch a long-running low-priority CG that would cause
a high-priority CG to miss its deadline. Moreover, a high GPU utilization, as
well as a low CPU overhead are desirable in order to achieve low hardware cost,
installation space, and energy consumption. Next, we discuss the trade-off
between GPU utilization and CPU overhead, and the concept used in our

scheduling algorithm.

4.3.6.1. Execution time efficiency on GPU and CPU

A schedulability test for idling, non-preemptive scheduling, is known to be
NP-complete [GJ79] (Annex 5). Since the task set is dynamic, this calculation
would have to happen in real-time on the embedded platform, which is not
feasible.

Our scheduling approach takes advantage of the specific use-case of GPU
scheduling to fulfill the requirements. The deadlines are aligned to the vsync
events, since the rendered content is supposed to be shown on a display, which
is operated with the refresh rate. Additionally, the arrival time of a CG cannot
be earlier than two vsync periods before its deadline. Thus, we do not only
ensure that the rendered content is very recent, but also the complexity of
scheduling decisions is reduced. The earliest possible arrival time of a CG (i.e.,
two vsync periods before its desired next deadline), is called incipient arrival
time. Moreover, the desired frame rate of a 3D application is typically not

below 20 FPS, since showing only static images would not require 3D rendering

152

4.3. Approach

and low frame rates would be perceived as stuttering or flickering!. This is
beneficial, since lower frame rates would require a further look into the future to

make sure all deadlines are met.

4.3.6.2. GPU execution time reservation concept

Our scheduling algorithm uses two arrays to maintain the reserved GPU
execution times for future vsync periods. The array res|| holds the reserved
time of scheduling queues that have a frame rate equal to the refresh rate. This
implies that the CGs arrive (typically very early) in the vsync period whose end
is also their deadline. The array res2|| holds the reserved time of scheduling
queues that have a frame rate lower than the refresh rate. This means that the
application can submit CGs already one vsync period earlier.

Fig. 4.7 shows an example how reservations of higher-priorities are considered
in the scheduling algorithm. The example uses FPLA=4, which is sufficient
to illustrate the concept. The example shows a situation where the main loop
of the scheduling algorithm (Line 11) has been executed a few times and the
array res[| and the array res2[| contain the reserved times of the previous loop
iterations, i.e., the reservation times of scheduling queues with higher priority.

For instance, res|current#| contains the amount of GPU execution time that has

Period A Period B Period C Period D Period E
(£ #current) (& #current + 1) (& #current + 2) (& #current + 3) (& #current + 4)
A A A A
\l/ Y Y4 N/ N
. res[B] res[C] res[D] res[E]
GPU available
busy time
res2[C] res2[D]

NOW overbooking t\mreserved time
incipient res[B] res[C] res[D] res[E] (res[FI)
arrival of: res2[C] res2[D] res2[E] (res2[F]) (res2[G])

\ \ \ \ \
.) res[A] res[B] res[C] res[D] res[E]
deadline of: res2[A] res2[B] res2[C] res2[D] res2[E]

Figure 4.7.: GPU scheduling algorithm reservation example

an incipient arrival time at the beginning of Period current# and the end of
Period current# as deadline. Incipient arrival means, that the application can
start submitting CGs from that point in time on. Depending on CPU scheduling

and the application’s required CPU resources, the actual arrival time can be

! Above 15 FPS the vision center in the brain gives the sensation of visual continuity, [RM00],
Page 24

153

4. GPU Scheduling

slightly delayed?. The amount of GPU execution time that has an incipient
arrival time at the beginning of Period B and the end of Period C as deadline is
held in res2|C]. This implies that the reservations held in res2[] span two periods,
while the reservations held in res/| span only one period.

When the scheduling algorithm is executed at time NOW | it first determines for
how long the GPU is busy with previously dispatched CGs, since this represents
the start of the available time. The end of the available time is determined
as follows. The algorithm starts with the Period current# + FPLA (E in this
example). It assumes the GPU finishes the reservations just in time. Since the
CGs for res|E| cannot be dispatched before the beginning of Period E (since
they do not arrive earlier), we can without loss of generality assume that those
CGs are all executed directly before the end of Period E. The CGs for res2|E|
could then be executed before. In this case, res|E| + res2|E| < vsync period.
Since earlier reservations such as res|D| and res2|D| have to finish before the
beginning of Period E, the Period E cannot fully utilize the GPU, but leave a
small amount of unreserved time. If a vsync period contains unreserved time, this
means, that—if only the reserved amount of GPU execution time of scheduling
queues with higher priority would be dispatched—the GPU would inevitably be
idle. The case of unreserved time is covered by the scheduling algorithm (cf.,
Listing 4.3) in Line 18.

The algorithm continues with checking Period D. Again, res|D] is placed after
res2|D|, since res[D| arrives not before the beginning of Period D, while the
incipient arrival time of res2|D| is already at the beginning of Period C. This
allows to fulfill res2|D], although res2|D| > vsync period.

Looking at the Periods C and D, it can be observed that res|C| + res2|D| +
res|D| > 2 X vsync period. Since these reservations do not arrive before the
beginning of Period C, it is impossible to meet all existing reservations. To this
end, the apparent overbooking can be safely ignored, which is implemented in
Line 21 and Line 22 of the algorithm.

The scheduling algorithm additionally prefers earlier deadlines (Line 26),
and—if CGs have the same deadline—it prefers the one with the highest
priority. This means, that tasks with target# = current# are preferred over
tasks with target# = current# + 1, cf., the execution policy described in
Sec. 4.3.6.1. For instance, at the beginning of Period C, the CGs of res|C| and

res2|D| arrive, but the CGs represented by res|C| have an earlier deadline than

2 Applications such as glmark2-es2 or our Speedometer application achieved a very small
submission delay of less than 150 ps (less than 1% of the vsync period)

154

4.3. Approach

the CGs represented by res2|D|. Therefore, fulfilling both, res|C| and res2|D], is
only possible if res|C]| is preferred over res2|D|. For instance, this ensures that
task sets that consist only of applications a with stride(a) € {1,2} and do not
require more than 100% of GPU execution time on average, are schedulable
(see next section). Our reservation concept allows us to calculate the time span
between busyUntil and the latest possible start of the reservations, which is the

available time.

4.3.6.3. Schedulability

In this section, we discuss how the schedulability of task set can be determined
and what GPU utilization is achievable. This allows a system integrator to judge
whether the requirements of a given set of important 3D applications can all
be fulfilled, based on the application assessment at which the etpf values were
determined. Our concepts presented in Sec. 4.3.6.1 reduce the complexity of

scheduling decisions. Let) be the set of all scheduling queues and Vg € @ :

refresh rate

7 . According to the definition of the frame rate in Sec. 4.1, all
q.frame rate

q.stride =
stride attributes are integers of the value 1 or greater. Our scheduling algorithm

uses two types of reservations:
1. command queues g with g.stride = 1 (array res||)

2. command queues q with ¢.stride > 1 where the execution on the GPU can

span over two vsync periods (array res2[[), e.g., res2|D] in Fig. 4.7.

In Sec. 4.3.6.2, we showed how the reservations can be put in a sequence. We
further showed how this sequence is correctly aligned to the vsync periods such
that—if possible—mo deadlines are missed.

This insight can be used to understand how it can be verified whether a given
set of tasks is guaranteed to be schedulable, i.e., meet all deadlines. Since the
exact execution times of the CGs are not known in advance, the etpf and frame
rate values are used. In this section, the term “task set” denotes the set of 3D
applications that are all considered important and therefore shall get their desired
frame rates fulfilled. Optionally, further 3D applications with lower priorities can
use the remaining GPU resources, but might not get their desired frame rates
fulfilled.

Let T be a task set. The reservations of tasks ¢t € T" with t.stride = 1 are all
equal, i.e., Vp > 1 : res[1] = res[p]. If all tasks ¢ of the task set have t.stride = 1,
the schedulability test is trivial: 7" is schedulable < >, . t.etpf < vsync period.

155

4. GPU Scheduling

Fig. 4.8 shows three examples of possible reservations and how their CGs could
be dispatched on the GPU. Example a) shows the case where all tasks ¢ have
t.stride = 1. To test schedulability, only one period has to be checked, which is

also obvious from the presented formula.

Period 0 Period 1 Peiod 2 Period 3 Period 4 Peiod 5 Period 6
4 e e e e
res2[1] =0
a) res[1]
b) | res2[1] [resia] [res[2] |
res2[2] =0 Xre32[6] =0
c) | res2[1] [res[1] Yresi2]| [res2[3] res[3][res2[4] |res[4]| [res2[5]| res[5] | resie] |

Figure 4.8.: GPU scheduling algorithm schedulability example

Next, we look into situations that contain at least one task ¢ with t.stride > 1,
which applies to Example b) and Example c¢). Without loss of generality, we
assume that all tasks of the task set have their first deadline at Period 1. This is
actually the worst case since the reservations for tasks ¢t with t.stride >= 3 will
be distributed most non-uniformly. The reservations of tasks t with ¢.stride > 1
have their first deadline at Period 1 and their next deadline thereafter not before
Period 3, which implies res2[2| = 0.

If all tasks ¢ have either t.stride = 1 or t.stride = 2 (cf., Example b) in
Fig. 4.8), the schedulability test is also relatively easy. In Period 1, res|1| can be
dispatched at the end. Thereafter, res|2| can be dispatched at the beginning of
Period 2. Before res|1], res2|1] can be scheduled. If res2|1] does not extend more
into Period 0 than what is left of Period 2 after res|2|, the task set is schedulable,
since in Period 3 the reservations continue as in Period 1 in a periodic fashion.
Thus, only two periods have to be checked to decide on schedulability: Let T [i] =
{t € T|t.stride = i}. T is schedulable < 2 x 37, r tetpf + 3 cqp Letpf <
2 X vsync period.

In the general case of tasks with different stride, multiple periods have to be
checked. In Period 1, all tasks have a deadline. After Period 1, their deadlines
are given by their respective stride as intervals. Eventually, in a future period,
all tasks again have a deadline in the same period. This repeats periodically each
least common multiple (LCM) of the set of stride values. Formally, etpf lem =
LCM({n € N|3t € T : stride(t) = n}).

Furthermore, according to the description in Sec. 4.3.6.2, res[i] = ZteTm tetpf
t.etpf,if stride(t) mod i =0

and res2[i| = ZteT\T[l] ;
0, otherwise

156

4.3. Approach

Listing 4.4: is_schedulable(task set)

1 sum_periods = accounted_time = 0

2for i = etpf_lcm TO 1 STEP -1:

3 accounted = max(accounted_time, sum_periods)

4 sum_periods += vsync_period

5 accounted_time += res[i]

6 if (accounted_time > sum_periods):

7 return NO

8 accounted_time += res2[i]

9 return accounted_time - sum_periods + res[etpf_lcm] < vsync_period

In Listing 4.4, the schedulability test is provided in pseudo code. It follows
the GPU execution time reservation concept explained in Sec. 4.3.6.2. The for
loop (Lines 1-8) matches closely the corresponding Lines 16-23 of the scheduling
algorithm (cf., Listing 4.3). Only the Lines 22-23 of the scheduling algorithm
deviate from the Lines 6-7 of the schedulability test. The reason is, that the
scheduling algorithm ignores overbooking that cannot be affected by the next
scheduling decision, while the schedulability test detects overbooking and returns
“NQO7”, indicating that this task set is not schedulable. In Line 9, the schedulability
test checks whether the amount of accounted time that extends into Period 0 fits
into the amount of time left in Period etpf lem. If this is the case, the same
sequence of reservations can be repeated for unlimited times and the task set is
schedulable for any period of time. The amount of time left in Period etpf Ilem
is simply vsync period - res|etpf lem)], since res2|etpf lem| = 0. In Period 1 all
tasks have a deadline and—due to the definition of LCM—in Period etpf lem+1
again all tasks have a deadline. If res2[etpf lem] > 0, it could only come from
an application a with a.stride = 1, which, however, contradicts the definition of
res2|].

The Example c) in Fig. 4.8 shows a schedulable sequence of reservations for
tasks ¢ having t.stride € {1,2,3}. Therefore, etpf lem = LCM(1,2,3) = 6
and the schedulability test looks into Periods 1 through 6. Tasks € T'[1] have
deadlines in each period. Tasks € T'[2] have deadlines in Period 1, 3, and 5.
Tasks € T'[3] have deadlines in Period 1 and 4. Therefore, the highest amount
of reserved GPU execution time in res2[[is in Period 1 and res2[1] = res2|3| +
res2|4]. Unreserved time is observed in the Periods 2, 3, and 5. Reservation res|6]
is shown at the beginning of Period 6 to indicate that the (periodic) execution
can continue with res2|[7] (which is equal to res2|[1]).

For each task set whose tasks ¢ have t.stride € {1, 2}, our scheduling algorithm

can account for 100 % of the GPU resources. This means, that a task set that

157

4. GPU Scheduling

does not de facto require more than 100 % of the GPU execution time, is always
schedulable. For task sets that contain tasks ¢ with t.strede > 2, this is not always
the case, since unreserved times cannot be always avoided (cf., Example c) in
Fig. 4.8). As explained in Sec. 4.3.6.1, typical automotive 3D rendering task sets
do not contain a task ¢ with t.stride > 3. In this case, our scheduling algorithm
can account for at least 67 %, which happens if the GPU is idle every third period.
To improve this, tasks could be started such that their first deadline is not at the
same period. To this end, even with a task set T, with V¢t € T : t.stride € {1,2, 3},

the scheduling algorithm can often account for close to 100 %.

4.3.6.4. Coping with errors of execution time prediction

The effectiveness of the scheduling algorithm (cf., Listing 4.4) depends on
accurate execution time prediction. While our concepts for execution time
prediction (cf., Sec. 3) provide good results, they cannot always avoid prediction
errors. Additionally, the etpf is used to reserve GPU execution time before the
prediction actually takes place. This implies that the actual and also the
predicted GPU execution time is typically lower than the etpf. Both aspects
were considered in the scheduling algorithm and are explained next. From the
predicted execution time received from LibETP, we derive the conservative
prediction predETy, which adds a small safety margin, and the optimistic
prediction predETo, which subtracts a small margin. In the scheduling
algorithm, we calculate busyUntilc and busyUntilo (Lines 2-3 and 46-47),
which represent the point in time when the GPU becomes idle, based on
conservative and optimistic prediction. Similarly, we calculate tRefo and tRefo
(Lines 7-8), which represents the time the next CG can start executing on the
GPU:; again, based on conservative and optimistic prediction.

Underestimation of CGs potentially leads to deadline misses of higher-priority
applications, since the GPU stays busy longer than expected. To reduce the
probability of underestimation, all reservations are based on conservative
execution time prediction.

In Line 12, the scheduling algorithm postpones the next deadline if it is
impossible to be met. This avoids considering impossible reservations, thus
occasionally increasing GPU utilization. However, the decision to postpone a
deadline implies that the particular deadline is missed. To avoid that this
happens with low confidence, postponing deadlines is based on optimistic

prediction, i.e., the deadline is only postponed if—even under optimistic

158

4.3. Approach

assumptions (i.e., using tRefo)—the deadline cannot be met.

As explained in Sec. 4.3.6.3, reservations of a sequence of etpf [em periods
have to be checked to determine if a task set is schedulable. For the scheduling
algorithm, it is important to check the same number of periods to determine
the available time (cf., Sec. 4.3.6.2). However, if an application has already
submitted CGs for its current frame, the scheduling algorithm uses their predicted
execution times as reserved time. Since applications can submit CGs up to two
periods before their next deadline, the scheduling algorithm has to check a total
of FPLA = etpf lem+ 2 periods, starting with the current one. Thus, the range
from Period current# -+ 2 to Period current# + etpf lem + 1 contains only
etpf-based reservations, which guarantees that the etpf values are reserved.

Using a command queue length of 1 (MPCG=1), the scheduler precisely knows
when the CG dispatched next will start executing. If a CG was significantly
underestimated, in the worst-case, a higher-priority deadline is missed. To reduce
the probability that this can happen, the scheduling algorithm prefers in general
CGs with higher priority, since the main loop in Line 11 starts with the highest
priority and the first non-empty queue found is assigned to Qdis (Line 26). Only
if a lower-priority application has an earlier deadline, it can be scheduled earlier.
If MPCG>1, in rare cases, multiple of the CGs currently pending in the command
queue might be significantly underestimated. This increases the probability that
higher-priority deadlines are missed. Therefore, a high MPCG is beneficial for
the GPU utilization (since the command queue rarely runs empty) but might

result in more deadline misses of applications with high priority.

