
MPC for MPC: Secure Computation on a
Massively Parallel Computing Architecture
T-H. Hubert Chan
The University of Hong Kong, Hong Kong
hubert@cs.hku.hk

Kai-Min Chung
Academia Sinica, Taipei City, Taiwan
kmchung@iis.sinica.edu.tw

Wei-Kai Lin
Cornell University, Ithaca, NY, USA
wklin@cs.cornell.edu

Elaine Shi
Cornell University, Ithaca, NY, USA
elaine@cs.cornell.edu

Abstract
Massively Parallel Computation (MPC) is a model of computation widely believed to best capture
realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters.
Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive
user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable
efficient, privacy-preserving computation over massive data. Clearly if a computation task does not
lend itself to an efficient implementation on MPC even without security, then we cannot hope to
compute it efficiently on MPC with security. We show, on the other hand, that any task that can be
efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically,
we show the following results:

any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotical-
ly preserving its round and space complexity, where communication-obliviousness ensures that
any network intermediary observing the communication patterns learn no information about the
secret inputs;
assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness
and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure
counterpart that defends against an adversary who controls not only intermediate network
routers but additionally up to 1/3− η fraction of machines (for an arbitrarily small constant
η) – moreover, this compilation preserves the round complexity tightly, and preserves the space
complexity upto a multiplicative security parameter related blowup.

As an initial exploration of this important direction, our work suggests new definitions and
proposes novel protocols that blend algorithmic and cryptographic techniques.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases massively parallel computation, secure multi-party computation

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.75

Funding T-H. Hubert Chan: T-H. Hubert Chan was partially supported by the Hong Kong RGC
under the grant 17200418.
Kai-Min Chung: This research is partially supported by the Academia Sinica Career Development
Award under Grant no. 23-17 and Ministry of Science and Technology, Taiwan, under Grant no.
MOST 106-2628-E-001-002-MY3.
Wei-Kai Lin: This work is supported by the DARPA Brandeis award.
Elaine Shi: This work is supported in part by NSF CNS-1453634, an ONR YIP award, a Packard
Fellowship, and an IARPA HECTOR grant under a subcontract from IBM.

© T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and Elaine Shi;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 75; pp. 75:1–75:52

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hubert@cs.hku.hk
mailto:kmchung@iis.sinica.edu.tw
mailto:wklin@cs.cornell.edu
mailto:elaine@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.75
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Acknowledgements We gratefully thank Xiaorui Sun for his patient and detailed explanations about
the Massively Parallel Computation (MPC) model, for answering many of our technical questions,
and for suggesting an idea to transform an MPC protocol without the s-sender-constraint to one
that has.

1 Introduction

In the past decade, parallel computation has been widely adopted to manipulate and analyze
large-scale data-sets, and numerous programming paradigms such as MapReduce, Hadoop,
and Spark have been popularized to help program large computing clusters. This has partly
served as a driving force for the algorithms community to better understand the power and
limitations of such parallel computation models. The first theoretic model capturing modern
parallel computation frameworks was proposed by Karloff, Suri, and Vassilvitskii [79]. Since
then, a flurry of results have appeared proposing refinements to the model as well as novel
algorithms with better asymptotical and practical efficiency [4, 40,76,79,80,83,89,99].

With these amazing efforts, the community has converged on a model called Massively
Parallel Computation (MPC), which is believed to best capture large computing clusters
(e.g., those operated by companies like Google and Facebook) consisting of a network of
Random-Access Machines (RAMs), each with a somewhat considerable amount of local
memory and processing power – and yet each individual machine is not powerful enough to
store the massive amount of data available. In the MPC model of computation, we typically
assume a total of N data records where N is rather large (in practice, the data size can
range from tens of terabytes to a petabyte). Each machine can locally store only s = Nε

amount of data for some constant ε ∈ (0, 1); and the number of machines m ≥ N1−ε such
that all machines can jointly store the entire dataset. In many MPC algorithms it is also
desirable if m · s = Õ(N) or m · s ≤ N1+θ for some small constant θ ∈ (0, 1), i.e., the total
space consumed should not be too much larger than the dataset itself [2, 5, 79,83].

In the standard algorithms literature on MPC, a key focus has been the design of algorithms
that minimize the round complexity, partly by harnessing the reasonably large local memory
that is available on each processing unit. Using round complexity as a primary metric, a
rich set of computational tasks have been investigated in the MPC model, including graph
problems [2,4–6,10–13,15,19,20,29,36,40,52,60,63,81,83,93,97], clustering [16,17,46,61,107]
and submodular function optimization [41,47,80,90]. Interestingly, it is also known that a
number of tasks (such as sorting, parity, minimum spanning tree) that either suffered from
an almost logarithmic depth lower bound on a classical Parallel Random-Access Machine
(PRAM) now can be accomplished in O(1) or sublogarithmic number of rounds on an MPC
framework [40,67,79,93]. Note that a PRAM assumes that each processing unit has O(1) local
storage and thus PRAM is not the best fit for capturing modern parallel computing clusters.

1.1 Privacy-Preserving Data Analytics on MPC Frameworks

In this paper, we are the first to ask the question, how can we leverage an MPC cluster
to facilitate privacy-preserving, large-scale data analytics? This question is of increasing
importance because numerous data analytics tasks we want to perform on these frameworks
involve sensitive user data, e.g., users’ behavior history on websites and/or social networks,
medical records, or genomic data. We consider two primary scenarios:

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:3

Scenario 1: MPC with secure end-points

We may consider an MPC framework where the end-points1 are secured by trusted processors
such as Intel SGX. Without loss of generality, we may assume that data is encrypted in
memory or in transit such that all the secure processors can decrypt them inside a hardware-
enabled sandbox where computation will take place (to achieve this the secure processors may
employ standard cryptographic techniques to perform a secure handshake and establish a
shared encryption key). Finally, when the computation result is ready, the secure processors
can send encrypt results to an authorized analyst who has a corresponding key to decrypt
the results.

In this scenario, we consider a network adversary (e.g., compromised operating systems,
intermediate network routers, or system administrators) that can observe the communication
patterns between the end-points, and we would like to make sure that the MPC algorithm’s
communication pattern leak no information about the secret data.

Note that in Scenario 1, we make a simplifying assumption that the adversary cannot
observe the memory access patterns on end-points: since known works on efficient Oblivious
RAM (ORAM) [64,66, 100,102] have in principle solved this problem; not only so, in recent
work the first secure processor with ORAM support has been taped out [50,51,98].

Scenario 2: MPC with insecure end-points

In the second scenario, imagine that the adversary controls not only the intermediate network
routers but also some of the end-points. For example, the end-points may be legacy machines
without trusted hardware support, and they may have a comprised operating system. The
adversary may also be a rogue system administrator who has access to a subset of the
machines. We assume, however, that the adversary controls only a small subset of the
end-points – such an assumption is reasonable if the end-points are hosted by various
organizations, or by the same organization but in different data centers, or if they have
diverse hardware/software configurations such that they are unlikely to be all hit by the
same virus.

In this scenario, we would like to obtain a guarantee similar to that of cryptographic
Secure Multi-Party Computation (SMPC)2, i.e., an adversary controlling a relatively small
subset of the machines cannot learn more information beyond what is implied by the union
of the corrupt machine’s outputs. Note that in this scenario, all machines’ outputs can also
be in encrypted format such that only an authorized data analyst can decrypt the result; or
alternatively, secret shared such that only the authorized data analyst can reconstruct – in
this case, the adversary should not be able to learn anything at all from the computation.

With the aforementioned scenarios in mind, we ask, what computation tasks can be
securely and efficiently computed on an MPC architecture? Clearly, if a computation task
does not lend itself to efficient computation on MPC even without security, we cannot hope
to attain an efficient and secure solution on the same architecture. Therefore, the best we can
hope for is the following: for computational tasks that indeed have efficient MPC algorithms,
we now want to compute the same task securely on MPC while preserving the efficiency of
the original insecure algorithm. In other words, we ask the following important question:

Can we securely evaluate a function f on an MPC framework, while paying not too
much more overhead than evaluating f insecurely on MPC?

1 By end-points, we mean the machines, as opposed to the communication/network.
2 In this paper, to avoid confusion, we use SMPC to mean cryptographic Secure Multi-Party Computation;

and we use MPC to mean Massively Parallel Computation.

ITCS 2020

75:4 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

1.2 Our Results and Contributions

Conceptual and definitional contributions

We initiate the exploration of how to leverage Massively Parallel Computation (MPC) to
secure large-scale computation. The widespread empirical success of MPC frameworks in
practice, as well as the typically sensitive nature of the data involved in the analytics provide
strong motivations for our exploration. We hope that the formal definitions and theoretical
feasibility results in our work will encourage future work along this direction, and hopefully
leading to practical solutions for privacy-preserving large-scale data analytics.

In comparison, although earlier works originating from the cryptography community have
explored secure computation on parallel architectures, most known results [3,24,25,32,34,35,
37, 38, 87, 92] adopt PRAM as the model of computation. As discussed later in Section 2,
known results specialized for PRAMs do not directly lead to the type of results in this paper
due to the discrepancy both in model and in metrics. As mentioned, the PRAM model is
arguably a mismatch for the parallel computing architectures encountered in most practical
scenarios. This is exactly why in the past decade, the algorithms community have focused
more on the modern MPC model which better captures the massively parallel computing
clusters deployed by companies like Google and Facebook. Therefore, we hope that our work
will bring the MPC model to the attention of the cryptography community for exploring
parallel secure computation.

We proceed to present a summary of our major results.

Communication-oblivious MPC

To securely compute a function in Scenario 1 and as a stepping stone towards enabling
Scenario 2, we first define a notion of communication obliviousness for MPC algorithms.
Informally speaking, we want that the adversary learns no information about the secret
inputs after observing an MPC algorithm’s communication patterns. In this paper we require
a very strong notion of communication obliviousness, where we simply want that the MPC
algorithm’s communication patterns be deterministic and input independent3.

We prove that any MPC algorithm Π can be compiled to a communication-oblivious
counterpart while asymptotically preserving its round complexity and space consumption.

I Theorem 1 (Communication-oblivious MPC algorithms). Suppose that s = Nε and that m
is upper bounded by a fixed polynomial in N . Given any MPC algorithm Π that completes in
R rounds where each of the m machines has s local space, there is a communication-oblivious
MPC algorithm Π̃ that computes the same function as Π except with exp(−Ω(

√
s)) probability,

and moreover Π̃ completes in O(R) rounds, and consuming O(s) space on each of the m
machines. Furthermore, only O(m · s) amount of data are communicated in each round in
an execution of Π̃.

Note that numerous interesting MPC algorithms known thus far have total communication
at least Ω(R·m·s) where R denotes the protocol’s round complexity (ignoring polylogarithmic
factors) [6,59,62,67,77], and for this class of MPC algorithms, our compilation also introduces
very little asymptotical communication overhead.

3 We stress that the algorithm itself can be randomized, we just want its communication patterns to be
deterministic and fixed a-priori.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:5

Secure multi-party computation for MPC

We now turn to Scenario 2. In this setting security means that a relatively small corrupt
coalition cannot learn anything more beyond the coalition’s joint outputs. We now ask the
following natural question:

Can we compile any MPC protocol to a secure counterpart (where security is in the
above sense), allowing only O(1) blowup in round complexity and security parameter
related blowup in the total space4?

We answer this question affirmatively assuming that the adversary controls only 1
3 − η

fraction of machines for any arbitrarily small constant η. Note that 1
3 is necessary since the

MPC model assumes a point-to-point channel without broadcast, and in this model it is known
that secure computation cannot be attained in the presence of 1

3 or more corruptions [48,82].
To achieve this result, we need to assume the existence of a common random string

and appropriate cryptographic hardness assumptions, including the Learning With Errors
(LWE) assumption, enhanced trapdoor permutations, as well as the existence of a Fully
Homomorphic Encryption (FHE) scheme with an appropriate notion of compactness [55, 58].
It is well-known that such compact FHE schemes are implied by a suitable circularly secure
variant of the LWE assumption [58], although our compiler can work in general given any
such compact FHE scheme (not necessarily based on LWE). Our result is summarized in the
following theorem:

I Theorem 2 (Secure computation for MPC). Assume the existence of a common random
string, the Learning With Errors (LWE) assumption, enhanced trapdoor permutations, as well
as the existence of an FHE scheme with a suitable notion of compactness (see Appendix A.1
for a formal definition of compactness). Suppose that s = Nε and that m is upper bounded by
a fixed polynomial in N . Let κ denote a security parameter, and assume that s ≥ κ. Given
any MPC algorithm Π that completes in R rounds where each of the m machines has s local
space, there is an MPC algorithm Π̃ that securely realizes the same function computed by Π
in the presence of an adversary that statically corrupts at most 1

3 − η fraction of the machines
for an arbitrarily small constant η. Moreover, Π̃ completes in O(R) rounds, consumes at
most O(s) · poly(κ) space per-machine, and incurs O(m · s) · poly(κ) total communication
per round.

Now, one interesting question is whether the cryptographic assumptions we rely on in
the above theorem can be avoided. We show that if one can indeed achieve the same result
with statistical security, then it would imply (at least partial) solutions to long-standing
open questions in the cryptography literature. Specifically, in Appendix B, we show that if
we could construct such a compiler, it would immediately imply a constant-round Secure
Multi-Party Computation protocol for a broad class of circuits that can be computed in
small space, achieving total communication complexity that is (significantly) sublinear in the
circuit size, regardless of the number of parties. As noted in numerous works [26,39,44,45],
the existence of such constant-round, sublinear-communication multi-party computation (for
circuits) with statistical security has been a long-standing open problem, even for special
(but nonetheless broad) classes of circuits.

4 Since many well-known MPC algorithms [2, 4–6,10–13,15–17,19,20, 29, 36,40, 41, 46, 47,52, 60, 61,63, 80,
81,83,90,93,97,107] incur only constant to sub-logarithmic rounds, we would like to preserve the round
complexity tightly; and thus we do not allow a security parameter related blowup for round complexity.

ITCS 2020

75:6 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Interestingly, we note that barring strong assumptions such as Indistinguishable Obfusca-
tion [53], the only known approach to construct constant-round, sublinear-communication
multi-party computation for circuits of unbounded polynomial size is also through compact
FHE [55,58]. We stress, however, that even with a compact FHE scheme, constructing our
“MPC to SMPC-for-MPC” compiler is non-trivial and require the careful combination of
several techniques.

2 Technical Roadmap

We now present a succinct and informal technical roadmap to capture our main ideas and
new techniques.

Recall that in the MPC model of computation, there are m machines each with s local
space. All machines will jointly compute a function over a large input containing N words.
We assume that s = Nε for some constant ε ∈ (0, 1), and that m ∈ [N1−ε, poly(N)]. Note
that although our results will hold as long as m is upper bounded by some polynomial
function in N , in known MPC algorithms typically we desire that m · s is not too much
greater than N . At the beginning of the first round, every machine receives an input whose
size is bounded by s. In every other round, each machine begins by receiving incoming
messages from the network, and it is guaranteed that no more than s words will be received
such that the machine can write them down in its local memory – henceforth this is referred to
as the s-receiver-constraint. After receiving the inputs or the network messages, all machines
perform local computation, and then send messages to other machines. These messages will
then be received at the beginning of the next round.

As explained earlier, in the algorithms literature on MPC, the primary metric of
performance is the algorithm’s round complexity [2, 4–6,10–13,15–17,19,20, 29,36, 40,41, 46,
47,52,60,61,63,80,81,83,90,93,97,107].

2.1 Achieving Communication Obliviousness: Oblivious Routing

Many known MPC algorithms are not communication oblivious, and thus the communication
patterns of these algorithms can leak information about the secret inputs. For example, many
graph algorithms for MPC have communication patterns that will leak partial information
about the structure and properties of the graph, such as the degrees of nodes or the
connectivity between vertices [6, 40,62,81,93].

Our goal is to compile an MPC algorithm to a communication-oblivious counterpart
while preserving its round and space complexity. To achieve this, we will compile each
communication round of the original MPC to a constant-round, oblivious protocol that
accomplishes the same message routing. Interestingly, the compiled protocol will respect
communication-obliviousness in a very strong sense: its communication patterns are determi-
nistic and independent of the input.

Sender and receiver constraints

In the MPC model of computation [6, 40, 93], we typically have that in each round, each
machine sends at most s words and receives at most s words – henceforth these are referred
to as the s-sender-constraint and the s-receiver-constraint respectively. Note that if a sender
wants to send the same word to two machines, it is counted twice.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:7

Oblivious routing

Oblivious routing basically aims to obliviously realize the message routing as long as both
the s-sender- and s-receiver-constraints are satisfied.

More specifically, suppose that each machine receives at most s send-instructions as input,
where each send-instruction contains an outgoing word to be sent and a destination machine
for the outgoing word. The joint inputs of all machines guarantee that each machine will
receive no more than s words. How can we design a constant-round, communication-oblivious
protocol that routes the outgoing words to the appropriate destinations?
I Remark 3. It seems that some MPC works in the algorithms literature respect only the
s-receiver constraint but not the s-sender constraint. We think most likely, the folklore
understanding is that as long as we assume the s-receiver constraint, whether or not there is
an s-sender constraint do not really affect the expressive power of the computation model.
For completeness, in Appendix C, we describe a round- and space-preserving transformation
that compiles any MPC protocol that satisfies only the s-receiver-constraint to one that
satisfies both O(s)-receiver- and O(s)-sender-constraints. This means that all of our results
would be applicable to MPC algorithms that satisfy only the s-receiver-constraint but not
the s-sender-constraint.

Background

Our approach is partly inspired by algorithmic techniques from the recent Oblivious RAM
and oblivious sorting line of work [7,33,49,96,101]. Specifically, these works propose a RAM
algorithm with a fixed memory access pattern that routes elements to random buckets and
succeeds with 1 − exp(−Ω(Z)) probability where Z denotes each bucket’s capacity (and
assuming that the total number of elements is polynomially bounded). To accomplish this,
imagine that initially all N elements are divided into 2N/Z buckets each of capacity Z

such that each bucket is at most half-loaded. Every element is assigned a random label
declaring which bucket it wants to go to. Now, these prior works rely on a logarithmic-depth,
butterfly network of buckets and move the elements along this butterfly network based on
their respective labels, until eventually every element falls into its desired bucket – this is
guaranteed to succeed with 1− exp(−Ω(Z)) probability where a failure can only occur if in
the middle some bucket in the butterfly network exceeds its capacity – henceforth this is
said to be an overflow event.

In summary, the insight we can gain from this elegant construction is the following:
roughly speaking, a butterfly network of super-logarithmically sized buckets can obliviously
route elements to their desired buckets in the final layer with a deterministic communication
pattern (determined by interconnections in the butterfly network); but to ensure correctness,
i.e., to ensure that overflow does not happen except with negligible probability, the elements
should have random destination labels to achieve good load-balancing properties.

