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ABSTRACT The broadening dependency and reliance that modern societies have on essential services
provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical
Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just
at the economic level but also in terms of physical damage and even loss of human life. Complementing
traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring
Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are
in place and compliant with standards and internal policies. Forensics assist the investigation of past security
incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can
be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the
latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing
in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of
tackling the requirements imposed by massively distributed and complex Industrial Automation and Control
Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and
redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced
a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the
collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic
template for a converged platform. These results are intended to guide future research on forensics and
compliance auditing for Critical Infrastructure Protection.

INDEX TERMS Critical infrastructure protection, industrial automation and control systems, cybersecurity,
forensics, compliance auditing.

I. INTRODUCTION
Modern societies are increasingly dependent on essential
products and services provided by Critical Infrastructures
(CIs), supported by Industrial Automation and Control
Systems (IACS) such as power plants, energy distribution
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networks, transportation systems, and manufacturing
facilities. These IACS are becoming larger and more
complex, due to the increasingly complex physical processes
they manage and the increasing amount of (heterogeneous)
data generated by a growing number of interconnected
control and monitoring devices. These IACS are also
heavily dependent on common IT systems whose security,
management, and compliance must also be considered.
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This evolving scenario requires new strategies to improve
the associated Critical Infrastructure Protection (CIP)
frameworks.

A. THE CHALLENGE OF PROTECTING CRITICAL
INFRASTRUCTURES
Critical Infrastructures (CIs) provide a series of essential
services which are key to ensure the security, societal and
economical activities of a country, thus constituting an
attractive target for cyber-attackers [1], [2]. Smart grids,
water, oil, and gas distribution networks are becoming more
complex due to the growing number of interconnected
distributed devices, sensors, and actuators, often widely
dispersed in the field, as well as the increasing amount
of information exchanged among system components.
Water-to-Wire generation, microgeneration, smart metering,
oil, and gas distribution, or smart water management, among
others, are pushing the boundaries of the classic Industrial
Cyber Physical Systems (CPS) model, fostering a new
generation of IACS and the Industry 4.0 paradigm [3].
Naturally, such developments have an impact on IACS
cybersecurity requirements, due to a substantial increase in
the scale and complexity of the protected infrastructure [4].

This increase in terms of interconnections has a direct
impact in terms of the vulnerable attack surface, exposing
the IACS to both traditional and new threats. For instance,
according to IBM Managed Security Services data [5],
attacks targeting IACS have increased over 110 percent
in 2016. This is linked with the growing connectivity of
industrial systems. Network-based attacks targeting Critical
Infrastructure (CI) are also becoming a greater concern,
as state-sponsored groups have become more active. Their
activities comprise unauthorized access to government and
corporate networks with the main purpose of gathering
information, although they can be potentially disruptive for
CIPs [6]. This trend is already a major concern, and is
expected to further intensify in the future [7], [8].

Other IACS security threats come from their increasingly
distributed nature, regarding both the physical processes
under control, which have also become more widely
dispersed and interconnected, and the associated control
applications, which have also become increasingly
distributed, for sake of scalability, elasticity, adaptability,
resiliency, and fault-tolerance. Overall, this scenario makes
it difficult to understand the nature of incidents and to
assess their progression and threat profile. Moreover,
defending against those threats is becoming increasingly
difficult, requiring orchestrated and collaborative distributed
detection, analysis, and reaction capabilities.

Continuously capturing live data from a running IACS
system, that has an intrinsic volatile nature, presents
important challenges to forensics investigators. For instance,
volatile data in physical memory contains information about
the current state of the system, such as process information,
open network connections and encryption keys.

Another challenge comes from the amount of data
to be collected, analyzed, and stored for detecting and
profiling cyberattacks. According to IBM [9], the world
produces over 2.5 quintillion bytes of data every day, and
80% of it is unstructured (and not analyzed). To improve
decision making, enterprises are facing new challenges
to collect a large amount of available data, retrieved
from heterogeneous sources (including structured and
unstructured data), and enriching it with the inclusion of
additional contextualized data. In the specific scope of CIP,
to face the tremendous growth of raw data being produced
by sensors and process controllers, a Big Data approach
is required to handle massive amounts of data in intensive
online and offline processing flows. The growth of volume
and heterogeneity of data sources, systems, workloads,
and environment variability contributes to the complexity
of data management. Traditional approaches, such as
Relational Database Management Systems (RDBMS),
might not be able to handle the deluge of industrial data
they are experiencing, especially while addressing the
need for improved performance, reliability, and user
experience [10]. Gaining critical business insights by
querying and analyzing such massive amounts of data is
becoming a vital requirement [11].

B. THE NEED FOR BETTER FORENSICS AND COMPLIANCE
AUDITING
Security incidents trigger a series of reactive activities, such
as blocking access to and quarantining compromised systems,
assessing the impact of the breach, mitigating the damage,
and conducting forensics investigations to identify exploited
vulnerabilities, identify the attackers, and enhance future
defensive actions.

In 2020, it took an average of 207 days to identify a
breach, and 280 days to contain it [12]. Such a scenario results
from the current solutions demanding a multi-step process
where security analysts goes to multiple systems to retrieve
uncorrelated data and then correlate it manually. Moreover,
the complexity, skillset, and costs required to deploy and
operate those solutions present a significant number of
obstacles to their adoption. Therefore, in addition to other
security tools, such as specialized probes, intrusion detection
platforms and firewalls, forensics tools are increasingly
important for security professionals. Such tools provide the
means to extract relevant insights and evidence from large
volumes of heterogeneous data produced from the sources
within the CI, which can be leveraged both for forensics and
security analysis purposes.

Auditing compliance with applicable laws, regulations,
policies, and standards processes also contributes to increase
CI trustworthiness. However, such auditing processes are
complex, since they need to use of a large number of tools,
protocols and standards to correlate and enforce the audit
compliance policies that may help to prevent future incidents.
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Aggregating such tools in a unified platform can reduce the
complexity, effort, and costs associatedwith investigating and
connecting individual alerts to uncover potential threats. Such
a proactive approach may avoid the disruption of operations
and prevent evidence from being lost or corrupted. Moreover,
it will also help deal with the evolving cyber threats affecting
CIs, preparing the platforms for post-incident forensics
analysis.

Due to the considerable overlap of functionalities
associated with security forensics and compliance audit
processes, it makes sense to consider them as unified
platforms, which in this paper we generically designate as
FCA frameworks – even though many tools are applied only
to one of these areas, they still share most requirements
and technologies. In this work, we highlight the importance
of both forensics and compliance auditing as high-priority
topics for CIP.

C. SCOPE AND CONTRIBUTIONS
This paper surveys the research trends, challenges, and gaps
in the field of FCA for Critical Infrastructures, exploring the
most relevant approaches, methodologies, and technologies.
To the best of our knowledge, this is the first survey
specifically focused on FCA applied to the CIP domain.

Based on the lessons learned from the survey, this paper
also presents:

• a classification taxonomy for the different aspects and
technologies related with FCA systems.

• a reference architecture for converged FCA systems,
identifying their key functional blocks.

• and a discussion of potential future directions for
research on the subject of FCA for CIP.

As illustrated in Figure 1, the rest of the paper is organised
as follows:

• The background of CIP and IACS security are
introduced in Section II.

• The next three sections survey related works: Section III
for forensics, Section IV for compliance auditing, and
Section V for modern analytics applied to FCA, in the
era of Big Data, AI and ML.

• Based on the lessons learned from the survey, the
next two sections are devoted to classification and
architectural models: Section VI proposes a new
taxonomy for FCA systems for CIP, and Section VII
introduces a reference architecture for FCA systems.

• Finally, Section VIII discusses achieved results and
identifies open issues, while Section IX concludes the
paper.

II. CIP AND IACS SECURITY LANDSCAPE
In this section we provide an overview of CIP, with a more
detailed perspective on IACS security – since most CIs are
based on some sort of industrial control frameworks. The role
of this section is to provide the reader with a more detailed
perspective on how such systems are currently managed,

FIGURE 1. Structure of the paper.

from a security perspective, so that the associated needs,
in terms of forensics and compliance auditing, become more
clear. First, we discuss the role of IACS and Supervisory
Acquisition and Data Control (SCADA) systems in CIP.
Next, we introduce related security frameworks from NIST,
ISO/IEC and other standards development organizations.
Next, we address IACS security, introduce the concept of
Security Information and Event Management (SIEM), and
discuss other security analytics frameworks.

A. THE ROLE OF IACS AND SCADA SYSTEMS IN CIP
As already mentioned, a large number of CIs are based
on large-scale IACS or Industrial Control Systems (ICS)
which, traditionally, use SCADA systems to manage physical
processes such as energy production and distribution, water
and sewage treatment, traffic management and railways.

These SCADA systems can be roughly defined as a set of
systems of command and control networks that control the
operational sequence of the underlying physical processes.
A typical SCADA system controlling CIs generally includes
a control center and several field sites [13]. These sites are
often distributed over a wide geographical area. Field sites
are equipped with devices such as Program Logic Controllers
(PLC)s or Remote Terminal Units (RTU)s [14], that control
the on-site machines and periodically send information about
the state of the field equipment to the control center. SCADA
communications use a wide range of protocols, such as
DNP3, Modbus, PCOM, ProfiNet, DeviceNet, ControlNet or
Common Industrial Protocol [15].

In the early days, SCADA systems did not incorporate
cyber-security mechanisms, since they were significantly
resource-constrained and designed to run in isolated
networks. They consisted of simple I/O devices transmitting
signals between master and remote terminal units. Currently,
SCADA systems can communicate over Internet Protocol
(IP) networks, enabling its connection to the corporate
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network or even directly to the Internet, to integrate SCADA
data with external systems such as Enterprise Resource
Planning and Business Process Management tools. This
interconnection of SCADA systems with wider networks
brings new threats for which they were not originally
designed, making them much more vulnerable. Moreover,
CIs such as smart grids and water distribution networks
have become increasingly complex due to the number of
interconnected distributed devices, sensors and actuators,
often widely dispersed in the field, and the larger amount of
information exchanged both within the control system and
between the control system and external systems.

As pointed out by Ahmed et al. [13], Cornelius and
Fabro [16], and Eden et al. [17], the different nature of
SCADA systems also raises important challenges in the
application of forensics, when compared to traditional
approaches. Those classic forensics methodologies
potentially interfere with the IACS operation, since they may
introduce latency and cause critical processes to fail. Another
challenge arises from the use of resource-constrained devices
such as RTU and PLC, which often lack the storage and
processing capabilities required by forensics tools. Also,
SCADA logs might be not suitable for forensic investigation,
as they are geared towards process management, not
cybersecurity. Nonetheless, there is still a general lack of
SCADA-specific forensics tools.

To prevent known and unknown attacks, including security
vulnerabilities and threats, organizations are adopting a
common set of defense solutions such as firewalls, antivirus,
Intrusion Detection System (IDS)s, Intrusion Prevention
System (IPS)s, and SIEM [18], [19]. Eden et al. [17]
provided an overall forensic taxonomy of the SCADA system
incident response model and discussed the development
of forensic readiness within SCADA system investigations,
including the challenges faced by the SCADA forensic
investigator and suggested ways in which the process may
be improved. van der Knijff [20] identified possible sources
of evidence in the investigation process in CI. Some of
them include engineering workstations, databases, historian,
Human Machine Interface (HMI), application server, Field
devices like PLC, RTU, Intelligent Electronic Devices (IED),
firewall logs, web proxy cache, and ARP tables.

B. SECURITY FRAMEWORKS
Several security frameworks incorporate a series of
documented processes used to define the policies and
procedures around the implementation and management of
information security controls in an enterprise environment.
These frameworks are a blueprint for building an information
security program to manage risk and reduce vulnerabilities
by applying a function for identifying, protecting, detecting,
and responding to activities. These frameworks can help
information security professionals to define and prioritize
the tasks required to manage their organizations’ security.
Examples of IT security frameworks include Control
Objectives for Information and Related Technology (COBIT)

[21], ISO 27000 series [22], NIST Special Publications
800-53 [23], 800-171 [24], NIST Cybersecurity Framework
for Improving Critical Infrastructure Cybersecurity [25] and
HITRUST CSF. The HITRUST CSF represents a certifiable
framework that provides a comprehensive, flexible, and
efficient approach to regulatory/standards compliance and
risk management [26].

NIST SP 800-53 is the standard required by United
States (US) federal agencies but could also be used by any
company to build a technology-specific information security
plan [27]. NIST 800-171 [24] provides federal agencies
with recommended security requirements for protecting the
confidentiality of controlled unclassified information.

The ISO/IEC 27000 series provide key information
security frameworks applicable to any industry [22], [28].
For instance, ISO/IEC 27004:2016 provides guidelines
supporting organizations in assessing security performance
and effectiveness indicators [29] to fulfill the requirements
of ISO/IEC 27001:2013, with ISO/IEC 27005:2018
providing guidelines for information security risk
management. ISO/IEC 27037:2012 provides guidelines
on the handling of digital evidence, including identification,
collection, acquisition, and preservation of potential
digital evidence [30]. ISO/IEC 27038:2014 covers the
techniques for performing digital redaction on digital
documents [31]. ISO/IEC 27042:2015 provides guidance on
the analysis and interpretation of digital evidence keeping
continuity, validity, reproducibility, and repeatability [32].
ISO/IEC 27050 represents a group of standards (27050-1 to
27050-3) addressing the discovery of Electronically Stored
Information, a term coined to refer toforensic evidence in the
form of digital data [33].

Also within the ISO/IEC 27000 series, ISO/IEC
27041:2015 provides guidelines on how to make sure that the
methodologies and processes used to investigate information
security events are suitable [34]. ISO/IEC 27043:2015
includes guidance for common incident investigation
techniques across numerous incident investigation scenarios
utilizing digital evidence, based on idealized models [35].
ISO/IEC 27006:2015 specifies requirements and guidance
providing audit and certification of information security
management systems [36]. ISO/IEC TS 27008:2019
provides guidance for evaluating the implementation
and operation of information security controls, including
their technical assessment, following an organization’s
established information security requirements, including
technical compliance [37]. ISO/IEC 27040:2015 provides
technical recommendations on how organizations can
establish an appropriate level of risk mitigation by using
a tried-and-true approach to data storage security strategy,
design, documentation, and implementation.