159

4. GPU Scheduling

4.4. Implementation

In this section we describe the implementation of our scheduling framework and
the interfaces of the scheduler module to the native driver and the compositor.
The patch® to the native Vivante kernel driver consists of 3036 lines, more
precisely, it adds 2167 lines of C code, changes 78, and removes 5 (determined
with “cloc --diff”). Our GPU driver module consists of 3155 lines of C code and
735 lines of source code comments (determined with “cloc”). This includes a
short implementation (32 lines) of the FIFO algorithm, which can be optionally
activated and was used only to evaluate the execution time prediction presented
in Chapter 3.

4.4.1. Hardware platform and Operating System

In the automotive cockpit demonstrator VCT-B presented in Sec. 2.3, a
Freescale i.MX6 platform is used. To this end, we implemented the GPU
scheduling concept described in Sec. 4.3 for the same platform. It contains four
ARM CPU cores, a Vivante GC2000 GPU for 3D rendering, a Vivante GC355
GPU for 2D compositing, and an IPU. As operating system we used Yocto 1.8
with Linux kernel 3.14.28-rt25 with preempt-rt patches.

4.4.2. Dispatching commands

The native user space driver uses system calls to submit different types of
commands to the kernel space driver. The majority of these commands are not
executed by the GPU, and thus do not have to be dispatched by the GPU
scheduler; for instance, commands query driver information, allocate memory,
or alter driver behavior. The commands that need to be dispatched by the

scheduler are the submission of:

e Synchronization points (called Sync Events)
e GPU Command Groups (CGs)

e Detach commands if a process explicitly disconnects

Without our modifications, the native GPU driver synchronously dispatches

those commands in system call context. This means, that after having

3Created with “diff -Naurp --exclude=*.out --exclude—.cproject --exclude—.project
--exclude=.settings --exclude=Makefile -—exclude=*.txt --exclude=*.swp
orig imx_3.14.28 1.0.0 ga gpusched imx 3.14.28 1.0.0 ga”

160

4.4. Implementation

submitted a CG, the application is blocked until the CG has been dispatched.
Simple scheduling approaches like [KLRI11, BDC08, YZQ"13] delay this
dispatching individually for the respective processes. However, such a
synchronous scheduling is inherently unaware of more than only one
undispatched CG, whereas each frame is rendered by multiple CGs. This is a
major drawback, which justifies our approach of asynchronous dispatching.
More precisely, the scheduler does not know the predicted execution time of a
complete frame until its last CG has been submitted (i.e., the CG containing
the SWAPBUFFERS GPU command). Therefore, the execution time needed to
render the whole frame is estimated by means of the demanded execution time
per frame (etpf) of an application (cf., Sec. 4.3.2). However, the etpf can be
smaller than what the application submits (e.g., etpf=0), which would
inevitably result in not dispatching lower-priority applications or potentially
cause deadline misses of higher-priority applications. Additionally, the etpf can
be bigger than what an application submits, in which case lower-priority
applications could not benefit if the scheduler does not know it. Therefore, we
implemented asynchronous dispatching where—in the system call context—the
CG is just forwarded to the GPU scheduler, which enqueues it into the
application’s scheduling queue, and then the system call immediately returns.
Thus, the application is able to submit its CGs as fast as possible without
having to wait until they actually get dispatched. The GPU scheduling
algorithm, which runs in a dedicated kernel thread, later dispatches the CG
from the scheduling queue. A major difficulty of the implementation was, to
allow dispatching by a process different than the originating process and at an
unexpected point in time. In more detail, the dispatch function expects that it
has access to a couple of data structures allocated by the user space application.
When the system call returns, the user space application might free this data or
reuse it for other purposes. While the process is in system call context, we
therefore create copies of the relevant memory blocks and use these copies later
while dispatching. This includes the CG’s command buffers, the Sync Event
queues, and the GPU State Deltas?. Thus, instead of performing the memory
copy operations in the dispatch function, we moved the copy operations ahead.
When dispatched by the scheduler thread, the dispatch function then just uses

the existing copies. Where possible (i.e., where the data size is constant), we

4 A State Delta is a set of GPU commands updating GPU-internal state registers and is
used to update the Context Buffer associated with the application. The Context Buffer is
executed each time a GPU context switch occurs.

161

4. GPU Scheduling

used the Linux kernel Slab allocator. Additionally, we make dispatching aware
of the effective process and thread id, which is obviously no longer the current
real process or thread id, since the scheduler kernel thread is now the caller.
Note, that asynchronous dispatching is about as fast as concurrent synchronous
dispatching, since most of the dispatch code is protected by mutexes, which

prevent concurrent execution anyway.

4.4.3. Time measurement and prediction

In order to do real-time scheduling, we need to know the exact time when each
of the CGs started and finished execution. The GPU operates asynchronously
to the main CPU. To synchronize CPU execution with GPU execution,
typically interrupts are used. To this end, dedicated GPU commands are used,
which—when executed—emit an interrupt. These commands are called Sync
Fvents and used whenever the application (e.g., for glFinish()) or the driver
internally (e.g., to enter power saving state) need it. We patched the GPU
Driver (kernel space), so that after each execution of a CG, a Sync Event is
submitted. However, dispatching one CG can submit multiple Sync Events,
which necessitates counting the number of submitted Sync Events and to
precisely count the number of received interrupts to determine when each CG is
finished. Moreover, dispatching (and thus Sync Event submission) takes place
concurrently to GPU execution, such that when receiving an interrupt, we do
not know whether the CG has finished, since the corresponding dispatch could
concurrently submit more Sync Events. Therefore, we notify the scheduler
module right before the last Sync Event of the CG is submitted to the GPU.
The scheduler then marks the number of expected interrupts as complete,
and—after receiving the expected number of interrupts—the CG is marked as
finished, with the correct finish timestamp, obtained using the cpu_clock(0)

function.

4.4.4. GPU Scheduler interface

Our patch to the 3D GPU Driver kernel module “galcore” allows a separate GPU
scheduler kernel module to be loaded and hooked into its functionalities. Next,
we describe which functions of the driver are accessible by the GPU scheduler,
then we describe how the scheduler module attaches to the driver and which

callbacks it uses.

162

4.4. Implementation

The GPU scheduler uses multiple new, exported functions of the driver to
interact with the GPU. When the module is loaded, initially
mxc_gpusched _register is called, which enables the GPU scheduling mode of
the patched native driver. To dispatch a CG, the scheduler -calls
mxc__gpusched dispatch. After the user space process has exited and all of its
previous CGs were executed, the GPU driver calls
mxc_gpusched detach process, which frees all data related to that process.
Eventually, when the scheduler module is unloaded, mxc gpusched unregister
is called to notify the driver that the GPU scheduler mode shall be disabled. As
depicted in Fig. 4.2, after the GPU scheduler module is loaded, the driver
forwards all new CGs received by applications directly to the scheduler instead
of immediately dispatching them. The GPU scheduler is then called by the
driver at multiple occasions, which are, grouped by origin, depicted in Fig. 4.9.
For each type of occasion, the scheduler module implements a dedicated
callback method. An application that wants to access the GPU for the first

Application Scheduler Driver

vsync_cb

attach

exit process

before _commit_submit dispatch event_cb

attached

dispatching before event submit

current pid
submit _ CG

current tid

Figure 4.9.: Scheduler interface callbacks

time, makes a system call that attaches it to the kernel space driver. Then, this
application is known to the driver, and, also, due to the callback, to the GPU
scheduler. The application can now submit CGs, which are forwarded to the
GPU scheduler via the callback submit CG. When the process exits or gets
killed, the GPU scheduler—after all its commands have finished—releases its
resources. The scheduler calls the dispatch function of the driver to submit a
CG to the GPU. While the dispatch function executes, the driver gives a
callback for each Sync Event submitted to the GPU. This is required, since this
directly corresponds to the number of interrupts that are emitted by the GPU

163

4. GPU Scheduling

and the scheduler has to count that many interrupts before it can detect that
this CG is finished. Furthermore, the native driver at some places queries the
pid (process id) or the tid (thread id) on which behalf it schedules. Directly
before starting the main execution of the CG, another callback tells the GPU
scheduler when exactly the CG was submitted. At any point in time, the driver
can notify about interrupts emitted by the 3D GPU (event cb) or by the

display device driver (vsync_cb).

4.4.5. Compositor interface

For compositing, we implemented a simple interface, which consists of a system
call that waits until the next vsync event occurs. The Compositor passes a
pointer along with the system call. Before the call returns, our implementation
copies the list of all windows that were completed before the vsync event to this
pointer address. The Compositor then takes this list and bitblits each window
at the desired place. Although compositing is not the main focus of this work,
we implemented a full compositing approach to demonstrate that compositing
easily integrates with our GPU scheduler. The compositor can be built to run
in stand-alone mode on a native Linux or integrated into our automotive cockpit
demonstrator VCT-B described in Sec. 2.3.

4.4.6. Concurrency

In our implementation, many threads run concurrently and therefore need to
be synchronized. Implementing this in an efficient way was a major challenge.
In Fig. 4.10 we have depicted the different components and the events they are
signaling or waiting for. For all of them we used the completions from the Linux

kernel, which provide better efficiency than semaphores. An application thread

| 3D GPU ISR

Application thread (submit) Scheduler thread (run sched. alg.)

CG enqueued

From kernel: exit process

wakes up |

\
L

Compositor process

Display driver ISR

Figure 4.10.: Scheduler thread concurrency synchronization

164

4.4. Implementation

that submits a new CG is blocked, if its associated scheduling queue, which holds
64 entries, is full. After the GPU has finished a CG, it potentially wakes up the
waiting application thread. The size of the command queue MPCG limits the
number of pending CGs. The scheduler thread runs in a loop where it first waits
until the command queue has free slots, then it waits for a wake-up event and
eventually executes the scheduling algorithm described in Sec. 4.3.3 (Listing 4.3).
The scheduler waits for a wake-up event only if in its previous run no schedulable
CG was found, which means that further loops of the algorithm would also fail.
To this end, the scheduler thread sleeps until the next frame period starts or
a new CG is enqueued, either directly by the application or by the kernel on
process exit. After the application has inserted a SWAPBUFFERS CG, it sleeps
until its next incipient arrival time (cf., Listing 4.2, Line 4). Additionally, the
compositor process waits for a vsync event where application windows are waiting
to be bitblitted.

Besides the completions mentioned before, we occasionally use atomic
variables and memory barriers, where necessary. Additionally, we replaced all
mutex instances by rt mutex instances, which provide priority-inheritance, and
significantly reduce latency jitter. This was primarily relevant for debugging
output in both, the driver and the scheduler module, since all debug output is
serialized using a global mutex. Two special concurrency issues are explained
next. The driver uses a global mutex that protects each access to one of the
driver’s context data structures. Contexts are accessed when a process attaches
or detaches and also while dispatching commands. With GPU scheduling this is
a drawback, since an attaching process can temporarily delay the scheduler
kernel thread that dispatches or executes a detach command. In our algorithm,
this would increase the delay of scheduling and dispatching by a relatively high
and hard to estimate amount of time. We therefore decided to disable this
mutex completely while in scheduler mode. This is possible, since attaching
creates a new context, which cannot cause a conflicting access. All other places
are executed only by the scheduler thread, which means that no concurrency
can occur while in scheduling mode.

A similar drawback exists with the global event queue mutex. It is locked when
new Sync Event objects are reserved, before the Sync Event command is sent to
the GPU, and also after the GPU has executed the Sync Event and the associated
actions are executed. Executing the associated actions is performed by a worker
thread of the native driver that is triggered by the ISR. If GPU scheduling is

active, Sync Event reservation is done by the scheduler kernel thread. Thus,

165

4. GPU Scheduling

the worker thread could delay the scheduler kernel thread by hardly predictable

amounts of time. We replaced this mutex by a lock-free implementation that uses

a modified execution sequence and one read and one write memory barrier.

For the sake of clarity, we omitted a few implementation details, which are not

essential to understand how the scheduling algorithm works. The omitted details

include:

166

Handling of boundary cases (e.g., introduced by integer rounding)
Assertions that verify the correctness of the scheduler execution
Tracing of scheduler decisions in a dedicated data structure

A dedicated scheduling queue for each priority, the attached ring buffer of
CG entries, and the dedicated data structure for the GPU execution flow

are all separate data structures, but shown as () in the pseudo code

Control of the scheduler process and application processes (wait and wake
up).

The special handling of “exit” CGs that free the application’s GPU driver
resources of the native GPU driver. It does not involve the GPU but

nevertheless cannot be dispatched out of order.

4.5. Evaluation

4.5. Evaluation

In this section, we evaluate the effectiveness, the achieved GPU utilization, and
the efficiency of our scheduling approach. Effectiveness means that the scheduler
enforces the applications’ priorities and desired frame rates. We evaluated simple
homogeneous scenarios, as well as sophisticated mixed scenarios. The achieved
GPU utilization is also evaluated for the mixed scenario, using different values
for the MPCG, since the command queue length affects the utilization. The
efficiency evaluations determine the CPU overhead introduced by our scheduling
algorithm. In this case, simple homogeneous scenarios are used, since the actual
rendering of the applications does not affect the CPU overhead of the scheduling

algorithm.

4.5.1. Setup

As hardware platform for our evaluations we used a Freescale (NXP) i.MX6
SABRE Automotive Platform. The board features a quad core ARM CPU
running at 800 MHz and 2GB of RAM. Its SOC contains a Vivante GC2000
GPU for 3D rendering, and a Vivante GC355 GPU for 2D compositing. The
Freescale (NXP) i.MX6 platform is widely used for automotive multimedia and
infotainment applications (e.g., [Conl5, AUD14|) and thus is a representative
automotive platform for realistic evaluations of our concepts. We used a Yocto
1.8 system image based on Linux kernel 3.14.28 with preempt-rt patches and
the Vivante driver V5.0.11.p4.25762. The execution time pred ET——predicted by

liIbETP—was used to calculate (with numbers based on evaluations)

predETe = (predET + 100 ps) * 1.05 and
predETo = MAX (0, predET — 100 1s) * 0.9

(cf., Sec. 4.3.5). As smallest possible execution time of a CG we used ming =
30ps, by using pcgusn (cf., Sec. 3.8.1.3) with a small safety-margin. For the
conservative and optimistic estimation of the delay of scheduling and dispatching
we used SDdelays = 150ps and SDdelayp, = 50ps, based on our evaluation
results (Fig. 4.18). By default, we used MPCG = 5 (i.e., up to five pending GPU
commands were allowed), FPLA = 7, and evaluated each scenario for at least
300s. In the presented results, we skipped the first 50 s and the last 10s, since the
applications rarely submitted CGs while initializing and while terminating. The

priorities of the daemon threads of the native GPU kernel driver were increased

167

4. GPU Scheduling

from 0 to 40. The ISR of the 3D driver was executed with priority 95, while
our scheduler kernel thread had priority 46. All user space applications were
running at default priority and “nice” level. The 3D applications were using
OpenGL ES 2.0 and EGL with the Vivante framebuffer backend as graphics APIs
and used libETP. The application-specific scheduling queues hold up to 64 CGs.
Since power-management of CPU and GPUs potentially increases latency, it was

disabled.