A first attempt

Our idea is to use such a butterfly-network to route the words to their destinations –
specifically, one can imagine that each bucket is relatively small such that every machine holds
Θ(sZ) of the resulting buckets; and moreover, the buckets are numbered 1, 2, . . . , O(m · s/Z)
respectively. For convenience, we will use the term “element” to mean an outgoing word to
be sent. Since every sender already knows the destination machines for each of its input
elements, it can basically assign the element to a random bucket within the destination

ITCS 2020

75:8 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

machine. Henceforth, by “destination label”, we mean the index of the destination bucket
(as opposed to the destination machine). We are, however, faced with two challenges which
prevent us from adopting the known approach in its current form:

Load balancing challenge: First, in our setting, the destination labels of the input elements
are not completely random; and thus the load-balancing properties that hold in earlier
works [7, 33,49] for randomly assigned labels no longer hold in our case;
Round complexity challenge: Second, the natural way to adopt the butterfly network
is to assign to each machine an appropriate subset of Θ(sZ) buckets in each layer of
the network. However, if s

Z = Θ(1), then we will incur logarithmic number Ω(logm) of
rounds (corresponding exactly to the depth of the butterfly network). Later, we shall set
Z to be small enough (e.g., Z = O(

√
s) in size) to reduce the number of rounds.

Overcoming the load balancing challenge

To overcome the load balancing challenge, our idea is to run this butterfly network twice:
the first time we use it to route every element a random destination bucket just like in the
earlier works; and the second time we use it to route every element to a random destination
bucket within the destination machine they originally wanted to go to. At the end of the
second phase, every element will be routed to the machine it wants to go to.

For the first phase, we can rely on the same load balancing arguments as in the previous
works [7,33,49] to prove that overflow events happen only with negligible probability. For the
second phase, we will prove a new stochastic bound showing that the same load-balancing
properties hold with a different starting condition (see Section 4.4): i) the starting condition
must satisfy the s-receiver-constraint; and ii) initially the elements are assigned to random
input buckets, which is guaranteed by phase 1.

It remains to overcome the round complexity challenge which we explain below.

Overcoming the round complexity challenge

The earlier works rely on a 2-way butterfly network where in each layer i, a local 2-way
routing decision is made for every element based on the i-th bit of its destination label.
In our new construction, we will compress r layers of work in the original butterfly to a
single round, exploiting the fact that each machine local space to store roughly 2r buckets,
where 2r = Θ(sZ).5 In this way our new approach requires O((log N

Z)/r) = O(1/ε) rounds
for Z = O(

√
s) and s = Nε. Effectively, in each round i, each machine would be looking at

the i-th r-bit-group of an element’s label to make a 2r-way routing decision for the element.
To make this idea work, the crux is to show that at the end of every round (corresponding

to r layers in the old 2-way butterfly), there is a communication-efficient way for the machines
to exchange messages and rearrange their buckets such that the interconnections in the graph
are “localized” in the next round too. In this way, within each round, each machine can
perform 2r-way routing on its local elements, simulating r layers of the old 2-way butterfly,
without communicating with any other machine. Fortunately, we can accomplish this by
exploiting the structure of the butterfly network. We defer the algorithmic details and proofs
to Section 4.

5 Our techniques remotely reminiscient of the line of work on external-memory ORAM constructions
with large, Nε CPU private cache [33, 68, 69, 96, 101] – however, all previous works consider a sequential
setting.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:9

2.2 SMPC for MPC

2.2.1 Informal Problem Statement
We now turn our attention to Scenario 2 where the adversary controls not just the intermediate
network routers but also a subset of the machines involved in large-scale computation. As
before, given a computation task f that has an efficient but insecure MPC algorithm, we
now would like to securely realize f also using the MPC model while preserving its efficiency.
Here, our security goal is to guarantee that the adversary learns nothing more than what
is already implied by the joint outputs of corrupt machines. Such a notion of security can
be formally defined using a standard simulation-based paradigm [30], requiring that the
real-world protocol must “securely emulate” an ideal-world protocol where all machines simply
forward their inputs to a trusted ideal functionality who performs the desired computation
task and forwards the outputs to each machine. Intuitively, we require that for any real-world
attack that can be performed by a polynomially bounded adversary, there is an ideal-world
adversary that can essentially implement the same attack in the ideal world. We refer the
reader to Section 5 for a formal definition. Note that our definition follows the same style as
the Universal Composition framework [30]. Henceforth, a secure multi-party computation
protocol satisfying the aforementioned security notion is said to be an “SMPC-for-MPC”
protocol.

Before we describe how to solve this problem, we need to clarify a few points about the
model of execution as we marry SMPC and MPC. Since we now have corrupt machines and
corrupt machines are allowed to send arbitrary messages to any machine, we can no longer
guarantee that each honest machine receive at most s words. Instead, we require that at the
end of the every round r − 1, every machine can write down in its local memory a receiving
schedule for round r of the form {(fj , wj)}j , where fj ∈ [m] denotes the index of a sender to
anticipate a message from in round r and wj denotes the number of words expected from
fj . In this way, an honest machine will only save the first wj words received from every
anticipated sender fj contained in this receiving schedule; all other received messages are
discarded immediately.

I Remark 4. Recall that since we showed how to compile any MPC protocol to one that has
a fixed communication schedule while asymptotically preserving round and space complexity
(Section 2.1), requiring that receivers be able to anticipate their receiving schedule does not
reduce the expressive power of the underlying computational model. However, somewhat
more subtlely, we do not insist that the communication patterns be deterministic (i.e., fully
fixed a-priori) for our SMPC-for-MPC protocols in order not to rule out interesting SMPC-
for-MPC protocols – it suffices for an honest machine to anticipate its receiving schedule of
some round right before the round starts.

2.2.2 MPC to “SMPC-for-MPC” Compiler
Recall that we would like the compiled SMPC-for-MPC protocol to tightly preserve the
original MPC program’s round complexity, and for per-machine space we only allow a
security parameter related blowup. Although in the cryptography literature, secure multi-
party computation (SMPC) techniques have been explored for various models of computation
including circuits [21,55,65,105,106], RAM [1,54,56,57,71,85,86,104], and PRAM [24,25,32,
34,35,37,38,87,92], none of the existing approaches can satisfy our efficiency requirements
due to a discrepancy in both model and metric of performance.

First, any approach whose round complexity depends at least on the depth of the
circuit [9, 22, 65, 78] or on the parallel runtime of a PRAM [24] can be immediately ruled
out, since MPC protocols can have high circuit/PRAM depth (e.g., if each machine’s local

ITCS 2020

75:10 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

computation is of a sequential nature). We thus turn our attention to known approaches that
achieve small round complexity. For example, a line of works [18, 42, 84] showed a technique
where multiple machines jointly garble a circuit/PRAM in constant number of rounds, then
each individual machine simply evaluates the garbled circuit/PRAM locally. Although such a
protocol would indeed complete in a small number of rounds, the garbled circuit/PRAM’s size
would be at least linear in the total computation time of all parties (unless we make strong
assumptions such as Indistinguishable Obfuscation [53]). This means that the per-machine
space blowup will be proportional to the number of machines m. Similarly, other constant-
round approaches, including those relying on Threshold Fully Homomorphic Encryption [8]
or Multi-Key Fully Homomorphic Encryption [14,28,72,75,91], also do not directly work due
to a linear-in-m blowup in the per-machine space, e.g., due to the need to store all machines’
encrypted inputs (although later in our construction we will indeed leverage FHE-based MPC
techniques as a building block, although this MPC will only be run among small committees).

Our approach

Henceforth we assume that the adversary controls only 1
3 − η fraction of the machines where

η may be an arbitrarily small constant. As explained earlier, this is nearly optimal tolerance
in a point-to-point network since an honest fraction of at least 2

3 is necessary for realizing
broadcast in a point-to-point network. Without loss of generality, we may also assume that
the original MPC has already been compiled to a communication-oblivious counterpart whose
communication patterns are deterministic and input independent.

Our idea is to directly emulate the original (communication-oblivious) MPC round by
round, by having a randomly elected small committee emulate each machine’s actions in
the original MPC. Henceforth the committee acting on behalf of machine i in the original
MPC is called the i-th committee. As long as the committee size is polylogarithmic in the
security parameter, except with negligible probability each committee must have at least
a 2

3 -fraction of honest machines. Therefore, we may employ an SMPC that tolerates less
than 1

3 corruption (and satisfies suitable efficiency requirements to be described below) to
securely emulate the following actions – note that in all cases this SMPC protocol will be
executed among a small set of polylogarithmically many machines; and thus we call this
SMPC building block CommitteeSMPC:

1. Share input: initially each machine i secret shares its input with the i-th committee; the
secret sharing scheme must be robust such that correct reconstruction can be achieved in
polynomial time even when corrupt machines provide false shares. Note that to achieve
this we may run the aforementioned CommitteeSMPC protocol among machine i and the
i-th committee;

2. Local compute: in every round’s computation step, the i-th committee employ
CommitteeSMPC to jointly evaluate what machine i’s is supposed to locally compute in
the original MPC, and the result is again robustly secret-shared among the committee;

3. Communicate: whenever machine i wants to send a message to machine j in the original
MPC, now the i-th committee and the j-th committee employ CommitteeSMPC to
accomplish this. At the end of this small protocol, every member of the j-th committee
will obtain a fresh robust secret share of the message.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:11

Instantiating CommitteeSMPC with suitable efficiency requirements

For our compilation to satisfy the stated efficiency goals, the CommitteeSMPC employed
must meet certain efficiency requirements:
1. Constant round: the protocol must complete in constant number of rounds; and
2. Weakly space efficient: the space consumed by each machine in the CommitteeSMPC

protocol asypmtotically matches the RAM-space-complexity of the function being evalua-
ted, allowing only a security-parameter-related blowup6. In this paper, we assume that
the RAM-space-complexity accounts for the space for writing down the RAM program’s
description and all inputs and outputs.

I Remark 5. Note that since the RAM-space-complexity accounts for writing down all
machines’ inputs and outputs, by definition the RAM-space-complexity of the function being
evaluated incur a linear blowup in the number of machines. However, since CommitteeSMPC
will only be run among at most 2 committees, the number of machines participating is small
in our case. In fact, by the weak space efficiency condition, each machine’s space complexity
may sometimes need to be sublinear in the circuit size, runtime, or even depth of the function
being evaluated (depending on the function being evaluated).

The only known approach for achieving these guarantees simultaneously is through
Threshold Fully Homomorphic Encryption (TFHE) [8] or Multi-Key Threshold Fully Homo-
morphic Encryption (MTFHE) [14, 72, 75] with a suitable notion of compactness (to be
explained shortly after). Roughly speaking, to perform an SMPC, the following takes place
where the encryption scheme employed is (M)TFHE:
(a) possibly after a setup phase, each machine encrypts their local input using the (M)TFHE

scheme and computes a zero-knowledge proof attesting to the well-formedness of the
ciphertext; now the machine broadcasts the ciphertext as well as the proof;

(b) now each machine homomorphically evaluates an encryption of all machines’ outputs;
(c) for every machine involved, compute the partial decryption share for that machine’s

encrypted output, along with a zero-knowledge proof attesting to the correctness of
decryption; now send the partial decryption share and the proof to the corresponding
machine.

(d) a machine finally reconstructs the output after collecting enough decryption shares.

If the (M)TFHE scheme employed is compact in the sense that the public key, secret
key, and ciphertext sizes depend only on the security parameter κ but not the size or the
depth of the circuit being evaluated, then we can show that in the above steps each machine
needs only O(m′ · s) · poly(κ) space where m′ denotes the number of machines involved
in the CommitteeSMPC protocol and s denotes the RAM-space-complexity of the function
being evaluated. Specifically, recall that any RAM machine with space complexity s can be
converted to a layered circuit with width s (and moreover the circuit can be generated and
written down layer by layer consuming space proportional to the RAM’s next-instruction
circuit size). Thus in the above, Step (b) can be accomplished using O(m′ · s) · poly(κ) space;
and it is easy to verify that all other steps indeed consume at most O(m′ · s) · poly(κ) too.

In existing (M)TFHE schemes [8, 14, 72], however, the key and ciphertext sizes are
dependent on the depth of the circuit being evaluated and thus they do not satisfy the
aforementioned compactness requirement. To make these schemes compact, we need to rely
on the bootstrapping technique described in the original Gentry work on FHE [55]; and it is

6 We call this notion weakly space efficient, since one can imagine a stronger notion requiring that the
total space consumed by all parties asyptotically matches the RAM-space-complexity of the function
being evaluted.

ITCS 2020

75:12 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

well-known that to get provable security with bootstrapping, we need to assume that the
(M)TFHE scheme employed satisfies circular security – informally speaking, ciphertexts must
nonetheless remain semantically secure even when we use the encryption scheme to encrypt
the secret decryption key.

Since there are relatively few known (M)TFHE constructions [14,72], rather than assuming
that the existing constructions are circularly secure, we would like to further hedge our bet.
Later in our technical sections, we further relax the assumption and base our scheme instead
on LWE and the existence of any compact FHE. Note that compact FHE is known to exist
assuming circularly secure variants of LWE; but for our purpose, we can work with any
compact FHE scheme including ones that depend on different algebraic assumptions.

2.3 Related Work

As mentioned earlier, the cryptography literature has extensively considered secure computa-
tion on an parallel architecture but most existing works focus on the PRAM model [3, 24,
25, 32, 34, 35, 37, 38, 87, 92]. Since most real-world large-scale parallel computation is now
done on an MPC architecture, we hope that our work will bring the MPC computation
model (which has been extensively studied in the algorithms literature) to the attention of
the cryptography community. Besides the PRAM model, Parter and Yogev have considered
secure computation on graphs in the so-called CONGEST model of computation [94,95].

3 Preliminaries

3.1 Massively Parallel Computation Model

We now describe the Massively Parallel Computation (MPC) model. Let N be the input size
in words where each word consists of w = Ω(logN) bits, and ε ∈ (0, 1) be a constant. The
MPC model consists of m parallel machines, where m ∈ [N1−ε, poly(N)] and each machine
has a local space of s = Nε words. Hence, the total space of all machines is m · s ≥ N

words. Often in the design of MPC algorithms we also want that the total space is not
too much larger than N , and thus many works [2, 5, 79, 83] assume that m · s = Õ(N), or
m ·s = O(N1+θ) for some small constant θ ∈ (0, 1). Henceforth the m machines are numbered
1, 2, . . . ,m respectively. The m machines are pairwise connected and every machine can send
messages to every other machine.

In this paper we are interested in protocols (also called algorithms) in the MPC model.
In this model, the computation proceeds in rounds. At the beginning of each round, if this is
the first round then each machine receives N/m words as input; else each machine receives
incoming messages from the network, and a well-formed MPC algorithm must guarantee
that each machine receives at most s words since there is no additional space to store more
messages. After receiving the incoming messages or inputs, every machine now performs
local computation; and we may assume that the local computation is bounded by poly(s)
and the choice of the polynomial poly is fixed once the parameters s and m are fixed. After
completing the local computation, every machine may send messages to some other machines
through a pairwise channel, and then all messages are received at the beginning of the
next round. When the algorithm terminates, the result of computation is written down
jointly by all machines, i.e., by concatenating the outputs of all machines. Every machine’s
output is also constrained to at most s words. An MPC algorithm may be randomized, in
which case every machine has a sequential-access random tape and can read random coins
from the random tape. The size of this random tape is not charged to the machine’s space
consumption.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:13

In the standard literature on MPC, we are most concerned about the round complexity of
an MPC algorithm. Specifically, this model has been of interest to the algorithms community
since numerous tasks that are known to have logarithmic depth lower bounds on the classical
Parallel Random-Access Machine (PRAM) model are known to have sublogarithmic- or even
constant-round algorithms in the MPC model [40,67,79,93].

Useful notations and conventions

We introduce a couple useful notations and conventions:
Given an MPC algorithm Π, we use the notation (y1, y2, . . . , ym)← Π(x1, x2, . . . , xm) to
denote a possibly randomized execution of the algorithm where each machine i’s input is
xi and its output is yi for i ∈ [m].
When we say the input to an MPC algorithm, we mean the concatenation of all machines’
inputs. When we say that an input array I is evenly spread across the m machines, we
mean that every machine but the last one obtains b|I|/mc elements and the last machine
obtains |I| mod m elements where |I| denotes the total number of elements in I.
We use the term s-receiver-constraint to refer to the requirement that a well-formed MPC
algorithm must ensure that each machine receives no more than s words in each round.
One may also consider, symmetrically, an s-sender-constraint, that is, in each round every
machine can send at most s words (where sending the same word to two machines counts
twice). Many MPC algorithms in the literature respect both constraints. However, it
seems that some other works in the MPC literature require only the s-receiver-constraint
but not the s-sender-constraint.
It turns out that the two modeling approaches are equivalent in terms of expressive power
as we show in Appendix C. Therefore, in the main body of the paper, we simply assume
that both constraints must be respected, but our results also extend to MPC algorithms
that respect only the s-receiver-constraint.
Like in the standard algorithms literature on MPC, we are concerned about asymptotical
complexity. For this reason, whenever convenient, we shall assume that each machine is
allowed O(s) local space rather than s. Similarly, the s-receiver-constraint is sometimes
interpreted as each machine receiving no more than O(s) data per-round.
We assume that the original MPC protocol to be compiled runs in a fixed number of
rounds. If not, we can always pad its round complexity to be the worst case. This ensures
that no information will be leaked through the number of rounds.

3.2 Communication-Oblivious MPC Algorithms
Communication-oblivious MPC algorithms

To compile an MPC algorithm to a secure counterpart, we go through an important stepping
stone where we first compile the original MPC algorithm to a communication-oblivious
counterpart. As mentioned earlier in Section 1, communication-oblivious MPC algorithms
are also interesting in their own right, e.g., for MPC clusters where the end points are secured
with secure processors such as Intel SGX, such that the adversary can observe only the
communication patterns.

Intuitively, an MPC algorithm is said to be communication-oblivious, iff an adversary
who can observe the communication patterns of the machines learn nothing about the secret
input. When we execute an MPC algorithm on some input I, the communication pattern
incurred in the execution is the concatenation of the following:

ITCS 2020

75:14 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

1. For each round r, a matrix Pr ∈ [s]m×m where Pr[i, j] ∈ [s] indicates how many words
machine i sends to machine j in round r;

2. An ordered list containing the number of words each machine outputs at the end of the
algorithm.

In this paper, we define a very strong notion of communication obliviousness: we say
that an MPC algorithm is communication-oblivious, iff the communication pattern of the
algorithm is deterministic, input independent, and known a-priori. Note that this also implies
that the algorithm must run for a deterministic number of rounds.

Defining correctness of MPC algorithms

We will define a notion of δ-correctness for an MPC algorithm. Let (y1, y2, . . . , ym) ←
F(x1, x2, . . . , xm) be a (possibly randomized) ideal functionality which, upon receiving
inputs x1, x2, . . . , xm, outputs y1, y2, . . . , ym. Here xi represents machine i’s input and yi
represents machine i’s output for i ∈ [m]; without loss of generality we may assume that each
xi contains exactly s words (if not we can always pad it with dummies to exactly s words).
We say that an MPC algorithm denoted Π δ-correctly realizes the ideal functionality F iff
for any input I = (x1, . . . , xm) the statistical distance between Π(I) and F(I) is at most δ.

