
D
Security Enhancing
Technologies for
Cloud-of-Clouds
João Miguel Maia Soares de Resende
Programa Doutoral em Informática das
Universidades do Minho, Aveiro e Porto
Departamento de Ciência de Computadores
2021

Orientador
Luís Filipe Coelho Antunes, Professor Catedrático
Faculdade de Ciências da Universidade do Porto

Coorientador
Rolando da Silva Martins, Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

To my parents and Patrı́cia, for their love and support!

i

ii

Acknowledgments

”Never trust a computer you can’t throw out a window.”

— Steve Wozniak

When we start the Ph.D., we have the opportunity to produce new things. However, the entire path
of a Ph.D. can be seen as a long walk through the woods. In my case, the music ”You’ll never walk
alone” applies to the Ph.D. journey, which was never truly alone... I’m very grateful to have my
supervisors and colleagues (friends for life!).

First, I would like to thank my main supervisor Professor Luı́s Antunes for the invitation to do a
Ph.D., and for the sustained guidance over the years. Then, I would also like to thank Professor
Rolando Martins, my co-supervisor, for the vision and motivation lessons over the years.

To my colleagues at C3P, I would like, first of all, to thank Patricia Sousa and Ana Carvalho for their
support in this journey, even in the small storms in our office. I will never forget one of the best
journeys of my PhD - the trip to Belfast for the presentation of my first publication - where the two
of you were there to support and try to help find Rose or Jack in the replica of the Titanic. :-)

Afterwards, it is important to thank the other people at C3P and the students I supervised, João
Estrela (my first student), André Cirne (juggler?), André Brandão (I still do not believe how you,
Cirne and I took the same flight to Rome #randomly), Inês Martins (continues to promise to walk
to Fátima!), Simão Silva (it is working and I know how!), Luı́s Magalhães (smart cities still require
security!).

To my friends from MAP-i, a big thank you for following the journey and always being available to
exchange ideas and solutions to problems.

During this period, I had the opportunity to work at the University of Porto - DCC teaching in
some courses. Special thanks for the guidance to my colleagues in particular Rita Ribeiro, Veronica
Orvalho, Alipio Jorge, Sergio Crisostomo, João Pedro Pedroso and Pedro Ribeiro for the guidance
and learning opportunities.

Finally, for my family and friends, these last two years have been a complete roller coaster, thanks
for all the time and support!

A special thanks to my father José and my mother Florinda for all encouragement during the thesis,
every day that passes I admire them more! :-)

Finally, Patricia for her support both in my Ph.D. and in my life, I certainly would not have a Ph.D.
without the motivation and continued support that you gave me. Let’s fight the next battle with Love,
together!

This work was supported by Fundação para a Ciência e Tecnologia (FCT), Portugal
(PD/BD/128149/2016). I am very grateful to the Fundação para a Ciência e Tecnologia (FCT), which

iii

made this dissertation and all my research possible by financing me directly with a Ph.D. scholarship.
I am also grateful to CRACS and C3P, the two research laboratories where I had worked during my
PhD, for receiving me and giving me the best conditions for research.

Best,
João

iv

Abstract

In recent years, cybersecurity experts have been developing mechanisms to protect users and devices,
but there is a constant ”arms race” between attackers and defenders. With emerging of technologies,
such as Cloud and Edge Computing, security problems are increasing. Security and research teams
work every day on solutions that can help to audit and mitigate attacks. The security challenges
range from zero-day detection, software vulnerabilities (previously classified), and social engineer-
ing attacks. These challenges have led to the production of many security and privacy protocols,
and companies often have security experts only to review implementations and improve security
mechanisms to prevent attackers from exploiting potential flaws and vulnerabilities. However, from
a security expert’s point of view, it is not easy to learn all protocol implementations to analyze their
security.

There are many cryptographic protocols, namely end-to-end communication protocols, which are
theoretically secure and have formal proofs of security published, but often existing implementations
of these protocols do not reflect all of their theoretical specifications. These protocols are used in
many contexts and need to be validated, as they can introduce critical security flaws on production
systems.

This thesis starts by exploring the Kolmogorov Complexity as a mechanism to evaluate cryptographic
protocols’ implementations automatically. We studied the Kolmogorov Complexity’s theory and its
implementations, namely the Normalized Compression Distance (NCD). We decided to apply NCD
techniques to assess the security of the protocols’ implementations, namely ZRTP and Multiparty
Computation (MPC). With this, we were able to detect vulnerabilities in the MPC implementations,
so we decided to study the Kolmogorov Complexity’s current applicability in cybersecurity. Finally,
and based on the knowledge acquired from the previous studies and evaluations, we extend the
current approach of cloud-of-clouds infrastructure with anonymization and MPC mechanisms to
allow users to compute data between them without revealing their original inputs.

v

vi

Resumo

Com o crescimento das tecnologias de cloud e edge computing nos últimos anos, as ameaças e as
falhas de segurança aumentaram. As equipas de segurança e investigadores trabalham em soluções
que possam auxiliar na avaliação e mitigação de ataques. Os desafios de segurança variam, desde
ataques ”zero-day”, vulnerabilidades em software, ataques de engenharia social, entre outros. Do
ponto de vista dos especialistas de segurança, não é fácil compreender todas as especificações
teóricas dos protocolos e as diferentes implementações existentes, para analisar a sua segurança.

Existem muitos protocolos criptográficos, nomeadamente protocolos de comunicações ponto-a-ponto,
que são teoricamente seguros e têm provas formais de segurança associadas, mas frequentemente as
implementações existentes desses protocolos não reflectem todas as suas especificações teóricas. As
empresas usam, muitas vezes, estes protocolos em sistemas de produção sem qualquer validação,
sob o risco de introduzir falhas crı́ticas de segurança nas infraestruturas.

Neste sentido, esta tese explora a teoria da Complexidade de Kolmogorov como um mecanismo
de avaliação automática de implementações de protocolos criptográficos. Decidimos aplicar as
técnicas do NCD (uma das metodologias propostas, que recorre à Complexidade de Kolmogorov)
para avaliar a segurança de protocolos conhecidos, como o ZRTP e o MPC. Através da análise,
detectamos vulnerabilidades nas implementações do MPC. Com base nestes resultados, decidimos
estudar a aplicabilidade actual da Complexidade de Kolmogorov no domı́nio da Cibersegurança. Por
último, e com base no conhecimento adquirido nas etapas anteriores, estendemos a abordagem actual
das infraestruturas Cloud-of-Clouds com mecanismos de anonimização para dados confidenciais e
usamos MPC para permitir que os utilizadores possam gerar algoritmos de inteligência artificial com
os dados trocados entre eles, sem relevar os dados privados.

vii

viii

Contents

Abstract v

Resumo vii

List of Tables xv

List of Figures xviii

Glossary 1

1 Introduction 5

1.1 Context and Problem Statement . 6

1.2 Main Contributions . 7

1.3 Outline . 8

1.4 Bibliographic Note . 9

2 Background and Related Work 11

2.1 Kolmogorov Complexity . 11

2.1.1 Normalized Information Distance . 11

2.1.2 Normalized Compression Distance . 12

2.1.3 Compression-Based Dissimilarity Measure 13

2.1.4 Lempel–Ziv Jaccard Distance . 14

2.1.5 Normalized Relative Compression . 14

2.1.6 A normal compressor limitations . 15

2.2 End-to-End Communications . 15

ix

2.2.1 Secure multi-party computation . 16

2.2.2 Homomorphic Encryption . 16

2.2.3 Oblivious transfers . 17

2.2.4 Secret Sharing . 17

2.2.5 Garbled Circuits . 18

2.2.6 Searchable Encryption . 18

2.2.7 ZRTP . 19

2.3 Metadata Information Extraction . 20

2.4 Cloud Storage . 21

2.4.1 Standalone . 22

2.4.2 Hybrid . 23

2.4.3 Distributed . 23

2.5 Anonymization . 24

2.5.1 Data-Set anonymization . 24

2.5.2 Query Anonymization . 25

2.6 Machine Learning . 25

2.6.1 Privacy-Preserving Inference . 26

2.6.2 Privacy-Preserving Machine Learning . 26

2.7 Summary . 27

3 Empirical Study on Normal Compressors 29

3.1 Compressors . 30

3.1.1 Dictionary . 30

3.1.2 Prediction by Partial Matching . 30

3.1.3 Block sorting . 32

3.1.4 Context Mixing . 33

3.1.5 Summary of Compressors . 34

3.2 Experimental Data . 35

3.3 Study of Normal Compressor . 36

3.3.1 Idempotency . 36

x

3.3.2 Symmetry . 37

3.3.3 Monotonicity . 38

3.3.4 Distributivity . 39

3.3.5 Results and Summary . 39

3.4 Best compressor in literature . 41

3.5 Summary . 42

4 Evaluation of implementations on privacy/secure protocols 45

4.1 ZRTP - an end-to-end protocol . 46

4.1.1 Problem statement . 47

4.1.2 Extracting the information . 48

4.1.2.1 Implementation . 48

4.1.2.2 Setup . 49

4.1.2.3 Demonstration . 50

4.1.3 Proposed Solution . 51

4.1.3.1 Scenario 1 . 51

4.1.3.2 Scenario 2 . 51

4.1.3.3 Implementation . 51

4.1.4 Conclusions . 52

4.2 MPC implementations . 53

4.2.1 MPC Libraries Overview . 54

4.2.2 Attacks Overview . 55

4.2.2.1 Remote Attacks (Passive) . 58

4.2.2.2 Local Attacks (Active) . 59

4.2.2.3 Evaluation Metrics . 60

4.2.3 Evaluation . 61

4.2.3.1 Passive attack . 61

4.2.3.2 Active Attack . 64

4.2.4 Code Analysis SPDZ-2 . 64

4.2.5 Conclusions . 67

xi

4.3 Summary . 69

5 Kolmogorov Complexity in Cybersecurity 71

5.1 Application Scenarios . 72

5.1.1 Human Interactions . 73

5.1.1.1 Phishing . 73

5.1.2 Software . 76

5.1.2.1 Code Sharing and Vulnerabilities 76

5.1.2.2 Anomaly Detection . 77

5.1.3 Malware Classification . 79

5.1.4 Identity & Authentication . 81

5.1.5 Theory to Practice . 81

5.2 Discussion and Future Research Directions . 82

5.3 Summary . 83

6 Towards a modular on-premise approach to data sharing 85

6.1 Assumptions . 86

6.2 Contributions . 86

6.3 Architecture . 87

6.4 Implementation . 91

6.5 Threat Model . 96

6.6 Evaluation . 97

6.7 Summary . 99

7 Conclusions 101

A MPC 103

A.1 Millionaire’s Problem Code . 103

A.2 Commands . 104

A.3 Output of Code Analysis . 105

A.4 SPDZ-2 maketree with complearn . 105

xii

References 107

xiii

xiv

List of Tables

3.1 Burrows Wheeler Transform . 33

3.2 Inverse Burrows Wheeler Transform . 34

3.3 Compressors resume . 34

3.4 Idempotency information . 37

3.5 Symmetry information . 38

3.6 Monotonicity - with the number of cases that do not verify the property 38

3.7 Distributivity - with number of cases that do not verify the property 40

3.8 Statistic of compressors by domain . 42

4.1 Comparison table of MPC libraries using tcpdump 63

4.2 Entropy table of Input sizes of TinyLego and DUPLO 64

4.3 Comparison table of MPC with STrace results . 65

5.1 Malware comparison table. 79

6.1 Input and Output of a CSV file processed in the Decision Flow Control 93

6.2 Performs Comparison between our solution,Charon and RClone(Android) 98

xv

xvi

List of Figures

2.1 Different cloud systems . 22

3.1 Huffman encoding . 32

3.2 Statistic of the Compressor used . 41

4.1 ZRTP Packets structure . 48

4.2 ZRTP peer-to-peer communication . 49

4.3 ZRTP Communication . 50

4.4 Different ZRTP Client Communications . 52

4.5 SPDZ-2 implementations of Yao’s Millionaire’s Problem 54

4.6 MPC Attack’s Middleware Setup - First phase . 56

4.7 Communications between four players . 58

4.8 Gates communications scheme . 61

4.9 Unrooted binary tree with the entire gates communications scheme in SPDZ-2 62

4.10 Unrooted binary tree with the entire gates communications scheme in ABY 68

5.1 Kolmogorov Complexity Taxonomy in Cybersecurity. 73

6.1 On-premise System Components . 88

6.2 OpenSSL Engine with Software Guard Extensions (SGX) Keystore architecture. . . . 92

6.3 Encryption Process of a file . 94

6.4 Interaction between ML learning modules of two on-premise servers 95

6.5 Cloud-of-clouds Test architecture . 98

A.1 Input ABY . 104

xvii

A.2 Tree with the entire clustering of the brute force attack 106

xviii

Glossary

ABY Arithmetic sharing, Boolean sharing, and Yao’s garbled circuits. 7, 27, 53, 54, 62–64, 94, 101

AES Advanced Encryption Standard. 46

AMDL Approximate Minimum Description Length. 80

AP Access Point. 97, 98

API Application Programming Interface. 96

APK Android Package. 78, 80

BCN Best-Compression Neighbor. 80

CDM Compression-based Dissimilarity Measure. 6, 13, 14, 72, 74

CSV Comma-separated values. 92–94

DGA Domain Generation Algorithms. 77, 78

DH Diffie–Hellman. 19, 20, 47, 52

DNS Domain Name Server. 78

DOM Document Object Model. 75

DoS Denial of Service. 86

ECG Electrocardiogram. 72, 81

FDM Feature-Based Distance Measure. 74

FHE Fully Homomorphic Encryption. 17, 63

GC Garbled Circuits. 11, 15, 18, 26, 27, 53

GDPR General Data Protection Regulation. 81

1

2 Glossary

GPS Global Positioning System. 85

HE Homomorphic Encryption. 11, 15–17, 53, 83

HIPAA Health Insurance Portability and Accountability Act of 1996. 86, 87, 89, 93, 96

HMAC Hash-based Message Authentication Code. 94

HTML HyperText Markup Language. 75

HTTP Hypertext Transfer Protocol. 78

IoT Internet of Things. 46

IP Internet Protocol. 46, 57, 85

ISP Internet Service Provider. 47, 48

KNN K Nearest Neighbor. 80

LTEQ Less Than or Equal. 55

LZ77 Lempel-Ziv 77. 30, 34, 40–42

LZJD Lempel–Ziv Jaccard Distance. 6, 14, 72, 79, 80

LZMA Lempel–Ziv–Markov chain algorithm. 34, 37, 39, 40, 42, 43, 60, 62, 101

LZW Lempel-Ziv-Welch. 30, 34

MAC Message Authentication Code. 66

MiTM Man-in-the-Middle. 19, 20, 51

ML Machine Learning. 6, 7, 11, 24–27, 42, 71, 74, 85, 88–90, 94–96, 99, 102

MPC Multiparty Computation. 6–9, 11, 15–17, 26, 45, 46, 53–55, 57, 59, 62, 63, 65, 67, 69, 71,
81–83, 86, 90, 94, 96, 99, 101, 102

NCD Normalized Compression Distance. 6–8, 12–15, 29, 34, 39, 41–43, 46, 56, 58, 60–62, 65, 69,
72, 74–82, 94, 101, 102

NID Normalized Information Distance. 6, 12, 14, 29

NIST National Institute of Standards and Technology. 90

NRC Normalized Relative Compression. 14, 72, 81

Glossary 3

OT Oblivious Transfer. 11, 15, 17, 27, 53

PDF Portable Document Format. 102

PHE Partially Homomorphic Encryption. 17

PK Public Key. 98, 99

PKCS Public-Key Cryptography Standards. 92

PKI Public Key Infrastructure. 87

PPM Prediction by Partial Matching. 30, 32, 33

RFC Request For Comments. 47, 51, 52

RLE Run-Length Encoding. 74

RQ Research Questions. 8, 69, 83, 100–102

SAS Short Authentication String. 19, 20, 47, 52

SE Searchable Encryption. 11, 15, 18, 83

SGX Software Guard Extensions. xvii, 86–89, 91, 92, 97–99, 102

SHA Secure Hash Algorithms. 54

SHE Somewhat Homomorphic Encryption. 17

SIP Session Initiation Protocol. 19, 20, 48, 49, 51

SK Symmetric Key. 98, 99

SPAM Sending and Posting Advertisement in Mass. 74, 75, 77

SRTP Secure Real-time Transport Protocol. 19

TCP Transmission Control Protocol. 59, 65

TLS Transport Layer Security. 91

TREC Text REtrieval Conference. 74

URI Uniform Resource Identifier. 20, 51

URL Uniform Resource Locator. 77, 78

VoIP Voice over Internet Protocol. 19, 46, 47, 51, 52

4 Glossary

ZID Zimmermann Real Time Protocol Identifier. 20, 47, 49–52

ZRTP Zimmermann Real Time Protocol. 6–8, 11, 15, 19, 20, 46–48, 53, 69, 81, 101

Chapter 1

Introduction

With the growth of technology in the last few years, software development is undergoing a major
shift, from a completely closed software process to a process that incorporates open-source software
into products and services.

Open-source allows for increased collaboration, sharing valuable data and access to key resources,
and facilitating the connection of devices from different suppliers. By allowing mutual assistance
and joint efforts towards a common goal, and depending on where these principles are applied, the
result can be efficient and highly profitable with better use of time and resources.

The software available on the Internet ranges from small pieces of code to large-scale implemen-
tations, including security protocols. Often, open-source can be seen as software without security
guarantees, which is not always true. However, there are many known vulnerabilities in this type
of software [1]. This type of code is often seen as code not developed in a controlled environment,
which makes malicious programmers find it easier to deploy and hide malicious mechanisms. How-
ever, as the code is fully available to the community, all users can analyze it and identify possible
(un-)intentional vulnerabilities.

It does not necessarily mean that all closed source code is secure, as nothing in the digital world is
permanently resilient to attacks, but many people defend that closed source is more secure due to
restrictions on access to its source code. However, without complying with security requirements, it
is also exposed to bugs (flaws) and susceptible to attacks. In brief, the security of software involves
numerous factors and, under correct management, both can generate positive results.

However, many users use the code available on the Internet without validating potential security
holes. Companies often have security experts to guarantee the evaluation of these implementations
and the creation of new methods to prevent this type of failure. Also, it is not easy for a security
expert to learn the background theory of a security protocol (even with formal security evidence
already validated) to assess the code’s specifications on the implementation of security protocols.
This thesis addresses this problem: enhancing the automation of software vulnerability detection

5

6 CHAPTER 1. INTRODUCTION

based on information theory.

Some works have been done on the information theory field with Kolmogorov Complexity for
analysis of vulnerabilities [2], such as techniques based on Algorithmic Information Theory known
as Kolmogorov Complexity, that can help in the analysis of Internet worms and network traffic, and
to cluster different species of worms. Compression is also used to understand different types of
network traffic and help detect traffic anomalies. This technique could become a useful tool to detect
new variations of an attack and prevent possible intrusions.

Kolmogorov complexity [3] is a mathematical theory that measures the amount of information in an
individual object as its smallest representation. Normalized Information Distance (NID) represents
the minimal information distance between a sequence X and Y as the shortest program’s length
to transform X into Y and Y into X . This measure is non-computable, but we can approximate it
by using standard compressors. There are some known practical implementations of NID, such as
Normalized Compression Distance (NCD), Compression-based Dissimilarity Measure (CDM) and
Lempel–Ziv Jaccard Distance (LZJD) that enables to compute this measure. This method is feature-
free and does not require parameters to tune or domain-specific knowledge to use [4].

The main goal of this thesis is to study the application of Kolmogorov Complexity in cybersecurity,
mainly in the evaluation of security protocols that can provide end-to-end security in the cloud-of-
clouds.

In this first chapter, the main problem is contextualized and defined, and the main contributions to
this work are described.

1.1 Context and Problem Statement

Software security vulnerabilities are one of the critical issues in Computer Science. The usage of
these protocols needs security assumptions [5], which should be verified through an evaluation of the
implementations. Due to their potential high severity impacts, Ghaffarian et al. [6] proposes different
approaches to mitigate the damages of software vulnerabilities. The authors also propose Machine
Learning (ML) or information theory mechanisms to reduce the need for in-depth knowledge of the
implementations being analyzed. As many of the protocol implementations do not have security
guarantees, a security auditor would benefit from a solution that would help to evaluate the code.

Many companies prefer open-source protocols as it allows them to make a more informed choice
about the security of a software [7] and rely on external entities to audit the code. Despite having
the benefits of using open source software, it does not provide/ensure security requirements because
there is no guarantee that someone verified the code or that every commit in the software is secure
over time.

In this thesis, we study the Kolmogorov Complexity as a method for evaluating some end-to-end
computation protocols, such as Multiparty Computation (MPC) and Zimmermann Real Time Proto-

1.2. MAIN CONTRIBUTIONS 7

col (ZRTP). These protocols can impact multiple fields, including data science, where users need to
securely and privately compute and share distributed data without ever exposing it.

The study of these protocols impacts multiple fields, including data science, because data scientists
are migrating their systems and files to the cloud in recent years, which impacts their privacy and
security. Clouds allow the storage of new types of data or new business opportunities without
significant infrastructure commitments. However, these changes introduced the company to new
limits of exposure to the world. It is essential to analyze the cost of integrating security and privacy
concerns in the cloud to mitigate data owners’ challenges. There are still some issues motivated by
data privacy regulation [8, 9]. The shift to the cloud increases the data exposure, especially when
considering the use of public clouds to allow the computation of ML algorithms using raw data [10],
so it would be interesting to be capable of conducting exploratory analyses over the encrypted data
without leaking information [8].

Evaluating protocols, such as MPC, is advantageous for this cloud scenario. It allows integrating
privacy-preserving tools, such as Arithmetic sharing, Boolean sharing, and Yao’s garbled circuits
(ABY)3 [11] that allows computing ML algorithms using MPC, ensuring that users can learn models
without sharing the actual train data with other parties (jointly).

1.2 Main Contributions

In this thesis, we start by studying the Kolmogorov Complexity as a mechanism for evaluating the
security of the protocol implementations. We study the implementations of Kolmogorov Complexity,
namely NCD, and the impact of a Normal Compressor and its current applicability. Then, we deploy
an NCD solution to evaluate the security of protocols, namely ZRTP and MPC. We discover vulnera-
ble implementations of MPC protocols on network traffic analysis only by computing all the possible
combinations of inputs. We were able to identify three libraries as unsafe MPC implementation and
one as a possible secure implementation. To identify the library as a secure implementation, we
will require further analysis of the source code. We also analyzed ZRTP, and we do not find any
vulnerabilities. During this process, we also investigate the metadata of ZRTP, and we found a
privacy problem associated with it that leaks information about the users’ communications.

As we achieve good results on MPC, we decided to study the Kolmogorov Complexity’s applicability
on the current cybersecurity domain. We have defined a taxonomy with the previous works to classify
their different cybersecurity’ application areas and open up new research questions.

Lastly, we extend the current cloud-of-clouds infrastructure with a system that stores the information
in multiple cloud providers focused on ensuring that the users can share and train ML models without
exposing the data to the other parties in cleartext. For this, we use MPC to make it possible for the
system to compute the information jointly. It also uses known anonymization tools, such as quasi-
identifier suppression, to choose the private cloud’s information and maintain the remaining in the

8 CHAPTER 1. INTRODUCTION

cloud-of-clouds system.

For this, we explored the potential synergies between the three Research Questions (RQ):

RQ1: Can we evaluate security protocols implementation with NCD? (Chapter 4)

RQ2: Can we apply Kolmogorov Complexity in Cybersecurity? (Chapter 5)

RQ3: Can we use cryptographic protocols to enhance the private computation over data on
the cloud? (Chapter 6)

1.3 Outline

This thesis is organized into seven chapters, outlined as follows.

Introduction:

The present chapter overviews the context, problem definition, contributions, and motivations of this
thesis.

Background and Related Work:

In the second chapter, we give a background review on protocols and a review of previous work is
presented for each of the articles, including a review of Kolmogorov Complexity metrics; Insights
about the usage of privacy-preserving protocols and known type of attacks; An overview of existing
cloud storage scenarios

Empirical Study on Normal Compressors:

In the third chapter, following the knowledge gathered from the usage of NCD, we addressed the
challenge of understanding the best approximation of a normal compressor.

Evaluation of implementations on privacy/secure protocols:

The fourth chapter evaluates different protocols and implementations to analyze issues related to
the security of current implementations of MPC and ZRTP. The section explores the information
extracted from NCD to analyze the implementations.

Kolmogorov Complexity in Cybersecurity:

With the previous chapter’s findings, we overview and create a taxonomy with the Kolmogorov
Complexity algorithms on cybersecurity and their impact across multiple sub-fields.

1.4. BIBLIOGRAPHIC NOTE 9

Towards a modular on-premise approach for data sharing:

This chapter creates an on-premise server that integrates the knowledge acquired in the previous
chapters, especially the analysis of MPC. The architecture allows the combination of tools to produce
a complete cloud-of-cloud system using privacy protocols.

Conclusions:

The final chapter concludes the thesis. It summarizes the main findings provided by this work and
insights on future research directions in the main topics addressed in the thesis.

1.4 Bibliographic Note

This thesis includes work that has been published elsewhere. The following list provides the refer-
ences to those publications and the chapters to which they are related.

João S. Resende, Rolando Martins, Luı́s Antunes (2019). A Survey on Using Kolmogorov Complex-
ity in Cybersecurity. Entropy, 21(12), 1196. (Chapter 5)

João S. Resende, Patrı́cia R. Sousa, Rolando Martins, and Luı́s Antunes. ”Breaking MPC implemen-
tations through compression.” International Journal of Information Security 18.4 (2019): 505-518.
(Chapter 4)

João S. Resende, Patrı́cia R. Sousa, and Luı́s Antunes. ”Evaluating the Privacy Properties of Secure
VoIP Metadata.” International Conference on Trust and Privacy in Digital Business. Springer, Cham,
2018. (Chapter 4)

João S. Resende, Rolando Martins, and Luı́s Antunes. ”Enforcing Privacy and Security in Public
Cloud Storage.” 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2018.
(Chapter 6)

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

This chapter described the literature review of the thesis. It contains the background definitions and
related work about the specific work addressed in the thesis. It starts with the analysis of Kolmogorov
Complexity and the theoretical concepts of the optimization mechanisms, which is the thesis’s core.
Then, we analyze some data manipulation techniques, namely, MPC, Homomorphic Encryption
(HE), Oblivious Transfer (OT), Secret Sharing, Garbled Circuits (GC), Searchable Encryption (SE)
and ZRTP. Together with the description of some attacks regarding the data encryption techniques,
we also describe some examples of metadata information extraction. Finally, we overview the cloud
types and manipulation, anonymization concepts that can be used on the cloud, and ML privacy-
preserving tools that can enhance the computation on the cloud.

2.1 Kolmogorov Complexity

Kolmogorov complexity of X given Y is the length of the shortest binary program, for the reference
universal prefix Turing machine, that on input Y outputs X ; it is denoted as K(X |Y), a detailed
definitions is provided by Ming li et al. [12]. The Kolmogorov complexity of X is the length of
the shortest binary program with no input that outputs X ; it is denoted as K(X) = K(X |l), where
l denotes the empty input. Essentially, the Kolmogorov Complexity of a file is the length of the
shortest version of the file. But this approximation is noncomputable.

2.1.1 Normalized Information Distance

The information distance E(X,Y) was introduced, defined as the length of the shortest binary program
for the reference universal prefix Turing machine that, with input X, computes Y, and with input Y,
computes X. It was shown there that, up to an additive logarithmic term

E(X ,Y) = max{K(X |Y);K(Y |X)} (2.1)

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

The normalized version of E(X,Y), is the NID, is defined as

NID(X ,Y) =
max{K(X |Y),K(Y |X)}

max(K(X),K(Y))
(2.2)

This measure is also noncomputable. Nevertheless, we can approximate it by using standard com-
pressors.

Many different implementations are trying to approximate the NID. The most known implementation
is the NCD where the smallest representation of the object is the compression version of it.

2.1.2 Normalized Compression Distance

Cilibrasi and Vitány [13] introduced a new clustering method based on the NID. This method
is powerful; it does not need any background knowledge of a specific area to extract patterns
independent of the domain, allowing for clustering heterogeneous data and anomaly detection in
time sequences. Some applications are in music [14] or heart rate anomaly detection [4].

This method uses compressors to reduce a file to a small representation and uses file size to perform
mathematical calculations that cause similar files to produce similar results. The NCD was first
proposed by Ming Li et al. [15] as a real-world approximation to the notion of NID.

NCD(X ,Y) =
C(XY)�min(C(X),C(Y))

max(C(X),C(Y))
(2.3)

NCD takes as input two different files (Equation 2.3): X and Y ; the result of C(XY) represents the
file size resulting from compressing concatenation of X with Y. C(X) and C(Y) are the compression
file size of X and Y , respectively.

NCD function provides values in the range 0 r 1+ e representing the difference of two files,
where r values of 0 represents similar objects (files) and results closer to 1 are distinguishable
objects. The e is due to imperfections in the compression algorithms, but for most standard types of
compression [15] is unlikely to see an e above 0.1. Tests with PPMZ show that values of NCD above
1 are not usual.

The NCD matrix is a matrix where the distance of n samples is performed in a n⇥n matrix, resulting
in each object (file) being compared to each other and to itself using NCD. This distance matrix can
be used as input to data mining techniques such as clustering, where each entry can be classified
accordingly to similar objects.

Normal compressor
Theoretically, the value obtained with NCD is dependent on the compressor used.

A compressor is said to be normal [13] if it satisfies, up to an additive O(logN) term, being N the

2.1. KOLMOGOROV COMPLEXITY 13

maximal binary length of an element of W involved in the (in)equality concerned, the following
properties:

• Idempotency: C(XX) =C(X), and C(l) = 0, where l is the empty string;

• Monotonicity: C(XY) �C(X);

• Symmetry: C(XY) =C(Y X);

• Distributivity: C(XY)+C(Z) C(XZ)+C(Y Z).

where C(X) is the size of the string X 0 resulting from apply the compressor C to the string X . On the
other hand, XY is the concatenation of the files X and Y .

The properties are explained later in detail in the Section 3.3.

Optimizations of NCD
There are some optimization to NCD, such as a quartet tree heuristic [16], interleaving and NCD-

shuffle proposed by Rebecca Borbely et al. [17]. The same authors focus on improve the computation
on large files (depending on the compressor).

When NCD performs the computations of C(XY), the goal is to compress both files’ values to help
determine the similarity, but compressors have some limitations. Algorithms, such as bz2 and zlib,
have an explicit block size as a limiting factor, and lzma has a finite dictionary size. This dictionary
has repeated sentence representations translated into smaller symbols, allowing to compress original
files and their dictionary into new compressed files. As it processes its input, the dictionary grows.
When a dictionary size exceeds, the algorithm starts with an empty dictionary, and if this occurs
without processing the entire X from C(XY), there is no benefit of compress X followed of Y . This
explains similar values of C(XY) to C(X)+C(Y).

Interleaving is a solution that attempts to calculate the NCD at a specific size (appropriated for the
compression algorithm), assuming that X and Y have the common parts aligned. Unlike Interleaving,
NCD-shuffle splits files into parts of a specific size (appropriated for the compression algorithm),
calculates the most similar block of X present in Y , and aligns them with taking advantage of
compression capability.

2.1.3 Compression-Based Dissimilarity Measure

CDM proposed by Eamonn Keogh et al. [18] is inspired by bioinformatics, learning, and computa-
tional theory and has been applied by different authors in other domains, such as data linkage and
reduplication problems [19].

14 CHAPTER 2. BACKGROUND AND RELATED WORK

CDM(x,y) =
C(XY)

C(X)+C(Y)
(2.4)

Equation 2.4 is the representation of CDM, where the input are two different files X and Y . The
result of C(XY) represents the size of the file resultant from the compression of the concatenation
of X with Y and C(X) and C(Y) is the results of the file compressed. As in NCD, values close to 1
occur when X and Y are not related, and values close to 0 occur when X is very similar to Y . The
values of CDM depends on the compressor used.

