1,357 research outputs found

    Computational Study of Multisensory Gaze-Shift Planning

    Get PDF
    In response to appearance of multimodal events in the environment, we often make a gaze-shift in order to focus the attention and gather more information. Planning such a gaze-shift involves three stages: 1) to determine the spatial location for the gaze-shift, 2) to find out the time to initiate the gaze-shift, 3) to work out a coordinated eye-head motion to execute the gaze-shift. There have been a large number of experimental investigations to inquire the nature of multisensory and oculomotor information processing in any of these three levels separately. Here in this thesis, we approach this problem as a single executive program and propose computational models for them in a unified framework. The first spatial problem is viewed as inferring the cause of cross-modal stimuli, whether or not they originate from a common source (chapter 2). We propose an evidence-accumulation decision-making framework, and introduce a spatiotemporal similarity measure as the criterion to choose to integrate the multimodal information or not. The variability of report of sameness, observed in experiments, is replicated as functions of the spatial and temporal patterns of target presentations. To solve the second temporal problem, a model is built upon the first decision-making structure (chapter 3). We introduce an accumulative measure of confidence on the chosen causal structure, as the criterion for initiation of action. We propose that gaze-shift is implemented when this confidence measure reaches a threshold. The experimentally observed variability of reaction time is simulated as functions of spatiotemporal and reliability features of the cross-modal stimuli. The third motor problem is considered to be solved downstream of the two first networks (chapter 4). We propose a kinematic strategy that coordinates eye-in-head and head-on-shoulder movements, in both spatial and temporal dimensions, in order to shift the line of sight towards the inferred position of the goal. The variabilities in contributions of eyes and head movements to gaze-shift are modeled as functions of the retinal error and the initial orientations of eyes and head. The three models should be viewed as parts of a single executive program that integrates perceptual and motor processing across time and space

    Who is that? Brain networks and mechanisms for identifying individuals

    Get PDF
    Social animals can identify conspecifics by many forms of sensory input. However, whether the neuronal computations that support this ability to identify individuals rely on modality-independent convergence or involve ongoing synergistic interactions along the multiple sensory streams remains controversial. Direct neuronal measurements at relevant brain sites could address such questions, but this requires better bridging the work in humans and animal models. Here, we overview recent studies in nonhuman primates on voice and face identity-sensitive pathways and evaluate the correspondences to relevant findings in humans. This synthesis provides insights into converging sensory streams in the primate anterior temporal lobe (ATL) for identity processing. Furthermore, we advance a model and suggest how alternative neuronal mechanisms could be tested

    Braitenberg Vehicles as Developmental Neurosimulation

    Full text link
    The connection between brain and behavior is a longstanding issue in the areas of behavioral science, artificial intelligence, and neurobiology. Particularly in artificial intelligence research, behavior is generated by a black box approximating the brain. As is standard among models of artificial and biological neural networks, an analogue of the fully mature brain is presented as a blank slate. This model generates outputs and behaviors from a priori associations, yet this does not consider the realities of biological development and developmental learning. Our purpose is to model the development of an artificial organism that exhibits complex behaviors. We will introduce our approach, which is to use Braitenberg Vehicles (BVs) to model the development of an artificial nervous system. The resulting developmental BVs will generate behaviors that range from stimulus responses to group behavior that resembles collective motion. Next, we will situate this work in the domain of artificial brain networks. Then we will focus on broader themes such as embodied cognition, feedback, and emergence. Our perspective will then be exemplified by three software instantiations that demonstrate how a BV-genetic algorithm hybrid model, multisensory Hebbian learning model, and multi-agent approaches can be used to approach BV development. We introduce use cases such as optimized spatial cognition (vehicle-genetic algorithm hybrid model), hinges connecting behavioral and neural models (multisensory Hebbian learning model), and cumulative classification (multi-agent approaches). In conclusion, we will revisit concepts related to our approach and how they might guide future development.Comment: 32 pages, 8 figures, 2 table

    Sensorimotor Representation Learning for an “Active Self” in Robots: A Model Survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in spaces populated by people and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyze what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Projekt DEALPeer Reviewe

    Sensorimotor representation learning for an "active self" in robots: A model survey

    Get PDF
    Safe human-robot interactions require robots to be able to learn how to behave appropriately in \sout{humans' world} \rev{spaces populated by people} and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyse what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Minimal self-models and the free energy principle

