111 research outputs found

    A Proof-of-Concept Project for Utilizing U3 Technology in Incident Response

    Get PDF
    This paper discusses the importance of live forensics and the use of an automated USB based smart data gathering technology to be used in incident response. The paper introduces the technology and its application in incidence response as well as highlight how it works. It also explains the tools that it uses to gather the live data from target systems. The paper also highlights some of the advantages and disadvantages of the technology as will as its limitations. The paper concludes with mentioning the importance of testing the tool and ways it can be developed and taken further

    Digital Forensics Investigation Frameworks for Cloud Computing and Internet of Things

    Get PDF
    Rapid growth in Cloud computing and Internet of Things (IoT) introduces new vulnerabilities that can be exploited to mount cyber-attacks. Digital forensics investigation is commonly used to find the culprit and help expose the vulnerabilities. Traditional digital forensics tools and methods are unsuitable for use in these technologies. Therefore, new digital forensics investigation frameworks and methodologies are required. This research develops frameworks and methods for digital forensics investigations in cloud and IoT platforms

    Anonymity, hacking and cloud computing forensic challenges

    Get PDF
    Cloud Computing is rising and becomes more complex with the daily addition of new technologies. Huge amounts of data transits through the Cloud networks. In the case of a cyber-attack, it can be difficult to analyze every single aspect of the Cloud. Legal challenges also exist due to the local positioning of Cloud servers. This research paper aims to alleviate the challenges in Cloud computing forensics and to sensitize businesses and governments to several solutions. The results of this research are relevant to cyber forensic analysts but also to network administrators and can be used during the preliminary stages of a Cloud computing environment creation. A complete test has been created using ethical hacking tools and cyber forensics to understand the steps of an investigation in a single service that could be implemented in a Cloud. The paper goes on to present frameworks that have been developed in order to maintain integrity and repetition. In the end, it is legal aspects and shortcomings in the technical structure implementation that represent the Cloud computing forensics’ main challenges

    EmLog:Tamper-Resistant System Logging for Constrained Devices with TEEs

    Get PDF
    Remote mobile and embedded devices are used to deliver increasingly impactful services, such as medical rehabilitation and assistive technologies. Secure system logging is beneficial in these scenarios to aid audit and forensic investigations particularly if devices bring harm to end-users. Logs should be tamper-resistant in storage, during execution, and when retrieved by a trusted remote verifier. In recent years, Trusted Execution Environments (TEEs) have emerged as the go-to root of trust on constrained devices for isolated execution of sensitive applications. Existing TEE-based logging systems, however, focus largely on protecting server-side logs and offer little protection to constrained source devices. In this paper, we introduce EmLog -- a tamper-resistant logging system for constrained devices using the GlobalPlatform TEE. EmLog provides protection against complex software adversaries and offers several additional security properties over past schemes. The system is evaluated across three log datasets using an off-the-shelf ARM development board running an open-source, GlobalPlatform-compliant TEE. On average, EmLog runs with low run-time memory overhead (1MB heap and stack), 430--625 logs/second throughput, and five-times persistent storage overhead versus unprotected logs.Comment: Accepted at the 11th IFIP International Conference on Information Security Theory and Practice (WISTP '17

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    An Integrated Architecture for Enhanced Structuring of Mobile Market Place

    Full text link

    Prov-Trust : towards a trustworthy SGX-based data provenance system

    Get PDF
    Data provenance refers to records of the inputs, entities, systems, and processes that influence data of interest, providing a historical record of the data and its origins. Secure data provenance is vital to ensure accountability, forensics investigation of security attacks and privacy preservation. In this paper, we propose Prov-Trust, a decentralized and auditable SGX-based data provenance system relying on highly distributed ledgers. This consensually shared and synchronized database allows anchored data to have public witness, providing tamper-proof provenance data, enabling the transparency of data accountability, and enhancing the secrecy and availability of the provenance data. Prov-Trust relies on Intel SGX enclave to ensure a trusted execution of the provenance kernel to collect, store and query provenance records. The use of SGX enclave protects data provenance and users’ credentials against malicious hosting and processing parties. Prov-Trust does not rely on a trusted third party to store provenance data while performing their verification using smart contracts and voting process. The storage of the provenance data in Prov-Trust is done using either the log events of Smart Contracts or blockchain’s transactions depending on the provenance change event, which enables low storage costs. Finally, Prov-Trust ensures an accurate privacy-preserving auditing process based on blockchain traces and achieved thanks to events’ logs that are signed by SGX enclaves, transactions being registered after each vote session, and sealing the linking information using encryption schemes

    Challenges in Cybersecurity and Privacy - the European Research Landscape

    Get PDF
    Cybersecurity and Privacy issues are becoming an important barrier for a trusted and dependable global digital society development. Cyber-criminals are continuously shifting their cyber-attacks specially against cyber-physical systems and IoT, since they present additional vulnerabilities due to their constrained capabilities, their unattended nature and the usage of potential untrustworthiness components. Likewise, identity-theft, fraud, personal data leakages, and other related cyber-crimes are continuously evolving, causing important damages and privacy problems for European citizens in both virtual and physical scenarios. In this context, new holistic approaches, methodologies, techniques and tools are needed to cope with those issues, and mitigate cyberattacks, by employing novel cyber-situational awareness frameworks, risk analysis and modeling, threat intelligent systems, cyber-threat information sharing methods, advanced big-data analysis techniques as well as exploiting the benefits from latest technologies such as SDN/NFV and Cloud systems. In addition, novel privacy-preserving techniques, and crypto-privacy mechanisms, identity and eID management systems, trust services, and recommendations are needed to protect citizens’ privacy while keeping usability levels. The European Commission is addressing the challenge through different means, including the Horizon 2020 Research and Innovation program, thereby financing innovative projects that can cope with the increasing cyberthreat landscape. This book introduces several cybersecurity and privacy research challenges and how they are being addressed in the scope of 15 European research projects. Each chapter is dedicated to a different funded European Research project, which aims to cope with digital security and privacy aspects, risks, threats and cybersecurity issues from a different perspective. Each chapter includes the project’s overviews and objectives, the particular challenges they are covering, research achievements on security and privacy, as well as the techniques, outcomes, and evaluations accomplished in the scope of the EU project. The book is the result of a collaborative effort among relative ongoing European Research projects in the field of privacy and security as well as related cybersecurity fields, and it is intended to explain how these projects meet the main cybersecurity and privacy challenges faced in Europe. Namely, the EU projects analyzed in the book are: ANASTACIA, SAINT, YAKSHA, FORTIKA, CYBECO, SISSDEN, CIPSEC, CS-AWARE. RED-Alert, Truessec.eu. ARIES, LIGHTest, CREDENTIAL, FutureTrust, LEPS. Challenges in Cybersecurity and Privacy - the European Research Landscape is ideal for personnel in computer/communication industries as well as academic staff and master/research students in computer science and communications networks interested in learning about cyber-security and privacy aspects
    • …
    corecore