2.1.4 Lempel–Ziv Jaccard Distance

LZJD [20] is a new derivation of compressor use to represent the NID and is inspired by NCD.
Instead of taking advantage of the object’s compression size, this measure uses the Lempel–Ziv (LZ)
technique to create a compression dictionary of previously seen sub-sequences. Therefore, in this
scenario, the compression iteration is done because it is required to generate the dictionary. The
LZSet method is used to convert a sequence of bytes into a set of byte sub-sequences.

LZJD(X ,Y) = 1� J(LZSet(x),LZSet(y)) (2.5)

The LZJD is defined by Equation 2.5. The LZSet represents the compression dictionary, and J is the
Jacard similarity, which is the cardinality of the intersection of two sets divided by the cardinality of
their union (Equation 2.6).

J(A,B) =
|A\B|
A[B

(2.6)

2.1.5 Normalized Relative Compression

Normalized Relative Compression (NRC) [21] is another approximation to NID, considering C(X ||Y),
which represents the compression of X relative to Y .

This measure obeys to

1. C(X ||Y) ⇡ 0 if string X can be built efficiently from Y;

2. C(X ||Y) ⇡ |X | if K(X |Y) ⇡ K(X), where K() is the Kolmogorov complexity aproximation of
the involved strings

Equation 2.7 represents the practical implementation of this approach. The inputs are two different
files: X and Y , and the |X | is the length of X . For reference the original article [21] shows all the
remaining proofs.

2.2. END-TO-END COMMUNICATIONS 15

NRC(X ||Y) = C(X ||Y)
|X | (2.7)

2.1.6 A normal compressor limitations

Recently, a study from Rebecca Borbely [17] demonstrates that several compressor algorithms fail
to satisfy the properties of a normal compressor and explores the implications of their capabilities
to classify malware. The author uses the Calgary Corpus and Silesia Corpus and apply to four
compressors. The author states that LZMA is the best algorithm to detect malware or big files and
BZIP2 when files are of a small dimension. Also, the author chooses PPMD as the best Idempotent
compressor. However, the article fails in establishing rules to define a normal compressor, but defines
it as a open challenge.

Manuel Cebrı́an et al. [22] presented several techniques to improve NCD. In their research, the
authors analyze the verification of one of the properties of a normal compressor (Idempotency).
For that, the authors choose three compressors: BZIP2, GZIP, and PPMZ, covering the three family
types: block-sorting, Lempel-Ziv, and statistic compressors, using the Complearn package for BZIP2
and GZIP. The results presented for the computation of the Idempotency use the Calgary Corpus and
show that, in some cases, the Idempotency property does not apply, and that GZIP is the compressor
with the best Idempotency values that checks the property more often.

Venkata Srikanth et al. [23] also tested the Idempotency and the impact in the compression value
obtained with the dataset digitalcorpora [24]. According to the authors, the results do not contain
significant expression, as a better Idempotency does not mean an increase in the compression rate.

2.2 End-to-End Communications

This section overviews some open-source mechanisms for deploying privacy-preserving enablers,
such as end-to-end communications and computation over encrypted data.

The security of stored and shared information has been an active research area for many years. These
challenges have led to the enhancement and production of protocols that allow to create methods for
parties to compute a function over their inputs while keeping those inputs private and end-to-end
secure communications protocols.

In this section, we overview some of these protocols used in the thesis’ scope, namely MPC, HE,
SE, OT, GC, Secret Sharing and ZRTP.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 Secure multi-party computation

MPC was formally introduced as secure two-party computation in 1982 [25–27]. MPC is a beneficial
method that can be used, for example, to carry out computations on anonymous data without leak of
data.

MPC can be defined as a problem in which n players Pn in possession of inputs X1, ...,Xn agree to
compute a stateless function f (X1, ...,Xn) = (Y 1, ...,Y n), this way the Pn player inputs Pi and learns
Yi and does not learn any additional that could not be deduced from their personal input and output.

Andrew Yao introduced the millionaires’ problem, which is one of the most known secure multiparty
computation application case. The scenario consists of two parties interested in knowing which
is richer without revealing their inputs (i.e., their actual wealth). In this scenario, each party uses
respective inputs X and Y , denoting their salaries. The goal is to find the highest salary, without
revealing their respective salaries.

At the end of the protocol, each participant will get only the result of the function f , without getting
anything else about the other party’s input, i.e., the secret inputs will not be revealed.

This protocol has to ensure two main security properties:

Privacy - The inputs are never revealed to other parties;

Correctness - The output given at the end of the computation is correct.

These security guarantees must be provided in the presence of adversarial behavior. There are two
classic adversary models, namely: semi-honest (where the adversary follows the protocol specifica-
tion but tries to access privileged information from the protocol transcript) and malicious (where the
adversary tries to run any arbitrary polynomial-time attack strategy) [28].

2.2.2 Homomorphic Encryption

HE [29] allows users to perform a pre-defined set of queries to the data. This mechanism allows
users to perform operations on encrypted data without knowing the original file’s private key or
decryption. The client is the only holder of the secret key that allows to perform the decryption
process. The client must initiate the computing over the data, and is responsible for decrypt the
result of the operation. However, instead of computing it locally, it can be done in untrusted servers
as it is done encrypted, making the security the same as if we had carried out the raw data calculation
(locally).

More formally, we first define a public-key encryption scheme E composed of a set of polynomial-
time methods (KeyGenE , EncryptE , DecryptE), where KeyGenE outputs a public key (pk), which
is used for encryption, and the corresponding secret key (sk), used for decryption; EncryptE uses
the public key pk to map a plaintext into a ciphertext; and DecryptE maps the ciphertext back into
plaintext, using the corresponding secret key sk.

2.2. END-TO-END COMMUNICATIONS 17

A HE scheme integrates a fourth algorithm denoted by EvaluateE . This function is an HE-specific
operation, which takes ciphertexts as inputs and outputs a ciphertext corresponding to a functioned
plaintext. To this scheme, we can associate a set FE containing all functions that can be homo-
morphically evaluated by the scheme; that is, for f 2 FE , EvaluateE(pk, f ,c0, ...,ct � 1), where
c0, ...,ct � 1 correspond to encryptions of m0, ...,mt � 1 under sk outputs a ciphertext c, such that
DecryptE(sk,c) = f (m0, ...,mt � 1). Basically, the EvaluateE performs the function f() over the
cipher texts ci without seeing the messages mi. It takes ciphertexts as input and outputs evaluated
ciphertexts.

There are multiple types of HE: Partially Homomorphic Encryption (PHE) that only allows a specific
type of operation; Somewhat Homomorphic Encryption (SHE) that limits the number of operation to
more than one; and Fully Homomorphic Encryption (FHE), which is the most used, since it allows an
unlimited number of procedures for an unlimited number of times creating. The drawback associated
with this is the complexity of each computation.

2.2.3 Oblivious transfers

OT are protocols that involve two parties’ communication: a sender and a receiver. A sender has a set
of secret messages M = (m1,m2, ...,mn) and the receiver has a choice b. At the end of the oblivious
transfer protocol, the receiver gets mb but does not get any information about the remainder sender’s
secret messages. The sender does not get to know b and therefore does not know which message the
receiver chose. Works like those performed by Even et al. [30] provide constructions of 1-out-of-2
oblivious transfer protocol, 1-out-of-2 means that the sender party only has two messages available
and the receiver can only choose 1. Although being the simpler form of oblivious transfers, these
protocols are the most widely used, appearing as a component of multiple state-of-the-art MPC, such
as SecureML [31] (Section 2.6.2).

2.2.4 Secret Sharing

Secret Sharing enables to split a secret into several chunks, only needing a smaller number of chunks
to recover the secret. Secret Sharing use cases include the ability to perform secure computations
over private inputs of multiple parties without revealing the private input of one party to another and
the ability to be used as a data redundancy enabler. Examples of Secret Sharing protocols include the
Shamir Secret Sharing proposed in 1979 by Adi Shamir [32]. This Secret Sharing protocol enables
the splitting of a secret into n parts, one for each party, allowing a smaller or equal number of k
parties to retrieve the secret if they work together. In Shamir Secret Sharing k� 1, parties can not
get any useful information about what secret was shared. To recover a secret k, parties gather their
secret shares and, with the help of a polynomial interpolation algorithm, recover the original secret.

Although being a powerful protocol, Shamir Secret Sharing is often replaced on state of the art
multiparty computation protocols by simpler additive shares where the secret input is masked as an

18 CHAPTER 2. BACKGROUND AND RELATED WORK

addition of several random values i.e., a= u+v, where a is the secret and u and v are random values),
each random value is then sent to a party. To reconstruct the secret value, all the parties that received
the random values must gather their inputs and add them together, thus returning the original secret.

2.2.5 Garbled Circuits

GC enable two parties (an evaluator and a generator) to compute any function without revealing each
one’s secret inputs. The only things that are revealed are the circuit (that is public) and the circuit
evaluation output. The most well-known garbled circuit protocol is the Yao Garbled Circuit protocol,
coined after the works of Andrew C. Yao [26]. In this protocol, the two participant parties start by
agreeing on a circuit to evaluate. The generator party then uses a secret key sk to garble the circuit
using a circuit garbling algorithm CEnk. The generator party also uses the same secret key sk to
garble its inputs using an input garbling algorithm IEnk. The garbled circuit and garbled input are
sent to the evaluator party.

The evaluator party also wants to garble its input but does know sk and therefore is unable to
compute the garbling. To fix this problem, the evaluator and generator engage in a series of 1-
out-of-2 oblivious transfers where the selection b is one of the input bits of the evaluator, and the
messages of the generator are the garbled results of the two values that the bit might have. At the
end of the oblivious transfers, the evaluator has its input garbled and is ready to evaluate the circuit
using a decoding algorithm (Dec) with both parties garbled inputs and the garbled circuit returning
the evaluation output, which can then be sent to the generator party.

2.2.6 Searchable Encryption

SE is a cryptographic technique that allows a server to search in encrypted content without learning
information about the client’s plaintext data. This technique can be implemented through different
schemes: implement a ciphertext that allows searching or let the client generate a searchable en-
crypted index. To create a searchable encrypted index I of a database DB = (M1, ...,Mn) consisting
of n data in plaintext, some keywords W = (w1, ...,wm) can later be used for queries, so they
are extracted from the document and encrypted (using a hash function, for example, to be non-
decryptable), under a key K of the client using an algorithm called BuildIndex. The encrypted index,
together with the encrypted document (which is encrypted with a key K0, where K0! = K using an
algorithm called Enc), are then stored on a semi-trusted server that tries to learn as much information
as possible. As a result, the server stores a database of the client with the following:

I = BuildIndexk(DB = M1, ...,Mn),W = (w1, ...,wm));C = EncK0(M1, ...,Mn).

To search, the client generates a so-called trapdoor T = Trapdoork(f), where f is a predicate on
w j. With T , the server can search the index using an algorithm called Search and see whether the

2.2. END-TO-END COMMUNICATIONS 19

encrypted keywords satisfy the predicate f and return the corresponding (encrypted) documents.

So, those who do not have access to the encryption key cannot learn anything about the content of
users’ data, not even the cloud service provider, which results in multiple work methodology such
as: single writer/single reader; single writer/multiple reader; multiple writer/single reader; multiple
writer/multiple reader [33, 34].

However, some issues can arise, such as information leakage with the study of metadata from
query [35].

2.2.7 ZRTP

ZRTP is an end-to-end Voice over Internet Protocol (VoIP) protocol that contains a session setup
phase used to agree on key exchange and parameters for establishing Secure Real-time Transport
Protocol (SRTP) sessions. The Diffie–Hellman (DH) method is a specific cryptographic algorithm
for key exchange based on discrete logarithms. These keys contribute to generating the session key
and parameters for the SRTP sessions. Although ZRTP initially needs to use a signaling protocol,
such as a (Session Initiation Protocol (SIP))*, the key negotiation is performed only by ZRTP. The
DH algorithm, alone, does not protect Man-in-the-Middle (MiTM) attacks. To authenticate both
peers, a Short Authentication String (SAS) is distributed to both phones and compared verbally by
both ends. If the SAS is the same, both users must press a button to accept the key. The SAS is
destroyed at the end of the call, but it has key continuity after the first call, which means that the next
calls between those two pairs remain authenticated.

The ZRTP provides the user two important features to become more efficient and robust: Preshared
mode and key continuity. In the Preshared mode, both parties can skip the DH calculation if they
have established a ZRTP media session before, and both users have verified the SAS displayed in
the previous call matched in both ends. Preshared mode uses the previous shared secret to establish
the next call and holds forward secrecy. Forward secrecy assures that if one attacker gains access to
the keys present in one device, he cannot decrypt previous communications, as the shared secret is
replaced in each new call from the same pair of users. So, if the attacker gains access to the cached
secret, he can access all future communication while the Preshared mode remains to be used if he
can intercepts all the calls from that moment on. The key continuity features caches some hashed key
information to be used in the future call and exchange with each session. If Mallory - the malicious
attacker - can steal shared secret caches from one user, Mallory has only one opportunity to perform
a MiTM/eavesdropping attack in the next session. If Mallory misses the interception, the shared
secret is updated, and the opportunity to intercept all the calls ends.

Attacks on ZRTP

*SIP is a third party server that allows the peer discovery and negotiation, in the case of ZRTP does not interact with
the key negotiation

20 CHAPTER 2. BACKGROUND AND RELATED WORK

As presented by Martin Petraschek et al. [36], it is possible to perform a MiTM attack on ZRTP.
Instead of cracking the DH key exchange, Mallory tries to force Alice and Bob (the honest partic-
ipants) to connect directly to her without knowledge. This way, Alice and Bob have two different
connections with Mallory, and she only needs to relay the packets from one connection to the other.
There are different session keys and different SAS in these two connections, meaning that if Alice or
Bob decide to exchange the SAS, Mallory will be detected (because the SAS will be different in both
devices). To solve this Martin Petraschek et al. [36] suggest that Mallory can avoid this detection
by Direct relay + Imitation SAS, Direct relay + Slide-stepping SAS and Masquerade. To perform
these attacks, Mallory always needs to perform a new DH key exchange, and for that, the authors use
different Zimmermann Real Time Protocol Identifier (ZID) - the user identifier in the ZRTP protocol,
to make the end-users exchange new keys.

The most recent attack on ZRTP presented by Schürmann et al. [37] is focused on both imple-
mentation and theoretical analyses by applying practical usage to applications, such as Linphone
and CSipSimple. The authors present some security breaches starting by a CVE-2016-6271 that
overcome the security limitations imposed by the ZRTP protocol because it does not implement the
packet verification of some parameters. However, the paper also addresses the protocol structure
from the ZRTP where the authors explore a vulnerability from the ZID. This vulnerability explores
a MiTM after the first call, so an attacker only needs to perform a call for the victim beforehand.
To solve this issue, the authors use the SIP Uniform Resource Identifier (URI)* along with the ZID
of the client to lock that attack. Dimitrios Alvanos et al. [38] presents a work analyzing security
features of ZRTP clients, more specifically, Linphone client.

2.3 Metadata Information Extraction

As the ZRTP is used in many secure call implementations, it is critical to know if there is a possibility
of perceiving which calls are being made by the user, the destination, or call duration, for example.
This subject is often addressed only at the call’s content level, but sometimes realizing these call
patterns between users is also critical.

For this reason, we highlight some studies evaluating the privacy impact of metadata information
extraction. Smart services and experiences are based on high-dimensional metadata from users. For
example, in Netflix or Amazon, metadata is used by commercial algorithms to help users become
more connected, productive, and entertained [39].

There are several algorithms to re-identify people based on human behaviors extracted from metadata
of credit-card [40], mobile phones, web browsing, or transportation data. It is possible to track the
number of websites visitors or the number of possible entry-exit combinations of metro stations,
allowing to infer the behavior of users. In another example, Arvind Narayanan et al. [41] apply de-

*SIP URI is the equivalent to ZID, but works as a way to identify a user in the SIP server

2.4. CLOUD STORAGE 21

anonymization algorithms to a Netflix Prize database that anonymizes the movie ratings of 500,000
Netflix subscribers. They have demonstrated that is possible to re-identify the subscribers only
knowing little about each subscriber.

Over the past few years, many authors have addressed the subject of phone metadata [42–46].
Jonathan Mayer et al. [47] study the privacy properties of phone metadata to assess the impact of
policies that distinguish between content and metadata. They claim that there are significant privacy
flaws associated with telephone metadata because it is densely interconnected, easily re-identifiable,
and trivially gives rise to location, relationship, and sensitive inferences. Marco Furini [48] also
states that the high availability of geolocation technologies is changing the social media mobile
scenario and is exposing users to privacy risks. Alexandre Pujol et al. [49] analyze the metadata of
instant messaging services to retrieve sensitive knowledge. The work assumes that the attacker has
full access to the server to retrieve metadata, which means that the sensitive metadata information is
stored centrally.

2.4 Cloud Storage

Cloud computing is a distributed computing paradigm that focuses on providing users with dis-
tributed access to scalable, virtualized hardware and software infrastructure over the Internet [50].
There are multiple types of cloud, namely public, private, and hybrid clouds [50]. The most used
cloud types are the public cloud-based storage services, which are an inexpensive and scalable way
for companies and users to create and maintain their files, with a high availability and redundancy
against data loss [51].

These resources can be rapidly configured and deployed with minimal management efforts. The
cloud acts as a data storage device placed on the Internet, free or paid, accessible from any platform.
This type of technology has several advantages, namely: availability on any platform or device; cost
savings (users only need an Internet connection remotely, without needing to buy hard drives with
large storage capacities); and ease of use in making backups and restoring the information [52, 53].
The lack of local data maintenance and the absence of local storage hardware are the main advantages
of this type of storage. Its availability is driving the adoption of this type of storage.

However, this accessibility to users raises and challenges privacy and security concerns. It is spe-
cially focused on the emergent regulations that create challenges for data management and user
awareness [8]. For cloud solutions, multiple protocols can enhance the user’s privacy and security
regarding data encryption communication (Section 2.2), but cloud providers’ trust is also limited to
the security and privacy of the provider. A specific comparison between the different types of cloud
providers is given by Sumit Goyal [50].

Figure 2.1 demonstrates the three main types of data manipulation: standalone, hybrid, and dis-
tributed. The following subsection will overview each of them, identify advantages and disadvan-

22 CHAPTER 2. BACKGROUND AND RELATED WORK

tages, and overview existing implementations.

All of the following systems may use a single public or private cloud provider or even use multiple
secure storage systems to leverage cloud computing benefits by using a combination of diverse
clouds. The usage of multiple clouds is entitled cloud-of-clouds. In this scenario, the user can encrypt
and send the information to multiple providers, instead of rely on one cloud provider’s security.

Figure 2.1: Different cloud systems

2.4.1 Standalone

In this model, the user retains control over the data, but the user devices assume the responsibility
of performing all the encryption and coordination mechanisms to manage the information locally or
in the cloud providers. Figure 2.1 shows that there is only a direct connection (represented by the
connection B1) between the cloud and the user.

The main advantage of this type of system are:

• The user controls the location and encryption process of each file.

The disadvantages:

• If the user encrypted the files and lost the encryption keys, it loses access to data;

• Not possible share information - sharing encrypted information with other users is impossible;

• Performance limitations - the encryption process can be expensive.

The systems that represent this type of mechanism are S3FS [54], S3QL [55] and rClone [56].

2.4. CLOUD STORAGE 23

2.4.2 Hybrid

The hybrid mechanism uses a proximity server, such as an edge component in the network to increase
the upload and download speed compared to a public cloud provider.

Figure 2.1 represents the hybrid cloud system in the A rectangle, and there are two main connections:
the A1 (from the client to the hybrid solutions) and A2 (from the hybrid solutions to the public cloud).

The main advantage of this type of system are:

• Encryption in the hybrid component (in a trusted entity);

• Share information with other users;

• Allows caching services.

The disadvantages:

• Single point of failure.

BlueSky [57] focuses on offloading computing to a simple cloud provider, but unlike the standalone
version, this solution made the security model rely on a relay server, which means that the informa-
tion is in clear text on the BlueSky server and is only encrypted when uploaded to the cloud. Despite
having a single point of failure, this type of solution allows the system to become more usable, as
the encryption process can be performed on the server.

2.4.3 Distributed

The distributed version removes the single point of failure of the hybrid approaches. The user
assumes the responsibility of sharing the information with the cloud provider, but it uses a set of
coordination servers to decide where to store the information in the cloud, allowing to maintain
features, such as the sharing of files among different users. Figure 2.1 represents the distributed
cloud system (rectangle C, where C1 represents the connection with the coordination service to
store the files in the cloud using C2). Contrarily to the hybrid approach, it is always the client who
performs the upload to the cloud on the distributed version.

These solutions ensure that the user never loses access to the information, ensuring regular backups
to maintain the data, contrarily to the standalone solutions, which requires manual intervention.
So, the distributed approach is better regarding user protection against attacks compared with the
standalone version. This type of solution offers the same number of features as the hybrid approach,
but when compared to the standalone, it provides more features as it is possible to encrypt the data
locally and share it with other users.

In brief, the main advantages of this type of system are:

24 CHAPTER 2. BACKGROUND AND RELATED WORK

• Maintains control of the files;

• Share information with other users.

and the disadvantages are:

• Performance limitations, the encryption process is done locally.

The distributed solutions are an active line of research in the field of cloud storage. Multiple
solutions take this approach, namely Depsky [58] and SCFS [59], or more recent solutions, such
as RockFS [60] with client-side protection against specific attacks or Charon [61] with support for
big data processing.

2.5 Anonymization

Data anonymization is a process on which the personal data is altered to not enable identification
by any party that has access to the anonymized contents. Data anonymization increases user privacy
and maintains usability of the data for usage in data analysis procedures, and ML algorithms were
usually the personally identifiable information (information that can direct or indirectly identify
an individual) is not required. These procedures often look too sensitive attributes like illness or
income that, once successfully de-linked from an individual, can be used without imposing risks to
identifying the individual and, therefore, its privacy.

2.5.1 Data-Set anonymization

Data set anonymization protocols and techniques allow the anonymization of data entries on a
dataset. Each data entry is altered so that it stays hidden in the middle of other similar data entries.
There are several dataset anonymization techniques, where we describe the most common ones.

K-Anonymity
K-anonymity [62], created by L.Sweeney, is a formal model of privacy that aims to make each record
indistinguishable from a defined K number of other records. This way, an attacker cannot easily
identify the individual represented by the record since there are K � 1 other records with similar
information.

A data set is considered K-anonymized when, for any data record with a given set of identifiable
attributes, there are at least K�1 other records with the same attributes. To simplify the anonymiza-
tion of a data set, k-anonymity assigns properties to data attributes that should be treated differently
depending on its risk to identify the individual. There are three types of attributes: Key, Quasi-
identifier, and Sensitive.

2.6. MACHINE LEARNING 25

Key attributes are those that can identify an individual directly without needing access to any external
information. Examples of key attributes are names, emails, and social security numbers. Key
attributes require removal or obscurity, and the latter can be performed using translation tables.

Quasi-identifiers are attributes that can, with the help of external information, identify an individ-
ual. Quasi-identifiers, like zip-codes, birthday, and gender, are the main concern of k-anonymity,
requiring suppression or generalization so that, at least, there must be K data records with similar
quasi-identifiers.

Sensitive attributes are those that an individual is sensitive about revealing, such as income or type
of illness, that must be de-linked from the individual to ensure individual anonymity.

2.5.2 Query Anonymization

Query anonymization protocols and techniques usually sit as intermediaries on the communication
between a client and a data set. The data set content is not altered in any way, and only the query
result is altered to protect the individual’s privacy represented on the dataset. Query anonymization
solves a problem that dataset anonymization techniques suffer from, intersection attack. An intersec-
tion attack [63] makes the use of multiple queries to reach a certain conclusion, bypassing restrictions
such ”as only show results that have at least K similar entries”. So differential privacy [64] solved
this problem by not anonymizing the dataset but anonymizing the query results by adding completely
random noise to the result. Although promising, the addition of completely random noise made
the query susceptible to averaging attacks [65] on which the same, or similar, query is performed
multiple times and the sensitive result is averaged out, returning the sensitive result unmasked. The
certainty that the averaging attack’s value returned is the sensitive result unmasked increases with
the number of queries performed. So in differential privacy, there is a limit to the number of requests
possible to make before losing privacy.

Diffix [66] proposes a system that adds noise to the response query, but the noise itself is dependent
on the data, meaning that the same data always receives the same noise, rendering averaging attacks
useless.

Query Anonymization techniques demand that the dataset is in a trusted party. The dataset by itself
cannot be sent to a public cloud infrastructure, introducing difficulties to the redundancy, scalability,
share of information, and multiparty ML computations.

2.6 Machine Learning

The search for the production of better ML models leads to increased data collection and can impose
risks on individuals’ privacy, as their speech or other private information can be collected and used.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Enabling the training and inference of ML models with minimal impact on privacy is an active
research field.

2.6.1 Privacy-Preserving Inference

Nowadays, systems like smart doorbells incorporate ML models to perform face detection/facial
recognition, with the ML model hardwired to the system, which imposes problems on the system
since the hardwired model cannot be updated. A fix to that problem is to store the ML model into a
remote server. This way, the system manufacturer has control over the model and can easily provide
updates to it. Having the machine model on a remote server imposes another problem as the system
now needs to send the captured images to the remote server, imposing risks to the system users’
privacy.

Privacy-preserving inference allows the privacy needed when the user wants to keep the images
captured private but still wants to get a classification result from the remote ML model. Several
protocols, such as Gazelle [67] and Delphi [68] allow privacy-preserving inference using multiparty
computation components, such as fully homomorphic encryption and GC in a way that the privacy of
the user data is maintained even when the data is fed into the ML model to produce the classification.

2.6.2 Privacy-Preserving Machine Learning

ML aims to extract useful information from data, while privacy is maintained by concealing informa-
tion. Thus it seems hard to harmonize a system that incorporates these competing interests. However,
they frequently must be balanced when mining sensitive data [69].

Privacy-preserving ML can be deployed using MPC concepts, such as GC and oblivious transfers,
and apply them to the construction of protocols that allow parties to train ML models without ever
revealing individual party inputs.

SecureML
SecureML [31] is a two-party efficient ML training protocol that enables the training of linear
regression, logistic regression and neural network models. SecureML implements a server-aided
multi-party computation in which the two parties that run the SecureML protocol are servers that
receive data from a set of clients. At the end of the protocol, each client receives the model trained
with the clients’ joint data. In SecureML, the two parties participating in the protocol must be non-
colluding, meaning that they do not work together to defeat the protocol and retrieve the clients’
private inputs.

SecureML authors state that their solution is orders of magnitude faster than previous privacy-
preserving techniques. To achieve these higher efficiency levels, SecureML splits the multiparty
computation into two phases: the setup phase and the Online phase. In the setup phase, each party

2.7. SUMMARY 27

tries to compute all the necessary multiplication triplet shares needed to perform the computations
where the Secret Sharing of the multiplication triplets is done using Yao GC and OT. Posterior to the
setup phase, the online phase uses the multiplication triplets and the secret shared inputs to compute
the required ML model.

ABY3
ABY3[11] is a three-party general framework for privacy-preserving ML that trains linear, logistic,
and neural network models using 3-party computation. ABY3 introduces several improvements
that allows it to achieve more performance than [31] in terms of number of communications and
the amount of data transferred, while allowing support for three-party multiparty computation in-
stead of two-party computation of SecureML [31]. ABY3 improvements include new fixed-point
multiplication protocols for shared decimal values and a new general framework for efficiently
converting between binary sharing (Secret Sharing of binary values), arithmetic sharing [28] and
Yao’s sharing [70] with security against malicious adversaries.

2.7 Summary

This chapter aims to search for suitable solutions to address our target requirements, focusing on
choosing possible existing technologies that can be integrated or review existing ones to understand
why creating a new one (if necessary).

The features include the background concepts of Kolmogorov Complexity and its applications and
optimizations; the related work of end-to-end communications, focusing on solutions that allow to
compute over encrypted data and share data without leaking users’ input values; the background
concept and solutions of cloud storage, focusing on different data manipulation types; and finally,
anonymization and ML methods capable of helping to achieve the target of computation over data
on cloud (anonymized).

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Empirical Study on Normal
Compressors

One of the most used applications of NID is NCD (Section 2.1.2). NCD is responsible for finding
the difference between two or more objects using a dissimilarity matrix. However, this metric is
quite sensitive to the selection of the compressor. Theoretically, it needs to use a normal compres-
sor; that is, the compressor must satisfy up to an additive O(logn) term, the following properties:
Idempotency, Monotonicity, Symmetry, and Distributivity. This chapter experimentally evaluates
how several real-world compressors behave regarding these properties when applied to different file
formats, sizes, or types. For this, we use a dataset that ensures statistically significant results with
a given confidence level and error margin. We show how these results correlate with a literature
analysis to understand if the closest representation of a normal compressor is the most used and if it
has the best results.

The authors of NCD [13] suggest that if the compressor satisfies the definition of a normal com-
pressor (Idempotency, Monotonicity, Symmetry, and Distributivity), it will produce good results.
However, what is the best normal compressor in practice? Should we use a different compressor
depending on the field?

In this chapter, we experimentally evaluate whether several real-world compressors behave or not as
a normal compressor. We consider several compressors’ families (Prediction by Partial Matching,
Dictionary, Block Sorting, and Context Mixing).

For this evaluation, we use several well-known corpora used in related works, datasets of documents,
and file system scripts, with samples of different sizes and types, to ensure statistically significant
conclusions. After studying the best compressor for NCD, we analyzed the literature to understand
if the findings correspond to the practical results that NCD has been presenting over the last years.

In brief, this chapter addresses the following goals:

29

30 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

• What is the best real-world approximation of a normal compressor?

• Is the normal compressor the most used compressor on the literature?

• Is there any correlation between the domain of usage and the compressor with the best results?

3.1 Compressors

When looking for the best real-world normal compressor, we should test a range of the most used
compressors. In this section, we present an overview of the compressor families.

3.1.1 Dictionary

A dictionary compression algorithm is a class of lossless compression*. Algorithms that operate
by searching for matches between text, and a set of strings in a structure similar to a dictionary
maintained and personalized by the compressing algorithm. When there is a match to a string, the
compressor can replace by the small representation present in the dictionary.

Dictionary compressor algorithms, such as Lempel-Ziv 77 (LZ77) [72], are the first capable of
compress information immediately at the moment it receives an input from the stream. The LZ77
or variants remains one of the most used compressors, for example, in the widely used ZIP or GZIP
distributions. The compression parse a string of symbols from a finite alphabet into a small sub-
string whose length does not exceed the size of the alphabet’s words. The decompression process
replaces the mapping from the dictionary in the compressed text with the original text.

There are some variants of the LZ77 algorithm, such as Lempel-Ziv-Welch (LZW) [73], which
is an adaptive technique. On LZW, as a string appear, the dictionary is updated and maintained,
contrarily to LZ77 that works with a pre-defined dictionary. For example, if ”hello” and ”world” are
two strings in the dictionary, then the sequence in the stream would be converted into the index of
”hello” followed by the index of ”world” in the dictionary [74].

3.1.2 Prediction by Partial Matching

One of the most effective ways to predict symbols, and therefore to obtain compression, is to bias
predictions according to the most recent symbols seen [75].

The Prediction by Partial Matching (PPM) algorithm focused on this approach and was published
by John Cleary et al. [76], which gathers the previous bytes in the input stream to predict the
remaining bits of the stream bytes [74]. In the last stage, it is applied the Huffman encoding [77] to
compress/encode the bytes of the input stream.