4.5.2. Effectiveness

In this subsection, we evaluate the effectiveness of our scheduling approach in
order to verify whether given deadlines are met for high-priority applications,
while low-priority applications can utilize the remaining GPU resources. We
used a set of identical applications, namely the glmark2-es2 “build” benchmark
scene rendering the “bunny” model, which has a fast CPU execution time and a
precisely predicted GPU execution time. This ensures that applications do not
miss deadlines just because they submitted their CGs too late due to
non-prioritized CPU scheduling. We executed 10 applications in parallel, each
with etpf=5ms. In Fig. 4.11, we depict the results for frame rate=60 FPS. For
each priority (corresponding to a process of the application executable), we

show the percentage of met deadlines and the achieved frame rate. We observe

100 60
= Met deadlines [%] =
S 80| Framerate[FPS] B - - - - - - - - - - - - -4 50
f 40
£ 60 - : 0
S 30 a
@© A0 - - - - - - e e L
S 20
L 10
0 | | | | | | | 0

Priority

Figure 4.11.: Effectiveness (homogeneous scenario), 60 FPS

that the deadlines of the priorities 10 and 9 were always met and the desired
frame rate of 60 FPS was fulfilled. Priority 8 met its deadlines in about 70 % of
the cases where its CGs interleaved into the CGs of the Priorities 10 and 9.
Priorities lower than 8 were never admitted due to the high amount of execution
time reserved for higher-priority applications. We additionally evaluated the
same scenario using 30 FPS for each application, cf., Fig. 4.12. As expected, the
frame rates dropped to 30 FPS. Now, 6 applications (Priorities 10 through 5)

168

4.5. Evaluation

100 60
= Met deadlines [%] =
S 80| Framerate[FPS] B - - - - - - - - - - 1 20
4 40
£ B0 - - - - %)
S 30 a
S A0 -
o© 20
9 20 F- - - - - oo
2 10

0 | | | | 0
1 2 3 4
Priority
Figure 4.12.: Effectiveness (homogeneous scenario), 30 FPS

100 60
= Met deadlines [%]
S 80 Frame rate [FPS] == 1 30
0 40
£ 60 : 0
S 30 o
© 40 - - - - oo w
S 20
B 20F -
= 10

0 L 0

Priority

Figure 4.13.: Effectiveness (homogeneous scenario), 20 FPS

met all deadlines, since the GPU scheduler now interleaves the CGs in intervals
of 33.3ms (2 periods) instead of 16.7ms (1 period). Thus, the number of
applications with fully met deadlines more than doubles compared to 60 FPS.
The scheduler effectively improves interleaving of the CGs and admits more
CGs. Additionally, if all applications have 60 FPS, during a short period of time
directly after a new vsync period starts, all scheduling queues are empty, thus
making the GPU idle for about 400 us on average.

Moreover, we evaluated the same scenario using 20 FPS for each application,
cf., Fig. 4.13. As expected, the frame rates dropped to 20 FPS and 9 applications
were dispatched and met all their deadlines. Changing from 30 FPS to 20 FPS
increases the number of dispatched applications from 6 to 9. The evaluation
results of the homogeneous scenario demonstrate that the scheduler enforces the
scheduling according to the defined priorities, frame rates, and etpf.

We also evaluated a more sophisticated, mixed scenario, consisting of the set
of applications and parameters depicted in Table 4.1. The mixed scenario uses
17 concurrent applications. This includes Quake 3, which submits many CGs
per frame and occasionally faces significant prediction errors (cf., Sec. 3.8). The
selected set of applications ensures that the scenario is always GPU-bound by

using 10 instances of the Glmark2-es2 “texture” program with low priority. In

169

4. GPU Scheduling

Table 4.1.: Application setup for mixed scenario

Priority | frame rate | etpf | Application type Resolution
17 60 FPS | 2.1ms | Automotive speedometer 456 x 456

16 60 FPS |2.1ms | Automotive tachometer 456 x 456

15 30FPS |2.3ms | Glmark2-es2 “shading” 720 x 540

14 20FPS | 2.5ms | Glmark2-es2 “texture” 720 x 540

12 & 13| 30FPS |0.0ms | Glmark2-es2 “build” (“bunny”) | 720 x 540

11 30FPS | 0.0ms | Quake 3 “demo four” 1440 x 540
1-10 60 FPS | 0.0ms | Glmark2-es2 “texture” 720 x 540

100 60

R 80 et dendines [o6) mmmm 1%
8 el Frame rate (FPS) B 1 40
S A I 120
§ oaof Yl | 10
0 Ll L 0

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Priority

Figure 4.14.: Effectiveness (mixed scenario)

Fig. 4.14, we depict the results for the effectiveness at the mixed scenario. We
observe that the priorities 17 to 12 met most of their deadlines. The few missed
deadlines (especially of Priority 12) were caused by the Execution Time
Predictor, which occasionally underestimated the CGs of Quake 3, by a couple
of milliseconds. Since the scheduler typically schedules higher priorities first, in
the rare situation that not all deadlines of the Priorities 12 through 17 would be
met, at least Priority 12 would miss its deadline. While this is not the fault of
the scheduling algorithm, it makes clear, that accurate execution time
prediction is important. Next, we discuss the results in more detail.

The Priorities 17 through 14 met more than 99.6 % of their deadlines.
Priority 17 met 99.89 % of its deadlines, while Priority 16 met 99.62%. The
Priorities 14 and 15 even met 100 % of their deadlines, since their deadlines
were later, due to a lower frame rate. To a minor degree, the Priorities 13 and
12 suffered also from etpf= 0, since for future frames no execution time was
reserved for them. The priorities below 11 still got GPU resources, namely the
resources that could not be used by Quake 3 (Priority 11) due to the following

two reasons. First, when long running or overestimated CGs of Quake 3 could

170

4.5. Evaluation

100 60
S oan b 50
£ 80 Met deadlines [%]
3] Frame rate (FPS) m==m 40
@ 60 ... emelEeiTY ==
= [%p]
° 30 o
QO
° 20
S 20 1 10

0 1 1 1 O

L =
5 6 7 8 9 10 11 12 13 14 15 16 17
Priority

Figure 4.15.: Effectiveness (mixed scenario), Quake 3 with 200 % pred ET

not be scheduled, since deadlines of the Priorities 17 through 12 could be
violated, a lower priority CG that could not cause a deadline miss of Quake 3
was scheduled, as explained in Sec. 4.3.5.3. Second, Quake 3 is often CPU
bound, especially during the loading of a scene. If the scheduling queue of
Quake 3 is temporarily empty, due to etpf=0, the scheduler skips the
scheduling queue of Quake 3 and—if no deadline of the Priorities 17 through 12
is violated—dispatches a CG with lower priority. The embedded GPU and CPU
are too slow for Quake 3, since even if running stand-alone, Quake 3 achieves
only about 20 FPS®. In the mixed scenario, Quake 3 therefore gets a fair share
of the GPU resources and can render at 12.8 FPS.

While the amount of met deadlines is affected—besides the priority—by the
frame rates and the etpf, the predominant impact on the effectiveness of the
scheduler is the prediction error of Quake 3. Hence, we additionally evaluated
the same mixed scenario, where libETP predicted always 100 % more® for all
CGs of Quake 3. In Fig. 4.15, the results are depicted. Since often the CGs
of Quake 3 would violate higher priorities, the framerate of Quake 3 drops to
2.7FPS. The positive effect is, however, that the higher-priority deadlines of
the Priorities 17 through 12 are very rarely missed, now (at least 99.85 % of the
deadlines were met). The highest Priorities 17 went up to more than 99.97 % of
met deadlines. Since Quake 3 was estimated higher, lower priorities were still
dispatched, but less often, due to the reservations made for Quake 3. Moreover,
predicting higher execution times by libETP for selected unknown applications
is a good way to ensure that high-priority deadlines are met even if execution
time prediction has limited accuracy. Appendix A.3.2 contains additionally the

results for an estimation of co and an underestimation by 75 % for Quake 3.

5During normal scene rendering, not during the loading of a scene
6This was achieved using the OVERPREDICT FACTOR parameter of ibETP, cf. Sec 3.7.5

171

4. GPU Scheduling

4.5.3. GPU Utilization

In this section, we evaluate the achieved GPU utilization. We denote the GPU
utilization GPU,(t from, tro) as the time the GPU is effectively busy during
period [tfrom, tto] in relation to the length of this period. To measure GPU,,
we used again the set of applications depicted in Table 4.1 and varied the
maximum number of pending CGs (MPCG). The results are depicted in
Fig. 4.16. In this figure, each point represents GPU,; for a duration of 2s. The

GPU Utilization [%]

time [s]

Figure 4.16.: GPU utilization, mixed scenario

possible interleaving influences the utilization and results in a mediocre
fluctuation. However, at two occasions, the points of MPCG 2 through 4
slightly drop, since during those periods Quake 3 is loading a new scene and
submits CGs with very small execution time. Whenever the command queue
runs empty, the GPU goes idle, which happens more often if many fast CGs are
dispatched. Therefore, using a different set of applications could prevent these
drops in GPU utilization.

In Fig. 4.17, the average GPU utilization is depicted. The GPU utilization with
MPCG = 2 is significantly higher (97.11%) than with MPCG = 1 (89.75 %), since
the scheduler can run in parallel to the GPU execution. In situations where the
dispatched CGs are very fast (in the range of tens of micro seconds), MPCG = 3
additionally increases GPU utilization to 98.6 %. Values for MPCG higher than 5
provide almost no gain in GPU utilization, since the scheduling algorithm is very
fast. On average, a GPU utilization of at least 99 % was achieved for MPCG = 4
through MPCG = 10. In Fig. 4.17, additionally the average number of scheduler
runs per dispatched CG are depicted. If MPCG is increased, the busyUntil values
of the scheduling algorithm also increase, since, typically, more CGs are pending.
This increases the probability that at tRef (which is based on busyUntil), no CG

172

4.5. Evaluation

4 125

100 GPU utilization [%] S

98 Runs per dispatch [%] 223 . . 120 s

S g
= 96 - - - S
S gl B BB O N R
® g
= 02 - - - -)
S 92 110 S
g 90 f- - 3
88 k- - - 105 32

2

86 - - - - S

100 ¥

1 2 3 4 5 6 7 8 9 10
MOGC (maximum outstanding GPU CGs)

Figure 4.17.: Average GPU utilization and required number of scheduler runs

can be dispatched without violating a higher-priority deadline, i.e., schedule next
terminates with QQdis = 0 (cf., Listing 4.3). The CPU overhead introduced by
a number of scheduler runs exceeding 100 % is negligible for MPCG <= 5. For
MPCG = 5, the overhead is only 0.77 %, but rapidly grows for higher values. A
MPCG below 5 has a noticeable lower GPU utilization and a MPCG above 5 increases
the CPU overhead without clearly increasing GPU utilization. Plainly, there
exists a trade-off between high GPU utilization and low CPU overhead of the
scheduler. Since higher values of MPCG accumulate errors of the execution time
prediction (cf. Appendix, Sec. A.3.1) and we opt for a compromise between high
GPU utilization and low CPU overhead, MPCG = 5 was used as default value in

our evaluations.

160

Average dispatch time _
140 - Average scheduling time ——— -~ - - = - - = - s c[s s
1/l S I .
100 b - o o —]

CPU execution time per CG [us]

20

Number of active 3D processes

Figure 4.18.: Delay of the scheduling algorithm

173

4. GPU Scheduling

4.5.4. Scheduler Efficiency

Finally, we evaluate the CPU execution time consumed by the scheduling
algorithm. We used a varying number of “es2gears” applications at a resolution
of 320x240, 30FPS, and etpf= 1.0ms’. In Fig. 4.18, we show the average
execution time of the scheduling algorithm and minimum and maximum values.
We observe that the execution time shows a linear dependency on the number
of active processes with a small slope. On average, the scheduling algorithm
stayed always below 9ps. It never exceeded 145 ps (single outlier). In contrast,
the execution time needed to dispatch a CG increased on average from 52 ps for
a single application to about 104 ps for 20 applications. This is caused by data
structures of the native GPU driver where the CPU execution time for lookups
depends on the number of data records, which grows with the number of
rendering threads®. Thus, our scheduling algorithm adds typically less than
10% to the CPU time needed for dispatching by the native driver, which is a
quite impressive result. More precisely, in our mixed scenario, our scheduling
algorithm consumed 1.0% of the CPU time of a single CPU core, while the
native GPU driver consumed 12.8%. Since the evaluation platform has four
CPU cores, our GPU scheduler required only 0.25% of the CPU resources.

4.5.5. Evaluation conclusion and summary

The goals for automotive GPU scheduling are (a) fulfill deadlines based on the
priority, (b) guarantee the desired frame rate, (c) achieve a high GPU utilization,
and (d) achieve a low CPU overhead (cf., Sec. 4.1).

Our evaluations address all four goals: (a) and (b) are addressed by the
effectiveness evaluations (Sec. 4.5.2), (c) by the utilization evaluation
(Sec. 4.5.3), and (d) by the efficiency evaluation (Sec. 4.5.4).

Our evaluations for effectiveness show, that our scheduler correctly handles
priorities and desired frame rate. In the three evaluations for the homogeneous
scenario, the high priorities met their deadlines by at least 99.98 %. This applies
to the two highest priorities with a frame rate of 60FPS, the six highest

priorities with a frame rate of 30 FPS, and the nine highest priorities with a

“es2gears was selected because it allocates only a small amount of memory, thus allowing to
run many instances on our memory-limited embedded platform.

8This fact can also be observed the Appendix, Fig. A.5, where the delay introduced by the
scheduling algorithm (depicted in green at SCHED, almost invisible) is almost negligible
compared to the delay introduced by the dispatching performed by the native Vivante
driver (depicted in blue at SCHED).

174

4.5. Evaluation

frame rate of 20FPS. In our mixed scenario, we show that the scheduling
algorithm also works with different frame rates, with and without using the
etpf, and the impact of an application that has a high execution time prediction
error (namely, Quake 3). Even with the high prediction errors of Quake 3, the
biggest impact (Priority 12 in Fig. 4.14) was still a very high rate of met
deadlines of 97.8%. We showed, that Quake 3 is the only reason for these
deadline misses. In an automotive scenario, the critical applications can be
developed in a way that the execution time can be predicted accurately, e.g., by
using different shaders for different scenes and choosing the best models. In
contrast, applications of low criticality (such as Quake 3) that might show
higher prediction errors, have still a quite limited impact on the scheduling of
the critical applications. If required, a safety margin can be added to the
predicted execution time for applications with potentially higher prediction
errors, which was demonstrated for Quake 3 (results in Fig. 4.15).

Our concept of deadline- and priority-based scheduling achieved a very high
GPU utilization of more than 99 % on average. Our results show the command
queue affects GPU utilization as well as CPU overhead of the scheduling
algorithm. For our mixed scenario, a value of MPCG = 5 was the best trade-off,
since GPU utilization does not increase with a higher MPCG, while the scheduling
overhead increases, since with a long command queue the scheduling algorithm
often runs without being able to dispatch any CG without violating future high
priority deadlines.

Moreover, we showed by evaluations, that the CPU overhead introduced by
running the scheduler is minimal. In our complex mixed-scenario, where the
scheduler did run about 1500 times per second on average, it only consumed
0.25 % of the total CPU resources, while the native GPU driver consumed 3.2 %.
Even with 20 concurrent application, a run of the scheduling algorithm did not
take longer than 9ps on average. Thus, our scheduling algorithm is not only
effective, but achieves a very high GPU utilization with little CPU overhead.

175

4. GPU Scheduling

4.6. Outlook on preemptive scheduling

As motivated in Sec. 1.2, current GPUs do not provide sufficient
preemption-capabilities to support preemptive real-time scheduling.
Nevertheless, in this section we briefly discuss the relevance of our concepts and
results for a preemptive 3D GPU scheduling, which might become possible in
the future.

In automotive scenarios, applications have different priorities, different frame
strides, and can submit a non-fixed sequence of GPU CGs per frame. Thus, if
GPU preemption should be available, a preemptive GPU scheduler would still
have to support such scenarios. The well-known EDF (earliest deadline first)
scheduling is insufficient, since it does not consider priorities. FPPS (fixed
priority preemptive scheduling) can be wused and would schedule the
highest-priority application wherever possible. However, all other applications
might be scheduled never or rarely, which implies that the GPU utilization

might be very low. To explain in more detail why FPPS would suffer from low

o ST A S A A s S T

P2 S NN R B S S S S N

e T S S A S S

Pl “l‘-(flg_l_l_ |gf}?_| E E E E E E E

n W mi m i

SCHED T R

;| ca1 cas car | | cez || : : !