I Definition 6 (δ-oblivious realization of an ideal functionality). We say that an MPC algorithm
Π δ-obliviously realizes an ideal functionality F , iff Π is communication-oblivious and
moreover Π δ-correctly realizes F .

I Remark 7. One can alternatively consider a weaker notion for an MPC algorithm Π to
“δ-oblivious realize” the ideal functionality F , that is, we require that there exists a simulator
Sim, such that for any input I of appropriate length, the following distributions must have
statistical distance at most δ:

RealΠ(1m, 1s, I): outputs the outcome of the MPC algorithm Π on input I and its
communication patterns;
IdealF (1m, 1s, I): outputs F(I) and Sim(1m, 1s). Notice that the simulator Sim is not
given the input I.

It is not hard to see that our notion (i.e., Definition 6) implies this weaker notion. This
weakened definition would permit the communication patterns to be randomized and also
not necessarily known a-priori. In this paper we focus on the stronger notion since we can
achieve even the stronger notion in an efficiency-preserving manner.

4 Oblivious Routing and Communication-Oblivious Compiler

4.1 Problem Definition
Recall that our first goal is to obtain an MPC protocol communication oblivious, and the
crux of the problem is to realize an oblivious form of routing. Imagine that in the original
MPC protocol, in some round, every machine has a list of at most s words that they want to
send, and each outgoing word has an intended destination machine. It is also guaranteed
that every machine will receive no more than s words. The question is how to route these
messages obliviously such that the communication patterns leak no information.

More formally, the Routing problem has the following syntax:
Input. Every machine i ∈ [m] has at most s send instructions where each send instruction
consists of a word to be sent, and the index of the recipient machine. All machines’ send
instructions must jointly satisfy the s-receiver-constraint, i.e., every machine receives no
more than s words.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:15

Output. Every machine outputs the list of words it is supposed to receive as uniquely
defined by the joint input (i.e., all machines’ send instructions); and moreover, these
received words are sorted based on a lexicographically increasing order. If fewer than
s words are received, the machine pads the output array with dummies to a length of
exactly s.

The above abstraction defines a most natural ideal functionality FRouting which implements
the routing task correctly.

In the remainder of this section, we will devise an oblivious MPC protocol that accom-
plishes routing. In the process we will need two intermediate building blocks called “Bucket
Route” and “Random Bucket Assignment” respectively.

Notational convention: a global Overflow indicator

Throughout this section, we shall assume that each machine maintains a global variable
denoted Overflow. Initially the Overflow bit is set to 0. During the algorithm’s execution, a
machine may set the Overflow bit to 1. If at the end of the algorithm, all machines’ Overflow
indicators remain unset, we say that the algorithm is successful; otherwise the algorithm is
said to have failed.

4.2 Building Block: Bucket Route
4.2.1 Syntax
The goal is to classify elements into buckets based on each element’s label indicating its
desired destination bucket. The algorithm is not always guaranteed to succeed; however,
should it succeed, the final assignment should be correct. Recall that an algorithm is said to
be successful if no machine has set their Overflow indicator by the end of the algorithm. We
consider both the input and output configuration as a list of buckets spread evenly across
the machines, where each bucket contains either real or dummy elements.

More formally, a BucketRouteZ algorithm, parametrized by a bucket size Z, satisfies the
following syntax – recall that there are in total m machines each of which has local space
O(s); without loss of generality, we may assume that m and s are both powers of 2:

Input. In the beginning, each machine stores 2r number of buckets each of capacity Z
where 2r · Z = 2s. Each bucket contains Z elements, some of which are real and others
are dummy. Each real element carries an `-bit label where 2` = m · 2r – henceforth if a
real element’s label is k ∈ {0, 1}`, we say that the element wants to go to the k-th bucket
out of a total of 2` = m · 2r buckets.
Output. The machines jointly output a list of 2` = m · 2r buckets, each of capacity Z.
We require that if the algorithm is successful (i.e., no machine’s Overflow indicator is
set), then every bucket must contain all the real elements wanting to go there plus an
appropriate number of dummy elements.

4.2.2 Protocol
We now describe a BucketRouteZ algorithm that tries to move every real element to the
desired destination bucket but will possibly fail in the middle due to overflow events. Later
in Section 4.4, we will show that if the input configuration satisfies certain nice conditions,
then the overflow probability can be made negligibly small. Roughly speaking, by “nice
conditions”, we want that all input buckets are at most half-full; and moreover the input
elements’ labels are randomly chosen. In this section, we first focus on presenting the
algorithm and we will worry about the probability analysis in Section 4.4.

ITCS 2020

75:16 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Algorithm 1 Bucket Route.

Input: Let 2r · Z = 2s and let ` = log2m + r. The input consists of 2` buckets denoted
L := {Bi : i ∈ [2`]} each with capacity Z, where each real element in a bucket contains an
`-bit label. There are m = 2`−r parallel machines, each of which has enough memory to
store and process 2r buckets.
1: procedure BucketRouteZ(L := {Bi : i ∈ [2`]}) . The input is a list of 2` buckets.
2: Each bucket in L receives an empty bit string as its label.
3: for

⌊
`
r

⌋
sequential iterations do

4: Partition the buckets in L into m groups of equal size 2r, where the buckets
in each group has the same label; a machine is assigned to each group.

. Step 4 requires the machines to exchange their buckets according to a predetermined
fashion.

5: for each of m machines in parallel do
6: Every machine calls 2r-way LocalClassifyr,Z on its group of buckets to

produce its modified group of buckets (whose labels have lengths increased
by r).

7: Update the list L to be the union of all machines’ modified groups of buckets.
8: if t := ` mod r 6= 0 then
9: In the last iteration, each machine receives 2r−t sub-groups of buckets,

where each sub-group contains 2t buckets with the same label.

10: for each of m machines in parallel do
11: Every machine calls 2t-way LocalClassifyt,Z on every of its sub-groups of

buckets.
12: Let L be the union of all machines’ updated buckets.
13: return the list L of 2r buckets, each of which receives a unique label in

{0, 1}r. Recall that if any instance of multi-way LocalClassify encounters
Overflow, the failure-indicator Overflow will be set to 1 but the algorithm
will continue after truncating the excessive elements in the overflowing
bucket(s).

At a very high level, our BucketRouteZ algorithm will proceed in iterations such that
at the end of the i-th iteration, elements will be sorted based on the first i · r bits of
their respective labels. During each iteration i, every machine will obtain a list of buckets
containing elements whose labels all share the same ((i− 1) · r)-bit prefix, and the machine
will locally further classify these elements into buckets based on the next r bits of their
respective labels. This subroutine is henceforth called LocalClassify which is described more
formally below. We will then describe the full BucketRouteZ algorithm after specifying this
subroutine.

A multi-way LocalClassify subroutine

We introduce a subroutine called a 2t-way LocalClassifyt,Z . The 2t-way LocalClassifyt,Z

subroutine is always performed by a single machine locally which operates on a list of 2t
buckets:

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:17

Imagine that a machine has as input a list of 2t buckets each of capacity Z where
2t ·Z ≤ 2s. All of the 2t buckets must have the same bucket-label x ∈ {0, 1}|x|, where |x|
is the bit-length of x. Moreover, every real element contained in the buckets has an `-bit
label of the form x||y, i.e., the element’s label must be prefixed by x, followed by a suffix
denoted y (that has length at least r). It is guaranteed that |x|+ r ≤ `.
Now, the machine locally rearranges the input to form 2t output buckets as follows: for
each i ∈ {0, 1}t, the i-th output bucket has the bucket-label x||i, and contains all the
real elements from the input whose label is prefixed with x||i, padded with dummies to a
capacity of Z. Moreover, in each output bucket the real elements must appear before the
dummies.
If the above rearrange fails due to the overflow of some output bucket, then set the
indicator Overflow to 1; moreover, truncate the bucket to a load of Z and continue with
the algorithm. Note that if Overflow is set, then some elements can be lost due to the
truncation.

The BucketRoute algorithm

We describe the BucketRouteZ algorithm in Algorithm 1 which calls LocalClassify as a
subroutine. Assuming that no Overflow is encountered, then the algorithm proceeds in the
following way: first, using the 2r-way LocalClassify subroutine, all machines rearrange their
local 2r buckets of elements based on the first r bits of the elements’ labels, such that all
elements whose labels have the same r-bit prefix fall into the same bucket, and this common
r-bit prefix also become the bucket’s label. At the end of this iteration, for each r-bit bucket
label, there will be 2`−r buckets with the same bucket label. We will then assign 2`−2r

machines to work on buckets sharing each r-bit bucket label, and each machine now locally
calls LocalClassify to further classify the elements based on the next r-bits of their input
labels; and this goes on. In general, after the end of the i-th iteration, buckets will acquire
labels of length i · r bits, and there will be 2`−i·r buckets sharing each unique (i · r)-bit label;
we now assign all buckets with the same label to 2`−(i+1)·r machines which further classifies
the elements based on the next r bits in the input labels. The algorithm will have ended by
iteration i if i · r ≥ `, i.e., after O(`/r) iterations – at the end, all buckets across all machines
will have a unique `-bit label. Algorithm 1 formalizes the above idea and in particular, treats
the last iteration more formally for the case when ` is not divisible by r.

I Fact 8. Using the parameters in Algorithm 1, the number of rounds is O(`r) = O(logm
r).

I Fact 9 (Communication pattern). The communication pattern of Algorithm 1 is determinis-
tic, and depends only on the parameters m, `, r and Z. Moreover, in every round, the total
communication is upper bounded by O(m · s).

Proof. Step 4 of Algorithm 1 is where the communication happens, and it is not hard to
check that this fact holds. J

4.3 Building Block: Oblivious Random Bucket Assignment
Based on the BucketRouteZ primitive described above, we realize another intermediate
building block called “random bucket assignment”. The problem, henceforth denoted
RandBucketZ , is parametrized by an appropriate bucket size Z and is described below:

Input. The input is an array of m · s elements spread evenly across the machines where
each machine receives exactly s elements; each element can either be real or dummy. We
assume that each element can be stored in O(1) words.

ITCS 2020

75:18 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Output. Each machine receives 2r = 2s/Z output buckets each of capacity Z. The
contents of the buckets are determined below:

Every real element in the input array is assigned to a random bucket out of the 2r ·m
buckets;
If a bucket receives more than Z real elements, choose the Z lexicographically smallest
elements to populate the bucket (and the remaining elements are lost);
Else if a bucket receives Z or fewer real elements, then the bucket should contain all
of these elements, in a lexicographically increasing order, and padded at the end with
an appropriate number of dummies to a capacity of Z.

Note that the above abstraction also defines the most natural ideal functionality FZ
RandBucket

which correctly implements the above task.

Protocol

Using BucketRouteZ , we can obliviously realize random bucket assignment using the following
simple algorithm where we assume that m and s are powers of 2 without loss of generality
(if not, we can pad them to the nearest power of 2):
1. Choose r, ` based on Z, m, and s, such that 2r = 2s/Z and 2` = m · 2r. Henceforth 2r

denotes the number of buckets on each machine, and 2` denotes the total number of
buckets across all machines.

2. Each machine places Z/2 elements from the input array to each of its 2r buckets, and
pads each bucket with an additional Z/2 dummies to a capacity of Z – note that each
bucket is at most half full.

3. Every machine assigns a random `-bit label to each real element in its buckets, indicating
which bucket the element wants to go to.

4. Call BucketRouteZ (Algorithm 1) to produce the list of output buckets, and for each
resulting bucket, sort the elements in it based on a lexicographically increasing order,
placing all dummies at the end.

Recall that in the BucketRouteZ , a machine may encounter a bucket overflow exception
which will cause the Overflow indicator to be set. Below we bound the probability of seeing
Overflow using the fact that the initial labels are randomly chosen and that the initial buckets
are at most half full – this allows us to prove good load-balancing properties. We use the
standard Chernoff Bound to analyze overflow probability.

I Fact 10 (Chernoff Bound). Suppose X is a sum of independent {0, 1}-random variables.
Then, for any β ≥ 2, Pr[X ≥ βE[X]] ≤ exp(−βE[X]

6).

I Lemma 11 (Overflow probability for random bucket assignment algorithm). In the above
algorithm, the probability that some machine sets the Overflow indicator is at most O(`r) · 2` ·
e−

Z
6 .

Proof. Observe that there are O(`r) iterations in Algorithm 1. We fix some iteration and
some bucket B, and analyze the overflow event of that bucket after that iteration.

Observe that if we assume that all buckets from previous iterations have infinite capacity,
then no element will be lost in previous iterations. Hence, the resulting number of elements
ending up at bucket B after this iteration in this alternate world will stochastically dominate
that in the actual world. The property of no overflow in previous iterations is used to ensure
that different elements do not influence one another so that we can apply Chernoff Bound.
By stochastic dominance, it suffices to analyze the overflow probability of bucket B after
this iteration under this additional assumption.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:19

Suppose after this iteration, this bucket has received a label with k bits. This means that
the elements in this bucket could only have come from 2k possible input buckets, each of
which contains at most Z

2 elements.
Observe that each such element receives a random `-bit label, whose k-bit prefix coincides

with this bucket’s label with probability 1
2k . Hence, the expected number of elements entering

this bucket after this iteration is at most Z
2 .

Therefore, using Chernoff Bound (Fact 10), after each iteration, each bucket overflows
with probability at most e−Z

6 .
Finally, the union bound over all iterations and all buckets gives the result. J

I Lemma 12 (Correctness of random bucket assignment). The above algorithm, parametrized
with Z, δ-correctly realizes FZ

RandBucket where δ = O(`r) · 2` · e−Z
6 (note that the parameters `

and r are determined once Z is determined).

Proof. Follows from Lemma 11 and the fact for every random string ρ assigning real elements
to destination buckets, if ρ does not cause Overflow in the algorithm, then the algorithm’s
output must correctly match that output by the ideal functionality FZ

RandBucket consuming
the same randomness ρ. J

I Fact 13. The communication patterns of the algorithm is deterministic and depends only
on the parameters m, `, r and Z.

Proof. The communication pattern of the algorithm stems from that of BucketRouteZ since
all other steps are performed locally on each machine and incur no communication. The fact
now follows directly from Fact 9. J

4.4 Putting it Together: Oblivious Routing
Using the building blocks BucketRouteZ and RandBucketZ , we can realize oblivious routing
as follows:
(a) Without loss of generality, we may assume that both m and s are powers of 2 and s is a

perfect square. Choose the parameter Z = 2
√
s and 2r = 2s/Z, and ` := log2m+ r.

(b) Every machine does the following: let X be an input array containing all the words the
machine wants to send (also called outgoing words), padded with dummies to a length
of s. Each real outgoing word in the input array has a label of the form x||ρ where
x ∈ {0, 1}log2 m encodes the identifier of the recipient machine, and ρ $← {0, 1}`−log2 m is
chosen at random and indicates the index of the destination bucket within machine x.

(c) Invoke an oblivious RandBucketZ algorithm to assign each outgoing word to a random
bucket among a total of 2` buckets, and recall that each machine stores 2r of these
buckets.
We emphasize that the labels selected earlier in Step (b) are not used as destination
labels for the RandBucketZ algorithm since the RandBucketZ algorithm itself internally
assigns a random bucket to each element. However, these labels selected earlier will be
used in the next step.

(d) Invoke an instance of BucketRouteZ to route each outgoing word to the destination
bucket encoded in the label chosen in Step (b). Now, every machine looks at the resulting
2r buckets it stores and outputs all received (real) words in a lexicographically increasing
order, padded with an appropriate number of dummies to a length of s.

I Fact 14. In the above routing algorithm, the communication pattern is deterministic and
depends only on the parameters Z,m, r, `.

ITCS 2020

75:20 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Proof. The communication pattern of the above algorithm is determined by the communica-
tion pattern of the RandBucketZ algorithm and the BucketRouteZ algorithm. The fact now
follows directly from Fact 9 and Fact 13. J

I Lemma 15 (Correctness of routing). Suppose that RandBucketZ δ-correctly realizes
FZ

randbucket. Then, the above algorithm δ′-correctly realizes FRouting for some δ′ ≤ δ +
O(`r) · 2` · e−Z

6 .

Proof. We consider a sequence of hybrids.

RealZ(I). We will use RealZ(I) to denote the outcome of the real-world algorithm.

HybZ
1 (I). We now consider a hybrid execution denoted HybZ1 , which is defined almost

the same as the real-world execution, except that we now replace the RandBucketZ algorithm
with FZ

randbucket. We define HybZ1 (I) to output the outcome of this hybrid execution upon
the input I.

Since RandBucketZ δ-correctly realizes FZ
randbucket, it holds that for any I, HybZ1 (I) has

at most δ statistical distance from RealZ(I).

I Lemma 16. For any I, in the execution defined by HybZ1 (I), the probability that some
machine sets the Overflow indicator is bounded by O(`r) · 2` · e−Z

6 .

Proof. To prove this, we instead consider an execution Hyb∞1 where the parameters Z, `,
and r are chosen as before; however, we do not impose a Z-capacity limit on any of the
buckets, including the buckets in Frandbucket or any bucket in the hybrid execution HybZ1 .
It is not hard to that the probability of seeing Overflow in HybZ1 is upper bounded by the
probability that there is some bucket storing more than Z real elements in Hyb∞1 . This can
be formally proven through a standard stochastic domination argument.

Therefore, it suffices for us to prove that in Hyb∞1 , the probability that some bucket
needs to store more than Z real elements is upper bounded by O(`r) · 2` · e−Z

6 , and below we
prove this statement.

The analysis is similar to the proof of Lemma 11. We fix some iteration in Algorithm 1
and some bucket B. Let Xi,B denote an indicator random variable indicating the contribution
of the i-th outgoing word in the input to the load of the bucket B. Our goal is to prove a
tail bound for

∑
iXi,B which denotes bucket B’s total load. Note that Xi,B depends only

on the i-th outgoing word’s destination bucket and the initial bucket placement chosen by
FRandBucket for the i-th outgoing word. Therefore, all of the random variables {Xi,B}i are
independent which will allow us to apply the standard Chernoff bound. To do so, we will
first show that the expected number of real elements the bucket contains after this iteration
is at most Z

2 . Hence, in the execution Hyb∞1 , we analyze the expected number of elements
for this bucket B after this iteration based on the number k of bits of the label received by
this bucket after this iteration. Let L be the list of buckets obtained after Frandbucket.

1. Suppose k ≤ log2m. The k-bit label indicate a subset of 2m−k destination machines.
Then, only elements going to these 2m−k machines can end up in this bucket. There are
totally at most 2m−k · s such elements.
Moreover, only elements from 2k buckets in L can end up in bucket B after this
iteration. Due to Frandbucket, an element is in one of those 2k buckets independently with
probability 2k

2` .
Hence, the expected number of elements in bucket B after this iteration is at most
2m−k · s · 2k

2` = s
2r = Z

2 .