*Lossless compression is a class of data compression algorithms that allows the original data to be perfectly
reconstructed from the compressed data [71]

3.1. COMPRESSORS 31

A simple example of representing a string (without compression):

111111222223333444556 (3.1)

If we consider that all the letters can be represented as in 3 bits:

Character 1 2 3 4 5 6
Code 000 001 010 011 100 101

The result in bits contains the size of 63 bits:

000000000000000000001001001001001010010010010011011011100100101 (3.2)

If we apply the Huffman encoding, the first stage is count the number of occurrences:

Character 1 2 3 4 5 6
Occurrences 6 5 4 3 2 1

Then it is necessary to group the elements by following the next steps:

1. Create a leaf node for each unique character and build a min-heap of all leaf nodes (Min Heap
is used as a priority queue. The value of frequency field is used to compare two nodes in min
heap. Initially, the least frequent character is at root);

2. Extract two nodes with the minimum frequency from the min-heap;

3. Create a new internal node with a frequency equal to the sum of the two nodes frequencies.
Make the first extracted node as its left child and the other extracted node as its right child.
Add this node to the min-heap;

4. Repeat steps#2 and #3 until the heap contains only one node. The remaining node is the root
node, and the tree is complete.

These steps are represented in the Figure 3.1.

We can represent the number 4 by following the branches of the tree of iteration 6 of Figure 3.1 that
represent the binary number (in this case, starting from the top and go through the branch 0 to the
node ”1+4+5+6=12”, then through the branch 1 to the node ”4+5+6=6” and finally, go through the
branch 0 to the node ”4=3”). The Huffman code of 4 is 010.

Using this table, if we try to compress the previous string (represented in the Equation 3.1), we get:

32 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

Figure 3.1: Huffman encoding

000000000000101010101011111111010010010011001100111 (3.3)

This string only contains 56 bits compared to the previous version with 63 bits.

An example of PPM’s application is the compressor PPMD [78].

3.1.3 Block sorting

Block sorting algorithms splits the information into blocks of a specific size and uses statistical
methods, such as Burrows Wheeler Transform[79], to find recurrent character and convert the block

Character 1 2 3 4 5 6
Representation 00 10 11 010 0110 0111

3.1. COMPRESSORS 33

into strings of identical letters [74, 80].

To briefly explain the process of Burrows Wheeler Transform, we will give a simple example with
the string ”12022021”:

Table 3.1: Burrows Wheeler Transform

Transformation

1. Input
2.

permutations
3. Sort into
lexical order

4. Take the
last column

5. Output

12022021

12022021 02112022 02112022

22212100 & 4

20220211 02202112 02202112
02202112 11202202 11202202
22021120 12022021 12022021
20211202 20211202 20211202
02112022 20220211 20220211
21120220 21120220 21120220
11202202 22021120 22021120

Table 3.1 represents the five stages to produce the method transformation process. The first stage
has the definition of the input, and in the second stage, all permutations to the left of the string are
performed. After this generation, it is necessary to sort (Stage 3) and take the last column (Stage 4).
To finish the process, it is necessary to gather the initial string position in Stage 4, where the output
is ”4” and ”22212100”. This information must be stored to allow retrieval of the original string.

An example of this algorithm is the compressor BZIP2 [81].

Inverse Burrows Wheeler Transform
To recover the original string, the process is different and is represented in Table 3.2. Giving the
output provided in the Table 3.1, it starts with the representation of ”22212100” in different lines of
the table (on the column ”1 Add”). Afterward, it is necessary to sort all the lines increasingly. It
repeats the same process by adding the original string ”22212100” to the sort provided in the last
step. It repeats these processes the number of times equal to the length of the string. Then as we can
see in Table 3.2, line 4 of the last column (”8 Sort”) is the original string.

After computing all of these steps, it is necessary to use Huffman coding [77] to conclude the
transformation process and return the compression result.

3.1.4 Context Mixing

The context mixing represents the use of several prediction models, such as PPM. Context mixing
works by using several predictive models that individually predict whether the next bit in the data

34 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

Table 3.2: Inverse Burrows Wheeler Transform

1 Add 1 Sort 2 Add 2 Sort 3 Add 3 Sort 4 Add 4 Sort 5 Add 5 Sort 6 Add 6 Sort 7 Add 7 Sort 8 Add 8 Sort
2 0 20 02 202 021 2021 0211 20211 02112 202112 021120 2021120 0211202 20211202 02112022
2 0 20 02 202 022 2022 0220 20220 02202 202202 022021 2022021 0220211 20220211 02202112
2 1 21 11 211 112 2112 1120 21120 11202 211202 112022 2112022 1120220 21120220 11202202
1 1 11 12 112 120 1120 1202 11202 12022 112022 120220 1120220 1202202 11202202 12022021
2 2 22 20 220 202 2202 2021 22021 20211 220211 202112 2202112 2021120 22021120 20211202
1 2 12 20 120 202 1202 2022 12022 20220 120220 202202 1202202 2022021 12022021 20220211
0 2 02 21 021 211 0211 2112 02112 21120 021120 211202 0211202 2112022 02112022 21120220
0 2 02 22 022 220 0220 2202 02202 22021 022021 220211 0220211 2202112 02202112 22021120

stream will be zero or one. The result of each model is then combined using a weighted averaging.
This algorithm’s performance is high, based on the computation of several models to choose the
average result [80].

Typically, these compressors combine models to obtain a more compressed file, with the disadvan-
tage of using a higher computing cost.

An example of this algorithm is the PAQ8L compressor.

3.1.5 Summary of Compressors

We will focus on six different compressors with different algorithms, namely LZ77, LZW, Lem-
pel–Ziv–Markov chain algorithm (LZMA), BZIP, PPMD and PAQ8L. Table 3.3 overviews and
categorizes each of the compressors in their respective families.

To provide configuration details, we also include the Linux system’s filename executable and the
arguments used when performing the computations. Flags are selected to produce the best minimal
representation of the object because NCD evaluates only the file size to perform the computation.
These flags guarantee the best compression rate, ignoring the extra computational cost.

Table 3.3: Compressors resume

Family Algorithm Compressor Options

Dictionary Lempel-Ziv 77 (LZ77) GZIP -f --best

Dictionary Lempel-Ziv-Welch (LZW) compress -f

Dictionary Lempel-Ziv-Markov chain (LZMA) lzip -f --best

Block sorting Burrows–Wheeler transform (BZIP) BZIP2 -z -f --best

Prediction by partial matching PPMD PPMD -e -d -m256 -o16 -r1

Context mixing PAQ8L PAQ8L -8

3.2. EXPERIMENTAL DATA 35

3.2 Experimental Data

A useful dataset must be large enough to provide statistical significance and a variety of test cases.
It must discredit situations where it would be possible for a specific set of parameters in a given
compressor to result in excellent results for some files but not so good in others. It must contain
sufficient samples to guarantee statistically significant results for a given confidence interval within
an acceptable margin of error.

The datasets used in this thesis can be divided into two categories: some well-known corpora
commonly used to test the performance of compressors and several sets of ”real-life” samples (text
and binary files) grouped by size, in blocks of {2,4,8, ...,4096} kilobytes.

The average size of the 2652 files is 286836 bits with a maximum value of 11664896 bits and a lower
value of 1 bit.

The Canterbury Corpus The Canterbury corpus [82] was introduced in 1997 as an improved
version of the Calgary corpus [83, 84]. The files that form this corpus are considered ”typical” on
existing compression algorithms [85].

Although it contains only 11 files, we used this dataset in our tests essentially for two reasons:

• Provide representative results on the quality (both in terms of speed and compression ratio) of
compression algorithms;

• The contents of this collection are fixed and can be download easily to replicate the study in
the future.

The Artificial Corpus The Artificial Corpus [82] contains files for which the compression methods
may exhibit pathological or worst-case behavior: files containing little or no repetition, large amounts
of repetition, and tiny files.

The Large Corpus The Large Corpus [82] is a set of relatively large files (2.3MB–4.4MB). It
contains the complete genome of the E. Coli bacterium, the King James Version of the Bible, and the
CIA world factbook.

The Miscellaneous Corpus The Miscellaneous Corpus is a collection of ”miscellaneous” files [82]
designed to be tested by researchers and others who want to publish compression results using their
files. It currently includes only one file containing the first million digits of p .

36 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

”Real-life” examples
Text files: This dataset, originally from the Gutenberg Project *, consists mainly of large text files
of 4MB - 16MB. It includes the complete works of several well-known authors (e.g., Shakespeare,
Mark Twain, Jane Austen), different bible versions (e.g., King James, Douay Rheims), and memoirs
of historical figures (e.g., Napoleon, Churchill). We split these files into blocks of specific sizes { 2,
4, 8, ..., 4096} kilobytes — and combined them into a dataset of 273 text files.

Binary files: We gathered a reasonably large set of binary files from several different Debian and
Ubuntu distributions. It consists essentially on the contents of the /bin, /sbin, /usr/bin, and
/lib directories, excluding scripts written in interpreted languages (such as Bash, Perl or Python)
which are basically text files. Combining these files, we have a dataset of 2120 files with a total size
of 417MB.

Assorted freely-redistributable files: Obtained from Digital Corpora [24], this dataset contains sev-
eral different types of files, such as images, spreadsheets, compressed archives, word processing
documents, or others that resided on web servers in the .gov domain. We sourced a sample of 273
random files from the Govdocs1 corpus.

3.3 Study of Normal Compressor

In this section, we empirically demonstrate which compressor (Section 3.1) holds the properties of a
normal compressor (Idempotency, Monotonicity, Symmetry, and Distributivity).

The test was done in a Linux running a minimal 64-bit Ubuntu 18.04. To run the experiments, we
use the standard compressors included in the packaging system of the Linux distribution whenever
possible. The exception was PAQ8L [86], where we had to compile from source code.

For all the tests, we considered a difference/interval from the real value of O(logn), where n is the
maximum binary length of the elements involved in the computation. Also, when we address the
result of the compression C(), it always refers to the size of the file after applying the compression
algorithm.

3.3.1 Idempotency

Idempotency is a property that consists of several repetitions (of the same process) without changing
the result of the initial computation. A compressor verify this property when there is no difference
between compressing a simple string or N repetitions of that same string, e.g., the value of C(X)

must be the same as C(XX), where C() is the compression size of the string X using a specific
compressor (C(XX) =C(X)). From the results shown in the Equality check column of the Table 3.4,

*http://www.gutenberg.org/

3.3. STUDY OF NORMAL COMPRESSOR 37

we found that BZIP2 verifies three cases of Idempotency, while LZMA verifies one in 2652 total
files. However, this number of cases is too low, in order to collect the best approximation of a
normal compressor we used the average difference in each compressor.

To test this, we computed the difference to 0 of each of the entry in C(XX)�C(X) = 0. Table 3.4
displays this information in an average value.

These two experiments demonstrate that the closest compressor to verify the property is the LZMA.
It has the closest value to 0 with 96.9 bits of the total value (average difference), meaning that for
each file compared on average, they have an extra 96.6 bits of extra length in C(XX) compared to
C(X). Also, LZMA is considered the closest compressor to verify the property because it verifies
only one case when we computed Idempotency.

Table 3.4: Idempotency information

Compressor Average difference (bits) Equality check

LZMA 96.9 1
PAQ 2441 2

PPMD 20190 0
BZIP2 82811 3
LZ77 116357 0
LZW 149318 0

3.3.2 Symmetry

Symmetry is a property that tries to detect if an object is invariant to a given transformation. In a
compressor, this means that in the transformation of file X and Y when concatenated and compressed
by C(), it holds the same result in C(XY) and C(Y X).

For a stream-based compressor (e.g., dictionary-based algorithm), the original file X may have
regularities to which the compressor adapts. After crossing the border to Y , it must unlearn those
regularities and adapt to Y . This process may cause some imprecision in both compression values,
as the compressor does not know when X or Y finishes, making a compressor based in a dictionary
to be defined differently, starting for X or Y .

For this reason, we tested how many cases verify this property, and, contrarily to Idempotency, there
is one compressor (BZIP2) that produces 91% of cases where C(XY) = C(Y X) verifies assuming
the O(logn) interval. This compressor uses the Block Sorting Algorithm, which splits the informa-
tion according to block sizes defined, and the results are better comparing to the dictionary-based
algorithms. This behavior is mainly motivated by the block orientation, as if we specifically divide
in a set of N blocks the compression of C(XY), it will generate the same blocks (with a different

38 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

order) of C(Y X). Also, it is possible to analyze that the second-best compressor is PAQ, but only
with 11.6% proving that the impact of the dictionary-based algorithm is worse in this category. As
with idempotency, in the case of symmetry, the same happens. In other words, if we look for the best
compressor in this component (BZIP2), the compressor does not have the best average considering
all files, which means that depending on the analysis of the results, we can choose LZMA or PAQ
for the best compressor in symmetry.

Table 3.5: Symmetry information

Compressor Average difference (bits) Equality check Percentage of EC-total cases (%)

LZMA 169 29786 10.2
PAQ 123 33862 11.6

PPMD 295 27764 9.05
BZIP2 403 267737 91.7
LZ77 184 33852 11.59
LZW 5840 22595 7.74

3.3.3 Monotonicity

Monotonicity concatenates any file X and Y to test if the result of C(XY) should give at least the
same value of X in C(X) to verify the property C(XY) �C(X).

Contrarily to the Idempotency and Symmetry (expression with equality), in this property, we eval-
uated the cases where the Monotonicity property does not apply, and the Table 3.6 shows the cases
where C(XY)<C(X) applies. All the compressor does not verify the Monotonicity property in three
cases. The three cases that do not verify the property are the same for all the compressors and are
small Y files that are part of X . An example is the alphabet.txt and a.txt from the corpus The Artificial
Corpus, where alphabet.txt contains all the alphabet and a.txt contains only the A character.

Table 3.6: Monotonicity - with the number of cases that do not verify the property

Compressor Not Verifies conditions

LZMA 3
PAQ 3

PPMD 3
BZIP2 3
LZ77 3
LZW 3

3.3. STUDY OF NORMAL COMPRESSOR 39

3.3.4 Distributivity

Distributivity is the most complex property to demonstrate [13]. The strong distributivity is given by
Equation 3.4

C(XY Z)+C(Z) C(XZ)+C(Y Z) (3.4)

However, to prove the desired properties of NCD, only the weaker distributivity property is needed
(Equation 3.5).

C(XY)+C(Z) C(XZ)+C(Y Z) (3.5)

The Equation 3.6 defines the value of C(Y |X) of bits of information in Y , relative to X , and it can be
viewed as the excess number of bits in the compressed version of XY compared to the compressed
version of X , and is called the amount of conditional compressed information.

C(Y |X) =C(XY)�C(X) (3.6)

The triangle inequality Equation 3.7 allows us to perform correlation with the weaker and strong
distributivity.

C(X |Y) C(X |Z)+C(Z|Y) (3.7)

For this, the Cilibrasi et al.[13] define the Lemma: Equation 3.7 and Equation 3.4 imply Equation
3.5. The proof consist in:

• Equation 3.4 implies Equation 3.5 by Monotonicity;

• Replace the terms in Equation 3.7 with Equation 3.6;

• C(Y X)�C(Y) C(ZX)�C(Z)+C(Y Z)�C(Y) cancel the C(Y) in both sides;

• Use symmetry to arrange C(XY)�C(Y) C(XZ)�C(Z)+C(Y Z)�C(Y).

The results in Table 3.7 demonstrate the number of cases where the property C(XY) +C(Z)
C(XZ) +C(Y Z) is not verified and demonstrate that the best algorithms are PAQ and LZMA.
However, PAQ is the best, with a small difference between them.

3.3.5 Results and Summary

From the experiments, the best compressors for each property are:

40 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

Table 3.7: Distributivity - with number of cases that do not verify the property

Compressor Percentage (%)

LZMA 0.41
PAQ 0.16

PPMD 2.76
BZIP2 4.3
LZ77 0.68
LZW 9.38

• Idempotency - LZMA;

• Symmetry - BZIP2;

• Monotonicity - all compressors;

• Distributivity - LZMA & PAQ.

The best real-world compressor is LZMA because it is the best in Idempotency and Distributivity
scores. In Distributivity, the score is similar to PAQ, but this compressor is more time-consuming [87].
Table 3.4, shows the average difference in Idempotency value where the LZMA represents the
smallest average of all the compressors. Also, all the algorithms verify the Monotonicity property,
except for the specific case of a simple file with only one ’a’ inside.

Lastly, in the scope of Symmetry, the best compressor is represented by BZIP2 with 91% of the
cases verifying the property. However, it is important not only to analyze C(XY) =C(Y X), but also
to analyze the average difference between them (C(XY) and C(Y X)). The results on the average
difference are different, and as shown by the Table 3.5, the best compressors are PAQ and LZMA.
Despite the fact of only 9% of the cases in BZIP2 do not verify the property, we get BZIP2 with a
worse average (403), using the average distance between the two samples, compared to PAQ (123)
and LZMA (169).

For this reason, and considering all the previous results, LZMA is the best approximation to a normal
compressor. Also PAQ is a good candidate to a normal compressor with an extra computation cost.
All of these experiments accept a difference in the value of O(logn), where n is the maximum binary
length of the file involved.

Contrarily to our experiments with a statistically significant dataset, Rebecca Borbely [17] shows
that the Idempotency best approximation is given by PPMZ. Otherwise, Manuel Cebrı́an et al. [22]
claims that LZ77 is a compressor that also verifies Idempotency. As both authors use a smaller
dataset, the difference can be explained by this.

3.4. BEST COMPRESSOR IN LITERATURE 41

3.4 Best compressor in literature

To understand the benefit of each compressor, we reviewed[88] all articles that cited the work of
Ming Li et al. [15] and the work of Rudi Cilibrasi and Paul Vitanyi [13] recently. The number of
articles that use NCD totals 55. This number can be significantly higher, as many authors present
NCD without citing the original articles, and we decide to focus only on these. These results were
collected by searching the name of the compressors on the Google Scholar search engine. After this
step, we manually open each file and analyze the article to see which compressor performed with
the best results to address this chapter’s second goal. This post-processing was necessary because an
article can show multiple comparisons of compressors and different dataset domains.

Figure 3.2: Statistic of the Compressor used

Figure 3.2 shows each compressor’s use in the total number of articles. It is possible to observe that
the most used compressors are BZIP2 and LZ77, with 25 and 28, respectively. This use is related to
previous work with NCD. For example, the original articles from NCD [13, 15] work with BZIP and
LZ77. Furthermore, the Complearn framework was introduced in the seminal article [13], making
it one of the most used frameworks using NCD. Unlike other libraries, CompLearn supports all
operating systems and the Docker environment while also providing support by default for BZIP and
LZ77. Then, this may explain why BZIP2 and LZ77 appear as the most used compressors.

We categorized the use of compressors into six different domains: Computer Science, Signal Pro-
cessing, Navigation Patterns, Natural Language and others. In the Computer Science domain, we
can find articles such as test case generation, plagiarism, code review, logs, malware, network

42 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

analyses, phishing, social media and digital forensics [17, 89–107]. Signal processing include some
articles with file samples from music, image, video and climate [108–124], Navigation Patterns with
representations of animal and robot movements [125, 126], Natural Language with the analysis of
text to categorize profile, users or relationships [21, 127, 128, 128–138] and Healthcare with most
impact in genome, ECG, DNA, RNA [139–147, 147–151]. Finally, Others include all the articles
not included in the previous categories. The topics range from quantum analysis to biology, and also
new formulas that study and compare with NCD [152–161].

Family BZIP2 LZ77/GZIP LZMA/lzip LZW/compress PAQ PPMD

Computer Science 3 7 9 1 0 0
Signal processing 5 7 1 3 1 0

Navigation Patterns 1 1 0 0 0 0
Natural Language 7 5 2 0 2 1

Healthcare 5 4 2 1 0 0
Others 4 5 1 1 1 0
TOTAL 25 29 14 6 4 1

Table 3.8: Statistic of compressors by domain

Table 3.8 demonstrates the use of each compressor by the application domain. In this Table are just
shown the best compressor and not all the compressors mentioned in each article. However, it is very
interesting to see that the distribution is similar across the domain of use. There is no compressor for
Natural Language processing and a different one for Healthcare. However, unlike the other domains,
LZMA is the most used in the Computer Science domain with nine articles using the compressor as
the best performing algorithm.

To meet the second goal of this chapter, we give evidence that the most used compressor is LZ77.
Given the findings in Figure 3.8, these values vary depending on the dataset domain. In some cases,
the most used compressor will depend on the type of file or behavior of the data in use.

Regarding third goal of this chapter, it is possible to see a correlation with the use of LZMA (normal
compressor) only in the computer science domain. Further research and testing in other domains is
needed to test the behavior of LZMA. Generally, as traditional compressors have shown good results,
previous work has not attempted solutions with different compressors.

3.5 Summary

Over the years, new challenges have emerged for information theory. Many research have used NCD
to perform ML tasks. Using NCD creates challenges about how we can optimize it. Many authors
study formulas and optimizations for small/large files and study properties of a normal compressor
(generally, the authors study only the Idempotency). NCD is widely used on multiple domains such

3.5. SUMMARY 43

as Computer Science, Healthcare, and Natural Language, which give some evidence that NCD is a
multidisciplinary subject.

This chapter focused on studying the normal compressor properties: Idempotency, Monotonicity,
Symmetry, and Distributivity. The results differ from previous study’s[17, 22] of normal compressors
and conclude that the best compressor is LZMA, considering all the properties. On the other hand,
the most used compressor in the literature is LZ77.

44 CHAPTER 3. EMPIRICAL STUDY ON NORMAL COMPRESSORS

Chapter 4

Evaluation of implementations on
privacy/secure protocols

Parts of this chapter are based on the following work:

João S. Resende, Patrı́cia R. Sousa, and Luı́s Antunes. ”Evaluating the Privacy Properties of Secure
VoIP Metadata.” International Conference on Trust and Privacy in Digital Business. Springer, Cham,
2018.
João S. Resende, Patrı́cia R. Sousa, Rolando Martins and Luı́s Antunes. ”Breaking MPC implemen-
tations through compression.” International Journal of Information Security 18.4 (2019): 505-518.

There are many cryptographic protocols in the literature that are scientifically and mathematically
proven. By extension, cryptography today seeks to answer to the communicative process’s numer-
ous properties beyond confidentiality (secrecy), such as integrity, authenticity, and anonymity. In
addition to the theoretical evidence, implementations must be equally secure. Due to the ever-
increasing intrusion from governments and other groups, citizens are now seeking for alternative
communication methods.

Cryptographic protocols are usually designed and published with associated theoretical security
proofs. However, it does not guarantees security regarding the practical implementations available
on the Internet. Thus, it is necessary to demonstrate that the theoretical model that supports the
protocol matches the technical security assumptions on the implementations.

There is a vast literature on theoretical security proofs of cryptographic protocols that are poorly
implemented, leading to risks associated with exposure of private, anonymous, or even sensitive
data. These security issues originated the interest in analysis and detection of vulnerabilities in pro-
tocols [162–165]. Yasemin Acar [163] conducted a study on libraries that implement cryptographic
protocols from the point of view of usability and security by analyzing the features and documen-
tation. The evaluation is based on code produced by a set of users using those implementations,

45

46CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

and it concluded that documentation should also be used for a security evaluation. Without proper
documentation to use a security library, it increases the probability of a vulnerability.

We decided to evaluate different protocols and implementations for this approach, as they often do
not follow the theoretical (already validated) security procedures. In this context, we have study the
usage of Kolmogorov Complexity (Section 2.1) and, more specifically, NCD (Subsection 2.1.2) to
allow a detection of problems in software implementations. The current chapter focus on the test of
the robustness of protocols, more precisely ZRTP and MPC implementations.

The first section will describe the approach followed to showcase ZRTP, and the second will give an
overview of the current status of MPC libraries.

4.1 ZRTP - an end-to-end protocol

Many alternatives were offered with the communications industry’s evolution, such as telephone ex-
changes, corporate cell phones, conventional phones, and Internet Protocol (IP). The options offered
by the phones came to simplify and streamline organizational communications. Communication
costs between people from different countries over the phone are very high, as there are subscription
costs and additional minutes. The technologies currently available can help save money, and VoIP
technology is becoming more popular. VoIP transforms analog audio signals into digital data that
can be transferred over the Internet. With the spread of the Internet, this technology has become
increasingly common, and we can easily use tools such as Whatsapp, Skype, Facebook Messenger,
among others.

ZRTP is a VoIP end-to-end implementations that is being deployed in other contexts, such as Internet
of Things (IoT) devices [166], and can help establish communications at the edge by providing end-
to-end security for the cloud-connected IoT. For this reason, we decided to analyze the security
of this protocol using NCD, but we did not find any vulnerability regarding end-to-end traffic, at
least from a compressed point of view, as Advanced Encryption Standard (AES) introduces enough
entropy. However, during this evaluation, we also decided to study the implementation’s privacy
implications because, although NCD does not detect any pattern, the metadata exhibits some data
leakage that could compromise the system.

Metadata leakage is not about the content of the conversation. Instead, it is focused on properties
that may disclose sensitive personal information [167]. In the case of an image, metadata leakage is
related to exposure of properties, such as size or location, which can happen, for example, when the
devices embed GPS coordinates in the photos [168]. Metadata can compromise the user’s privacy,
as it can identify the user (directly or indirectly). NSA General Counsel Stewart Baker has said,
”metadata tells you everything about somebody’s life. If you have enough metadata, you do not
really need content. ” [169]. The interconnection between metadata can provide a complex profile
of the person in question.

4.1. ZRTP - AN END-TO-END PROTOCOL 47

A recent study by A. Gruber [170] features an application that characterizes suspicious users’ be-
havior patterns versus non-suspicious users based on the use of metadata, such as call duration, call
distribution, interaction time preferences, and text rates for avoiding any access to the content of calls
or messages. The authors based their study on traditional communications and metadata provided
by the smartphone.

The goal of this section is to analyze a sub-field of metadata based on the ZRTP[171] protocol used
in some well-known secure VoIP applications, such as Linphone [172] and Silent Phone [173, 174]).

4.1.1 Problem statement

As mentioned, the privacy risk is not only related to the encrypted content of the voice call, but also
to the metadata. Often, metadata reveals more information than the content itself, such as name and
location, which leads to profile the participant and re-identify or track users’ behavior.

VoIP calls have not yet been analyzed at the metadata level, so we decided to analyze the ZRTP,
where calls are encrypted at both ends. However, does metadata provide some confidential informa-
tion, or is it possible to infer information that should be anonymous?

ZRTP is a cryptographic key-agreement protocol designed to negotiate keys for encryption between
two endpoints on VoIP telephony. This key agreement (Figure 4.1a) can be divided into four steps:
Discovery, Hash Commitment, DH exchange, and Key Derivation and Confirmation.

These phases are described in the Request For Comments (RFC) of ZRTP [175], and we focus
on the discovery phase, that exchange some sensitive information. In this phase, the initiator and
the responder exchange their VoIP identifiers, as well as information about each other’s supported
VoIP versions, hash functions, ciphers, authorization tag lengths, key agreement types, and SAS
algorithms through the packet Hello (figure 4.1b). One important field is the unique 96-bit random
ZID generated once at installation time. This field is important, as shown previously, as it is used to
index and allow peer identification, allowing the use of the cryptographic materials used by the key
continuity and forward secret properties stored in each device’s protocol.

By having an identifier such as the ZID, it is possible to perceive call patterns with network sniffing,
as the ZID is unique and is shared with both the callers (receiver and sender ZIDs). Also, the ZID
can be combined with metadata (such as the length of the call) to know how long the call between
the parties lasted. So far, even though we infer from the ZID which calls exist and between whom
and the duration of the call, we could not connect the ZID to the physical person. Note that the
initial ZRTP packets are used without extra encryption, meaning that any person can see a content
of a packet Hello. Simultaneously, the transfer is being processed from the origin to the destination
through the server. The reason is that VoIP is a protocol design for end-to-end communication, so
this should not exchange crypto material by a third-party server unless needed. An attacker can
conduct this attack on the victim’s same network by having especially authorizations to access the
network by an Internet Service Provider (ISP) or governance agency.

48CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

(a) ZRTP Key Agreement Packet Flow [175] (b) ”Hello” Message Packet Format [175]

Figure 4.1: ZRTP Packets structure

4.1.2 Extracting the information

This section focuses on how this information can increase the risk of re-identification or profiling
users, creating a traceability problem regarding users’ privacy.

4.1.2.1 Implementation

To test ZRTP communications, we use the Linphone [172] client on Android. For this demonstration
we could have used other applications that implemented ZRTP such as CSipSimple, but the most
used implementation is Linphone.

To simulate the real environment, we start by using a public SIP server - sip.linphone.org. However,
during the tests, we detected that all the communications are made with the server and not peer-to-
peer. Figure 4.2 represents a normal call between Alice and Bob where the packets are sent/receive
by the server that brings an extra problem regarding security because users always communicate with
the server. This increases the attack surface, as the packets travel to a third-party server through the
ISP, increasing the chance of an eavesdropping attack occur, not only on the local network (similar
to our setup, end-to-end) but also during the communication with the server.

To create a communication pattern dataset, we first started by implementing a sniffer. We use the

4.1. ZRTP - AN END-TO-END PROTOCOL 49

Figure 4.2: ZRTP peer-to-peer communication

tcpdump * to collect the information from all the network packets that contain all the communications
between the users and the SIP server to establish a peer-to-peer connection. Then, we use the scapy
tool [176] to process the information (packets) stored by tcpdump and detect the ZID’s of a given
connection between two users. The creation of the dataset was based on the following steps:

1. Using scapy, we receive and manipulate the packets from tcpdump searching by the field
”Message Type Block” to see if we got the packet ”Hello” (figure 4.1b);

2. Then, with the tool, we select the field ZID of both ends of the communication and store it in
the dataset;

3. During the transmission of the packets, we also use scapy to store the initial and final time of
the transmission to get the duration of the call;

4. Finally, we store a field of each communication with this format: < Alice’s ZID, Bob’s ZID,
Initial Call Time, Call Duration Time> in the dataset.

4.1.2.2 Setup

We deployed a laboratory environment simulating a company with five employees, where one of
them is a new employee of the company. We use five mobile devices representing the employees
(with Android operating systems from version 19 to 27) connected to a wireless device. Besides, we

*tcpdump is a tool that allows to inspect the traffic passing through the data network. Like all sniffers, tcpdump can
be used for good (e.g. detecting communication errors), but also for evil (e.g. capturing personal data).

50CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

use an external sniffing network device (represented by tcpdump that just dumped the information
into a file of type Wireshark).

4.1.2.3 Demonstration

For demonstration purposes, we assume the following scenario:

There are four employees (Alice, Bob, Carol and Daniel) and a new one arriving at the company
(Eva). The new employee tries to access privileged information about communications within the
company (who communicates with whom and each call duration).

Figure 4.3 illustrates this scenario. In this case, each phone has the caller’s ZID.

Figure 4.3: ZRTP Communication

When Eve arrives at the company, despite seeing communications and each user’s ZID with a
network sniffer, she cannot identify each user. However, assuming that Eve calls Alice and Carol,
she gets each of Alice and Carol’s ZIDs, and from there, he can automatically identify the history
of these two users. The users’ history contains the number and duration of calls between these two
users or between them and the others. From there, Alice and Carol’s privacy is compromised.

With this example from Eve, we can assume that if network users (all employees) want to sniff
the network, they will get the same information about other employees. Therefore, the privacy of
these users is compromised. For forensics, we know that it is enough to know that two people have
communicated with each other and the respective duration of the call. Therefore, it is essential to
have a private ZID, so there is no leakage of information or metadata generated during the call.

Finally, we can also identify users by behavior in real life. In this way, Eve can obtain the correspon-
dence of ZID with the individual, searching for patterns, such as isolating the employee on vacation
or time of day.

4.1. ZRTP - AN END-TO-END PROTOCOL 51

4.1.3 Proposed Solution

To solve the information leakage, we can follow two possible solutions. In this section, we describe
two solution scenarios.

4.1.3.1 Scenario 1

We created the first scenario to solve the privacy issue on all calls (except the first). To encrypt
the ZID, we propose to use the derivation of the cryptographic material stored on the local phone.
However, in the first call between two pairs, we do not have the cryptographic material. For this
reason, ZID is not encrypted on the first call.

With this solution, the attacker can only trace the first call, which protects the privacy of users,
mitigating the leak of call duration and the number of calls between each pair of users, improving
protection against traceability.

