2,772 research outputs found

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    How the War in Ukraine Affects Food Security

    Get PDF
    The war in Ukraine has caused severe disruption to national and worldwide food supplies. Ukraine is a major exporter of wheat, maize, and oilseeds, staples that are now suffering a war-triggered supply risk. This paper describes the background of the problem and illustrates current trends by outlining some of the measures that may be deployed to mitigate the conflictโ€™s impacts on achieving SDG 2 (Zero hunger), especially focusing on ending hunger, achieving food security, improving nutrition, and promoting sustainable agriculture. In order to understand the main research strands in the literature that are related to food security in the context of wars, the authors adopted a bibliometric literature review based on the co-occurrence of terms technique, conducted with 631 peer-reviewed documents extracted from the Scopus database. To complement the bibliometric assessment, ten case studies were selected to narrow down the food insecurity aspects caused by the war in Ukraine. The co-occurrence analysis indicated four different thematic clusters. In the next stage, an assessment of the current situation on how war affects food security was carried out for each one of the clusters, and the reasons and possible solutions to food security were identified. Policy recommendations and theoretical implications for food security in the conflict context in Ukraine were also addressed

    The role of social capital and community ties in rebuilding livelihoods of displaced households in peri-urban areas of Ho Chi Minh City

    Get PDF
    This research explores livelihood issues that emerged from the process of urban development in Ho Chi Minh City, Vietnam. To understand the key determinants and consequences of livelihood strategies, we modified the sustainable livelihoods framework to guide analysis of data from a survey of 242 households interviewed in August 2013. Indicators related to social capital, livelihood resources and economic activities, and the community field were used to assess possible effects and associations with livelihood outcomes of resettled households. The results indicate that households with more extensive social networks have higher level of employment and income and less significant economic shocks. For government-supported households, the perceived affordability of basic needs was associated with higher household income, and food security was associated with higher value of household assets. For self-resettled households, the perceived affordability of basic needs was associated with higher value of household assets, and food security was associated with both higher household income and asset value. Regarding the community field indicators, improved economic conditions and well-being were both associated with higher levels of community participation and higher perceived quality of neighboring among government-supported households. For self-resettled households, length of residence emerged as a significant predictor of improved economic conditions and well-being. Thus, building community social ties with family, friends, and organizations is an essential part of successful household economic and social development strategies

    Marketing in the public sectorโ€”benefits and barriers: a bibliometric study from 1931 to 2020

    Get PDF
    The global economy has brought economic and social changes that have led organizations to extend their vision beyond consumer and business markets. Particularly, in the marketing of public sector (MPS), the extant theoretical foundations require more comprehensive investigations not only into the main topics researchers have looked into the past, but also into the new challenges they will face in the future. Thus, the purpose of this study is to provide a thorough a bibliometric overview of the theoretical framework and to identify benefits and barriers of marketing in the public sector. We provide an overview of the theoretical framework and identify the benefits and barriers of marketing in the public sector through a bibliometric study. To achieve this objective, a systematic literature review was conducted of 3926 articles from 1931 to 2020. The results allowed the identification of four main theoretical clusters: educational, public health, social economics and urban politics. It also offered benefits and barriers in the context of MPS. Conclusions and implications to the academia and managers are drawn. Future research opportunities are also provided.info:eu-repo/semantics/publishedVersio

