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Abstract 
 
Like most medical specialties, oncology is undergoing a data revolution at the center of which 
lie vast and growing amounts of clinical data in unstructured, semi-structured and structed 
formats. Artificial intelligence approaches are widely employed in research endeavors to 
harness electronic medical records data to advance patient outcomes. As of the end of 2021, 
the use of clinical oncologic data, although collected on a large scale, particularly with the 
increased implementation of electronic medical records, remains limited due to missing, 
incorrect, or manually entered data in registries and the lack of resource allocation to data 
curation in real-world settings. Natural Language Processing (NLP) may provide an avenue 
to extract data from electronic medical records and, as a result has grown considerably in 
medicine to be employed for documentation, outcome analysis, phenotyping, and clinical trial 
eligibility. Barriers to NLP persist with the inability to aggregate findings across studies due 
to the use of different methods and significant heterogeneity at all levels with essential 
parameters such as patient comorbidities and performance status lacking implementation in 
AI approaches. This review aims to provide an updated overview of natural language 
processing (NLP) and the current state of its application in oncology for clinicians and 
researchers that wish to implement NLP to augment registries and/or advance research 
projects using NLP in 2022 and beyond. 
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Abbreviations 
 
AI: Artificial Intelligence; ML: Machine Learning; DL: Deep Learning; NLP: Natural Language 
Processing; CAD: Coronary Artery Disease; NYD: Not Yet Diagnosed; NLI: Natural Language 
Inference; HPV: Human Papilloma Virus; SDoH : Social Determinants of Health; OS: Overall 
Survival; HER: Electronic Health Records; EMR: Electronic Medical Records; ECOG: Eastern 
Cooperative Oncology Group; KPS: Karnofsky Performance Status; ICD: International 
Classification of Diseases coding; NLP-BIRNN: Natural language processing-bidirectional 
recurrent neural network ; CNN: Convolutional Neural Network; RNN: Recurrent Neural 
Network ; eCRFs: electronic Case Report Forms; CT: Computer Tomography; LSTM: Long 
Short-term Memory (recurrent neural network); BERT: Bidirectional Encoder Representations 
from Transformers; PRO: Patient Reported Outcomes; CTCAE: Common Terminology 
Criteria for Adverse Events; VAERS: Vaccine Adverse Event Reporting System; PRAPARE: 
Protocol for Responding to and Assessing Patients’ Assets, Risks, and Experiences; SCC: 
Squamous Cell Carcinoma; SEER: Surveillance, Epidemiology, and End Results; TCGA: The 
Cancer Genome Atlas; VA: Veterans Affairs Data Warehouse/Registry 
 
1. Introduction 
 
Oncology, like most medical specialties, is amid a data revolution with increasing interest and 
research that employs artificial intelligence (AI) to address clinical questions [1-6]. Under the 
AI umbrella, machine learning (ML), deep learning (DL), and hybrids of the two are the 
subject of a significant rise in publications [7-12]. However, AI approaches, in particular DL, 
are data-hungry, and it has become increasingly clear that there are significant limitations to 
both mining existing large-scale data sets as well as robustly acquiring prospective data that 
can translate into reproducible and generalizable AI mediated analyses and conclusions [13] 
[14-17]. The use of clinical oncologic data, although collected on a large scale, remains limited 
due to missing, incorrect or manually entered data and the lack of resource allocation to data 
curation in real-world settings [18]. As Sanyal et al. astutely put it “free-text clinic notes may 
offer the greatest nuance and detail about a patient's clinical status, they are largely excluded 
in previous predictive models due to the increase in processing complexity and need for a 
complex modeling framework” [18]. The problem may be approached by addressing the 
individual aspects of unstructured [1,19-24] clinical notes (e.g. history and physical exam) 
[25,26] , operative reports [3,27], pathology reports [28-32] and imaging reports [33-39] to 
analyze outcomes: response [21,40-42], toxicity [43-45]and survival [33,46]. Natural Language 
Processing (NLP) has grown considerably in medicine to be employed for documentation 
[47,48], outcome prediction [1,27,43,49], phenotyping [50,51], data extraction [17,28,49,52-56] 
and analysis, clinical trial eligibility [41,57,58], exploration of literature [51,59,60], evaluating 
impact on workload and recruitment with active parallel growth in the secondary use of 
expanding clinical data sets [1,58,61]. NLP methodology continues to evolve, with roughly 
25% of NLP methods being rule based and up 50% machine learning based [34] with variation 
on the method based on the data at hand [17]. Significant barriers to wide-ranging 
implementation remain with an inability to aggregate findings across studies due to different 
NLP methods, evaluation and reporting, lack of diverse patient samples, heterogeneity across 
diseases, datasets, data collection methods and applications [16]. Significant parameters 
known to carry prognostic importance in oncology outcomes, such as performance status, 
comorbidities, and social history, are still not widely deployed in oncology AI efforts as data 
sets remain insufficiently robust to allow for their widespread inclusion and the promise of 
solutions such as NLP has yet to deliver. The goal of this review is to provide an updated 
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overview of natural language processing (NLP) and the current state of its application to 
oncology documentation for clinicians and researchers that wish to implement NLP to 
augment registries and/or advance research projects. Attention was lent to the integration of 
NLP into the clinic to address the missing link for oncologic data showcasing areas where 
significant advances have been made, and a drive towards transfer of expertise is promising 
in 2022.  
 