4.1.3.2 Scenario 2

The second scenario is focused essentially on the use of SIP URI. As we described in Section 2.2.7,
there is a vulnerability related to MiTM, where the proposed solution is to use SIP [37]. To secure
the protocol, and as we need SIP to find the peers, we can use it to discover the peers instead of using
ZID. Thus, SIP URI is used to look up retained shared secrets from previous VoIP sessions with the
endpoint, to replace the ZID functionality. In brief, it is used as an index on a cache of shared secrets
previously negotiated and held between the two parties.

Note that, we use SIP URI only to identify peers, so we are only dependent on a third-party in the
discovery phase.

4.1.3.3 Implementation

Based on the two proposed scenarios, we decided to follow Scenario 2 and implement it. This
decision is mainly focused on mitigating the metadata leakage problem, even in the first call.

To test the proposed solution, we implement a prototype/patch based on the ZRTPCPP [177] library
with PJSIP [178]. However, we must ensure that ZRTPCPP users can communicate with Linphone
users, or any other application that supports VoIP. As a requirement, we also consider that the
implementation must be compliant with the RFC of VoIP [175] to be suitable for all implementations
of the protocol. For this reason, it is important to follow the protocol and format of the packets
presented in the RFC, making the implementation interoperable.

Our patch proposes replacing ZID with SIP URI. In a normal call between two users using our
scenario (Figure 4.4), both clients will store the SIP URI of the SIP layer to store the values of

52CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

Figure 4.4: Different ZRTP Client Communications

credentials and maintain preshared mode. One of the most important pre-shared mode features is key
continuity, which is important because SAS validation is not required after the first call. However, if
we have a call between two different clients (Alice and Carol - figure 4.4), the ZID field is required
by Carol (she is not using our scenario). For this reason, we keep this field with a random value to be
compliant with the RFC of VoIP. In the communication between Alice and Carol, users do not have
the key continuity/preshared mode properties to use the DH key agreement in all calls, which means
that SAS validation is required for all communications, even after the first call (the key continuity is
lost because the ZID is random). Therefore, the ZID is different on all the calls.

With our solution, the traceability problem is mitigated because the attacker only sees that Alice is
always calling a ”different” user in each call to Bob. So, the attacker does not know that Alice is
calling Bob, so it is impossible to trace their behavior. Regarding Carol, traceability is still there
but mitigated because she is speaking with a patched client that will always produce a different ZID
value, so it is impossible to see who she is calling to.

4.1.4 Conclusions

In this section, we described a metadata vulnerability in secure VoIP calls. We stress that this finding
is of utmost importance, as the users are looking not only for secure communications but also for
privacy guarantees. To make our findings clear, we developed a laboratory demonstration of how to
explore this vulnerability. Given the high privacy risk, we proposed two solutions. Finally, we also
deploy a VoIP client that implements these security properties based on ZRTPCPP.

The insights and results gained throughout this work highlight the necessity of using open-source
resources where researchers can study and deploy this type of approach to build a secure open-source
ecosystem.

4.2. MPC IMPLEMENTATIONS 53

4.2 MPC implementations

Contrarily to ZRTP, with MPC we are looking for a tool that allows users to share and compute
information privately in the cloud. In this context, we have two great players MPC and HE. The
promise for an end-to-end way to collaborative learning by extracting information without sharing it
with the other party involved is an active development topic.

General MPC algorithms are inefficient in practice regarding communication complexity (they rely
on implementations with asynchronous network and offline phases) and are often not secure against
active adversaries that adapt to the protocol [179]. Thus, the primary motivation focuses on the study
of potentially (in)secure practical implementations, which do not guarantee that they comply with
the protocol’s security properties in a real environment.

This section focus on testing a relevant set of MPC libraries [107, 180–184] which the research
community is using to test and develop the MPC systems. We mainly focus on strategies that use
Secret Sharing, GC, and OT.

In brief, this section has the following main contributions:

1. Setup and analyze the privacy security property of MPC in some of the most cited MPC
frameworks: SPDZ-2, ABY, TinyLego, and DUPLO;

2. Simulation of a passive attack using the tcpdump tool, which allows the adversary to ”sniff”
all traffic passing through the data network;

3. Simulation of an active attack through the use of STrace *, which traces the execution of a
particular program (or process), and intercepts and records the calls it makes to the system
functions and their respective return signaling;

4. Evaluate the traces of both tools (for passive and active attacks) by using CompLearn and
ncdlib to apply compression techniques to the process of discovering and learning patterns, i.e.,
to identify the similarity between the objects. Then, apply clustering techniques to understand
if it is possible to cluster the data: i.e., if it is possible to join communications with the same
inputs in the same cluster;

5. Explore and analyze one of the libraries’ source code to understand the problem or implemen-
tation errors. In this case, we analyze the source code of the SPDZ-2 [185].

*STrace allows the attacker to observe the system calls used by an application. STrace is useful because it can help
the user understand what the system does during program execution, which can be a great help in tuning performance and
resource management.

54CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

4.2.1 MPC Libraries Overview

For the security tests, we chose the most cited libraries that, in turn, implemented the most mentioned
protocol variants of secret sharing and garbled circuits: SPDZ-2 [180] and ABY [181]. We also
chose two different libraries of the LEGO paradigm: TinyLEGO [183] and DUPLO [184], as they
are proposed by the same authors, but have different implementations of MPC. All the libraries can
simulate Yao’s millionaire’s problem [25] with two parties, so we use this example to the security
test of each library. To simulate the inputs for that problem, we use the world’s wealthiest tech
billionaires according to the list compiled and published by Forbes in 2017 [186]. The total net worth
of each individual on the list is estimated, in US dollars, based on their assets and debt accounting. In
this experiment, we always refer to the identification of the millionaires but we want to identify the
real value they introduced in the system and not their identity. We use the name of the millionaires
for explanation purposes in this thesis.

SPDZ-2
SPDZ-2 is a software implementation for the SPDZ and MASCOT secure multiparty computation

protocols. This implementation is open-source and is available on GitHub [185].

In the SPDZ-2 library, there are some examples of MPC programs. One of them was presented in
the SPDZ tutorial at the TPMPC 2017 [187] workshop in Bristol and it is called tpmpc tutorial and
provides a millionaire’s problem implementation.

In this case, it is necessary to perform a real MPC computation - P1 shares a, and P2 shares b - and
reveals the comparison of the values.

The code of the millionaire’s problem is provided in the Code 4.5. val = sint.get input f rom(i)
is used to get input for party i and share secretly into val. This reads input for party i from
Player�Data/Private� Input � i which is the location where the private input is placed when it
is generated. The s.reveal() function reveals the response 0 if the numbers are different and 1 if the
numbers are equal. For these tests, we use the commit that has the Secure Hash Algorithms (SHA):
7d55d01010ca69c310d74272c5b991fbebe3a7b7.

Code 4.5: SPDZ-2 implementations of Yao’s Millionaire’s Problem

alice = sint.get_raw_input_from(0)

bob = sint.get_raw_input_from(1)

b = alice < bob

print_ln(’The richest is: %s’, b.reveal())

ABY
ABY is a mixed-protocol framework that efficiently combines secure computation schemes based on

4.2. MPC IMPLEMENTATIONS 55

Arithmetic sharing, Boolean sharing, and Yao’s garbled circuits. It makes available the best practice
solutions in secure two-party computation [181]. The implementation of this protocol is open-source
and is accessible on GitHub [188].

This implementation includes the millionaire’s problem, with random input, in its source
code on GitHub. Therefore, we only had to change the input to use the default
millionaire’s value (Code A.1 in Appendix A.1). The commit used in this work was:
c189ff6d45000890185e503bbfbec89914bb497f.

TinyLEGO
TinyLEGO is a protocol for general secure two-party computation (2PC) [183], the first published
implementation of the LEGO paradigm for 2PC. There is an open-source implementation available
on GitHub [189] with a C++14 implementation, the code uses the library SplitCommit that
implements XOR-homomorphic commitment scheme[190].

To prepare the library for the millionaire’s problem, we must choose the circuit representations
of common cryptographic functions typically used to benchmark MPC protocols. In the library,
circuits are available from Bristol [191], and so we chose the ”Comparison 32-bit Unsigned LTEQ”
circuit, which is similar to the millionaire’s problem algorithm. The circuit corresponds to the
millionaire’s problem as it does Less Than or Equal (LTEQ). We converted the values from the
billionaires’ fortune to the equivalent version represented into a 32-bit binary. For these tests, we
use the commit 336e116e9f6db7430d3c56648d7fd9b7ed3e48f2.

DUPLO
DUPLO is an approach for malicious secure two-party computation [184]. There is an implementa-
tion in C++ of this approach available on GitHub [192].

The preparation of the library for inputs and the millionaire’s problem is the same as for TinyLEGO.
In the same way, we chose the ”Comparison 32-bit Unsigned LTEQ” circuit, which compares
the millionaires through the usage of a binary representation of the fortune. We use the commit
0d14ad0a225d8f2355549d64eac6330ceba1f47c for these tests.

4.2.2 Attacks Overview

This section describe two types of attacks: passive and active attacks. In the passive attack simula-
tion, the attacker only needs to be on the victims’ network to sniff the packets that pass through the
network using tcpdump. However, we can also perform an active attack without elevated privileges to
the machine, just by exchanging the executable file (user permissions). For demonstration purposes,
we perform an active attack, where the attacker needs to find the executable of the MPC program in
the local file system of one of the communications players. It has to replace this executable with a
new one, where the attacker collects the information provided by the STrace tool. The use of these

56CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

tools allows us to do a statistical analysis with NCD to the protocol and categorize the information
passing in the network. We use these two tools to demonstrate a leak of information in a local
environment (a malicious user can try to subvert the protocol through STrace). Alternatively, an
attacker can be passive by only inspecting the packets’ contents observed with tcpdump.

We constructed a middleware system that consisted of two parts:

First phase - The attacker computes all the input’s possibilities.
The middleware performs and stores all possible combinations of inputs and collects the outputs of
tcpdump captures. Then, it must apply a clustering task to sort and correlate the captures, which
allows generating a similarity matrix of N ⇤N dimensions, where it compares all the elements with
each other. So, now, the middleware has all the datasets generated.

In the next phase, when a new sample is available, we can compute the similarities to the samples
stored with the standard clustering method, such as the clara algorithm[193].

In brief, the first phase consists in three steps:

1. Gather all possible inputs;

2. Generate tcpdump or STrace captures for all input combinations;

3. Compute NCD matrix.

Figure 4.6 shows the connection between the middleware and the network layer to gather the captures
of all inputs.

Figure 4.6: MPC Attack’s Middleware Setup - First phase

4.2. MPC IMPLEMENTATIONS 57

Second phase - the attacker collects/compares real information
The middleware has the information about all the possible computations. It ignores (removes) any
information regarding the person’s identity in the communication, such as IP address, but rather the
content in raw of the data generated by the protocol.

In this case, the middleware needs to receive or collect real information through captures (STrace or
tcpdump) and compare with all combinations of stored entries (in its first iterations) so that it can
group the data using the clara algorithm, and then repeat the process using a new sample according
to the cluster it belongs to, that is, which most resembles it. In this way, middleware can advertise
the entry through the group to which it belongs.

In brief, the second phase consists of three steps:

1. Intercept communications and gather the captures of the real communication;

2. Collect the cluster aggregation from step 4 of the first phase;

3. Classify the real data into one of the clusters.

The rest of the section will refer to the millionaire’s name when referring to their inputs.

Setup
For both attacks (passive and active), we use the millionaire’s problem [25] with the top four wealth-
iest tech billionaires as input data. For each sample, a communication between two parties is
used. Each connection is repeated five times with the same data to have more samples of the same
transmission to apply the clustering method.

In the first phase, we started by testing all the entries provided by the billionaire’s list (96 inputs)
using ten runs. However, as we intend to present the output values of CompLearn to demonstrate
the results, we had to reduce the inputs and the repetitions, as the construction of the square distance
matrix and the computation of the best-fitting unrooted binary tree is a computationally demanding
problem [194]. We used only 4x5 (inputs x repetitions) to speed up and simplify solving this
problem.

In these tests, we are simulating a real communication situation between four billionaires. The idea is
to cluster the information from communications according to the billionaires’ input. The attack is not
focused on the people’s identity, but rather on the input they exchange, as one of MPC’s properties
is that the only information inferred about the private data is what it could be inferred from seeing
the output of the function.

As we can see in Figure 4.7, we used four billionaires: Bill Gates, Jeff Bezos, Mark Zuckerberg, and
Larry Ellison, who have net worth of $84.5 B, $81.7 B, $69.6 B and $59.3 B, respectively. We used
each of the billionaires’ inputs as a sender and a receiver to simulate all communications. Generating
all possible combinations of inputs allows us to produce a result similar to a rainbow table where all

58CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

Figure 4.7: Communications between four players

possible combinations exist. The idea is to gather a new communication sample, where the entry is
not previously known, and compare it with the table of entries.

Global Premises
Some assumptions have to be considered in the setup of each framework to carry out the attacks:

• All libraries have a limitation on the size of each input;

• The set of inputs that the tool accepts is finite and can be binary or an integer in the case of the
millionaire’s problem.

4.2.2.1 Remote Attacks (Passive)

A passive attack involves someone listening to the communication exchanges. An example of this
is an attacker sniffing network traffic using a protocol analyzer or other introspection. The attacker
finds a way to connect to the local network and captures the traffic for further analysis (including
port mirroring).

For this, we start by using tcpdump to analyze the traffic through the network (Listing A.1 on
Appendix A.2) on each communication.

The traffic is captured and then used to evaluate the NCD between them. The use of compressors
implicitly allows the attack to analyze the similarity between traces of communications traffic, to
comprehend the kind of information sent, and to be able to distinguish the communications through
their similarity.

The captured network traffic has a timestamp as an attribute that is a random property that can
change the compression value. As we measure the distance between objects by applying NCD, it
makes sense to remove timestamps because it is a component that is not controlled by us and varies
between captures. The same data exchange during communications with different timestamps makes
the compression index different between identical samples. For this reason, the attribute -t is placed

4.2. MPC IMPLEMENTATIONS 59

in tcpdump. By taking the normal interface parameters, we have only the -w, which writes the raw
packets to a file rather than parsing and printing them out. We also use the attribute -n to filter only
Transmission Control Protocol (TCP) packets because that is what MPC uses. Also, we remove IPs
only to collect information regarding the communication data.

In this case, tcpdump is used to capture the traffic passing through the network by multiparty com-
putation to be cluster by compression techniques.

Attack Specific Premises
In the passive attack with tcpdump, we have some assumptions:

• The attacker does not need access to the machine;

• The attacker needs access to the same network (running the multiparty computation protocol)
as one of the communication parties.

4.2.2.2 Local Attacks (Active)

Active attacks tamper with the normal flow of information, altering its content and producing un-
trustworthy information, usually compromising the system’s security.

We start by using STrace to save the captures, analyze with compressors, and do data mining
clustering.

The use of STrace is related to the high number of permissions required by tcpdump to run on
the victim’s machine, especially if the attacker does not have access to the victim’s network. For
this reason, we do not use tcpdump because it will require root access compared to the normal
permissions of STrace.

In brief, when we make an active attack in which we have to enter the victim’s machine, we have
two possible situations:

• We make a passive attack by running the tcpdump, but we would have the same problem of
obtaining root access to the machine, which in many situations is complicated;

• Otherwise, we use STrace, and just by changing the executable (this step only requires user
normal permissions), we can gather information through STrace.

We used STrace in different modes (Listing A.2 in Appendix A.2 with the example of the network
mode). It is possible to collect information of specific system call group, i.e., the access to local
files. We used three different options of trace, namely: memory, network and file. First, we start
by testing an approach similar to tcpdump, but with STrace, to capture the network traffic with the
network option. Then, to get better insight into the memory usage and system calls, we used the

60CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

option memory. Finally, we used the option file to track file-related syscalls.

Attack Specific Premises
In the active attack with STrace, we have some assumptions:

• The attacker does not need network access (unlike the passive attack) but needs access to the
machine;

• The attacker does not need to have any elevated privileges, only a standard user account on the
machine.

4.2.2.3 Evaluation Metrics

This section describes the results obtained with the corresponding setup of CompLearn to produce
the NCD matrix.

NCD software
To analyze the dataset from the brute force attack, we used the CompLearn library to compute the
NCD, constructing a distance matrix. This matrix’s entries will be the distances between each pair
of traces, i.e., how similar they are. The first line of the Listing 4.1 represents the computation of
the NCD matrix, where the -d represents the directory where the user wants to perform the analysis
with the NCD, and the next argument is the name of the directory. After this, the output is the NCD
matrix produced by CompLearn. As this is a more compact form of gathering information, we can
apply clustering algorithms. After this, we could pass the NCD matrix file to maketree (line 2) to
create an unrooted binary tree. The result of maketree is a file containing how the tree nodes are
related to each other and the corresponding label. After this, we can use the command line script
neato available in the package graphviz (presented in the line 3) filter for drawing undirected graphs
in a .png. In brief, CompLearn uses the exact quartet method to produce a ternary tree, where the
leaves represent the files and the branches represent similarities between them. At each step, the
algorithm tends to refine the tree by modifying the sub-trees. Each resultant tree is associated with a
value of S(t), which indicates how well the tree represents the matrix. Since LZMA is the most used
compressor in computer science and the best real-world approximation of a normal compressor, we
used it with NCDlib.

Listing 4.1: Executed commands to produce the NCD results

1 ncd -d 427000/ 427000 > NCDmatrix

2 maketree NCDmatrix

3 neato -Tpng treefile.dot > ncd-unrooted.png

4.2. MPC IMPLEMENTATIONS 61

4.2.3 Evaluation

The communication schemes presented in the Figure 4.7 contains sixteen communications repeated
five times each, to perform the clustering. However, to explain the results, we simplify the commu-
nication, and only Bill Gates (Figure 4.8) will be the communication sender. The full image with all
the communications is available in Appendix A.2.

With the limitations imposed by the library and the inputs generated from the millionaires, we used
input sizes from 6, 9, and 12.

4.2.3.1 Passive attack

The Figure 4.8 represents the first communications established by Bill Gates. In this attack, we take
advantage of the information captured by tcpdump so that the capture can be clustered and compared
with new traces. This will create a real model where, based on this cluster, we can classify any new
communication into one of four groups of connections (by clusters).

We will use two binary trees to prove the problem, where the first has an example of a vulnerable
library and the second has an example of a secure library.

Figure 4.8: Gates communications scheme

The Figure 4.9 is an unrooted binary tree of the SPDZ-2 framework that clusters, as leafs, the tcp-
dump captures of the communications between two peers analyzed using NCD. The leafs represent
a communications and contains: the iteration number (from 0 to 4), followed by the sender’s name
and, then, the second peer’s name in the conversation. An example of such communication is one of
the leafs under the red circle: (3 gates bezos) represents the fourth iteration of the communication
between Gates and Bezos. Note that, the names of billionaires represent their inputs and not their
identity.

The red circle in the Figure 4.9 represents the cluster of the communications between Gates and
Bezos; these communications include five captures of the network traces. The representation of
Figure 4.9 also allows us to see that the billionaires ’remaining inputs are divided into branches,
where we can divide the communication inputs represented by Gates with the remaining billionaires’
inputs. The extended version of the Figure 4.7 is represented on the Figure A.2, and we can see that

62CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

the same results are also identifiable.

Figure 4.9: Unrooted binary tree with the entire gates communications scheme in SPDZ-2

The Figure 4.10 represents the cluster of secure communications between Gates and the other players
in the ABY framework. The resultant tree is associated with the S(t) value, which indicates how well
the tree represents the matrix. However, in this case, the S(t) is approximately 0.80, meaning that
the fit between matrix/tree is not as good as the tree represented in Figure 4.9, where the value of
S(t) is approximately 0.99. However, in this unrooted binary tree (Figure 4.10), we can not split the
tree by pairs of groups because there is no part of the tree with Gates communicating with the same
player in the same cluster. This means that the ABY framework, using NCD, is not leaking private
information, as opposed to the SPDZ-2 framework.

The Figures 4.9 and 4.10 represent the results for an input size of 6.

The Table 4.1 shows the results that we obtained through the NCD (the best between LZMA and
BZIP2) and data mining tools (clara algorithm) for all the MPC frameworks tests with different
inputs for tcpdump.

4.2. MPC IMPLEMENTATIONS 63

Input Size
MPC Framework Input Type 6 9 12
ABY Int # # X
TinyLEGO Bin # #
DUPLO Bin # #
SPDZ-2 Int

 = Vulnerable;
X = Limitation of the framework; Not Applied;
#= Not Vulnerable;

Table 4.1: Comparison table of MPC libraries using tcpdump

The information in Table 4.1 considers the inputs given to the brute force middleware. In cases
where the input is an integer, the program receives an input size of 6 (the billionaire’s net value, e.g.,
845,000). Otherwise, it receives a binary conversion of this input to 32 bits (because we use the
default binary-circuit based MPC and FHE implementations as already described in section 4.2.1).
This conversion to binary leads to situations where a library is vulnerable and others where it is not,
as shown in the Table 4.1.

Table 4.1 represents three insecure libraries and one that is secure. The most insecure library is
SPDZ-2, where we can see that for any input, the library is leaking information only with tcpdump.
The TinyLEGO and DUPLO libraries leak information when using a standard 32-bit comparison
circuit. The secure library, or the most secure based on this test, is ABY, where we cannot cluster
information based on the network captures.

The search for the reason why both DUPLO and TinyLEGO libraries were vulnerable to an input of
size 12 rather than size 6 led to the study of the inputs based on the entropy values between 0 and 1
(represented in Table 4.2). To obtain the values in the table, we used Approximate Entropy (ApEn)*

by using ap entropy from PyEEG Python Module.

The security of both libraries can be measured by the similarity between the output samples produced
by the libraries to exchange end-to-end data. However, when the input size converted to binary
increase, the difference between the entropy values also increase, so the cluster methodology can
detect the difference in the information exchanged through the network.

We measure the entropy because the padding of zeros can influence the entropy values. The following
example shows two different input sizes (salary of Bill Gates) converted to 32bits binary. We
can see that if we convert only 6 digits of salary (896 000), we have a lot of padding of zeros at
the left (00000000000011001110010011001000). The same does not occur in the input size 12
(896000000000 - 11000100101111011110110011000010). It may be detrimental to have padding

*Approximate Entropy is a technique used to quantify the amount of regularity and the unpredictability of fluctuations
over time-series data. [194]

64CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

of zeros left, as entropy is influenced in the wrong way.

This vulnerability is interesting because security properties tend to increase to enhance robustness.
However, in this situation, the opposite is happening: when we increase the values being exchanged,
we increase the entropy and consequently the ability to exploit this vulnerability.

Input Size
Billionaires 6 9 12
Bill Gates 0.498 0.593 0.637
Jeff Bezos 0.489 0.602 0.569

Mark Zuckerberg 0.497 0.571 0.571
Larry Ellison 0.497 0.609 0.637

Table 4.2: Entropy table of Input sizes of TinyLego and DUPLO

The entropy shows that the difference between the binary representations of these numbers varies
according to the integers’ size, represented in binary. For numbers less than 9, the binary has to pad
0s to the left of the number, making the entropy values very similar. However, for entropy values
for the input of size 12, we have a range of [0.569 to 0.637], making the values more distinct. An
example of Gates’s binary values with inputs size 6 and 12, respectively.

4.2.3.2 Active Attack

For active attack, we used STrace focused on the network traffic, but without the need for access to
the network or escalated privileges. Using the same communications rounds used in the previous
passive attacks, Table 4.3 shows the results of the vulnerability tests. ABY has a limitation because
we cannot use an input of the size 12. We can assess that SPDZ-2 is vulnerable to all input sizes,
while ABY is not. DUPLO starts to leak information using a small input size (6) but does not classify
all the information within the correct cluster. However, it can partially classify the information, as
it can have good results in the 20 samples (5 times for each of 4 communications). With an input
size of 9, we have 6 communications incorrectly classified, and with an input size of 12, we only
have 3 communications in the wrong cluster. For this reason, we consider it a ”partial vulnerability”
because it has some incorrectly classified instances.

4.2.4 Code Analysis SPDZ-2

We will now discuss the implementation issues that we uncovered during the assessment of SPDZ-2.
In the previous section, we have shown that SPDZ-2 is vulnerable against passive and active attacks.
Using standard compressors, they can extract the information exchanged in the communication due
to the correlation between samples within the same values input.

4.2. MPC IMPLEMENTATIONS 65

Input Size
MPC Framework Input Type 6 9 12
ABY Int # # X
TinyLEGO Bin # #
DUPLO Bin # G# G#
SPDZ-2 Int

 = Vulnerable;
X = Limitation of the framework; Not Applied;
G#= partial vulnerable;
#= Not Vulnerable;

Table 4.3: Comparison table of MPC with STrace results

This section describes the code-level analysis used to understand the security properties of MPC that
were missing from this implementation.

For this, we started by searching for the similarity (NCD-based) between TCP traffic in the code.

There were three steps that we used to assess this:

1. Network socket detection;

2. Unpack the network socket information;

3. Check the implementation of secret sharing.

In the network socket detection (Step 1), we started by searching the entry points of the network
socket * and collected the information sent to the socket to perform the brute force attack. We
performed multiple tests with the same input on both clients, and the result is the same information
sent to the other side. In Step 2, it is possible to see the unpacked version of this data in a readable
example.

The information extracted from Step 1 is packed before being sent to the program’s network layer.
To understand the information sent, we analyzed the moment after the unpack and obtained some
numbers. The code from the Listings 4.2 is responsible for receiving the values from the network
socket where they are unpacked inline 9. When the program needs the input, it calls the function
GetValues, also available in Listings 4.2. In this function, it is possible to print the entire information
from the vals variable.

Listing 4.2: Code from SPDZ-2

1 void MAC_Check<T>::AddToValues(vector<T>& values)

2 {

*A network socket is an endpoint to the communication flow between two programs running over a network.

66CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

3 vals.insert(vals.end(), values.begin(), values.end());

4 }

5 void MAC_Check<T>::ReceiveValues(vector<T>& values, const Player& P,

int sender)

6 {

7 P.receive_player(sender, os, true);

8 for (unsigned int i = 0; i < values.size(); i++)

9 values[i].unpack(os);

10 AddToValues(values);

11 }

12 void MAC_Check<T>::GetValues(vector<T>& values)

13 {

14 for (typename vector<T>::iterator it = vals.begin() ; it !=

vals.end(); ++it)

15 {

16 cout << "\t \033[1;31m " << *it << "\033[0m\n ";

17 }

18 ...

19 }

The variable vals prints the information that came from the network (Listing A.3 in Appendix A.2),
and these numbers are always equal to the results from the previous interactions. The numbers
that we got before the unpack, we suspected that they were related to the secret sharing schemes
according to the stages displayed. Also, there was a correspondence between the number of stages
with the total number of elements in the vector vals. So, SPDZ-2 implementation regarding the
secret sharing and Message Authentication Code (MAC) always produces the same result for the
same input values. This is clearly an implementation issue.

This vector has another interesting feature. The SPDZ-2 has the ability to create and modify the
programs, for example, the millionaire’s problem. The programs are specified in a specific language
”.mpc”, created by the library. There is the possibility of getting private or public input, but for both,
the option reveal() can be used. The reveal() function reveals the secret values, and, for example,
we can reveal the inputs for both parties.

To test this difference in the implementation, we used the reveal() option to print the information
and see the difference. We found the number in clear text ready to be received by the other client,
so, in this situation, the reveal() option removes the entire security of the library. We know that, in
fact, if we use a reveal() call in the program, that means that all parties have agreed to this and that
the computed function also reveals this secret. However, the problem here is that SPDZ-2 sends the
value in clear text to perform this reveal() function. Despite the agreement of both parties, the value
is not only shared between them but is also readable to any attacker on the network.

As specified in [180], ”the high-level idea of the online phase is to compute a function represented

4.2. MPC IMPLEMENTATIONS 67

as a circuit, where privacy is obtained by additive secret sharing the inputs and outputs of each gate,
and correctness is guaranteed by adding additive secret sharing of MACs on the inputs and outputs
of each gate.”. The two security properties are not assured in this implementation. These properties
(privacy and correctness) are the most basic ones that a multiparty computing protocol must ensure.

4.2.5 Conclusions

In this section, we review the security of relevant MPC implementations and assess their security
level. In our assessment, only one library performed well, ensuring security in our attack scenario.

Our results suggest that existing implementations of the MPC protocols are vulnerable to a
network traffic analysis, only computing all possible combinations of inputs. We distill high-
level discoveries derived from our initial attack on SPDZ-2. The implementation in the com-
mit 7d55d01010ca69c310d74272c5b991fbebe3a7b7 includes a problem associated with the se-
cret sharing always produces the same results. This version was then superseded by commit
f469e6468b53514a37c530d7e0f90bec1a29caff which introduced the INSECURE compiler flag to
represent the benchmarking option.

The insights and results obtained throughout this work highlight the need to use open source re-
sources where researchers can study and implement this type of approach to build a secure open-
source ecosystem.

68CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

Figure 4.10: Unrooted binary tree with the entire gates communications scheme in ABY

4.3. SUMMARY 69

4.3 Summary

To validate the usage of NCD in the validations of security features, we looked into a panoply of
different protocols and reviewed them according to the security features. ZRTP is an example of this,
and we evaluate it with NCD. However, there were no vulnerabilities found. During this process, we
found a privacy problem associated with the metadata that affects real-world applications.

Then, we checked the advantages of using NCD to discover security failures in MPC implementa-
tions. We were able to identify three library as unsafe MPC implementation and one as a possible
safe implementation. To identify the library as a safe implementation we will require further analysis
of the source code, as we did with SPDZ-2.

The results of this chapter benefit directly from the findings of Chapter 3, where we identify the best
formula as NCD to compute the difference between two objects using the minimal representation of
an object and also the BZIP2 and LZMA(best real-world approximation of a normal compressor) as
the best compressors for this specific domain.

This chapter’s main motivation was to answer RQ1, proving that it is possible to find security
vulnerabilities using NCD. Our work is useful to other researchers in both security and multiparty
computation domains. Combining the NCD with the tools for obtaining network traces and system
calls and combining clustering techniques, it is possible to build a complete tool-set to analyze other
frameworks that implement other cryptographic protocols. As already stated, it is essential to know
if there are errors that compromise security in cryptographic protocol implementations, as theory
alone is not enough. This tool can aid this detection and find data leak problems, namely with MPC
algorithms, as explored in this work, answering to RQ1 (Chapter 1).

70CHAPTER 4. EVALUATION OF IMPLEMENTATIONS ON PRIVACY/SECURE PROTOCOLS

Chapter 5

Kolmogorov Complexity in
Cybersecurity

The contents of this chapter is mainly based on:
João S. Resende, Rolando Martins, and Luı́s Antunes. ”A Survey on Using Kolmogorov Complexity
in Cybersecurity.” Entropy 21.12 (2019): 1196.

Security and privacy concerns are challenging the way users interact with devices. The number of
devices connected to a home or enterprise network increases every day. Nowadays, information
systems’ security is relevant as user information is constantly being shared and moving in the cloud;
however, there are still many problems such as unsecured web interfaces, weak authentication,
insecure networks, and lack of encryption that make services insecure. The software implemen-
tations currently deployed in companies should have updates and control, as cybersecurity threats
increasingly appear over time. There is already research towards solutions and methods to predict
new attacks or classify previously known attacks, such as (algorithmic) information theory. This
chapter combines all relevant applications of this topic (also known as Kolmogorov Complexity) in
the security and privacy domains.

For the categorization of the application scenarios, we propose a well-defined taxonomy. This
categorization allows to make an overview of the state-of-the-art and describe the future contributions
that Kolmogorov Complexity can make.

This work is inspired by [195], which applies ML and deep learning methods for cybersecurity,
focusing on summarizing previous research and comparing it. After the good results with MPC in
Chapter 4, we overview the application of Kolmogorov Complexity in the cybersecurity domain.

To show its application scenarios and identify solutions for each scenario, we also open future
research questions.

In brief, in this chapter, we address the following goals regarding Kolmogorov Complexity.

71

72 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

• What are the domains where it can impact?

• Can it be an efficient solution to meet the Cybersecurity requirements?

