2,183 research outputs found

    Towards an Ontology-Based Phenotypic Query Model

    Get PDF
    Clinical research based on data from patient or study data management systems plays an important role in transferring basic findings into the daily practices of physicians. To support study recruitment, diagnostic processes, and risk factor evaluation, search queries for such management systems can be used. Typically, the query syntax as well as the underlying data structure vary greatly between different data management systems. This makes it difficult for domain experts (e.g., clinicians) to build and execute search queries. In this work, the Core Ontology of Phenotypes is used as a general model for phenotypic knowledge. This knowledge is required to create search queries that determine and classify individuals (e.g., patients or study participants) whose morphology, function, behaviour, or biochemical and physiological properties meet specific phenotype classes. A specific model describing a set of particular phenotype classes is called a Phenotype Specification Ontology. Such an ontology can be automatically converted to search queries on data management systems. The methods described have already been used successfully in several projects. Using ontologies to model phenotypic knowledge on patient or study data management systems is a viable approach. It allows clinicians to model from a domain perspective without knowing the actual data structure or query language

    Electronic health records (EHRs) in clinical research and platform trials: Application of the innovative EHR-based methods developed by EU-PEARL

    Get PDF
    Electronic health records; Platform trialsRegistros mĂ©dicos electrĂłnicos; Pruebas de plataformaRegistres mĂšdics electrĂČnics; Proves de plataformaObjective Electronic Health Record (EHR) systems are digital platforms in clinical practice used to collect patients’ clinical information related to their health status and represents a useful storage of real-world data. EHRs have a potential role in research studies, in particular, in platform trials. Platform trials are innovative trial designs including multiple trial arms (conducted simultaneously and/or sequentially) on different treatments under a single master protocol. However, the use of EHRs in research comes with important challenges such as incompleteness of records and the need to translate trial eligibility criteria into interoperable queries. In this paper, we aim to review and to describe our proposed innovative methods to tackle some of the most important challenges identified. This work is part of the Innovative Medicines Initiative (IMI) EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) project’s work package 3 (WP3), whose objective is to deliver tools and guidance for EHR-based protocol feasibility assessment, clinical site selection, and patient pre-screening in platform trials, investing in the building of a data-driven clinical network framework that can execute these complex innovative designs for which feasibility assessments are critically important. Methods ISO standards and relevant references informed a readiness survey, producing 354 criteria with corresponding questions selected and harmonised through a 7-round scoring process (0–1) in stakeholder meetings, with 85% of consensus being the threshold of acceptance for a criterium/question. ATLAS cohort definition and Cohort Diagnostics were mainly used to create the trial feasibility eligibility (I/E) criteria as executable interoperable queries. Results The WP3/EU-PEARL group developed a readiness survey (eSurvey) for an efficient selection of clinical sites with suitable EHRs, consisting of yes-or-no questions, and a set-up of interoperable proxy queries using physicians’ defined trial criteria. Both actions facilitate recruiting trial participants and alignment between study costs/timelines and data-driven recruitment potential. Conclusion The eSurvey will help create an archive of clinical sites with mature EHR systems suitable to participate in clinical trials/platform trials, and the interoperable proxy queries of trial eligibility criteria will help identify the number of potential participants. Ultimately, these tools will contribute to the production of EHR-based protocol design.“EU-PEARL has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 853966-2. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and CHILDREN'S TUMOR FOUNDATION, GLOBAL ALLIANCE FOR TB DRUG DEVELOPMENT NON PROFIT ORGANISATION, SPRINGWORKS THERAPEUTICS INC.

    COPD phenotypes and machine learning cluster analysis : A systematic review and future research agenda

    Get PDF
    Funding This research did not receive any specific grant from funding agencies in the public, commercial, or ot-for-profit sectors.Peer reviewedPostprin

    Natural Language Processing – Finding the Missing Link for Oncologic Data, 2022

    Get PDF
    Oncology like most medical specialties, is undergoing a data revolution at the center of which lie vast and growing amounts of clinical data in unstructured, semi-structured and structed formats. Artificial intelligence approaches are widely employed in research endeavors in an attempt to harness electronic medical records data to advance patient outcomes. The use of clinical oncologic data, although collected on large scale, particularly with the increased implementation of electronic medical records, remains limited due to missing, incorrect or manually entered data in registries and the lack of resource allocation to data curation in real world settings. Natural Language Processing (NLP) may provide an avenue to extract data from electronic medical records and as a result has grown considerably in medicine to be employed for documentation, outcome analysis, phenotyping and clinical trial eligibility. Barriers to NLP persist with inability to aggregate findings across studies due to use of different methods and significant heterogeneity at all levels with important parameters such as patient comorbidities and performance status lacking implementation in AI approaches. The goal of this review is to provide an updated overview of natural language processing (NLP) and the current state of its application in oncology for clinicians and researchers that wish to implement NLP to augment registries and/or advance research projects