GPU T | | | : : | | : :
1 1 1 1 ! 1 1 1 1 !t

Figure 4.19.: Example for simple priority-based scheduling

GPU utilization, a short example with two applications using FPPS is depicted
in Fig. 4.19. The higher priority P2 has its next deadline at frame sequence
number 3 (red dotted line), while the lower priority P1 has its next deadline at
frame sequence number 2. With FPPS, P1 is scheduled first, since its CGs
arrived first. As soon as CG3 from P2 is received, it is dispatched, and,
consequently, CG1 is preempted. After CG3 has finished, the scheduler
dispatches the remainder of CG1, followed by CG2. In this example, P1 missed
its deadline. While FPPS always ensures the highest priority does not miss its

deadline, it does not share the goal of dispatching as many lower priority

176

4.6. Outlook on preemptive scheduling

applications as possible. In order to overcome this significant drawback, the
scheduling algorithm needs the predicted execution time and (ideally) the etpf.
Moreover, preempting the GPU takes some time. It is therefore beneficial to
keep the number of preemptions small; since our scheduling algorithm is
optimized for GPUs that do not support preemption, preemption would be
required very rarely, thus ensuring a high GPU utilization. Additionally, other
concepts presented in this work, such as the asynchronous scheduling queue,
also improve preemptive scheduling.

To this end, GPU preemption could be used to extend our scheduling
algorithm such that the available time is always used for the lowest possible
priority that does not violate higher-priority deadlines. This can increase the
GPU utilization and the effectiveness, since some deadline misses of
lower-priority applications—especially those with long-running CGs—can be

avoided.

177

4. GPU Scheduling

4.7. Related Work

Real-time GPU scheduling as targeted by our approach and classic real-time
scheduling for CPUs |[LL73, RBE99, JRRO7| share a common goal, namely, to
guarantee the timely execution of code. However, the underlying system model
is fundamentally different, since CPU scheduling can be based either on
preemption or a known execution time of commands. Preemption mechanisms
are not available for GPUs so far. Although the Windows Display Driver Model
(WDDM), supports GPU preemption since Version 1.2 [WDDal, which was
introduced with Microsoft Windows 8, preemption is de facto an optional
feature? and an upper bound on preemption latency is not guaranteed.
Actually, many GPUs—such as the Vivante GC2000 used in this work—do not
support preemption'?, so a command batch cannot be preempted once it was
started. A few recent GPUs support preemption only on DRAW level [RS15].
This means that if the operating system issues a preemption request, the GPU
must finish the execution of the current DRAW and can then be switched to a
more important 3D context. Depending on the API usage pattern of the 3D
applications, this can significantly reduce the latency between preemption
request and switch to another context. However, the execution time of a single
DRAW call is not limited, since the number of vertices and fragments, and the
execution times of the shader instances can be (in theory) arbitrarily high. The
Nvidia Kepler GPUs (available since Q3/2016) introduced preemption on
fragment-level’! claiming a latency of less than 100us [Boul6|. However, the
execution time of a single fragment shader is (in theory) not limited, which
clarifies that the given latency is not guaranteed at all. Additionally, Nvidia
does not state preemption of other steps of the rendering pipeline, e.g., if
fragment shaders or rasterization can also be preempted. When performing
fragment-level preemption (which probably includes vertex-level preemption),
the whole state of the hardware rendering pipeline (except for the shader core
control blocks), which uses many caches [Smil6|, must be saved to be able to
continue later. Such a save and load feature increases the die size of the GPU,
which is probably the reason why no embedded GPUs support fragment-level
preemption, yet. The only effective way to preempt the current work of a GPU

9 [WDDa] states that “WDDM 1.2 drivers can also reject the Windows 8 preemption model”

YHowever, DrRaW-level preemption (explained thereafter) could probably be implemented in
the kernel driver, given that the command set of the GPU is known (e.g., through reverse
engineering).

1 Actually, they announced “First ever pixel-level graphics preemption”, i.e., fragment-level
preemption.

178

4.7. Related Work

with limited latency is to reset it, e.g., by power-cycling it. After resetting, the
GPU and the kernel driver must be reinitialized, which typically means that
GPU contexts are lost and the respective applications must reinitialize and
render again their content [WDDb|. To this end, resetting takes typically many
seconds and is unsuitable for automotive use cases with critical applications.
Nevertheless, even if preemption should become available in the future, our
concepts provide a major contribution (cf., Sec. 4.6).

Real-time GPU scheduling must guarantee the timely execution of rendering
tasks. In general, preemption is one of the basic mechanisms that facilitate the
implementation of scheduling concepts. Although preemption mechanisms are
foreseen by GPU driver frameworks such as the Windows Display Driver
Model [WDDa|, no maximum delay between preemption request and completion
is guaranteed, making them insufficient for the implementation of real-time
GPU scheduling. On the other hand, non-preemptive scheduling approaches
typically assume a static set of applications and time requirements. Bautin et
al. [BDCO8, DWAOQS| developed a system called Graphics Engine Resource
Manager (GERM), which targets fairness in GPU multitasking, using
deficit-round-robin scheduling. However, they do not directly support priorities
but assume that increasing an applications operating system priority indirectly
allows it to submit CGs at higher frequency. Furthermore, this approach does
not support frame-based deadlines nor GPU execution time reservation.

Kato et al. developed a real-time GPU scheduler called TimeGraph [KLRI11],
which is based on scheduling policies defined by the user. Each application gets
periodically a budget of GPU execution time assigned. Their scheduling is not
aware of frames and does not use priorities. Therefore, this approach cannot
guarantee a maximum delay for rendering a frame, cannot guarantee certain frame
rates, and cannot prioritize. Moreover, due to latency induced by synchronous
GPU operations, applications using the X Server and double buffering encounter
additional problems addressed in [KLIR11|. However, the X Server itself does
not provide sufficient isolation mechanisms and therefore cannot be used for an
automotive HMI system.

Yu et al. [YZQ"13] propose a resource management framework -called
Virtualized GPU Resource Isolation and Scheduling (VGRIS) targeted at cloud
gaming systems. This approach introduces a delay after the SWAPBUFFERS
command, which represents the finished execution of one frame. It only
supports a coarse-grained time resolution since only fully rendered frames are

measured and scheduled rather than GPU command groups. They assume that

179

4. GPU Scheduling

the rendering behavior of the applications is well known. Thus, they use a
cooperative scheduling scheme where applications release the GPU by using
SWAPBUFFERS. However, if an application never calls SWAPBUFFERS, it would
get infinite GPU execution time. Zheng et al. [ZQCZ16| present GCloud, which
extends the concepts of VGRIS to determine the resource consumption of
rendering nodes and implement load balancing wusing simple quality
requirements, such as desired frame rates, of the individual games. While
GCloud helps to efficiently use cloud systems for a higher number of game
instances, its real-time scheduling capabilities are not better than those of
VGRIS.

Works like |[BK12| provide real-time GPU scheduling for GPGPU, which is
actually easier to solve, since the GPGPU frameworks such as CUDA or OpenCL
offer much better control of the execution. Therefore, such scheduling concepts
work without changing the GPU driver. Unfortunately, they do not support a
3D rendering pipeline of a GPU.

A non-preemptive Highest Priority First (HPF) scheduling (also called priority
scheduling) [TB14] always schedules the process with the highest priority that is
ready. Using it for a Virtualized Automotive Graphics System would meet our
goals only for the highest priority application. Lower priority applications could
violate deadlines of higher priorities, since HPF is not aware of the deadlines.
Furthermore, in terms of GPU utilization, it is sometimes beneficial to schedule
a lower-priority application before a high priority application.

The Least Laxity First (LLF) scheduling algorithm proposed by Stewart et
al. [SK]| calculates the laxity for each process. The laxity is the amount of time
by which dispatching can be deferred without violating the deadline. LLF is a
preemptive scheduling algorithm that always executes the process with the
lowest laxity. In contrast to our scheduling algorithm, LLF does not support
priorities, frame-based periodic execution time accounting, and uses
preemption. The Maximum-Urgency-First Algorithm (MUF) extends
laxity-based scheduling by fixed priorities to support critical tasks. Basically,
each fixed priority represents a group of processes in which LLF scheduling is
performed. However, assigning each 3D application a fixed priority would be
equivalent to HPF scheduling, which does not meet our requirements.

The periodic task model [Liu69, LL73] is a well-known approach to model
recurring processes. Other non-preemptive approaches such as the Clairvoyant
non-preemptive EDF scheduling [Eke06] are based on it. Each process has a

period and a required execution time per period. In our approach, the frame

180

4.7. Related Work

rate implicitly represents a task period and the etpf represents the required
execution time. However, their task model assumes (for non-preemptive
approaches) that the etpf represents also the scheduling granularity. This is not
true for GPU scheduling, where the granularity of scheduling is CGs, and the
etpf is just upper bound of the CGs of one frame. Moreover, in our approach
the set of tasks, the periods, and the required execution times are all dynamic
and priorities are used to select the next CG, if the available GPU resources do

not suffice to meet all deadlines.

181

4. GPU Scheduling
4.8. Summary and future work

4.8.1. Summary

In this chapter, a GPU scheduling framework for non-preemptive 3D scheduling
is presented, providing strong real-time guarantees while still efficiently using
the available GPU resources. The GPU command groups submitted by the
applications are inserted in dedicated scheduling queues managed by the GPU
scheduler thread. Our scheduling algorithm uses application-specific frame
deadlines and the estimated execution time of GPU command groups to
dispatch commands to the GPU without requiring preemption. Our evaluation
on an embedded automotive platform shows that—assuming correct execution
time prediction—real-time constraints are guaranteed and a high GPU
utilization of 99 % is achieved. In particular, the applications desired frame
rates are enforced by the scheduler. If the available GPU resources are not
sufficient enough to enforce this for all applications, the applications’ priorities
determine which command batches are delayed, thus avoiding deadline misses.
The execution time of our 3D GPU scheduling algorithm is less than 9pus on

average, thus, the introduced overhead is very low.

4.8.2. Future work

The current scheduling algorithm assumes that the CGs of an application are
potentially available at the very beginning of the first period of a frame. That is,
the delay between a vsync signal, which lets an application’s SWAPBUFFERS call
return, and the arrival of the applications first CG of the next frame in the kernel
space driver, is expected to be 0 in the best case. However, this assumption is
typically too restrictive, since even a very fast application needs some time to
submit OpenGL calls and also GPU driver consumes some time before the CG
reaches the scheduler. Therefore, we suggest to improve our scheduler by using
the minimum submit delay as additional parameter in order to slightly increase
the flexibility of the scheduler, which might slightly improve the GPU utilization
in some scenarios. Moreover, as motivated in Sec. 4.6, we suggest to adapt our
scheduling concept to preemptive embedded GPUs—once they become available.

For automotive systems, the functional safety must be ensured, as described in
ISO 26262 [ISO11] (cf., Sec. 1.1.1). Thus, before our scheduling framework could
be used for a safety-criticality of ASIL-A or higher, the functional safety must

be assessed, which includes—for instance—failures of the GPUs or the connected

182

4.8. Summary and future work

displays. While our framework was developed with functional safety aspects in
mind, a full certification can only be performed on the whole system (at least
the whole vehicle) and is future work. Additionally, software development in the
automotive domain is typically affected by OEM-specific requirements, e.g., a
development and assessment according to Automotive SPICE [SIG]|. To this end,
an in-depth code-review of all software components and their implementations

needs to be done.

183

5. Summary

Using 3D graphics in vehicles is becoming more and more popular. In modern
high-end cars, the instrument cluster (IC) uses a display to show graphical
representations of —traditionally analog—indicators. To this end, 3D rendering
is used not only on the head unit (HU), but also for the rendering of critical
applications on the IC. At the same time, the trend to use 3D also extends to
applications that the driver can install and run—creating the need to also
support 3rd-party applications. Traditionally, new functionality in vehicles is
often implemented by adding new hardware platforms (ECUs), which provides
the required isolation between applications of different safety-relevance.
Unfortunately, this practice is costly and disadvantageous concerning energy
consumption and installation space. Therefore, all these applications should
share a single hardware platform and thus a single GPU.

Based on the relevant ISO standards, automotive design guidelines, legal
requirements, and OEM specific demands, this work presented the requirements
that apply to automotive application development. It was deduced from these
requirements, that isolation for 3D rendering is the major challenge. In this
work, we presented a virtualized architecture, and a real-time 3D GPU
scheduling concept based on execution time prediction.

We proposed the Virtualized Automotive Graphics System (VAGS), which
uses a microkernel-based hypervisor to isolate VMs. This allows to replace the
physical isolation (using separate ECUs) by software-based isolation and thus
can run on a single ECU. For instance, the HU and IC would run in separate
VMs. To add further functionality, further VMs could be added, e.g., for
3rd-party applications. The VMs communicate with each other using an
isolated communication channel. The VAGS uses a dedicated Virtualization
Manager VM, which has exclusive hardware access and is responsible to provide
safe access to the shared resources. In particular, it contains a Permission and
Policy Management that performs access control to display areas, input events,
and GPU rendering. The GPU Scheduler needs to support priorities and

deadlines in order to fulfill the requirements of critical 3D applications, while

185

5. Summary

maintaining isolation. Since current GPUs cannot be preempted, a
non-preemptive scheduling approach is required. This requires that the
execution times of the command groups (CGs) are known in advance, i.e., they
have to be predicted. Besides, knowing the predicted execution time
significantly helps the GPU scheduler to achieve a high GPU utilization.

To this end, we presented a novel framework to measure and predict the
execution time of GPU commands using OpenGL ES. For DRAW commands we
presented two heuristics that estimate the number of fragments, two concepts
that estimate the shader execution time, and an optional online adaption
mechanism. The number of fragments is estimated either by the bounding box
of the rendered model, on which the vertex shader projection is applied, or by a
subset of the triangles, which is used to estimate the average size of a triangle.
To estimate the shader execution time, we either execute them in a profiling
environment with a dedicated OpenGL ES 2.0 Context, or we use a MARS
(multivariate adaptive regression splines) model trained with offline data. With
our implementation and evaluation of the framework we demonstrated its
feasibility and showed that good prediction accuracy can be achieved. For
instance, when rendering a popular 3D benchmark scene, less than 0.4 % of the
samples were underestimated by more than 100ps and less than 0.2% of the
samples were overestimated more than 100ps. We showed that the overhead
introduced by our implementation is low and on the long-run sometimes even
negligible.

Moreover, we presented a real-time 3D GPU scheduling framework that
provides strong guarantees for critical applications while still giving as much
GPU resources to less important applications as possible, thus ensuring a high
GPU utilization. The scheduler operates fully dynamic, which means that the
set of applications and the CGs submitted by them can dynamically change
over time. We presented our implementation on an automotive embedded
platform with Linux. By our evaluations, we showed that the scheduler is
effective in giving applications with higher priority precedence on GPU time
resources. In a challenging scenario with 17 applications, it achieved a high
GPU utilization of 99 % and met 99.9 % of the deadlines of the highest-priority
application. Moreover, we showed that scheduling is performed highly efficient
in real-time with less than 9 ps latency, which is only about 10 % of the time the
dispatching of a CG by the native GPU driver in kernel space takes.

186

A. Appendix

A.1. Vivante GPU instruction set

In Listing A.1, the shader instruction set of the Vivante GC2000 GPU is shown.

The names were obtained from the debugging symbols of the user space driver.

Listing A.1:

0 NOP
1 MOV
2 SAT
3 DP3
4 DP4
5 ABS
6 JMP
7 ADD
8 MUL
9 RCP
10 SUB
11 KILL
12 TEXLD
13 CALL
14 RET
15 NORM
16 MAX
17 MIN
18 POW
19 RSQ
20 LOG
91 FRAC
22 FLOOR,
23 CEIL
24 CROSS
95 TEXLDPROJ
26 TEXBIAS
97 TEXGRAD
98 TEXLOD
29 SIN
30 COS
31 TAN
32 EXP
33 SIGN
34 STEP

35 SQRT

36 ACOS

37 ASIN

38 ATAN

39 SET

40 DSX

41 DSY

42 FWIDTH

43 DIV

44 MOD

45 AND BITWISE
46 OR_BITWISE
47 XOR_BITWISE
48 NOT BITWISE
49 LSHIFT

50 RSHIFT

51 ROTATE

52 BITSEL

53 LEADZERO

54 LOAD

55 STORE

56 BARRIER

57 STORE1

58 ATOMADD

59 ATOMSUB

60 ATOMXCHG

61 ATOMCMPXCHG
62 ATOMMIN

63 ATOMMAX

64 ATOMOR

65 ATOMAND

66 ATOMXOR

67 TEXLDPCF

68 TEXLDPCFPROJ
69 —

70 —

71—

72—
73 —

74—

5

6 —

7 —

78—

79 —

80 SINPI

81 COSPI

82 TANPI

83 ADDLO

84 MULLO

85 CONV

86 GETEXP

87 GETMANT
88 MULHI

89 CMP

90 I2F

91 F2I

92 ADDSAT

93 SUBSAT

94 MULSAT

95 DP2

96 UNPACK

97 IMAGE_WR
98 SAMPLER _ADD
99 MOVA

100 IMAGE_RD
101 IMAGE_SAMPLER
102 NORM_MUL
103 NORM_ DP2
104 NORM_DP3
105 NORM_ DP4
106 PRE_DIV
107 PRE_LOG2

187

A. Appendix

A.2. libETP XML profiling data file

Listing A.2 shows an XML settings file of libETP that contains the profiling data

for the “es2gears” benchmark application. The “main” method was shortened due

to space restrictions.