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:21

2. Suppose k > log2m. The k-bit label then identifies 2`−k buckets within a certain
destination machine M .
Recall that at most s elements are supposed to go to machine M . In order for an element
to end up in bucket B after this iteration, it has to satisfy the following independent
events:
a. The element is in one of 2k buckets in L whose elements can end up in B after this

iteration. Due to Frandbucket, this happens with probability 2k

2` .
b. The element has chosen a destination bucket that is among those 2`−k buckets whose

identity agrees with the k-bit label of the bucket B. This happens with probability
2`−k

2r .
Hence, the expected of elements that enter this bucket B after this iteration is at most
s · 2k

2` · 2`−k

2r = s
2r = Z

2 , as required.

Finally, we apply a standard Chernoff bound and then a union bound over all iterations
and all buckets just like in Lemma 11, which leads to the lemma statement. J

Ideal(I). The experiment Ideal(I) outputs the result of FRouting upon the input I
We now show that for any I, Ideal(I) and HybZ1 have statistical distance at most

O(`r) · 2` · e−Z
6 . Note that conditioned on 1) seeing no Overflow in HybZ1 and 2) that

Frandbucket does not pick bad randomness such that some bucket initially exceeds Z load,
then the outcome obtained in HybZ1 would be the same as the output of Ideal(I). In
Lemma 16, we have shown that the probability of some machine setting the Overflow
indicator in HybZ1 O(`r) · 2` · e−Z

6 , therefore it suffices to show that the probability that
Frandbucket internally exceeds Z load is upper bounded by O(`r) · 2` · e−Z

6 . Due to a simple
application of the Chernoff bound, we can show that the probability that some fixed bucket
exceeds load Z is at most e−Z

6 . Now, applying a union bound over all 2` buckets, the
conclusion follows.

In summary, applying a standard hybrid argument, we can complete the proof of this
lemma. J

I Corollary 17. The above algorithm δ-obliviously realizes FRouting by Definition 6 for
δ = exp(−Ω(

√
s)).

Proof. Straightforward by Fact 14, Lemma 15 and Lemma 12 and the parameters chosen in
the algorithm. J

4.5 Oblivious Sorting
Given our oblivious routing primitive, one immediate and interesting application is to
construct a constant-round MPC algorithm that obliviously realizes sorting.

To achieve this, recall that Goodrich [67] constructed a non-oblivious MPC algorithm
that accomplishes sorting in O(1) rounds; and moreover, his algorithm satisfies both the
s-receiver-constraint and the s-sender-constraint.

I Lemma 18 (Constant-round sorting, Theorem 3.5 of Goodrich [67]). Let m = N1−ε and
s = O(Nε) for any constant ε ∈ (0, 1). Suppose that each item to be sorted can be stored
in O(1) words. There exists a deterministic, comparison-based sorting algorithm that can
correctly sort N items stored on m machines each with s local space consuming an a-priori
fixed constant number of rounds; and moreover, the algorithm satisfies both the s-sender-
constraint and the s-receiver-constraint.

ITCS 2020

75:22 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

The idea is to apply our Routing algorithm to realize each round of communication in
Goodrich’s algorithm. In this way, we obtain the following theorem:

I Theorem 19 (Constant-round oblivious sorting on MPC). Let m = N1−ε and s = O(Nε) for
any constant ε ∈ (0, 1), and suppose that each items to be sorted can be represented in O(1)
words. There exists an MPC algorithm that obliviously sorts N items stored on s machines
in O(1) number of rounds and the result is correct with 1− exp(−Ω(

√
s)) probability.

Proof. Note that Goodrich’s algorithm runs for an apriori-fixed constant number of rounds.
Thus, if we apply our oblivious Routing algorithm to realize each round of communication in
Goodrich’s algorithm, the resulting algorithm has a deterministic communication pattern;
and moreover, due to Corollary 17, the resulting algorithm correctly sort the input with
1− exp(−Ω(

√
s)) probability. J

Although our secure multi-party computation compiler later will not directly rely on
oblivious sorting as a building block, we state this result explicitly nonetheless since sorting
is such an important and fundamental algorithmic building block.

4.6 Communication-Oblivious Compiler
We can now arrive at Theorem 1 which we restate below for the reader’s convenience.

I Theorem 20 (Communication-oblivious MPC algorithms: Restatement of Theorem 1).
Suppose that s = Nε and that m is upper bounded by a fixed polynomial in N . Given
any MPC algorithm Π that completes in R rounds where each of the m machines has s local
space, there is a communication-oblivious MPC algorithm Π̃ that computes the same function
as Π except with exp(−Ω(

√
s)) probability, and moreover Π̃ completes in O(R) rounds, and

consuming O(s) space on each of the m machines. Furthermore, only O(m · s) amount of
data are communicated in each round in an execution of Π̃.

Proof. We apply the oblivious Routing algorithm developed earlier in this section to realize
every communication round of the original MPC protocol Π. The theorem now follows
directly from Corollary 17. J

5 Secure Multi-Party Computation for Massively Parallel Computing

In this section, we consider how to perform secure computation on a Massively Parallel
Computing (MPC) architecture. As before, we consider a set of m machines each of which
is s-space-bounded. Without loss of generality, we consider a setting where each machine
receives some input denoted x1, x2, . . . , xm respectively where each input contains at most
s words. Now, these machines would like to jointly evaluate a function (y1, y2, . . . , ym)←
f(x1, x2, . . . , xm) such that at the end, the i-th machine obtains the s-bounded output yi for
i ∈ [m]. We would like to ensure that an adversary controlling a relatively small subset of
the machines will not learn anything beyond the outputs of the machines in its control.

The question we are concerned about is the following: suppose that there is an efficient,
insecure MPC protocol Π to evaluate the function f . Can we now securely evaluate the
function f while preserving the efficiency relative to the insecure protocol Π?

5.1 Execution Model: SMPC for MPC
We consider an MPC protocol Π executing on m machines each with maximum space s. To
define Secure Multi-Party Computation (SMPC), we augment the protocol execution model
used so-far in the paper as follows to capture a polynomial-time adversary who can corrupt a

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:23

subset of the machines. Most of the definitions below directly follow the standard approach in
the cryptography literature – there is, however, one subtlety that needs to be clarified when
we marry SMPC and MPC: since corrupt machines can send arbitrary messages to honest
machines, we must now redefine the s-receiver-constraint (see details in the “communication
model” paragraph).

We now parametrize the protocol’s execution with a security parameter denoted κ.
Therefore we may write Π as Π(1κ, 1m, 1s), i.e., it is parametrized by the security
parameter κ and the MPC framework’s parameters 1m and 1s.
A subset of the machines which are said to be corrupt are controlled by an adversary
A(1κ). We assume that corruption is static, i.e., A decides which machines to corrupt
before the protocol execution starts. All protocol messages received by corrupt machines
are visible to A, and A fully controls what messages corrupt machines send.
Machines that are not in A’s control are said to be honest, and honest machines faithfully
follow the prescribed protocol.
All machines’ inputs are chosen by some environment denoted Z(1κ); and at the end of
the protocol, all honest machines send their respective output to Z.
During the execution A and Z may communicate freely.

Communication model

The protocol proceeds in rounds and machines communicate with each other through a
pairwise point-to-point network. At the beginning of each round, honest machines receive
messages from the network; and afterwards they perform computation and send messages.
If an honest machine sends a message in round r, then an honest recipient will receive the
message at the beginning of the next round. We assume that honest machines communicate
through a pairwise secure channel such that the adversary can observe who is communicating
with whom, the length of each honest message sent, but not the contents of the message –
note that since we can realize secure channels from authenticated channels with key exchange
and authenticated encryption, assuming secure channels is without loss of generality.

Recall that in this new setting, some machines can be corrupt and corrupt machines
send arbitrary, unwanted messages to honest machines. We cannot guarantee that the
s-receiver-constraint is respected in the presence of corrupt nodes; instead, we require the
following:

at the end of the previous round, an honest machine must have written down in a
designated location in its memory a receiving schedule for the next round, i.e., a list of
{(fj , wj)}j pairs where fj ∈ [m] denotes the index of a sender and wj ∈ [s] denotes the
number of words the machine is expecting to receiver from machine fj . Additionally, it
must hold7 that

∑
j wj ≤ s.

Every sender whose index appears in this receiving schedule is called an anticipated sender.
Now, a machine will save only the first wj words received from each anticipated sender fj ; it
will ignore all words received from unanticipated senders; and also ignore all excessive words
received from anticipated senders.

7 Later on, in our compiled protocol, s will actually be substituted with O(s) · poly(κ) where s is the
per-machine space complexity of the original MPC to be compiled.

ITCS 2020

75:24 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

5.2 Security Definition

Security is defined through (computational) observational equivalence of the environment
Z in an ideal-world and a real-world execution. In the real-world execution, machines run
the real protocol Π. In the ideal-world execution, the computation task is performed by an
ideal functionality Ff which computes the intended function f and distributes the results to
everyone.

Formally, we define a real-world and an ideal-world execution formally as below:
RealA,Z,Π(1κ, 1m, 1s): Z(1κ) chooses and provides inputs x1, x2, . . . , xm for each of them
machines. Now the m machines engage in a protocol execution as explained above, where
honest machines will faithfully execute the prescribed protocol Π using the input they
obtained from Z but corrupt machines that are controlled by A can behave arbitrarily.
At the end of the protocol, the honest machines send their output to Z.
IdealS,Z,F

f

(1κ, 1m, 1s): The ideal-world execution involves the environment Z and an
ideal-world adversary denoted S. Z and S can communicate arbitrarily during the
ideal-world execution. Now the execution is defined as below where Honest ⊆ [m] denotes
the set of honest machines; and Crupt := [m]\Honest denotes the set of corrupt machines
all of which are controlled S:
1. First, Z chooses and provides inputs x1, x2, . . . , xm for each of the m machines.
2. Every honest machine i ∈ Honest sends the input xi received from Z to Ff , and Ff

records x̃i := xi;
3. For a corrupt machine j ∈ Crupt, Ff may receive an input x′j from j, and if so, it

records x̃j := x′j . Note that corrupt machines may use arbitrary inputs, and not
necessarily the ones provided by Z.

4. As soon as all m machines have provided input, Ff computes the outputs
(y1, y2, . . . , ym) := f(x̃1, x̃2, . . . , x̃m) and gives {yi}i∈Crupt to S.

5. Upon receiving deliver from the ideal-world adversary denoted S, if any corrupt
machine j has not yet provided input, set x̃j := ⊥ and compute (y1, y2, . . . , ym) :=
f(x̃1, x̃2, . . . , x̃m). Now for i ∈ [m], give yi to machine i.

6. Upon receiving an output from Ff , an honest machine forwards the output to Z.

In this paper, we define a notion of compositional security for multi-party computation
analogous to the guarantees of Universal Composability [30]; moreover, our definition captures
the requirement of guaranteed output, i.e., a small corrupted coalition should not be able to
stop honest machines from producing output. The formal definition is provided below – note
that the requirement of guaranteed output is captured since we require that the ideal-world
adversary S send deliver to the ideal functionality:

I Definition 21 (SMPC for MPC). We say that an MPC protocol Π securely realizes some
ideal functionality Ff against a t-bounded adversary where t < m iff for any non-uniform
polynomial-time adversary A that statically corrupts at most t out of m machines, there is a
non-uniform polynomial-time ideal-world adversary S which is required to send deliver to
Ff , such that for any non-uniform polynomial-time environment Z,{

ViewZ(RealA,Z,Π(1κ, 1m, 1s))
}
κ
≈
{
ViewZ(IdealS,Z,F

f

(1κ, 1m, 1s))
}
κ

where ViewZ(Expt) denotes the view of Z in the experiment Expt and ≈ denotes computatio-
nal indistinguishability of two probability ensembles.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:25

Resilience assumption

Henceforth we will assume that the adversary controls no more than 1
3 − η fraction of the

machines for an arbitrarily small constant η. Such a corruption threshold is (almost) the best
one can hope for in a pairwise point-to-point network, since it takes at least 2/3 honest to
realize broadcast [48,82] (note that multi-party computation with guaranteed output implies
broadcast).

5.3 Building Block: Constant-Round, Weakly Space-Efficient SMPC
We will leverage a universally composable SMPC protocol as a building block, and we
would like this protocol to be not only constant round, but also somewhat efficient in space.
Specifically, if the function f(x1, . . . , xm′) evaluated requires S ≥ |x1|+ |x2|+ . . . |xm′ | space
to compute insecurely on a RAM, then for m′ machines to securely compute the function f
would require each machine to expend about O(S) space, and moreover, allowing a poly(κ)
blowup due to the use of cryptography. While this seems somewhat conserving in terms
of space from the perspective of each individual machine, from the perspective of all m′
machines, we are expending m′ times more total space than the original RAM – for this
reason, we call this notion weakly space-efficient. More formally, we require the following
efficiency guarantees:
1. Constant round: the protocol must complete in O(1) rounds;
2. Weak space efficiency: suppose that the function f(x1, x2, . . . , xm′) can be computed

insecurely on a Random Access Machine (RAM) with S space where S must account for
the space needed to write down all m′ inputs and outputs, we would then like a protocol
running on m′ machines that securely realize Ff , requiring only poly(κ) ·O(S) space on
each machine.

3. Communication efficiency: total communication must be asymptotically not more than
the total space of all machines;

Note that we cannot directly use this SMPC protocol to compile an MPC protocol to a
secure counterpart if we want to preserve the efficiency of the original (insecure) MPC, since
weak space efficiency still blows up each machine’s space complexity to at least the size of
the whole input. Looking ahead, we will run this SMPC building block within a randomly
elected poly-logarithmic-sized committee to emulate a MPC machine with small space.

On the other hand, since a machine cannot receive messages of length greater than its
space complexity, a constant-round, weakly space efficient SMPC protocol has communication
complexity at most poly(κ) ·O(m′ ·S), independent of the time complexity of the functionality
f . Constant-round protocols based on garbled circuits or garbled RAM do not achieve desired
efficiency. Thus, we consider FHE-based SMPC protocols, and furthermore, we would require
the FHE schemes to satisfy a strong notion of compactness [55, 58] to avoid dependency
on the circuit depth complexity of the functionality (which is the case if standard leveled
FHE schemes are used). FHE schemes with this compactness property can be achieved by
assuming circular security for standard FHE constructions [55,58] or using indistinguishability
obfuscation [31,53].

There is a long line of work on constant-round FHE-based SMPC that construct SMPC
protocols based on threshold FHE (TFHE) or multi-key FHE (MKFHE) [14,28,72,75,91].
For our purpose, relying on these protocols would requires to assume above-mentioned
compactness for TFHE or MKFHE (and trusted setup for some of them). Ideally, we would
like to construct a protocol based on any compact (plain) FHE.

ITCS 2020

75:26 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

To achieve this goal, we follow the approach of constructing SMPC based on threshold
FHE (e.g., [8]) and obtain the threshold FHE in use by applying the universal thresholdizer
of Boneh et al. [23] to any compact FHE. We show that this yields a constant-round weakly
space efficient SMPC protocol, but it requires a trusted setup. We further remove the
setup by invoking another constant-round FHE-based SMPC protocol of Badrinarayanan
et al. [14] to instantiate the setup. The protocol of [14] does not require a trusted setup.
Furthermore, since the setup of threshold FHE has complexity independent of the complexity
of the functionality, we do not need to assume compactness for the underlying (multi-key)
FHE in the protocol of [14] to achieve weak space efficiency.

Later in our construction, we actually require that each machine receives different output
in this SMPC protocol. Namely, the functionality to be securely computed is f = (f1, . . . , fm′)
where each machine Mi receives output fi(x1, . . . , xm′). In this case, we consider the space
complexity as the maximal space complexity of f1, . . . , fm′ . Formally, we obtain the following
theorem, which will serve as the building block of our SMPC for MPC construction. We
prove the theorem in Appendix A.

I Theorem 22 (Constant-round, weakly space-efficient, and communication efficient SMPC).
Assume that the LWE assumption holds, the existence of enhanced trapdoor permutations,
and the existence of FHE with an appropriate notion of compactness defined in Appendix A.1.
Then, for any polynomial-time computable functions f = (f1, . . . , fm′), there is a constant-
round, weakly space-efficient, and communication efficient protocol that securely realizes Ff

on m′ machines against a t-bounded adversary as long as m′ ≥ 3t+ 1.

Proof. Deferred to Appendix A. J

5.4 Intuition
Given an original insecure MPC protocol that computes some function f over m machines’
respective inputs, we would like to compile it to an SMPC protocol that securely realizes
the functionality Ff . We would like the compilation to be efficiency-preserving, that is, if
the original MPC protocol completes in R rounds consuming s space per machine, then the
compiled SMPC protocol completes in O(R) rounds, and consumes O(s) · poly log λ · poly(κ)
space per machine. Specifically, κ and λ denote a computational and a statistical security
parameter respectively: the poly(κ) blowup is due to the use of cryptography and the
poly log λ blowup stems from random committee election.

Inspired by Boyle et al. [24,27], our idea is to randomly elect a small, polylogarithmically
sized committee to securely emulate each machine of the original MPC protocol. We use
m′ = poly log λ to denote the size of each committee to distinguish from the total number
of machines m. Suppose that (1/3 − η)m machines are corrupt where η is an arbitrarily
small constant, then by Chernoff bound, within each committee, only t′ ≤ (1/3− η/2)m′ are
corrupt except with negligible (in both λ and κ) probability.

Without loss of generality, henceforth we may assume that the original MPC protocol is
communication-oblivious. If not, we can always take the compiler of Section 4.6 and compile
the protocol to a communication-oblivious counterpart incurring only constant round and
space blowup.

The state of each machine i ∈ [m] in the original MPC protocol will now be secret shared
among the i-th committee using a t′-out-of-m′ robust secret sharing scheme. This means
that at the beginning of the protocol, after each machine i ∈ [m] receives an input it will
invoke a protocol to secret share its input among the i-th committee. To accomplish this,
machine i and the i-th committee will jointly perform a constant-round, weakly space-efficient,

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:27

and communication efficient SMPC (see Section 5.3) that realizes a robust secret-sharing
functionality. Within each round, each machine i ∈ [m] in the original MPC protocol must
perform some local computation; in the compiled secure protocol, this computation will now
be jointly performed by the i-th committee using a constant-round, weakly space-efficient,
and communication efficient SMPC protocol (see Section 5.3). At end of this SMPC protocol,
every committee member obtains a robust secret-share of machine i’s new state in the
original MPC. Finally, for a machine i ∈ [m] to send a message to a machine j ∈ [m] in the
original MPC protocol, this communication will now also be implemented by an instance
of a constant-round, weakly space-efficient SMPC protocol among the i-th and the j-th
committees. At the end of the protocol, each member of the j-th committee should receive a
robust secret share of the message.