• Can its approximations be applied in new domains?

5.1 Application Scenarios

This section describes the different application domains organized into a taxonomy. To build this, we
started by surveying publications using NCD, LZJD, CDM and NRC on information security topics
to understand its impact. We then use a selection methodology for the different domains based on
previous work in the different areas.

Figure 5.1 presents the taxonomy that is organized in five categories:

• Human (user) Interaction: Today’s systems focus on system that need human interactions, so
in order to have a good protection of the system, we need to implement tools that protect users,
such as spam and phishing detection mechanism [97, 100, 196–204].

• Software: The fast pace of how the software is being built makes it impossible not to use open
forums/repositories. This allows users to address their needs, but these solutions may have
security breaches or copies of code from an unauthorized source (compliance with licensing
agreements) that compromises user data or business plans. The NCD can be used to find and
detect vulnerabilities at an early stage or search for code that can produce behavior of similar
vulnerabilities to improve overall system security. Many authors are working on this topic,
namely on anomaly detection, vulnerabilities and code sharing [95, 103, 205–210].

• Malware: In recent years, companies have been attacked with malware, notably leading to the
blackmail of companies/users, disclosure of files or credit card data on the web, or encryption
of databases and files. NCD can help detect a family of malware by calculating the similarity
between the implementation seen earlier, helping to reduce the time to detect malware [17, 20,
211–215].

• Identity/Authentication: With the exponential growth of wearables devices, researchers are ex-
ploring new ways of authentication capable of using information from the Electrocardiogram
(ECG) or similar to authenticate users with devices. NCD can correlate the ECG information
to help in the identification of a user [216–220].

• Theory to practice: Some protocols enforce privacy and security in communications between
users. With the emergence of new cyberattacks and the recent developments in academia re-
garding cryptographic protocols, there are theoretically defined protocols with security proofs
published. NCD was used to validate and ensure security of the existing implementations of
cryptographic protocols [107].

5.1. APPLICATION SCENARIOS 73

Figure 5.1: Kolmogorov Complexity Taxonomy in Cybersecurity.

The following sections introduce each of the topics represented in Figure 5.1.

5.1.1 Human Interactions

Corporations have multiple layers composed of network and physical security. Network security has
different components, such as firewalls, antivirus, or policies. However, physical security consists of
barriers to prevent people from entering the institution, for example. In this scenario, many authors
claim that the weakest part of the security chain systems is the human [221].

There are many solutions to mitigate this type of attack, but there is no effective solution to solve the
problem because employees can be triggered by any means to do something wrong.

Kolmogorov Complexity has been used for the early detection of fake content. Two application
scenarios are Phishing and Text Mining.

5.1.1.1 Phishing

Phishing is a social engineering technique used to deceive users and obtain confidential information,
such as a username, password, and credit card details. This type of attack focuses mainly on two
versions: email and web pages.

On web pages, usually an attacker sends a link identical to the original, which opens a web page
also equivalent to the original, in order to deceive and make the victim click and interact with the
page, that is, so that the victim login to this page so that the attacker can steal more confidential
information and credentials, such as credit/debit card details [222].

A possible solution is to see the similarity between an old page and a new one to understand the
page’s evolution according to a limit, allowing to deter the victim from clicking or interacting with a
web page.

These links are usually sent by email. A person or entity may be compromised by an email sent from

74 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

an illegitimate source, pretending to impersonate others and requesting personal information (for
example, a CEO requesting a transfer to an employee). Kathryn Parsons et al. [223] study the ability
to classify an email as phishing or not. The conclusions are that 42% of the email was misclassified.
The practical solution for this is developing new and innovative approaches to detect Sending and
Posting Advertisement in Mass (SPAM)/HAM automatically.

Email
Email can be classified between SPAM, HAM, and legitimate. SPAM is often understood as an
electronic system that sends unsolicited bulk messages to random locations or specific destinations,
such as the Nigerian letter [224]. HAM is a type of email sent from a mailing list subscribed by a
user directly or indirectly. For example, after submitting an article, users automatically subscribe to
a conference mailing list that sent all new articles published and call for papers. The classification of
incoming emails is an open issue in security research. With the growth of ML technologies, attackers
gain new ways to explore and exploit new types of attack vectors that customize SPAM emails to
targeted users. NCD has contributed to the detection of these type of attacks [196–198].

Delany and Bridge [198] focus on feature-free distance measure and compare them. The authors
studied NCD and CDM and introduced the concept of drift representing a dynamic target concept.
The target concept can be viewed as a specific list of emails that changes over time according to
world events or seasons. The changes are also affected by people’s interests, such as conferences
or seminar reminders can become unpleasant. Here, a subset of emails is selected according to the
year’s season or the user’s recent emails. The concept drift influences the performance as it creates
a shortlist of emails to compare and update, allowing the detection of new types of emails without
processing all historical emails (an example is an email with historical facts that lose value over
time).

The authors use a private dataset containing emails received by a set of users over a year. The
comparison of NCD with CDM shows that NCD outperforms CDM and the concept drift decreases
misclassification. The results also show that the accuracy of NCD compared with Feature-Based
Distance Measure (FDM) is better or equal. An advantage of use NCD is the cost to setup and
simpler periodic maintenance demands.

Other work on SPAM detection uses the Text REtrieval Conference (TREC) dataset, organized in
2005. The dataset [225] contains 48,360 SPAM emails and 36,450 HAM emails. Prilepok et al. [196]
performed a test with different compressors and concluded that, using the NCD, the HAM classifica-
tion was independent of the compressor. However, SPAM detection depends on the compressor, and
it ranges from 66% with Burrows-Wheeler with Adaptive Huffman Encoding, Run-Length Encoding
(RLE) [226] and Fibonacci Encoding [227] up to 90% Adaptive Huffman. A more recent approach
to Prilepock et al. [197] included the previous TREC dataset with SpamAssassin Public Corpus and
confirmed the effectiveness of this approach. Also, authors perform a 2% improvement if the SPAM
filter uses signatures. Signatures contain information extracted from emails but are much smaller

5.1. APPLICATION SCENARIOS 75

and lead to a quick response because it is easier to verify that a signature is present in a predefined
list than to compare incoming email with a SPAM and a HAM dataset by similarity (signatures only
work if the message is the same).

Web Pages
Phishing web pages have traditionally been detect by Document Object Model (DOM) tree, Hyper-
Text Markup Language (HTML) code or link structure of a page, but there are also new approaches to
take advantage of Supersignals [228] and Gestalt [229]. T.-C. Chen et al. [199] introduced a system
that takes advantage of these concepts to analyze the Web page as indivisible entities (i.e., a whole)
to be classified based on the human perceptions (visual representation). To implement and compare
the results of NCD in the detection of phishing websites, the authors used PhishTank [230], which
is an open platform that allows users to query threads and report a phishing website or not to other
users. The results based on a series of experiments demonstrate that this approach can classify and
cluster between similar and dissimilar web pages. As future work, the authors propose a creation of
an antiphishing system that was later introduced by T.-C. Chen et al. [200]. To accomplish a better
performance, the authors also implement the possibility of adding a blacklist to the antiphishing
platform, allowing owners to submit a sample of a fraudulent web page.

Alberto Bartoli et al. [97] explore the feasibility of NCD as a phishing mechanism in web pages,
based on a real environment. The authors propose the possibility of an attacker learn the NCD
formula and then be capable of computing a page P that is similar to the targeted page P0, ensuring
that NCD (p, p0) is a higher value to mislead the behavior of the phishing algorithm. The authors
also explore what can be a significant difference, and the results include changes that only slightly
change the appearance, the brightness of the background color, or the zoom of the entire website will
not be noticed by the user, contrarily to the opposite value of NCD. They conclude that it is complex
to detect SPAM only with NCD, but further iterations must be done to understand relevant parts of
the web page, such as focusing only on the subset of the webpage that contains the login mechanism.

Text Analytic
Recent developments in text analytic focus on the discovery of patterns, especially in long text. In
a recent work [231], the authors suggest that we can use these to detect plagiarism in e-Learning/e-
Publishing systems and assist in preparing expert reports in criminology, the identification of chan-
nels of threats in cybersecurity, and providing digital libraries with tools for studying writing style.
The authors also compare the results of compression-based algorithms with n-grams and conclude
that the precision reaches 20%. However, NCD as a file fragment classifier can bridge and create a
mechanism to detect the authorship. For example, source code replication or text available on the
web can be copied by an individual with minor changes to mislead users. The work in this field is
extensive and show the variety of scenarios where NCD can be applied in long text analytic [232–
237].

76 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

Social media
With the growth of Internet users’, security agencies need to gather and collect information to
understand user behaviors. There are two major goals: detect fake news and detect physical or
cyberattacks. Fakenews is one of the most relevant problems for security researchers, and there are
many research challenges on the detection and reduction in the spread of fakenews [238]. Also,
some topics and threads allow authorities to detect events, trending topics, and eventually illegal
events [239–242] or to detect patterns by analyzing the posts on social media to detect users that
control multiple social media accounts.

In this domain, the literature that uses NCD focuses on detecting suspicious accounts. Alami and
Beqqali [201] introduced a method using suspicious terms collected in a database (manually added),
allowing classification of the entire message, which is done by dividing and classifying each word
in two categories: Normal or Suspicious. To test the model, the authors used a Twitter repository
of messages from 2012 [243]. They propose an extension of this work, and the motivation focuses
on the need to analyze and create a mechanism to disambiguation. In this scenario, they classify the
hashtag, and it allowed to identify message (and new hashtags) that should be treated as indicators
of disturbance.

Regarding the detection of multiple accounts, a recent article used NCD for this detection [100,
204]. The authors created two datasets containing information from Twitter feeds from individuals
who control multiple Twitter accounts and one that merged with the StackExchange. Most of the
techniques used failed to detect the same user accounts. As suggested by the authors, temporal and
semantic approaches failed because users split accounts, for example, by topics meaning that the
words are different. The publication ratio can also be different, meaning that NCD has the best ratio
in the first dataset, but in the second does not. The authors suggest that, based on the difference
between the text sizes, the NCD could not overcome this issue and did not result well.

5.1.2 Software

With the exponential growth of smart devices and the proliferation of laptops and cloud computing,
there is a need for autonomous tools that can work and reinforce security practices, such as finding
vulnerability across multiple layers of code/projects or understanding unsafe programming practices.

5.1.2.1 Code Sharing and Vulnerabilities

Software development has been empowered by sharing/collaborative platforms, such as Github and
Stack Overflow. Github allows users to collaborate on widely available projects, and the Stack
Overflow is a discussion forum that allows users to pose questions or answer other users’ questions

5.1. APPLICATION SCENARIOS 77

about software-related problems. However, answers from non-specialists and efficiency/safety are
some problems of these platforms. These snippets of code can often introduce vulnerabilities in real-
world deployments [244]. These platforms are immediately recommended by search engines when
developers look for problems with the code, and they often copy/paste the code to solve a problem
without auditing [245–247].

When vulnerabilities are found, they must be searched throughout the company’s code (that uses the
software) to correct the problem. Many commercial applications allow a developer to find security
vulnerabilities in the source code. Takashi Ishio [103] proposes the use of NCD to find vulnerabilities
associated with similarities in code snippets. This process is simple: it only requires searching for
similar patterns in the other files in the project to correct the same error. The tool is compared to
a grep-style detection, but with the benefits of NCD. The grep command finds only the exact type
of code searched, but with NCD, it is possible to search for (very) similar changes, for example,
the introduction of a variable or the change of a loop variable from i to j. NCD will be capable of
detecting these types of changes, acting dynamically, but the grep command will only search for the
pattern ignoring all variations.

BinAuthor [205] is a framework for identifying the authors of program binaries and uses NCD as
a way of identify structural similarity. The results indicate that these techniques’ accuracy depends
on the number of parties involved in the dataset. For example, approximately 50 parties (authors) or
more cause the accuracy to drop to 45%.

5.1.2.2 Anomaly Detection

With the proliferation of network/mobile usage, many companies migrate the services to the cloud,
such as banks, allowing customers to check balances or transfer funds between accounts [248]. This
challenges the way security experts look for security holes because the intrusion can come from
different sources, such as network connections, or simply modifying the original application to make
different requests.

Network
When software is deployed on a large scale, companies need to infer what is happening with software
to prevent cybercrime. It is important to debug for potential errors or to audit the system. Typically,
the first solution is to store all log information in empty files for post-processing; this information
can be, for example, the number of attempts to log on to a system, the source IP, the destination IP (in
the case of central logs), and the ports used. Many authors have explored the possibilities of using
this information with proven results [249]. A solution proposed by Gonzalo de la Torre-Abaitua
et al. [95, 206], shows the possibility of using NCD to perform proper analysis of the log files of
multiple services to detect anomalies at an early stage. The authors identify five main datasets,
mainly Uniform Resource Locator (URL), Domain Generation Algorithms (DGA), SPAM, Twitter,

78 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

and Movie Reviews. With the network’s focus, the two most important are URL identification
and DGA, which are important when parsing log files. DGA are used to auto-generate domains,
typically in large numbers within the context of establishing a malicious command-and-control (C2)
communications channel. Malicious URL is a link created to promote scams, attacks, and frauds.
In this scenario, the authors used a public dataset [250] containing both safe and unsafe Hypertext
Transfer Protocol (HTTP) queries, comparing the results with similar anomaly detection approaches,
and the results are very similar. The advantage of using NCD is that there is no need for feature
selection, depending only on the compression algorithm.

Christina Ting et al. [207] adopted the use of NCD in the analysis of Domain Name Server (DNS)
queries. The authors used an intrusion detection evaluation dataset (ISCXIDS2012) [251] from the
Canadian Institute for Cybersecurity, where they extracted the DNS queries and answers. The authors
introduce the slice compression mechanism responsible for removing the applications data portions
letting only NCD with the protocol differences (i.e., the TCP connections lose all the application
data letting only the information of the headers available for processing). The results show that this
can be a good approach to apply to network protocols.

Mobile
Static analytic of the Android application is used in scenarios such as testing if obfuscation algo-
rithms are working properly, testing if Android applications are similar to the previous version,
and if the code does not include bad code, such as blockchain mining functionality or malware
distribution [252]. The first proposal by Anthony Desnos [208] tries to calculate similarity after
decompiling the application and search based on an algorithm that generates the signatures of each
method, identify unchanged methods, and search by similar methods using NCD. The authors make
a test on different versions of Skype, where 165 changes were detected by NCD.

A recent work from Sreesh Kishore et al. [209] proposes a system that uses NCD to compute the app
lineage or detect malicious components in applications because they use birthmarks from 60 Android
Package (APK)s. Birthmarks are intrinsic characteristics of an application that can be uniquely
identified. In Java, the proposed birthmarks are Used Classes, Constant Values in Field Variables,
Sequence of Method Calls, and Inheritance Structure proposed by Tamada et al. [210]. The system
proposed to collect applications from multiple sources and split them between test and baseline
applications. Test applications are crawled from the web, such as open repository or none standard
markets, and the baseline applications are collected from Google Play. Birthmarks are then extracted
from applications and sent to the compute engine, where if the applications have a NCD result of less
than 0.4, they are considered similar; otherwise, they are marked as fake and not safe. They compare
the results with androsim and this system improved state-of-the-art detection of similar classes with
100% precision compared with 45.5%.

5.1. APPLICATION SCENARIOS 79

5.1.3 Malware Classification

Phishing allows an attacker to impersonate another entity, causing a user to download files provided
by an untrusted party (but the user thinks a trusted entity provides them) that contain malware attacks.
Therefore, in addition to solving phishing problems, it is also necessary to solve malware attacks.

Malware includes different types of attacks, such as viruses, worms, and spyware. The malware in-
dustry is a well-organized and well-funded marketplace dedicated to bypassing traditional enterprise
security systems. Once a computer is compromised, the entire infrastructure is in a critical state.
The impact can be huge on the brand or affect the business model, exposing personal or customer
information in many ways [253, 254]. In 2015, Microsoft released a challenge related to the malware
rating, where the goal was to become effective at analyzing and classifying large amounts of files.
These files should be grouped and identify their families. Traditional solutions address malware
detection by running and searching predefined bit patterns (signatures), previously classified as
malware in the virus database. The functionality of this is essentially limited to previously known
attacks, which means that the changes performed will completely change the malware signature,
making it new and undetected malware, called metamorphic or polymorphic malware. NCD can
especially help with these small changes by calculating object similarity, making the system more
robust to character-level adversarial attacks, such as polymorphic/metamorphic viruses.

Metamorphic malware uses code obfuscation techniques to change its internal code structure while
maintaining its malicious functionality during each propagation. To improve and solve this problem
using NCD, Michael Bailey et al. [212] introduced the use of NCD, but instead of applying to
malware code or executable, it uses behavior. Malware behavior has already been proposed as a
solution to deal with polymorphism and metamorphism, where malware changes its visible sequence
of instructions as it spreads. To do this, authors use a user-visible system state (such as open files,
created processes) and then use it as the malware fingerprint. These fingerprints are more stable
than abstract or dead code; then, they run all malware in a controlled environment and collect this
information. This allows authors to compare and identify the type of malware exposed in each
situation by reflecting similar classes.

Table 5.1: Malware comparison table.

Malware dataset
Articles Type Kolmogorov Microsoft Drebin Arbor Private VirusWatch Genome
[212] Traces NCD # # # #
[213] Binary NCD # # # #
[17] Binary NCD # # # #
[20, 214] Binary LZJD # # # #

 = Use the dataset; #= Not using the dataset;

Binary malware analysis is classified as static analysis where code is not executed; the advantages

80 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

of this type of analysis are the security of not having to create a safe environment. There are two
different works with compression in this kind of scenario [17, 213]. Rebecca Schuller Borbely [17]
study the definition of normal compressor to understand the best compressor for Microsoft challenge
analysis [255]. The authors introduce two changes to the NCD formula to improve the compression
functionality using Interleaving and NCD-shuffle (see Section 2.1.2). These changes produce a
performance increase; for example, zlib increased from 50.5% to 83.9% in malware classification.
Another work from Alshahwan et al. [213] inspired by Wehner’s work [2] attempts to classify
malware based on executable binaries. The results show that malware reported within a short period
(i.e., a few days) is more homogeneous than malware reported over a longer period (i.e., a year). The
authors carry out several studies and conclude that, by the time of 2015, the detection by the platforms
present on the VirusTotal site was worse in all cases. A more recent study also outperformed the
VirusTotal in 2019 [256].

The LZJD [20, 214] helps in the malware classification and introduces a comparison with NCD.
The results were interesting not only based on the improvement results, but on Microsoft’s dataset,
especially in the cost of computation, which makes the computation faster and simpler. The authors
show the results of Microsoft dataset analyzing with NCD in only 10% of the data and K Nearest
Neighbor (KNN) with k = 1, and this increase predictions from 58.1% accuracy with NCD to
98.2% with LZJD. The results show that this is a good result for malware classification. The same
results were tested with the Drebin dataset [257], which contains APKs from different Android
applications, and from 67.2% with NCD, the results with LZJD raised to 81.4%. To improve the
system, the authors also propose a stochastic component to enhance the behavior of the compressing
algorithm [211].

Other approaches focus on using compression Approximate Minimum Description Length (AMDL)
and Best-Compression Neighbor (BCN) [258, 259], but this is not derived from Kolmogorov Com-
plexity.

Some work focuses on comparing NCD with other market solutions. A recent paper from Houtan
Faridi et al. [215] concludes that, NCD with a similarity threshold of 0.4, compared with other
approaches, is the best metric for detecting malware.

Table 5.1 represents and overview these articles. It focuses on the format of malware used, the
type of Kolmogorov formula used, and the dataset used to test the solutions. The table shows
how to compare different approaches with the same dataset. Otherwise, we cannot choose the best
malware classification solutions. There is, as shown in the previous sections, a greater impact of
NCD compared to LZJD.

For future work, after performing a comparison with a fixed dataset of all the approaches, it is also
important to test the difference in a dataset of using traces compared with binary or hexadecimal.

5.1. APPLICATION SCENARIOS 81

5.1.4 Identity & Authentication

Traditional mobile authentication/identity, such as passwords or fingerprint techniques, are vulnera-
ble to attacks [260]. One of the new mechanisms to solve authentication is the usage of the smart lock
technology. A smartwatch can be configured with the smartphone in order to unlock by closeness.
This way, a smartwatch can identify a user [261]. These types of solutions are being proposed, such
as the use of ECG, to authenticate/identify a specific person. ECG represents the electrical signal that
comes from the heart muscles’ contraction, and indirectly it represents the flow of blood inside the
heart [217]. A study to understand the number of heartbeats needed to identify a person using NRC
uniquely shows that it is possible with only 5 to 12 heartbeats, maintaining the accuracy between 75
and 80% [216].

Arteaga-Falconi et al. [218] introduced ECG for Mobile devices to work as an authentication system.
The benefits of this type of system for authentication are important for ensuring the user’s presence
without the possibility of cloning the identity.

At this moment, the use of NCD in the authentication of mobile devices or other systems is an
open challenge, but there are already some approaches in identifying a user based on ECG and
compression mechanisms.

Past works have been focus on the identity based on known datasets that try to identify users.
Carvalho et al. [219] introduced NRC with an improvement compared to past works with the same
dataset. Later, Bras et al. [220] improved the results from 80% to near 90% in identification of users.

5.1.5 Theory to Practice

Some protocols enforce privacy and security in communications between users. With recent devel-
opments in academia regarding privacy policies imposed by rules to protect user privacy, such as
General Data Protection Regulation (GDPR), it is essential to validate existing implementations to
ensure user privacy.

There is always a difference between theoretical and equivalent practical implementations. The
theoretical approaches of cryptographic protocols are always published with mathematical proofs.
However, there are many open-source implementations of these theoretical protocols that companies
use in production, and there is no validation of the code implementation regarding all the mathemat-
ical proofs.

The problem of Software Engineering Practice in Scientific Programming has already been introduce
by Tim Storer [262], where it surveys facts from this problem that arise from the late 1960s with work
from Naylor and Finger [263].

The Chapter 4 uses Kolmogorov Complexity to evaluate the implementations of cryptographic pro-
tocols, namely ZRTP and MPC.

82 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

5.2 Discussion and Future Research Directions

In this section, we aim to discuss the initial defined goals, suggesting further research directions.

Regarding the first goal of this chapter, the domains can be grouped into five categories: Theory
to Practice, Software, Human Interaction, Identity & Access Management, and Malware (see Fig-
ure 5.1).

From all categories, Human Interaction has many different sub-domains because text analytics
has been a very active research field, especially regarding the similarity between texts to detect
authorship.

There is no clear answer regarding the effectiveness of cybersecurity requirements (this chapter’s
second goal). Kolmogorov Complexity presents academic results that fit the real world’s needs
in many domains, but some authors claim some limitations. These limitations mean that in some
scenarios, the current results can be easily misleading. An example is the detection of malware for
the first time because if an attacker knows the type of analytic performed, it is possible to compute a
new malware that is not detected otherwise. By performing random tasks in the execution process,
it generates a new type of output of the same attack.

Saed Alrabaee et al. [205] shows multiple applications of Kolmogorov Complexity with good results:
it is applied to simple tasks (detection of code structure similarity) and enhances it with external
sources of information, such as in the example of collaborative phishing detection (PhishTank [230]).

Therefore, as an answer to this chapter’s second goal, NCD can be an efficient solution to meet the
cybersecurity requirements, depending on the application scenario.

New scenarios are emerging for the application of NCD to cybersecurity issues, which is important
for research in the area and possibly to help solve efficiency problems.

Identity & Access Management and Theory to Practice domains are the most recent application
scenarios to Kolmogorov Complexity (third goal of this chapter). There are some future challenges
for these specific domains, namely:

• Identity and Access Management: For user identification and authentication, biological sig-
nals derived from the heartbeat can be used, i.e., Electrocardiogram (ECG) and Photoplethys-
mogram (PPG) waveform signals can be used, and then study the use of NCD to correlate
traces belonging to a person to provide authentication (that is, studying the identification of a
person through the heartbeat).

• Theory to Practice: This domain is one of the most important when implementation arises
from the theoretical/mathematical proofs to a real-world implementation. The first version of
the software must always be treated as unsafe and not immediately deployed at scale.

In section 4, we present a security assessment of the MPC protocol through NCD, and we
found critical vulnerabilities on the implementations. As we achieve good results, it is impor-

5.3. SUMMARY 83

tant to use this method to test other implementations of other types of protocols, including HE
and SE.

Also, taking into account the Figure 5.1, there are other future research challenges (third goal of this
chapter) regarding existing domains that focus on framework availability or deployment in the real
environment:

• Software: The Software domain needs to be tested in a real environment. In anomaly detec-
tion, the challenges are focused on testing with known datasets, such as the summarized by
Cinthya Grajeda et al. [264], to understand the usability in new sub-domains. Besides analyz-
ing all the code, there should be a pre-processing of the data, following some rules depending
on the implementation and application scenario, to remove entropy’s external sources. Future
directions should focus on integrating open-source tools to detect events based on multiple
sources regarding vulnerabilities.

• Human Interactions: There is no evaluation in this approach’s real-world environment. It
would be interesting to evaluate phishing detection over time to see if the solution is viable
or not in a real context. Real-world deployments are needed to show the potential advantages
of this approach in cooperation with other tools to test the ability to outperform the state-of-
the-art deployments, especially in web pages and email phishing. Further enhancements to
Fake News may benefit from addressing some open issues proposed in this domain, such as
automation and specialized tools [242].

• Malware: Current work shows (Table 5.1) that all articles use a different data set to test the
best approach for detecting malware. It is important to test all approaches with the same
dataset to assess malware detection effectiveness when compared equally.

5.3 Summary

As we achieve good results on detecting vulnerabilities on MPC (Chapter 4), we made an overview
of Kolmogorov Complexity algorithms on cybersecurity, and their impact across multiple domains,
which is a clear demonstration of the use cases (Figure 5.1), answering to RQ2 (Chapter 1). This
Chapter contributes to the analysis of the related work of two main components of this thesis:
Kolmogorov Complexity and Cybersecurity.

84 CHAPTER 5. KOLMOGOROV COMPLEXITY IN CYBERSECURITY

Chapter 6

Towards a modular on-premise
approach to data sharing

Parts of this chapter are based on the following publication:

João S. Resende, Rolando Martins, and Luı́s Antunes. ”Enforcing Privacy and Security in Public
Cloud Storage.” 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2018.

In recent years, many companies are migrating their services, data, and applications to the cloud,
especially for achieving reduced costs, agility, flexibility, and scalability. With clouds, companies
can obtain a high flexibility for dynamic workloads, allowing them to store new types of data or new
business opportunities without significant infrastructure commitments. Cloud migration is a process
that involves solving security and privacy issues. In the cloud, lack of visibility and transparency
about data processing leads to the loss of users’ control over their data [265]. Companies need to
analyze the cost of this migration because there are still some security issues [9], especially regarding
users data privacy, since all services will be exposed on the Internet.

Over the years, many technologies emerge [8] related to users’ data exposure, namely the anonymiza-
tion tools and cloud-of-clouds. Data analysis without prior knowledge of the plain-text data is one
of the most important challenges for guaranteeing users’ privacy. For example, Android or iOS
applications have started collecting users’ data to predict users’ behaviors because their data is now
a commodity and valuable to many companies. However, even if companies do not collect all data
about the user, much of that data is sensitive and re-identifiable [266], such as IPs, Global Positioning
System (GPS) and MAC addresses.

Usually, not all data is collected by the same company. However, with the aggregation of data
from several companies (often, the purpose is not to store it), there may be a user’s re-identification,
especially when data is exchanged with external entities to generate ML models, without both ends
trust each other [267]. It is necessary to have protocols that make pseudo-anonymization of the data

85

86 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

effective so that it is possible to collect patterns without uniquely identifying a user.

For this, in this Chapter, we explore the usage of anonymization techniques, such as the removal
of Health Insurance Portability and Accountability Act of 1996 (HIPAA) identifiers (The HIPAA
privacy rule sets forth policies to protect all individually identifiable health information that is
held or transmitted. [268]). We also explore the usage of MPC (evaluated on the Chapter 4) to
exchange information without sharing the dataset in clear text to the other party. The MPC grants the
critical notion of learning from encrypted data making the confidence level and the privacy properties
stronger.

We propose this on-premise server that integrates the knowledge acquired in the previous chapters,
especially the analysis of MPC. The architecture allows to combine tools to produce a complete
system, and at the same time, allow for future extensions to support additional libraries or features.

This architecture explores the main advantagof anes of a hybrid cloud, where it also uses the cloud-
of-clouds to gives an extra layer of security with the data at rest *.

In brief, this solution addresses the following goals:

• How to maintain data privacy using the public cloud?

• How can institutions cooperate without setting data at risk?

• How can a file be shared without leaking private information even inside an enterprise?

• Can we use secure enclaves for managing the encryption process?

• Can we achieve all of this without substantial performance overhead?

6.1 Assumptions

This work assumes an on-premise trusted entity that provides curated files or videos and enforces
security using an authentication system, such as Keycloak.

The on-premise server has protections against Denial of Service (DoS) and assumes a typical threat
model for SGX enclaves, specifically in a trusted cloud environment [270, 271].

6.2 Contributions

This chapter has the following contributions:

*Data at rest in information technology means inactive data physically stored in any digital format. [269]

6.3. ARCHITECTURE 87

Runtime Adjustable privacy schemes: Given the amount of data present in the cloud, particularly
for sharing purposes, we have designed an adjustable privacy mechanism that uses privacy tools,
such as HIPAA. The use of multiple cloud providers, including public and private, allows for a
redundancy level adjusted on-the-fly to face privacy conditions better.

Anonymization of sensitive data: When the system detects a HIPAA identifier, or other privacy
alerts using the runtime privacy schemes, it then uses a private cloud to store that particular private
information data. This step is essential before sharing information with other parties, as it enhances
anonymization and privacy.

Cloud-of-clouds deployment: The cloud-of-clouds deployment ensures that the data at rest is not
entirely accessible to any public cloud provider. The different clouds only have the vision of a part
of the encrypted data. Even if they uncover the encryption keys, they only access a portion of the file.

SGX integration: We use Public Key Infrastructure (PKI) as the basis for our secure infrastructure,
which is essential for HTTPS communication usage. For this, we implement a module that secures
the private key behind a secure enclave, never exposing it to attackers as it never leaves the enclave.
This extra layer of security ensures that even if the system is compromised, the private key of
the HTTPS communication is secure inside the enclave, therefore protecting the HTTPS messages’
contents of previous communications [272].

Full Implementation: We have a fully working implementation, described in Section 6.4. The
server includes all the cryptographic computations, being those built on top of OpenSSL and SGX
infrastructure. It focuses on security, integrity, bandwidth management, network, and erasure coding.
Furthermore, the front-end features a complete implementation for non-rooted Android.

6.3 Architecture

Figure 6.1 shows the overall architecture of the system and represents all the different components
that integrate the system. The system comprises three components: clients, cloud providers, and an
on-premise server. An Android device represents the client with an application capable of sending
information to the on-premise server. The on-premise server is the most critical component as it
performs all the necessary tasks to ensure that the clients can use public/private cloud storage and
contains six main iterations to accomplish the features required.

Users need to be authenticated with the on-premise server to upload a file (1). The file content is
then analyzed using a decision flow control that ensures that a specific file’s anonymization score is
according to the company policies requirements (2). If the decision flow control detects personal data

88 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

on the file, it splits the information according to an anonymization algorithm (2). These iterations
are two new files: one stored in the private cloud containing the sensitive data and the other stored in
the public cloud with the remaining data. For this, the information must be encrypted (3) and split
(6) before uploaded to the different public cloud providers. A hash is also generated (to be stored
locally on the device) that verifies the file’s integrity when downloading the information. After this,
the last task is to split and upload the information to the different cloud providers. The other system
is the sharing mechanism (4), where different on-premise servers can jointly compute a ML model.

The following subsections makes an in-depth review of these methods.

Figure 6.1: On-premise System Components

Apache SGX & Authentication
Internet transactions create security challenges, such as impersonation attacks, in which the attacker
can present himself as a trusted entity. Franco et al. [273] describe an example attack where a fake
trusted entity tries to use or extract information from the source to make the user believe he is talking

6.3. ARCHITECTURE 89

to a legitimate source.