Moreover, there are other relevant standards within
the ISO/IEC frameworks, such as ISO 21043-1:2018 that
introduces important terms and definitions in forensic
sciences [38], also providing the requirements for the
forensic process with a focus on the recognition, recording,
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collection, transport, and storage of potential forensic
items [39]. Also, ISO/IEC 30121:2015 is a framework for
helping organizations to be prepared for digital investigation
processes [40].

Regarding forensics education and training, the ASTM
standards are worth mentioning [41]. ASTM E2678
helps promoting computer forensics by developing model
courses that are compatible with other forensic science
programs. ASTM E2917 provides core standards for forensic
science practitioners’ training, continuing education, and
professional development, including training criteria for
competency, training documentation and implementation,
and continual professional development. ASTM E2916 takes
computer forensics, image analysis, video analysis, forensic
audio, and facial identification are just some of the phrases
and definitions that are utilized in the study of digital and
multimedia evidence.

Deciding upon the applicable regulatory or standardisation
frameworks an organization must comply with must
consider several factors such as the type of industry or
country-specific compliance requirements. For example,
US traded companies may start by complying with
Sarbanes-Oxley [42] and COBIT. In case the company
needs information security capabilities the option is ISO
27000 certification. NIST SP 800-53 is the standard
required by US federal agencies but could also be used by
any company to build a technology-specific information
security plan. The HITRUST CSF integrates well with
healthcare software or hardware vendors looking to provide
validation of the security of their products. NIST 800-94
[43], was introduced in 2007 highlighting the challenges
in the detection accuracy, extensive tuning, blindspots, and
performance limits.

C. IACS SECURITY
Although the protection of CI is a topic not necessarily
dependent on technology, this survey is driven by a
technological approach focused on IACS protection. IACS
incorporate Control Systems (CS) designed to manage and
control physical processes, constituting one of the main
targets for CIP activities. These CS can be defined as manual
or automatic mechanisms used to manage dynamic processes
by adjusting or maintaining physical quantities such as
mass, temperature, or speed. CS are classified in two distinct
categories: open- and closed-loop. Open-loop CS generate
their output based on input only, while in a closed-loop
the output is used as a feedback mechanism together with
inputs to generate new output [20]. CS are generally used
for monitoring and controlling industrial and infrastructure
processes and dispersed assets supported by centralized data
acquisition and supervisory control, often constituing a CPS.
In the scope of the so-called essential services, these CPS
are vital, often being highly interconnected and mutually
dependent.

2010’s Stuxnet [44] and 2015’s BlackEnergy [45],
[46] demonstrated that the so-called security by obscurity
approach is no longer adequate for CIs. Stuxnet was the first
known malware specifically designed to target automation
systems, infecting between 50,000 to 100,000 computers
worldwide. BlackEnergy was directly responsible for power
outages for 250,000 customers in western Ukraine. Since
then, many other attacks targeting IACS were recorded, such
as Gauss, Havex, and Shamoon [47].

This situation has prompted the development of suitable
mitigation mechanisms to deal with cyberthreats against
IACS which may compromise integrity, information/control
confidentiality or availability [48], such as unauthorised
accesses, break-ins, penetration attempts, and other forms
of abuse, to detect and secure the automation infrastructure
perimeter from attacks [49].

Among these mechanisms, IDS provide the means to
monitor the infrastructure, detecting security anomalies
or suspicious behaviour by resorting to signature
(rule-based) [50] or anomaly detection strategies [51].
Due to their nature, IDS often constitute one of the most
relevant data sources for FCA purposes, detecting threats and
recording incident-related valuable evidence for forensics
analysis purposes, helping understand attacks and prevent
them in the future.

While the IDS concept was borrowed from the
Information and Communication Technologies (ICT)
world, its deployment in IACS must obey a specific set of
restrictions calling for the development of domain-specific
approaches [52]. As a result, several proposals for IACS
IDS have been presented over the past years, covering
several levels of the automation infrastructure, from the
field-level, as it is the case for the Shadow Security Unit
(SSU) PLC security monitor [53], to higher levels, as it is
the case for Rosa et al. [3], which presented a distributed
security framework for IACS. IDS systems can be classified
according to their targets, as it is the case for Network
Intrusion Detection System (NIDS) and Host Intrusion
Detection System (HIDS) [54].

IPS are the natural counterpart for IDS, providing
active response capabilities, with Intrusion Detection and
Prevention System (IDPS) combining both detection and
response capabilities [54]. However, it must be said that
automatic reaction mechanisms are often avoided by CI
operators, due to the risk of a knowledgeable attacker abusing
them for its own purposes.

Nevertheless, components such as IDS can not provide
an encompassing level of protection for the infrastructure,
a situation that requires the adoption of a structured approach
capable of providing collection, analysis and storage for
monitoring information coming from the entire IACS
infrastructure. SIEM systems, which will be next presented,
constitute one of the most popular approaches to consolidate
diversified and relevant information, leveraging it for
analytics purposes.
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D. SECURITY INFORMATION EVENT MANAGEMENT
SIEM systems are designed to collect and correlate security
log data (record of events that occurred on a computer
or network device) from a wide variety of sources within
organizations, including security controls, operating systems,
and network infrastructure, systems and applications. Their
data sources include log data and network telemetry data
fromflows and packets. Typically, their blocks include source
device, log collection, parsing normalization, rule engine, log
storage, and event monitoring [55]. Once the SIEM has the
log data, data are normalized and further analysis generates
alerts when suspicious activity is detected. Moreover, SIEM
provides reports on the request of administrators. Some
SIEM products can also act to block malicious activity, for
instance by running scripts (e.g. triggering reconfiguration of
firewalls and other security controls). Forensic investigations
will benefit from correlating the collected data with the
information from the context, including assets, users, threats,
and vulnerabilities.

As stated by Gartner [56], SIEM technology provides
Security Information Management, log management,
analytics, compliance reporting, and Security Event
Management. They provide real-time monitoring and
incident management for security-related events from
networks, security devices, systems, and applications.

SIEM technology is typically deployed to support
three primary use cases: advanced threat detection,
basic security monitoring, and forensics and incident
response. Forensics and incident response contributes
with dashboards and visualization capabilities, as well as
workflow and documentation support to enable effective
incident identification, investigation and response. Basic
security monitoring includes log management, compliance
reporting, and basic real-time monitoring of selected
security controls. In the case of advanced threat detection,
it includes real-time monitoring and reporting of user
activity, data access, and application activity, incorporation
of threat intelligence, business context and ad hoc query
capabilities. At the most basic level, a SIEM system can be
supported by rules or employ a statistical correlation engine
between event log entries. Pre-processing may happen at
collectors, with only part of those events being moved to a
centralized management component, reducing, in this way,
the volume of information being communicated and stored.
Notwithstanding, this approach can discard important events
too early [57].
Sun et al. [58] presented an event-linked network model

to query and organize big volumes of data. In this
model, events are primary units in organizing the data,
whereas links represent the association among them.
This model is applied in Cloud or virtual-environment
analysis, as a huge quantity of involved data, such as
the case of the Internet service provider with SIEM
solution having a huge quantity of data at centralized
locations.

In 2021, Gartner Magic Quadrant for SIEM identified
the following market leaders: Exabeam, IBM, LogRhythm,
Rapid7, Securonix, Splunk, Splunk, HPE, and Intel
Security [56]. A survey of those solutions, including an
analysis of external factors affecting the SIEM landscape
in the mid and long-term, can be found in [55]. Authors
concluded that SIEM systems are slowly converging with
Big Data analytics tools.

E. OTHER SECURITY ANALYTICS PLATFORMS
Active security and forensic capabilities are typically
offered separately by different security systems [59]. While
SIEM have pushed for the development of complementary
approaches for collecting and analyzing event data to identify
and respond to advanced attacks, several operators have
found them to be somehow limited due to reasons such as the
lack of orchestration capabilities, prompting the emergence
of a new generation of security analytic technologies. Next,
we introduce some of those tools and technologies.

Endpoint Detection and Response (EDR) is a
complementary software to SIEM, extending detection
and response capabilities by acting as an additional log
source. According to Gartner [60], EDR is ‘‘a SaaS-based,
vendor-specific, security threat detection and incident
response tool that natively integrates multiple security
products into a cohesive security operations system that
unifies all licensed components.’’ EDR solutions record
and store system-level endpoint behaviors, and include
several data analytics techniques to detect suspicious system
behavior, provide contextual information, block malicious
activity, and provide remediation suggestions to restore
affected systems [61].

While the primary incident response tools for security
teams are EDR platforms, emerging Extended Detection and
Response (XDR) products integrate a set of security products
into a cohesive security incident detection and response
platform. Gartner defines them in a category aggregating
and correlating telemetry from different sources to synthesize
and draw conclusions to enable automated response actions.
In comparison to XDR and SIEM and Security Orchestration,
Automation and Response (SOAR) tools, XDR offers a
higher level of integration of their products at deployment,
with a focus on threat detection and incident response use
cases. Moreover, while a SIEM can be be delivered in a
Software as a Service (SaaS) model, most XDR products are
developed using new cloud-native architectures, making them
an emerging alternative or complement to existing SIEM
tools. Despite such advantages, some of the SIEM use cases,
such as generic log storage or compliance, are not replaced
by XDR solutions [56].
The combination of Elasticsearch, Logstash, and Kibana

from Elastic Stack, OpenSOC, Apache Metron, and other
tools leveraged with or natively using Big Data platforms
like Hadoop offers data collection, management, and
analytics capabilities. Some security analytics platforms
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are available [9], [62], [63], [64], [65], [66], and many
open-source solutions have been developed supporting
a wide spectrum of security-based analysis [67], [68].
OpenSOC, for instance, was one of the open-source platforms
incorporating scalable security analysis tools and providing,
in many cases, an alternative to the expensive commercial
SIEM-frameworks. It provides real-time security analysis
and data analytics. The OpenSOC framework also integrates
a great part of the Apache stack, such as Hadoop [69],
Kibana [70] and Elasticsearch [71] to store, index, and
enrich data sources, including network traffic and application
log data. Apache Metron [68] is another example of
those platforms, and the successor of OpenSOC. It also
provides a full-stack software infrastructure for the analysis
and detection of network intrusions, zero-day attacks, and
advanced persistent threats. IBM QRadar is another security
platform able to scale up in terms of performance and
storage. It is designed to monitor, correlate and store large
volumes of data. It includes searching capabilities over the
indexed data and also provides key capabilities such as risk
management, vulnerability management, incident forensics,
incident response, and application. It also includes incident
forensics to enable visibility to the questions who, what,
when, where, and how a security incident occurred [72].
There are examples of security platforms specifically

designed for CIP, as it is the case for the platform proposed
by Gonzalez-Granadillo et al. [73], where processes’ events
are received from multiple sources affecting a water CI to be
correlated to generate security alarms accordingly, indicating
the presence of a threat or an attack in the monitored
systems. Another example is [52] and [4], which presents an
hierarchical two-level correlation architecture for electricity
grids, which later evolved into a Big Data solution, presented
in [3].

F. SUMMARY
This section was not intended to provide an exhaustive
overview of the field, but rather to provide an encompassing
perspective about the specifics of the CIP and IACS domains
from a security standpoint, providing the reader with broad
knowledge about the problems, limitations and the solutions
being used by CI operators. These concepts are key for
understanding the next two sections, which will be devoted to
discussing the functions and role of forensics and compliance
auditing capabilities.

III. FORENSICS
Forensics refers to the application of science and technology
to an investigation process to find out the facts in criminal
or civil litigation. It comprises collecting evidence of the
occurred facts, records and digital trails that can be legally
used for criminal prosecution [74]. Based on this data,
backward tracing can be used to reconstruct the chain of
events that led to an incident, with forward tracing helping
understand the repercussions of that event. Moreover, such

procedures are often undertaken for reasons other than legal,
such as root cause analysis of system failures or incorrect
procedures, based on operational traces.

This section will start with the definition of what a Forensic
Process is, followed by a description of the associated
investigation processes and a definition of digital and network
forensics. Next, a brief survey on digital forensics is provided,
followed by a discussion of the impact of cloud computing on
forensics processes, data privacy aspects, forensics readiness.
Forensic schemas and interoperability formats are also
discussed, together with query and visualization tools. This
section closes with an overview of CPS forensics and the
impact of Internet of Things (IoT) and Industrial Internet of
Things (IIoT) on the forensics domain.

A. WHAT IS A FORENSIC PROCESS?
Overall, the definition of what constitutes a forensic process
is mostly coherent across different literature, regulatory
and/or standardisation sources. For instance, Rani and
Geethakumari [75] defined computer forensics as the science
allowing to identify, extract preserve, and describe the digital
evidence stored in digital devices and networks that can be
legally admissible in court for any cyber-crime or fraudulent
act. The National Institute of Standards and Technology
(NIST) [76] defined digital forensics or computer forensics
as a scientific method to identify, collect, examine and
analyze data, also comprising a systematic investigation
process of crimes in which evidence can be retrieved from
the media contents found in the associated digital device.
Casey [6] defined digital forensic investigation as a complex
and time-consuming activity in response to a cybersecurity
incident or cybercrime that should answer these questions:
what happened, when, where, how, and who is responsible.

Attacks against ICS and SCADA systems, such as
Stuxnet [44], Dragonfly [77] or Flame [78], highlighted
the relevance of forensic investigations for post-mortem
analysis. In many cases, this has prompted operators
to design and implement defense and forensic readiness
strategies, encompassing actions and procedures to provide
the capabilities to diagnose incidents and support the
identification and prosecution of attackers. Such capabilities
can also be helpful to deal with harmful events such as
natural disasters or hardware malfunctions, by providing the
capabilities to analyse the underlying SCADA Information
Technology (IT) system [13]. These approaches gain more
significance as breaches in SCADA systems may cause
dangerous consequences for both human life and the
infrastructure, beyond significant monetary loss or service
disruption [79], [80], [81].