5.5 Assumptions and Notations

5.5.1 Assumptions on the Original MPC
Without loss of generality, we can make the following assumptions on the original MPC to
be compiled:
WLOG1: We assume that the original MPC to be compiled has a deterministic communica-

tion pattern; and moreover, in every round every machine sends at most s words (where
sending the same word to two machines is counted twice). Not only so, we may assume
that in every round, every machine can compute on the fly and write down 1) an ordered
list of at most s machines it wants to send words to and 2) an ordered list of at most s
machines it is expecting to receive data from; and moreover this can be accomplished in
O(s) space.
If this is not the case, we can always apply the oblivious-compiler of Section 4.6 to make
it so while incurring only constant blowup in round complexity and space.

WLOG2: We may in fact assume that in the original MPC, at the end of the computation
step in every round, every machine writes down at a designated location in memory
(e.g., address 0) a list of at most s words to be sent. Recall that by WLOG1, the
destinations of these outgoing words are deterministic and a-priori known.

WLOG3: We assume that in each round, after receiving messages from the network, a
machine appends the received messages to its local memory in an arbitrary order. This is
without loss of generality since during the computation step, the machine can always sort
the received messages locally based on any order that is desired.

5.5.2 Notations
We will use the following notations:

Let mem′ ← M i
r(mem) be the description of the RAM corresponding to machine i’s

computation in the r-th round in the original MPC; it takes in machine i’s current
memory mem and outputs a new memory state mem′.
Let m′ = poly log λ denote each small committee’s size, let η be an arbitrarily small
constant, and let t′ = (1/3 − η/2)m′ such that each committee has at most t′ corrupt
nodes except with negligible probability (see also the proof of Theorem 23).
Let (Share,Recons) denote a t′-out-of-m′ robust secret sharing scheme (see Appendix D).
If the Share algorithm is provided with a string consisting of multiple words, we always
assume that Share will perform secret sharing word by word; and similarly Recons will be
performed word by word too.

ITCS 2020

75:28 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Later in our protocol, a small committee will be elected to emulate each machine in the
original MPC protocol. Henceforth the committee that is emulating machine i in the
original MPC is called the i-th committee.

5.5.3 Computing Relevant Committee Information on the Fly

To enable the pseudo-random committee election, a common reference string crs will be
distributed to all honest machines at protocol start, and thus crs is common knowledge. In
our protocol, committee election relies only on the crs. Specifically, the i-th committee is
decided by PRFcrs(i) where PRF is a pseudorandom function. At this point, it might seem
safe to assume that the members of all committees are common knowledge. There is a slight
subtlety here in that a machine in fact cannot store the members of all committees since this
would consume too much space. Fortunately, by consuming poly log λ ·O(s) additional space,
a machine i can always compute on the fly and temporarily store members of committees
relevant to itself in some round, including
1. which committees it is serving on, and all members of every committee it is serving on –

we will show that every machine serves on at most Θ(m′) = poly log λ committees except
with negligible probability (see proof of Theorem 23);

2. all members of every committee it wants to communicate with in the present round:
there are at most 2s such committees due to the s-sender-constraint and the s-receiver-
constraint – note that to write this information down we rely on the fact that the original
MPC to be compiled has a deterministic and fixed communication pattern;

3. all members of the committee emulating machine i itself.
Because of the above observations, later in Section 5.6, for simplicity it is unambiguous
to parametrize our ideal functionalities that serve 1 or 2 committees with the relevant
committee’s indices – if a machine needs interact with some ideal functionality, it can
be computed on-the-fly exactly which other machines will also be involved. Except with
negligible probability, the additional per-machine space needed to compute on-the-fly and
store the committee information relevant to the present round is bounded by poly log λ ·O(s).

5.6 Intermediate Building Blocks

We will adopt the constant-round, weakly space efficient, and communication efficient SMPC
protocol of Section 5.3 among one to two small committee(s) to securely realize a few useful
ideal functionalities which we can adopt as intermediate building blocks:

F share[i] is the ideal functionality that allows machine i to secret share its state among
the i-th committee; F share[i] involves m′ + 1 participants among whom at most t′ + 1 can
be corrupt;
F compr[i] is the ideal functionality that allows the i-th committee to jointly emulate the
computation of machine i in the r-th round in the original MPC; F compr[i] involves m′
participants among whom at most t′ corruptions; and
F send[i,i′] is the ideal functionality that emulates machine i sending a message to machine
i′ in the original MPC; F send[i,i′] involves 2m′ participants (i.e., the sending and receiving
committees), among whom at most 2t′ can be corrupt.

More formally, to define each of F share[i], F compr[i], and F send[i,i′], we only need to specify
what the functions share[i], compr[i], and send[i, i′] compute respectively and among which
players.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:29

1. share[i]: a function that anticipates inputs from machine i as well as members of the i-th
committee. The function ignores everyone’s input and looks at only machine i’s input
henceforth denoted x, and computes (x1, . . ., xm′)← Share(x). It outputs ⊥ to machine
i, and xj to the j-th member of the i-th committee for j ∈ [m′].

2. compr[i]: the function compr[i] anticipates inputs from members of the i-th committee de-
noted mem1, mem2, . . . ,memm′ . It internally evaluates mem′ ←M i

r(Recons({xj}j∈[m′])),
and (mem′1, . . . ,mem′m′)← Share(mem′). Now, the j-th member of the i-th committee is
supposed to get mem′j for j ∈ [m′].

3. send[i, i′]: this function anticipates inputs from the i-th committee and the i′-th committee.
It ignores the inputs from the i′-th committee, and looks at only inputs from the i-th com-
mittee henceforth denoted x1, . . . , xm′ . It internally evaluates x← Recons(x1, . . . , xm′),
and y1, . . . , ym′ ← Share(x). Now, yj is meant as the output for the j-th member of the
i′-th committee for j ∈ [m′].

5.7 Compilation to a Hybrid Protocol
Since a machine may participate in multiple committees, henceforth when the machine we are
concerned with is clear from the context, we often use the notation memj a machine’s robust
secret share pertaining to the j-th committee (assuming that i indeed participates in the j-th
committee). Given an original communication-oblivious MPC protocol, our SMPC compiler
works as follows where PRF : {0, 1}κ × [m]→ [m]m′ denotes a pseudo-random function:

Initialize. At protocol start, a random common reference string denoted crs $← {0, 1}κ is
chosen which will be used for committee election. Every machine i now receives an input
xi from the environment Z, and each machine is also informed of crs.
Committee election. Now, the pseudo-random string PRFcrs(j) can be used to determine
the m′ members of the j-th committee for j ∈ [m]. Note that instead of storing all
members of every committee, relying on the observations in Section 5.5.3, machines will
instead compute all the relevant committee information on the fly, in all of the subsequent
steps of the protocol; and this will not consume too much space. For simplicity, in our
description below, we will not explicitly describe how a machine computes the relevant
committee information needed in every round.
Secret-share input. Each machine i ∈ [m] sends its input xi to F share[i]. For every
committee i serves on, machine i sends ⊥ to F share[i]. As a result every member of the
i-th committee obtains a robust secret share of xi from F share[i]. When a machine i
participating in the j-th committee receives a robust secret share v from F share[j], it sets
memj := v.
Emulate protocol. For every round r ∈ [R] where R denotes the worst-case round
complexity of the original MPC protocol, every machine i ∈ [m] does the following:

Emulate computation: For each committee j ∈ [m] the machine i serves on, machine
i sends memj to F compr[i]. It will obtain from F compr[i] an updated share of the new
memory denoted mem′. Machine i overwrites its memj variable with mem′.
Emulate sending: For each committee j ∈ [m] the machine i serves on, do the following:
recall that by WLOG2, shares of the words to be sent are written at a designated
location in memj . By WLOG1, the total number of words committee j wants to send in
this round s′ ≤ s is deterministic and a-priori known; and moreover the s′ destination
machines can be computed on the fly and written down in O(s) space. Henceforth let
d1, d2, . . . , ds′ be the s′ ≤ s destination machines’ identifiers, and let y1, . . . , ys′ denote
the shares of the words to send to them respectively. For each dk where k ∈ [s′], send
yk to F send[j,dk].

ITCS 2020

75:30 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Emulate receiving: For every committee j′ that machine i serves on, if in the original
MPC machine j ∈ [m] is supposed to send message to machine j′ (all such j’s can be
computed and written down on the fly due to WLOG1), then for every such j:
1. send ⊥ to F send[j,j′] indicating participation as a receiver;
2. the machine i will receive a secret share y from F send[j,j′], now append y to its

memj .
Output. After emulating all rounds of the original MPC in the above manner, machine i
does the following: for every committee j it serves on, send memj to machine j. When
each machine i receives shares from at least 2m′/3 members of the i-th committee, call
Recons with the 2m′/3 shares received and output the corresponding output.

I Theorem 23. Suppose that the PRF scheme employed is secure8, and that the MPC protocol
Π to be compiled obliviously realizes the ideal functionality f by Definition 6. Then, if we
apply the above compiler to Π to obtain a hybrid-world protocol Πhyb, Πhyb must securely
realizes Ff by Definition 21, as long as the adversary controls no more than 1/3− η fraction
of the machines (for an arbitrarily small constant η).

Proof. Let A be a PPT adversary and Crupt ⊂ [m] of size |Crupt| ≤ (1/3− η) ·m be the set
of machines corrupted by A. We first show that except with negligible probability, (i) all
the committees elected by PRFcrs have at most (1/3− η/2) ·m′ corrupted machines, and (ii)
each machine participates in at most 2m′ committees.9 Suppose the committees were elected
using truly uniform randomness, then the expected corrupted machines in a committee is
m′ · |Crupt|/m ≤ (1/3−η) ·m′ and the expected number of committees a machine participate
is m′. By a Chernoff Bound and union bound, both (i) and (ii) hold except with probability
e−Ω(m′) = negl(λ). Since both properties can be checked efficiently, by the security of PRF,
the probability that the committees elected by PRFcrs violates violate (i) or (ii) is at most
negl(κ) + negl(λ). Hence, in the rest of the proof, we assume both (i) and (ii) hold. We
proceed to define a simulator S:

Initialize and Committee election. S simply simulate a random crs. There is no
communication in the committee election step.
Secret-share input. In this step, S extracts the adversary A’s input {xi} Crupt from F share[i]

for i ∈ Crupt. S sends {xi} Crupt to the ideal functionality. For the output of F share[·]

that A receives, since each committee has at most (1/3− η/2) ·m′ corrupted machines,
S can simulate the shares outputted by each F share[·] by generating a fresh Share(0).
Emulate protocol. Note both F compr[·] and F send[·,·] also output shares, by the same reason,
S can simulate the shares outputted by each F compr[·] and F send[·,·] to A by fresh secret
sharings Share(0).
Output. S sends deliver to the ideal functionality and receives the output {yi}i∈Crupt.
For each i ∈ Crupt, S generates Share(yi) and sends the shares that machine i should
receive from the honest machines in the i-th committee.

By perfect privacy of the RSS, it is clear that the shares outputted by F share[·], F compr[·]

and F send[·,·] are simulated perfectly.

8 In fact, this hybrid-world theorem secures against even computationally unbounded adversaries despite
the use of the PRF, since the PRF is used to defeat only the polynomial checkable function whether
some committee has 1/3 or more corruption.

9 In fact, property (ii) is not needed for proving security but we will use it to analyze efficiency of the
protocol later.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:31

Now, note that our protocol Πhyb emulate the underlying MPC protocol by committees,
where all the input and messages are stored by shares of the robust secret sharing scheme
(RSS) in each committee. Since all committee has at most (1/3− η) ·m′ < m′/3 corrupted
machines, by robustness of RSS, the adversary cannot change the value stored in the RSS.
Hence the underlying MPC protocol is emulated correctly, and at the end, each machine
i ∈ Crupt receives shares of Share(yi) from the i-th committee. Hence, S also simulates the
shares in the output step perfectly.

Therefore, Πhyb securely realizes Ff , in fact, with statistical security in this hybrid
model. J

5.8 Compilation to a Real-World Protocol
In Section 5.7, we compiled a communication-oblivious MPC protocol Π to a secure
counterpart Πhyb assuming the existence of ideal functionalities F share[i], F compr[i], and
F send[i,i′]. Eventually we would like to replace these ideal functionalities with real-world
building blocks. This is easy:

Let Πshare[i], Πcompr[i], and Πsend[i,i′] be SMPC protocols that securely realize (by Defi-
nition 21) F share[i], F compr[i], and F send[i,i′] respectively. Note that Πshare[i] is a protocol
among machine i and the i-th committee, Πcompr[i] is a protocol among the i-th committee,
and Πsend[i,i′] is a protocol among the i-th committee and the i′-th committee.
In the compiled hybrid-world protocol in Section 5.7, whenever a machine invokes some
ideal functionality F share[i], F compr[i], or F send[i,i′] with the input x, it now invokes the
corresponding protocol, Πshare[i], Πcompr[i], or Πsend[i,i′] respectively, also with the input x.
In the compiled hybrid-world protocol in Section 5.7, whenever a machine is to receive
output from the ideal functionality F share[i], F compr[i], or F send[i,i′], it now instead receives
the output from Πshare[i], Πcompr[i], or Πsend[i,i′] respectively.

Note that due to the observations made in Section 5.5.3, at the beginning of every round,
every machine can compute on the fly and temporarily store members of all committees
relevant to itself in this round, including committees it serves on and committees it will
interact with – and this will only incur O(s) · poly log λ additional space. Therefore, for every
protocol Πshare[i], Πcompr[i], or Πsend[i,i′] invoked, the machine already knows exactly who are
the other machines involved in the protocol. Not only so, in fact, at the beginning of every
round, a machine has written down a receiving schedule for this round, again consuming
O(s) · poly log λ additional space. As mentioned, if a machine receives any message from
unanticipated senders or excessive messages from anticipated senders, these messages get
discarded immediately and will not be stored or processed.

Efficiency of the compiled protocol

Let Πreal denote the compiled real-world protocol by applying the compiler described above
to an original MPC communication-oblivious protocol Π. Since all of Πshare[i], Πcompr[i], and
Πsend[i,i′] complete in constant number of rounds, clearly, the round complexity of Πreal is
only a constant factor more than the original Π.

We now analyze the per-machine space complexity. We will use the fact that Πshare[i],
Πcompr[i], and Πsend[i,i′] are weakly space efficient. We first focus on the space expended
by each machine for every committee it serves on. Recall that each robust secret share
of a machine’s state in the original MPC is only O(s) in size. The dominant part is the
space consumed during Πshare[i], Πcompr[i], and Πsend[i,i′] protocols. Note that all of the

ITCS 2020

75:32 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

functions evaluated by Πshare[i], Πcompr[i], and Πsend[i,i′] protocols have at most O(s) RAM-
space complexity. Now, observe that a RAM consuming space s can be converted to a
layered circuit of width s. Recall also that at most 2m′ machines participate in each of
Πshare[i], Πcompr[i], and Πsend[i,i′]. Thus by weak space efficiency, the space consumed by each
Πshare[i], Πcompr[i], or Πsend[i,i′] instance is at most O(m′ · s) · poly(κ). So far we have focused
on the space per machine per committee it serves on. The total space consumption of any
single machine is at most 2m′ · O(m′ · s) · poly(κ), where 2m′ is an upper bound on the
number of committees a machine can participate in by the proof of Theorem 23 (except for a
negligible probability). Since m′ = poly log λ, the total space per machine is upper bounded
by poly log λ · poly(κ) ·O(s) (for some other suitable polynomial poly).

Finally, the total communication is asymptotically no more than the total space by the
communication efficiency requirement.

I Corollary 24. Suppose that the PRF employed is secure, and that the Πshare[i], Πcompr[i],
and Πsend[i,i′] protocols employed securely realize F share[i], F compr[i], and F send[i,i′] protocols
respectively by Definition 21 as long as at least 2/3 fraction of the machines participating in
each protocol instance are honest; and moreover suppose that they are constant-round, weakly
space efficiency, and communication efficient as defined in Section 5.3. Suppose that the
MPC protocol Π obliviously realizes the ideal functionality f by Definition 6. Then, if we
apply the above compiler to Π to obtain a real-world protocol Πreal, Πreal must securely realizes
Ff by Definition 21. Moreover, Πreal’s round complexity is asymptotically the same as Π;
its per-machine space consumption is at most O(s) · poly(κ) where κ denotes the security
parameter and s is the per-machine space of the original Π, and its total communication is
upper bounded O(m · s) · poly(κ).

Proof. As shown in the proof of Theorem 23, indeed, in each committee at least 2/3 fraction
of the machines must be honest. Now, security follows from a standard compositional
argument: for any real-world adversary A attacking Πreal, we can construct a hybrid-world
adversary A′ that basically calls the simulators of all instances of Πshare[i], Πcompr[i], and
Πsend[i,i′], and no polynomial-time environment Z should be able distinguish whether it
is in the real world interacting with A or the hybrid world interacting with A′. Now, by
Theorem 23, for this hybrid-world adversary A′ corresponding to the real-world adversary A,
we can construct an ideal-world adversary S, such that no polynomial-time environment Z
can distinguish whether it is in the hybrid world or the ideal world. Thus we can conclude
that no polynomial-time environment Z can distinguish whether it is in the real world
interacting with A or the ideal world interacting with S.

Finally, the efficiency statements follow from the analysis in the paragraph before the
corollary. J

Main theorem statement for SMPC-for-MPC

Recall that the main theorem statement for our “MPC to SMPC-for-MPC” compiler is
Theorem 2. We restate it below for the reader’s convenience and complete our presentation
with a proof.

I Theorem 25 (Secure computation for MPC: Restatement of Theorem 2). Assume the
existence of a common random string, the Learning With Errors (LWE) assumption, enhanced
trapdoor permutations, as well as the existence of an FHE scheme with a suitable notion of
compactness (see Appendix A.1 for a formal definition of compactness). Suppose that s = Nε

and that m is upper bounded by a fixed polynomial in N . Let κ denote a security parameter,

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:33

and assume that s ≥ κ. Given any MPC algorithm Π that completes in R rounds where
each of the m machines has s local space, there is an MPC algorithm Π̃ that securely realizes
the same function computed by Π in the presence of an adversary that statically corrupts
at most 1

3 − η fraction of the machines for an arbitrarily small constant η. Moreover, Π̃
completes in O(R) rounds, consumes at most O(s) · poly(κ) space per-machine, and incurs
O(m · s) · poly(κ) total communication per round.

Proof. We may first apply the communication-oblivious compiler corresponding to Theorem 1
to compile Π to a communication-oblivious counterpart Π′, we then apply the compiler
corresponding to Corollary 24 on Π′. The theorem then follows in a straightforward fashion
due to Theorem 1 and Corollary 24. J

References

1 Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to Efficiently
Evaluate RAM Programs with Malicious Security. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 702–729, 2015.

2 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. ACM Transactions on Parallel
Computing (TOPC), 4(4):17, 2018.