These types of compromises can then affect authentication systems or allow them to reveal con-
fidential information exchanged in previous transactions. The authentication and the session key’s
management are essential for us as an attacker can compromise the current and previous communica-
tions, only accessing the private key or the session key of an HTTPS server. This problem increases
if we consider that the file can be sent in clear text to the on-premise server. In this scenario, the user
must trust the server, so it is paramount that the private key is kept private in any way. To do this, we
intend to include all the crucial parts of the computations inside the SGX and use an authentication
system to delegate the authorization and authentication to manipulate and request files from the
cloud. With systems like SGX even privileged code is blocked from reading and altering enclave
memory: illegal accesses result in CPU exceptions, and read access to enclave memory will always
return 0xFF [270].

Similar systems do not address this issue as they assume a client that performs upload and the
management up to the cloud [61] or that the server is completely trustable and not vulnerable to
impersonation attacks.

The principal features needed from this mechanism are:

• The private key never leaves the SGX enclave in clear text;

• Authentication and authorization accomplished through a state-of-the-art trustful service;

• SGX must not be the bottleneck of the system.

Decision Flow Control
The control of the decision flow is responsible for ensuring one of the most important contributions:
the privacy schemes adjustable at runtime. There are various privacy schemes or assessment metrics
for finding individually identifiable information, such as risk analysis mechanisms (identifying quasi-
identifiers), calculating re-identification risks, or removing HIPAA identifiers. Alternatively, some
solutions focus on obfuscating or editing user files using other sources of information or ML models
to identify a risk for that file stored in public cloud storage.

This stage also contains practical implementations for some of these metrics. Thus, the information
is divided according to the user’s preference. For example, use only the private cloud to store specific
files or create and calculate different files to store at different providers (depending on the information
contained).

The principal features needed are:

• The algorithm must be simple and adapted to different file formats;

• Must be possible to store all files of a specific format in the private cloud;

90 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

• It must be capable of adapt overtime.

Encryption & indexing
The generation and management of encryption keys must be kept as secure as possible, using
international standards. To achieve this, we will focus on the requirements of National Institute
of Standards and Technology (NIST) [274] to create a state-of-the-art tool. The indexing process
will locally encrypt all information about the data uploaded to the cloud, including a hash to detect
possible unauthorized changes to the block in the cloud after storage.

The main features needed are:

• Capability of encrypt big files without extensive delays;

• Check the integrity of the file;

• Reduce metadata stored in the public cloud.

ML learning module
New privacy requirements force systems to implement new privacy-enhancing technologies. The
possibility of sharing and anonymizing data in the cloud is a challenge in many domains.

Safe ML using MPC is one of the candidates for mitigating and sharing information with third
parties. The algorithms and protocols that use MPC can compute ML models, such as Linear
Regression, Logistic Regression, and Neural Networks.

The advantage of implementing this solution ”on-premise” is the possibility of sharing with several
entities without revealing private information to the other, maintaining the possibility of collaborating
without sharing private data. From a practical point of view, it can be an essential resource, as the
information is shared in a black box, making it impossible to identify a particular user or device.

The main features needed are:

• Computation without raw data;

• Result revealed only for both ends;

• Do not use a trusted third-party.

Data split & Cloud-of-clouds Using the public cloud to store relevant data improves the security
since any of the public cloud providers will have access to the full content of the file available. The
use of multiple cloud providers (cloud-of-clouds) presents an extra layer to solve these problems.
There should also be redundant clouds for downtime situations for a specific public cloud provider.

It is relevant to ensure the following features:

6.4. IMPLEMENTATION 91

• Allow to scale to at least three cloud providers;

• Any of the cloud providers can have full access to the original file.

6.4 Implementation

This section provides an overview of the architecture. This section offers an in-depth analysis of
each of the components and the results obtained, given the limitations.

Authentication
In order to ensure the proper authentication, we decided to use Keycloak. Keycloak provides a
straightforward API to perform authentication using social login or a traditional user password
scheme. Keycloak is a state-of-the-art open-source authentication, authorization, and token man-
agement service, allowing our system to easily implement authentication verification at every stage
of the pipeline without increasing delays, improving system security.

After a successful user authentication, Keycloak issues an authentication token that the authenticated
user can provide to the on-premise server to verify identity and grant access without entering login
credentials whenever authentication is required improving usability. Keycloak dashboard controls
the authentication token with an expiration time that.

Apache SGX
With that, and taking advantage of Intel SGX resources, we integrated the Apache server and the
connection with OpenSSL to perform the symmetric key calculation within the enclave. This change
to incorporate SGX allows the guarantee that the key will never be visible to external and internal
users, as the key is only unsealed within the enclave and sealed whenever it needs to leave the
enclave. In comparison with other approaches, we can guarantee the confidentiality and integrity of
the private key.

For implementation, we adopted two implementations:

• The setup have the symmetric key, private key and public key within SGX, allowing the
Transport Layer Security (TLS) handshake (and all the steps forward) to performed inside
the SGX;

• The setup have the symmetric key, private key, and public key within SGX, but on the TLS
negotiation it is maintained only the private key within SGX, and it is revealed the symmetric
key after the TLS handshake.

In the section 6.6, we have the evaluations of these two scenarios.

92 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

To make it possible to use OpenSSL within SGX, we implemented an OpenSSL Engine, which at
a very high level essentially instructs OpenSSL on how to load and use keys from a customized
solution. Our engine implementation starts with the Android Open Source Project [275] due to its
simplicity. As the source code targets a version of OpenSSL before 1.1, with the OpenSSL Engine’s
help (libp11 [276]) for Public-Key Cryptography Standards (PKCS)#11 devices, we updated its
source to a newer version of OpenSSL.

The engine registers a callback in OpenSSL for the event that loads a key. When this callback is
activated, it attempts to load the key. If the key is successfully loaded from the Keystore, custom
methods are defined for encrypting and decrypting data when using the key. These methods, when
called, will forward the request to the enclave.

We chose not to load the enclave within the OpenSSL engine, which would mean that the enclave
would need to load in the same process as the application that uses OpenSSL. This requirement would
require installing fork detection in our engine and re-initializing the enclave in the forked process,
ultimately wasting the physical memory allocated to SGX unnecessarily. Instead, our solution runs
in a separate application (on the server) and listens on a UNIX socket domain for inter-process
communication. The OpenSSL engine will then connect to the socket and forward its requests and
wait for a reply.

Figure 6.2: OpenSSL Engine with SGX Keystore architecture.

Figure 6.2, we exemplify an application that uses a private key within the enclave to decrypt some
data. First, OpenSSL receives this request and checks if there are any custom handlers for these
requests, usually configured by an OpenSSL engine. When our OpenSSL engine receives a request,
it attempts to connect to the server and send it. The server will finally forward the request to the
secure enclave, which will process the data and return it.

Decision Flow Control
Decision Flow Control is one of the main features of this system, because it decides whether file
should be anonymized or not. For demonstration purposes, the implementation only support Comma-
separated values (CSV) file format. We decided to introduce this limitation for now, due to restric-

6.4. IMPLEMENTATION 93

tions on finding automatic tools that redact files, such as documents or images, because all of these
solutions depend on the user to select the data to be anonymized.

To implement the anonymity score from Figure 6.1, we start by searching for HIPAA identifiers in
CSV files and, using implementations like ARX [277] to search for quasi-identifiers to be anonymized
before uploaded to the cloud. Lastly, we translate the findings into a score attribute to each file.

Files with confidential information, such as personal information that includes age and postal code,
should not be uploaded to a public cloud. Instead, it should be kept in a private repository, unless
confidential attributes are anonymized.

Given the anonymization score attributed, the next step splits the information, removing the sensitive
fields and storing it on the private cloud, where the access is more restricted. To do this, if the system
found a HIPAA/quasi-identifier, it will tag the CSV file column (corresponding to the HIPAA/quasi-
identifier) to be removed and it will be introduced in a new CSV file that will be uploaded to the
private cloud.

Thus, there are two CSV files: the file that contains the HIPAA/quasi-identifiers and that is located
on the private cloud; the other that does not have HIPAA/quasi-identifiers and that can be uploaded
to the public cloud.

If a quasi-identifier is found, it will apply K-Anonymity algorithms to obtain an anonymized result.
The K and parameters defined for the anonymity procedure are chosen so that anonymity is guaran-
teed, in a practical scenario this means that if we have K�1 results the information is not anonymized
so we can reveal the information in common.

Original Public Cloud Private Cloud
age zipcode zipcode age zipcode
34 81667 81*** 34 **667
45 81675 81*** 45 **675
66 81925 81*** 66 **925
70 81931 81*** 70 **931
34 81931 81*** 34 **931
70 81931 81*** 70 **931
45 81931 81*** 45 **931

Table 6.1: Input and Output of a CSV file processed in the Decision Flow Control

Table 6.1 represents an example of the decision flow control process. The Original column represents
the CSV file uploaded to the on-premise server, and then, the following columns represent the
information uploaded to the public cloud and the private cloud, respectively. The age is a HIPAA
identifier that must be kept in the private cloud. zipcode needs to have a partially anonymization,
because the initial code is equal to all users in the united states (81) but the rest of the zipcode needs

94 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

to be anonymized. The zipcode is then split in two to accommodate the data’s security. In this
scenario, the pieces of information in the public cloud do not identify a user, but with the pieces of
information present in the private cloud, the user can still make all the queries to the dataset. When
sharing with another entity, the user must decide if it can share the information with or without the
identifiable information, depending on the needs.

Encryption & Indexing
Figure 6.3 represents the interactions to guarantee the encryption process and the security that the
file will not be tampered with at one of the cloud providers.

The process consists of two distinct steps: computation and storage of the Hash-based Message
Authentication Code (HMAC) block and file encryption. HMAC allows that, when downloading a
file, it is possible to recompute the HMAC and verify that the two HMAC are the same. The system
must then obtain the user’s encryption key stored locally on the server, apply a key scheduler to
generate a new encryption key, and then encrypt the block using standard AES-256 modes. After
encryption, the block is sent for the next iterations.

Having the file encrypted, the HMAC blocks is calculated. The next step is to index the encryption
key and the HMACs in a database to facilitate later searches.

Figure 6.3: Encryption Process of a file

ML learning module
In our implementation, we decided to use a privacy-preserving ML tool, as our goal is to allow
multiple companies or institutions to use our architecture to compute ML models without revealing
private information. For privacy-preserving ML, we choose to use SecureML [31] because it is
focused on two-party computation, while ABY3 is focused on three-party computation. SecureML
allows any two users to compute linear regression or logistic regression of their values using MPC.
The implementation requires a CSV, and it is only implemented for demonstration purposes. A real-
world deployment security test must be performed to ensure the correct properties to use SecureML
completely. In this thesis, we already partially validated the protocol, and as the scope was the
evaluation of cryptographic protocols through the NCD, we validated the communication component
of this protocol (MPC).

Figure 6.4 attempts to show the interaction of the ML modules belonging to different entities (A and

6.4. IMPLEMENTATION 95

Figure 6.4: Interaction between ML learning modules of two on-premise servers

B) as they train a ML model with the joint data of both premises devices. First, the devices upload
their datasets into the on-premise server, anonymizing them and uploading them into the public
clouds. Then, when the ML is required, the on-premise servers download all the required data from
the public cloud servers and perform the unification of the data previously split by the data splitter
(Figure 6.1(6)). After the unification, the data is decrypted, returning the anonymized dataset.

With the anonymized dataset, the SecureML protocol can be initiated between the intervening on-
premise servers’ ML learning modules. First, SecureML initiates the setup phase of its protocol
where the anonymized datasets and the multiplication triples are secretly shared between the ML
learning modules. Once completed, the online-phase is initiated using the previously secret shared
information to train the model. At the end of the online phase, both on-premise servers have the
trained model to send to their respective clients.

If users need to share the information with more than one user, our system implements the possibility
of standard sharing, where the encryption key is uniquely attributed to all the intervenients and is
unique for every file. However, this solution has strong privacy implications because all users have
full access to the original file, contrary to the version with SecureML, where users do not have access

96 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

to the data shared, only the trained ML model.

Data Splitter & Cloud-of-clouds
There are several options for dividing a block across different cloud providers, including erase
encryption or XOR operations. The use of the XOR operator only allows the use of an extra cloud
provider for redundancy. The use of XOR limits the development regarding the future extension to
N different cloud providers. This way, we use erasure coding to share information, allowing us to
have multiple configurations, such as adding another cloud provider for redundancy or data. The
implementation uses Reed-Solomon from Backblaze [278] with standard two-block configurations
(the parity block is in the third cloud provider).

The upload of the blocks to the cloud providers uses the Application Programming Interface (API)
Apache’s JClouds [279]. This platform can be seen as middleware in which the same code can
carry the same information to different cloud providers (buckets), including public or private storage
providers. Combinations of erasure coding to share information and JClouds allow to split the
information by a set of cloud providers defined by the company. Additionally, the usage of JClouds
with erasure coding allows the systems to scale and be redundant, enabling them to add and remove
storage buckets when needed.

6.5 Threat Model

In this section, we provide a threat analysis of the proposed system. We identify potential threats
and how an attacker may attempt to exploit the system, and the limitations we introduce to block that
thread.

External Sharing
When sharing information with an external source, an attacker can try to obtain sensitive data. When
a file is sent to the cloud, the owner loses control over his data. To prevent an attacker from obtaining
sensitive information from the users’ files, we decided to use HIPAA identifiers and quasi-identifiers
to split that sensitive data before sharing a file with the cloud. These metrics are implemented with
the ARX library, which gives the users the insurance that relevant private information is stored in a
private cloud, not allowing the share of personally identifiable information with external sources.

Besides deleting the sensitive information, it is important to mitigate the risk of extraction and
retention of the dataset with extra fields by an attacker. We implemented an MPC module to ensure
that none of the parties can access the unencrypted data, which means that the knowledge extracted
will be equivalent in both ends (only the output is revealed), and no extra information about the
inputs is retained.

6.6. EVALUATION 97

Key Negotiation
The impersonation attack on the HTTPS protocol is normally due to the unauthorized access to the
private key on the server [273], which can affect either current and previous communications. To
mitigate this, we implemented OpenSSL within SGX, giving an extra layer of security to the private
and symmetric key management.

Public Cloud
Public clouds’ usage is motivated by price reductions and authentication mechanisms to protect user
data, but the data is still in clear text to the cloud provider even if they encrypt it at rest. To mitigate
this, we encrypt the data and store it in multiple cloud providers, ensuring that even if a cloud
provider gets access to the encryption key, it will not be capable of accessing the entire content sent
to the user’s clouds.

6.6 Evaluation

We tested two different options for evaluating the performance: SGX storing the private key and
SGX performing all the decryption and encryption of packets.

To compare our solution with other implementations, we searched for desktop and mobile alter-
natives that perform similar tasks to those performed by our architecture. We only found existing
software for upload and download to the cloud. Having that existing software, we chosen a mobile
and an open-source desktop implementation for cloud upload/download, Charon [61] on the desktop
and rclone [56] on Termux [280] for the mobile platform. Charon provided one of the best per-
formance for distributed cloud-of-clouds approach and rclone on Termux because it was the most
stable Android solution with high upload/download speeds. Charon and rclone on Termux will act
as our baselines to verify the possible loss of performance with the increased overhead of the secure
enclave, encryption and anonymization steps.

The Figure 6.5 represents an overview of the system. Our experimental setup was composed of
one Xiaomi MI A2 lite (on-premise client) featuring Android 9, a Ubiquiti Uap-Ac-Pro Access
Point (AP), and an Intel NUC6i7KYK for supporting our on-premise server. The smartphone was
connected to the AP using 802.11n AC with a standard 20 MHz channel width in the 5 GHz wireless
frequency range.

To compute Charon’s local machine performance, we set the Intel NUC6i7KYK (Charon client)
connected to the wireless router to replicate the delay associated with the data transfer. Also, we run
Charon in the most similar operation mode, where it does not have compression and pre-fetching
from the cloud. Charon is also set to use 4 Amazon S3 buckets, the minimum number of cloud
buckets in Charon, to offer a redundant, cloud-of-clouds deployment.

98 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

Analyzing the performance of rclone on Android environment, a Xiaomi Redmi A2 Lite smartphone
running Android 9 connected via a 5GHz WiFi network powered by a Ubiquiti Uap-Ac-Pro AP to
a Microsoft Azure blob storage container. The smartphone has Termux v0.101 installed, and the
package rclone installed under the Termux application using the command pkg install rclone

A swift instance represents the private cloud from Redhat running on a local virtual server, and
the cloud providers were run on Google data-center in multiple locations to replicate three cloud
providers’ behavior.

Figure 6.5: Cloud-of-clouds Test architecture

On-premise Server SGX Public Key (PK) On-premise Server SGX Symmetric Key (SK)
File Size 100MB 500MB 1GB 100MB 500MB 1GB

Upload MB/s 9.23±0.33 10.90±0.43 10.49±0.14 1.88±0.02 1.54±0.43 1.54±0.33
Download MB/S 10.10±1.05 12.45±2.48 14.12±1.85 1.35±0.47 1.37±0.48 1.38±0.08

Charon RClone (Android)
File Size 100MB 500MB 1GB 100MB 500MB 1GB

Upload MB/s 6.64±0.77 9.02±2.13 8.96±1.56 9.03±1.83 9.05±1.32 6.61±2.28
Download MB/S 8.20±0.42 8.27±0.45 8.50±0.33 3.72±0.61 5.47±1.27 7.51±0.77

Table 6.2: Performs Comparison between our solution,Charon and RClone(Android)

Performance evaluation included ten uploads followed by ten downloads of files with 100MB, 500MB,
and 1GB in size on each of the technologies tested. The Table 6.2 shows the performance comparison

6.7. SUMMARY 99

results for upload and download bandwidth. These are split in on-premise server SGX PK, on-
premise server SGX SK, the Charon and the rclone (Android). On-premise Server PK SGX was
used to establish only the secure channel key, and in the second on-premise server SGX SK, the
secure enclave performs all computation, including encrypting and decrypting packets.

From the results collected, we can state that performing all computations within SGX, including
handling communications (SK) to maintain and manage the session key, makes the system imprac-
tical for real-world usage as it greatly impacts the performance from 9.23 MB/s to 1.88MB/s, when
considering uploading a 100MB file.

On the other hand, if we restrict the use of SGX to perform symmetric key negotiations, i.e., and use
the keys outside the enclave, it is a real practical case with Charon, as we do not lose performance
with this implementation. Also, the performance difference between Charon and the on-premise
server is attributed to the overhead of using byzantine machine state replication, compounded with
the WiFi link bottleneck. The Charon focuses on using the pre-fetch feature to maintain a copy of
the files, making it immediately available to the end-user (disabled in this test).

Contrarily to the results presented in ARGUS [281] (first implementations of this architecture), these
solutions manage the files with low-performance overhead associated with the increase in the file
size.

6.7 Summary

To the best of our knowledge, this chapter presents the first system that stores the information in
multiple cloud providers focused on ensuring that the users can share and train ML models without
exposing the data to the other parties in clear text, using MPC to compute the information jointly.
It also uses known anonymization tools, such as quasi-identifier suppression, to choose the private
cloud’s information and maintain the information in the cloud-of-clouds system.

With the performance test, we demonstrate that this type of solution is scalable and can benefit the
user experience compared to the state-of-the-art. If we manage only the private key inside the enclave
of SGX, there is no overhead associated with this usage, ensuring that the private key never leaves
the device.

This solution improves the secure storage of information at the cloud providers’ reduced price while
maintaining the data encrypted outside of the infrastructure’s perimeter to allow the sharing with
other entities to maintain user privacy. It ensures that sensitive information is hidden, especially data
involving highly sensitive information such as medical data [265, 267].

This chapter uses the scientific contribution resulting from the previous chapters, especially the MPC
validation, to use it as an integral part of the privacy-preserving mechanisms in the cloud.

In brief, we can deploy a system with anonymization features by default, creating a mechanism to

100 CHAPTER 6. TOWARDS A MODULAR ON-PREMISE APPROACH TO DATA SHARING

ensure that the user is always in the control of the data, answering to the RQ3 (Chapter 1).

Chapter 7

Conclusions

Over the years, researchers have been creating security protocols, namely end-to-end communication
protocols, which are theoretically secure and have formal proofs of security published. However, the
implementations should be validated, as they can introduce critical security flaws on production
systems. This thesis focuses on enhancing software vulnerability detection with information theory
to automate the evaluation of security protocols.

We study the Kolmogorov Complexity’s application on cybersecurity as a method for evaluating
different protocol implementations without understanding all underlying mechanisms of the tech-
nology. To evaluate the protocols’ robustness, we used NCD for performing the security validation.
To improve the quality of the results from NCD, we compared six different compressors focusing on
properties of a normal compressor: Idempotency, Monotonicity, Symmetry, and Distributivity. From
the evaluations that we perform, we conclude that the best compressor is LZMA, considering all the
properties. The literature review shows that, depending on the domain, some specific compressors
can be more focused on it. In Computer Science, the most used compressor is LZMA, but in other
domains the usage is residual.

Due to these conclusions, we evaluate cryptographic protocols using NCD with LZMA, namely
MPC and ZRTP. We were able to prove that MPC implementations are unsafe in most cases, which
allowed us to conclude that the questions RQ1 and RQ2 (from Section 1) are valid. We can conclude
that NCD can be an essential tool for a first-line audit to infer the implementations’ security. This
study also allows us to understand that current MPC implementations by default may be considered
insecure. Also, regarding privacy, we evaluate the protocols from the point of view of metadata, and
we found that it is possible to infer information about the calls on ZRTP.

To conclude, and as we found a possible secure implementation of MPC, namely ABY, we studied
how to integrate it to enhance private computations on the cloud without the need to reveal raw
data. We contributed with an implementation of a cloud storage system that takes advantage of ARX
to detect ”personally identifiable data”. When sharing information with other parties, we should
remove personally identifiable data to prevent data leakage, either on purpose or accidentally. Also,

101

102 CHAPTER 7. CONCLUSIONS

it uses cryptographic protocols to implement an on-premise server that uses the cloud-of-clouds
as a persistent data store. Even with anonymization, sometimes it is possible to infer information
regarding the combination of multiple factors. For this, we use MPC to ensure that any entity
connected to the server is capable of cooperating with other users to learn ML models without
sharing the training data. Then, both entities can get a prediction model and apply predictions to
the new dataset. Despite having the dataset anonymized, users have an extra layer (MPC) to reduce
the exposure of the data to the other party’s, but guaranteeing the ability to compute and share the
data with other parties. All these components answer the question RQ3.

Limitations and Future Research Challenges

Some open challenges/limitations can be addressed in the future.

Despite the fact NCD shows good results on the detection of security problems, it is not a tool that
grants the un-conditional security of the library. NCD can be an essential tool for a first-line audit to
infer the security of the implementation of the protocols, but further tests are required to claim ABY
as secure.

The cloud-of-cloud implementations introduce many new research challenges. As it offers a stan-
dalone base for adding tools as a building block, it is important to find novel ways to process
the information, detect relevant information patterns without need user interactions, and create a
mechanism to share the information without leaking information. Also, the performance of SGX is
a limitation/bottleneck of the desired solutions. With the hardware’s current limitations, it is impos-
sible to perform all the computation quickly through upload and encryption to the cloud. However,
future implementations should allow performing this upload process even in untrusted/compromised
machines. It is essential to predict user behavior to implement a system - similar to a cache system
- to maximize a file’s download speed, approximating a single cloud provider performance. For
obfuscating information in Portable Document Format (PDF) files, future research challenges can be
focused on exploring mechanisms such as redacting in the cloud providers [282].

Appendix A

MPC

A.1 Millionaire’s Problem Code

The Code A.1 represents the ABY code that allows the implementation of the millionaire’s problem.
In this case, we read the input from a local file and, to perform the brute force, we just need to rewrite
a file and rerun the program to have a different example.

103

104 APPENDIX A. MPC

Code A.1: Input ABY

(role == SERVER) {

std::ifstream file1("input1.txt");

std::string str1;

std::getline(file1,str1);

std::istringstream reader1(str1);

uint32_t bob_money;

reader1 >> bob_money;

s_alice_money = circ->PutDummyINGate(bitlen);

s_bob_money = circ->PutINGate(bob_money, bitlen, SERVER);

cout << "\nBob Money:\t" << bob_money;

} else { //role == CLIENT

std::ifstream file2("input2.txt");

std::string str2;

std::getline(file2,str2);

std::istringstream reader2(str2);

uint32_t alice_money;

reader2 >> alice_money;

s_alice_money = circ->PutINGate(alice_money, bitlen, CLIENT);

s_bob_money = circ->PutDummyINGate(bitlen);

cout << "\nAlice Money:\t" << alice_money;

}

A.2 Commands

The listings shows the commands used to produce the file of the output traffic of the protocol:
network (Listing A.1) and STrace (Listing A.2). The machine that runs this process, needs to have
all the communications in the interface lo in idle, in order to have only the information correlated
with the MPC process in the captures.

Listing A.1: tcpdump command

tcpdump -eni lo -t -n tcp -w example.pcapng

Listing A.2: STrace command

strace -f -e trace=memory -s 10000 python startMPC.py

A.3. OUTPUT OF CODE ANALYSIS 105

A.3 Output of Code Analysis

We have to analyse the values printed from the secret sharing (Listing A.3), in order to see if this
output is always equal in all the iterations with the same set of inputs.

Listing A.3: Values variable

1797484165

-61705647039824681916694312663146678231

-36761208276779888592191149434901166533

15902840325947545570244179796300984094

...

33815892615659681644195482679118018626

1

A.4 SPDZ-2 maketree with complearn

The Figure A.2 represents the entire tree generated by complearn. The tree contains a high S(T)
value, but the representation in some situation is complicated to visualise. In order to help the
identification of different clusters, it has performed a set of ”blue cuts” in the tree. This way, we can
visualise a cluster flowing branch until the leaves.

In a highlight perspective, the tree can split each one of the traces connected to a similar example
where we see all the 16 different types of communications perfectly split accordingly in the tree.
The similar traces are formed of the same party’s communicating with a number from 0 to 4 where
an example can be 0 gates zuck and 2 gates zuck. Here, both are the same communication but in
a different iteration, where 0 represents the first communication and the 2 the third communication.
This example has a communication between Gates and Zuck, where Gates is the initiator of the
communication and Zuck the other party in the communication protocol.

106 APPENDIX A. MPC

Figure A.2: Tree with the entire clustering of the brute force attack

References

[1] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vulinoss: a dataset of security vulnerabilities
in open-source systems,” in Proceedings of the 15th International Conference on Mining
Software Repositories, 2018, pp. 18–21. [Cited on page 5.]

[2] S. Wehner, “Analyzing worms and network traffic using compression,” Journal of Computer
Security, vol. 15, no. 3, pp. 303–320, 2007. [Cited on pages 6 and 80.]

[3] A. N. Kolmogorov, “On tables of random numbers,” Sankhyā: The Indian Journal of
Statistics, Series A, pp. 369–376, 2019. [Cited on page 6.]

[4] C. C. Santos, J. Bernardes, P. M. Vitányi, and L. Antunes, “Clustering fetal heart rate tracings
by compression,” in 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06).
IEEE, 2019, pp. 685–690. [Cited on pages 6 and 12.]

[5] C. Orlandi, “Is multiparty computation any good in practice?” in 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011, pp. 5848–
5851. [Cited on page 6.]

[6] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and discovery using
machine-learning and data-mining techniques: A survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 4, pp. 1–36, 2017. [Cited on page 6.]

[7] J.-H. Hoepman and B. Jacobs, “Increased security through open source,” arXiv preprint
arXiv:0801.3924, 2019. [Cited on page 6.]

[8] J. Domingo-Ferrer, O. Farràs, J. Ribes-González, and D. Sánchez, “Privacy-preserving cloud
computing on sensitive data: A survey of methods, products and challenges,” Computer
Communications, vol. 140, pp. 38–60, 2019. [Cited on pages 7, 21, and 85.]

[9] D. Chen and H. Zhao, “Data security and privacy protection issues in cloud computing,” in
2012 International Conference on Computer Science and Electronics Engineering, vol. 1.
IEEE, 2012, pp. 647–651. [Cited on pages 7 and 85.]

[10] S. Rendle, D. Fetterly, E. J. Shekita, and B.-y. Su, “Robust large-scale machine learning in the
cloud,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1125–1134. [Cited on page 7.]

107

108 REFERENCES

[11] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine learning,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 35–52. [Cited on pages 7 and 27.]

[12] M. Li, P. Vitányi et al., An introduction to Kolmogorov complexity and its applications.
Springer, 2008, vol. 3. [Cited on page 11.]

[13] R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE Transactions on Informa-
tion theory, vol. 51, no. 4, pp. 1523–1545, 2019. [Cited on pages 12, 29, 39, and 41.]

[14] R. Cilibrasi, P. Vitányi, and R. l. p. p. b. l. l. l. d. Wolf, “Algorithmic clustering
of music based on string compression,” Computer Music Journal, vol. 28, no. 4, pp. 49–67,
2019. [Cited on page 12.]

[15] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The similarity metric,” IEEE transactions
on Information Theory, vol. 50, no. 12, pp. 3250–3264, 2019. [Cited on pages 12 and 41.]

[16] R. Cilibrasi and P. Vitanyi, “A new quartet tree heuristic for hierarchical clustering,” arXiv
preprint cs/0606048, 2006. [Cited on page 13.]

[17] R. S. Borbely, “On normalized compression distance and large malware,” Journal of
Computer Virology and Hacking Techniques, vol. 12, no. 4, pp. 235–242, 2016. [Cited on
pages 13, 15, 40, 42, 43, 72, 79, and 80.]

[18] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, and J. Handley,
“Compression-based data mining of sequential data,” Data Mining and Knowledge Discovery,
vol. 14, no. 1, pp. 99–129, 2019. [Cited on page 13.]

[19] P. Christen and K. Goiser, “Towards automated data linkage and deduplication,” Computer,
vol. 16, no. 17, pp. 22–24, 2019. [Cited on page 13.]

[20] E. Raff and C. Nicholas, “An alternative to ncd for large sequences, lempel-ziv jaccard
distance,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 1007–1015. [Cited on pages 14, 72, 79,
and 80.]

[21] A. Pinho, D. Pratas, and P. Ferreira, “Authorship attribution using compression distances,” in
Data Compression Conference, 2016. [Cited on pages 14 and 42.]

[22] M. Cebrián, M. Alfonseca, A. Ortega et al., “Common pitfalls using the normalized compres-
sion distance: What to watch out for in a compressor,” Communications in Information &
Systems, vol. 5, no. 4, pp. 367–384, 2005. [Cited on pages 15, 40, and 43.]

[23] V. S. Mandhapati and K. A. Bajwa, “Evaluation of idempotency & block size of data on the
performance of normalized compression distance algorithm,” 2012. [Cited on page 15.]

REFERENCES 109

[24] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science to digital forensics with
standardized forensic corpora,” digital investigation, vol. 6, pp. S2–S11, 2009. [Cited on
pages 15 and 36.]

[25] A. C. Yao, “Protocols for secure computations,” in 23rd annual symposium on foundations of
computer science (sfcs 1982). IEEE, 2019, pp. 160–164. [Cited on pages 16, 54, and 57.]

[26] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986). IEEE, 2019, pp. 162–167. [Cited on page 18.]

[27] A. C. Yao, “Theory and application of trapdoor functions,” in 23rd Annual Symposium on
Foundations of Computer Science (sfcs 1982). IEEE, 2019, pp. 80–91. [Cited on page 16.]

[28] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-throughput semi-honest secure
three-party computation with an honest majority,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 805–817. [Cited
on pages 16 and 27.]

[29] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption
schemes: Theory and implementation,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–35, 2018. [Cited on page 16.]

[30] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,”
Communications of the ACM, vol. 28, no. 6, pp. 637–647, 1985. [Cited on page 17.]

[31] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine
learning,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 19–38.
[Cited on pages 17, 26, 27, and 94.]