While most cybersecurity tools are focused on detecting
and monitoring, forensic tools are focused on collecting
and recording traffic and events while, at the same time,
providing feedback information to the security actors.
Relevant operational events are monitored and recorded using
a forensic approach akin to a system black box, providing the
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FIGURE 2. Forensic investigation process.

means to investigate and retrieve evidence. Also, it should
be possible to trace the attack, prepare mitigation actions,
adjust countermeasures, apply damage control policies or
even recover from partial or total failure.

B. THE FORENSIC INVESTIGATION PROCESS
According to Hunt [59], the main purpose of intrusion
analysis and collection of forensically sound data is to seek
answers to the following questions:

• Who is responsible for the incoming intrusion or
outgoing data transfer?

• What kind of equipment and services were involved?
• Were they able to do this because of limitations of
incoming or outgoing security mechanisms?

As illustrated in Figure 2, according to authors such as
Whitman andMattord [54], the forensic investigation process
follows the basic methodology:

1) Preparation, including the identification of the relevant
items bringing value to evidence.

2) Acquisition of evidence with preservation, without
alteration or damage.

3) Assure at every step the evidence is verifiably authentic
and remains unchanged since the time it was seized.

4) Evidence examination and analysis of the data without
risking modification or unauthorized access.

5) Report the findings to the proper authority and take the
lessons learned.

In this context, evidence may refer to a physical object or
documented information about a past action that may help
disclose the intent of a perpetrator [54], support an alibi [6]
or provide legally admissible proof. It should be checked
whether it was obtained legally as a result of a court order
or by another order of an authorized institution or person.

The forensic investigation process should be able to
capture evidence before processes or services on the
running system overwrite useful volatile data [13]. This
may be justified for a wide array for scenarios such as
disputed transactions, allegations of employee misconduct,
presenting legal and regulatory compliance, negligence
and breach-of-contract charge avoidance, assisting law
enforcement investigations, meeting disclosure requirements
in civil claims, or supporting insurance claims when a loss
occurs.

Digital evidence comprises the data stored or transmitted
using computing means, which may be used for incident

analysis and/or proof purposes. In the course of a forensic
investigation, it should be assured that all available digital
evidence is not only protected from deletion but also from
modification without appropriate authorization [82], with all
steps being recorded [83]. This is vital for integrity purposes,
also protecting data from anti-forensics activities, which
comprise the techniques aiming at hampering the forensics
process, destroying or modifying any digital evidence [84].

For forensics applications, digital evidence integrity is a
key property as its violation invalidates the admissibility of
data for proof purposes. A cryptographic hash can be used
to assess the integrity of the evidence, as well as the copies
used along with the examinations and analysis results of
compromised systems — this way, an examiner can rely on
data he is working on, confident is exactly the one originally
captured. A hash can be computed in the moment data is
produced and used until the moment integrity is checked,
allowing to detect abnormal situations, for instance, when an
inconsistent data image does not accurately represent the state
of the data acquisition [13].

Data provenance, which provides contextual information
related to the origin of data, can support detailed explanations
on how a specific state was reached, being included in
evidence as a statement from the person carrying out the
extraction. It specifies the source system, the acquired
artifacts to denote the chain of custody as an audit trail of
all activities, and a timestamp of data extraction [85]. Several
approaches have been proposed to implement provenance
tracking (e.g., ES3 [86], PASS [87], SPADE [88], Story
Book [89], TREC [88]). Still in this scope, Zafar et al. [90]
proposed a taxonomy of existing secure provenance schemes.

Data provenance analysis can be used to extract host
events into provenance graphs that represent the entire system
execution and help causal analysis of system actions. Some
of the recent works focused on fidelity [85], [91], [92], [93],
[94], [95], while others focused instead on efficiency [83],
[95], [96], [97], [98], [99], [100], [101]. Data provenance
can also help reducing alert fatigue [102] and identifying
intrusions [103], [104], [105].
The highly volatile nature of digital evidence implies

that a careful integrity safeguarding approach should be
followed. This chain of custody process intends to help
preserving the integrity of the information, providing a
non-repudiable chronological trace [106] detailing how
evidence was acquired, processed/analyzed, handled, stored,
and protected, to be presented as admissible evidence in
court [107]. A chain of custody ensures the collected evidence
is not modified along the investigation process and from
the moment it was collected until it is presented [108].
Prayudi and Sn [109] provided an overview of the state of
the art about challenges in the digital chain of custody. Cosic
and Baca [110] presented a digital evidence management
framework aiming to improve the chain of custody of digital
evidence in all stages of the digital investigation process,
supported by the use of SHA-2 hash function for the digital
fingerprint of evidence.
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C. DIGITAL AND NETWORK FORENSICS
In 2008, the American Academy of Forensic Sciences
(AAFS), one of the most widely recognized professional
organizations for all established forensic disciplines,
recognized forensic computer-related crime investigation as
a legitimate area, for which a new Digital and Multimedia
Sciences section was allocated [6]. This enabled the
development of a common ground for the forensic science
community to share knowledge and address current
challenges [111].
Digital forensics deal with evidence extraction,

preservation, identification, documentation, and analysis
using well-defined law enforcement procedures, establishing
clear lines within the chain of custody. According to
McKemmish [112], digital forensics can be broadly
considered as having four stages, namely: identification,
preservation, analysis, and presentation. Several methods
have been proposed in the literature, aiming to formally
reconstruct the sequence of events executed during the
incident using proven methods [113]. However, the
significant growth in the volume of data and the number
of evidence items coming from a wide range of sources
raises new challenges when conducting digital forensic
investigations.

Imaging, hashing, and carving are among the available
techniques used by digital forensics investigations. Imaging
consists of copying storage media to be examined as
evidence. Such evidence can be compromised by modern
Operating Systems (OS), due to the operations in the
background on the file system, such as indexing or journal
resolution [114].

Cryptographic hashing or signing is used to provide
authenticity and integrity of files and other evidence. For
instance, Afzaal et al. [115] presented an architecture aiming
to overcome the limitations of the classic RSA algorithm
to provide event integrity protection, allowing a group of n
parties to participate in the digital signature process to enforce
authenticity and non-repudiation. As for hashing techniques,
while MD5 hashing was originally adopted by the forensics
community [116], it was later superseeded by SHA-1 as a
NIST federal standard, with a transition timeline towards
SHA-2 or SHA-3 being announced in December 2022.

Carving refers to the forensic tools to scan unused disk
blocks to find and recover deleted data. Carving uses known
header and footer signatures to combine the non-used nodes
into the original deleted files. Mikus [117] conducted an
analysis supported by the use of carving techniques. Recent
advances in carving included recovering capabilities of
fragmented files with more accuracy [118].
Within the digital forensics field, network forensics

is concerned with monitoring network traffic to assess
anomalies and attacks. To investigate such attacks,
several data sources are available, including packet filters,
firewalls, intrusion detection systems, honeypots, sinkholes,
surveillance and vulnerability scanning systems [59].

Software Defined Networking (SDN) was also leveraged by
Bates et al. [119] to deploy capture points over the network
to have a holistic view of network activity, which can be
used for forensics purposes. Reference [120] also discusses
the challenges of executing network forensics investigations
in virtual networking environments with tunneling and
SDN. Nevertheless, one of the most important challenges in
terms of network forensic has to do with the required data
storage and computing capabilities [121]. For instance, even
a moving window of some hours covering the duration of
relevant real-time traffic may require a significant amount
of storage from a computing cluster, something that may be
aggravated in case of sustained attacks

D. A BRIEF SURVEY ON DIGITAL FORENSICS
There is a considerable corpus of related literature on
digital forensics, whose focus is equally diverse. In this
line, Casino et al. [122] reviewed several works in the field
of digital forensics and identified their main topics and
challenges.

Regarding methodological aspects, Sommer [123] raised
awareness of the challenges involved in gathering, analyzing,
and presenting digital evidence among directors, managers,
and their professional advisers, with Williams [124]
providing direction to those who assist in the investigation
of cyber security incidents and crimes, not just for law
enforcement. van Baar et al. [125] reported benefits and
performance on processing digital forensic investigations on
a particular case involving collaboration between different
actors.

Regarding the subject of digital forensics frameworks
and other architectural developments, Verma et al. [126]
proposed a digital forensic framework that uses case
information, case profile data and expert knowledge for
automation of the digital forensic analysis process supported
by Machine Learning (ML) for finding evidence. Hunt and
Slay [59] advocate the need of a new forensic analysis
approach requiring the implementation of forensic engines,
supported by parallel processing while providing flexibility
on customizing activities for the analysis of evidential
data. Ahmadi-Assalemi et al. [127] presented a federated
Blockchain model that achieves forensic-readiness by
establishing a digital Chain-of-Custody and a collaborative
environment to qualify as digital witness for post-incident
investigations.

Specifically on the CIP scope, Ahmed et al. [128]
highlighted that forensic analysis for ICS is still in its early
development stages, due to its specialized nature, together
with the prevalence of proprietary and poorly documented
protocols. Nevertheless, Kilpatrick et al. [129], [130] and
Chandia et al. [131] proposed an architecture allowing to
capture and analyse sensor data and control actions in a
SCADA network (using agents located at strategic positions
within the network to capture the local traffic and forward
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a relevant portion of packets, called a synopsis, to a data
lake). Also, Elhoseny et al. [132] proposed a conceptual
framework for automated and secure forensic investigation in
modern complex SCADA networks, intentionally designed to
comply with green computing requirements. Eden et al. [17]
suggested deploying forensic hardware instrumentation
connected to field device artefacts as a wrapper implemented
at physical level, in order to improve the availability
and recovery of information for cases where SCADA
devices have restricted physical access.Valli [133] created
a framework that produces forensically verified signatures
for the Snort IDS for known and published vulnerabilities
of SCADA, enabling investigators to trace exploits during
analysis.

There are also many works focused on identifying existing
gaps and/or challenges, some which also proposing suitable
solutions to address them. For instance, Huang [134]
realized that the characteristics of big data complexity
(e.g., volume and variety) make traditional data mining
algorithms unsuitable to retrieve knowledge in forensics
scenarios, something that Quick and Choo [135] also address,
highlighting the challenges posed to digital forensic analysis
(considering the ongoing growth in the volume of data
seized and presented for analysis). These conclusions are
reinforced by Koven et al. [136], who noticed a lack of
suitable analysis tools for large datasets – despite the focus
on email datasets, the findings are likely to be broadly
applicable to other types of sources. Stelly and Roussev [137]
presented the concept and prototype implementation of the
first domain-specific language aimed at providing a practical
and formal description of digital forensic investigations as a
computation.

Regarding causality analysis for attack investigation,
several works have considered provenance graphs for
tracking based on audit logs. Their approach is mainly
related with the sub-topics based on causality, anomalies
and learning analysis. As an example, Zipperle et al. [138]
surveyed the literature on provenance-based IDS and
proposed a taxonomy. Alsaheel et al. [139] proposed a
framework to identify and reconstruct end-to-end cyber
attack stories from unmodified systems and software audit
logs. Kwon et al. [140] developed a model supported by
causality-based inference for audit logging. Ma et al. [141]
also proposed a provenance tracing system capable of
alternating between logging and unit-level taint propagation,
and event processing.

Considering digital forensics performance and assessment,
Ayers [142] proposed several metrics for measuring the
efficacy and performance of forensic tools, such as speed,
accuracy, completeness, reliability, and auditability. Roussev
and Richard [143] discussed the need of distributed forensics
approaches, highlighting the performance benefits inherent
to distributed computing and proposing a distributed digital
forensic tool to centralize data and distribute processing over
multiple devices, with background preprocessing capabilities

of multiple concurrent searches. Daubner et al. [144]
presented research towards verification of forensic readiness
in software development, with a focus on produced digital
evidence.

The topic of anti-forensics techniques and prevention
is also addressed in the literature and has been the
subject of research [145]. As an example, Rekhis
and Boudriga [113] developed and demonstrated an
anti-forensics aware theoretical digital investigation
approach, with Noura et al. [146] proposing a solution
to prevent anti-forensics techniques targeting log availability
and integrity (such as wiping and injection attacks), using
encryption, fragmentation and authentication for data
distribution across several storage nodes.

E. CLOUD FORENSICS
The cloud computing paradigm, which shifts information
from endpoint devices to a provider infrastructure [147],
has become popular among many organizations due the
potential cost and resource efficiencies it might entail,
also offering several operational benefits for CI, including
data redundancy, data availability and survivability when
essential system components are isolated or lost [148].
Its introduction raises new and substantially different
challenges for forensics, since the target environment is no
longer isolated and data is no longer acquired under the
investigator’s control – thus, there is an evident need to go
beyond traditional approaches [149]. In this scope, NIST
identified 65 challenges of conducting digital investigation
in cloud environments, also pinpointing existing technical
gaps [150].
Forensics activities in the cloud present important

challenges. Aspects such as the distribution of computing
and storage (which have an impact in terms of increased
attack surface), geographical storage dispersion across
distinct jurisdictions with specific procedures and laws,
privacy, or even the lack of norms on aspects such as
Service Level Agreement (SLA) regulating the client
and Cloud Service Provider (CSP), raise new complex
challenges to forensics investigators [151]. Even if the
CSP is compliant with the law enforcement agencies in its
respective jurisdictions, cloud forensics may be a costly and
time-consuming procedure [152], moreover considering how
much storage may be used on the tenant storage pool.

The increased need for forensic investigations involving
cloud-based scenarios has prompted the emergence of cloud
forensics [153], a hybrid approach encompassing remote,
virtual, network, live, and large-scale operations, geared
towards the generation of digital evidence from cloud
environments.