2. Clinical History  
 
The inclusion of clinical information embedded in both the history and the physical exam into 
AI approaches remains underserved, neglected, or incomplete due to heterogenous and 
inconsistent capture resulting in a lack of clinician confidence in the inclusion of such data in 
analyses that explore primary and secondary endpoints and an ongoing lack of large-scale 
robust data for the computational approaches [19]. Essential areas for data capture to enable 
AI biomarker identification are wide-ranging but most significant is the capture of patient 
performance status [66], comorbidities [62],and social history [17,46,67,68], all of which may 
significantly alter management, treatment response and downstream progression and 
survival outcomes. Large-scale real-world data is lacking for outcome measures such as 
treatment response [43], symptom management [63,69,70] and toxicity [43,44] as well as 
patient-reported outcomes [71], advanced care planning [72,73], and goals of care [47,74,75]. 
These are significant areas of need in oncology, where NLP approaches are actively evolving. 
Natural language processing (NLP) represents an intuitive avenue to collect, extract, 
transform and load unstructured data while avoiding increasing clinician burden in data 
collection and annotation [19,76]. If effective, NLP can elevate cancer registry data, allow 
research queries, and identify patients who may benefit from novel treatments or enrollment 
on clinical trials [58,77]. Much has been written about NLP, and algorithmic advances in AI 
and NLP methods that have boosted their performance [13,23,35,63,64], and a recent PubMed 
search revealed 46 systematic reviews examining NLP in medicine or medicine affiliated 
specialties, while Wang et al. identified 2336 articles on NLP research 1999 to 2018 
approximately 100 annually [64]. However, it has become increasingly clear that NLP is both 
domain-adaptive (e.g., medical specialty specific (emergency room, oncology etc.) and clinical 
note type specific (e.g., initial consult, follow-up, on treatment note etc.) and task-adaptive 
(e.g., symptom duration, performance status etc.). This emphasizes the need to build on 
specific domains and tasks to realize the full potential of NLP in medicine [65,78] (Table 1). 
Per Davis et al. “History taking is more than information gathering, it affords the opportunity 
to decipher the patient's body language as the inquiry proceeds. At this stage, no symptom or 
circumstance should be disregarded. With an understanding of biology and medicine coupled 
with past experience, the physician tries to connect the salient parts of the patient's story to 
develop a plausible explanation of the physiologic or pathologic events that lead to illness.” 
[79]. As most health care providers are taught and intuitively understand, history taking is a 
truly human experience that far exceeds simple acquisition of information. It comprises a 
complex process of verbal and nonverbal interaction combined with the interpretation of 
information gathered. This is followed by information capture by clinician, student, or other 
allied specialist in a handwritten but now increasingly electronic format via telephone 
dictation or voice recognition powered mechanisms [61]. As has been discussed in recent 
publications, the framework of history taking is itself evolving to acquire an increased amount 
of information inherent in various aspects of patient care from symptomatology to treatment 
related toxicity to outcomes to best inform diagnosis and management [80]. It should also be 
noted that virtually all aspects of history taking, and physical exam have been impacted by 
the covid -19 pandemic and increased use of telemedicine [81-84]. As such, there is also an 