[32] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613,
1979. [Cited on page 17.]

[33] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably secure searchable
encryption,” ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1–51, 2014. [Cited on
page 19.]

[34] Y. Wang, J. Wang, and X. Chen, “Secure searchable encryption: a survey,” Journal of
communications and information networks, vol. 1, no. 4, pp. 52–65, 2016. [Cited on page 19.]

[35] J. Ning, J. Xu, K. Liang, F. Zhang, and E.-C. Chang, “Passive attacks against searchable
encryption,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp.
789–802, 2018. [Cited on page 19.]

[36] M. Petraschek, T. Hoeher, O. Jung, H. Hlavacs, and W. N. Gansterer, “Security and usability
aspects of man-in-the-middle attacks on zrtp.” J. UCS, vol. 14, no. 5, pp. 673–692, 2008.
[Cited on page 20.]

110 REFERENCES

[37] D. Schürmann, F. Kabus, G. Hildermeier, and L. Wolf, “Wiretapping end-to-end encrypted
voip calls: real-world attacks on zrtp,” Proceedings on Privacy Enhancing Technologies, vol.
2017, no. 3, pp. 4–20, 2017. [Cited on pages 20 and 51.]

[38] D. Alvanos, K. Limniotis, and S. Stavrou, “On the cryptographic features of a voip service,”
Cryptography, vol. 2, no. 1, p. 3, 2018. [Cited on page 20.]

[39] Y.-A. De Montjoye, E. Shmueli, S. S. Wang, and A. S. Pentland, “openpds: Protecting the
privacy of metadata through safeanswers,” PloS one, vol. 9, no. 7, p. e98790, 2014. [Cited on
page 20.]

[40] Y.-A. De Montjoye, L. Radaelli, V. K. Singh et al., “Unique in the shopping mall: On the
reidentifiability of credit card metadata,” Science, vol. 347, no. 6221, pp. 536–539, 2015.
[Cited on page 20.]

[41] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in 2008
IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008, pp. 111–125. [Cited on
page 20.]

[42] J. L. Toole, Y.-R. Lin, E. Muehlegger, D. Shoag, M. C. González, and D. Lazer, “Tracking
employment shocks using mobile phone data,” Journal of The Royal Society Interface, vol. 12,
no. 107, p. 20150185, 2015. [Cited on page 21.]

[43] A. Arai, A. Witayangkurn, H. Kanasugi, T. Horanont, X. Shao, and R. Shibasaki, “Under-
standing user attributes from calling behavior: exploring call detail records through field
observations,” in Proceedings of the 12th international conference on advances in mobile
computing and multimedia, 2014, pp. 95–104.

[44] Y.-A. de Montjoye, J. Quoidbach, F. Robic, and A. S. Pentland, “Predicting personality
using novel mobile phone-based metrics,” in International conference on social computing,
behavioral-cultural modeling, and prediction. Springer, 2013, pp. 48–55.

[45] G. Chittaranjan, J. Blom, and D. Gatica-Perez, “Mining large-scale smartphone data for
personality studies,” Personal and Ubiquitous Computing, vol. 17, no. 3, pp. 433–450, 2013.

[46] E. Zhong, B. Tan, K. Mo, and Q. Yang, “User demographics prediction based on mobile data,”
Pervasive and mobile computing, vol. 9, no. 6, pp. 823–837, 2013. [Cited on page 21.]

[47] J. Mayer, P. Mutchler, and J. C. Mitchell, “Evaluating the privacy properties of telephone
metadata,” Proceedings of the National Academy of Sciences, vol. 113, no. 20, pp. 5536–
5541, 2016. [Cited on page 21.]

[48] M. Furini and V. Tamanini, “Location privacy and public metadata in social media platforms:
attitudes, behaviors and opinions,” Multimedia Tools and Applications, vol. 74, no. 21, pp.
9795–9825, 2015. [Cited on page 21.]

REFERENCES 111

[49] A. Pujol, D. Magoni, L. Murphy, and C. Thorpe, “Spying on instant messaging servers:
Potential privacy leaks through metadata,” Transactions on Data Privacy, vol. 12, pp. 175–
206, 2019. [Cited on page 21.]

[50] S. Goyal, “Public vs private vs hybrid vs community-cloud computing: a critical review,”
International Journal of Computer Network and Information Security, vol. 6, no. 3, p. 20,
2014. [Cited on page 21.]

[51] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010. [Cited on page 21.]

[52] S. Ma, “A review on cloud computing development,” Journal of Networks, vol. 7, no. 2, p.
305, 2012. [Cited on page 21.]

[53] S. Misra, P. V. Krishna, K. Kalaiselvan, V. Saritha, and M. S. Obaidat, “Learning automata-
based qos framework for cloud iaas,” IEEE Transactions on Network and Service Manage-
ment, vol. 11, no. 1, pp. 15–24, 2014. [Cited on page 21.]

[54] R. Rizun, “S3fs: Fuse-based file system backed by amazon s3.” [Cited on page 22.]

[55] N. Rath, “S3ql: File system that stores all its data online using storage services like amazon
s3, google storage or open stack,” 2013. [Cited on page 22.]

[56] “Rclone syncs your files to cloud storage,” https://rclone.org/, accessed: 12-08-2020. [Cited
on pages 22 and 97.]

[57] M. Vrable, S. Savage, and G. M. Voelker, “Bluesky: A cloud-backed file system for the
enterprise,” in Proceedings of the 10th USENIX conference on File and Storage Technologies.
USENIX Association, 2012, pp. 19–19. [Cited on page 23.]

[58] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky: dependable and
secure storage in a cloud-of-clouds,” Acm transactions on storage (tos), vol. 9, no. 4, pp.
1–33, 2013. [Cited on page 24.]

[59] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin, and P. Verissimo, “Scfs:
A shared cloud-backed file system,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014, pp. 169–180. [Cited on page 24.]

[60] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia, “Rockfs: Cloud-backed file system
resilience to client-side attacks,” in Proceedings of the 19th International Middleware
Conference, 2018, pp. 107–119. [Cited on page 24.]

[61] R. Mendes, T. Oliveira, V. V. Cogo, N. F. Neves, and A. N. Bessani, “Charon: A secure cloud-
of-clouds system for storing and sharing big data,” IEEE Transactions on Cloud Computing,
2019. [Cited on pages 24, 89, and 97.]

112 REFERENCES

[62] L. SWEENEY, “k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY,”
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10,
no. 05, pp. 557–570, Oct. 2002. [Online]. Available: https://doi.org/10.1142/
s0218488502001648 [Cited on page 24.]

[63] D. E. Denning and P. J. Denning, “The tracker: A threat to statistical database security,” ACM
Transactions on Database Systems (TODS), vol. 4, no. 1, pp. 76–96, 1979. [Cited on page 25.]

[64] C. Dwork, “Differential privacy: A survey of results,” in International conference on theory
and applications of models of computation. Springer, 2008, pp. 1–19. [Cited on page 25.]

[65] D. E. Denning, “Secure statistical databases with random sample queries,” ACM Transactions
on Database Systems (TODS), vol. 5, no. 3, pp. 291–315, 1980. [Cited on page 25.]

[66] P. Francis, S. P. Eide, and R. Munz, “Diffix: High-utility database anonymization,” in Annual
Privacy Forum. Springer, 2017, pp. 141–158. [Cited on page 25.]

[67] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low latency
framework for secure neural network inference,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1651–1669. [Cited on page 26.]

[68] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryptographic
inference service for neural networks,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020. [Cited on page 26.]

[69] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and solutions,”
IEEE Security & Privacy, vol. 17, no. 2, pp. 49–58, 2019. [Cited on page 26.]

[70] P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-party computation: The
garbled circuit approach,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 591–602. [Cited on page 27.]

[71] P. Kavitha, “A survey on lossless and lossy data compression methods,” International Journal
of Computer Science & Engineering Technology, vol. 7, no. 03, pp. 110–114, 2016. [Cited on
page 30.]

[72] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977. [Cited on page 30.]

[73] T. A. Welch, “A technique for high-performance data compression,” Computer, vol. 6, no. 17,
pp. 8–19, 1984. [Cited on page 30.]

[74] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings of the 16th IASTED
international conference on parallel and distributed computing and systems, vol. 16, 2004,
pp. 559–564. [Cited on pages 30 and 33.]

REFERENCES 113

[75] A. Moffat, “Implementing the ppm data compression scheme,” IEEE Transactions on
communications, vol. 38, no. 11, pp. 1917–1921, 1990. [Cited on page 30.]

[76] J. Cleary and I. Witten, “Data compression using adaptive coding and partial string matching,”
IEEE transactions on Communications, vol. 32, no. 4, pp. 396–402, 1984. [Cited on page 30.]

[77] D. E. Knuth, “Dynamic huffman coding,” Journal of algorithms, vol. 6, no. 2, pp. 163–180,
1985. [Cited on pages 30 and 33.]

[78] D. Salomon, Data compression: the complete reference. Springer Science & Business Media,
2004. [Cited on page 32.]

[79] G. Manzini, “An analysis of the burrows—wheeler transform,” Journal of the ACM (JACM),
vol. 48, no. 3, pp. 407–430, 2001. [Cited on page 32.]

[80] E. Hansson and S. Karlsson, “Lossless message compression,” 2013. [Cited on pages 33
and 34.]

[81] J. R. Seward, “bzip2 and libbzip2,” 1996, http://www.bzip.org/ [Online; accessed 3-May-
2020]. [Cited on page 33.]

[82] T. Bell, “The canterbury corpus,” http://corpus.canterbury.ac.nz/. [Cited on page 35.]

[83] I. Witten, T. Bell, and J. Cleary, “The calgary corpus,” http://corpus.canterbury.ac.nz/
descriptions/#calgary. [Cited on page 35.]

[84] T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,” ACM
Comput. Surv., vol. 21, no. 4, pp. 557–591, Dec. 1989. [Online]. Available: http:
//doi.acm.org/10.1145/76894.76896 [Cited on page 35.]

[85] R. Arnold and T. Bell, “A corpus for the evaluation of lossless compression algorithms,” in
Proceedings DCC’97. Data Compression Conference. IEEE, 1997, pp. 201–210. [Cited on
page 35.]

[86] J. Buchner, “paq8l,” 2015, https://github.com/JohannesBuchner/paq [Online; accessed 3-
May-2020]. [Cited on page 36.]

[87] M. V. Mahoney, “Adaptive weighing of context models for lossless data compression,” Tech.
Rep., 2005. [Cited on page 40.]

[88] J. S. Resende, M. Almeida, R. Martins, and L. Antunes, “A kolmogorov complexity for
multidisciplinary domains,” 2021. [Cited on page 41.]

[89] S. Poulding and R. Feldt, “Generating controllably invalid and atypical inputs for robustness
testing,” in 2017 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2017, pp. 81–84. [Cited on page 42.]

114 REFERENCES

[90] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source code in the presence of
pervasive modifications,” in 2016 IEEE 16th international working conference on source code
analysis and manipulation (SCAM). IEEE, 2016, pp. 117–126.

[91] R. et al, “A comparison of code similarity analysers,” Empirical Software Engineering, vol. 23,
no. 4, pp. 2464–2519, 2018.

[92] G. de la Torre-Abaitua, L. F. Lago-Fernández, and D. Arroyo, “A parameter-free method
for the detection of web attacks,” in International Joint Conference SOCO’17-CISIS’17-
ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. Springer, 2017, pp. 661–671.

[93] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantifying the diversity of
sets of test cases,” in 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE, 2016, pp. 223–233.

[94] G. de la Torre-Abaitua, L. F. Lago-Fernández, and D. Arroyo, “On the application of
compression-based metrics to identifying anomalous behaviour in web traffic,” Logic Journal
of the IGPL, 2019.

[95] T.-A. et al., “A compression based framework for the detection of anomalies in heterogeneous
data sources,” arXiv preprint arXiv:1908.00417, 2019. [Cited on pages 72 and 77.]

[96] N. Roshanbin and J. Miller, “Adamas: Interweaving unicode and color to enhance captcha
security,” Future Generation Computer Systems, vol. 55, pp. 289–310, 2016.

[97] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “How phishing pages look like?”
Cybernetics and Information Technologies, vol. 18, no. 4, pp. 43–60, 2018. [Cited on pages 72
and 75.]

[98] T. He, C. Han, R. Isawa, T. Takahashi, S. Kijima, J. Takeuchi, and K. Nakao, “A fast
algorithm for constructing phylogenetic trees with application to iot malware clustering,” in
International Conference on Neural Information Processing. Springer, 2019, pp. 766–778.

[99] T.-C. Chen, T. Stepan, S. Dick, and J. Miller, “An investigation of implicit features in
compression-based learning for comparing webpages,” Pattern Analysis and Applications,
vol. 19, no. 2, pp. 397–410, 2016.

[100] T. R. Brounstein, A. L. Killian, J. Skryzalin, and D. Garcia, “Stylometric and temporal tech-
niques for social media account resolution.” Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), Tech. Rep., 2017. [Cited on pages 72 and 76.]

[101] H. Zenil, N. A. Kiani, A. A. Zea, and J. Tegnér, “Causal deconvolution by algorithmic
generative models,” Nature Machine Intelligence, vol. 1, no. 1, pp. 58–66, 2019.

[102] E. Raff and C. Nicholas, “Lempel-ziv jaccard distance, an effective alternative to ssdeep and
sdhash,” Digital Investigation, vol. 24, pp. 34–49, 2018.

REFERENCES 115

[103] T. Ishio, N. Maeda, K. Shibuya, and K. Inoue, “Cloned buggy code detection in practice
using normalized compression distance,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 591–594. [Cited on pages 72 and 77.]

[104] A. A. Sánchez-Ruiz and S. Ontañón, “Structural plan similarity based on refinements in the
space of partial plans,” Computational Intelligence, vol. 33, no. 4, pp. 926–947, 2017.

[105] Z. Xu and J. Miller, “Identifying semantic blocks in web pages using gestalt laws of grouping,”
World Wide Web, vol. 19, no. 5, pp. 957–978, 2016.

[106] ——, “Cross-browser differences detection based on an empirical metric for web page visual
similarity,” ACM Transactions on Internet Technology (TOIT), vol. 18, no. 3, pp. 1–23, 2018.

[107] J. S. Resende, P. R. Sousa, R. Martins, and L. Antunes, “Breaking mpc implementations
through compression,” International Journal of Information Security, pp. 1–14, 2019. [Cited
on pages 42, 53, and 72.]

[108] A. Takamoto, M. Umemura, M. Yoshida, and K. Umemura, “Improving compression
based dissimilarity measure for music score analysis,” in 2016 International Conference On
Advanced Informatics: Concepts, Theory And Application (ICAICTA). IEEE, 2016, pp. 1–5.
[Cited on page 42.]

[109] W. Yao, “Study cases on fast compression distance based data visualization,” in IGARSS 2019-
2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp.
5804–5807.

[110] G. Sarasa, A. Granados, and F. B. Rodriguez, “An approach of algorithmic clustering based
on string compression to identify bird songs species in xeno-canto database,” in 2017 3rd
International Conference on Frontiers of Signal Processing (ICFSP). IEEE, 2017, pp. 101–
104.

[111] M. Tsutsumi, R. A. Pimienta, V. H. C. de Olivera, S. Isotani, A. C. B. Delbem, A. Hachiya,
D. H. Tsuji, and M. E. Dajer, “Preliminary study of data mining analysis of high speed
kymography and voice data,” Areté, vol. 18, no. 2, 2018.

[112] G. Segal, D. Parkinson, R. P. Norris, and J. Swan, “Identifying complex sources in large
astronomical data sets using a coarse-grained complexity measure,” Publications of the
Astronomical Society of the Pacific, vol. 131, no. 1004, p. 108007, 2019.

[113] V. Bruni, L. Della Cioppa, and D. Vitulano, “An automatic and parameter-free information-
based method for sparse representation in wavelet bases,” Mathematics and Computers in
Simulation, 2019.

[114] A. M. Lopes and J. Tenreiro Machado, “Complexity analysis of escher’s art,” Entropy, vol. 21,
no. 6, p. 553, 2019.

116 REFERENCES

[115] D. Coltuc, M. Datcu, and D. Coltuc, “On the use of normalized compression distances for
image similarity detection,” Entropy, vol. 20, no. 2, p. 99, 2018.

[116] A. Takamoto, M. Yoshida, K. Umemura, and Y. Ichikawa, “Computing information quantity
as similarity measure for music classification task,” in 2017 International Conference on
Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). IEEE, 2017, pp.
1–6.

[117] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep convolutional auto-encoders
for anomaly detection in videos,” Pattern Recognition Letters, vol. 105, pp. 13–22, 2018.

[118] Y. Zhu and T. Zeugmann, “Image analysis in a parameter-free setting,” in Information Sciences
and Systems 2015. Springer, 2016, pp. 285–294.

[119] D. Meredith, “Analysing music with point-set compression algorithms,” in Computational
Music Analysis. Springer, 2016, pp. 335–366.

[120] M. Pearce and D. Müllensiefen, “Compression-based modelling of musical similarity percep-
tion,” Journal of New Music Research, vol. 46, no. 2, pp. 135–155, 2017.

[121] C. Louboutin and D. Meredith, “Using general-purpose compression algorithms for music
analysis,” Journal of New Music Research, vol. 45, no. 1, pp. 1–16, 2016.

[122] H. Koga, Y. Nakajima, and T. Toda, “Effective construction of compression-based feature
space,” in 2016 International Symposium on Information Theory and Its Applications (ISITA).
IEEE, 2016, pp. 116–120.

[123] T. Uchino, H. Koga, and T. Toda, “Improved compression-based pattern recognition exploiting
new useful features,” in Iberian Conference on Pattern Recognition and Image Analysis.
Springer, 2017, pp. 363–371.

[124] L. N. Ferreira, N. C. Ferreira, M. L. L. Gava, L. Zhao, and E. E. Macau, “The influence of
time series distance functions on climate networks,” arXiv preprint arXiv:1902.03298, 2019.
[Cited on page 42.]

[125] K. Owoeye, M. Musolesi, and S. Hailles, “Characterizing animal movement patterns across
different scales and habitats using information theory,” bioRxiv, p. 311241, 2018. [Cited on
page 42.]

[126] A. Soares, V. Santos, C. Toledo, F. Osório, and A. Delbem, “Nd-ncd: Environmental
characteristics recognition and novelty detection for mobile robots control and navigation,”
in Robotics. Springer, 2016, pp. 192–209. [Cited on page 42.]

[127] J. A. Laura, G. O. Masi, and L. Argerich, “From imitation to prediction, data compression
vs recurrent neural networks for natural language processing,” Inteligencia Artificial, vol. 21,
no. 61, pp. 30–46, 2018. [Cited on page 42.]

REFERENCES 117

[128] A. Cernian, D. Carstoiu, A. Olteanu, and V. Sgarciu, “Assessing the performance of com-
pression based clustering for text mining.” Economic Computation & Economic Cybernetics
Studies & Research, vol. 50, no. 2, 2016. [Cited on page 42.]

[129] J. K. van Dam and V. Zaytsev, “Software language identification with natural language
classifiers,” in 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 624–628.

[130] J. Nouri and R. Yangarber, “Modeling language evolution with codes that utilize context and
phonetic features,” in Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, 2016, pp. 136–145.

[131] I. Kuralenok, N. Starikova, A. Khvorov, and J. Serdyuk, “Construction of efficient v-gram
dictionary for sequential data analysis,” in Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, 2018, pp. 1343–1352.

[132] O. Halvani, C. Winter, and L. Graner, “On the usefulness of compression models for
authorship verification,” in Proceedings of the 12th international conference on availability,
reliability and security, 2017, pp. 1–10.

[133] G. D. Marmerola, M. A. Oikawa, Z. Dias, S. Goldenstein, and A. Rocha, “On the
reconstruction of text phylogeny trees: evaluation and analysis of textual relationships,” PloS
one, vol. 11, no. 12, 2016.

[134] R. A. Rios, C. S. Lopes, F. H. Sikansi, P. A. Pagliosa, and R. F. de Mello, “Analyzing the
public opinion on the brazilian political and corruption issues,” in 2017 Brazilian Conference
on Intelligent Systems (BRACIS). IEEE, 2017, pp. 13–18.

[135] R. A. Rios, P. A. Pagliosa, R. P. Ishii, and R. F. de Mello, “Tsviz: A data stream architecture
to online collect, analyze, and visualize tweets,” in Proceedings of the Symposium on Applied
Computing, 2017, pp. 1031–1036.

[136] R. F. de Mello, R. A. Rios, P. A. Pagliosa, and C. S. Lopes, “Concept drift detection on social
network data using cross-recurrence quantification analysis,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 28, no. 8, p. 085719, 2018.

[137] M. Revolle, F. Cayre, and N. Le Bihan, “Clustering and causality inference using algorithmic
complexity,” in 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017,
pp. 843–847.

[138] C. L. Ting, A. N. Fisher, and T. L. Bauer, “Compression-based algorithms for deception
detection,” in International Conference on Social Informatics. Springer, 2017, pp. 257–276.
[Cited on page 42.]

118 REFERENCES

[139] N. Hudson, R. Hawken, R. Okimoto, R. Sapp, and A. Reverter, “Data compression can
discriminate broilers by selection line, detect haplotypes, and estimate genetic potential for
complex phenotypes,” Poultry science, vol. 96, no. 9, pp. 3031–3038, 2017. [Cited on
page 42.]

[140] C. Alagoz, A. R. Cohen, D. R. Frisch, B. Tunç, S. Phatharodom, and A. Guez, “Spiral
waves characterization: Implications for an automated cardiodynamic tissue characterization,”
Computer methods and programs in biomedicine, vol. 161, pp. 15–24, 2018.

[141] P. RajaRajeswari and S. V. Raju, “Phylogenetic trees construction with compressed dna
sequences using genbit compress tool,” Annals of Data Science, vol. 4, no. 1, pp. 105–121,
2017.

[142] R. Antão, A. Mota, and J. T. Machado, “Kolmogorov complexity as a data similarity metric:
application in mitochondrial dna,” Nonlinear Dynamics, vol. 93, no. 3, pp. 1059–1071, 2018.

[143] T. Villmann, M. Kaden, S. Wasik, M. Kudla, K. Gutowska, A. Villmann, and J. Blazewicz,
“Searching for the origins of life–detecting rna life signatures using learning vector quantiza-
tion,” in International Workshop on Self-Organizing Maps. Springer, 2019, pp. 324–333.

[144] J. Monteiro-Santos, T. Henriques, I. Nunes, C. Amorim-Costa, J. Bernardes, and C. Costa-
Santos, “Complexity of cardiotocographic signals as a predictor of labor,” Entropy, vol. 22,
no. 1, p. 104, 2020.

[145] O. Mayer, D. C. Lim, A. I. Pack, and M. C. Stamm, “Classification of sleep states in mice
using generic compression algorithms,” in 2016 IEEE Signal Processing in Medicine and
Biology Symposium (SPMB). IEEE, 2016, pp. 1–2.

[146] A. Radoi and C. Burileanu, “Infant cry classification using compression-based similarity
metric,” in 2018 International Conference on Communications (COMM). IEEE, 2018, pp.
67–70.

[147] J. Nowaková, M. Prı́lepok, and V. Snášel, “Medical image retrieval using vector quantization
and fuzzy s-tree,” Journal of medical systems, vol. 41, no. 2, p. 18, 2017. [Cited on page 42.]

[148] S. Wasik, N. Szostak, M. Kudla, M. Wachowiak, K. Krawiec, and J. Blazewicz, “Detecting
life signatures with rna sequence similarity measures,” Journal of theoretical biology, vol.
463, pp. 110–120, 2019.

[149] M. Revolle, C. François, and N. L. Bihan, “Salza: Soft algorithmic complexity estimates for
clustering and causality inference,” arXiv preprint arXiv:1607.05144, 2016.

[150] Ó. Barquero-Pérez, R. Santiago-Mozos, J. M. Lillo-Castellano, B. Garcı́a-Viruete, R. Goya-
Esteban, A. J. Caamaño, J. L. Rojo-Álvarez, and C. Martı́n-Caballero, “Fetal heart rate
analysis for automatic detection of perinatal hypoxia using normalized compression distance
and machine learning,” Frontiers in physiology, vol. 8, p. 113, 2017.

REFERENCES 119

[151] G. Ruffini, D. Ibanez, E. Kroupi, J.-F. Gagnon, J. Montplaisir, R. B. Postuma, M. Castellano,
and A. Soria-Frisch, “Algorithmic complexity of eeg for prognosis of neurodegeneration in
idiopathic rapid eye movement behavior disorder (rbd),” Annals of biomedical engineering,
vol. 47, no. 1, pp. 282–296, 2019. [Cited on page 42.]

[152] H. S. Poh, M. Markiewicz, P. Kurzyński, A. Cerè, D. Kaszlikowski, and C. Kurtsiefer,
“Probing the quantum–classical boundary with compression software,” New Journal of
Physics, vol. 18, no. 3, p. 035011, 2016. [Cited on page 42.]

[153] M. El-Dirany, F. Wang, J. Furst, J. Rogers, and D. Raicu, “Compression-based distance
methods as an alternative to statistical methods for constructing phylogenetic trees,” in 2016
IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016,
pp. 1107–1112.

[154] G. Filatov, B. Bauwens, and A. Kertész-Farkas, “Lzw-kernel: fast kernel utilizing variable
length code blocks from lzw compressors for protein sequence classification,” Bioinformatics,
vol. 34, no. 19, pp. 3281–3288, 2018.

[155] F. Toska and J. N. Wilson, “Using data compression for buried hazard detection,” in
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII, vol. 10182.
International Society for Optics and Photonics, 2017, p. 101820T.

[156] A. Olifer, “Generating behavioral acts of predetermined apparent complexity,” arXiv preprint
arXiv:1711.05141, 2017.

[157] F. Cayre and N. Le Bihan, “Complexity and similarity for sequences using lz77-based
conditional information measure,” in 2019 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2019, pp. 2454–2458.

[158] K. Zabkiewicz, “Non-standard distances in high dimensional raw data stream classification,”
in Data Science: New Issues, Challenges and Applications. Springer, 2020, pp. 83–96.

[159] E. Özkural, “Abstract representations and generalized frequent pattern discovery,” in Interna-
tional Conference on Artificial General Intelligence. Springer, 2017, pp. 67–76.

[160] X. Zhang, Y. Yao, Y. Ji, and B. Fang, “Effective and fast near duplicate detection via signature-
based compression metrics,” Mathematical Problems in Engineering, vol. 2016, 2016.

[161] H. Zenil, S. Hernández-Orozco, N. A. Kiani, F. Soler-Toscano, A. Rueda-Toicen, and
J. Tegnér, “A decomposition method for global evaluation of shannon entropy and local
estimations of algorithmic complexity,” Entropy, vol. 20, no. 8, p. 605, 2018. [Cited on
page 42.]

[162] R. Anderson, “Why cryptosystems fail,” in Proceedings of the 1st ACM Conference on
Computer and Communications Security, 1993, pp. 215–227. [Cited on page 45.]

120 REFERENCES

[163] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky,
“Comparing the usability of cryptographic apis,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 154–171. [Cited on page 45.]

[164] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov, “The most
dangerous code in the world: validating ssl certificates in non-browser software,” in
Proceedings of the 2012 ACM conference on Computer and communications security, 2012,
pp. 38–49.

[165] B. Reaves, J. Bowers, N. Scaife, A. Bates, A. Bhartiya, P. Traynor, and K. R. Butler, “Mo (bile)
money, mo (bile) problems: Analysis of branchless banking applications,” ACM Transactions
on Privacy and Security (TOPS), vol. 20, no. 3, pp. 1–31, 2017. [Cited on page 45.]

[166] P. R. Sousa, A. Cirne, J. S. Resende, R. Martins, and L. Antunes, “ptasc: trustable autonomous
secure communications,” in Proceedings of the 20th International Conference on Distributed
Computing and Networking, 2019, pp. 193–202. [Cited on page 46.]

[167] B. Greschbach, G. Kreitz, and S. Buchegger, “The devil is in the metadata—new privacy
challenges in decentralised online social networks,” in 2012 IEEE International Conference
on Pervasive Computing and Communications Workshops. IEEE, 2012, pp. 333–339. [Cited
on page 46.]

[168] J. Tesic, “Metadata practices for consumer photos,” IEEE MultiMedia, vol. 12, no. 3, pp.
86–92, 2005. [Cited on page 46.]

[169] D. Cole, “We kill people based on metadata,” The New York Review of Books, vol. 10, p. 2014,
2014. [Cited on page 46.]

[170] A. Gruber and I. Ben-Gal, “Using targeted bayesian network learning for suspect identification
in communication networks,” International Journal of Information Security, vol. 17, no. 2, pp.
169–181, 2018. [Cited on page 47.]

[171] J. S. Resende, P. R. Sousa, and L. Antunes, “Evaluating the privacy properties of secure voip
metadata,” in International Conference on Trust and Privacy in Digital Business. Springer,
2018, pp. 57–68. [Cited on page 47.]

[172] “inphone open source voip project,” http://www.linphone.org/ [Online; Accessed 29-03-
2018], 2017. [Cited on pages 47 and 48.]

[173] V. Moscaritolo, G. Belvin, and P. Zimmermann, “Silent circle instant messaging protocol
protocol specification,” Online, White Paper, 2012. [Cited on page 47.]

[174] S. Circle, “Silent circle,” https://www.silentcircle.com/ [Online; Accessed 29-03-2018], 2018.
[Cited on page 47.]

REFERENCES 121

[175] P. Zimmermann, A. Johnston, and J. Callas, “Zrtp: Media path key agreement for unicast
secure rtp,” Internet Engineering Task Force (IETF), pp. 2070–1721, 2011. [Cited on
pages 47, 48, and 51.]

[176] secdev, “Scapy: the python-based interactive packet manipulation program & library,” https:
//github.com/secdev/scapy/, 2015. [Cited on page 49.]

[177] W. Dittmann, “Zrtpcpp,” https://github.com/wernerd/ZRTPCPP, 2018. [Cited on page 51.]

[178] teluu, “Pjsip,” http://www.pjsip.org/, 2018. [Cited on page 51.]

[179] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-offs in anonymity
providing systems,” in International Workshop on Information Hiding. Springer, 2001, pp.
245–257. [Cited on page 53.]

[180] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practical covertly
secure mpc for dishonest majority–or: breaking the spdz limits,” in European Symposium on
Research in Computer Security. Springer, 2013, pp. 1–18. [Cited on pages 53, 54, and 66.]

[181] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for efficient mixed-protocol
secure two-party computation.” in NDSS, 2015. [Cited on pages 54 and 55.]

[182] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient batched oblivious prf with
applications to private set intersection,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 818–829.

[183] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti, “Tinylego: An interactive
garbling scheme for maliciously secure two-party computation.” IACR Cryptology ePrint
Archive, vol. 2015, p. 309, 2015. [Cited on pages 54 and 55.]

[184] V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, and R. Trifiletti, “Duplo: unifying cut-
and-choose for garbled circuits,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 3–20. [Cited on pages 53, 54,
and 55.]

[185] “Multiparty computation with spdz online phase and mascot offline phase,” https://github.
com/bristolcrypto/SPDZ-2, accessed: 11-09-2017. [Cited on pages 53 and 54.]

[186] “The richest people in tech,” https://www.forbes.com/richest-in-tech/list/, accessed: 11-09-
2017. [Cited on page 54.]

[187] “Theory and practice of multi-party computation workshops.” http://www.
multipartycomputation.com/mpc-software, accessed: 11-09-2017. [Cited on page 54.]

[188] “Aby - a framework for efficient mixed-protocol secure two-party computation (2015),” https:
//github.com/encryptogroup/ABY, accessed: 11-09-2017. [Cited on page 55.]

122 REFERENCES

[189] “A c++ implementation of the tinylego cryptographic protocol [nst17] for general secure two-
party computation (2016),” https://github.com/AarhusCrypto/TinyLEGO, accessed: 11-09-
2017. [Cited on page 55.]

[190] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti, “On the complexity of
additively homomorphic uc commitments,” in Theory of Cryptography Conference. Springer,
2016, pp. 542–565. [Cited on page 55.]