Moreover, cloud-based forensic architectures (which may
still be used with private clouds) can be seen as an online
solution to help remove any hardware dependency [154],
[155]. This can enhance forensic experts and investigators
activities with the tools and processes to be applied in
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the digital investigation of the collected evidence such as
sorting, indexing, data recovery or bookmarking, among
others. In this line, van Beek et al. [156] shared the lessons
learned from providing Digital Forensics as a Service
(DFaaS) implementations for almost 10 years, discussing
the organizational, operational and development perspective,
in a forensic and legal context. Zawoad et al. [157]
presented an architecture for a secure cloud logging
service, collecting information from different sources
around the datacenter, both software (hypervisors) and
hardware (network equipment), in order to create a complete
landscape of the operations in a datacenter. Similarly,
Zawoad et al. [158] proposed a Secure-Logging-as-a-Service
(SecLaaS) to enhance forensic investigation in the cloud
ecosystem that enables the acquisition of admissible log
evidence in the cloud.

A literature review revealed several cloud forensics
framework proposals. Manral et al. [159] surveyed the cloud
forensic literature published between January 2007 and
December 2018, categorized using a five-step forensic
investigation process, and included a taxonomy of existing
cloud forensic solutions as well. Ruan and Carthy [160]
described the need for new forensic tools or to extend the
existing digital forensic tools to make them fit into Cloud
frameworks, also presenting a forensic tool for OpenStack
Cloud which works through a daemon running in a compute
node delivering network logs and the images of instances
to the dashboard. Rani and Geethakumari [75] describe
a snapshot-based approach to face the dynamic nature of
Cloud in which the CSP takes a snapshot of a suspected
Virtual Machine (VM) when an anomaly is found by
an IDS, isolating it from the network and storing it in
permanent storage. A similar approach was suggested by
Hibshi et al. [161], which presents a study highlighting
a number of usability points that need to be taken into
consideration when designing and implementing digital
forensics tools, also proposing an efficient approach to
forensic investigation in the cloud using VM snapshots.
Yu et al. [162] presented a framework for automated detection
of anomalies in a cloud environment including a module
for cloud forensics with learning capabilities embedded in
the management layer of the cloud infrastructure. Patrascu
and Patriciu [163] claimed there should be a revision of the
classic network forensic principles, and a reorganization of
well-known workflows, taking in consideration tools such as
ML or large scale computing.

A hypervisor-based approach has been considered for
threat monitoring and forensic analysis in [164], where
the hypervisor provides the means for examining VMs,
by monitoring activities performed at a layer between the
hardware and the virtual environment. The potential of
this approach was demonstrated by Mishra et al. [165],
which presented a taxonomy of hypervisor forensic tools
and demonstrated how evidence that can be found in a VM,
at the hypervisor and host system layers. Saibharath and

Geethakumari [166] proposed a remote forensic evidence
collection and pre-processing framework for cloud nodes
that collects VM disk images, logs and network captures,
pushed periodically into a Hadoop distributed file system.
Huseinovic̀ and Ribic̀ [167] evaluated the virtual machine
memory dumps from Oracle VirtualBox and VMware
VMs, with Cheng et al. [168] proposing a similar concept
for a lightweight live memory forensic framework based
on hardware virtualization that can build a virtualization
environment on-the-fly. Also, Zhang et al. [169] and Guangqi
et al. [170] proposed a KVM-based approach to acquire
both data and VM meta-data, using the access and control
privileges of a VM host to acquire VM-related information.

In alternative to VMs, the combination of containers
and microservices can help improving isolation between
components in an cloud-bative application, with a reduced
overhead. However, the topic of forensic investigation in
containerized environments is a complex task raising new
challenges [120], due to the fact that instances can be
started and stopped on different systems, which results in
an ongoing change in the structure of the network, as well
as their shorter life span which implies that container
instances may not be available anymore when a investigation
process is triggered. Which such environments in mind,
Sharma et al. [171] presented a deep learning approach for
containerized application runtime stability analysis, and an
intelligent publishing algorithm that can dynamically adjust
the depth of process-level forensics published to a backend
incident analysis repository. Stelly and Roussev [172]
presented a scalable containerized framework for forensic
computations.

Other works have proposed procedures and standards
for forensics activities in the cloud. Saibharath
and Geethakumari [173] developed a framework
for cloud forensics in OpenStack, according to the
Infrastructure-as-a-Service model and using existing
forensic tools, which is able to take live snapshots, image
evidence, packet captures and log evidence.

Banas [174] discussed the memory acquisition process
to be placed in a kernel based virtual machine (KVM)
storage and memory images in OpenStack without any CSP
interaction in a self-service Cloud environment. The NIST
Cloud Computing Forensic Science Working Group (NCC
FSWG) [175] was established to research on Cloud forensic
science challenges in the Cloud environment and to develop
plans formeasurements, standards and technology research to
mitigate the challenges that cannot be handled with current
technology and methods. Almulla et al. [152] proposed a
forensic procedure based on the NIST model to examine
private cloud VM snapshots, using existing digital forensic
tools, being able to successfully acquire data without the need
to transform the snapshot files.

There is also an emerging line of work regarding
the use of Blockchain for FCA purposes, providing a
tamper-resistant ledger mechanism which matches the
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needs for non-reputiation and chain of custody purposes.
In this scope, Liang et al. [176] proposed a decentralized
and trusted cloud data provenance architecture using
blockchain technology. Also, Awuson-David et al. [177] and
Ahmadi-Assalemi et al. [127] presented Blockchain-enabled
methodologies and frameworks for keeping a chain of
custody of the digital forensic log evidence from the cloud
ecosystem, to ensure trustworthiness, integrity, authenticity
and non-repudiation. Finally, [178] proposed a cloud
forensics taxonomy and denoted the trend towards the
implementation of digital provenance assurance using
blockchain technology.

F. DATA PRIVACY PROTECTION IN DIGITAL FORENSICS
Privacy can be defined as the right to control who has
information about someone, including activity tracking [179].
Some of the concepts raised in privacy laws intend to
establish limits restricting data use or its correlation from
multiple sources, often mandating anonymization or removal
of personal data from records [179]. Such an example is the
General Data Protection Regulation (GDPR), introduced in
2016 to bring protection to personal data [180], making it
mandatory to obtain consent on the use of personal data.

The problem of balancing forensic investigation needs
with privacy protection requirements is discussed by
Aminnezhad et al. [181], with Dehghantanha and Franke
[182] having established the foundations for the definition
of privacy-respecting digital investigation as a new
cross-disciplinary field of research, also reviewing the
state of art in this field. Despite the large number of digital
forensic models discussed in scientific literature, just a few of
them are considering data privacy along the digital forensic
investigation process, many of which are either tailored
for specific environments or included as an independent
module [126].
van Staden [183] proposed a framework to protect privacy

in multi-user environments that are subject to post-incident
forensics investigation, supported by profiling and filtering
mechanisms. Law et al. [184] described a way to protect
data privacy using encryption, proposing the introduction of
simultaneous data encryption processes by email servers and
indexing of related keywords, allowing an investigator to give
a keyword input to the server owner, who has the encryption
keys, to get back the emails that contain the keyword. Also
regarding encryption-based approaches, Hou et al. [185]
proposed amechanism to protect data privacy on a third-party
service provider’s storage center, using homomorphic and
commutative encryption, with Hou et al. [186] describing a
similar solution.

As for identity or knowledge-based approaches, Shebaro
and Crandall [187] used an identity-based encryption
mechanism to carry out a network traffic data investigation in
privacy preserving setting. Croft and Olivier [188] proposed
a mechanism where data is divided into layers of sensitivity,
placing less private data on lower layers, and highly private

data on higher layers. In this schema, access to private
information is controlled by initially restricting investigator
access to the lower layers, requiring further proof to get
access to higher-level information.

G. DIGITAL FORENSIC READINESS AND
FORENSICS-BY-DESIGN
For many, the possibility of a security incident should be
regarded as a certainty rather than a possibility [189]. In fact,
when incidents happen, the priority is often restoring normal
operational levels, instead of making an effort to collect and
preserve as much forensics evidence as possible, eventually
to be admitted to a court. The generalised approach is mostly
reactive: first restore operational capacity, and then carry out
investigations and seek evidence. As a result, evidence might
be lost or rendered unsuitable as proof.

Forensic readiness is a concept that contributes tominimise
the aforementioned problems. It suggests taking proactive
actions to capture evidence even before or during an incident
and before investigations are started. This helps not only
to save time and money, but also to mitigate potential
incidents and ensure business continuity and compliance with
minimal disruption and interruption of operations. Kruger
and Venter [190] provided a systematic literature review to
identify topics where digital forensic readiness is included.
However, as denoted by Iqbal et al. [191], digital forensic
readiness for CIP is still immature, judging by the lack of
published research or industry reports.

Forensic readiness comprises planning activities to collect,
preserve, protect and analyze digital evidence to be
effectively used [192]. It can also assist in fulfilling
the increasing demand for the implementation of security
practices addressing compliance with organizational policies
and regulatory requirements, providing the means to deploy
continuous monitoring and review processes supported by
the already collected forensic data. This approach can help
fill that gap, since even common standards such as the ISO
9001 series and regulatory frameworks for B2B relationships
(e.g. supply chain risk management) do not account for best
practices in the CI and IACS security domains.

Forensic-by-design extends the concept of Digital Forensic
Readiness. Similarly to Security-by-design, it advocates
the integration of forensic requirements into the system’s
design and development stages. Ab Rahman et al. [189]
proposes a system and software engineering driven
Forensic-by-design framework, with an emphasis on
Cloud computing systems. Akilal and Kechadi [193]
investigated the potential adoption of Forensic-by-design in
cloud computing systems, with [194] and [195] suggesting
the application of Forensic-by-design (FbD) strategy to
enhance digital forensic readiness.

Moreover, several proposals for implementing digital
forensics readiness are documented in the literature. For
instance, Daubner and Matulevic̆ius [196] proposed the
introduction of forensic readiness mechanisms within
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security risk management to refine specific requirements on
forensic-ready software systems, by re-evaluating the taken
security risk decisionswith the aim of providing trustable data
when the security measures fail. Elyas et al. [197] presented
a digital forensic readiness framework through a series of
expert focus groups to discuss the critical issues facing
practitioners in achieving digital forensic readiness. Also,
De Marco et al. [198] proposed a reference architecture for a
Cloud forensic readiness system.Mouhtaropoulos et al. [199]
classified forensic investigation frameworks to expose gaps
in proactive forensics research and reviewed prominent
information security incidents with regard to proactive
forensics planning. On a more network-focused scope,
Endicott-Popovsky et al. [200] proposed a framework for
operationalizing network forensic readiness, with Ngobeni
et al. [201] proposing a wireless forensic readiness model
designed to help monitor, log, and preserve wireless network
traffic for digital forensic investigations.

Considering readiness maturity assessment, Ariffin and
Ahmad [202] presented five indicators for the maturity
and readiness of digital forensics, with Elyas et al. [203]
describing an approach to identify the factors that contribute
to digital forensic readiness and how these factors work
together to achieve forensic readiness in an organization.
Iqbal et al. [204] presented a study on the current support
for forensic readiness of CI, highlighting the involved
key challenges and providing a literature review on the
subject. Also, Alenezi et al. [205] presented a framework to
investigate the factors that facilitate the forensic readiness of
organizations.

H. FORENSIC SCHEMAS AND INTEROPERABILITY
In a general way, interoperability is concerned with making
it possible for components or systems coming from different
vendors to easily communicate and interact with each other.
When investigation processes require evidence exchange
between investigators, the use of different tools for the
reconstruction of events or analytical purposes, the absence
of standardised digital evidence formats can become a
serious obstacle. Thus, it is particularly important to
develop information interoperability mechanisms by means
of common Forensic Schemas.

A standardized approach for representing and sharing
digital forensic information is also useful to help investigators
collaborate when incidents involve different jurisdictions.
Similar challenges were also recognized in traditional
investigations of violent crime and led to the development of
the US Federal Bureau of Investigation’s Violent Criminal
Apprehension Program (ViCAP) and Royal Canadian
Mounted Police’s Violent Crime Linkage System (ViCLAS)
programs. These programs enabled the correlation of all
the available information from unsolved violent crimes in
disparate regions, trying to find links between them.

There have been several schemas proposed in the past
for representing digital forensic information, but these have

not been widely adopted [206], [207], [208], [209], [210].
Also, Garfinkel [211] proposed a XML schema (DFXML)
for easier interoperability between forensic extraction and
visualization tools, primarily developed to represent the
output from tools used to analyze storage media, including
file system parsers, file carvers, and hash set generators.

Casey et al. [212] conducted a review of digital
forensic data schemas, including DFXML, also proposing
the CybOX schema for handling forensic data. CybOX
is an open-source, community-driven effort to develop a
standardized representation of digital observations led by
the US Department of Homeland Security (DHS) office of
cyber-security and communications.

The XML-based XIRAF system was created by the
Netherlands Forensic Institute (NFI) to support digital
forensic analysis, storing its data using a parent-child
structure within a centralized database accepting structured
output and searching tools [213]. Bhoedjang et al. [214]
described the second generation of this analysis system and
outlined the complexity of importing different file types and
analyzing and preprocessing files before storing them in
databases. van Baar et al. [125] outlined the latest iteration
of this system, which incorporates Cloud features.

The Advanced Forensic Format (AFF4) has taken
another approach for the representation of digital forensic
information [215], [216], using the Resource Description
Framework (RDF), a general purpose representational
formalism for knowledge representation. Although the
majority of digital forensic tools do not support AAF4,
Google Rapid Response (GRR) uses the AFF4 data model to
store information in a MongoDB database [217]. The AFF4
data model is flexible. However, the use of RDF requires
the adoption of a shared supporting ontology. While there is
still no community consensus on such ontology to exchange
digital forensic information, the ontology proposed by Casey
et al. [212] could be used as a basis for such consensus.