    Get PDF
    The term “minimal phenomenal selfhood” (MPS) describes the basic, pre-reflective experience of being a self (Blanke and Metzinger, 2009). Theoretical accounts of the minimal self have long recognized the importance and the ambivalence of the body as both part of the physical world, and the enabling condition for being in this world (Gallagher, 2005a; Grafton, 2009). A recent account of MPS (Metzinger, 2004a) centers on the consideration that minimal selfhood emerges as the result of basic self-modeling mechanisms, thereby being founded on pre-reflective bodily processes. The free energy principle (FEP; Friston, 2010) is a novel unified theory of cortical function built upon the imperative that self-organizing systems entail hierarchical generative models of the causes of their sensory input, which are optimized by minimizing free energy as an approximation of the log-likelihood of the model. The implementation of the FEP via predictive coding mechanisms and in particular the active inference principle emphasizes the role of embodiment for predictive self-modeling, which has been appreciated in recent publications. In this review, we provide an overview of these conceptions and illustrate thereby the potential power of the FEP in explaining the mechanisms underlying minimal selfhood and its key constituents, multisensory integration, interoception, agency, perspective, and the experience of mineness. We conclude that the conceptualization of MPS can be well mapped onto a hierarchical generative model furnished by the FEP and may constitute the basis for higher-level, cognitive forms of self-referral, as well as the understanding of other minds.Peer Reviewe

    Investigating the Cognitive and Neural Mechanisms underlying Multisensory Perceptual Decision-Making in Humans