    Formalization and computation of quality measures based on electronic medical records

    Get PDF
    Ambiguous definitions of quality measures in natural language impede their automated computability and also the reproducibility, validity, timeliness, traceability, comparability, and interpretability of computed results. Therefore, quality measures should be formalized before their release. We have previously developed and successfully applied a method for clinical indicator formalization (CLIF). The objective of our present study is to test whether CLIF is generalizable--that is, applicable to a large set of heterogeneous measures of different types and from various domains. We formalized the entire set of 159 Dutch quality measures for general practice, which contains structure, process, and outcome measures and covers seven domains. We relied on a web-based tool to facilitate the application of our method. Subsequently, we computed the measures on the basis of a large database of real patient data. Our CLIF method enabled us to fully formalize 100% of the measures. Owing to missing functionality, the accompanying tool could support full formalization of only 86% of the quality measures into Structured Query Language (SQL) queries. The remaining 14% of the measures required manual application of our CLIF method by directly translating the respective criteria into SQL. The results obtained by computing the measures show a strong correlation with results computed independently by two other parties. The CLIF method covers all quality measures after having been extended by an additional step. Our web tool requires further refinement for CLIF to be applied completely automatically. We therefore conclude that CLIF is sufficiently generalizable to be able to formalize the entire set of Dutch quality measures for general practic

    The Use of Routinely Collected Data in Clinical Trial Research

    Get PDF
    RCTs are the gold standard for assessing the effects of medical interventions, but they also pose many challenges, including the often-high costs in conducting them and a potential lack of generalizability of their findings. The recent increase in the availability of so called routinely collected data (RCD) sources has led to great interest in their application to support RCTs in an effort to increase the efficiency of conducting clinical trials. We define all RCTs augmented by RCD in any form as RCD-RCTs. A major subset of RCD-RCTs are performed at the point of care using electronic health records (EHRs) and are referred to as point-of-care research (POC-R). RCD-RCTs offer several advantages over traditional trials regarding patient recruitment and data collection, and beyond. Using highly standardized EHR and registry data allows to assess patient characteristics for trial eligibility and to examine treatment effects through routinely collected endpoints or by linkage to other data sources like mortality registries. Thus, RCD can be used to augment traditional RCTs by providing a sampling framework for patient recruitment and by directly measuring patient relevant outcomes. The result of these efforts is the generation of real-world evidence (RWE). Nevertheless, the utilization of RCD in clinical research brings novel methodological challenges, and issues related to data quality are frequently discussed, which need to be considered for RCD-RCTs. Some of the limitations surrounding RCD use in RCTs relate to data quality, data availability, ethical and informed consent challenges, and lack of endpoint adjudication which may all lead to uncertainties in the validity of their results. The purpose of this thesis is to help fill the aforementioned research gaps in RCD-RCTs, encompassing tasks such as assessing their current application in clinical research and evaluating the methodological and technical challenges in performing them. Furthermore, it aims to assess the reporting quality of published reports on RCD-RCTs

    Clinical Data Reuse or Secondary Use: Current Status and Potential Future Progress

    Get PDF
    Objective: To perform a review of recent research in clinical data reuse or secondary use, and envision future advances in this field. Methods: The review is based on a large literature search in MEDLINE (through PubMed), conference proceedings, and the ACM Digital Library, focusing only on research published between 2005 and early 2016. Each selected publication was reviewed by the authors, and a structured analysis and summarization of its content was developed. Results: The initial search produced 359 publications, reduced after a manual examination of abstracts and full publications. The following aspects of clinical data reuse are discussed: motivations and challenges, privacy and ethical concerns, data integration and interoperability, data models and terminologies, unstructured data reuse, structured data mining, clinical practice and research integration, and examples of clinical data reuse (quality measurement and learning healthcare systems). Conclusion: Reuse of clinical data is a fast-growing field recognized as essential to realize the potentials for high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research
    • 

    corecore