ISSN 2816-8089 
 

27 
Int J Bioinfor Intell Comput, Vol 1, Issue 1, February 2022 

increasing component of telemedicine-generated data and interest in optimizing the collection 
of information in this context as described by Bragin et al. for example, in neurology [83]. 
However, it is entirely clear that several factors have affected how data was captured even 
preceding the pandemic and the growth of telemedicine. Two major aspects have affected 
how information is captured and therefore how it can be extracted: the implementation of 
electronic medical records (EMR) and the implementation of voice recognition systems over 
traditional transcription services [21,47,48,72,74,75,85,86]. Most of the patient history data 
exists in an unstructured format (Figure 1) and existing research has shown that the use of 
both structured and unstructured data improves ML approaches, generating more clinically 
meaningful results [1]. A significant proportion of NLP dedicated literature originates from 
data that exists in smaller institutional or multi-institutional data sets as opposed to large 
public databases since these datasets are both richer in clinical information and allow for the 
capture of data parameters by manual means allowing for annotation (Figure 1). By 
comparison, large public data sets, are less rich in detailed clinical data but are more accessible 
to researchers for training and validation of NLP approaches (Figure 1). It should be noted 
that significant variability persists based on the clinical setting where the data originates 
(Figure 2). Figure 2 showcases the fictional scenario of a patient who presents with a cough 
and a neck mass and illustrates typical clinical notes from the first emergency room visit to 
the first oncology appointment. Each medical encounter captured information from a 
different point of view, hence lending value to particular aspects and lesser value to others. 
For example, the emergency room visit is focused on the immediate problem but the diagnosis 
(malignancy?) or even more specifically a tissue diagnosis is not available, nor are staging 
investigations, all of which are available to radiation oncologist who sees the patient 2 weeks 
later, reflecting very different levels of information available and captured. Analogous to this, 
affiliated specialties that the patient is referred to (anesthesia, medical oncology, nutrition, 
speech language pathology, dentistry, social work) also will value discipline specific factors 
that are then captured accordingly. In this fictional scenario, the same information may be 
captured in different manners in different domains and even within the same domain. For 
example, the discrepant capture of the smoking history (“20 pack yr hx” vs. “20 pack years”) 
which arguably could be harmonized as one term to be recognized. Achieving commonality 
in the context of the past medical history is arguably much more comples, as illustrated in this 
example. This is exemplified using coronary artery disease (CAD) as a feature of the past 
medical history. It is captured as “not yet diagnosed” (NYD), as “CAD, low blood counts 
(NYD)”, as “CAD” and as “coronary artery disease”, “heart attack” and even “heart failure”. 
In this case, the “heart failure” term is actually associated with the patients` brother not the 
patient himself which would be challenging for NLP to recognize. This example illustrates 
also how the alcohol intake history (“2-3 drinks per week” (ER note) vs. “denies alcohol use” 
in subsequent notes) is discrepantly captured posing a challenge for NLP (Figure 2). 
Explanations for such significant discrepancies may be multifactorial. In the case of the alcohol 
intake history, the patient may have discontinued alcohol use following the diagnosis or may 
have forgotten to describe his alcohol use as perhaps evidenced by the “trouble providing a 
clear history” statement in the note, itself a multifactorial problem or the patient may have not 
wish to disclose their alcohol use for fear of stigmatization or bias. On the other hand, the 
provider may have failed to elicit a thorough history or may have done so but forgotten to 
document it. They may have become aware of the patients` alcohol use at a later date and this 
may be captured in a later note e.g., after speaking with the patients` daughter and obtaining 
a collateral history. Therefore, it is comprehensible that the use of NLP for clinical notes is 
extremely challenging since each note in isolation would likely result in vastly different 
registry outputs and taking some or all notes into account would result in significant 
irreconcilable discrepancies (Figure 2). These difficulties are evident in the literature 
[16,35,61,87,88]. Yan et al. examined 9 studies in sepsis prediction and detection but could not 
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carry out a meta-analysis due to incomparable measurements among the studies [1]. While 
factors such as age or gender are captured robustly, as are demographics in general and this 
is generally structured data (Figure 1), unstructured features (Figure 1) are poorly captured 
in registries, and these include past medical history, family history, social history which can 
lead to missing important implications as relating to a cancer diagnosis and decisions 
regarding management. Features such as transportation difficulties, finances, and family-
related factors are even more poorly captured potentially leading to bias in AI results that are 
generated based on such registry data. Staging information pulled from clinical documents is 
also a challenge since its capture is variable and the addition of staging relevant information 
over time e.g., HPV status in the fictional scenario (Figure 2) is problematic to extract as is the 
development of metastatic disease [77] . Several authors have investigated converting and 
harnessing unstructured data to structured data [17,23,28,29,43,89,90]. Source documents such 
as pathology reports and some operative reports, which can also include staging information, 
are generally time consuming to capture manually and require consistent and considerable 
expertise to do so. A significant number of publications examining NLP as a solution to these 
data challenges have dealt with breast cancer where the creation of databases is ongoing 
[18,19,40,43,57,89,91-94] and NLP has been particularly prolific in the breast cancer field 
representing 23.3 % of all NLP assisted medical research (closely followed by lung cancer with 
14.56%) [64]. Many solutions however are not scalable. Percha et al. looked at the feasibility 
of natural language inference (NLI) as a scalable solution for registry curation using 5 state-
of-the-art, pretrained, deep learning based NLI models to clinical, laboratory, and pathology 
notes employed towards 43 different breast oncology registry fields and evaluated the models 
against a manually curated, 7439 patient breast oncology research database [19]. Considerable 
variation in performance was noted both within and across fields due to incorrect inferences 
through models' tendency to misinterpret historical findings, and confusion based on 
abbreviations and subtle term variants common in clinical text [19]. Ultimately the authors 
concluded that NLP methods require specially annotated training sets or constructing a 
separate model for each registry field. However, they found that a single pretrained NLI 
model could simultaneously curate dozens of different fields. While NLI methods remain 
largely unexplored in the clinical domain NLI could increase the efficiency of registry 
curation, even with no additional training [19]. Bar et al. used NLP to examine the relationship 
between the method of cancer detection and genomic and clinical risk, and its effect on 
adjuvant chemotherapy recommendations in breast cancer. They found an association 
between the method of cancer detection and both genomic and clinical risk noting that 
symptomatic breast cancer, especially in young women, remains a poor prognostic factor that 
should be taken into account when evaluating patient prognosis and determining adjuvant 
treatment plans [91]. However, broad approaches that are more likely to result in reproducible 
and generalizable results need to be generated. Such studies showcase that clinical history 
matters but raise questions as to how it is captured. To illustrate this point in the fictional case 
described in Figure 2, the duration of symptoms as captured in 3 different notes is 
considerably heterogenous and one can easily imagine how NLP could result in discrepant 
results (Figure 2). To advance NLP in medicine, in 2022 and beyond, significant efforts will 
continue to be directed at creating specialized lexicons. Jung et al. describe this most 
significantly time-consuming step of NLP, the creation of a specialized lexicon, introducing 
4243 unique lexicon items for matching patients to clinical trials automatically based on 
eligibility matching and text mining analysis in the breast cancer domain, which they 
evaluated by comparing it with the Systematized Nomenclature of Medicine Clinical Terms 
(SNOMED CT) [57]. In 2022, we will be looking for increased literature presence of specialized 
lexicons in various clinical oncologic settings.  
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Table 1: Selected systematic reviews on natural language processing (NLP) in medicine published 
2017 to present.  
 

Systematic review Subject # of 
studies 

included 

Reference 

Medical specialty 
   

Sepsis prediction, early detection, and 
identification using clinical text for 
machine learning: a systematic review 

Sepsis, 
prediction, early 
detection 

9 Yan et al. J Am Med Inform 
Assoc. 2021 Dec 13;ocab236. 
[1] 

*Systematic review of current natural 
language processing methods and 
applications in cardiology 

Cardiology 37 Turchioe et al. Heart. 2021 
Oct 28.[2] 

Natural Language Processing in 
Surgery: A Systematic Review and Meta-
analysis 

Surgery 29 Mellia et al. Ann Surg. 2021 
May 1;273(5):900-908.[3] 

Natural Language Processing 
Applications in the Clinical 
Neurosciences: A Machine Learning 
Augmented Systematic Review 

Clinical 
Neuroscience 

48 Buchlak et al. Acta 
Neurochir Suppl. 
2022;134:277-289.[4] 

Machine Learning and Natural 
Language Processing in Mental Health: 
Systematic Review 