3 Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Delegating
RAM Computations with Adaptive Soundness and Privacy. In Proceedings, Part II, of the
14th International Conference on Theory of Cryptography - Volume 9986, 2016.

4 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583, 2014. doi:10.1145/

2591796.2591805.
5 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel Graph

Connectivity in Log Diameter Rounds. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 674–685, 2018.

6 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log Diameter Rounds Algorithms for
2-Vertex and 2-Edge Connectivity. arXiv preprint, 2019. arXiv:1905.00850.

7 Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi.
Bucket Oblivious Sort: A Simple Oblivious Sort. In SOSA, 2019.

8 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty Computation with Low Communication, Computation and
Interaction via Threshold FHE. In Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, pages 483–501, 2012.

9 Gilad Asharov and Yehuda Lindell. A Full Proof of the BGW Protocol for Perfectly Secure
Multiparty Computation. J. Cryptol., 30(1):58–151, January 2017.

10 Sepehr Assadi. Simple Round Compression for Parallel Vertex Cover. CoRR, abs/1709.04599,
2017.

11 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein.
Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. arXiv
preprint, 2017. arXiv:1711.03076.

12 Sepehr Assadi and Sanjeev Khanna. Randomized Composable Coresets for Matching and
Vertex Cover. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 3–12. ACM, 2017.

ITCS 2020

https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2591796.2591805
http://arxiv.org/abs/1905.00850
http://arxiv.org/abs/1711.03076

75:34 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

13 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively Parallel Algorithms for
Finding Well-Connected Components in Sparse Graphs. CoRR, abs/1805.02974, 2018.
arXiv:1805.02974.

14 Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Threshold
Multi-Key FHE and Applications to Round-Optimal MPC. Cryptology ePrint Archive, Report
2018/580, 2018.

15 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment, 5(5):454–465, 2012.

16 Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, 2012.

17 MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. In Advances in Neural Information Processing
Systems, pages 2591–2599, 2014.

18 D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Protocols. In
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC
’90, pages 503–513, New York, NY, USA, 1990. ACM. doi:10.1145/100216.100287.

19 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, and Richard M. Karp.
Massively Parallel Symmetry Breaking on Sparse Graphs: MIS and Maximal Matching. CoRR,
abs/1807.06701, 2018.

20 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G Harris. Exponentially Faster
Massively Parallel Maximal Matching. arXiv preprint, 2019. arXiv:1901.03744.

21 Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security (CCS), 2012.

22 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 1–10, 1988.

23 Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold Cryptosystems from Threshold Fully Homomorphic
Encryption. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 565–596,
2018.

24 Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-Scale Secure Computation: Multi-party
Computation for (Parallel) RAM Programs. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 742–762, 2015.

25 Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious Parallel RAM and Applications.
In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, pages 175–204, 2016.

26 Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the Circuit Size Barrier for Secure
Computation Under DDH. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, pages 509–539, 2016.

27 Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication Locality in Secure Multi-
party Computation: How to Run Sublinear Algorithms in a Distributed Setting. In Proceedings
of the 10th Theory of Cryptography Conference on Theory of Cryptography, TCC’13, pages
356–376, Berlin, Heidelberg, 2013. Springer-Verlag. doi:10.1007/978-3-642-36594-2_21.

28 Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four Round Secure Computation
without Setup. In TCC, 2017.

29 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Matching and MIS for Uniformly Sparse
Graphs in the Low-Memory MPC Model. CoRR, abs/1807.05374, 2018.

30 R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In FOCS, 2001.

http://arxiv.org/abs/1805.02974
https://doi.org/10.1145/100216.100287
http://arxiv.org/abs/1901.03744
https://doi.org/10.1007/978-3-642-36594-2_21

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:35

31 Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
Probabilistic Circuits and Applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
Theory of Cryptography, pages 468–497, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

32 Hubert Chan, Kai-Min Chung, and Elaine Shi. On the Depth of Oblivious Parallel ORAM.
In Asiacrypt, 2017.

33 T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-Oblivious and Data-
Oblivious Sorting and Applications. In SODA, pages 2201–2220. SIAM, 2018.

34 T.-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly Secure Oblivious Parallel RAM.
In Theory of Cryptography - 16th International Conference, TCC 2018, pages 636–668, 2018.

35 T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: Unifying Statistically and
Computationally Secure ORAMs and OPRAMs. In Theory of Cryptography - 15th International
Conference, TCC, pages 72–107, 2017.

36 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (Delta+1) Coloring inCongested Clique, Massively Parallel Computation, and
Centralized Local Computation. arXiv preprint, 2018. arXiv:1808.08419.

37 Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and
Hong-Sheng Zhou. Cryptography for Parallel RAM from Indistinguishability Obfuscation. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 179–190, 2016.

38 Kai-Min Chung and Luowen Qian. Adaptively Secure Garbling Schemes for Parallel
Computations. In TCC, 2019.

39 Geoffroy Couteau. A Note on the Communication Complexity of Multiparty Computation in
the Correlated Randomness Model. In Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, pages 473–503, 2019.

40 Artur Czumaj, Jakub Ła̧cki, Aleksander Ma̧dry, Slobodan Mitrović, Krzysztof Onak, and
Piotr Sankowski. Round compression for parallel matching algorithms. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 471–484, 2018. doi:10.1145/3188745.3188764.

41 Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. A New Framework for
Distributed Submodular Maximization. In FOCS, pages 645–654, 2016.

42 Ivan Damgård and Yuval Ishai. Constant-round Multiparty Computation Using a Black-box
Pseudorandom Generator. In Proceedings of the 25th Annual International Conference on
Advances in Cryptology, CRYPTO’05, pages 378–394, Berlin, Heidelberg, 2005. Springer-Verlag.

43 Ivan Damgård and Yuval Ishai. Scalable Secure Multiparty Computation. In Proceedings of
the 26th Annual International Conference on Advances in Cryptology, CRYPTO’06, pages
501–520, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11818175_30.

44 Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. Communication Lower Bounds
for Statistically Secure MPC, With or Without Preprocessing. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II, pages 61–84, 2019.

45 Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael A. Raskin. On the
Communication Required for Unconditionally Secure Multiplication. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, pages 459–488, 2016.

46 Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using MapReduce. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 681–689. ACM, 2011.

47 Alina Ene and Huy Nguyen. Random coordinate descent methods for minimizing decomposable
submodular functions. In International Conference on Machine Learning, pages 787–795, 2015.

48 Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy Impossibility Proofs for
Distributed Consensus Problems. In Proceedings of the Fourth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’85, pages 59–70, New York, NY, USA, 1985.
ACM. doi:10.1145/323596.323602.

ITCS 2020

http://arxiv.org/abs/1808.08419
https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1007/11818175_30
https://doi.org/10.1145/323596.323602

75:36 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

49 Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. Bucket
ORAM: Single Online Roundtrip, Constant Bandwidth Oblivious RAM. Cryptology ePrint
Archive, Report 2015/1065, 2015. URL: https://eprint.iacr.org/2015/1065.

50 Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, and
Srinivas Devadas. RAW Path ORAM: A low-latency, low-area hardware ORAM controller
with integrity verification. IACR Cryptology ePrint Archive, 2014:431, 2014.

51 Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, and Srinivas
Devadas. Suppressing the Oblivious RAM timing channel while making information leakage
and program efficiency trade-offs. In HPCA, pages 213–224, 2014.

52 Buddhima Gamlath, Sagar Kale, Slobodan Mitrović, and Ola Svensson. Weighted Matchings
via Unweighted Augmentations. arXiv preprint, 2018. arXiv:1811.02760.

53 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate Indistinguishability Obfuscation and Functional Encryption for all circuits. In
IEEE Symposium on Foundations of Computer Science (FOCS), 2013.

54 Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive Garbled RAM
from Laconic Oblivious Transfer. In Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part III, pages 515–544, 2018.

55 Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM symposium on
Theory of computing (STOC), 2009.

56 Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled RAM Revisited. In EUROCRYPT, pages 405–422, 2014.

57 Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing Private RAM
Computation. In FOCS, 2014.

58 Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 75–92, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

59 Mohsen Ghaffari. Massively Parallel Algorithms. http://people.csail.mit.edu/ghaffari/
MPA19/Notes/MPA.pdf.

60 Mohsen Ghaffari, Themis Gouleakis, Slobodan Mitrovic, and Ronitt Rubinfeld. Improved
Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover. CoRR,
abs/1802.08237, 2018.

61 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved Parallel Algorithms for
Density-Based Network Clustering. In International Conference on Machine Learning, pages
2201–2210, 2019.

62 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster Algorithms for Edge
Connectivity via Random 2-Out Contractions, 2019. arXiv:1909.00844.

63 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications in
Massively Parallel Computation and Centralized Local Computation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1636–1653, 2019.

64 O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
ACM Symposium on Theory of Computing (STOC), 1987.

65 O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM
symposium on Theory of computing (STOC), 1987.

66 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

67 M. Goodrich. Communication-Efficient Parallel Sorting. SIAM Journal on Computing,
29(2):416–432, 1999.

68 Michael T. Goodrich. Data-oblivious External-memory Algorithms for the Compaction,
Selection, and Sorting of Outsourced Data. In Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 379–388, New
York, NY, USA, 2011. ACM. doi:10.1145/1989493.1989555.

https://eprint.iacr.org/2015/1065
http://arxiv.org/abs/1811.02760
http://people.csail.mit.edu/ghaffari/MPA19/Notes/MPA.pdf
http://people.csail.mit.edu/ghaffari/MPA19/Notes/MPA.pdf
http://arxiv.org/abs/1909.00844
https://doi.org/10.1145/1989493.1989555

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:37

69 Michael T. Goodrich and Michael Mitzenmacher. Privacy-Preserving Access of Outsourced
Data via Oblivious RAM Simulation. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 576–587, 2011.

70 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and Simulation
in the MapReduce Framework. In Algorithms and Computation, pages 374–383, 2011.

71 S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In ACM Conference on Computer and Communications Security (CCS), 2012.

72 S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-Round MPC with Fairness and
Guarantee of Output Delivery. In CRYPTO, pages 63–82, 2015.

73 Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-Efficient Unconditional MPC
with Guaranteed Output Delivery. In Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II, pages 85–114, 2019.

74 Jens Groth and Rafail Ostrovsky. Cryptography in the Multi-string Model. In CRYPTO,
2007.

75 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a Chance of Partition Tolerance. In
CRYPTO, 2019.

76 Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods for
dynamic programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 798–811,
2017. doi:10.1145/3055399.3055460.

77 Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient Massively Parallel Methods for
Dynamic Programming. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, pages 798–811, New York, NY, USA, 2017. ACM.

78 Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding Cryptography on Oblivious
Transfer — Efficiently. In CRYPTO, 2008.

79 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948, 2010.
doi:10.1137/1.9781611973075.76.

80 Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast Greedy
Algorithms in MapReduce and Streaming. TOPC, 2(3):14:1–14:22, 2015. doi:10.1145/

2809814.
81 Jakub Ła̧cki, Vahab S. Mirrokni, and Michal Wlodarczyk. Connected Components at Scale

via Local Contractions. CoRR, abs/1807.10727, 2018.
82 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, July 1982.
83 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method

for solving graph problems in MapReduce. In SPAA 2011: Proceedings of the 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June
4-6, 2011 (Co-located with FCRC 2011), pages 85–94, 2011. doi:10.1145/1989493.1989505.

84 Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient Constant-Round
Multi-party Computation Combining BMR and SPDZ. J. Cryptol., 32(3):1026–1069, July
2019.

85 Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A
programming framework for secure computation. In IEEE Symposium on Security and Privacy,
2015.

86 Steve Lu and Rafail Ostrovsky. How to Garble RAM Programs. In EUROCRYPT, 2013.
87 Steve Lu and Rafail Ostrovsky. Black-Box Parallel Garbled RAM. In Advances in Cryptology –

CRYPTO 2017, pages 66–92, 2017.

ITCS 2020

https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/2809814
https://doi.org/10.1145/2809814
https://doi.org/10.1145/1989493.1989505

75:38 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

88 Alfonso Cevallos Manzano. Reducing the Share Size in Robust Secret Sharing. Master’s thesis,
http://algant.eu/documents/theses/cevallos.pdf, 2011.

89 Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized Composable Core-sets for
Distributed Submodular Maximization. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 153–162, 2015. doi:10.1145/2746539.2746624.

90 Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization: Identifying representative elements in massive data. In Advances
in Neural Information Processing Systems, pages 2049–2057, 2013.

91 Pratyay Mukherjee and Daniel Wichs. Two Round Multiparty Computation via Multi-key
FHE. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, pages 735–763, 2016.

92 Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and Elaine Shi.
GraphSC: Parallel Secure Computation Made Easy. In IEEE S & P, 2015.

93 Krzysztof Onak. Round Compression for Parallel Graph Algorithms in Strongly Sublinear
Space. CoRR, abs/1807.08745, 2018.

94 Merav Parter and Eylon Yogev. Distributed Algorithms Made Secure: A Graph Theoretic
Approach. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1693–1710,
2019.

95 Merav Parter and Eylon Yogev. Secure Distributed Computing Made (Nearly) Optimal. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19,
pages 107–116, New York, NY, USA, 2019. ACM. doi:10.1145/3293611.3331620.

96 Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. CacheShuffle: A Family of Oblivious Shuffles.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
2018.

97 Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma. Finding
connected components in map-reduce in logarithmic rounds. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
50–61, 2013.

98 Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious RAM in secure processors. In
ISCA, pages 571–582, 2013.

99 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits: (On Lower
Bounds for Modern Parallel Computation). In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 1–12, 2016. doi:10.1145/2935764.2935799.

100 Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) Worst-Case Cost. In ASIACRYPT, pages 197–214, 2011.

101 Emil Stefanov, Elaine Shi, and Dawn Song. Towards Practical Oblivious RAM. In Network
and Distributed System Security Symposium (NDSS), 2012.

102 Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM – an Extremely Simple Oblivious RAM Protocol. In ACM
Conference on Computer and Communications Security (CCS), 2013.

103 Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–111,
August 1990.

104 Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound. In CCS, 2015.

105 Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract). In IEEE
symposium on Foundations of Computer Science (FOCS), 1982.

http://algant.eu/documents/theses/cevallos.pdf
https://doi.org/10.1145/2746539.2746624
https://doi.org/10.1145/3293611.3331620
https://doi.org/10.1145/2935764.2935799

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:39

106 Andrew Chi-Chih Yao. How to generate and exchange secrets. In IEEE Symposium on
Foundations of Computer Science (FOCS), 1986.

107 Grigory Yaroslavtsev and Adithya Vadapalli. Massively Parallel Algorithms and Hardness
for Single-Linkage Clustering under `p-Distances. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

A Proof of Theorem 22: the CommitteeMPC Protocol

In this section, we construct a constant-round, weakly space efficient, and communication
efficient SMPC protocol as stated in Theorem 22. Starting from a compact FHE, we first
apply the universal thresholdizer of Boneh et al. [23] to obtain a compact threshold FHE.
We show that the resulting threshold FHE has desired security by Definition 21. Thus we
can use it to construct a semi-malicious secure constant-round, weakly space efficient SMPC
in a trusted setup model. The protocol can then be converted to a maliciously secure one
by a generic transformation [14,75], and the setup can be removed by invoking the SMPC
protocol of Badrinarayanan et al. [14]. We start with the definitions.

Notation

We will use the variable m to denote the number of machines, although keep in mind that
when the SMPC protocol in this section is employed in our “MPC to SMPC-for-MPC”
compiler, this SMPC building block is in fact applied to at most 2m′ = poly log λ number of
machines.

A.1 Preliminaries
Fully Homomorphic Encryption

We first define fully homomorphic encryption schemes (FHE) with a strong compactness
property. A FHE scheme is a tuple of PPT algorithms ΠFHE = (FHE.KeyGen,FHE.Enc,
FHE.Eval,FHE.Dec) defined as follows:

FHE.KeyGen(1κ) → (pk, sk): On input the security parameter κ, the key generation
algorithm outputs a public key pk and a secret key sk.
FHE.Enc(pk, x)→ ct: On input a public key pk and a message x ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct. For convenience, for a message x ∈ {0, 1}`, we use
FHE.Enc(pk, x) = FHE.Enc(pk, x1), . . .FHE.Enc(pk, x`) to denote the bit by bit encryp-
tions of x.
FHE.Eval(pk, C, ct1, . . . , ct`)→ ĉt: On input a public key pk, a circuit C : {0, 1}` → {0, 1}
and ciphertexts ct1, . . . , ct`, the homomorphic evaluation algorithm outputs another
ciphertext ĉt.
FHE.Dec(sk, ĉt) → µ̂: On input a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a bit µ̂.

Correctness

We require that for all κ ∈ N, (pk, sk) ← FHE.KeyGen(1κ), circuit C : {0, 1}` → {0, 1} and
corresponding inputs x1, . . . , x` ∈ {0, 1}, it holds that

Pr[FHE.Dec(sk,FHE.Eval(pk, C, ct1, . . . , ct`)) 6= C(x1, . . . , x`)] ≤ negl(κ)

where (pk, sk)← FHE.KeyGen(1k) and cti ← FHE.Enc(pk, xi).

ITCS 2020

75:40 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Security

We require the usual semantic security. Namely, we require that for all κ ∈ N,
(pk,Enc(pk, 0)) ≈c (pk,Enc(pk, 1)), where (pk, sk)← FHE.KeyGen(1k).

Compactness

We require the following strong compactness property. There exists a polynomial poly such
that the following holds. |pk|, |sk|, |ct| ≤ poly(κ) for the public and secret key, and any
ciphertext ct generated from the algorithms of FHE. Furthermore, for a layered circuit10 C
with width w, homomorphic evaluation of C can be done in space poly(κ)× w, independent
of the size or depth of the circuit.11

FHE schemes with this compactness property can be achieved by assuming circular security
for standard FHE constructions [55,58] or using indistinguishability obfuscation [31,53].

Universal Thresholdizer

The following definition of universal thresholdizer is taken from Boneh et al. [23], who
constructed universal thresholdizer based on the learning with error assumption. For our
purpose, we do not require the verification algorithm, so we omit it from the definition for
simplicity.

I Definition 26. Fix a security parameter κ and a data space X . A universal thresholdizer
scheme is a tuple of algorithm ΠUT = (UT.Setup,UT.Eval,UT.Combine) defined as follows:

UT.Setup(1κ, 1m, 1t, 1d, x) → (pp, {ski}i∈[m]): On input the security parameter κ, a
number of users in the system m, a threshold t ∈ [m], a bound on the depth d, and a
secret x ∈ X , the setup algorithm generates the public parameters pp and a set of secret
keys sk1, . . . , skm for each user in the system.
UT.Eval(pp, ski, C) → pi: On input the public parameters pp, a secret key ski, and a
circuit C, the evaluation algorithm outputs a partial evaluation pi.
UT.Combine(pp, {pi}i∈S) → µ̂: On input the public parameter pp, and a set of partial
evaluations {pi}i∈S, the combining algorithm outputs the final evaluation µ.