I. VISUALIZATION AND SEARCHING TOOLS
When it comes to the forensics practitioner toolset, usability
is a crucial aspect not to be disregarded [161]. Specifically,
Osborne and Turnbull [218] pinpointed the importance
and need for tools incorporating adequate visualization
capabilities for digital forensic data, claiming that there is
a lack of algorithms to identify relationships, normalize
data, incorporate multiple data sources, and provide effective
visualization methods, all of which are important to retrieve
further insights from evidence. Following this same line of
thought, Osborne et al. [219] highlight the importance of
considering architectures incorporating familiar visualization
tools and algorithms that could be able to include distinct data
sources, normalizing and correlating data, later proposing
a conceptual framework able to Explore, Investigate, and
Correlate (EIC) [218]. Tassone et al. [220] also highlighted
the importance of visualization in forensic tools, pointing
out that many existing solutions where just simple layouts
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to search and display basic tabular data, also presenting a
proof of concept including a database schema designed for
third-party forensic data storage and visualization.

Irfan et al. [221] describes a virtual cloud environment
incorporating visualization capabilities designed to provide
visibility for all security events, allowing to follow activities
of cybercriminals, reproduce crude information identifying
each respective incident, and execute proactive actions.
Also, Aupetit et al. [222] presented a methodology and
a tool for allowing the Internet Service Provider (ISP) to
assess and visualize threats from an organization’s network
traffic, allowing them to deal for instance with Distributed
Reflective Denial of Service (DRDoS) events. Another
example is provided by Setayeshfar et al. [223], which
presents a graphical forensic analysis system for efficient
loading, storing, processing, querying, and displaying of
causal relations extracted from system events to support
computer forensics.

Tools such as the Elastic Stack have been widely
adopted in industry and academia as a result of their
capabilities and performance in terms of log handling.
There are solutions for data visualization, including graph
generation capabilities for analysis purposes, supported
by frameworks such as Kibana [70], Grafana [224], and
Prometheus (Prometheus.io), which retrieve data stored in
indexed datastores like Elasticsearch [71]. Some of the tools
built on ElasticStack are SOFELK [225] and Plaso [226], that
provide rich visualization and parsing capabilities. Despite
their capacity for effective forensics and provenance tracking
supported by queries, they lack information about the
provenance models also don’t provide users with many query
abilities beyond filtering. Moreover, it should be stressed
that while these tools can be used for multiple use cases
without the incorporation of analytic inference mechanisms,
that’s not typically the case in cyber-security analytics or
forensics [222].

J. FORENSICS CONSTRAINTS FOR THE CIP DOMAIN
Homem [227] identified a series of general challenges
regarding digital forensics processes, namely: the rising
volume of heterogeneous digital evidence involved in
investigations, the evidence-centricity of industry-standard
tools, a deficiency in the availability of a highly-skilled
workforce, and the great effort required by the largely
manual and time-consuming activities involved in the overall
process. Besides, CI operational environments add further
constraints related to aspects such as complexity, systems
interdependency, dependency on ICT and components
provided by third parties, or the deployment of heterogeneous
technologies [228].

Typically, forensic investigation can rely on live or dead
evidence aquisition. While the latter is performed offline on
static data after a system is shutdown, the former collects data
from live systems, such as the contents of physical volatile
memory, and non-volatile data, such as the data maintained

in a storage system. While dead forensics corresponds to the
most traditional approach, there was a increasing emphasis
on live forensics processes over the past years, as it is the
case for network traffic analysis. More specifically, in the
case of SCADA systems, the forensic investigator cannot
turn it off to capture and analyze data, because this kind of
system is supposed to be continuously operational [229] –
in such cases, live forensics is a suitable digital investigation
methodology [230]. However, since continuous availability
of SCADA systems is a mandatory requirement, forensic
investigators should strive to be minimally intrusive, in order
to reduce the risks in critical operations while aiming at
a rapid response time, to preserve evidence that may be
overwritten by runtime processes [231].

It is known that SCADA and IT systems exhibit
different behaviours and possess different characteristics,
often requiring for IDS and other security mechanisms to be
configured according to with the domain of operation [4].
For instance, in a SCADA system, network traffic is more
deterministic than in IT networks, in the sense that a system
component communicates to other system components
following established patterns, frequently with bounded time
restrictions. Thus, administrators may impose a set of rules
for security purposes, with any non-deterministic behavior
flagged as an anomaly – e.g., an IDS might be configured to
consider a specific communication pattern as normal [232].

Moreover, the same restrictions regarding live network
trace capture can also apply to SCADA stations and
other process control or monitoring systems. Any evidence
collection tool or technique must avoid imposing overheads
that might degrade the system response, interfere with
operational indicators or expand the vulnerable attack
surface. Overall, a simple rule must be kept in mind: live
(or, for that matter, any other) forensics processes must be
designed to adhere to the least overhead principle, in line
with the recommendations from standards such as NIST
SP800-82 [233], which clearly identify the risks associated
with intrusive security procedures.

K. IOT AND INDUSTRIAL IOT FORENSICS
IoT can be defined as a system of networked smart devices
that can be identified, named and addressed [234]. IoT is
attracting great attention not only for consumer applications
but also in the IACS domain, where they are usually
designated as Industrial IoT. Naturally, the introduction of
these technologies has increased the amount of generated,
transported and processed data, as well as the number of
forensically relevant events in consequence of the increasing
number of available sensor devices [235].

Considering the emergence of IIoT, organisms such
as NIST have defined guidelines [236], [237] to ensure
that IIoT infrastructures rely on adequate safety, security,
privacy, consistency, dependability, resiliency, reliability,
interaction and coordination measures. However, it’s not
always possible to apply traditional information security
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measures based on sophisticated encryption algorithms,
multi-factor authentication, antivirus programs and firewalls
(among others), due to the limited computational and energy
resources of some sensor nodes [238], further reinforcing the
need for the deployment of proper security monitoring and
forensics capabilities.

Stoyanova et al. [239] identified and discussed the main
issues involved in the process of IoT-based investigations,
particularly all legal, privacy and Cloud security challenges.
They also provided an overview of the past and current
theoretical models in the digital forensics and frameworks
aiming to extract data in a privacy-preserving manner
or secure the evidence integrity using decentralized
blockchain-based solutions. Vendors such as Infineon,
NXP, and STMicroelectronics prepared a position paper
for ENISA [240], stating the IoT market failure for
cyber-security and privacy, and claiming that there were ‘‘no
level zero defined for the security and privacy of connected
and smart devices,’’ no legal guidelines for IoT device and
service trust, and no ‘‘precautionary requirements are in
place’’. This paper also predicts that attacks will get more
risky and threatening due to the rise of IoT enabled cars,
CI, and health applications. In the same line of thought,
Chehri et al. [241] identified the trends, problems, and
challenges of cybersecurity in smart grid CI in Big Data and
Artificial Intelligence (AI).

(I)IoT scenarios require the implementation of adequate
forensic and compliance auditing approaches to improve
security and privacy. In that regard, Yaqoob et al. [242]
investigated studies on the topic of IoT forensics by analyzing
their strengths and weaknesses. The authors categorize and
classify the literature by devising a taxonomy based on
forensics phases, enablers, networks, sources of evidence,
investigation modes, forensics models, forensics layers,
forensics tools, and forensics data processing. They also
enumerate a few prominent use cases of IoT forensics and
present the key requirements for enabling IoT forensics,
identifying and discussing open research challenges as future
research directions.

L. SUMMARY
The purpose of this section was to introduce and present
a series of concepts and topics within the scope of digital
forensics, with a view towards its application in the CIP
domain. We started by conceptually introducing a definition
of forensics activities, followed by a discussion about digital,
network and cloud forensics, the latter constituting not only
a challenge, but also an opportunity to implement innovative
solutions tackling the issues of FCA. The implications of data
privacy protection regulations in digital forensics activities
were also discussed, followed by a review of the related
subtopics of forensic readiness, interoperability, visualization
and automation. Finally, we concluded with an overview of
the current forensics constraints for the CIP domain. Figure 3
depicts how the key topics covered in this section relate with

each other, and Table 1 summarises the reviewed literature
on these topics. While some topics are addressed from a more
neutral perspective, it must be noted that this is due to the fact
that many are still valid in the CIP domain.

IV. COMPLIANCE AUDITING
An audit process represents a systematic, independent,
formal, structured, and documented process, usually
performed by a certified professional on behalf of
stakeholders, aiming to verify if certain criteria match
internal policies, external formal standards, and/or legal
requirements [250]. Auditing practices help organizations
meet such requirements, also providing due diligence,
certification, and stakeholder security. Compliance auditing
expertise is closely related to and frequently overlaps with
forensic processes, since both often share data sources, tools,
and techniques.

This section will delve into the topic of Compliance
Auditing, with a view towards its applicability in CIP
environments. Starting with an overview of the motivation
and context, it will next review existing audit models and
proposals and standards, concluding with a discussion about
logging systems compliance for audit purposes.

A. MOTIVATION AND CONTEXT
Policy definition and enforcement are cornerstones of
modern security practices. For instance, Yaacoub et al. [243]
describes a series of policies encompassing aspects such as
employee screening processes before recruitment, privilege
suspension outside working hours, or additional activity
monitoring for people in charge of sensitive tasks, which
contribute to enhance the security posture of an organization.

Compliance auditing checks whether workflows are
compliant with organizational policies and rules – thus, each
process or transaction may be checked to confirm whether
it followed the applicable rules or policies. In case rules
are violated, the auditor analyses relevant data to determine
causes and recommends actions to prevent future deviations
or non-compliance situations. Compliance audit frameworks
can also help highlighting misconfigurations – for example,
they can used for monitoring access security levels for
individual and group accounts and help with detailed reports
measuring the security progress.

The compliance auditing process ends up with a report
that includes the conclusions and additional information
about requirements that have been met and non-compliance
situations (if found). It can also highlight the implications
and risks of non-compliance, suggesting corrective actions to
prevent future occurrences [251].

As the surrounding environment evolves, infrastructure
and service operators are often forced to adapt to an
increasingly complex and constantly changing regulatory
landscape. Thus, an organization aiming to implement
specific regulatory or standardisation measures should depart
from the identification of the entities with relevant technical
and/or legal jurisdiction over its domain of activity. In this
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FIGURE 3. Key forensics concepts.

line, the GDPR [180] regulations constitute an example of a
mandatory framework for privacy protection, which applies
to organizations within the European Union (EU).

Besides generic or sectorial standards, CI-specific
regulations may also be imposed by organizations such
as North American Electric Reliability Corporation
Critical Infrastructure Protection (NERC-CIP) [252],
which publishes a set of security guidelines, as it is the case
for Electronic Security Perimeters (CIP-005) and System
Security Requirements (CIP-007).

B. CYBERSECURITY AUDIT MODELS
Businesses are being increasingly pressured to undergo
periodic audits and inspections as part of legal and
regulatory compliance certification requirements.While such
certifications processes are important to reinforce trust at
the B2B and B2C levels, it should not be forgotten that
their ultimate aim is to ensure that adequate preventive and
reactive security mechanisms are implemented, as well as
proper handling of sensitive data. Ultimately, it all comes
to the establishment and maintenance of suitable levels
of data confidentiality, integrity and availability within an
organization, which may vary accordingly to the type of
applications, data to be stored or processed (e.g., the case
of sensitive healthcare data), or geographical location (e.g.,
regional requirements for data privacy and protection).

From the industry standpoint, an organization may be
required to comply with regulations such as Payment Card
Industry Data Security Standard (PCIDSS) [253], Health
Insurance Portability and Accountability Act (HIPAA)
[254], Federal Information Security Modernization Act
(FISMA) [255], GDPR, FedRamp, and SOC2. These are
examples of compliance drivers prescribing the application
security activities. The Institute of Internal Auditors (IIA)
also provides guidance in the form of the International
Professional Practices Framework Standard 2420 (Quality of
Communications) [256], whose aim is to establish guidelines
for objective, clear, concise, constructive, complete and
timely reporting.

Three different types of cybersecurity audits were
described by Donaldson et al. [257]. The first category
corresponds to threat audits targeting cyber threats, aiming
to search for evidence in IT environments. The second
one evaluates the cybersecurity controls mapped against
frameworks, regulatory requirements, standards or a specific
cyberthreat. The last one comprises validation assessments
against cybersecurity controls measuring their effectiveness
against designed and documented requirements.

The assessment of access control policies is one of the
aspects typically resorting to formal reasoning mechanisms
to verify application control expressed at design time
(for instance with eXtensible Access Control Markup
Language, XACML) to dynamically enforce authorization
by externalizing access controls. Fisler et al. [258] proposed
Binary Decision Diagrams and custom algorithms to check
access-control policies. Ahn et al. [259] used answer set
programming (ASP) and leverage existing ASP reasoning
models to conduct policy verification. Arkoudas et al. [260]
proposed a Satisfiability Modulo Theory policy analysis
framework.

Sabillon et al. [261] proposed an audit model for
conducting cybersecurity audits in organizations and
nation-states. Agrawal et al. [262] introduced an auditing
framework for determining whether a database system is
adhering to its data disclosure policies by allowing users to
formulate audit expressions to specify the data subject to
disclosure review. Kaaniche et al. [263] proposed the usage
of hierarchical ID-based encryption and signature schemes.
Noura et al. [146] presented a security and protection audit
that can be done by using an audit management system to
collect and store logs in a distributed system. Bouet and
Israël [264] presented a security assessment framework
including an off-line tool enabling security and vulnerability
audits of information systems to be used by system architects
to assess the security of the system they are designing
during the planning phase. The patent ‘‘Critical function
monitoring and compliance auditing system’’ [265] describes
a system and method for monitoring, auditing, and flagging
compliance issues or other user-defined exceptions. Finally,
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TABLE 1. Reviewed works on forensics for CIP.

FIGURE 4. Regulations, frameworks and auditing models.

Slapničar et al. [266] analyzed the effectiveness of internal
audit of cybersecurity by developing a Cybersecurity Audit
Index composed of three dimensions: planning, performing
and reporting.