Mental Health 58 Le Glaz et al. J Med Internet 
Res. 2021 May 
4;23(5):e15708.[5] 

Application of Artificial Intelligence 
Methods to Pharmacy Data for Cancer 
Surveillance and Epidemiology 
Research: A Systematic Review 

Pharmacy Data 
Oncology 

36 Grothen et al. JCO Clin 
Cancer Inform. 2020 
Nov;4:1051-1058. [6] 

**The reporting quality of natural 
language processing studies: systematic 
review of studies of radiology reports. 

Radiology reports 
(quality) 

164 Davidson et al. BMC Med 
Imaging. 2021 Oct 
2;21(1):142[16] 

A systematic review of natural language 
processing applied to radiology reports 

Radiology reports 164 Casey et al. BMC Med 
Inform Decis Mak. 2021 Jun 
3;21(1):179. [34] 

Deep Learning for Natural Language 
Processing in Radiology-Fundamentals 
and a Systematic Review 

Radiology (2018-
2019) 

10 Sorin et al. J Am Coll 
Radiol. 2020 May;17(5):639-
648.[38] 

Electronic Health Record (EHR) aspects 
general and specific 

   

*Extracting social determinants of health 
from electronic health records using 
natural language processing: a 
systematic review 

Social 
determinants of 
health from EHR 

82 Patra et al. J Am Med 
Inform Assoc. 2021 Nov 
25;28(12):2716-2727.[17] 

Natural Language Processing of Clinical 
Notes on Chronic Diseases: Systematic 
Review 

Chronic Diseases 106 Sheikhalishahi et al. JMIR 
Med Inform. 2019 Apr 
27;7(2):e12239.[62] 

*Natural language processing 
algorithms for mapping clinical text 
fragments onto ontology concepts: a 
systematic review and recommendations 
for future studies 

Mapping clinical 
text to ontology 
concepts 

77 Kersloot et al. J Biomed 
Semantics. 2020 Nov 
16;11(1):14. [13] 
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Natural language processing systems for 
capturing and standardizing 
unstructured clinical information: A 
systematic review 

NLP for 
unstructured 
clinical 
information 

86 Kreimeyer et al. J Biomed 
Inform.  2017 Sep;73:14-
29.[23] 

Impacts of structuring the electronic 
health record: Results of a systematic 
literature review from the perspective of 
secondary use of patient data 

Structuring the 
EHR 

85 Vuokko et al. Int J Med 
Inform. 2017 Jan;97:293-
303.[61] 

Natural language processing of 
symptoms documented in free-text 
narratives of electronic health records: a 
systematic review 

Free-text 
narratives in EHR 

14 Koleck et al. J Am Med 
Inform Assoc.  2019 Apr 
1;26(4):364-379.[63] 

Systematic Evaluation of Research 
Progress on Natural Language 
Processing in Medicine Over the Past 20 
Years: Bibliometric Study on PubMed 

NLP in medicine 2336 Wang et al. J Med Internet 
Res. 2020 Jan 
23;22(1):e16816.[64] 

Current approaches to identify sections 
within clinical narratives from electronic 
health records: a systematic review 

NLP in EHR 39 Pomares-Quimbaya et al. 
BMC Med Res Methodol. 
2019 Jul 18;19(1):155.[65] 

Clinical Research 
   

A systematic review on natural language 
processing systems for eligibility 
prescreening in clinical research 

Prescreening 
clinical research 

11 Idnay et al. J Am Med 
Inform Assoc. 2021 Nov 
2;ocab228. [58] 

Adverse event reporting 
   

A systematic review of natural language 
processing for classification tasks in the 
field of incident reporting and adverse 
event analysis 

incident reporting 
and adverse 
event  

35 Young et al. Int J Med 
Inform. 2019 
Dec;132:103971.[45] 
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Figure 1:Top panel: Data components in the spectrum of unstructured, semi-structured and structured 
data in oncology Middle panel: Major publicly available databases such as SEER (Surveillance, 
Epidemiology, and End Results), TCGA (The Cancer Genome Atlas) and VA (Veterans Affairs Data 
Warehouse/Registry), collect structured and semi-structured data. Lower panel: NLP (Natural 
Language Processing) related publications by data source of origin illustrating all registries (blue), 
SEER only (orange), TCGA only (grey), VA only (yellow) (PubMed search 1/19/2022), showcasing an 
emphasis on NLP related publications that employ oncology site specific databases and registries at the 
state, multi and single  institutional level in greater proportion as compared to major publicly available 
data bases reflecting both lack of un-structured data capture and the role of NLP in converting 
unstructured data to structured data.  
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Figure 2: A fictional clinical scenario of a patient with p16+ squamous cell carcinoma (SCC) of the 
base of tongue (BOT) and a hypothetical glimpse at clinical notes ranging from the emergency visit 
note to the first oncology note with emphasis on domains requiring NLP data extraction: clinical 
history, duration of symptoms, past medical history, social history, physical exam, performance status, 
diagnosis and staging and referral to affiliated specialties (denoted by a multitude of notes originating 
within each specialty). 

