2,194 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

    Get PDF
    Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results: - any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs; - assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - ? fraction of machines (for an arbitrarily small constant ?) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup. As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques

    On Improving Communication Complexity in Cryptography

    Get PDF
    Cryptography grew to be much more than "the study of secret writing". Modern cryptography is concerned with establishing properties such as privacy, integrity and authenticity in protocols for secure communication and computation. This comes at a price: Cryptographic tools usually introduce an overhead, both in terms of communication complexity (that is, number and size of messages transmitted) and computational efficiency (that is, time and memory required). As in many settings communication between the parties involved is the bottleneck, this thesis is concerned with improving communication complexity in cryptographic protocols. One direction towards this goal is scalable cryptography: In many cryptographic schemes currently deployed, the security degrades linearly with the number of instances (e.g. encrypted messages) in the system. As this number can be huge in contexts like cloud computing, the parameters of the scheme have to be chosen considerably larger - and in particular depending on the expected number of instances in the system - to maintain security guarantees. We advance the state-of-the-art regarding scalable cryptography by constructing schemes where the security guarantees are independent of the number of instances. This allows to choose smaller parameters, even when the expected number of instances is immense. - We construct the first scalable encryption scheme with security against active adversaries which has both compact public keys and ciphertexts. In particular, we significantly reduce the size of the public key to only about 3% of the key-size of the previously most efficient scalable encryption scheme. (Gay,Hofheinz, and Kohl, CRYPTO, 2017) - We present a scalable structure-preserving signature scheme which improves both in terms of public-key and signature size compared to the previously best construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz, Kohl, and Pan, EUROCRYPT, 2018) Another important area of cryptography is secure multi-party computation, where the goal is to jointly evaluate some function while keeping each party’s input private. In traditional approaches towards secure multi-party computation either the communication complexity scales linearly in the size of the function, or the computational efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016) introduced the notion of homomorphic secret sharing. Here, inputs are shared between parties such that each party does not learn anything about the input, and such that the parties can locally evaluate functions on the shares. Homomorphic secret sharing implies secure computation where the communication complexity only depends on the size of the inputs, which is typically much smaller than the size of the function. A different approach towards efficient secure computation is to split the protocol into an input-independent preprocessing phase, where long correlated strings are generated, and a very efficient online phase. One example for a useful correlation are authenticated Beaver triples, which allow to perform efficient multiplications in the online phase such that privacy of the inputs is preserved and parties deviating the protocol can be detected. The currently most efficient protocols implementing the preprocessing phase require communication linear in the number of triples to be generated. This results typically in high communication costs, as the online phase requires at least one authenticated Beaver triple per multiplication. We advance the state-of-the art regarding efficient protocols for secure computation with low communication complexity as follows. - We construct the first homomorphic secret sharing scheme for computing arbitrary functions in NC 1 (that is, functions that are computably by circuits with logarithmic depth) which supports message spaces of arbitrary size, has only negligible correctness error, and does not require expensive multiplication on ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019) - We introduce the notion of a pseudorandom correlation generator for general correlations. Pseudorandom correlation generators allow to locally extend short correlated seeds into long pseudorandom correlated strings. We show that pseudorandom correlation generators can replace the preprocessing phase in many protocols, leading to a preprocessing phase with sublinear communication complexity. We show connections to homomorphic secret sharing schemes and give the first instantiation of pseudorandom correlation generators for authenticated Beaver triples at reasonable computational efficiency. (Boyle, Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of post-quantum security