Listing A.2:

<?xml version="1.0" encoding="UTF-8"7>
<Profiling version="15">
<System gpu="Vivante" kernel="NN">
<Program Code="619561618">
<!—attribute wvecl position;
attribute wvecd normal;

uniform
uniform
uniform
uniform

varying

mats
mat4
vecy
vec

vec

ModelViewProjectionMatrix;
NormalMatriz;
LightSourcePosition;
MaterialColor;

Color;

void main(void)

{

JE.

<!—precision mediump float;
varying vecq Color;

void main(void)

{

gl _FragColor = Color;

>

<etp 1V>13241</etp 1V>

<etp_ 1F>159</etp 1F>

<KF_ Draw>2.229586</KF_Draw>
<KF SB>0.946322</KF_SB>
</Program>

</System>
</Profiling>

188

A.3. Additional results for scheduler effectiveness

A.3. Additional results for scheduler effectiveness

This appendix section extends the results presented in Section 4.5.2.

A.3.1. Influence of MPCG on scheduler effectiveness

The effectiveness of the GPU scheduling for the setup described in Table 4.1
was evaluated with values for MPCG other than 5. In Fig. A.1, the results for
MPCG = 2 are depicted. A comparison to the results for MPCG = 5 (Fig. 4.14)

100 60
S a0 L. o 4 50
£ 80 Met deadlines [%] mmmm—
3] Frame rate (FPS) m==m 40
£ B0 e e e ‘ "
° 30 o
O O ~
° 20
S O20 "W 1 10

0 1 1 1 | Y 0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Priority

Figure A.1.: Effectiveness (mixed scenario), MPCG=2

shows that a lower MPCG reduces missed deadlines of the Priorities 12-13. This
is due to the fact that less CGs of Quake 3 can be pending—each cumbered
with a sometimes high overestimation—resulting occasionally in more deadline
misses. Increasing MPCG, e.g., to MPCG = 10 in Fig. A.2, significantly increases
the number deadline misses of the Priorities 16-17 and 12-13, since occasionally
the command queue contains multiple pending CGs that were overestimated and
the scheduler could not preempt the GPU. A higher MPCG potentially increases
GPU utilization (cf., Fig. 4.17), but might also result in more missed deadlines,

if the execution time prediction underestimates multiple consecutive CGs.

100 60
o a0 L. - 50
£ 80 Met deadlines [%] mmmmm
o Frame rate (FPS) === 40
£ B0 e e e ' "
° 30 e
© A0 -
B 20
ool -l 1 (P
0 1 1 1 | - O
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Priority

Figure A.2.: Effectiveness (mixed scenario), MPCG=10

189

A. Appendix

A.3.2. Scheduler effectiveness with huge ETP error

The effectiveness of the GPU scheduling for the setup described in Table 4.1 was
evaluated with additional biased prediction factors for Quake 3. In Fig. A.3, we
depict the results if for Quake 3 only 25 % of the execution time of each CG was
used. Since CGs with smaller ETP can more often be scheduled, the frame rate
of Quake 3 increases slightly (compared to Fig. 4.14). However, since all CGs
are massively underestimated, the deadline misses of higher-priority applications
increase, especially for Priority 12, which is most affected since it is the next
higher priority. Nevertheless, even with such a huge prediction error the frame
rate of the Priorities 16 and 17 are still very close to the desired 60 FPS. In
Fig. A.4, we depict the results if all CGs of Quake 3 are predicted with infinite
execution time. Thus, Quake 3 cannot be scheduled at all and the Priorities
12-17 always meet their deadlines. This shows that the deadline misses of the
Priorities 1217 observed in the Figures A.3, 4.14, and 4.15, are caused by ETP

errors of Quake 3 and not the fault of the scheduler.

100 60
e =Y s W A 50
g 80 Met deadlines [%] mmmmm
3] Frame rate (FPS) m==m 40
- ‘ "
o 30 o
QO ~
° 20
S 20F 4 'd IR "H K 1 10

O 1 1 | - = O
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Priority

Figure A.3.: Effectiveness (mixed scenario), Quake 3 with 25 % pred ET

100 60
o a0 L., R - 50
g 80 Met deadlines [%)]
] Frame rate (FPS) === 40
F= L ' "
k=] 30 e
© A0 -
E 20
£ oa0p 1l | 10

0 | | L O
2 3 4 5 6 7 8 9 10 12 13 14 15 16 17
Priority

Figure A.4.: Effectiveness (mixed scenario), Quake 3 with pred ET = oo

190

191

154020

53997

50466

50461

A.3. Additional results for scheduler effectiveness

p

50456

3139

MPCG = 1 is shown. While P17 denotes the highest priority (a speedometer), P1
denotes the lowest priority (an instance of glmark2). At the lines P17 to P1, it is
estimated execution time was. The activity of the GPU scheduler kernel thread

is depicted in the line SCHED. Since the command queue has a size of one, the

depicted when the respective application submitted a new CG and how long the
GPU goes idle after each executed CG.

This section extends the results presented in Section 4.5.2. In Fig. A.5 we depict
a timing diagram where a short sequence of the mixed scenario evaluation with

A.3.3. Scheduling timing

|
| =
2
2
2 ']
i H
= N E
g 2 . N T
PR [(N S ol Y B T U PN R RN RN N SN R R R] I R Ll e
= 7 /’!& P Bl
. R
e ﬁo b~ o
é 'll --" £ - 2
= A\ IS R T I E S IR o |8
[i — [N . ¢ ey S RN PR st e e S 2-18
. /c -- Pt _ - S8
J N T B LI S —
w\ - \/ll e e P P B
PR U NN SR | B Y -1 SN B A A B el R RN Sl I T -
I [B e
- AN P St IR R S
2 - NS B O 1 el I g[8
g gl A B T Il Pt I Es e :lé
b S lallitis R Ittt Ry s il B = \\\\Uw?x\\\w?ll\v\\\\‘w\\u\\un\\l\\\ \\\\\ i Pt ity Cot —
[~ -- - . af-- - P P R BN PR =
3 B I P SR IR, S ead z|2
N 3 -- Sl -f-z="AR 7 - ER:
| J&l -8 = 5 2SS M 2 8
o |” Mv - \\\\\\1 P \\\\\\\\\ %\\\\\\\\\\W\N\\\"\\\\\\\\\\ \\\\\\\\\\I\I\I\MI\I\I\\\ I\I\V\I\\I\V\I\H\H\WI Rl ===
g 3 }- y B P A) e Deetet fufuftel iupupube pupuput e 3
X - o B ESa B > el e
B e 115 B § 1) sl P=S-pel PR L ooy
2 . I H R S = el i P . & . .
B A 5= [ttt i) = S NN B P R AN SR I RN RN R I B %
N I O P |~ ’ i 2
R A S - ’ e o | B
=) . KX g
= - .8 g
N
L o2 2 =z =2 2 = 2 2 £ K £ £ Z & & £ § &k
~ ~ ~ ~ ~ o ~ a M mm
O
w0

Figure A.5.: Timing diagram of a short period, MPCG=1

50451

With MPCG=>1, the GPU typically does not become idle between different
CGs, since the scheduler algorithm and the dispatching can run in parallel to

A. Appendix

the GPU execution. There are two possibilities, why the GPU can become idle.
First, if the scheduling algorithm could not select a schedulable CG. Second, if
the GPU executes a few consecutive CGs faster than the scheduler can dispatch.
The second case occurs rarely, especially with MPCG>=5. In Fig. A.6, a timing
diagram of the evaluation with MPCG=5 is depicted. The depicted sequence
shows multiple of such situations between ¢ = 50444.3ms and ¢ = 50445 ms,
where multiple consecutive CGs have almost zero GPU execution time and the

GPU becomes idle for a few times, during which the scheduling algorithm runs.

313~ | |

: |
E#é]lg 7414 | 7415 (7416
P17

T] —
e

i " ' 1
H I
T34 7341 | 7342 |7343

| |
| |
| |
i i
T T
l l
l l
| |
. . .
P16 T T [] |
FR i L | |
HEE ity v | |
b " o | |
= NI] il
P15 R X [| |
T 1 o | |
HE o L I I
[T “ 1244' 1245 | |
P14 — T — T T
T R 1 1
v Ner——
HETRTEE S T30
Pl DR
P13 T a T~ T
Hl Ve N
L L | N l
o [FRANER N ¥ l
AL i S L L
PL2 =
¢ PR NN NI
A [R TN [N
Lo '\ " | |
FARTI LM B | A >
P11 TR T
o A Ilw" [N
SR o I I S
e ! Voo i NN
P10 — S —
AL NI | |
BRI 2 SO l l l
\\ii*‘\: | ‘?\0’\41 “ ' 'I | |
P9 \L \1 0‘:71.\~ 'l\ | |
TN NSO ! !
NN Y NP N | |
2Ny '\\“ (LS | |
N 7‘\\{\ T \%'M"w‘.\ | |
M S oL L
P8 RO 798 7
et o l' o
RN, SRR B U' AOS
N N S
P7 L W ', To.
t T T
i AR iy ~
B RNy Y,
RN e Y,
v ' \ ~
P6 | NN R/
T TN T T o
HEREI TR AN | |
N R |
P5 L. L] ! L I
T y ESRERS !
Lot I [VAN I
o I TR Y I
P4 L I Ll A" L
| o I Vil ‘\{\ Y]
crrh [L N T
HE W T N A AN
Vil ! UL RN AN
P3 VEh] " KRR
T T
R W R O
R TR
1. | iy W [NURENERN
G | IS Y N
P2 S ————
drhor iy NI
et | 1y RN
s ' ! \
[: th A
H ! [! il
P1 —r—— e
o | pony R
Y | e |
l l
l l l l
IR
50431 50436

Figure A.6.: Timing diagram of a short period, MPCG=5

192

Glossary

blending

blending is an optional step in the fragment post-processing of the OpenGL
rendering pipeline. If enabled, it uses a custom blending function which
calculates the new pixel color using the color value of the existing pixel and

the color value of the fragment.

buffer resolve

Some GPUs (such as the Vivante GPU used in this work), render in a
proprietary format into render buffers. We call the step of converting this
format to the target format a buffer resolve. The Vivante driver also uses

the term “resolve” for this purpose.

command queue

When a CG is dispatched by the GPU driver, it is inserted into the
command queue of the respective GPU. The GPU fetches the CGs from

there and executes them.

command buffer

To submit CGs to the GPU driver, an application first connects to the GPU
driver. The GPU driver then allocates command buffers and maps them
into the application’s memory address space. The application inserts GPU
instructions into a command buffer and eventually submits them as a CG

by using a system call.

command group

A command group is a batch of GPU commands. Typically, this batch is
executed by the GPU in one go and thus is the granularity of choice at
which GPU scheduling is performed.

193

Glossary

correction factor

Our concept for online adaption maintains a correction factor per OpenGL
program and type of CG (e.g., for type “DRAW?). The correction factor is
applied to the estimated execution time of a CG and continuously updated

based on the measured execution times of finished CGs. See Section 3.6.

coverage factor

One of our concepts to estimate the number of fragments is based on a
bounding box. Since the actual number of fragments is often smaller than
the area covered by the bounding box, we multiply with a configurable

coverage factor. See Section 3.5.1.4 and Section 3.7.3

depth test

The depth test is an optional step in the fragment post-processing of the
OpenGL rendering pipeline. If enabled, the GPU compares the depth value
of each fragment with the depth value of the previously drawn pixel at the
target location. The pixel is only updated if the fragment passes the depth
test

early depth test

Conceptually, OpenGL performs the depth test after the fragment shader
execution. However, in cases where the fragment shader does not change the
depth value, the GPU can speed up execution if the depth test is performed

early, i.e., before fragment shader execution.

EGL
The EGL API [Leel4| connects rendering (e.g., with OpenGL ES 2.0) with
the underlying native windowing system. See Sec. 3.1.1

electronic control unit

An electronic control unit is a hardware component used in modern
vehicles. It consists of electronic components, such as microcontrollers,
microprocessors, or GPUs. ECUs are typically connected to other ECUs

in the vehicle.

etpf

Application-specific parameter used by the scheduler that can be used to
increase GPU utilization. It represents an upper bound to the GPU

194

Glossary

execution time required to render one frame of the application. See
Sec. 4.3.2. In the scheduling algorithm, the etpf is represented as

attribute of a scheduling queue.

Execution Time Monitor

In our execution time prediction architecture, the Execution Time Monitor

measures the GPU execution time for each CG. See Sec. 3.3.3.

fragment shader

A fragment shader is a program written in GLSL. It uses varying variables

and uniform variables as input data and calculates the fragment color.

frame rate

3D applications render into a dedicated buffer that is updated at the end
of each rendering loop, i.e., when a new frame is rendered. The rate at
which this update occurs is called frame rate and measured in the unit
frames per second (FPS). Additionally, each 3D application has a target
frame rate that our GPU scheduler tries to fulfill. In our scheduling
algorithm, the target frame rate is an attribute of the application’s

scheduling queue.

frames per second

The frame rate at which an application updates its render buffer is given

in the unit frames per second (FPS).

GPU Profiler

A component of our Predictor that determines the performance of the 3D
GPU through profiling and provides it to the prediction models, see
Sec. 3.3.2.1.

graphics processing unit

The graphics processing unit (GPU) is an electronic circuit used as hardware
accelerator to speed up the graphical rendering. Typically, it has many

parallel compute units, caches, and is connected to the system bus.

head unit

The head unit (HU) of a vehicle is responsible for entertainment.
Applications running on the HU include radio, TV, navigation directions,

web browsing, and configuring comfort functionality.

195

Glossary

incipient arrival time

The earliest possible arrival time of a CG, i.e., two vsync periods before its

desired next deadline.

instrument cluster

The instrument cluster displays the important status of the vehicle, such
as speed, fuel level, and critical warnings. Modern high-end ICs use 3D

rendering on a display instead of analog indicators.

interrupt service routine

An interrupt service routine is a function within the operating system kernel
that is executed when the hardware component it is responsible for (e.g., a

graphics processing unit) sent an interrupt.

libETP

Our execution time prediction is implemented as a shared library—called
libETP—which intercepts OpenGL ES 2.0 API calls, connects to the

Execution Time Monitor, and contains the Predictor.

model view projection matrix

When performing 3D rendering, typically 3D objects and the camera are
placed in some orientation into a virtual 3D space and the GPU calculates
the respective pixels. The model view projection matrix is a 4x4 matrix
that combines object placement (model matrix), camera placement (view

matrix), and camera perspective (projection matrix). See Sec. 3.1.2.

OpenGL ES Context Monitor

In our execution time prediction architecture, the OpenGL ES Context
Monitor keeps track of the OpenGL ES 2.0 Context, which is required by
the Predictor. See Sec. 3.3.1.

OpenGL program

A program object is fully processed shader code consisting of vertex shader
and fragment shader which are compiled and linked together. To issue a
DrAW call, exactly one Program Object (which is represented by an ID)

must be selected.

196

Glossary

OpenGL Shading Language

The OpenGL Shading Language is a C-like programming language used for
writing the code of shader programs such as vertex shader and fragment

shader.

OpenGL rendering pipeline

A sequence of steps performing the actual rendering on the GPU. The
major steps are vertex processing, rasterization, fragment processing, and

fragment post-processing. See Sec. 3.1.2 and Fig. 3.1.