 
3. Social History 
 
Social history is particularly significant in oncology since it can capture important cancer risk 
factors and features that alter management and outcomes. Smoking is an important feature of 
any oncologic history [17,95]. Medical providers are trained to not merely capture a binary 
parameter (smoking yes/no) but rather elicit and capture pack-years, and whether and when 
the patient quit/restarted and provide counseling. However, smoking histories are complex 
and heterogeneously captured (Figure 2). Patients may have quit and restarted, cut down and 
so on and when this is captured, it may be challenging for NLP to “pick up” on nuances. 
Nonbinary data remains challenging to mine using NLP and using improper data can again 
lead to bias. Clinicians understand the importance of the smoking history. They may naturally 
form conclusions from the data they collect from the patient on history hence biasing how 
they capture information and what aspects they lend importance to e.g., Human Papilloma 
Virus (HPV) status in the fictional scenario (Figure 2). A patient with a significant smoking 
and alcohol history may have a different capture of their p16 or HPV status vs. a patient with 
fewer lifestyle risk factors for head and neck cancer (Figure 2). However, if the patient does 
have a significant smoking history a different molecular profile in a lung tumor may be 
discussed or head and neck cancer a different result on p16 analysis of the tumor may be 
anticipated, impacting how clinicians document and what referrals are made. In a non-
oncology example, where smoking history was incorporated, Gomollon et al. performed a 
multicenter, retrospective study using data from eight Spanish National Healthcare Network 
hospitals from 2014 to 2018 using NLP to examine the impact of smoking on Crohn's disease 
relapses. Predictive models were created with ML algorithms, namely, logistic regression, 
decision trees, and random forests. They identified variables such as smoking as a risk factor, 
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described treatment patterns with biologics and examined relapse prediction noting the 
importance of patients' age, biochemistry values, and assessment of risk factors for relapse in 
a clinical setting [95]. Social history on support systems is so unstructured, it is rarely if ever 
captured in registries but is of significant importance to overall survival [46]. Social 
Determinants of Health (SDoH) information is often collected however, the lack of 
standardized data elements, assessment tools, measurable inputs, and data collection 
practices in clinical notes greatly limits the access to this information. Smoking status (n=27), 
substance use (n=21), homelessness (n=20), and alcohol use (n=15) are the most frequently 
studied SDoH categories. Homelessness (n=7) and other less-studied SDoH (e.g., education, 
financial problems, social isolation and support, family problems) are mostly identified using 
rule-based approaches. In contrast, machine learning approaches are popular for identifying 
smoking status (n=13), substance use (n=9), and alcohol use (n=9) [17]. A secondary cross-
sectional analysis conducted on data from a prospective longitudinal cohort study of 251 
hospitalized patients with aggressive hematologic malignancies used NLP to identify the 
extent of patients' social support (limited vs. adequate as defined by NLP-aided chart review 
of the electronic health record). Multivariable regression models were used to examine 
associations of social support with overall survival (OS), death or readmission within 90 days 
of discharge from index hospitalization, time to readmission within 90 days, and index 
hospitalization length of stay [46]. The authors found associations of limited social support 
with lower OS and a higher likelihood of death or readmission within 90 days of hospital 
discharge, enforcing the utility of NLP to evaluate the extent of social support and the need 
for larger studies. Further to this, a recent systematic review [17], identified 6402 publications 
looking at social determinants of health and NLP, of which, after applying study inclusion 
criteria, 82 publications were selected. The authors found that smoking status, substance use, 
homelessness, and alcohol use were the most frequently studied categories. Interestingly, 
homelessness and other less-studied domains (e.g., education, financial problems, social 
isolation and support, family problems) were mostly identified using rule-based approaches, 
while machine learning approaches were popular for smoking status, substance, and alcohol 
use [17]. New and evolving free text areas include social media where active efforts are 
ongoing [5,64] although not yet much explored in oncology (Table 1). Ongoing work is needed 
in the investigation of symptoms and symptom documentation in electronic health records 
(EHR) free-text narratives with patient characteristics and symptom-related NLP algorithms 
or pipelines and vocabularies lacking [63]. Over the last several years, with the increased 
implementation of electronic medical records, digital records can be more effectively mined 
than handwritten documentation and SDoH categories are increasingly transitioning from 
unstructured data to structured data paving the way for exciting research and outcome linked 
publications in 2022. 
  
4. The Physical Exam 
 
The capture of data pertaining to the physical is particularly challenging since there is 
significant variability between clinician physical exams and yet further variability in how in 
depth the exam is captured on paper or electronically (Figure 2). The use of abbreviations is 
variable but accepted and commonplace as evidenced by their use in standard medical 
licensing exams and in practice [19]. In fact, considering time constraints and need to capture 
information in electronic medical records (EMR), there has been significant impact in how the 
physical exam is documented to ensure maximal efficiency especially considering that many 
clinicians are under pressure to document their findings on electronic terminals in the patient 
room during the patient interaction. This has led to a decrease in the “richness” of the 
documented findings and emphasis on capture for future references that also serves 
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medicolegal constraints. One particular area that represents a significant barrier effectively 
employing large scale data originating in real world settings for oncologic outcomes, is the 
lack of consistent capture of performance status which has been shown in multiple 
malignancies to be most associated with overall survival but is also associated with selection 
of management plans and secondarily progression of disease (Figure 2). Data sets that do 
carry a robust capture of performance status are usually originating on clinical trials or smaller 
institutional registries both carrying risk for bias, trials since selected trial patient population 
and institutional registries the bias in data captured from a select area(s), by select providers. 
In real world data sets, capture is inconsistent and when present can vary in format (ECOG 
(Eastern Cooperative Oncology Group) vs KPS (Karnofsky Performance Status)) by specialty 
(Figure 2) and the evolution of the performance status over the course of the disease is very 
poorly captured outside of clinical trial data. The physical exam is one area of unstructured 
data in particular in the “real-world” setting, where we anticipate that progress will require 
more significant research in the coming years as it represents a facet of oncology that has been 
impacted most significantly by both the implementation of EMR and the unparalleled growth 
of telemedicine in the context of the pandemic. In 2022, we will see more research examining 
the process of data curation in this space. 
 