    Cryptology in the Crowd

    Get PDF
    Uhell skjer: Kanskje mistet du nĂžkkelen til huset, eller hadde PIN-koden til innbruddsalarmen skrevet pĂ„ en dĂ„rlig plassert post-it lapp. Og kanskje endte de slik opp i hendene pĂ„ feil person, som nĂ„ kan pĂ„fĂžre livet ditt all slags ugagn: Sikkerhetssystemer gir ingen garantier nĂ„r nĂžkler blir stjĂ„let og PIN-koder lekket. Likevel burde naboen din, hvis nĂžkkel-og-PIN-kode rutiner er heller vanntette, kunne fĂžle seg trygg i vissheten om at selv om du ikke evner Ă„ sikre huset ditt mot innbrudd, sĂ„ forblir deres hjem trygt. Det er tilsvarende for kryptologi, som ogsĂ„ lener seg pĂ„ at nĂžkkelmateriale hemmeligholdes for Ă„ kunne garantere sikkerhet: Intuitivt forventer man at kjennskap til ett systems hemmelige nĂžkkel ikke burde vĂŠre til hjelp for Ă„ bryte inn i andre, urelaterte systemer. Men det har vist seg overraskende vanskelig Ă„ sette denne intuisjonen pĂ„ formell grunn, og flere konkurrerende sikkerhetsmodeller av varierende styrke har oppstĂ„tt. Det blir dermed naturlig Ă„ spĂžrre seg: Hvilken formalisme er den riktige nĂ„r man skal modellere realistiske scenarioer med mange brukere og mulige lekkasjer? Eller: hvordan bygger man kryptografi i en folkemengde? Artikkel I begir seg ut pĂ„ reisen mot et svar ved Ă„ sammenligne forskjellige flerbrukervarianter av sikkerhetsmodellen IND-CCA, med og uten evnen til Ă„ motta hemmelige nĂžkler tilhĂžrende andre brukere. Vi finner et delvis svar ved Ă„ vise at uten denne evnen, sĂ„ er noen modeller faktisk Ă„ foretrekke over andre. Med denne evnen, derimot, forblir situasjonen uavklart. Artikkel II tar et sidesteg til et sett relaterte sikkerhetsmodeller hvor, heller enn Ă„ angripe Ă©n enkelt bruker (ut fra en mengde av mulige ofre), angriperen Ăžnsker Ă„ bryte kryptografien til sĂ„ mange brukere som mulig pĂ„ Ă©n gang. Man ser for seg en uvanlig mektig motstander, for eksempel en statssponset aktĂžr, som ikke har problemer med Ă„ bryte kryptografien til en enkelt bruker: MĂ„let skifter dermed fra Ă„ garantere trygghet for alle brukerne, til Ă„ gjĂžre masseovervĂ„king sĂ„ vanskelig som mulig, slik at det store flertall av brukere kan forbli sikret. Artikkel III fortsetter der Artikkel I slapp ved Ă„ sammenligne og systematisere de samme IND-CCA sikkerhetsmodellene med en stĂžrre mengde med sikkerhetsmodeller, med det til felles at de alle modellerer det samme (eller lignende) scenarioet. Disse modellene, som gĂ„r under navnene SOA (Selective Opening Attacks; utvalgte Ă„pningsangrep) og NCE (Non-Committing Encryption; ikke-bindende kryptering), er ofte vesentlig sterkere enn modellene studert i Artikkel I. Med et system pĂ„ plass er vi i stand til Ă„ identifisere en rekke hull i litteraturen; og dog vi tetter noen, etterlater vi mange som Ă„pne problemer.Accidents happen: you may misplace the key to your home, or maybe the PIN to your home security system was written on an ill-placed post-it note. And so they end up in the hands of a bad actor, who is then granted the power to wreak all kinds of havoc in your life: the security of your home grants no guarantees when keys are stolen and PINs are leaked. Nonetheless your neighbour, whose key-and-pin routines leave comparatively little to be desired, should feel safe that just because you can’t keep your house safe from intruders, their home remains secured. It is likewise with cryptography, whose security also relies on the secrecy of key material: intuitively, the ability to recover the secret keys of other users should not help an adversary break into an uncompromised system. Yet formalizing this intuition has turned out tricky, with several competing notions of security of varying strength. This begs the question: when modelling a real-world scenario with many users, some of which may be compromised, which formalization is the right one? Or: how do we build cryptology in a crowd? Paper I embarks on the quest to answer the above questions by studying how various notions of multi-user IND-CCA compare to each other, with and without the ability to adaptively compromise users. We partly answer the question by showing that, without compromise, some notions of security really are preferable over others. Still, the situation is left largely open when compromise is accounted for. Paper II takes a detour to a related set of security notions in which, rather than attacking a single user, an adversary seeks to break the security of many. One imagines an unusually powerful adversary, for example a state-sponsored actor, for whom brute-forcing a single system is not a problem. Our goal then shifts from securing every user to making mass surveillance as difficult as possible, so that the vast majority of uncompromised users can remain secure. Paper III picks up where Paper I left off by comparing and systemizing the same security notions with a wider array of security notions that aim to capture the same (or similar) scenarios. These notions appear under the names of Selective Opening Attacks (SOA) and Non-Committing Encryption (NCE), and are typically significantly stronger than the notions of IND-CCA studied in Paper I. With a system in place, we identify and highlight a number of gaps, some of which we close, and many of which are posed as open problems.Doktorgradsavhandlin

    On Pseudorandom Encodings

    Get PDF
    We initiate a study of pseudorandom encodings: efficiently computable and decodable encoding functions that map messages from a given distribution to a random-looking distribution. For instance, every distribution that can be perfectly and efficiently compressed admits such a pseudorandom encoding. Pseudorandom encodings are motivated by a variety of cryptographic applications, including password-authenticated key exchange, “honey encryption” and steganography. The main question we ask is whether every efficiently samplable distribution admits a pseudorandom encoding. Under different cryptographic assumptions, we obtain positive and negative answers for different flavors of pseudorandom encodings, and relate this question to problems in other areas of cryptography. In particular, by establishing a two-way relation between pseudorandom encoding schemes and efficient invertible sampling algorithms, we reveal a connection between adaptively secure multiparty computation for randomized functionalities and questions in the domain of steganography

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digitalsignature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of postquantum security
    • 

    corecore