OpenGL ES 2.0 Context

An OpenGL ES 2.0 Context is associated to an EGL context. It
represents a set of OpenGL parameters which can be changed using
OpenGL API calls. Some OpenGL API depend on the OpenGL ES 2.0
Context. For instance, whether a glDraw call performs a depth test

depends on the current OpenGL state.

OpenGL ES 2.0

OpenGL ES 2.0 is a vendor-independent API for 3D rendering on
embedded systems such as smartphones, automotive head units and
instrument clusters. It is published by the Khronos Group [ML10].

original equipment manufacturer

OEMs such as car manufactures produce and sell products under their own

brand to customers.

Predictor

The main component of our execution time prediction architecture. It
provides the execution time for each CG to the GPU Scheduler. See
Sec. 3.3.2.

refresh rate

The rate at which a screen (i.e., a display device) updates its content, which
is also the rate at which vsync events occur. For TFT displays, a typical
refresh rate is 60 Hz.

197

Glossary

render target

A render target is a buffer in memory that serves as destination for the
OpenGL rendering pipeline and has a defined width and height. A render
target is either a render buffer that can be shown on a display or in a
window, or it is a texture that serves as input to subsequent DRAW

commands.

render buffer

A render buffer is a render target that can be directly shown on a display,

or bitblitted by a window manager to a display area.

rendering loop

The rendering loop is a code section typically used by a 3D application,
which frequently wants to update the screen and therefore renders one frame

after the other. Each loop iteration renders exactly one frame.

reserved

Variable of a scheduling queue that represents the predicted execution times
of all command groups of the current frame that must be reserved in order
to meet the queue’s deadline. Unless all these command groups were already

received by the scheduler, the enqueued, but at least the etpf, is reserved.

scheduling queue

For each thread of an application that submits CGs to the kernel, the GPU
scheduler maintains a scheduling queue in kernel space. It contains the
scheduling parameters (such as priority, etpf, and frame rate), scheduling
state (such as the next deadline), and the sequence of CGs waiting for

dispatching.

uniform variable

Uniforms are per-draw input data of shader programs.

varying variable

198

Varyings are (optional) per-vertex output data of the vertex shader serving

as additional input parameters to the fragment shader.

Glossary

vertex buffer object

A VBO stores vertex array data (vertex attributes). It can provide a
performance gain if the data rarely changes, since once the data was

written to the VBO it can be used arbitrarily often.

vertex attribute

Attributes are per-vertex input data of the vertex shader

vertex shader

A vertex shader is a program written in GLSL. It uses vertex attributes
and uniform variables as input data and calculates the vertex position and

varying variables.

Virtualized Automotive Graphics System

A Virtualized Automotive Graphics System is our concept to use
virtualization to consolidate the hardware of HMI-related ECUs, in
particular the HU and IC. Isolation for 2D and 3D rendering is provided

by access control and GPU scheduling concepts.

vsync

Vsync is short for “vertical synchronization”. Displays operate at a defined
refresh rate, at which the screen content is transferred from the GPU to
the display image by image. To avoid tearing, the rendering on the GPU
is typically synchronized (i.e., vsync) to the short gap after one image was
transferred and before the transmission of the next image starts. To allow
for synchronization, the GPU driver notifies about each gap using a vsync

event.

vsync period

The length of time between two consecutive vsync events (recurrence
1

refresh_rate’

periods are distinguished from each other using a sequence number that is
denoted by the suffix “#”.

interval), i.e., In our scheduling algorithm, specific vsync

199

Acronyms

CG

command group

ECU

electronic control unit

ETP

execution time prediction

FPS

frames per second

FS

fragment shader

GLSL
OpenGL Shading Language

GPU

graphics processing unit

HU

head unit

instrument cluster

ISR

interrupt service routine

201

Acronyms

ML

machine learning

MVPM

model view projection matrix

OEM

original equipment manufacturer

VAGS

Virtualized Automotive Graphics System

vVBO

vertex buffer object

VS

vertex shader

202

Math Terms

#A1

Number of vertex attributes of type float of the OpenGL program

#A2

Number of vertex attributes of type vec2 of the OpenGL program

#As3

Number of vertex attributes of type vec3 of the OpenGL program

#Aq

Number of vertex attributes of type vecd of the OpenGL program

F. Scmds

Array that contains for each GPU instruction the number of calls per

fragment shader instance.

Vscmds

Array that contains for each GPU instruction the number of calls per vertex

shader instance.

#Vi
Number of varying variables of type float of the OpenGL program

#V2
Number of varying variables of type vec2 of the OpenGL program

#V3
Number of varying variables of type vec3 of the OpenGL program

#Va

Number of varying variables of type vecd of the OpenGL program

203

Math Terms

current#t

The sequence number of the current vsync period.

desired#

Variable of a scheduling queue that denotes the vsync period whose end
is the deadline that has to be met if the application’s shall get its desired

frame rate.

dispatched

Variable of a scheduling queue that represents the predicted execution times
of all command groups of the current frame that were received (and therefore

enqueued) by the scheduler so far.

emulates(Unified Triangle)
A function which approximates the size of the projected area of a given
triangle. See Sec.3.5.1.2.

enqueued

Variable of a scheduling queue that represents the predicted execution times
of all command groups of the current frame that were received (and therefore

enqueued) by the scheduler so far.

finish#
After a command group has finished execution, the variable finish# of a

CG holds the vsync period at which its execution was actually finished.

FPLA

Abbreviation for “vsync periods look ahead”; a parameter of the scheduling
algorithm that determines for how many future vsync periods it has to be

verified that no higher-priority deadlines are missed.

MauxFs (CtX)

MARS model that estimates the auxiliary time per fragment shader
instance, i.e., the time needed to rasterize and load the fragment data for
shader execution and perform fragment post-processing such as depth test

and blending. See Sections 3.5.3.1 and 3.5.3.3.

204

Math Terms

Mauxvs (CtX)

MARS model that estimates the auxiliary time per vertex shader instance,
i.e.; the time needed to load the vertex data for shader execution and

perform Primitive Assembly. See Sections 3.5.3.1 and 3.5.3.2.

Mecjear (b typ es, srb)

Our proposed model to estimate the execution time of a CLEAR command.
It takes the set of buffer types to clear btypes as a bitmask and the size of

the render buffer s,;, as arguments and is described in Sec. 3.4.2

McmdsFS (CtX)

MARS model that estimates the time per fragment shader instance

required to execute the fragment shader instructions. See Sections 3.5.3.1

and 3.5.3.4.

Mcmdsvs (CtX)

MARS model that estimates the time per vertex shader instance required

to execute the vertex shader instructions. See Sections 3.5.3.1 and 3.5.3.4.

Myeaw (Ncans, vertices, ctx)

Our proposed model to estimate the execution time of a DRAW command
batch. It takes the number of “Draw” GPU instructions nggus, the set
of vertices, and the current OpenGL ES 2.0 Context as arguments and is
described in Sec. 3.5.

Myjysh ()

Our proposed model to estimate the execution time of a FLUSH, which is
described in Sec. 3.4.1

MEgp (ctx)
Represents our submodel that estimates the execution time of the fragment
processing trg per fragment, using either profiling or machine learning. See
Sections 3.5 and 3.5.2.

myg (vertices, ctx)

A submodel of Mgy that estimates the number of fragments using either

the triangle samples, or the bounding box approach. See Sec. 3.5.1.

205

Math Terms

mswapbuffers (Srb)

Our proposed model to estimate the execution time of a buffer resolve
command such as SWAPBUFFERS. It takes the size of the render buffer s,

as arguments and is described in Sec. 3.4.3

Myexid (shader)

MARS model that estimates the overhead introduced by shader lookup
commands in the (fragment or vertex) shader code. See Sections 3.5.3.1

and 3.5.3.6.

myp (ctx)
Represents our submodel that estimates the execution time of the vertex
processing tys per vertex, using either profiling or machine learning. See
Sections 3.5 and 3.5.2.

measuredET

After a command group has finished execution, its measured (i.e., real)
execution time is available in the variable measuredET', which is provided
by the Execution Time Monitor.

MPCG

The maximum number of pending CGs is a parameter of the scheduling
algorithm and is the upper limit to the number of unfinished CGs in the

command queue.

NOW

The current time at which the scheduling algorithm started to execute its
schedule next() method, or the time at which the CG was inserted into
the GPU command queue (Listing 4.3).

numAttrFloats
Number of float variables (i.e., components) of the vertex attributes of the
OpenGL program (#A; + 2 X #As+ 3 X #Az+4 X #Ay)

numAttrs

Number of vertex attributes of the OpenGL program (#A;+ #As+ #As+
#Ayg)

206

Math Terms

numVarFloats

Number of float variables (i.e., components) of the varying variables of the
OpenGL program (#V; + 2 x #Vy+ 3 x #V3+4 x #V))

numVars

Number of varying variables of the OpenGL program (#V;+ #Vo+ #V3+
#Vy)

PCblending

A constant value that is determined by the GPU Profiler which estimates
the overhead per fragment of blending for the DRAW command.

PCclear[btypes]
An array of constants that is determined by the GPU Profiler which

estimates the execution time for a CLEAR command. The index btypes is

a bitmask indicating which buffers shall be cleared.

PCdepth
A constant value that is determined by the GPU Profiler which estimates
the overhead per fragment of the depth test for the DRAW command.

P Cdrawconst

A constant value that is determined by the GPU Profiler which estimates
the overhead per “draw” GPU instruction in the model for the DRAW

command.

PCilush

Constant that is determined by the GPU Profiler which estimates the

execution time for a FLUSH command.

P Cswapbuffers

A constant value that is determined by the GPU Profiler which estimates
the execution time for a SWAPBUFFERS command.

priority

Each application has a unique priority that represents the importance.
The scheduling algorithm gives applications with higher priority
precedence on GPU time resources. In our scheduling algorithm, the

priority is an attribute of the application’s scheduling queue.

207

Math Terms

prragment_shader

Estimated GPU time per fragment shader instance for a given OpenGL
program, determined by the GPU Profiler and used for the DRraw

command.

PVvertex_shader

Estimated GPU time per vertex shader instance for a given OpenGL
program, determined by the GPU Profiler and used for the DRraAw

command.

Ql]

Array of the scheduling algorithm that holds all scheduling queues

res[]

Array of the scheduling algorithm that holds for future periods the amount

of GPU time required by applications with frame rate = refresh rate.

res2[]

Array of the scheduling algorithm that holds for future periods the amount

of GPU time required by applications with frame rate < refresh rate.

Srb
Parameter representing the size of a render or target buffer in pixels.

SDdelay
Conservative (i.e., upper bound) estimation of the CPU time needed by the
scheduling algorithm and the dispatching of a command group by the GPU
driver.

SDdelayo
Optimistic (i.e., lower bound) estimation of the CPU time needed by the
scheduling algorithm and the dispatching of a command group by the GPU
driver.

target#

Variable of a scheduling queue that denotes the vsync period whose end is
the deadline until which the scheduler plans to finish the scheduling queue’s

current frame.

208

Bibliography

[AAMOG]

[ARA16]

[AUD14|

[AUD15]

[BDCOS)|

[BHHO0|

[BK12]

AAM. Statement of Principles, Criteria and Verification Procedures
on Driver Interactions with Advanced In-Vehicle Information and
Communication Systems. Alliance of Automotive Manufacturers,
July 2006. (Cited on pages 34 and 35.)

BMBF project ARAMiS (Automotive, Railway and Avionics
Multicore Systems). http://www.projekt-aramis.de/, 2016.
(Cited on page 25.)

The New Audi TT Instrument Cluster Created with Rightware
Kanzi Ul Solution. http://www.rightware.com/the-new-audi-
tt-instrument-cluster-created-with-rightware-kanzi-ui-
solution, 2014. (Cited on pages 18 and 167.)

Audi virtual cockpit — first fully digital dashboard.
http://www.audi.de/de/brand/de/neuwagen/tt/tt-
coupe/layer/audi-virtual-cockpit.html, 2015. (Cited on
pages 17 and 18.)

Mikhail Bautin, Ashok Dwarakinath, and Tzicker Chiueh. Graphic
Engine Resource Management, 2008. (Cited on pages 24, 130, 161,
and 179.)

lan Buck, Greg Humphreys, and Pat Hanrahan. Tracking graphics
state for networked rendering. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
HWWS ’00, pages 87-95, New York, NY, USA, 2000. ACM. (Cited
on page 131.)

C. Basaran and Kyoung-Don Kang. Supporting Preemptive Task
Executions and Memory Copies in GPGPUs. In 24/th ECRTS, pages
287-296, July 2012. (Cited on page 180.)

209

http://www.projekt-aramis.de/
http://www.rightware.com/the-new-audi-tt-instrument-cluster-created-with-rightware-kanzi-ui-solution
http://www.rightware.com/the-new-audi-tt-instrument-cluster-created-with-rightware-kanzi-ui-solution
http://www.rightware.com/the-new-audi-tt-instrument-cluster-created-with-rightware-kanzi-ui-solution
http://www.audi.de/de/brand/de/neuwagen/tt/tt-coupe/layer/audi-virtual-cockpit.html
http://www.audi.de/de/brand/de/neuwagen/tt/tt-coupe/layer/audi-virtual-cockpit.html

Bibliography

[bmw15]

[Boul6]

[Bro56]

[Cec14]

[Conll]

[Conl5|

[Dail3]

[Dom12]

[DS09]

210

BMW 7 Series Sedan: Driver Assistance. http://www.bmw.com/
com/en/newvehicles/7series/sedan/2015/showroom/driver_

assistance.html, 2015. (Cited on pages 17 and 19.)

Allen Bourgoyne. BRINGING PASCAL TO PROFESSIONALS.
http://on-demand.gputechconf.com/siggraph/2016/
presentation//sigl658-allen-bourgoyne-pascal-to-
professionals.pdf, 2016. (Cited on page 178.)

Robert G. Brown. FExponential Smoothing for Predicting Demand.
Arthur D. Little, Massachusetts, 1956. (Cited on page 95.)

Riccardo Cecolin. Compositing Concepts for the Presentation of
Graphical Application Windows on Embedded. Master thesis,
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, April 2014.
(Cited on page 31.)

Armin Cont. Analyse der Echtzeitfahigkeit und des
Ressourcenverbrauchs von OpenGL ES 2.0. Diplomarbeit,
Universitat Stuttgart, Fakultdt Informatik, Elektrotechnik und
Informationstechnik, Germany, Dezember 2011. (Cited on page 30.)

Continental Engineering Services: Embedded Linux Engineering.
http://www.conti-engineering.com/www/download/
engineering_services_de_en/themes/download_download_
channel_download_channel/fact_sheet_embedded_linux_

engineering_en.pdf, 2015. (Cited on page 167.)

Mercedes-Benz integration of iPhone App in A-Class.
http://www.iphone-ticker.de/mercedes-benz-iphone-
integration-a-klasse-30952/, 2013. (Cited on page 18.)

Pedro Domingos. A few useful things to know about machine
learning. Commun. ACM, 55(10):78-87, October 2012. (Cited on
page 55.)

Micah Dowty and Jeremy Sugerman. GPU Virtualization on
VMware’s Hosted 1/O Architecture. SIGOPS Oper. Syst. Rev.,
43(3):73-82, July 2009. (Cited on page 48.)

http://www.bmw.com/com/en/newvehicles/7series/sedan/2015/showroom/driver_assistance.html
http://www.bmw.com/com/en/newvehicles/7series/sedan/2015/showroom/driver_assistance.html
http://www.bmw.com/com/en/newvehicles/7series/sedan/2015/showroom/driver_assistance.html
http://on-demand.gputechconf.com/siggraph/2016/presentation//sig1658-allen-bourgoyne-pascal-to-professionals.pdf
http://on-demand.gputechconf.com/siggraph/2016/presentation//sig1658-allen-bourgoyne-pascal-to-professionals.pdf
http://on-demand.gputechconf.com/siggraph/2016/presentation//sig1658-allen-bourgoyne-pascal-to-professionals.pdf
http://www.conti-engineering.com/www/download/engineering_services_de_en/themes/download_download_channel_download_channel/fact_sheet_embedded_linux_engineering_en.pdf
http://www.conti-engineering.com/www/download/engineering_services_de_en/themes/download_download_channel_download_channel/fact_sheet_embedded_linux_engineering_en.pdf
http://www.conti-engineering.com/www/download/engineering_services_de_en/themes/download_download_channel_download_channel/fact_sheet_embedded_linux_engineering_en.pdf
http://www.conti-engineering.com/www/download/engineering_services_de_en/themes/download_download_channel_download_channel/fact_sheet_embedded_linux_engineering_en.pdf
http://www.iphone-ticker.de/mercedes-benz-iphone-integration-a-klasse-30952/
http://www.iphone-ticker.de/mercedes-benz-iphone-integration-a-klasse-30952/

[DWAOS)]

[Bis14]

[EJO9]

[Eke06)

[EMP+91]

[ESO08]

[FHO3]

[FHO5]

[Forl13|

Bibliography

ASHOK DWARAKINATH. A Fair-Share Scheduler for the
Graphics Processing Unit. Master’s thesis, Stony Brook University,
2008. (Cited on pages 24, 130, and 179.)