5. Diagnosis, Pathology, Staging and Imaging Reports 
 
Source documents in oncology that are particularly defining for meaningful registry data are 
diagnosis and staging [36,77,89] often mentioned in clinical notes and defined in the pathology 
[28,29,31,32,96], operative [3,27] and imaging reports [16,33,34,38,97]. Both pathology and 
operative reports have increasingly been moving towards synoptic or more structured 
reporting, but this is still heterogenous and unstructured data is common. On the surface one 
might surmise that the international classification of diseases (ICD) coding is already 
embedded EMR system and may provide a robust framework. This is however rarely the case 
and providers are often aware of the heterogeneity in capture (Figure 2). ICD coding often 
exists in separate silos e.g., pathology report, operative report and may not be easily pulled 
from EMR as they represent unstructured data (Figure 1) resulting in variability in capture in 
clinical notes [3,93,98] (Figure 2). A recent study established an EMR information knowledge 
system and collected the data of patient medical records and disease diagnostic codes on the 
front pages of 8 clinical departments (endocrinology, oncology, obstetrics and gynecology, 
ophthalmology, orthopedics, neurosurgery, cardiovascular medicine) for statistical analysis 
[98]. Natural language processing-bidirectional recurrent neural network (NLP-BIRNN) 
algorithm was employed to optimize medical records. This revealed that that the coder 
unclear about the basic rules of main diagnosis selection and the classification of disease 
coding and did not code according to the main diagnosis principles. Further, the disease was 
not coded according to different conditions or specific classification, the code of postoperative 
complications was inaccurate, the disease diagnosis was incomplete, and the code selection 
was too general. They concluded that coders and medical personnel should strengthen 
communication and knowledge training [98]. BIRNN was superior when compared with the 
convolutional neural network (CNN) and recurrent neural network (RNN) in accuracy, 
symptom accuracy, and symptom recall, potentially providing a solution to this very 
challenging problem. As oncology clinicians are aware, in the hematology-oncology setting, 
pathology reports are particularly complex and the extent of detail captured in the EMR is 
highly variable. Zaccaria et al. used NLP to transpose unstructured reports into structured, 
standardized electronic health records by developing an automated tool to recognize 
information from pathology reports and populate electronic case report forms (eCRFs) [96]. 
The tool was applied to hemo-lymphopathology reports of diffuse large B-cell, follicular, and 
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mantle cell lymphomas and assessed for accuracy, precision, recall and F1-score on internal 
and external report series. 326 (98.2%) reports were converted into corresponding eCRFs, and 
the tool showed high performance in capturing (1) identification report number (all metrics > 
90%), (2) biopsy date (all metrics > 90% in both series), (3) specimen type and diagnosis [96]. 
In a similar study, Abedian et al. developed a NLP pipeline implemented on an open-source 
framework called Leo using 555,681 surgical pathology reports of 329,076 patients which was 
then evaluated on subsets of reports from patients with breast, prostate, colorectal, and 
randomly selected cancer subtypes, and achieved an accuracy of 1.00 for International 
Classification of Diseases, Tenth Revision codes, 0.89 for T staging, 0.90 for N staging, and 0.97 
for M staging with an F1 score of 1.00 for International Classification of Diseases, Tenth 
Revision codes, 0.88 for T staging, 0.90 for N staging, and 0.24 for M staging [28]. While it was 
not generalizable to other institutions, the recommendation was made by the authors for other 
institutions to adopt a similar NLP approach and reuse the code available at GitHub-to 
support research[28]. In particular, in the metastatic setting the data becomes more unreliable. 
This aspect was examined by Alba et al. in the setting of metastatic prostate cancer using the 
Veterans Affairs Corporate Data Warehouse. The authors identified all veterans with prostate 
cancer and then using an NLP algorithm identified patients with any history or progression 
of metastatic prostate cancer. They found that out of a total of 1,144,610 Veterans diagnosed 
with PCa (2000 – 2020), 76,082 (6.6%) were identified by NLP as having metastatic disease at 
some point during their care with a specificity of 0.979 and sensitivity of 0.919 [77]. Do et al. 
employed NLP to look at cancer patients' computer tomography (CT) reports and generate a 
database of metastatic phenotypes with the goal of aggregating this with genomic studies to 
explore prognostic imaging phenotypes with relevance to treatment planning [37]. An area of 
significant need is radiologic reporting where outside of prospective protocols structured 
reporting of specific features can be highly variable. NLP in radiology reporting [16,35,99] has 
been used to develop tumor spread signatures [16], predict outcomes [33] and real-time 
screening for clinical trials [41,57]. Kim et al. developed a deep-transfer-learning-based 
natural language processing model that analyzed serial magnetic resonance imaging reports 
of rectal cancer patients to predict their overall survival and evaluated the model in a 
retrospective cohort study of 4,338 rectal cancer patients. The proposed model, utilizing pre-
trained clinical linguistic knowledge, could predict the overall survival of patients without 
any structured information and was superior to the carcinoembryonic antigen in predicting 
survival [33]. This is a noteworthy example of deep-transfer-learning using free-text 
radiological reports successfully predicting survival and the authors pointed out significantly 
increasing utility of unstructured medical big data [33]. Davidson et al. carried out a 
systematic review of studies applying NLP to radiology reports (164 studies 2015-2019) and 
noted that the proportion of studies that described their annotated, training, validation, and 
test set were 67.1%, 63.4%, 45.7%, and 67.7% respectively leading the authors to conclude that 
suboptimal reporting quality precludes comparison, reproducibility, and replication. They 
encouraged the development of reporting standards specific to clinical NLP studies [16]. In a 
non-oncology study looking at 2 datasets consisting of radiologist-annotated reports of both 
trauma radiographs, chest radiographs and CT studies the authors investigated the impact of 
class imbalance, variation in dataset size, variation in report complexity, and on NLP 
performance of four types: a fully connected neural network (Dense), a long short-term 
memory recurrent neural network (LSTM), a convolutional neural network (CNN), and a 
Bidirectional Encoder Representations from Transformers (BERT)] of deep learning-based 
NLP [35]. All four model-architectures demonstrated high performance with metrics up to > 
0.90, however the BERT algorithm was superior producing stable results despite variation in 
training size and prevalence. However, it should be noted that this is an evolving field and 
despite the promise of BERT, generalizability and the use of multi-language setting NLP are 
yet the subject of ongoing investigations [29,36,99]. A lack of transparent methodology limits 
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comparison of approaches and reproducibility. Multiple systematic reviews on NLP in 
radiology have been carried out (Table 1). Oncology (24%) was the most frequent disease area 
analysed [16]. Most studies had dataset size > 200 (85.4%) but the proportion of studies that 
described their annotated, training, validation, and test set were 67.1%, 63.4%, 45.7%, and 
67.7% respectively. About half of the studies reported precision (48.8%) and recall (53.7%). 
Few studies reported external validation being performed (10.8%), provided data availability 
(8.5%) and had code available. Existing reviews support the need for development of 
reporting standards specific to clinical NLP studies [16]. Diagnosis, pathology, staging and 
imaging reports have arguably been most often the subject of NLP approaches and in 2022 we 
will see a greater emphasis on validation and quality assurance.  
 