In the scope of compliance auditing cloud computing
platforms, Ullah et al. [267] proposed an architecture to build
automated security compliance tools, focusing on auditing
remote administration and on diagnosing port protection
and clock synchronization. Also, Henze et al. [268]
presented a practical approach enforcing data compliance in
key-value-based Cloud storage systems. Doelitzscher [269]
implemented an on-demand audit architecture for
Infrastructure as a Service (IaaS) clouds, based on software
agents for identifying anomalies for auditing purposes.
Finally, there is also SecGuru, designed to audit Azure
datacenter network policies [270].
Figure 4 summarizes the main regulations, security

frameworks and auditing models applicable to this domain.

C. STANDARDS FOR COMPLIANCE AUDITING
The development of cyber Information SecurityManagement
Systems (ISMS) is guided by standards such as ISO/IEC
27001 and ISO/IEC 27002. As already mentioned, these
standards cover the protection of an organization from
cyber-attacks [271]. Domain-specific initiatives were also
launched to develop and implement IACS standards to secure
SCADA environments, including the ones from NIST, which
presented the Special Publication 800-82 and International
Electrotechnical Commission (IEC) 62443 [272], [273].

Another example is ISO/IEC 62443-1-1 (Security for
industrial automation and CS: Terminology, concepts, and
models), which constitutes an ongoing effort towards the
improvement of cyber-security, robustness, and resilience
design. The ISO/IEC 62443 series standard elements are
arranged in four groups, namely: Policies and Procedures,
System, and Component Requirements. The Policies and
Procedures group is focused on the policies and procedures
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associated with IACS security, with the Systems group
addressing the requirements at the system level. Systems and
Component Requirements provide information about specific
and detailed requirements associated with the development of
IACS products [273]. The Japanese Information-Technology
Promotion Agency (IPA) also implemented the Embedded
Device Security Assurance Certification (EDSA) Program
for provisioning SCADA devices [274].

Nevertheless, and despite these efforts from the academia
and industry, there is still a lack of standards for compliance
auditing techniques in Cloud domains [275].

D. LOGGING SYSTEMS COMPLIANCE
Logs constitute key data sources to acquire visibility
and obtain insights from the operational infrastructure
processes, with log analysis being recognised as vital for
collecting evidence and retrieving the necessary insights to
understand the behaviour of a whole system, as well as its
individual components, regardless of the deployment type.
For instance, Amazon suggests the use of AWS CloudTrail
and CloudWatch [276] for auditing purposes, as a web API
offering logs and metrics data to their clients.

Being important for administrators, developers and
security operators alike (albeit for different reasons), log
handling and processing components often have to comply
with suitable availability, resiliency and continuous operation
requirements – such systems should be sized and ready for
possible high-demand situations where the overall system
becomes unstable or overloaded, triggering a large number
of events.

It is important to rely on a logging system to acquire
and deliver information, but also to intelligently process
it using insight and analytics. A logging system should
provide visibility over its behavior to enable correct
predictions. From a security standpoint, log analysis must
be reliable and accurate, especially in circumstances
involving security incidents or critical situations. Thus,
using a inadequate or non-compliant logging system may
have several consequences, such as hampering monitoring,
diagnosis or forensics procedures, up to the point of
potentially voiding the possibility of gathering legally
admissible evidence.

E. SUMMARY
This section presented the key definitions, topics, and related
work about compliance auditing standards and regulations.
Figure 5 depicts the relationship between the key topics that
were addressed. Moreover, the related reviewed literature is
summarised in Table 2.

Together with Section III (Forensics), this section also
emphasises to which extent forensics procedures and
requirements intersect with the regulatory frameworks and
standards for compliance auditing, often with mutual benefit.
This is one aspect among the many contact points that
characterise the relationship between the FCA contexts,

FIGURE 5. Key concepts of compliance auditing.

TABLE 2. Reviewed literature on compliance auditing.

for which analytic procedures and tools constitute another
cornerstone relationship, which will be further discussed in
the next section.

V. ANALYTICS FOR CIP FCA: THE ROAD AHEAD
Analytics corresponds to the set of activities focused on
how to extract insights from data, correlating evidence to
provide security-related capabilities to system administrators,
security analysts, and network and application engineers.
Analytics leverage FCA capabilities to improve CIP because
they help identifying anomalies and their root cause and then
extract evidence.

This section will delve into the benefits and challenges of
modern analytics in the era of Big Data, AI and ML, starting
with a motivation and following with a discussion about the
impact of Big Data technologies on CIP. The intersection of
Big Data technologies, AI andML is also discussed, followed
by the topic of Forensics Automation. This section closes
with a discussion of anomaly detection techniques for log
analytics.

A. MOTIVATION AND CONTEXT
Modern protected infrastructures are becoming increasingly
complex, a situation for which CIP is no exception, with
Industrial IoT infrastructures spreading on a massive scale,
both geographically and in terms of components [278].
This has the side effect of generating considerable amounts
of operational data and evidence, that cannot be properly
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handled by traditional analysis techniques. This poses a
challenge to FCA, requiring the introduction of scalable
techniques able to transport, store and process large amounts
of data, thus calling for the adoption of Big Data techniques,
designed to handle large amounts of data whose volume is
beyond the ability of typical vertical approaches [279].

These circumstances also deem unfeasible to manually
analyze large amounts of data, requiring practitioners to
resort to automated techniques [280], often supported by
AI-based techniques (with a particular focus on ML [241],
a branch of AI geared towards automating pattern recognition
or classification tasks to analyze vast amounts of data to
predict or detect certain behaviors, which in the case of
forensics, may consist of discovering or detecting malicious
activity). These ML and information retrieval techniques
have significantly improved in the last years, enabling the
extraction of deeper insights from data [281], [282], with
many of these analytic frameworks being able to perform
effective and efficient data analysis supported by ML models
implemented from a few lines of code, also supporting the
automation of time-consuming tasks.

B. THE IMPACT OF BIG DATA TECHNOLOGIES ON CIP
One of the most pressing issues when handling large data
volumes is the implementation of efficient distributed
storage and retrieval technologies. Big Data NoSQL
databases address such challenges with technologies such as
MongoDB, HyperTable, Cassandra, and Amazon Dynamo
offering scalability and performance predictability that is
suitable for storing and indexing real-time streams of big
datasets [283]. Kalakanti et al. [10] evaluated different
NoSQL datastores as a solution to the data and knowledge
management challenges to meet the requirements of
performance, reliability and scale imposed by the next
generation of data historians as a central repository of
SCADA systems.

The need to deal with increasingly big data volumes also
calls for an increase in the required amount of computational
resources, which must be balanced with the need to contain
query latencies within acceptable thresholds. To address this
problem, Google developed the Google File System [284],
as well as MapReduce [285], that was designed to address
computational challenges. Several efforts were also made to
have those technologies available as open source software,
resulting in tools such as Apache Hadoop and the Hadoop
File System [286].

As already explained, Big Data technologies are especially
suitable for CIP and particularly IIoT, where large volumes
of data are produced devices from distributed CPSs, for
time series analysis. Specialized Time Series Management
Systems (TSMS) have been developed to overcome the
limitations of general purpose DatabaseManagement System
(DBMS) for times series management [287]. For instance,
Jensen et al. [287] surveyed the field of TSMSs developed
bt the academy and the industry, and organized them into

categories. Finally, Wang et al. [288] surveyed TSMSs in
industrial and IoT fields addressing the new demand such as
large amount and real-time analysis of industrial data.

Big Data also poses significant challenges and stresses
out privacy requirements, especially those related to privacy
regulation emanated from the EU [289]. In that regard,
Gartner predicted that by 2018, 50 percent of business ethics
violations will be related with data [290].

C. BIG DATA ANALYTICS IN THE AGE OF IA AND ML
In FCA applications, handling large volumes of data is
only half of the equation, with analysis being the other
half. Extracting insights and patterns from evidence calls
for methods other than manual analysis, thus constituting a
natural fit for AI and particularly ML techniques, something
that was investigated by Brighi et al. [291], that tried to bridge
these technologies with the substantive and procedural rules
to be observed during investigation activities.

Regarding forensics applications, Hoon et al. [292]
reviewed the literature by addressing the challenges
and opportunities of employing Big Data in Distributed
denial-of-service (DDoS) forensics, implementing and
comparing the performance of multiple supervised and
unsupervised learning models, according to their efficiency
and accuracy. They found that Nal̈ve Bayes, Gradient
Boosting and Distributed Random Forest are the most
suitable models for DDoS detection, due to their accuracy
and time taken on training.

As for network forensics, Yavanoglu and Aydos [293]
reviewed the most commonly used datasets in AI and ML
techniques, as primary tools for analyzing network traffic
and detecting anomalies. Usman et al. [294] proposed a ML
approach supported by Decision Tree algorithms to predict
IP reputation in zero-day attacks, categorized via behavioral
analysis to highlight forensic issues in big datasets. Wiyono
and Cahyani [295] presented classification algorithms for
network forensics based on the identification of network
flows that could track suspected botnet activity in the infected
network.

Other tools presented by Hassan et al. [102], Setayeshfar et
al. [223] implemented models based on AI to assist forensics
experts in monitoring the system and detecting malicious
behaviors based on known patterns – however, these tools
are not designed for manual forensics tasks such as whole
system provenance tracking, being often bound to a single
proprietary data stream scheme.

In the scope of Compliance Auditing, Moore and
Childers [296] presented a ML solution to automatically
generate program affinity policies that consider program
behavior and the target machine. Similarly, Quiroz et al. [297]
relied on unsupervised algorithms to capture the
dynamic behavior of systems and the hidden relationship
between the high-level business attribute space and the
low-level monitoring space. Similarly, Pelaez et al. [298]
used supervised models to capture dynamic behavior.
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Johansen et al. [299] proposed a mechanism for expressing
and enforcing security policies for shared data expressed as
stateful meta-code operations defined in scripting languages
interposed in the filesystem. Gheibi et al. [300] reviewed the
state of the art on the use ofML in self-adaptive systems based
in the traditional Monitor-Analysis-Planning-Executing
(MAPE) [301] feedback loop. Weyns et al. [302] also
presented an approach combining MAPE and Control
Theory to produce better adaptive systems.

D. FORENSICS AUTOMATION
Organizations often check whether their security and
forensic controls are actually in place as intended using
manual assessment procedures. Forensic processes are
often no different, being typically time-consuming activities
dependent on humans. From this perspective, the lack
of qualified human skills and resources can hamper
investigation and compliance auditing processes [291].
The use of technology to implement automated processes

can streamline forensic investigation tasks fed by large
volumes of data. The adoption of automation is therefore
seen as an effective strategy to implement forensic processes
while reducing the costs and operational errors resulting from
human intervention [303], also constituting an emergent field
of interest in the research community.

Regarding the introduction of automated procedures,
Hayes and Kyobe [304] reviewed the existing research in
the field of cyber forensics, identifying current practices
and associated challenges that could be tackled by the
adoption of automation, as well as the relevant technology
that could be leveraged to address such needs. Asquith
and Horsman [303] provided an introductory discussion on
robotic process automation, a form of service task automation
that can improve efficiency in the field of forensics, with
Moffitt et al. [305] discussing the automation of repetitive and
manual rule-based tasks.

From a more practical perspective, Verma et al. [126],
[306] proposed a digital forensic framework that uses case
information, case profile data, and expert knowledge for
automation of the digital forensic analysis process supported
byML for finding evidence. Also, Patrascu and Patriciu [307]
discussed the issues threatening CI systems and proposed
an automated learning framework based on ML algorithms
to protect such systems that, despite not being focused on
forensics applications, can be leveraged for such purpose.

Finally, recent contributions on the use of ML models
supporting the automation of self-adaptive IT operations have
been focusing on topics such as observability and AIOps
[308], [309] – Notaro et al. [310] has compiled several
contributions in this scope.

E. ANOMALY DETECTION FROM LOG DATA SOURCES
An anomaly corresponds to an outlying observation that
appears to deviate significantly from a nominal state or
a statistical data distribution [244]. Anomalies are often

classified into three types: point anomalies, contextual
anomalies, and collective anomalies contexts [245].
Anomalies can be expressed by scores or labels [246].
While anomaly detection techniques can be applied for all

sorts of data sources, logs are of special importance for FCA
applications, due to their almost pervasive and non-invasive
nature, playing a vital role in case of a breach or incident
analysis as they provide detailed information about activities.
Nevertheless, the use of anomaly detection mechanisms
using application and service log data for forensics and
compliance auditing raises important challenges, due to
factors such as the abundance of unstructured plain text
contents and heterogeneous formats, redundant runtime
information (which sometimes may change, as it is the case
for certain IP addresses), and the existence of a significant
amount of unbalanced data (a direct consequence of the
prevalence of a normal operation mode). Moreover, with the
increasing scale and complexity of distributed systems in
the CI environment, monitoring, correlating and analysing
logs is a time-consuming task that takes considerable effort,
making it increasingly unfeasible to manually sort out trough
evidence to detect anomalies.

Event correlation can be also categorized into different
categories: temporal, spatial, or hybrid, whose combined
use allows to capture both local (subsystem level) or global
(IACS level) abnormalities [248]. After anomalies have been
identified, is important to take forensic efforts in the analysis
to determine the root causes and collect evidence, which
will help to elaborate on the definition and application of
countermeasures.

Some proposals have addressed the usage of log analysis
as one of the input sources for anomaly detection. Chen
and Li [311], for instance, proposed an improved version of
an algorithm for detecting anomalies from audit data while
updating the detection profile along with its execution.

Clustering techniques, such as the k-means algorithm, are
often used by intrusion detection systems for classifying
normal or anomalous events, having also application in the
forensics analysis field. For instance, Asif-Iqbal et al. [312]
correlated logs from different sources, supported by
clustering techniques, to identify and remove unneeded
logs. Syarif et al. [313] compared five different clustering
algorithms and identified those providing the highest
detection accuracy, also concluding that those algorithms
were not mature enough for practical applications. Hoglund
et al. [314], as well as Hajamydeen et al. [315], classified
events in two different stages supported by the same
clustering algorithm.