Andrej Eisfeld. Entwurf und Analyse von Konzepten zur effizienten
Dateniibertragung von Grafikrendering-Befehlen auf eingebetteten
Systemen. Master thesis, University of Stuttgart, Faculty
of Computer Science, Electrical Engineering, and Information

Technology, Germany, September 2014. (Cited on pages 31 and 48.)

C. Ebert and C. Jones. Embedded Software: Facts, Figures, and
Future. Computer, 42(4):42 —52, April 2009. (Cited on pages 17,
38, and 40.)

C. Ekelin. Clairvoyant non-preemptive EDF scheduling. In 18th
Euromicro Conference on Real-Time Systems (ECRTS’06), pages 7
pp.—32, 2006. (Cited on page 180.)

J. Epstein, J. McHugh, R. Pascale, H. Orman, G. Benson,
C. Martin, A. Marmor-Squires, B. Danner, and M. Branstad. A
prototype B3 trusted X Window System. In Proceedings of the 7th

Annual Computer Security Applications Conference, pages 44-55,
Dec. 1991. (Cited on page 47.)

ESOP. On safe and efficient in-vehicle information and
communication systems: wupdate of the Furopean Statement of
Principles on human-machine interface. ~ Commission of the

European Communities, 2008. (Cited on pages 34 and 136.)

N. Feske and H. Hartig. DOpE — a window server for real-time
and embedded systems. In Proceedings of the 24th IEEE Real-Time
Systems Symposium, pages 7477, Dec. 2003. (Cited on page 47.)

Norman Feske and Christian Helmuth. A Nitpicker’s guide to
a minimal-complexity secure GUI. In Proceedings of the 21st
Computer Security Applications Conference, pages 85-94, Dec.
2005. (Cited on page 47.)

Ford. Software development kit (SDK), 2013. (Cited on page 18.)

211

Bibliography

[Frel4]

[Frio1]

[FT09]

|Ganl17]

[GE03]

[GGS*09)

|GH13|

[GJ79]

[glm]

212

NXP (formerly Freescale) Surround View & Sense Park Assist
System. http://www.freescale.com/SurroundView, 2014. (Cited
on page 19.)

Jerome H. Friedman. Multivariate Adaptive Regression Splines.
Ann. Statist., 19(1):1-67, 03 1991. (Cited on pages 56 and 85.)

Henry Burchard Fine and Henry Dallas Thompson. Coordinate
Geometry. The Macmillan Company, New York, USA, 1909. (Cited
on page 71.)

Simon Gansel. Konzepte und Mechanismen fiir die Darstellung
von sicherheitskritischen Informationen im Fahrzeug. Dissertation,
Universitiat Stuttgart, Fakultidt Informatik, Elektrotechnik und
Informationstechnik, Germany, April 2017. (Cited on page 49.)

Isabelle Guyon and André Elisseeff. An Introduction to Variable
and Feature Selection. J. Mach. Learn. Res., 3:1157-1182, 03 2003.
(Cited on page 87.)

Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan
Kharche, Niraj Tolia, Vanish Talwar, and Parthasarathy
Ranganathan. Gvim: Gpu-accelerated virtual machines.
In Proceedings of the 3rd ACM Workshop on System-level
Virtualization for High Performance Computing, HPCVirt ’09,
pages 17-24, New York, NY, USA, 2009. ACM. (Cited on page 48.)

Ahmad Gilbeau-Hammoud. Erstellung und Evaluation einer
Zugriffskontrolle fiir die Darstellung grahischer Applikationen
im Fahrzeug. Diplomarbeit, Universitdt Stuttgart, Fakultét
Informatik, Elektrotechnik und Informationstechnik, Germany, Mai
2013. (Cited on page 31.)

Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, New York, 1979. (Cited on page 152.)

glmark2-es2: OpenGL ES 2.0 benchmark. https://launchpad.
net/glmark2. (Cited on pages 46, 105, and 110.)

http://www.freescale.com/SurroundView
https://launchpad.net/glmark2
https://launchpad.net/glmark2

[GMOS]

[GPSM14]

[GSC*15]

|GSD*13]

|GSGH*14]

[GSGH*15]

[Han07]

[HEB*01]

Bibliography

Eimear Gallery and Chris J. Mitchell. Trusted Computing: Security
and Applications, May 2008. (Cited on page 41.)

Dan Ginsburg, Budirijanto Purnomo, Dave Shreiner, and Aaftab
Munshi. OpenGL ES 3.0 Programming Guide. Addison-Wesley,
2nd edition, 2014. (Cited on pages 53, 68, and 73.)

Simon Gansel, Stephan Schnitzer, Riccardo Cecolin, Frank Diirr,
Kurt Rothermel, and Christian Maihofer. Efficient compositing
strategies for automotive HMI systems. In Industrial Embedded
Systems (SIES), 2015 10th IEEE International Symposium on,
pages 1-10, June 2015. (Cited on pages 30 and 66.)

Simon Gansel, Stephan Schnitzer, Frank Diirr, Kurt Rothermel,
and Christian Maihdfer. Towards Virtualization Concepts for Novel
Automotive HMI Systems. In Proceedings of IESS, IFIP LNCS.
Springer Berlin Heidelberg, 2013. (Cited on page 30.)

Simon Gansel, Stephan Schnitzer, Ahmad Gilbeau-Hammoud,
Viktor Friesen, Frank Diirr, Kurt Rothermel, and Christian
Maihofer. An access control concept for novel automotive HMI
systems. In Proceedings of the 19th SACMAT, 2014. (Cited on
pages 30, 31, 49, and 136.)

Simon Gansel, Stephan Schnitzer, Ahmad Gilbeau-Hammoud,
Viktor Friesen, Frank Diirr, Kurt Rothermel, Christian Maihofer,
and Ulrich Kramer. Context-aware access control in novel
automotive HMI systems. In Information Systems Security, volume
9478 of LNCS, pages 118-138. Springer, 2015. (Cited on pages 30,
31, 49, and 136.)

Jacob G. Hansen. Blink: Advanced Display Multiplexing for
Virtualized Applications. In Proceedings of the 17th International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), pages 15-20, 2007. (Cited on
page 48.)

Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll,
Matthew Everett, and Pat Hanrahan. WireGL: a scalable graphics

system for clusters. In Proceedings of the 28th annual conference

213

Bibliography

[HHNT08]

[Hoh02]

[HTF09)

[Int15]

[Int16]

[ISHO8]

[1SO96]

15002

214

on Computer graphics and interactive techniques, SIGGRAPH 01,
pages 129-140, New York, NY, USA, 2001. ACM. (Cited on
page 131.)

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. Chromium: a
stream-processing framework for interactive rendering on clusters.
In ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia 08,
pages 43:1-43:10, New York, NY, USA, 2008. ACM. (Cited on
page 131.)

Michael Hohmuth. The Fiasco kernel: System Architecure.
Technical report: TUD-FI102-06-Juli-2002, 2002. (Cited on page 47.)

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning: Data Mining, Inference and
Prediction. Springer, 2 edition, 2009. (Cited on page 55.)

INTEGRITY Multivisor: Secure Virtualization Technology.
http://www.ghs.com/download/datasheets/INTEGRITY_
Multivisor.pdf, 2015. (Cited on page 49.)

Intel Graphics Virtualization Technology (Intel GVT). https://
01.org/igvt-g, 2016. (Cited on page 48.)

Homan Igehy, Gordon Stoll, and Pat Hanrahan. The design
of a parallel graphics interface. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques,
SIGGRAPH 98, pages 141-150, New York, NY, USA, 1998. ACM.
(Cited on page 131.)

ISO 11428. Ergonomics — Visual danger signals — General
requirements, design and testing. 1SO, Geneva, Switzerland, Dec.
1996. (Cited on pages 34, 36, and 39.)

ISO 15005. Road wehicles — FErgonomic aspects of transport
iformation and control systems — Dialogue management principles
and compliance procedures. 1SO, Geneva, Switzerland, July 2002.

(Cited on pages 27, 33, 34, 35, 36, 37, and 38.)

http://www.ghs.com/download/datasheets/INTEGRITY_Multivisor.pdf
http://www.ghs.com/download/datasheets/INTEGRITY_Multivisor.pdf
https://01.org/igvt-g
https://01.org/igvt-g

[1SO03]

1S004]

[1SO08]

[1SO10]

[1SO11]

[TAMOA4]

[Jan11]

[JE91]

[JRRO7]

Bibliography

ISO 17287. Road wehicles — FErgonomic aspects of transport
information and control systems — Dialogue management principles
and compliance procedures. 1SO, Geneva, Switzerland, April 2003.
(Cited on page 129.)

ISO 16951. Road wehicles — FErgonomic aspects of transport
information and control systems (TICS) - Procedures for
determining priority of on-board messages presented to drivers. ISO,

Geneva, Switzerland, 2004. (Cited on pages 34, 35, 36, and 37.)

ISO 15408-2. Information technology — Security techniques —
Evaluation criteria for IT security — Part 2: Security functional
components. 1SO, Geneva, Switzerland, Aug. 2008. (Cited on
pages 34, 35, 36, 38, 39, and 47.)

ISO 2575. Road vehicles — Symbols for controls, indicators and tell-
tales. 1SO, Geneva, Switzerland, July 2010. (Cited on pages 34
and 39.)

ISO 26262. Road wvehicles — Functional Safety. 1SO, Geneva,
Switzerland, Nov. 2011. (Cited on pages 18, 27, 33, 34, 38, 49,
136, and 182.)

JAMA. Guideline for In-vehicle Display Systems — Version 3.0.
Japan Automobile Manufacturers Association, Aug. 2004. (Cited
on page 34.)

Helmut Janker. Straffenverkehrsrecht: StVG, StVO, StVZO,
Fahrzeug-ZulassungsVO, Fahrerlaubnis- VO, Verkehrszeichen,
Bufgeldkatalog. C.H. Beck, 2011. (Cited on pages 35, 36, and 136.)

J Picciotto J Epstein. Trusting X: Issues in building Trusted X
window systems—or—what’s not trusted about X. In Proceedings
of the 14th National Computer Security Conference, volume 1.
National Institute of Standards and Technology, National Computer
Security Center, Oct. 1991. (Cited on page 47.)

Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu.
CPU Reservations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proceedings of the 16th

215

Bibliography

[KAE*10]

[Kel16]

[Khra|

[Khrb)

[Khrc]

[Khrd]

[KLIR11]

[KLRI11]

216

ACM Symposium on Operating Systems Principles, SOSP, New
York, USA, 1997. (Cited on page 178.)

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardst,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. sel.4: Formal verification of an OS kernel.
Communications of the ACM, 53(6):107-115, June 2010. (Cited on
page 47.)

Robin Keller. Predicting the GPU Execution Time of 3D Rendering
Commands using Machine Learning Concepts. Master thesis,
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, May 2016.
(Cited on page 30.)

OpenGL ES 2.0 Standard. https://www.khronos.org/opengles/
2_X/. (Cited on pages 28 and 60.)

The Khronos Group. https://www.khronos.org/. (Cited on
pages 21 and 52.)

WebGL — OpenGL ES 2.0 for the Web. https://www.khronos.
org/webgl. (Cited on pages 21 and 22.)

WebGL Security. https://www.khronos.org/webgl/security/.
(Cited on page 21.)

S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
Sharing in GPU-Accelerated Windowing Systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011
17th IEEE, pages 191-200, April 2011. (Cited on page 179.)

Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar,
and Yutaka Ishikawa. TimeGraph: GPU scheduling for
real-time multi-tasking environments. In Proceedings of USENIX
Annual Technical Conference, Berkeley, CA, USA, 2011. USENIX
Association. (Cited on pages 22, 24, 65, 98, 102, 129, 130, 131, 161,
and 179.)

https://www.khronos.org/opengles/2_X/
https://www.khronos.org/opengles/2_X/
https://www.khronos.org/
https://www.khronos.org/webgl
https://www.khronos.org/webgl
https://www.khronos.org/webgl/security/

[KXG12]

[LCTSALO7]

[Leel4]

|Liu69|

[LL73]

[Mal4]

[MBI10]

[Merl1]

[mes]

Bibliography

T. Kai, X. Xin, and C. Guo. The Secure Boot of
Embedded System Based on Mobile Trusted Module. In 2012
Second International Conference on Intelligent System Design and
Engineering Application, pages 1331-1334, Jan 2012. (Cited on
page 41.)

H. Andres Lagar-Cavilla, Niraj Tolia, M. Satyanarayanan, and Eyal
de Lara. VMM-independent graphics acceleration. In Proceedings of
the 3rd international conference on Virtual exzecution environments,
pages 33-43, New York, NY, USA, 2007. ACM. (Cited on page 47.)

Jon Leech. Khronos Native Platform Graphics Interface — EGL
Version 1.5. https://www.khronos.org/registry/egl/specs/
eglspec.1.5.pdf, August 2014. (Cited on pages 52 and 194.)

C. L. Liu. Scheduling Algorithms for Multiprocessors in a
Hard-Real-Time Environment. JPL Space Programs Summary 37-
60 11, pages 28-31, 1969. (Cited on pages 24 and 180.)

C. L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of
the ACM (JACM), 20:46-61, Jan. 1973. (Cited on pages 24, 178,
and 180.)

Hua Ma. Concepts and Metrics for Measurement and Prediction of
the Execution Time of GPU Rendering Commands. Master thesis,
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, August 2014.
(Cited on pages 30 and 133.)

John Maindonald and W. John Braun. Data Analysis and Graphics
Using R: An Ezxample-Based Approach. Cambridge University
Press, New York, NY, USA, 3rd edition, 2010. (Cited on page 85.)

Mercedes-Benz F125 Concept. http://www.pocket-lint.com/

news/112047-mercedes-benz-f152-concept-car-video, 2011.
(Cited on pages 17 and 18.)

The Mesa 3D Graphics Library. http://www.mesa3d.org. (Cited
on page 105.)

217

https://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf
https://www.khronos.org/registry/egl/specs/eglspec.1.5.pdf
http://www.pocket-lint.com/news/112047-mercedes-benz-f152-concept-car-video
http://www.pocket-lint.com/news/112047-mercedes-benz-f152-concept-car-video
http://www.mesa3d.org

Bibliography

[MGR*14]

[MGS09]

[Mil11]

[ML10]

[Nou|

[Nvi13]

[ODK*00]

[Opell]

218

Bernhard Mencher, Walter Gollin, Ferdinand Reiter, Andreas
Glaser, Felix Landhaufter, Klaus Lerchenmiiller, Doris Boebel,
Michael Hamm, Tilman Spingler, Frank Niewels, Thomas Ehret,
Gero Nenninger, Peter Knoll, and Alfred Kuttenberger. Overview
of electrical and electronic systems in the vehicle, pages 158-160.
Springer Fachmedien Wiesbaden, Wiesbaden, 2014. (Cited on
page 17.)

Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL®)ES
2.0 Programming Guide. Addison-Wesley, 2009. (Cited on pages 73,
76, and 77.)

S. Milborrow. Derived from mda:mars by T. Hastie and R.
Tibshirani. earth: Multivariate Adaptive Regression Splines, 2011.
R package. (Cited on pages 56, 57, and 85.)

Aaftab Munshi and Jon Leech. OpenGL ES Common
Profile Specification ~ Version 2.0.25 (Full Specification).
https://www.khronos.org/registry/gles/specs/2.0/es_
full_spec_2.0.25.pdf, November 2010. (Cited on pages 52, 71,
75, and 197.)