Evaluation Correctness

We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval, UT.Combine)
satisfies evaluation correctness if the following conditions are true. For all κ,m, t, d ∈ N, x ∈
X , let (pp, {ski}i∈[m]) ← UT.Setup(1κ, 1m, 1t, 1d, x), S ⊂ [m] of size |S| = t, and circuit
C : X → {0, 1} of depth at most d, we have that

Pr[UT.Combine(pp, {UT.Eval(pp, ski, C)}i∈S) = C(x)] = 1− negl(κ),

where the probability is over the randomness of UT.Setup,UT.Eval, and UT.Combine.

10A circuit is layered if the circuit can be represented as a layered graph with no wires crossing the layers.
11Here the space complexity measures the working space of FHE.Eval but not the description size of C.

Looking ahead, we will consider uniform circuits whose description can be generated in small space.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:41

Privacy

We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Combine)
satisfies privacy if there exists a PPT simulator Sim such that for all κ ∈ N, polynomial
m, t, d, PPT adversary A = (A1,A2,A3), there exists a negligible function negl(κ) such that∣∣∣Pr[ExptReal

ΠUT,A(κ,m, t, d) = 1]− Pr[ExptRand
ΠUT,A(κ,m, t, d) = 1]

∣∣∣ ≤ negl(κ)

where the experiments ExptReal
ΠUT,A and ExptRand

ΠUT,A are defined as follows:
ExptReal

ΠUT,A(κ,m, t, d):
1. (x∗, st1)← A1(1κ).
2. (pp, {ski}i∈[m])← UT.Setup(1κ, 1m, 1t, 1d, x∗).
3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
OEval({ski}i∈[m],·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.
ExptRand

ΠUT,A(κ,m, t, d):
1. (x∗, st1)← A1(1κ).
2. (pp, {ski}i∈[m])← UT.Setup(1κ, 1m, 1t, 1d, 0|x∗|).
3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
SimOSim(·)({ski}i∈S∗ ,·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.
where the oracles OEval({ski}i∈[m], ·, ·) and OSim(·) are defined as follows

OEval({ski}i∈[m], C, j): On input the set of key {ski}i∈[m], a circuit C, and an index
j ∈ [m]\S∗, outputs UT.Eval(pp, skj , C).
OSim(C): On input a circuit C, if there exists a query (C, j) for some j ∈ [m]\S∗
previously made by A3, the algorithm outputs C(x∗). Otherwise, it outputs ⊥.

A.2 Threshold FHE
We now define a notion of threshold FHE schemes with a simulation security that is sufficient
to directly construct a semi-malicious SMPC protocol in a trusted setup model. We then
show that applying the above universal thresholdizer to a FHE scheme yields such a threshold
FHE scheme.

Syntax

A threshold FHE scheme is a tuple of PPT algorithms ΠTFHE = (TFHE.Setup,TFHE.SimSetup,
TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) defined as follows:

TFHE.Setup(1κ, 1m, 1t)→ (tpk, {tski}i∈[m]): On input the security parameter κ, a number
of users in the system m, and a threshold t ∈ [m], the setup algorithm generates the
public key tpk and a set of secret keys tsk1, . . . , tskm for each user in the system.
TFHE.SimSetup(1κ, 1m, 1t) → (tpk, {tski}i∈[m]): On input the security parameter κ, a
number of users in the system m, and a threshold t ∈ [m], the simulation setup algorithm
generates the simulated public key tpk and a set of simulated secret keys tsk1, . . . , tskm
for each user in the system.
TFHE.Enc(tpk, x) → ct: On input a public key tpk and a message x ∈ {0, 1}, the
encryption algorithm outputs a ciphertext ct.

ITCS 2020

75:42 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

TFHE.Eval(tpk, C, ct1, . . . , ct`) → ĉt: On input a public key tpk, a circuit C : {0, 1}` →
{0, 1} and ciphertexts ct1, . . . , ct`, the homomorphic evaluation algorithm outputs another
ciphertext ĉt.
TFHE.PartDec(i, tpk, tski, ĉt) → pi: On input an index i ∈ [m], a secret key tski, and a
ciphertext ĉt, the partial decryption algorithm outputs a partial decryption pi.
TFHE.FinDec(tpk, {pi}i∈S) → µ̂: On input the public key tpk, and a set of partial
decryptions {pi}i∈S , the final decryption algorithm outputs the final decryption value µ̂.

Correctness

We require that for all κ,m, t ∈ N, S ⊂ [m], circuit C : {0, 1}` → {0, 1} and corresponding
input x1, . . . , x` ∈ {0, 1}, the following holds except with negligible probability in κ: Let
(tpk, {tski}i∈[m]) ← TFHE.Setup(1κ, 1m, 1t), cti ← TFHE.Enc(tpk, xi) for i ∈ [`], let ĉt =
TFHE.Eval(tpk, C, ct1, . . . , ct`), let pi ← TFHE.PartDec(i, tpk, tski, ĉt), and µ̂ ←
TFHE.FinDec(tpk, {pi}i∈S). Then µ̂ = C(x1, . . . , x`) if |S| ≥ t, and µ̂ = ⊥ otherwise.

Compactness

We require the same compactness property as in FHE. There exists a polynomial poly such
that the following holds. |pk|, |sk|, |ct| ≤ poly(κ) for the public and secret key, and any
ciphertext ct generated from the algorithms of TFHE. Furthermore, for a layered circuit C
with width w, homomorphic evaluation of C can be done in space poly(κ)× w, independent
of the size or depth of the circuit.

Simulation Security

We require the following simulation-based security for the purpose of constructing SMPC
protocols. There exists PPT algorithms Sim1,Sim2 such that for all κ, polynomial m, t, s ∈ N
with m ≥ 3t+ 1, S ⊂ [m] of size |S| ≤ t, polynomial size circuits Cj : {0, 1}m·s → {0, 1} for
j ∈ S, PPT adversary A = (A1,A2,A3), there exists a negligible function negl(κ) such that∣∣Pr[ExptReal

ΠTFHE,A(κ,m, t, S, {Cj}j∈S) = 1]− Pr[ExptIdeal
ΠTFHE,A(κ,m, t, S, {Cj}j∈S) = 1]

∣∣ ≤ negl(κ)

where the experiments ExptReal
ΠTFHE,A and ExptIdeal

ΠTFHE,A are defined as follows:
ExptReal

ΠTFHE,A(κ,m, t, S, {Cj}j∈S):
1. (tpk, {tski}i∈[m])← TFHE.Setup(1κ, 1m, 1t).
2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. cti ← TFHE.Enc(tpk, xi) for i ∈ [m]\S.
4. ({(xi, rEnc

i)}i∈S , st2)← A2(st1, {cti}i∈[m]\S).
5. cti ← TFHE.Enc(tpk, xi; rEnc

i) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.
6. pj,i ← TFHE.PartDec(i, tpk, tski, ĉtj) for i ∈ [m]\S and j ∈ S.
7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).
8. Output b.
ExptIdeal

ΠTFHE,A(κ,m, t, S, {Cj}j∈S):
1. (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).
2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. ({cti}i∈[m]\S , st1)← Sim1(tpk, {tski}i∈S)
4. ({(xi, rEnc

i)}i∈S , st2)← A2(st1, {cti}i∈[m]\S).
5. cti ← TFHE.Enc(tpk, xi; rEnc

i) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:43

6. {pj,i}i∈[m]\S,j∈S ← Sim2(st1, {(xj , rEnc
j)}j∈S , {µ̂j}j∈S), where µ̂j = Cj(x1, . . . , xm) for

j ∈ S.
7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).
8. Output b.

Construction

We show that applying the universal thresholdizer to a FHE scheme yields a threshold
FHE scheme with above security. Let ΠFHE = (FHE.KeyGen,FHE.Enc, FHE.Eval,FHE.Dec)
be a FHE scheme with circular security. Let ΠUT = (UT.Setup,UT.Eval,UT.Combine) be a
universal thresholdizer. Formally, we construct a threshold FHE scheme as follows.

TFHE.Setup(1κ, 1m, 1t): Run (pk, sk)← FHE.KeyGen(1κ). Let d be the circuit depth of
FHE decryption algorithm FHE.Dec. Run (pp, {ski}i∈[m]) ← UT.Setup(1κ, 1m, 1t+1, 1d,
sk). Let tpk = (pp, pk) and tski = ski for i ∈ [m]. Output (tpk, {tski}i∈[m]).
TFHE.SimSetup(1κ, 1m, 1t): Run (pk, sk)← FHE.KeyGen(1κ). Let d be the circuit depth
of FHE decryption algorithm FHE.Dec. Run (pp, {ski}i∈[m])← UT.Setup(1κ, 1m, 1t+1, 1d,
0|sk|). Let tpk = (pp, pk) and tski = ski for i ∈ [m]. Output (tpk, {tski}i∈[m]).
TFHE.Enc(tpk, x): Output ct← FHE.Enc(pk, x).
TFHE.Eval(tpk, C, ct1, . . . , ct`): Output ĉt← FHE.Eval(pk, C, ct1, . . . , ct`).
TFHE.PartDec(i, tpk, tski, ĉt): Output pi ← UT.Eval(pp, tski,FHE.Dec(·, ĉt)).
TFHE.FinDec(tpk, {pi}i∈S): Output µ̂← UT.Combine(pp, {pi}i∈S).

It is clear by inspection that correctness follows by that of the underlying FHE scheme
and universal thresholdizer. For compactness, note that universal thresholdizer is applied to
evaluate the FHE decryption circuit FHE.Dec, which has a fixed polynomial complexity in κ.
Hence, the complexity of universal thresholdizer is upper bounded by a fixed poly(κ) and
compactness follows by compactness of the underlying FHE scheme.

Security

We now show that the above construction satisfies simulation security defined above. We
define simulators Sim1, Sim2 using the simulator of the universal thresholdizer (denoted by
UT.Sim) as follows.

Sim1(tpk, {tski}i∈S): Simply run cti ← FHE.Enc(pk, 0βs) for i ∈ [m]\S, store
tpk, {tski}i∈S in st1, and output ({cti}i∈[m]\S , st1).
Sim2(st1, {(xi, rEnc

i)}i∈S , {µ̂j}j∈S): Run pj,i ← UT.SimOSim({ski}i∈S , Cj , i) for i ∈ [m]\S
and j ∈ S, where OSim on input query C ′ returns µ̂j if C ′ = Cj for j ∈ S, and ⊥ otherwise.
Output {pj,i}i∈[m]\S,j∈S .

Indistinguishability of ExptReal
ΠTFHE,A and ExptIdeal

ΠTFHE,A follows by considering a hybrid experi-
ment that runs TFHE.SimSetup and Sim2 in Step 1 and 6 respectively as the ideal experiment,
but still encrypts xi in Step 3. Formally, we define

ExptHyb
ΠTFHE,A(κ,m, t, C, S):

1. (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).
2. ({xi}i∈[m]\S , st1)← A1(tpk, {tski}i∈S) where xi ∈ {0, 1}βs.
3. cti ← TFHE.Enc(tpk, xi) for i ∈ [m]\S.
4. ({(xi, rEnc

i)}i∈S , st2)← A2(st1, {cti}i∈[m]\S).
5. cti ← TFHE.Enc(tpk, xi; rEnc

i) for i ∈ S; ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ S.
6. {pj,i}i∈[m]\S,j∈S ← Sim2(st1, {(xj , rEnc

j)}j∈S , {µ̂j}j∈S), where µ̂j = Cj(x1, . . . , xm) for
j ∈ S.

7. b← A3(st2, {pj,i}i∈[m]\S,j∈S).
8. Output b.

ITCS 2020

75:44 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

We claim that indistinguishability of ExptReal
ΠTFHE,A and ExptHyb

ΠTFHE,A follows directly by
privacy of universal thresholdizer. Indeed, observe that the difference between TFHE.Setup
and TFHE.SimSetup is in the call of UT.Setup, whereTFHE.Setup uses actual FHE secret key
sk and TFHE.SimSetup uses 0|sk|. Also in Step 6, partial decryptions TFHE.PartDec of ĉtj
for j ∈ S, which in turn are the partial evaluations UT.Eval on the FHE decryption circuit
FHE.Dec(·, sk), is replaced by the simulator of the universal thresholdizer UT.Sim, where
OSim is emulated correctly by returning µ̂j = Cj(x1, . . . , xm) when queried by Cj for j ∈ S.
Hence, ExptReal

ΠTFHE,A and ExptHyb
ΠTFHE,A correspond to ExptReal

ΠUT,A and ExptRand
ΠUT,A for universal

thresholdizer, and the indistinguishability follows by privacy of universal thresholdizer.
Now, observe that the difference between ExptHyb

ΠTFHE,A and ExptIdeal
ΠTFHE,A is only the messages

encrypted in Step 3 and that the FHE secret key is not used in the experiments. Hence,
indistinguishability of ExptHyb

ΠTFHE,A and ExptIdeal
ΠTFHE,A follows directly by semantic security of

FHE. This completes the proof of security for the constructed TFHE scheme.

A.3 Semi-Malicious Secure SMPC in a Trusted Setup Model
We proceed to construct a semi-malicious secure constant-round, weakly space efficient
SMPC in a trusted setup model using threshold FHE. We consider SMPC protocols over
m machines. Henceforth let β denote the bit-width of each word. Each machine holds
input xi ∈ {0, 1}βs and wishes to learn fi(x1, . . . , xm) for functions fi : {0, 1}m·β·s →
{0, 1}.12 The construction is rather straightforward: We use the setup to run the threshold
FHE setup algorithm TFHE.Setup and distribute the keys. Upon receiving the keys, each
machine encrypts its input and output the ciphertext. Then they locally evaluate the output
ciphertexts homomorphically, partially decrypt them, and send the partial decryptions to
the corresponding machines, who can then learn their own outputs.

Formally, let ΠTFHE = (TFHE.Setup, TFHE.SimSetup, TFHE.Enc, TFHE.Eval,
TFHE.PartDec,TFHE.FinDec) be a threshold FHE scheme. We construct the following
SMPC protocol ΠSMPC over m machines. Let t be an upper bound on the number of
corrupted machines, where m ≥ 3t+ 1.

Input and functionality:
Each machine Mi has input xi ∈ {0, 1}βs and wishes to learn fi(x1, . . . , xm) for
functions fi : {0, 1}m·β·s → {0, 1}.

Setup Stage:
Run (tpk, {tski}i∈[m])← TFHE.Setup(1κ, 1m, 1t).
Send (tpk, tski) to each machine Mi for i ∈ [m].

Round 1: Each machine Mi does the following:
Run cti ← TFHE.Enc(tpk, xi).
Broadcast cti.

Round 2: Each machine Mi does the following:
Record each ctj received from machine Mj . If Mj aborts, then use
ctj ← TFHE.Enc(tpk, 0βs; 0∗) as a default ciphertext.
Compute ĉtj ← TFHE.Eval(tpk, Cj , {cti}i∈[m]) for j ∈ [m].
Compute pj,i ← TFHE.PartDec(i, tpk, tski, ĉtj) for j ∈ [m].
Send pj,i to machine Mj for each j ∈ [m].

12For notational simplicity, we consider functions with one-bit output. It is straightforward to extend the
protocol to handle long outputs.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:45

Output Computation: Each machine Mi does the following:
Record each pi,j received from machine Mj . Let Si be the set of partial decryptions
received by Mi.
Compute µ̂i ← TFHE.FinDec(tpk, {pi,j}j∈Si

).
Output µ̂i.

Correctness

Correctness follows directly from the correctness of TFHE. Furthermore, since the number of
honest machines is greater than t+ 1, the honest machines always learn the output.

Weak Space Efficiency

We first note that by compactness, except for the homomorphic evaluation TFHE.Eval, the
remaining step takes space at most poly(κ) ·O(ms). Let SRAM denote the space complexity
for computing f1, . . . , fm using a RAM machine. It is not hard to see that we can emulate the
RAM computation by a uniform layered circuit of width O(SRAM): for example, a naïve way is
to emulate CPU and memory by circuits and for each RAM computation step, emulate CPU
accessing memory by constructing a linear-sized circuit gadget that goes over every memory
cell to selects the position requested. Thus, it follows by compactness that TFHE.Eval can
be done in space poly(κ) ·O(SRAM).

Semi-malicious Security

The security follows directly from the simulation security of TFHE. For completeness, we
formally define the simulator S for ΠSMPC as follows. Let Honest and Crupt denote the set
of honest and corrupted machines, respectively.

Setup Stage: S simulates the setup by running TFHE.SimSetup instead of TFHE.Setup.
Namely,

Run (tpk, {tski}i∈[m])← TFHE.SimSetup(1κ, 1m, 1t).
Send {(tpk, tski)}i∈Crupt to the adversary A.

Round 1:
S simulates the honest machines’ messages by running Sim1 of TFHE. Namely, S runs
({cti}i∈Honest, st1)← Sim1(tpk, {tski}i∈Crupt). S sends {cti}i∈Honest to A.
Upon receiving ({(xi, rEnc

i)}i∈Crupt from A, S sends it to the ideal functionality. If any
corrupted machine i aborts, then S sends xi = 0βs to the ideal functionality.
S receives the outputs {µ̂i}i∈Crupt from the ideal functionality.

Round 2:
S simulates the honest machines’ messages by running Sim2 of TFHE. Namely, S runs
{pj,i}i∈Honest,j∈Crupt ← Sim2(st1, {(xj , rEnc

j)}j∈Crupt, {µ̂j}j∈Crupt). S sends
{pj,i}i∈Honest,j∈Crupt to A.
S sends deliver to the ideal functionality.

It is not hard to see that the real world and ideal world execution of ΠSMPC directly
corresponds to the experiments ExptReal

ΠTFHE,A and ExptIdeal
ΠTFHE,A in the simulation security of

TFHE with corresponding adversary. Hence, indistinguishability of the simulation for ΠSMPC
follows by the simulation security of TFHE.

ITCS 2020

75:46 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

A.4 Achieving Malicious Security and Removing the Trusted Setup

Finally, we briefly discuss how to upgrade to malicious security and remove the trusted
setup in ΠSMPC. To upgrade to malicious security, we can apply the standard generic
transformation using a simulation-extractable multi-string NIZK which can be constructed
from enhanced trapdoor permutations without extra setup [14,74,75]. Note that NIZK is
used to prove that TFHE.Enc and TFHE.PartDec are done correctly, both statements have a
fixed poly(κ) complexity. The NIZK proofs can be generated in a fixed poly(κ) space as well.
Thus, the transformation preserves weak space efficiency.

To remove the setup, we rely on an SMPC protocol by Badrinarayanan et al. [14].
The protocol of [14] (Theorem 10) is constant-round, achieves guaranteed output delivery,
and does not require any setup. We remove the trusted setup by invoking the protocol of
Badrinarayanan et al. [14] to securely realize the setup stage in ΠSMPC. Note that TFHE.Setup
has a fixed poly(κ) complexity (independent of the functionalities f1, . . . , fm). As a result,
we obtain a malicious security, constant-round, weakly space efficient and communication
efficient SMPC protocol, as required in Theorem 22.