Münz et al. [316] applied the k-means clustering algorithm
to feature datasets extracted from raw records, where training
data are divided into clusters of time intervals for normal
and anomalous traffic. Tian and Jianwen [317] improved
traditional means clustering algorithm, to improve efficiency
and accuracy when classifying data. Eslamnezhad and
Varjani [318] proposed a detection algorithm to increase the
quality of the clustering method based on aMinMax k-means
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algorithm, overcoming the low sensitivity to initial centers
in the k-means algorithm. Ranjan and Sahoo [319] proposed
a modified k-medoids clustering algorithm by presenting a
new strategy to select the initial medoids, overcoming the
means in anomaly intrusion detection and the dependency on
initial centroids, number of clusters, and irrelevant clusters.
Also, a k-nearest neighbor classifier for intrusion detection
was explored by Liao and Vemuri [320].
Other authors adopted hybrid solutions for log analysis,

combining the use of the k-means algorithm with other
techniques for improving detection performance. They
realized that despite the inherent complex structure and
high computational cost, hybrid classifiers can contribute
to improving accuracy. Mohammed et al. [321] proposed
a clustering approach based on Fuzzy C-Means (FCM)
and K-means algorithms to identify the evidential
files and isolate the non-related files based on their
metadata. Makanju et al. [322] took advantage of an
integrated signature-based and anomaly-based approach
to propose a framework based on frequent patterns.
Varuna and Natesan [323] introduced a hybrid learning
method integrating k-means clustering and Naive Bayes
classification. Muda et al. [324] proposed k-means clustering
and Naive Bayes classifiers in a hybrid learning approach by
splitting instances into potential attacks and normal clusters.

Hybrid approaches have indeed proven to be quite
interesting. However, in general, they still take a considerable
amount of time to generate models for particular datasets,
aggravated by the growth patterns normally associated with
log sources in production systems. Elbasiony et al. [325]
used data mining techniques to build a hybrid framework for
identifying network misuse and detecting intrusions through
the use of random forests algorithm to detect misuses,
with k-means as the clustering algorithm for unsupervised
anomaly detection. Fu et al. [247] presented an algorithm
to convert free-form text messages in log files to log keys
without heavily relying on application-specific knowledge.
Du et al. [326] proposed the use of a Long Short-Term
Memory (LSTM) to model a system to automatically learn
log patterns from normal execution, and detect anomalies
when log patterns deviate from the model trained from log
data under normal execution. Henriques et al. [249] proposed
an integrated scalable framework for efficiently detecting
anomalous events on large amounts of unlabeled data logs
through the use of clustering and classification methods
supported by a parallel computing approach.

F. SUMMARY
This section addressed the opportunities and challenges in the
use of advanced analytics based on Big Data technologies,
with AI andML support, in the field of FCA. Figure 6 depicts
how the key topics addressed in this section are related.

We surveyed the research in the field of advanced Big Data
analytics taking into account the increased softwarization
trend in terms of computing and network resource usage,

FIGURE 6. Analytics key concepts.

TABLE 3. Reviewed works related to big data-supported FCA.

as well as the benefits of leveraging advanced learning
algorithms for improved automation. This has allowed to
unveil a series of emerging development and evolution paths
for FCA practices which are expected to have a profound
change across the entire domain. Table 3 summarizes the
relevant literature in Big Data for CIP.

VI. A FORENSICS AND COMPLIANCE AUDITING
TAXONOMY FOR CIP
To the best of our knowledge, there is no specific taxonomy in
the domain of FCA for CIP in the surveyed literature. To fill
this gap, we devised a taxonomy covering the scopes as well
as the functional and non-functional dimensions of the FCA
practice, inspired by forensic investigation and compliance
practices. The proposed taxonomy is depicted in Figure 7,
being organised along seven major dimensions, inspired by
the methodology proposed by [327]. These are the following:

• Critical Infrastructures: this dimension characterises
the scope and environment to be protected, including
SCADA and IACS core systems. Moreover, specific
attacks targeting CIs, SIEM, and other security
platforms and systems providing protection capabilities
are also considered
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• Governance: gathers the orientations that can support
the decisions in the application of FCA processes.
It comprises the investigation processes, guidelines,
agencies, standards and regulations, training, directives,
and existing specific security frameworks.

• Preparedness: this dimension comprises the proactive
aspects that may be considered to safeguard, support
and prepare in advance the execution of FCA processes.
It encompasses readiness, forensic by design, forensic
frameworks, anti-forensics, and auditing frameworks.

• Data Acquisition: this dimension deals with the
challenges of gathering digital and network forensics
covering aspects such as volume, live forensics and
data provenance, while safeguarding the need to protect
information about evidence.

• Evidence Identification: covers the models, algorithms
and approaches helping to identify evidence and
non-compliant events. It comprises IDS, detection
techniques, causality, and learning, in this last case by
using approaches supported by clustering and hybrid
approaches algorithms.

• Reporting: this category covers communication and
interoperability-related aspects, encompassing topics
such as privacy concerns, visualization and searching,
interoperability, and Chain of Custody.

• Deployment: this encompasses non-functional aspects,
which relate to platform and infrastructure-related
aspects, such as cloud computing, virtualization support,
scalability, automation, and quality.

This taxonomy aims at presenting FCA-related topics
in a convenient way, using a set of criteria covering both
functional and non-functional aspects while striving to
provide a convenient organization for the most significant
developments.

VII. A REFERENCE ARCHITECTURE FOR FCA SYSTEMS
As already mentioned, even though Forensics and
Compliance Auditing are different activities, both in terms
of purpose and expected outcomes, there is a considerable
amount of proximity between them, since they often resort
to the same data sources and similar information and context
extraction techniques to gather and process evidence. This
hints at the possibility of building both capabilities on top of
a shared reference architecture, providing data acquisition,
transport and processing pipelines, as well as persistence
capabilities.

In this section, we provide such a reference architecture,
in order to better identify the various functional blocks
typically found in FCA systems. It should be noted that this
is an abstract architecture. Real-world FCA tools will usually
map into subsets of this architecture.

The main functional requirements to be met by FCA
solutions include identifying, extracting, preserving and
presenting digital evidence. Table 4 highlights how the
architecture’s functional blocks typically required for

TABLE 4. Relevance of functional blocks vs. Forensics and compliance
auditing.

Forensics operations and for Compliance Auditing activities
largely overlap.

Figure 8 presents proposed reference architecture. The
first stage of FCA systems includes the collection of
heterogeneous data from internal and external sources to be
gathered into a single logical store. That data can include
a vast amount of structured and unstructured heterogeneous
data from a large number of sources widely dispersed across
the CI, including those from the associated IACS and the ICT
infrastructures.

The second stage incorporates forensic analysis and
third-party continuous auditing capabilities for the
identification of post mortem security events, foreseeing,
tracking, and tracing possible anomalies. Such objectives
can be achieved by correlating the features retrieved
from a seemingly disparate class of events that usually
are not considered in terms of CI. Thus, beyond the
forensics activities, the auditing layer checks compliance
with standards, policies and rules. An example of such
verifications is the cross-check of past system logs with
the registration of physical access to remote facilities,
to indirectly detect unauthorised accesses.

Next, we discuss the key components of this architecture.

A. DATA SOURCES AND DATA INGESTION
The Ingesting Module acts as a set of probes capturing data
from a large number of heterogeneous data sources from
the surrounding environment, including applications such
as Authentication Authorization and Accounting (AAA),
ICT security logs (e.g., anti-virus, IDSs), internal personnel
activities, physical access control logs (door switches and
surveillance cameras), maintenance activities (physical and
logical systems), interactions with third-parties (e.g., general
documents, emails) and incident logs (e.g. ICT trouble
tickets).

Integration of third-party sources within the Ingesting
Module is usually accomplished by using custom data
adapter components. Such modules ingest data from
IDSs, third-party applications or triggered alerts from
monitoring processes, also including trust and reputation
data, all of it being integrated using pull or push-based
approaches.
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FIGURE 7. Proposed FCA taxonomy for CIP.

The ultimate goal of the Ingesting Module is to acquire,
parse, enrich and normalize incoming data (which may
be structured or unstructured, depending on its nature and
sources) into a common format suitable to be stored in
the Data Lake (DL) and later used for analysis purposes,
while ensuring consistent timestamp synchronization across
several sources in order not to compromise event timelines.
This means that incoming raw data needs to be handled

in a streamlined way, in order to optimize its transport,
storage and processing, thus implying the deployment of data
processing pipelines akin to Extract, Transform and Load
(ETL) workflows.

These Ingesting Module workflows, which may also
include filtering, normalization, indexing, enrichment, and
aggregation steps, must be capable of dealing with high
volumes of heteregeneous data later to be fed into the DL,
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which constitutes the central repository component in the
reference architecture. Persisted data from different sources
(including enriched data) may be used for several purposes,
such as training learning models or to feed visualization tools
helping to identify threats.

B. DATA LAKE
The DL provides a repository to store data in different
formats. This repository centralizes logs and other different
sorts of data collected by the Ingesting Module (IM),
to be made avaliable to FCA activities (and possibly other
applications). Aditionally, the DL also persists the correlation
and/or classification results of such data feeds, helping
streamline higher-dimensional analytic procedures.

The DL often assumes a distributed nature, to horizontally
scale in order to fit increasing volumes of data and/or to
increase the performance of data searching and correlating
activities. It usually provides the automation capabilities
to manage how indexes and queries are distributed across
the cluster to accommodate large amounts of data and
transactions, including support for automated scaling. This
is important since high availability, resiliency, throughput,
and low latency when querying large volumes of data are
important non-functional requirements for the DL.

The DL may also provide integration mechanisms to
plug-in common authentication systems such as Active
Directory, Lightweight Directory Access Protocol (LDAP),
and Security Assertion Markup Language (SAML).

C. ANALYTICS
After the data is captured and stored in the DL, the Analytics
Module takes the responsibility for extracting relevant
insights. Supported by state-of-the-art analytic methods, this
module provides the capabilities to classify threats with
potential impact on the systems’ integrity, confidentiality,
or availability. It starts by individually identifying unusual
behaviors in past events, logged in computers or networks,
correlating them in order to identify the compromised
systems from the chain of events. For instance, this can
be used to correlate the sequence of past executed shell
commands with the list of files that have changed, to discover
threats. The outcomes of this component also provide an
important input to trigger automated rapid response actions.

Within the Analytics Module, the use of ML techniques
can help discover new behaviors and patterns to define and/or
reveal the policies and business rules used to classify threats,
from a vast amount and variety of data. Thus, it is expected
that taking such a proactive approach to classify events in
advance (before the forensic investigation has even started)
may contribute to improve the readiness of forensic and
compliance auditing processes. This is further reinforced by
the fact that the resulting classified data will also be stored in
the DL as input for further forensic analysis processes.

The nature of its role requires Analytics Module to be
flexible, allowing models to be updated ‘‘on the fly’’ between
retraining, but also to offer a good performance/efficiency

FIGURE 8. Reference architecture for FCA systems.

balance. The latter can be achieved by decoupling the
training and classification processes and running in parallel,
thus reducing the time devoted to event classification while
increasing the chances of automatically recognizing new
threats. Improving the time spent on training can also
be achieved by dividing the dataset and even the model,
assigning parts to different processes. Thus, even when the
trainingmodel is too large, it can be trained in the background
without disturbing the live system.

Taking advantage of its scale-out properties, the reference
Analytics Module architecture is designed to simultaneously
train and run different models. Some of them can be
used for training, while other ones can be used for
classification purposes. Update or introduction of models
into production after training should follow best practices,
eventually pursuing a MLOps-like lifecycle management
approach.

D. FORENSIC ANALYSIS
Forensic analysis is a key step in the investigation process to
identify the traces of malicious activity and extract evidence.
Additionally, this may also encompass the establishment of a
causality path between classified anomalies, oriented towards
identifying the root cause and progression path of an incident.

Forensic analysis capabilities can be leveraged by using
ML models in the context of the Analytics Module. These
can help forensic investigators efficiently find out the relevant
events from large amounts of data, coming from diversified
sources. Technically, evidence can be collected with queries
entailing a set of rules to be run against the events previously
stored in the DL.
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The adoption of a common standardized forensic schema
assumes particular importance in collecting and exchanging
relevant information or evidence between different entities
and even jurisdictions, along the investigation chain.
To ensure that evidence is legally admissible while
safeguarding authenticity and integrity, schemas may
adopt techniques such as cryptographic hashing.

E. AUDIT COMPLIANCE
The audit compliance component provides the capability
to assess conformity with standard practices and defined
policies, as part of an ongoing CIP strategy. Such standards
may encompass regulatory requirements and/or industry
guidelines that the infrastructure operator must comply with
for certification, security and/or safety reasons. In case an
audit trail is available, an expert can return to the source
material to check the quality of the analysis and processing.

Beyond the policies resulting from the need to comply
with regulatory or standardization frameworks, organizations
can establish custom rules based on their own internal
processes and procedures, such as corporate laws, plans, and
procedures.

The Audit Compliance module takes business rules and
regulatory policies to identify violations and trace the
path of non-conforming events. This process assesses the
compliance of the facts denoted by the ongoing events with
the defined business rules and policies, providing an outcome
that includes scores computed by quantifying the aspects
regarding security and the level of risk. Both the Forensic
Analysis and the Audit Compliance modules leverage the
outcomes from correlating data at the Analytic component.

F. VISUALIZATION AND DASHBOARDS
Visualization capabilities are key for forensics activities,
providing the means to display information in a manner that
may evince the presence of suspicious or anomalous patterns.
Such capabilities can be key to help understand and analyze
specific domain datasets by applying histograms, scatter and
box plots, tree maps, surface pots, parallel coordinate plots,
and radar charts [347], [348].