Nouveau project. http://nouveau.freedesktop.org/wiki/.
(Cited on page 60.)

Nvidia automotive driving innovation. http://www.nvidia.com/
docs/I0/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf, 2013.
(Cited on pages 17 and 18.)

John D. Owens, William J. Dally, Ujval J. Kapasi, Scott
Rixner, Peter Mattson, and Ben Mowery. Polygon Rendering
on a Stream Architecture. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware,
HWWS ’00, pages 23-32, New York, NY, USA, 2000. ACM. (Cited
on page 131.)

OpenGL Tutorial 3: Matrices. http://www.opengl-tutorial.
org/beginners-tutorials/tutorial-3-matrices, 2011. (Cited
on pages 53 and 68.)

https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://nouveau.freedesktop.org/wiki/
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/Tegra_4_GPU_Whitepaper_FINALv2.pdf
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices

[0SA]

[Pik16]

[QNX13]

[RAL*15]

[RBE9Y]

[RMOO]

[Rém11]

Bibliography

OSADL - Open Source Automation Development Lab eG: latency
plot of system in rack #b, slot #7 (Phytec/phyFLEX-i.MX6q
@996 MHz, Linux 4.4.15-rt23. https://www.osadl.org/Latency-
plot-of-system-in-rack-b-slot.qa-latencyplot-rbs7.0.
html?latencies=&showno=&shadow=0&slider=115. (Cited on
page 102.)

PikeOS: Certified RTOS and Hypervisor in Series Production.
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.
com/sales_collaterals/01_auto/Pike0S_in_Automotive_
Series_Production.pdf, 2016. (Cited on pages 44 and 49.)

New Version of QNX CAR Platform... http://www.qnx.com/news/
pr_5602_1.html, 2013. (Cited on page 18.)

Dominik Reinhardt, Daniel Adam, Enno Lubbers, Rakshith
Amarnath, Rolf Schneider, Simon Gansel, Stephan Schnitzer,
Christian Herber, Timo Sandmann, Hans-Ulrich Michel, Dirk
Kaule, Damla Olkun, Matthias Rehm, Jens Harnisch, Andre
Richter, Steffen Baehr, Oliver Sander, Juergen Becker, Uwe
Baumgarten, and Henrik Theiling. @ Embedded Virtualization
Approaches for FEnsuring Safety and Security within E/E
Automotive Systems. In Embedded World Conference, 2015. (Cited
on page 30.)

Kostadis Roussos, Nawaf Bitar, and Robert English. Deterministic
Batch Scheduling Without Static Partitioning. In Proc. of the
Job Scheduling Strategies for Parallel Processing, IPPS/SPDP
99 /JSSPP ’99, pages 220235, London, UK, 1999. Springer-Verlag.
(Cited on page 178.)

Paul Read and Mark-Paul Meyer. Restoration of motion picture
film. Elsevier, New York, 2000. (Cited on page 153.)

Fabian RoOmbhild. Abschédtzung des Ressourcenverbrauchs und
Analyse der Echtzeitfahigkeit von CUDA- und OpenCL-Befehlen.
Diplomarbeit, Universitdat Stuttgart, Fakultdt Informatik,
Elektrotechnik und Informationstechnik, Germany, November

2011. (Cited on page 30.)

219

https://www.osadl.org/Latency-plot-of-system-in-rack-b-slot.qa-latencyplot-rbs7.0.html?latencies=&showno=&shadow=0&slider=115
https://www.osadl.org/Latency-plot-of-system-in-rack-b-slot.qa-latencyplot-rbs7.0.html?latencies=&showno=&shadow=0&slider=115
https://www.osadl.org/Latency-plot-of-system-in-rack-b-slot.qa-latencyplot-rbs7.0.html?latencies=&showno=&shadow=0&slider=115
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/sales_collaterals/01_auto/PikeOS_in_Automotive_Series_Production.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/sales_collaterals/01_auto/PikeOS_in_Automotive_Series_Production.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/sales_collaterals/01_auto/PikeOS_in_Automotive_Series_Production.pdf
http://www.qnx.com/news/pr_5602_1.html
http://www.qnx.com/news/pr_5602_1.html

Bibliography

[RPr17]

[RS15]

[rt-18]

[SGDR14]

[SGDR16]

SHT4]

[SIG]

[Sim09]

[SK]

220

The R Project for Statistical Computing. https://www.r-
project.org/, 2017. (Cited on page 85.)

Nathan Reed and Dario Sancho. VR Direct: How NVIDIA
Technology Is Improving the VR Experience. https:
//developer.nvidia.com/sites/default/files/akamai/
gameworks/vr/GameWorks_VR_2015_Final_handouts.pdf, 2015.
(Cited on page 178.)

Suite of real-time tests — cyclictest, ... https://git.kernel.
org/pub/scm/utils/rt-tests/rt-tests.git, 2018. (Cited on
page 102.)

Stephan Schnitzer, Simon Gansel, Frank Diirr, and Kurt Rothermel.
Concepts for execution time prediction of 3D GPU rendering. In
Proc. of 9th IEEE SIES, 2014, pages 160-169, June 2014. (Cited
on pages 22, 30, 60, and 130.)

Stephan Schnitzer, Simon Gansel, Frank Diirr, and Kurt Rothermel.
Real-time scheduling for 3d gpu rendering. In 2016 11th IEEE
Symposium on Industrial Embedded Systems (SIES), pages 1-10,
May 2016. (Cited on page 30.)

Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon
clipping. Commun. ACM, 17(1):32-42, January 1974. (Cited on
page 101.)

VDA QMC Working Group 13 / Automotive SIG. Automotive
SPICE-Process Reference Model-Process Assessment Model.
version 3.0, revision id 470 edition. (Cited on page 183.)

Robert J. Simpson. The OpenGL ES® Shading Language.
https://www.khronos.org/registry/gles/specs/2.0/GLSL_
ES_Specification_1.0.17.pdf, May 2009. (Cited on pages 22
and 53.)

David Stewart and Pradeep K. Khosla. Real-time scheduling of
sensor-based control systems. In in Real-Time Programming. (Cited

on page 180.)

https://www.r-project.org/
https://www.r-project.org/
https://developer.nvidia.com/sites/default/files/akamai/gameworks/vr/GameWorks_VR_2015_Final_handouts.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/vr/GameWorks_VR_2015_Final_handouts.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/vr/GameWorks_VR_2015_Final_handouts.pdf
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
https://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
https://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

[SK10]

[SKBR12]

[Smil6]

[Smo09]

[Sta03]

[SVNC04]

[Tan13|

[TB14]

[TDC14]

Bibliography

Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th

FEuropean conference on Computer systems, EuroSys ’10, pages

209-222, New York, NY, USA, 2010. ACM. (Cited on page 47.)

Robert J. Simpson, John Kessenich, Dave Baldwin, and Randi
Rost. The OpenGL ES® Shading Language, July 2012. (Cited
on page 22.)

Ryan Smith. Preemption Improved: Fine-Grained Preemption
for Time-Critical Tasks — The NVIDIA GeForce GTX 1080 &
GTX 1070 Founders Editions Review: Kicking Off the FinFET
Generation. http://www.anandtech.com/show/10325/the-
nvidia-geforce-gtx-1080-and-1070-founders-edition-
review/10, 2016. (Cited on page 178.)

Christopher Smowton. Secure 3d graphics for virtual machines. In
Proceedings of the Second Furopean Workshop on System Security,
EUROSEC '09, pages 36-43, 2009. (Cited on page 47.)

D.H. Stamatis. Fuailure Mode and Effect Analysis: FMEA from
Theory to Execution. ASQ Quality Press, 2003. (Cited on pages 27,
33, and 38.)

Jonathan S. Shapiro, John Vanderburgh, Eric Northup, and David
Chizmadia. Design of the EROS trusted window system. In
Proceedings of the 13th conference on USENIX Security Symposium
— Volume 13, Berkeley, CA, USA, 2004. USENIX Association.
(Cited on page 47.)

Wagqgas Tanveer. DEVELOPMENT OF GENERIC SCHEDULING
CONCEPTS FOR Open GL ES 2.0. Master thesis, University of
Stuttgart, Faculty of Computer Science, Electrical Engineering, and

Information Technology, Germany, July 2013. (Cited on page 30.)

Andrew S. Tanenbaum and Herbert Bos. Modern Operating
Systems. Prentice Hall Press, Upper Saddle River, NJ, USA, 4th
edition, 2014. (Cited on pages 24 and 180.)

Kun Tian, Yaozu Dong, and David Cowperthwaite. A Full GPU
Virtualization Solution with Mediated Pass-Through. In 2014

221

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/10

Bibliography

[Thi12]

[WDDa|

[WDDb]

[WHJ0S]

[YSJZ02]

[YZQ*13]

[Zeh14]

222

USENIX Annual Technical Conference (USENIX ATC 14), pages
121-132, Philadelphia, PA, June 2014. USENIX Association. (Cited
on page 48.)

Martin Thielefeld. Analyse und Evaluation der Ausfiihrungszeit
von OpenGL ES 2.0-Befehlen in Abhéngigkeit von Parametern und
Kontext. Diplomarbeit, Universitat Stuttgart, Fakultat Informatik,
Elektrotechnik und Informationstechnik, Germany, Oktober 2012.
(Cited on pages 30 and 133.)

Windows Display Driver Model (WDDM): GPU preemption.
https://docs.microsoft.com/en-us/windows-hardware/

drivers/display/gpu-preemption. (Cited on pages 178 and 179.)

Windows Display Driver Model (WDDM): Timeout Detection
and Recovery (TDR). https://docs.microsoft.com/en-
us/windows-hardware/drivers/display/timeout-detection-

and-recovery. (Cited on page 179.)

S. Wang, X. Huang, and K. M. Junaid. Configuration of Continuous
Piecewise-Linear Neural Networks. IEEFE Transactions on Neural
Networks, 19(8):1431-1445, Aug 2008. (Cited on page 85.)

Jian Yang, Jiaoying Shi, Zhefan Jin, and Hui Zhang. Design
and implementation of a large-scale hybrid distributed graphics
system. In Proceedings of the 4th Eurographics Workshop on Parallel
Graphics and Visualization, EGPGV 02, pages 39-49, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics Association. (Cited
on page 131.)

Miao Yu, Chao Zhang, Zhengwei Qi, Jianguo Yao, Yin Wang, and
Haibing Guan. VGRIS: Virtualized GPU Resource Isolation and
Scheduling in Cloud Gaming. In Proc. of the 22nd HPDC, NY,
USA, 2013. ACM. (Cited on pages 131, 161, and 179.)

Felix Zehender. Dynamische Ausfiihrung von
Positionstransformationen mittels OpenGL ES
2.0-Shaderprogrammen. Study thesis, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and
Information Technology, Germany, February 2014. (Cited on
page 30.)

https://docs.microsoft.com/en-us/windows-hardware/drivers/display/gpu-preemption
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/gpu-preemption
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/timeout-detection-and-recovery
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/timeout-detection-and-recovery
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/timeout-detection-and-recovery

[Zhal5)

[ZQCZ16]

Bibliography

Han Zhao. Development and Analysis of a Window Manager
Concept for Consolidated 3D Rendering on an Embedded Platform.
Master thesis, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, July
2015. (Cited on page 31.)

Youhui Zhang, Peng Qu, Jiang Cihang, and Weimin Zheng. A cloud
gaming system based on user-level virtualization and its resource
scheduling. IEEFE Transactions on Parallel and Distributed Systems,
27(5):1239-1252, May 2016. (Cited on page 180.)

223

Erklarung

Ich erkldare hiermit, dass ich, abgesehen von den ausdriicklich bezeichneten
Hilfsmitteln und den Ratschlagen von jeweils namentlich aufgefiithrten Personen,

die Dissertation selbststandig verfasst habe.

(Stephan Schnitzer)

225

	Contents
	Abstract
	Zusammenfassung
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.1.1 Multiple hardware platforms
	1.1.2 Limitations on features

	1.2 Goals and Problem Statements
	1.2.1 Goals
	1.2.2 Boundary conditions
	1.2.3 Execution time prediction
	1.2.4 GPU scheduler

	1.3 Project ARAMiS
	1.3.1 Background
	1.3.2 Structure
	1.3.3 Results

	1.4 Contributions
	1.4.1 Requirements analysis for graphics virtualization
	1.4.2 Virtualized automotive graphics system
	1.4.3 Execution time prediction for 3D rendering commands
	1.4.4 3D GPU scheduler
	1.4.5 Further contributions
	1.4.6 Related publications and contributors

	1.5 Structure

	2 Requirements and Architecture
	2.1 Requirements
	2.1.1 R1 – Input Event Handling
	2.1.2 R2 – Restricted Window Creation and Positioning
	2.1.3 R3 – Trusted Channel
	2.1.4 R4 – Virtualized Graphics Rendering
	2.1.5 R5 – Reconfiguration of Policies
	2.1.6 R6 – Certifiability
	2.1.7 R7 – System Monitoring

	2.2 Architecture
	2.2.1 Virtualization
	2.2.2 Inter-VM communication
	2.2.3 Integrity
	2.2.4 Application interfaces
	2.2.5 GPU Scheduler

	2.3 Demonstrator
	2.3.1 Hardware overview
	2.3.2 Implementation
	2.3.3 Evaluation

	2.4 Related Work
	2.5 Summary and Appraisal

	3 Execution Time Prediction
	3.1 Background
	3.1.1 EGL
	3.1.2 OpenGL ES 2.0
	3.1.3 Machine Learning
	3.1.4 Model analysis

	3.2 System model
	3.3 Prediction Architecture
	3.3.1 OpenGL ES Context Monitor
	3.3.2 Predictor
	3.3.3 Execution Time Monitor

	3.4 Prediction models for FLUSH, CLEAR, and SWAPBUFFERS
	3.4.1 Prediction Model for FLUSH
	3.4.2 Prediction Model for CLEAR
	3.4.3 Prediction Model for SWAPBUFFERS

	3.5 Prediction Models for DRAW
	3.5.1 Fragment estimation heuristics
	3.5.2 Shader model: based on profiling
	3.5.3 Shader model: based on machine learning

	3.6 Online adaption
	3.7 Implementation
	3.7.1 Architecture
	3.7.2 Initialization of the shared library libETP
	3.7.3 Prediction model creation
	3.7.4 Used libraries and algorithms
	3.7.5 Modes of operation

	3.8 Evaluation
	3.8.1 Setup
	3.8.2 Coverage factor
	3.8.3 Fragment Heuristics
	3.8.4 Shader execution time
	3.8.5 Command Group prediction
	3.8.6 Prediction overhead
	3.8.7 Evaluation conclusion and summary

	3.9 Related Work
	3.10 Summary and future work
	3.10.1 Summary
	3.10.2 Future work

	4 GPU Scheduling
	4.1 Requirements
	4.2 System Model
	4.3 Approach
	4.3.1 System Architecture
	4.3.2 Application-specific parameters for scheduling
	4.3.3 Conceptual Design of the Scheduling Algorithm
	4.3.4 Important Parameters, Variables, and Functions
	4.3.5 Scheduling Algorithm
	4.3.6 Reservation Concept and Schedulability

	4.4 Implementation
	4.4.1 Hardware platform and Operating System
	4.4.2 Dispatching commands
	4.4.3 Time measurement and prediction
	4.4.4 GPU Scheduler interface
	4.4.5 Compositor interface
	4.4.6 Concurrency

	4.5 Evaluation
	4.5.1 Setup
	4.5.2 Effectiveness
	4.5.3 GPU Utilization
	4.5.4 Scheduler Efficiency
	4.5.5 Evaluation conclusion and summary

	4.6 Outlook on preemptive scheduling
	4.7 Related Work
	4.8 Summary and future work
	4.8.1 Summary
	4.8.2 Future work

	5 Summary
	Appendix
	A Appendix
	A.1 Vivante GPU instruction set
	A.2 libETP XML profiling data file
	A.3 Additional results for scheduler effectiveness
	A.3.1 Influence of MPCG on scheduler effectiveness
	A.3.2 Scheduler effectiveness with huge ETP error
	A.3.3 Scheduling timing

	Glossary
	Acronyms
	Math Terms
	Bibliography