6. Response, Toxicity, and Patient-reported Outcomes 
 
Outside of prospective clinical trials or natural history protocols, response and toxicity are 
capture albeit inconsistently in clinical notes. Treatment response is rarely captured 
quantitatively, and toxicity is unlikely to be captured consistently or according to CTCAE 
framework [44,45]. The reasons here are multifactorial but often secondary to resource 
limitations. NLP tools in this space are actively evolving (Table 1). Outcome capture beyond 
overall survival remains problematic since patient-reported outcomes (PRO) have their own 
barriers in oncology since patients are ill and PRO tools may result in additional time needed 
on the part of patient and caregiver. While PRO tools have grown significantly in clinics and 
many centers have implemented validated tools, information may be incomplete and time 
points may be missing. Ill and poor performance status patients are less likely to complete 
PRO questionnaires and data may be biased by larger data sets from better performing 
patients with longer survivals. The richness of clinical notes remains unmined as often 
unstructured. Unstructured data free text such as in context of patient centered care and the 
patient experience feedback [100] is almost exclusively employed in this space (Figure 1). This 
is of need in children and adolescent long-term survivors of malignancy and rare cancers 
where data may suffer from additional scarcity. Notably in a child and adolescent survivor 
cross-sectional study from St. Jude Children's Research Hospital where pain interference and 
fatigue symptoms were reported through in-depth interviews after transcription, analyzable 
sentences were semantically labeled by 2 content experts for each attribute (physical, 
cognitive, social, or unclassified) and two NLP/ML methods were used to extract and validate 
the semantic features, with the bidirectional encoder representations from transformers 
(BERT) performed best suggesting that collecting unstructured PROs via interviews or 
conversations during clinical encounters and applying NLP/ML methods may facilitate PRO 
assessment in child and adolescent cancer survivors and represent an alternative to using 
standard PRO surveys [71]. In an interesting study with potential applicability to other areas, 
Mathew et al. developed NLP-ML models for incident classification in radiation oncology. 
They integrated these into the incident learning system to generate a drop-down menu such 
that the model as a semi-automated feature could improve the usability, accuracy and 
efficiency of the incident reporting system overall [101]. Hong et al. had two independent 
reviewers identify National Cancer Institute Common Terminology Criteria for Adverse 
Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits 
during radiation therapy with adjudication by a third reviewer. They compared the results to 
a NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System used to 
extract CTCAE terms and found that NLP accurately detected a subset of documented present 
CTCAE symptoms but was limited for negated symptoms [44]. PRO questionaries have been 
increasingly implemented in oncology clinics over several years both in the context of clinical 
trials and real-world settings and in 2022 and beyond. This investment will result in more 
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sophisticated approaches to patient-reported outcomes and treatment-related toxicity 
analyses using NLP which will likely proliferate rapidly since this data is increasingly 
available in structured formats.  
 
7. Barriers to Advancement 
 
Heterogeneous approaches to the reporting on the development and evaluation of NLP 
algorithms that map clinical text to ontology concepts persist (Table 1). Over one-fourth of the 
identified publications did not perform an evaluation, and over one-fourth of the included 
studies did not perform validation, and 88% did not perform external validation [13]. Most of 
the data is English-centric, with 78% English language and most published in last five 
years[3,64]. There is a scarcity of publicly available data that likely impairs the development 
of more advanced methods, such as extracting word embeddings from clinical notes [62]. Free 
text narratives pose a special problem, and more research should be directed at site-specific 
oncologic stetting to create frameworks for patient characteristics, histories, and symptoms in 
NLP algorithms and pipelines and vocabularies openly available [63]. Variable reporting and 
missing metrics (e.g. F-score) are holding back the implementation of NLP in oncology, and 
transparency is needed regarding data sources and the performance of AI methods [6]. The 
use of custom dictionaries in most studies also impairs reproducibility and their use in 
conjunction with the UMLSⓇ meta thesaurus is recommended [65]. It is noteworthy that far 
less than 25% of papers that involve NLP in medicine meet inclusion criteria for systematic 
reviews [1,2,5,6,16,34,51,58,62,64]. As NLP is increasingly evolving from traditional methods 
to deep learning models such as LSTM and BERT [35], the field is gaining a greater 
understanding of barriers that include dataset size, the lack of ground truth annotation and 
the impact of prevalence on class imbalance in addition to data variation and the impact of 
the large size of clinical texts on algorithm performance. 
 