B Potential Barriers Towards Achieving Statistical Security

We have shown how to compile an MPC protocol to a secure counterpart that defends against
slightly less than 1/3 corruption while preserving its efficiency; but our compiler relied on
a few computational assumptions such as enhanced trapdoor permutations, LWE, and an
appropriate notion of compact FHE. One intriguing question is whether we can accomplish
the same, but unconditionally, i.e., without making any cryptographic hardness assumptions.
Such protocols are also said to be statistically secure. We now show that if one could achieve
the same result unconditionally, it will imply solutions to long-standing open questions in
cryptography. Specifically, we prove the following theorem:

I Theorem 27. Let κ denote the security parameter. Suppose that there exists an compiler
that compiles any MPC protocol Π computing the function f among m machines into an
SMPC-for-MPC protocol Π′ among m machines that securely realizes Ff unconditionally, as
long as m is polynomially bounded by s and s ≥ κ. Furthermore, suppose that the compiler
incurs only O(1) blowup in round complexity and poly(κ) blowup in terms of per-machine
space complexity.

Then, for m ≥ κ, for any m-input, m-output uniform layered circuit C with width m, as
long as C’s size is a sufficiently large polynomial in m (related to the parameter α later),
then there exists a constant-round protocol that allows m parties to securely realize FC

unconditionally, incurring total communication that is |C|α for an arbitrarily small constant
α ∈ (0, 1).

Proof. If such a compiler existed, we can use it to compile the following insecure 1-round
MPC protocol among m machines each of which has s = O(m) space. Every one now sends
their input to the first machine, the first machine computes the circuit C locally, and sends
to each machine their respective output. Note that since the circuit is uniform and layered
with maximum width m, the first machine can evaluate it in total space O(m).

Now consider the compiled protocol: it will complete in O(1) rounds, and moreover
the total communication must be upper bounded by the number of rounds multiplied by
m ·O(s) ·poly(κ) = O(m2), which can be made |C|α as long as the circuit size is a sufficiently
large polynomial in m where |C| denotes the size of C. J

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:47

As noted in numerous works in the cryptography literature [26,39,44,45], the existence of
such constant-round, sublinear-communication multi-party computation (for circuits) with
statistical security has been a long-standing open problem, even for the special class of
circuits that we consider. To the best of our knowledge, the best known n-party, statistically
secure computation protocol achieves the following13

O(n|C|) total communication and d number of rounds without preprocessing [43, 73]
where d denotes the circuit depth, and
O(n|C|/ log log |C|) total communication and d/ log log |C| number of rounds with (poly-
nomially-bounded) preprocessing (for layered circuits) [39].

Interestingly, we note that barring strong assumptions such as Indistinguishable Obfus-
cation [53], the only known approach to construct constant-round, sublinear-communication
multi-party computation for circuits of unbounded polynomial size is also through compact
FHE [55,58]. In our earlier sections, we essentially showed that making a similar assumption,
combined with other standard cryptographic assumptions, we can construct an efficiency-
preserving “MPC to SMPC-for-MPC” compiler. From a technical perspective, the main new
challenge we encountered is the fact that the machines are now also space-constrained (which
was not a concern in the standard multi-party computation for circuit literature), and thus
we could not just apply existing techniques to the entire set of machines.

Besides the feasibility of achieving statistical security, another interesting direction is
to weaken the cryptographic assumption necessary in achieving such a compiler. Similarly,
new results in this vein would imply new breakthroughs for constant-round, sublinear-
communication multi-party computation for circuits too – and even partial results for special
classes of circuits (like the family we considered in Theorem 27) would be interesting.

C Removing the Sender Constraint

As mentioned earlier, some works in the MPC literature do not seem to respect the s-sender-
constraint, and only respect the s-receiver-constraint. In this section, we generalize our
results even to such MPC algorithms.

To achieve this, it suffices to show that given an MPC protocol denoted Π that respects
only the s-receiver-constraint, we can compile it to a counterpart denoted Π′ that satisfies
not just the O(s)-receiver-constraint, but also the O(s)-sender-constraint. Furthermore, the
compilation should preserve both round- and space-complexity; and moreover, the compiled
protocol Π′ should run in a fixed number of rounds (since the oblivious Routing primitive
applied to emulate the communication of Π′ will not hide total round complexity).

Intuition

The idea is the following: in the first phase (called the replication phase), if a sender wants
to send in total µ words in some communication round (where sending the same word to
two machines is counted twice), it will replicate all of its local memory to dµ/se helper-
machines where each helper is assigned a unique index from 1 to dµ/se. This must be
accomplished using an s-sender-bounded communication pattern. In the second phase (called
the distribution phase), each helper distributes s words on behalf of the sender it represents.
Note that in the same round, many machines may be trying to send data simultaneously.

13For this reason, in fact even if we relaxed the round complexity blowup in Theorem 27 to poly-
logarithmically many rounds or any number that does not depend on circuit depth, having such an
MPC-to-SMPC compiler would still imply improving the state-of-the-art for statistically secure MPC.

ITCS 2020

75:48 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Thus the above procedure is performed in parallel among all senders. It must be guaranteed
that every machine serves as a helper at most for one sender. In this way, the distribution
phase will satisfy the s-sender-constraint.

C.1 Replication Protocol

A replication protocol allows senders to replicate their local memory to an appropriate
number of helpers.

Definition

Formally, replication, henceforth denoted Replicate, is the following problem.

Input. Suppose that among the m machines, some machines are senders and others
are non-senders. Each machine i obtains an input pair (βi, ci) where βi ∈ {0, 1} is a
bit indicating whether machine i is a sender; and if βi = 1, ci ≥ 1 denotes the total
number of machines to replicate machine i’s state – henceforth we refer to ci as sender
i’s multiplicity.
It is guaranteed that

∑m
i=1 βici ≤ m, i.e., in total there are enough machines around to

act as receivers.

Output. At the end of the replication protocol, the following output configuration is
produced:

each sender i has its entire machine state (i.e., a total of s words) replicated on exactly
ci receivers;

each machine acts as a receiver for at most 1 sender;

suppose sender i has ci receivers, each of these receivers output i and also a unique
index j from the range [ci], i.e., each of these receiver knows that it acts as the j-th
receiver for its sender.

We will next construct a Replicate protocol. Note that the protocol need not be
communication-oblivious. The idea is that all machines will first perform a prefix sum
computation which allows each sender to discover a range of indices which are meant to
become its helpers; moreover, all senders’ helpers, identified by the range, are disjoint.
It is well-known that prefix sum can be accomplished on MPC in O(1) rounds with an
s-sender-bounded communication style. Now, we employ a RangeCast protocol for the sender
to replicate its state to the range of machines discovered above. Below we first explain how
to construct the RangeCast building block and then describe our Replicate protocol.

Building block: RangeCast

As mentioned, RangeCast allows a sender to replicate its state to a set of machines defined
by a range [a, b] ⊆ [m]. To realize such a RangeCast primitive, we first realize a weaker form
denoted WeakRangeCast which only works if the range’s size is at most s. Our RangeCast is
similar to the “broadcast” algorithm in the “bulk-synchronous parallel (BSP)” model [103],
but we describe it again for completeness.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:49

WeakRangeCast

Input: let a, b be any two machines such that 1 ≤ a ≤ b ≤ m, let I be an array of s words.
The machine a receives the input (I, a, b) where the range [a, b] is small enough such that
b− a+ 1 ≤ s.
Output: every machine k ∈ [a, b] outputs I.
Protocol:
1. Let c := b− a+ 1 and t := ds/ce. For each j ∈ [c], let Ij := I[(j − 1)t+ 1 : jt] be the

substring of I where Ij consists of at most t words (if jt or (j − 1)t+ 1 is less than s,
Ij is by definition a shorter or empty string). In this round, the machine a sends to the
machine a+ j − 1 the message tuple (a, b, Ij) for each j ∈ [c], while all other machines
send nothing.

2. In the next round, machine a+ j − 1 receives (a, b, Ij) for each j ∈ [c], and it sends the
same message (j, Ij) to every machine k ∈ [a, b].

3. Every machine k ∈ [a, b] receives a copy of (j, Ij) for all j ∈ [c], and it recovers I by
concatenating (Ij)j∈[c].

I Lemma 28. For any 1 ≤ a ≤ b ≤ m such that b − a + 1 ≤ s, WeakRangeCast
correctly implements range-cast in 2 rounds and satisfies both O(s)-sender- and O(s)-receiver-
constraints, where each machine takes O(s) space and time locally.

Proof. The correctness, rounds, and local-machine complexity follows directly. The O(s)-
sender-constraint holds because in Step 1, machine a sends to each machine O(s/c+ 2) words,
and thus the total number of words sent is O(s+ c) = O(s). The O(s)-receiver-constraint
holds because in Step 3, each machine receives c messages each consists of O(s/c + 1)
words. J

Given WeakRangeCast as a building block, we can construct RangeCast where the range
[a, b] may be arbitrary in size. The protocol basically builds a distribution tree of fanout s
such that the sender first distributes to s machines, then the s machines distribute to upto
s2 machines, and so on. The protocol can be described formally below.

RangeCast

Input and output: Same as WeakRangeCast but without any constraint on the range
[a, b].

Protocol:
1. (Base case.) Let c := b−a+ 1. If c ≤ 1, then there is only one machine a and it outputs

I directly. Otherwise c > 1, continue with the following steps.
2. Let r := min(c, s). Run WeakRangeCast on the first r machines (i.e., in the range

[a, a+ r − 1]) to copy I from machine a to machines [a, a+ r − 1].
3. The machine a computes a partition [a1, b1], [a2, b2], . . . , [ar, br] of the range [a, b] such

that the ranges [ai, bi] are as even as possible (i.e., for any i1, i2 ∈ [r], it holds that
|(bi1 − ai1)− (bi2 − ai2)| ≤ 1). The pair (ai, bi) is sent from machine a to both machines
a+ i− 1 and ai; Afterwards, machine a+ i− 1 sends the received I to machine ai for
each i ∈ [r].

4. For each i ∈ [r], the machine ai performs recursively RangeCast on the received I and
the range [ai, bi].

ITCS 2020

75:50 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

I Lemma 29. For any 1 ≤ a ≤ b ≤ m, RangeCast correctly implements range-cast in
O(logm

log s) rounds and satisfies both O(s)-sender- and O(s)-receiver-constraints, where each
machine takes O(s) space and time locally.

Proof. In Step 3, if c < s, then r = c and all c machines receive I in O(1) rounds. Else, the
first s machines receive I and then forward I to groups of size dc/se, and it takes at most
O(logsm) = O(logm

log s) iterations to divide any problem of size c ≤ m to a constant size. The
correctness follows directly. The local-machine complexity, O(s)-sender and O(s)-receiver
constraints follow by WeakRangeCast. J

Protocol Replicate

We are now ready to describe the Replicate protocol. We will use the following terminology:
we use the term ball to refer to a machine’s entire state consisting of upto s words. Each
ball is always tagged the ball’s identifier denoted id ∈ [m], i.e., which machine’s state it
represents.

The building block PrefixSum is the following primitive: every machine starts with a
number, and machine i would like to learn the sum of machine 1 to machine i’s numbers.
As described by Goodrich et al. [70], this can be accomplished in O(1) rounds with an
s-sender-bounded MPC protocol, and consuming O(m) total communication.

1. Each ball is additionally tagged with its outputting range computed as follows.
a. Given as input (βi, ci), each machine i ∈ [m] sets ci = 0 iff βi = 0. All m machines

jointly run the PrefixSum protocol on (ci)i∈[m]. As the result, each machine i gets the
prefix sum pi =

∑
j∈[i] cj .

b. Let p0 = 0. Every machine i calculates pi−1 = pi − ci locally. For each machine i
such that ci ≥ 1 (i.e., the range [pi−1 + 1, pi] is non-empty), machine i tags the range
[pi−1 + 1, pi] to its ball and then sends the ball to machine pi−1 + 1.

2. Now each ball i is received by the first machine in its outputting range [pi−1 + 1, pi]. To
replicate the ball i to all machines in the range, for each ball i and the tagged range
[pi−1 + 1, pi], the machine pi−1 + 1 performs RangeCast on the ball i and the range of
machines [pi−1 + 1, pi]. This RangeCast is performed simultaneously for all balls and
hence all machines. To ensure all machines finish at the same round, every instance of
RangeCast is programmed to finish at the O(logm

log s)-th round specified in Lemma 29.
3. For each machine i such that has a ball tagged with a range [a, b], let j := i − a + 1.

Output the ball and j.

I Lemma 30. The MPC protocol Replicate is a correct replicate protocol such that takes O(1)
rounds and O(m · s) communication, satisfies O(s)-sender- and O(s)-receiver-constraints,
and each machine locally takes O(s) time and O(s) space.

Proof. The correctness holds as each ball i is replicated exactly ci copies and the ranges
[pi−1 + 1, pi] are disjoint. The complexities follow directly by PrefixSum [70] and RangeCast
(Lemma 29). J

C.2 Sender-Bounded Compiler
We will now compile any MPC protocol that respects only the s-receiver-constraint to one
that respects both the s-receiver- and s-sender-constraints.

T-H.H. Chan, K-M. Chung, W-K. Lin, and E. Shi 75:51

Without loss of generality, we may assume that at the end of the local computation
stage of each round, there is a deterministic polynomial time algorithm14 that takes each
machine’s local state as input, and can write down sequentially in a stream a set of send
instructions where each send instruction contains an outgoing word to be sent and the
destination machine’s identifier. Note that the sender may not have space to write down all
these instructions since each word sent multiple times need to be duplicated multiple times,
taking more than O(s) space. However, if the sender replicates its state to enough helpers,
every helper can locally repeat the same computation, and write down the range of at most
O(s) instructions it is responsible for implementing.

Sender-bounded compiler

Every communication round of the original MPC is replaced with the following protocol:
1. Invoke an instance of the non-oblivious Replicate algorithm: if machine i is trying to send

in total µi words15, it replicates its local state onto dµi/se machines. At the end of this
phase, every machine i′ may receive the local state of at most one machine i and if so, it
also learns that it will act as the j-th helper for machine i.

2. If a machine i′ is the j-th helper for machine i, it uses machine i’s state to compute the
((j − 1)s+ 1)-th send instruction through the min(j · s, µi)-th send instruction.

3. Now, every machines executes all send instructions written down in the previous step.

Note that this sender-bounded compiler may not compile each round of the original MPC
to a fixed number of rounds. To obtain a compiler that always emits a protocol with a fixed
number of rounds, we can simply pad the resulting protocol to the worst-case number of
rounds: if there is no more work to be done, just execute empty rounds that do nothing.

I Theorem 31 (Sender-bounded compiler with a fixed number of rounds). Assume that s = Nε

and m is upper bounded by a fixed polynomial in N . Given any m-machine MPC protocol
Π that completes in R rounds in the worst case and consuming s per-machine space, there
is an MPC protocol Π′ that computes the same function as Π, consuming O(R) rounds,
O(s) per-machine space, and O(m · s) total communication per round, and moreover Π′
additionally satisfies the O(s)-sender-constraint, and executes for a fixed number of rounds.
Note that for well-formedness, both Π and Π′ must satisfy the s-receiver-constraint.

Proof. By Lemma 30, the above compiler replaces each round of the original MPC with O(1)
rounds of communication, and moreover the resulting protocol satisfies O(s)-sender- and
O(s)-receiver-constraints. The fixed total rounds is guaranteed due the padding mechanism
mentioned above. J

D Additional Preliminary: Robust Secret Sharing

We recall the notion of robust secret sharing schemes [88]. Here, we only consider robust
secret sharing schemes with threshold t < m/3.

14 In the case that the algorithm for generating send instructions is randomized, we may assume that
the randomness is pseudo-randomly generated with a small seed using a cryptographically secure
pseudo-random generator. This way, the MPC’s outputs are computationally indistinguishable no
matter whether true randomness or pseudorandomness is used in determining the send instructions.

15This can be determined with polynomial-time computation based on its local state.

ITCS 2020

75:52 MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

I Definition 32 (Robust Secret Sharing). A t-out-of-m robust secret sharing scheme over
a message space M and share space S is a tuple (Share,Recons) of algorithms defined as
follows:

Share(msg)→ (s1, . . . , sm): This is a randomized algorithm that takes as input a message
msg ∈M and output a sequence of shares s1, . . . , sm ∈ S.
Recons(s1, . . . , sm)→ msg′: This is a deterministic algorithm that takes as input m shares
(s1, . . . , sm) with si ∈ S ∪ {⊥} and outputs a message msg′ ∈M.

We require the following properties.
Perfect Privacy: Any t out of m shares of a secret give no information on the secret
itself. Namely, for any msg,msg′ ∈M and S ⊂ [m] of size |S| = t, the distributions of
Share(msg)S and Share(msg′)S are identical. Here, Share(msg)S denotes the set of shares
{si}i∈S generated by Share(msg).
Robustness: An adversary modifies up to t shares can cause the wrong secret to be
recovered with probability at most δ. Specifically, for any msg ∈ M, S ⊂ [m] of size
|S| = t and (unbounded) adversary A,

Pr[Recons(Share(msg)[m]\S ,A(Share(msg)S)) 6= msg] ≤ δ.

It is known that Shamir’s secret sharing scheme is an efficient t-out-of-m robust secret
sharing scheme for t < m/3.

	Introduction
	Privacy-Preserving Data Analytics on MPC Frameworks
	Our Results and Contributions

	Technical Roadmap
	Achieving Communication Obliviousness: Oblivious Routing
	SMPC for MPC
	Informal Problem Statement
	MPC to ``SMPC-for-MPC'' Compiler

	Related Work

	Preliminaries
	Massively Parallel Computation Model
	Communication-Oblivious MPC Algorithms

	Oblivious Routing and Communication-Oblivious Compiler
	Problem Definition
	Building Block: Bucket Route
	Syntax
	Protocol

	Building Block: Oblivious Random Bucket Assignment
	Putting it Together: Oblivious Routing
	Oblivious Sorting
	Communication-Oblivious Compiler

	Secure Multi-Party Computation for Massively Parallel Computing
	Execution Model: SMPC for MPC
	Security Definition
	Building Block: Constant-Round, Weakly Space-Efficient SMPC
	Intuition
	Assumptions and Notations
	Assumptions on the Original MPC
	Notations
	Computing Relevant Committee Information on the Fly

	Intermediate Building Blocks
	Compilation to a Hybrid Protocol
	Compilation to a Real-World Protocol

	Proof of Theorem 22: the CommitteeMPC Protocol
	Preliminaries
	Threshold FHE
	Semi-Malicious Secure SMPC in a Trusted Setup Model
	Achieving Malicious Security and Removing the Trusted Setup

	Potential Barriers Towards Achieving Statistical Security
	Removing the Sender Constraint
	Replication Protocol
	Sender-Bounded Compiler

	Additional Preliminary: Robust Secret Sharing