This module is fed by the data persisted in the DL
repository, which is used for analysis purposes. In a typical
arrangement, dashboard panels are used to highlight a variety
of indicators which may be directly generated from agent
feeds, or as the result of enrichment (providing contextual
information), aggregation or analytics/analysis sources. For
instance, panels may provide information about the total
number of received events, their variety, or a histogram
depicting when events were received, just to name a few.
Moreover, this data may be exported for integration with
third-party tools.

Visualization and Dashboards provide operators with
suitable graphical tools to explore and analyze contextual
information – such tools must provide querying and
summarization capabilities adequate for dealing with large

volumes of data in repositories, computing metrics and
applying specific functions against some attributes.

G. BUSINESS POLICIES AND RULES
Beyond the mandatory regulatory, legal and standardization
frameworks, organizations often define specific procedural
or workflow rules based on their own internal processes and
needs, based on corporate laws, plans or roadmaps.

A repository of CI business policies and rules may be
used to support organizational-wide compliance assessment.
If those events trigger some of the rules describing policies,
then the associated alerts will also be triggered. Such rules
can be tuned according to specific thresholds and can help
prioritizing and score events. For example, a company policy
may impose constraints on their employees on the use of
resources, thus, any login attempt violating this rule should
be reported. Physical access control is another example: alerts
can be triggered when the doors in a given department or
physical installation are opened out of the authorized period.
Formally, those CI Business rules will assess the compliance
of processes accordingly to the business norms.

H. MONITORING
A Monitoring component provides the capabilities to look
at things as they happen, helping operators to identify
anomalies from data. It can either trigger alerts or highlight
information resulting from such a continuous assessment,
matching CI audit compliance rules against persisted events
in DL. Moreover, it will also check the level of trust and
reputation risks to classify eventual threats and trigger alerts
to the operators.

Such a Monitoring component may also offer the ability
to set up automatic response rulebooks or human-supported
actions, as well as triggering alerts and notifications,
providing information to help the operator become an
effective link of a human-in-the-loop decision chain.
Necessarily, models and rules used for alerting purposes must
be fine tuned to provide adequate accuracy and low false
positive rates.

I. REAL-TIME SEARCH
A Real-Time Search component provides high-performance
query capabilities from large amounts of stored data in the
DL to support the extraction of relevant FCA information.
The component is able to run queries against the indexed
data in the DL. Because every second counts when looking
up for quick responses, the process for indexing data can be
executed in advance to improve the query performance. This
component also includes an interface to integrate third-party
components to run lookup actions for data.

J. ORCHESTRATION
The Orchestration component offers capabilities for
managing and coordinating the different FCA components.
Such capabilities comprise automation, self-healing, and
service discovery. For cloud-native implementations, the use
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FIGURE 9. FCA component integration view.

of containerized services integrated within a microservice
architecture may improve scalability, eventually allowing for
the deployment ofmultiple instances of the same architectural
functional block to scale capabilities, as needed.

A set of high-performance services requires a management
and maintenance subsystem to coordinate the configuration
settings supporting distributed FCA service synchronization
and operation. While the capabilities of this framework
are provided independently by different modules and
components and made available to third parties through the
use of an Application programming interface (API), the
overall system can be depicted as being akin to an atomic
structure. This paves the way to its possible provisioning and
deployment in the form of a SaaS model.

K. FCA COMPONENT INTEGRATION
Figure 9 depicts the component integration view, providing a
perspective that is complementary to the previous discussion.
Here we can identify the ingestion stage, with the information
coming from the several data sources being admitted
by corresponding layer, where it can be also formatted
and preprocessed with the help of the Ingestion core to
perform filtering, normalization, indexing, enrichment, and
aggregation.

Data streams can be persisted to a data lake (for batch
processing purposes and forensics evidence persistence),
also being sent over a fast path to feed stream processing
mechanisms. The data lake can also store the results and
outcomes of automatic and manual analytical processes.

Next, the analytics layer provides the primitives and
mechanisms for data analysis (by means of the Analytics
engine), supporting the core FCA modules, as well as the
monitoring, visualization and search components. Moreover,
the results of FCA analysis tasks can potentially be used
to update the Business Policies and Rules repository,
which provides the knowledge base assisting the Analytic
engine.

Finally, the Orchestration layer performs a function that
is orthogonal to the entire FCA framework, monitoring,
managing and coordinating its components.

L. A CLOUD-NATIVE PLATFORM AS A SERVICE
The implementation of a framework designed according to
the reference architecture hereby described can also benefit
from adopting a Cloud-native architecture in which features
are decoupled in microservices designed to improve scale-out
capabilities, eventually hosted in containers. Taking this
approach makes it possible to have wrap-up FCA solutions
supporting a large number of customers.

Providing independent external interfaces to the available
functions of the cloud hosting or orchestration platform
can provide instrumentation mechanisms for third parties,
allowing them to tailor and deploy custom scenarios
according to their needs. This approach increases the
opportunity to integrate custom third-party solutions with the
FCA, resorting to APIs or queuing mechanisms to enable
effective integration between third-party applications and
the FCA reference architecture. Such capabilities can enable
the integration of specific policies and business rules, also
providing the means to customize data sources, disable
some components or extend their core capabilities, among
other options. Moreover, this makes it possible, for instance,
to customize solutions to integrate this reference architecture
with solutions such as SIEM, SOAR, EDR and XDR.

M. PLATFORM SECURITY
Incorporating security in the FCA reference architecture
allows to develop, deploy and operate each component
safely, following the best practices in the field. It is also
important to protect communication channels, providing
secure inter-module integration. For this purpose, the
adoption of Zero trust principles [351] may be a key design
feature – while those principles are primarily focused on data
and service protection, they can and should be expanded to
include all enterprise assets and subjects.

Complementary to active protection characteristics,
Authentication and Authorization mechanisms should also
be properly implemented and continuously assessed to check
compliance with the defined access rules.

N. SUMMARY
This section proposed a reference architecture for FCA and
its functional building blocks, according to the identified
requirements, also detailing roles and interactions. Moreover,
non-functional aspects comprising the implementation
of Cloud-native Architecture, Platform as a Service,
and Platform Security were also addressed, in order to
demonstrate the plasticity of the proposed concept in terms
of deployment and operational options.

VIII. DISCUSSION AND OPEN ISSUES
This section discusses the findings of this survey and
highlights the open issues and the research opportunities to
be considered in the topic of FCA in the scope of CIP.
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A. DISCUSSION
When it comes to CIP, most literature references are
focused on conventional cybersecurity prevention, detection
and mitigation techniques. However, and given the
considerable overlap of functionalities associated with
security, forensics and compliance audit contexts, it makes
sense to consider some proposals and technologies as
candidates for application in FCA contexts.

In fact, the lack of proper FCA capabilities within CIs
may not be attributed to any sort of technological obstacles,
but rather to a chronic lack of readiness. For instance,
this can lead to situations where forensics procedures are
undertaken on an as needed basis, long after incidents have
occurred, in an offline basis. This can restrict the forensics
process in a decisive way, hampering the establishment of
a clear perspective about incidents, their root causes and
implications.

Moreover, and on the compliance auditing side, there is
an ongoing trend requiring CI operators to comply with
a growing body of standards and regulations while, at the
same time, having to keep up with increasingly complex and
interconnected infrastructures with a proliferation of control,
sensory and endpoint devices.

The implementation of adequate FCA mechanisms can
assist in the prevention as well as in the mitigation of
the potential consequences of incidents or adverse events,
improving the CI resiliency. In fact, it is worth noticing
that forensically reconstructing past events and highlighting
disrupted compliance events in CI environments can make it
possible to discover potential vulnerable vectors and hidden
threats whose correction can be decisive to avoid future
consequences.

When it comes to FCA, proactivity is key. But
operators need to understand the added value of adding
such capabilities before committing to invest to adapt
infrastructures, for instance to deploy and customize adaptor
agents to extract the significant amounts of data living in
silos (e.g. ICT systems surrounding the CI environment) into
a single homogeneous coherent dataset, whose existence can
help overcome the complexity arising from the use of a large
number of forensic tools, protocols, and standards.

With proper collection mechanisms in place, it becomes
possible to correlate data by applying models, algorithms,
architectures, and solutions to effectively classify and predict
behaviors and extract evidence from large amounts of
data or automatically support data-driven decision-making.
Moreover, results from correlation can also help enforce
auditing compliance on security policies, regulations,
recommendations, applicable laws, and standards processes
to increase the security and trust in CIs that may help to
prevent future security incidents.

Also, FCA need to keep up with times and adapt,
as the trend towards resource consolidation also reaches CIs,
with the adoption of virtualization technologies within
private, public or hybrid clouds. For instance, while the
adoption of a cloud-native setup with containers can bring

significant challenges in terms of forensics integration,
it can also provide net benefits in terms of management,
monitoring, and control of FCA frameworks for CIP,
providing elasticity to accommodate transient requirements
from analysis processes.

Another significant trend with impact in FCA processes
is the emergence of IIoT and Big Data, which tend to
go hand-in-hand in modern CIs, due to the considerable
data handling requirements for massively distributed
infrastructures. However, while such developments pose
challenges to FCA solutions, it should also be noted that
Big Data technologies also provide a technological basis
enabling the development of sophisticated forensic data and
evidence transport, processing and storage mechanisms that
can take advantage of the elasticity of virtualization and
cloud technologies.

All the aforementioned aspects have been considered to
devise a comprehensive and easy-to-deploy FCA framework
template which was designed to be neutral from a
deployment standpoint and decoupled from the end-user
infrastructure to be protected. This reference design gathers
the capabilities to collect and continuously monitor and
correlate data from diversified data sources, being able to
support decision-makers and forensics practicioners alike,
also enabling the definition of responsive actions from large
amounts of data. This approach can help track past events
to perform evidence extraction and incident root cause
analysis, also allowing to detect non-compliant events in near
real-time, for example, from logs collected before, during,
and after incidents.

B. OPEN ISSUES
This survey also identified a series of open issues and research
gaps in terms of FCA capabilities for CIP. Probably one of the
most important findings of this survey has to do with realising
that, in most cases, existing security tools are missing the
integration means for a full-stack FCA solution. This is due
to the fact that many of these tools are not embracing open
standards on maintaining an effective chain of custody or
plug-and-play capabilities to increase their interoperability
and reduce the need for collaborative work between tool
owners and end-users. Also, many of these tools lack flexible
FCA capabilities, decoupled from the applications they aim
to protect (e.g. applied to 5G vertical applications taking
advantage of cloud-native approaches).

Other identified handicaps that equally affect SIEMs
and forensics tools for CIP include: the absence of
custom connectors and parsers for data source integration,
incomplete data, lack of basic correlation rules, elemental
storage capabilities, reliance on manual operation, basic
reaction and reporting capabilities, limited data visualization,
or deployment, and management complexity [55]. Other
missing aspects comprise the lack of GDPR privacy
compliance [352], as well as the absence of high-level
security risk metrics. Also regarding metrics, there are no
well-defined KPIs for FCA tools, for example to assess the
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Quality of Service (QoS) and Quality of Experience (QoE),
reliability, availability, and resiliency.

Also, the availability of open standards, languages, and
data abstractions for sharing and exchanging evidence are
key to enhance FCA tools and improve their interoperability
while enhancing the processes devoted to discovering
forensic evidence in an automated, effective, and efficient
manner. That includes, for example, the adoption of open
standards for sharing evidence and keeping an effective chain
of custody.

With the emergence of IIoT scenarios, the requirements
to capture, transport and process of large volumes of
data become more demanding. Thus, the lack of adequate
computational and storage resources may impose limits on
the application of FCA methodologies for gathering and
analyzing data. Overcoming them is instrumental to achieve
a near real-time data correlation latency from multiple
physical sources, also enabling the deployment of effective
alerting mechanisms for non-compliance incidents. Equally
important is the lack of automated and dynamic orchestration
capabilities, adaptation systems, and tools supporting FCA
activities and managing their entire life cycle, which are
key for implementing efficient and resource-effective FCA
capabilities.

Another key concern in FCA activities is their eventual
impact on performance and efficiency on systems being
secured, such as in the case of collecting large amounts of data
for forensic purposes and preserving data privacy [306]. For
instance, in systems with specific determinism and real-time
requirements, special care must be taken to avoid imposing
any kind of undesirable overhead or creating potential points
of failure.

IX. CONCLUSION
This work highlights the importance of considering both
forensics and compliance auditing (FCA) as high-priority
topics for CIP, contributing with guidance in the design
and implementation of security processes by considering
policies, standards, guidelines and procedures and evidence
analysis techniques. For this purpose, we surveyed the
latest developments, methodologies, challenges, and
solutions addressing FCA in the scope of CIP, focusing on
contributions capable of tackling the requirements imposed
by massively distributed and complex IACS which handle
large volumes of heterogeneous, noisy, redundant and even
ambiguous data, for analytic purposes.

We started by highlighting the need for addressing
modern security challenges and requirements to improve
the security of CI by considering FCA capabilities. With
that in mind, a survey of the the relevant literature was
undertaken, focused on the intertwined topics that may
stress the benefits and value brought by FCA approaches.
From this survey it was also noticed the lack of specific
FCA approaches and taxonomies for CIP. One of the
reasons for this relates to the misleading perception that CIP
requirements for FCA may be fulfilled resorting to generic

solutions with integrator customisation. However, that may
prove difficult due to the domain-specific standardisation
and regulatory frameworks which often deviate from more
generic recommendations, due to the limitations imposed
by the often rigorous CI service continuity, reliability,
security and safety requirements. Moreover, aspects such
as broad heterogeneity of data sources, and the geographic
and administrative dispersion of the CIs, also preclude a
straightforward application of mainstream solutions.

The surveyed literature resulted in a taxonomy gathering
the major identified categories, such as CIs governance,
preparedness, data acquisition, evidence identification,
reporting, and data. Together with the lessons learned from
the literature analysis, this taxonomy was instrumental to
help identify the most relevant FCA capabilities, resulting in
the identification of a series of key functional blocks later
organized as part of a reference FCA architecture template,
designed to provide a strong foundation to support the
implementation of future solutions aiming to protect CIs.
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