    Get PDF
    On a frequent day-to-day basis, we encounter situations that require the formation of decisions based on ambiguous and often incomplete sensory information. Perceptual decision-making defines the process by which sensory information is consolidated and accumulated towards one of multiple possible choice alternatives, which inform our behavioural responses. Perceptual decision-making can be understood both theoretically and neurologically as a process of stochastic sensory evidence accumulation towards some choice threshold. Once this threshold is exceeded, a response is facilitated, informing the overt actions undertaken. Prevalent progress has been made towards understanding the cognitive and neural mechanisms underlying perceptual decision-making. Analyses of Reaction Time (RTs; typically constrained to milliseconds) and choice accuracy; reflecting decision-making behaviour, can be coupled with neuroimaging methodologies; notably electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI), to identify spatiotemporal components representative of the neural signatures corresponding to such accumulation-to-bound decision formation on a single-trial basis. Taken together, these provide us with an experimental framework conceptualising the key computations underlying perceptual decision-making. Despite this, relatively little remains known about the enhancements or alternations to the process of perceptual decision-making from the integration of information across multiple sensory modalities. Consolidating the available sensory evidence requires processing information presented in more than one sensory modality, often near-simultaneously, to exploit the salient percepts for what we term as multisensory (perceptual) decision-making. Specifically, multisensory integration must be considered within the perceptual decision-making framework in order to understand how information becomes stochastically accumulated to inform overt sensory-motor choice behaviours. Recently, substantial progress in research has been made through the application of behaviourally-informed, and/or neurally-informed, modelling approaches to benefit our understanding of multisensory decision-making. In particular, these approaches fit a number of model parameters to behavioural and/or neuroimaging datasets, in order to (a) dissect the constituent internal cognitive and neural processes underlying perceptual decision-making with both multisensory and unisensory information, and (b) mechanistically infer how multisensory enhancements arise from the integration of information across multiple sensory modalities to benefit perceptual decision formation. Despite this, the spatiotemporal locus of the neural and cognitive underpinnings of enhancements from multisensory integration remains subject to debate. In particular, our understanding of which brain regions are predictive of such enhancements, where they arise, and how they influence decision-making behaviours requires further exploration. The current thesis outlines empirical findings from three studies aimed at providing a more complete characterisation of multisensory perceptual decision-making, utilising EEG and accumulation-to-bound modelling methodologies to incorporate both behaviourally-informed and neurally-informed modelling approaches, investigating where, when, and how perceptual improvements arise during multisensory perceptual decision-making. Pointedly, these modelling approaches sought to probe the exerted modulatory influences of three factors: unisensory formulated cross-modal associations (Chapter 2), natural ageing (Chapter 3), and perceptual learning (Chapter 4), on the integral cognitive and neural mechanisms underlying observable benefits towards multisensory decision formation. Chapter 2 outlines secondary analyses, utilising a neurally-informed modelling approach, characterising the spatiotemporal dynamics of neural activity underlying auditory pitch-visual size cross-modal associations. In particular, how unisensory auditory pitch-driven associations benefit perceptual decision formation was functionally probed. EEG measurements were recorded from participants during performance of an Implicit Association Test (IAT), a two-alternative forced-choice (2AFC) paradigm which presents one unisensory stimulus feature per trial for participants to categorise, but manipulates the stimulus feature-response key mappings of auditory pitch-visual size cross-modal associations from unisensory stimuli alone, thus overcoming the issue of mixed selectivity in recorded neural activity prevalent in previous cross-modal associative research, which near-simultaneously presented multisensory stimuli. Categorisations were faster (i.e., lower RTs) when stimulus feature-response key mappings were associatively congruent, compared to associatively incongruent, between the two associative counterparts, thus demonstrating a behavioural benefit to perceptual decision formation. Multivariate Linear Discriminant Analysis (LDA) was used to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance, in which two EEG components were identified that discriminated neural activity underlying the benefits of associative congruency of stimulus feature-response key mappings. Application of a neurally-informed Hierarchical Drift Diffusion Model (HDDM) demonstrated early sensory processing benefits, with increases in the duration of non-decisional processes with incongruent stimulus feature-response key mappings, and late post-sensory alterations to decision dynamics, with congruent stimulus feature-response key mappings decreasing the quantity of evidence required to facilitate a decision. Hence, we found that the trial-by-trial variability in perceptual decision formation from unisensory facilitated cross-modal associations could be predicted by neural activity within our neurally-informed modelling approach. Next, Chapter 3 outlines cognitive research investigating age-related impacts on the behavioural indices of multisensory perceptual decision-making (i.e., RTs and choice accuracy). Natural ageing has been demonstrated to diversely affect multisensory perceptual decision-making dynamics. However, the constituent cognitive processes affected remain unclear. Specifically, a mechanistic insight reconciling why older adults may exhibit preserved multisensory integrative benefits, yet display generalised perceptual deficits, relative to younger adults, remains inconclusive. To address this limitation, 212 participants performed an online variant of a well-established audiovisual object categorisation paradigm, whereby age-related differences in RTs and choice accuracy (binary responses) between audiovisual (AV), visual (V), and auditory (A) trial types could be assessed between Younger Adults (YAs; Mean ± Standard Deviation = 27.95 ± 5.82 years) and Older Adults (OAs; Mean ± Standard Deviation = 60.96 ± 10.35 years). Hierarchical Drift Diffusion Modelling (HDDM) was fitted to participants’ RTs and binary responses in order to probe age-related impacts on the latent underlying processes of multisensory decision formation. Behavioural results found that whereas OAs were typically slower (i.e., ↑ RTs) and less accurate (i.e., ↓ choice accuracy), relative to YAs across all sensory trial types, they exhibited greater differences in RTs between AV and V trials (i.e., ↑ AV-V RT difference), with no significant effects of choice accuracy, implicating preserved benefits of multisensory integration towards perceptual decision formation. HDDM demonstrated parsimonious fittings for characterising these behavioural discrepancies between YAs and OAs. Notably we found slower rates of sensory evidence accumulation (i.e., ↓ drift rates) for OAs across all sensory trial types, coupled with (1) higher rates of sensory evidence accumulation (i.e., ↑ drift rates) for OAs between AV versus V trial types irrespective of stimulus difficulty, coupled with (2) increased response caution (i.e., ↑ decision boundaries) between AV versus V trial types, and (3) decreased non-decisional processing duration (i.e., ↓ non-decision times) between AV versus V trial types for stimuli of increased difficulty respectively. Our findings suggest that older adults trade-off multisensory decision-making speed for accuracy to preserve enhancements towards perceptual decision formation relative to younger adults. Hence, they display an increased reliance on integrating multimodal information; through the principle of inverse effectiveness, as a compensatory mechanism for a generalised cognitive slowing when processing unisensory information. Overall, our findings demonstrate how computational modelling can reconcile contrasting hypotheses of age-related changes in processes underlying multisensory perceptual decision-making behaviour. Finally, Chapter 4 outlines research probing the exerted influence of perceptual learning on multisensory perceptual decision-making. Views of unisensory perceptual learning imply that improvements in perceptual sensitivity may be due to enhancements in early sensory representations and/or modulations to post-sensory decision dynamics. We sought to assess whether these views could account for improvements in perceptual sensitivity for multisensory stimuli, or even exacerbations of multisensory enhancements towards decision formation, by consolidating the spatiotemporal locus of where and when in the brain they may be observed. We recorded EEG activity from participants who completed the same audiovisual object categorisation paradigm (as outlined in Chapter 3), over three consecutive days. We used single-trial multivariate LDA to characterise the spatiotemporal trajectory of the decision dynamics underlying any observed multisensory benefits both (a) within and (b) between visual, auditory, and audiovisual trial types. While found significant decreases were found in RTs and increases in choice accuracy over testing days, we did not find any significant effects of perceptual learning on multisensory nor unisensory perceptual decision formation. Similarly, EEG analysis did not find any neural components indicative of early or late modulatory effects from perceptual learning in brain activity, which we attribute to (1) a long duration of stimulus presentations (300ms), and (2) a lack of sufficient statistical power for our LDA classifier to discriminate face-versus-car trial types. We end this chapter with considerations for discerning multisensory benefits towards perceptual decision formation, and recommendations for altering our experimental design to observe the effects of perceptual learning as a decision neuromodulator. These findings contribute to literature justifying the increasing relevance of utilising behaviourally-informed and/or neurally-informed modelling approaches for investigating multisensory perceptual decision-making. In particular, a discussion of the underlying cognitive and/or neural mechanisms that can be attributed to the benefits of multisensory integration towards perceptual decision formation, as well as the modulatory impact of the decision modulators in question, can contribute to a theoretical reconciliation that multisensory integrative benefits are not ubiquitous to specific spatiotemporal neural dynamics nor cognitive processes
    corecore