8. Ongoing Efforts and Future Directions 
 
The increased need to leverage existing data to identify clinically relevant biomarkers has 
given rise to Meta Map, a natural language processing tool developed and funded by the 
National Library of Medicine to map biomedical text to the Unified Medical Language System 
Meta thesaurus by applying specific tags to clinically relevant terms [87]. With Meta map the 
goal is to use terminology-driven semantic tags, incorporate them into a semantic frame that 
is task-specific to add context. This was used by Holmes et al. to select 6,713 relevant reports 
containing standard-of-care biomarkers for metastatic breast cancer. The name, type, numeric 
quantifiers, non-numeric qualifiers, and time frame for several features (breast cancer gene 1 
and 2, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, 
and programmed death-ligand 1) were extracted and then tested on pathology reports from 
the internal pathology laboratory at Henry Ford Health System. This was compared to a 
certified tumor registrar who reviewed 400 tests and resulted in 95% accuracy. In 2016 the 
FDA launched the NLP Web Service for Structuring and Standardizing Unstructured Clinical 
Information in anticipation of addressing growing unstructured data sets in medicine [23] and 
in 2018 this effort resulted in creating a corpus of 1000 Vaccine Adverse Event Reporting 
System (VAERS) reports annotated for 36,726 clinical features, 13,365 temporal features, and 
22,395 clinical-temporal links [102]. A similar reference standard in oncologic specialties is 
evolving. Concerning social determinants of health, attempts to improve standardization at 
the national level have been made by the Protocol for Responding to and Assessing Patients’ 
Assets, Risks, and Experiences (PRAPARE) [17]. Moving forward, lexicons are actively being 
developed but are not available outside of oncologic sites such as breast and lung. There is 
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currently no standardized approach to clinical notes and the implementation of EMR and 
voice recognition has placed additional burden on health care providers, driving a trend 
towards a less rich documentation to allow for time management in the clinic. NLP of existing 
documentation and its change over time can and should direct what aspects of clinical notes 
are potentially vital for oncologic biomarker analysis but are currently captured poorly. This 
understanding will allow for EMR to be optimized to allow rapid, effective, and consistently 
captured features e.g., dropdown menus. Efforts are underway but EMR implementation is 
often suffering from lack of direct provider input and the secondary use of data is often not 
the priority of implementation of EMR systems. Lexicons are now increasingly being 
generated in several domains and oncologic sites addressing a crucial limiting step to 
harnessing NLP in converting unstructured clinical data to structured data that can alter care 
and improve outcomes. Multiple reviews support the development of reporting standards 
specific to clinical NLP studies [16] (Table 1). Kersloot et al. generated a list of sixteen 
recommendations regarding using NLP systems and algorithms, usage of data, evaluation 
and validation, presentation of results, and generalizability of results that may be employed 
[13]. Depending on the data and the specific oncologic setting, it will also be crucial to 
determine whether NLP confirms clinical hypotheses rather than developing entirely new 
information [5]. One of the most critical obstacles identified to machine learning approaches 
in clinical NLP is often listed as data annotation. However, as illustrated in Figure 2, this is 
likely to remain a barrier due to the workload and expertise involved. Active learning and 
distant supervision have been explored, and future research in this field in 2022 will benefit 
from data augmentation and transfer learning, or unsupervised learning, which do not 
require data annotation [103]. Automated data extraction pipelines may advance this effort 
but standardizing NLP methodology and accuracy reporting for greater generalizability will 
be needed as well as the use of crowdsourcing competitions to spur innovative NLP pipelines 
would further [104].  
 
9. Conclusions 
 
There has been increased focus on imaging and genomic data in AI-driven methods 
implemented in oncology. This is in part secondary to the lack of robust clinical annotated 
data sets and large-scale registries that possess detailed clinical data for DL methods. While 
data is collected on a large-scale in all oncology settings, the lack of consistency in large scale 
clinical data outside of clinical trials has limited its use. Crucial parameters such as patient 
comorbidities, family or social history and performance status are lacking. Staging 
investigations, pathology, operative and imaging reports are often unstructured or semi-
structured. NLP may overcome existing clinical resource constraints to allow the capture of 
information from these sources, augment growing radio genomic analyses and draw 
meaningful clinically applicable conclusions that allow for improvement in patient outcomes. 
However, it is increasingly clear that several variables impact the approaches employed and 
the results of NLP, most importantly the documentation itself which is location, setting and 
population dependent. There has been increased growth in NLP methods however, quality 
assurance, reporting, and lexicon generation is evolving as is the addition of data from social 
media and wearables, all of which we will see increasingly employed and the subject of NLP 
approaches in 2022. The goal remains to identify and grow data that can be mined with 
practical NLP methods to allow for robust data acquisition in oncology that enables superior 
computational analysis of large-scale oncologic data sets. At this time most areas of oncologic 
need have benefited from research activity in NLP but generalizability is lacking. Open-source 
code may be used to optimize NLP, reproduce findings, and allow for increasingly effective 
algorithms. This is an area of ongoing development where clinician engagement will be 
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paramount in moving the needle to incorporate the richness of human gathered information 
into AI learning. In 2022, two important questions will need to be asked when EMR is 
implemented towards clinical data: does the data captured have the potential to be employed 
in secondary research? And can clinical knowledge transfer be produced as a result? In 
oncology, the focus should be placed on specific niche areas where biomarkers are likely to 
play the most significant role and solving a clinical need should be paramount. As of the end 
of 2021, we are still in the process of finding the missing link for big oncologic data and several 
avenues discussed here are likely to produce increasingly pivotal results in the coming years 
as data matures and NLP approaches become increasingly robust.  
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