[191] “(bristol format) circuits of basic functions suitable for mpc and fhe,” https://homes.esat.
kuleuven.be/⇠nsmart/MPC/old-circuits.html, accessed: 11-09-2017. [Cited on page 55.]

[192] “Rob trifiletti a c++ implementation of the duplo cryptographic protocol,” https://github.com/
AarhusCrypto/DUPLO, accessed: 11-09-2017. [Cited on page 55.]

[193] G.-f. ZHAO and G.-q. QU, “Analysis and implementation of clara algorithm on clustering,”
Journal of Shandong University of Technology (Science and Technology), vol. 2, pp. 45–48,
2006. [Cited on page 56.]

[194] A. Souto, “Traffic analysis based on compression,” Proc Conferencia sobre Redes de
Computadores CRC, vol. 15, 2015. [Cited on pages 57 and 63.]

[195] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, “Machine
learning and deep learning methods for cybersecurity,” IEEE Access, vol. 6, pp. 35 365–
35 381, 2018. [Cited on page 71.]

[196] M. Prilepok, T. Jezowicz, J. Platos, and V. Snasel, “Spam detection using compression and
pso,” in 2012 Fourth International Conference on Computational Aspects of Social Networks
(CASoN). IEEE, 2012, pp. 263–270. [Cited on pages 72 and 74.]

[197] M. Prilepok, P. Berek, J. Platos, and V. Snasel, “Spam detection using data compression and
signatures,” Cybernetics and systems, vol. 44, no. 6-7, pp. 533–549, 2013. [Cited on page 74.]

[198] S. J. Delany and D. Bridge, “Catching the drift: Using feature-free case-based reasoning for
spam filtering,” in International Conference on Case-Based Reasoning. Springer, 2019, pp.
314–328. [Cited on page 74.]

[199] T.-C. Chen, S. Dick, and J. Miller, “Detecting visually similar web pages: Application to
phishing detection,” ACM Transactions on Internet Technology (TOIT), vol. 10, no. 2, p. 5,
2010. [Cited on page 75.]

[200] T.-C. Chen, T. Stepan, S. Dick, and J. Miller, “An anti-phishing system employing diffused
information,” ACM Transactions on Information and System Security (TISSEC), vol. 16, no. 4,
p. 16, 2014. [Cited on page 75.]

REFERENCES 123

[201] S. Alami and O. E. BEQQALI, “Detecting suspicious profiles using text analysis within social
media.” Journal of Theoretical & Applied Information Technology, vol. 73, no. 3, 2015. [Cited
on page 76.]

[202] S. Alami and O. Elbeqqali, “Cybercrime profiling: Text mining techniques to detect and
predict criminal activities in microblog posts,” in 2015 10th International Conference on
Intelligent Systems: Theories and Applications (SITA). IEEE, 2015, pp. 1–5.

[203] H. ur Rasheed, F. H. Khan, S. Bashir, and I. Fatima, “Detecting suspicious discussion on
online forums using data mining,” in International Conference on Intelligent Technologies
and Applications. Springer, 2018, pp. 262–273.

[204] T. R. Brounstein, “Social media account resolution and verification.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2019. [Cited on pages 72
and 76.]

[205] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and A. Hanna, “On leveraging coding habits
for effective binary authorship attribution,” in European Symposium on Research in Computer
Security. Springer, 2018, pp. 26–47. [Cited on pages 72, 77, and 82.]

[206] G. de la Torre-Abaitua, L. F. Lago-Fernández, and D. Arroyo, “A parameter-free method
for the detection of web attacks,” in International Joint Conference SOCO’17-CISIS’17-
ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. Springer, 2017, pp. 661–671.
[Cited on page 77.]

[207] C. Ting, R. Field, A. Fisher, and T. Bauer, “Compression analytics for classification and
anomaly detection within network communication,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 5, pp. 1366–1376, 2018. [Cited on page 78.]

[208] A. Desnos, “Android: Static analysis using similarity distance,” in 2012 45th Hawaii
International Conference on System Sciences. IEEE, 2012, pp. 5394–5403. [Cited on
page 78.]

[209] S. Kishore, R. Kumar, and S. Rajan, “Towards accuracy in similarity analysis of android
applications,” in International Conference on Information Systems Security. Springer, 2018,
pp. 146–167. [Cited on page 78.]

[210] H. Tamada, M. Nakamura, A. Monden, and K.-I. Matsumoto, “Java birthmarks–detecting the
software theft–,” IEICE transactions on information and systems, vol. 88, no. 9, pp. 2148–
2158, 2019. [Cited on pages 72 and 78.]

[211] E. Raff and C. Nicholas, “Malware classification and class imbalance via stochastic hashed
lzjd,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.
ACM, 2017, pp. 111–120. [Cited on pages 72 and 80.]

124 REFERENCES

[212] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Automated
classification and analysis of internet malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 178–197. [Cited on page 79.]

[213] N. Alshahwan, E. T. Barr, D. Clark, and G. Danezis, “Detecting malware with information
complexity,” arXiv preprint arXiv:1502.07661, 2015. [Cited on pages 79 and 80.]

[214] E. Raff, Malware Detection and Cyber Security via Compression. University of Maryland,
Baltimore County, 2018. [Cited on pages 79 and 80.]

[215] H. Faridi, S. Srinivasagopalan, and R. Verma, “Performance evaluation of features and
clustering algorithms for malware,” in 2018 IEEE International Conference on Data Mining
Workshops (ICDMW). IEEE, 2018, pp. 13–22. [Cited on pages 72 and 80.]

[216] J. M. Carvalho, S. Brãs, J. Ferreira, S. C. Soares, and A. J. Pinho, “Impact of the acquisition
time on ecg compression-based biometric identification systems,” in Iberian Conference on
Pattern Recognition and Image Analysis. Springer, 2017, pp. 169–176. [Cited on pages 72
and 81.]

[217] S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, “Ecg to identify
individuals,” Pattern recognition, vol. 38, no. 1, pp. 133–142, 2019. [Cited on page 81.]

[218] J. S. Arteaga-Falconi, H. Al Osman, and A. El Saddik, “Ecg authentication for mobile
devices,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 591–
600, 2015. [Cited on page 81.]

[219] J. M. Carvalho, S. Brás, and A. J. Pinho, “Compression-based ecg biometric identification
using a non-fiducial approach,” arXiv preprint arXiv:1804.00959, 2018. [Cited on page 81.]

[220] S. Brás, J. H. Ferreira, S. C. Soares, and A. J. Pinho, “Biometric and emotion identification:
An ecg compression based method,” Frontiers in psychology, vol. 9, p. 467, 2018. [Cited on
pages 72 and 81.]

[221] M. A. Sasse, S. Brostoff, and D. Weirich, “Transforming the ‘weakest link’—a human/com-
puter interaction approach to usable and effective security,” BT technology journal, vol. 19,
no. 3, pp. 122–131, 2019. [Cited on page 73.]

[222] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013. [Cited on page 73.]

[223] K. Parsons, A. McCormac, M. Pattinson, M. Butavicius, and C. Jerram, “Phishing for
the truth: A scenario-based experiment of users’ behavioural response to emails,” in IFIP
International Information Security Conference. Springer, 2013, pp. 366–378. [Cited on
page 74.]

REFERENCES 125

[224] L. Zheng, S. Narayan, M. E. Risher, S. K. Wei, V. T. Ramarao, and A. Kundu, “Spam filtering
based on statistics and token frequency modeling,” 2013, uS Patent 8,364,766. [Cited on
page 74.]

[225] “Spam track,” https://trec.nist.gov/data/spam.html, accessed: 2019-12-03. [Cited on page 74.]

[226] S. C. Hinds, J. L. Fisher, and D. P. D’Amato, “A document skew detection method using
run-length encoding and the hough transform,” in [1990] Proceedings. 10th International
Conference on Pattern Recognition, vol. 1. IEEE, 1990, pp. 464–468. [Cited on page 74.]

[227] D. Mandelbaum, “Synchronization of codes by means of kautz’s fibonacci encoding,” IEEE
Transactions on Information Theory, vol. 18, no. 2, pp. 281–285, 1972. [Cited on page 74.]

[228] D. Dorner, The logic of failure: Recognizing and avoiding error in complex situations. Basic
Books, 1997. [Cited on page 75.]

[229] M. Wertheimer, “Gestalt theory.” 1938. [Cited on page 75.]

[230] “Phishtank,” https://www.phishtank.com/index.php, accessed: 2019-12-03. [Cited on
pages 75 and 82.]

[231] I. Ivanov, C. Hantova, M. Nisheva, P. L. Stanchev, and P. Ein-Dor, “Software library for
authorship identification,” 2015. [Cited on page 75.]

[232] S. Axelsson, “The normalised compression distance as a file fragment classifier,” digital
investigation, vol. 7, pp. S24–S31, 2010. [Cited on page 75.]

[233] ——, “Using normalized compression distance for classifying file fragments,” in 2010
International Conference on Availability, Reliability and Security. IEEE, 2010, pp. 641–
646.

[234] D. Cerra, M. Datcu, and P. Reinartz, “Authorship analysis based on data compression,” Pattern
Recognition Letters, vol. 42, pp. 79–84, 2014.

[235] M. O. Kulekci and M. E. Kamasak, “A method of privacy preserving document similarity
detection,” 2019, uS Patent App. 16/082,272.

[236] M. O. Kulekci, I. Habib, and A. Aghabaiglou, “Privacy–preserving text similarity via
non-prefix-free codes,” in International Conference on Similarity Search and Applications.
Springer, 2019, pp. 94–102.

[237] M. Lambers and C. J. Veenman, “Forensic authorship attribution using compression distances
to prototypes,” in International Workshop on Computational Forensics. Springer, 2009, pp.
13–24. [Cited on page 75.]

126 REFERENCES

[238] D. M. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill, F. Menczer, M. J.
Metzger, B. Nyhan, G. Pennycook, D. Rothschild et al., “The science of fake news,” Science,
vol. 359, no. 6380, pp. 1094–1096, 2018. [Cited on page 76.]

[239] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and I. Awan, “Detection and classification of
social media-based extremist affiliations using sentiment analysis techniques,” Human-centric
Computing and Information Sciences, vol. 9, no. 1, p. 24, 2019. [Cited on page 76.]

[240] L. Hon and K. Varathan, “Cyberbullying detection system on twitter,” IJABM, vol. 1, no. 1,
2015.

[241] A. Pinto, H. G. Oliveira, Á. Figueira, and A. O. Alves, “Predicting the relevance of social
media posts based on linguistic features and journalistic criteria,” New Generation Computing,
vol. 35, no. 4, pp. 451–472, 2017.

[242] H. Arshad, A. Jantan, and E. Omolara, “Evidence collection and forensics on social networks:
Research challenges and directions,” Digital Investigation, 2019. [Cited on pages 76 and 83.]

[243] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards social user profiling:
unified and discriminative influence model for inferring home locations,” in Proceedings of
the 18th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 1023–1031. [Cited on page 76.]

[244] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You get where you’re
looking for: The impact of information sources on code security,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 289–305. [Cited on page 77.]

[245] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from stackoverflow: An
exploratory study on android apps,” Information and Software Technology, vol. 88, pp. 148–
158, 2017. [Cited on page 77.]

[246] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during application
development: an application security expert perspective,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 2018, p. 262.

[247] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Developers
need support, too: A survey of security advice for software developers,” in 2017 IEEE
Cybersecurity Development (SecDev). IEEE, 2017, pp. 22–26. [Cited on page 77.]

[248] W. He, X. Tian, and J. Shen, “Examining security risks of mobile banking applications through
blog mining.” in MAICS, 2015, pp. 103–108. [Cited on page 77.]

[249] R. Vaarandi, B. Blumbergs, and M. Kont, “An unsupervised framework for detecting anoma-
lous messages from syslog log files,” in NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2018, pp. 1–6. [Cited on page 77.]

REFERENCES 127

[250] “Http dataset csic 2010,” http://www.isi.csic.es/dataset/, accessed: 2019-12-03. [Cited on
page 78.]

[251] “Intrusion detection evaluation dataset (iscxids2012),” https://www.unb.ca/cic/datasets/ids.
html, accessed: 2019-12-03. [Cited on page 78.]

[252] Y. Zhang, W. Ren, T. Zhu, and Y. Ren, “Saas: A situational awareness and analysis system
for massive android malware detection,” Future Generation Computer Systems, vol. 95, pp.
548–559, 2019. [Cited on page 78.]

[253] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in 2010 International
conference on broadband, wireless computing, communication and applications. IEEE,
2010, pp. 297–300. [Cited on page 79.]

[254] asd, “Mimicking anti-viruses with machine learning and entropy profiles,” Entropy, vol. 21,
no. 5, p. 513, 2019. [Cited on page 79.]

[255] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft malware
classification challenge,” arXiv preprint arXiv:1802.10135, 2018. [Cited on page 80.]

[256] H. D. Menéndez, S. Bhattacharya, D. Clark, and E. T. Barr, “The arms race: Adversarial
search defeats entropy used to detect malware,” Expert Systems with Applications, vol. 118,
pp. 246–260, 2019. [Cited on page 80.]

[257] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin:
Effective and explainable detection of android malware in your pocket.” in Ndss, vol. 14,
2014, pp. 23–26. [Cited on page 80.]

[258] D. Ekhtoom, M. Al-Ayyoub, M. Al-Saleh, M. Alsmirat, and I. Hmeidi, “A compression-
based technique to classify metamorphic malware,” in 2016 IEEE/ACS 13th International
Conference of Computer Systems and Applications (AICCSA). IEEE, 2016, pp. 1–6. [Cited
on page 80.]

[259] J. Lee, “Compression-based analysis of metamorphic malware,” 2013. [Cited on page 80.]

[260] A. De Luca and J. Lindqvist, “Is secure and usable smartphone authentication asking too
much?” Computer, vol. 48, no. 5, pp. 64–68, 2015. [Cited on page 81.]

[261] S. Davidson, D. Smith, C. Yang, and S. Cheah, “Smartwatch user identification as a means
of authentication,” Department of Computer Science and Engineering Std, 2016. [Cited on
page 81.]

[262] T. Storer, “Bridging the chasm: A survey of software engineering practice in scientific
programming,” ACM Computing Surveys (CSUR), vol. 50, no. 4, p. 47, 2017. [Cited on
page 81.]

128 REFERENCES

[263] T. H. Naylor and J. M. Finger, “Verification of computer simulation models,” Management
science, vol. 14, no. 2, pp. B–92, 2019. [Cited on page 81.]

[264] C. Grajeda, F. Breitinger, and I. Baggili, “Availability of datasets for digital forensics–and
what is missing,” Digital Investigation, vol. 22, pp. S94–S105, 2017. [Cited on page 83.]

[265] A. Ghorbel, M. Ghorbel, and M. Jmaiel, “Privacy in cloud computing environments: a survey
and research challenges,” The Journal of Supercomputing, vol. 73, no. 6, pp. 2763–2800,
2017. [Cited on pages 85 and 99.]

[266] M. Goddard, “The eu general data protection regulation (gdpr): European regulation that has
a global impact,” International Journal of Market Research, vol. 59, no. 6, pp. 703–705, 2017.
[Cited on page 85.]

[267] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection for cloud storage: A
survey,” IEEE Access, vol. 8, pp. 131 723–131 740, 2020. [Cited on pages 85 and 99.]

[268] P. Edemekong, P. Annamaraju, and M. Haydel, “Health insurance portability and accountabil-
ity act (hipaa),” StatPearls, 2020. [Cited on page 86.]

[269] J. Sedayao, S. Su, X. Ma, M. Jiang, and K. Miao, “A simple technique for securing data at
rest stored in a computing cloud,” in IEEE International Conference on Cloud Computing.
Springer, 2009, pp. 553–558. [Cited on page 86.]

[270] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer, P. Pietzuch, and
R. Kapitza, “Securekeeper: confidential zookeeper using intel sgx,” in Proceedings of the
17th International Middleware Conference, 2016, pp. 1–13. [Cited on pages 86 and 89.]

[271] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instrumentation and
debugging via hardware virtualization,” in Proceedings of the 29th Annual Computer Security
Applications Conference, 2013, pp. 289–298. [Cited on page 86.]

[272] A. Brandao, J. Resende, and R. Martins, “Hardening of cryptographic operations through the
use of secure enclaves,” Computers & Security, p. 102327, 2021. [Cited on page 87.]

[273] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to the https protocol,”
IEEE Security & Privacy, vol. 7, no. 1, pp. 78–81, 2009. [Cited on pages 88 and 97.]

[274] E. Barker and A. Roginsky, “Transitioning the use of cryptographic algorithms and key
lengths,” National Institute of Standards and Technology, Tech. Rep., 2018. [Cited on
page 90.]

[275] Google, “Android Open Source Project,” android.googlesource.com/platform/system/
security/, 2015. [Cited on page 92.]

[276] OpenSC, “libp11,” https://github.com/OpenSC/libp11, 2020. [Cited on page 92.]

REFERENCES 129

[277] F. Prasser, J. Eicher, H. Spengler, R. Bild, and K. A. Kuhn, “Flexible data anonymization
using arx—current status and challenges ahead,” Software: Practice and Experience, vol. 50,
no. 7, pp. 1277–1304, 2020. [Cited on page 93.]

[278] B. Reed-Solomon, “Backblaze reed-solomon,” 2015. [Cited on page 96.]

[279] E. Toews and D. Advocate, “Introduction to apache jclouds,” Apr, vol. 7, p. 23, 2014. [Cited
on page 96.]

[280] F. Fornwall, “Termux: Android terminal emulator and linux environment app,” 2020, available
at: https://termux.com/. [Cited on page 97.]

[281] J. S. Resende, R. Martins, and L. Antunes, “Enforcing privacy and security in public cloud
storage,” in 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2018,
pp. 1–5. [Cited on page 99.]

[282] K. Woods and C. A. Lee, “Redacting private and sensitive information in born-digital
collections,” in Archiving Conference, vol. 2015. Society for Imaging Science and
Technology, 2015, pp. 2–7. [Cited on page 102.]

[283] “Lzip,” http://www.nongnu.org/lzip/, accessed: 11-09-2017.

[284] P. R. Sousa, L. Antunes, and R. Martins, “The present and future of privacy-preserving
computation in fog computing,” in Fog Computing in the Internet of Things. Springer, 2018,
pp. 51–69.

[285] S. Brás, J. M. Carvalho, F. Barros, C. Figueiredo, S. C. Soares, and A. J. Pinho, “An
information-theoretical method for emotion classification,” in Mediterranean Conference on
Medical and Biological Engineering and Computing. Springer, 2019, pp. 253–261.

[286] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cybersecurity,” Journal of
Computer and System Sciences, vol. 80, no. 5, pp. 973–993, 2014.

[287] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in 2012
IEEE symposium on security and privacy. IEEE, 2012, pp. 95–109.

[288] W. Deng, Q. Liu, H. Cheng, and Z. Qin, “A malware detection framework based on
kolmogorov complexity,” Journal of Computational Information Systems, vol. 7, no. 8, pp.
2687–2694, 2011.

[289] P. M. Vitányi, F. J. Balbach, R. L. Cilibrasi, and M. Li, “Normalized information distance,” in
Information theory and statistical learning. Springer, 2009, pp. 45–82.

[290] P. S. Foundation, “Python programming language,” http://www.python.org.

[291] M. Almeida, “psmon,” 2009–2013, https://github.com/marcoalmeida/psmon.

130 REFERENCES

[292] C. Ltd., “Ubuntu linux,” 2013, http://www.ubuntu.com.

[293] W. G. Cochran, Sampling Techniques, 3rd ed. John Wiley & Sons, 1977.

[294] M. Cebrián, M. Alfonseca, and A. Ortega, “Common pitfalls using the normalized compres-
sion distance: what to watch out for in a compressor,” Communication in Information and
Systems, vol. 5, no. 4, pp. 367–384, 2005.

[295] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity metric,” IEEE Transactions
on Information Theory, vol. 50, no. 12, pp. 3250–3264, 2004.

[296] R. Cilibrasi and P. M. B. Vitányi, “Clustering by compression,” IEEE Transactions on
Information Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

[297] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed.
Springer, 1997.

[298] Google, “Make the Web Faster,” https://developers.google.com/speed/docs/best-practices/
payload#GzipCompression.

[299] J. A. Laura, G. Masi, and L. Argerich, “From imitation to prediction, data compression vs
recurrent neural networks for natural language processing,” arXiv preprint arXiv:1705.00697,
2017.

[300] K. Ehret and B. Szmrecsanyi, “Compressing learner language: An information-theoretic
measure of complexity in sla production data,” Second Language Research, vol. 35, no. 1,
pp. 23–45, 2019.

[301] J. S Resende, R. Martins, and L. Antunes, “A survey on using kolmogorov complexity in
cybersecurity,” Entropy, vol. 21, no. 12, p. 1196, 2019.

[302] A. L. C. R. Cilibrasi and S. de Rooijet, “CompLearn,” 2004, http://complearn.org/ [Online;
accessed 3-May-2020].

[303] e. a. Mohammed Adnène Trojette, “LZMA Compression and decompression in the LZMA
format - command line utility,” 2017, http://packages.ubuntu.com/yakkety/lzma [Online;
accessed 3-May-2020].

[304] M. Stapelberg, “Package: mscompress,” 2017, https://packages.ubuntu.com/trusty/otherosfs/
mscompress [Online; accessed 3-May-2020].

[305] C. Bloom, “PPMZ,” 2017, http://www.cbloom.com/src/ppmz.html [Online; accessed 3-May-
2020].

[306] S. Fandino, “PPMd compression,” 2017, http://search.cpan.org/⇠salva/Compress-PPMd-0.
11/PPMd.pm [Online; accessed 3-May-2020].

REFERENCES 131

[307] D. Baumann, “Package: lzip,” 2017, https://packages.ubuntu.com/trusty/otherosfs/lzip [On-
line; accessed 3-May-2020].

[308] I. Pavlov., “7z Archive format,” 2017, http://www.7-zip.org/7z.html [Online; accessed 3-May-
2020].

[309] P. M. Fenwick, “The burrows–wheeler transform for block sorting text compression: princi-
ples and improvements,” The computer journal, vol. 39, no. 9, pp. 731–740, 1996.

[310] e. a. Anibal M Salazar, “bzip2,” 2017, http://packages.ubuntu.com/source/yakkety/bzip2
[Online; accessed 3-May-2020].

[311] e. a. Bdale Garbeer, “gzip,” 2017, http://packages.ubuntu.com/source/yakkety/gzip [Online;
accessed 3-May-2020].

[312] U. Manuals, “ncd,” 2017, http://manpages.ubuntu.com/manpages/precise/man1/ncd.1.html
[Online; accessed 3-May-2020].

[313] O. Oreifej and Z. Liu, “Hon4d: Histogram of oriented 4d normals for activity recognition from
depth sequences,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 716–723.

[314] O. Oreifej, “HON4D,” 2013, http://www.cs.ucf.edu/⇠oreifej/HON4D.html [Online; accessed
3-May-2020].

[315] L. Vandevenne, “HON4D,” 2013, https://developers.googleblog.com/2013/02/compress-
data-more-densely-with-zopfli.html [Online; accessed 3-May-2020].

[316] R Development Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2008, ISBN 3-900051-07-0. [Online].
Available: http://www.R-project.org

[317] M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik, cluster: Cluster Analysis
Basics and Extensions, 2017, r package version 2.0.6 — For new features, see the ’Changelog’
file (in the package source).

[318] C. Bloom, “Solving the problems of context modeling,” California Institute of Technology,
pp. 1–11, 1998.

[319] P. G. Howard, “The design and analysis of efficient lossless data compression systems,” 1993.

[320] J. Alakuijala and Z. Szabadka, “Brotli compressed data format,” Tech. Rep., 2016.

[321] MKleusberg, “ncd,” https://github.com/MKleusberg/ncd, 2017.

[322] JohannesBuchner, “paq8l,” https://github.com/JohannesBuchner/paq/tree/master/paq8l,
2017.

132 REFERENCES

[323] P. Montero, J. A. Vilar et al., “Tsclust: An r package for time series clustering,” Journal of,
2014.

[324] P. Montero and J. A. Vilar, “TSclust: An R package for time series clustering,”
Journal of Statistical Software, vol. 62, no. 1, pp. 1–43, 2014. [Online]. Available:
http://www.jstatsoft.org/v62/i01/

[325] A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies for media streaming
over wireless networks,” IEEE Communications Magazine, vol. 46, no. 1, 2008.

[326] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on lightweight cryptography,”
NIST DRAFT NISTIR, vol. 8114, 2016.

[327] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM, vol. 31, no. 5,
pp. 532–533, 1988.

[328] P. Rindal and M. Rosulek, “Faster malicious 2-party secure computation with online/offline
dual execution,” in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 297–
314.

[329] G. Spini and S. Fehr, “Cheater detection in spdz multiparty computation,” in International
Conference on Information Theoretic Security. Springer, 2016, pp. 151–176.

[330] W. Du and M. J. Atallah, “Secure multi-party computation problems and their applications: a
review and open problems,” in Proceedings of the 2001 workshop on New security paradigms,
2001, pp. 13–22.

[331] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A regularity statistic for medical data
analysis,” Journal of clinical monitoring, vol. 7, no. 4, pp. 335–345, 1991.

[332] I. Prigogine, “What is entropy?” Naturwissenschaften, vol. 76, no. 1, pp. 1–8, 1989.

[333] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate
entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physi-
ology, vol. 278, no. 6, pp. H2039–H2049, 2000.

[334] W. Wang, P. Li, L. Han, S. Huang, K. Xu, C. Yu, and J. Lei, “An enhanced erasure code-based
security mechanism for cloud storage,” Mathematical Problems in Engineering, vol. 2014,
2014.

[335] B. Kang, J. Wang, and D. Shao, “Attack on privacy-preserving public auditing schemes for
cloud storage,” Mathematical Problems in Engineering, vol. 2017, 2017.

[336] “Safe cloud photos,” https://yoursafecloud.com/, accessed: 02/22/2017.

[337] “Boxcryptor, encryption software to secure cloud files,” https://www.boxcryptor.com, ac-
cessed: 02/22/2017.

REFERENCES 133

[338] “Whisp, secure and easy file transfer,” https://whisp.ly, accessed: 1 May 2018.

[339] “Resilio, all your data, across all your devices,” https://www.resilio.com, accessed: 1 May
2018.

[340] “Aerofs, file sync & share on your infrastructure,” https//www.aerofs.com/, accessed: 1 May
2018.

[341] F. Durao, R. Assad, A. Fonseca, J. Fernando, V. Garcia, and F. Trinta, “Usto. re: A private
cloud storage software system,” in International Conference on Web Engineering. Springer,
2013, pp. 452–466.

[342] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for message authentica-
tion,” 1997.

[343] “Openstack, liberasurecode - erasure code api,” https://github.com/openstack/liberasurecode,
accessed: 1 May 2018.

[344] “Google drive android quickstart,” https://github.com/googledrive/android-quickstart, ac-
cessed: 1 May 2018.

[345] “Google drive apis,” https://developers.google.com/drive, accessed: 1 May 2018.

[346] “s3fs-fuse,” https://github.com/s3fs-fuse/s3fs-fuse, accessed: 1 May 2018.

[347] “Netapp cloud central,” https://cloud.netapp.com, accessed: 1 May 2018.

[348] K. Liu, W. Zhang, and X. Dong, “A cloud-user protocol based on ciphertext watermarking
technology,” Security and Communication Networks, vol. 2017, 2017.

[349] S. Chakrabarti, B. Baker, and M. Vij, “Intel sgx enabled key manager service with openstack
barbican,” arXiv preprint arXiv:1712.07694, 2017.

[350] “Class storedcredential (2015),” https://developers.google.com/api-client-library/
java/google-oauth-java-client/reference/1.20.0/com/google/api/client/auth/oauth2/
StoredCredential, accessed: 1 May 2018.

[351] S. Latha, K. Raju, and S. Santhi, “Overview of dropbox encryption in cloud computing,”
Transactions on Engineering and Sciences, vol. 2, no. 3, pp. 27–32, 2014.

[352] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson, and D. Wetherall, “Metasync:
File synchronization across multiple untrusted storage services,” in 2015 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 15), 2015, pp. 83–95.

[353] R. Kotla, L. Alvisi, and M. Dahlin, “Safestore: A durable and practical storage system,” in
USENIX Annual Technical Conference, 2007, pp. 129–142.

134 REFERENCES

[354] Z. Shen, Q. Jia, G.-E. Sela, W. Song, H. Weatherspoon, and R. Van Renesse, “Supercloud: A
library cloud for exploiting cloud diversity,” ACM Transactions on Computer Systems (TOCS),
vol. 35, no. 2, pp. 1–33, 2017.

[355] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud computing vulnerabilities,”
IEEE Security & privacy, vol. 9, no. 2, pp. 50–57, 2010.

[356] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models of cloud
computing,” Journal of network and computer applications, vol. 34, no. 1, pp. 1–11, 2011.

[357] H. Gottweis, J. Kaye, F. Bignami, E. Rial-Sebbag, R. Lattanzi, and M. Macek Jr, “Biobanks
for europe: a challenge for governance,” Luxembourg: European Commission, 2012.

[358] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “Reducing leakage in distributed deep
learning for sensitive health data,” arXiv preprint arXiv:1812.00564, 2019.

[359] O. Gupta and R. Raskar, “Distributed learning of deep neural network over multiple agents,”
Journal of Network and Computer Applications, vol. 116, pp. 1–8, 2018.

[360] R. Pontes, D. Burihabwa, F. Maia, J. Paulo, V. Schiavoni, P. Felber, H. Mercier, and
R. Oliveira, “Safefs: a modular architecture for secure user-space file systems: one fuse to
rule them all,” in Proceedings of the 10th ACM International Systems and Storage Conference,
2017, pp. 1–12.

[361] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting web
application vulnerabilities,” in 2006 IEEE Symposium on Security and Privacy (S&P’06).
IEEE, 2006, pp. 6–pp.

[362] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.

[363] S. G. Worku, C. Xu, J. Zhao, and X. He, “Secure and efficient privacy-preserving public
auditing scheme for cloud storage,” Computers & Electrical Engineering, vol. 40, no. 5, pp.
1703–1713, 2014.

[364] D. He, H. Wang, J. Zhang, and L. Wang, “Insecurity of an identity-based public auditing
protocol for the outsourced data in cloud storage,” Information Sciences, vol. 375, pp. 48–53,
2017.

[365] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against searchable
encryption,” in Proceedings of the 22nd ACM SIGSAC conference on computer and commu-
nications security, 2015, pp. 668–679.

[366] E. Orsini, N. P. Smart, and F. Vercauteren, “Overdrive2k: Efficient secure mpc over from
somewhat homomorphic encryption,” in Cryptographers’ Track at the RSA Conference.
Springer, 2020, pp. 254–283.

REFERENCES 135

[367] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from somewhat
homomorphic encryption,” in Annual Cryptology Conference. Springer, 2012, pp. 643–662.

[368] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be practical?”
in Proceedings of the 3rd ACM workshop on Cloud computing security workshop, 2011, pp.
113–124.

[369] M. Chenal and Q. Tang, “On key recovery attacks against existing somewhat homomorphic
encryption schemes,” in International Conference on Cryptology and Information Security in
Latin America. Springer, 2014, pp. 239–258.

[370] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “L-diversity: privacy
beyond k-anonymity,” in 22nd International Conference on Data Engineering (ICDE'06).
IEEE, 2006. [Online]. Available: https://doi.org/10.1109/icde.2006.1

[371] A. N. Kolmogorov, “Three approaches to the quantitative definition ofinformation’,” Problems
of information transmission, vol. 1, no. 1, pp. 1–7, 1965.

[372] R. J. Solomonoff, “A formal theory of inductive inference. part i,” Information and control,
vol. 7, no. 1, pp. 1–22, 1964.

[373] G. J. Chaitin, “On the length of programs for computing finite binary sequences,” Journal of
the ACM (JACM), vol. 13, no. 4, pp. 547–569, 1966.