    Focusing on the case analysis of advanced smart ports

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. Lee, Soo-young.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐœ๋…๊ณผ ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ์ฐฐํ•ด ๋ณด๊ณ , ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๋‹ค๊ฐ์ ์ธ ๋ถ„์„์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋‚˜๋ผ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ์—์„œ ํ™•๋ฆฝ๋œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ํ‰๊ฐ€ ์ฒ™๋„์˜ 4๊ฐ€์ง€ ์ธก๋ฉด, ์šด์˜์ธก๋ฉด(Operation), ํ™˜๊ฒฝ์ธก๋ฉด(Environment), ์—๋„ˆ์ง€ ์ธก๋ฉด(Energy), ๊ทธ๋ฆฌ๊ณ  ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด(Safety & Security)์˜ ๋ถ„์„ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๊ฐœ๋ฐœ๊ณผ ๋ฐœ์ „์— ๊ฐ€์žฅ ์•ž์„  ๋„ค๋œ๋ž€๋“œ์˜ ๋กœํ…Œ๋ฅด๋‹ด ํ•ญ๋งŒ๊ณผ ๋…์ผ์˜ ํ•จ๋ถ€๋ฅดํฌ ํ•ญ๋งŒ์˜ ์ •์ฑ… ๋ถ„์„์„ ์‹œ๋„ํ•˜์˜€๋‹ค. A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ์Šค๋งˆํŠธํ™” ์ง€์ˆ˜๋ฅผ ๋ฐœ์ „์‹œ์ผœ ๊ฐ ํ•ญ๋งŒ์˜ ์Šค๋งˆํŠธํ™” ์ •๋„๋ฅผ ๊ฐ€๋Š ํ•˜๊ณ  ์žฅ๋‹จ์ ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ์ทจ์ง€์—์„œ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ํ™œ์šฉํ•˜๋˜ ์งˆ์ ์ธ ๋ถ„์„์œผ๋กœ ์ ‘๊ทผํ•˜์—ฌ ์ •์ฑ… ํ™œ์šฉ ์ธก๋ฉด์—์„œ ์œ ์šฉํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๋Š”๋ฐ ๋ชฉ์ ์„ ๋‘์—ˆ๋‹ค. ๋˜ํ•œ ๋™์ผํ•œ ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฌ ๋ถ€์‚ฐ ์ปจํ…Œ์ด๋„ˆ ํ„ฐ๋ฏธ๋„์˜ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๊ณ„ํš์„ ๋ถ„์„ํ•˜๊ณ  ๋ฐœ์ „๋ฐฉํ–ฅ ์„ค์ •์— ๋„์›€์„ ์ฃผ๊ณ ์ž ํ•˜์˜€๋‹ค. ์šฐ์„  ์šด์˜ ์ธก๋ฉด์—์„œ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ๋“ค์€ ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ ์ „ ๊ณผ์ •์˜ ์™„์ „ ์ž๋™ํ™”๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , ์ด์— ๊ทธ์น˜์ง€ ์•Š๊ณ  ํ•ญ๋งŒ ๋‚ด ๋ชจ๋“  ๊ณผ์ •์„ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ์ฒจ๋‹จ ๊ธฐ์ˆ ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌด์ธํ™”์™€ ํšจ์œจํ™”๋ฅผ ์ถ”๊ตฌํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ A.I, IoT, ๋ธ”๋ก์ฒด์ธ ๋“ฑ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์„ ์ ๊ทน ํ™œ์šฉํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ „์ฒด์ ์ธ ๋ชจ์Šต์„ ๋ณ€ํ™”์‹œ์ผœ ๊ฐ€๊ณ  ์žˆ์œผ๋ฉฐ, ๋น„์šฉ์ ˆ๊ฐ๊ณผ ์ƒ์‚ฐ์„ฑ ์ฆ๋Œ€ ๋“ฑ ์ง์ ‘์ ์ธ ํšจ๊ณผ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ธ€๋กœ๋ฒŒ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ๊ตฌ์‹ฌ์ ์œผ๋กœ์จ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐœ์ „์‹œ์ผœ ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ ํ–ฅ์ƒ์€ ๋ฌผ๋ก  ๋ฌผ๋ฅ˜ ํฌํ„ธ๋กœ์จ์˜ ์ง€์œ„๋ฅผ ์„ ์ ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฝ์Ÿ๋„ ์‹ฌํ™”๋˜๊ณ  ์žˆ๋‹ค. ํ™˜๊ฒฝ ์ธก๋ฉด์—์„œ๋Š” ์นœํ™˜๊ฒฝ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ์€ ๋” ์ด์ƒ ๋„์‹œ์™€ ๋ถ„๋ฆฌ๋˜์–ด ์กด์žฌํ•˜๋Š” ๋…๋ฆฝ๋œ ์˜์—ญ์ด ์•„๋‹Œ, ์ธ์ ‘ ๋„์‹œ ์ฃผ๋ฏผ๋“ค๊ณผ ์ƒํ˜ธ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ๋ฐœ์ „ํ•˜๋Š” ํ˜ธํ˜œ์ ์ธ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค๋Š”๋ฐ ๊ณต๊ฐ๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ทธ๋™์•ˆ ํ•ญ๋งŒ ํ™œ๋™์„ ํ†ตํ•ด ์•ผ๊ธฐ๋˜์—ˆ๋˜ ํ™˜๊ฒฝ ์˜ค์—ผ ๋ฌธ์ œ๋ฅผ ์ค„์ด๊ณ  ์ง€์—ญ์‚ฌํšŒ์— ๊ธฐ์—ฌํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๋“ค์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ „๋ ฅ์— ๊ธฐ๋ฐ˜ํ•œ ์นœํ™˜๊ฒฝ ํ•˜์—ญ์žฅ๋น„๋กœ ๋Œ€์ฒดํ•˜๊ณ , ์„ ๋ฐ•์˜ ์—ฐ๋ฃŒ๋ฅผ ์นœํ™˜๊ฒฝ ์—ฐ๋ฃŒ๋กœ ์ „ํ™˜ํ•˜๋Š” ๋…ธ๋ ฅ์ด ์ง„ํ–‰ ์ค‘์ด๋‹ค. ํ•ญ๋งŒ ๋‚ด ์œ ํœด๋ถ€์ง€๋ฅผ ํ™œ์šฉํ•ด ์‹ ์žฌ์ƒ์—๋„ˆ์ง€๋ฅผ ๋ฐœ์ „ํ•˜๊ณ  ์ธ๊ทผ ์ง€์—ญ์— ๊ณต๊ธ‰ํ•˜๋Š” ๋ฐฉ์•ˆ๊ณผ, ํ•ญ๋งŒ์˜ ํ™˜๊ฒฝ ๋ฌธ์ œ๋ฅผ IoT ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์‹œํ•˜๊ณ  ๊ณต์œ ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฐœ์ „์„ ์˜๋„ํ•˜๋ฉฐ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ง„์ „์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ž์ฒ˜ํ•˜๊ณ  ์žˆ๋‹ค. ์—๋„ˆ์ง€ ์ธก๋ฉด์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์ด ๋ฏธ๋ž˜ ์ˆ˜์†Œ ์‚ฌํšŒ์˜ ํ•ต์‹ฌ ๊ณต๊ธ‰ ๊ธฐ์ง€๊ฐ€ ๋  ์ „๋ง์ด๋‹ค. ํ•ด์ƒ ๋ฌผ๋ฅ˜์™€ ์œก์ƒ ๋ฌผ๋ฅ˜๊ฐ€ ๊ฒฐํ•ฉ๋˜๋Š” ๊ธฐ๋Šฅ์  ์ด์ ์„ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์†Œ์˜ ์ƒ์‚ฐ๊ณผ ์ €์žฅ, ๋ถ„๋ฐฐ ๋“ฑ ์ˆ˜์†Œ ๊ฒฝ์ œ์˜ ํ•ต์‹ฌ ์ธํ”„๋ผ๋ฅผ ํ•ญ๋งŒ ๋‚ด ๊ตฌ์ถ•ํ•˜๊ณ  ํ•ญ๋งŒ ๊ธฐ๋Šฅ๊ณผ์˜ ๊ฒฐํ•ฉ์„ ์‹œ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ ์ง„ ํ•ญ๋งŒ๋“ค์€ ๋Œ€๊ทœ๋ชจ ํŒŒ์ดํ”„ ๋ผ์ธ์„ ๊ฑด์„คํ•˜๋Š” ํ”„๋กœ์ ํŠธ๋“ค์„ ์ง„ํ–‰ํ•˜๋ฉฐ ๋ฏธ๋ž˜๋ฅผ ์ค€๋น„ํ•˜๊ณ  ์žˆ๋‹ค. ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด์—์„œ๋Š” ํ•ญ๋งŒ์ด ์ฒจ๋‹จ ๊ธฐ์ˆ  ํ™œ์šฉ์˜ ๊ฒฝ์—ฐ์žฅ์ด ๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๊ณต ๋ฐ ํ•ด์ƒ, ์ˆ˜์ค‘ ๋“œ๋ก  ๋“ฑ ์ฒจ๋‹จ ์žฅ๋น„๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋“œ๋„“์€ ํ•ญ๋งŒ์„ ๊ฐ€์ƒ ํ˜„์‹ค์„ธ๊ณ„์ธ ํŠธ์œˆ ํƒ€์›Œ์— ์ด์‹ํ•˜๊ณ  ์ธ๊ณต์ง€๋Šฅ์— ์˜ํ•œ ์‹ค์‹œ๊ฐ„ ๊ด€๋ฆฌ ๊ฐ๋…์ด ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ๊ตฌ์ถ•๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ์ž‘์—…์˜ ๋ฌด์ธํ™”๋Š” ์•ˆ์ „์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์‚ฌ๊ฐ ์ง€๋Œ€๊ฐ€ ์—†๋Š” ๊ด€๋ฆฌ ๊ฐ๋…๋„ ๊ฐ€๋Šฅํ•ด์ ธ ํ•ญ๋งŒ ๋‚ด ์žฌ๋‚œ์‚ฌ๊ณ ์™€ ๋ฐ€์ž…๊ตญ ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์—์„œ ์ถ”๊ตฌํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฐฉํ–ฅ์€ ์„ธ๊ณ„ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ํฌํ„ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ ์ด๋ฅผ ์œ„ํ•ด ํ•ญ๋งŒ์˜ ์—ญํ• ์€ ๊ธฐ์กด์˜ ์ง€์—ญ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด ๊ธฐ๋Šฅ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํŒฝ์ฐฝํ•˜๊ณ  ์žˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์ผ์ฐ์ด ์ž๋™ํ™” ํ•ญ๋งŒ์˜ ๋ฐœ์ „์„ ์‹œ์ž‘ํ•œ ์œ ๋Ÿฝ ํ•ญ๋งŒ์€ ๋ฌผ๋ก  ์ธ๊ทผ ์ค‘๊ตญ๊ณผ ์‹ฑ๊ฐ€ํฌ๋ฅด์˜ ์ž๋™ํ™” ํ•ญ๋งŒ๊ณผ ๋น„๊ตํ•ด๋„ ๋’ค์ณ์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ด๋‹ค. ์ด๋ฅผ ๋งŒํšŒํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์•™ ์ •๋ถ€ ์ฐจ์›์—์„œ ์Šค๋งˆํŠธ ํ•ด์ƒ๋ฌผ๋ฅ˜์ฒด๊ณ„ ๊ตฌ์ถ• ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  2030๋…„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜์„ ๊ณ„ํšํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๊ณ„ํš์€ ์ „๋ฐ˜์ ์ธ ๋ฌผ๋ฅ˜ ๊ธฐ๋Šฅ ์ค‘ ํ•˜์œ„ ์š”์†Œ๋กœ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ธ์‹ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ž๋™ํ™” ํ•ญ๋งŒ์ด๋ผ๋Š” ์ข์€ ์ธก๋ฉด์—์„œ๋งŒ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ, ํ•ญ๋งŒ์˜ ๋ฏธ๋ž˜ ์ž ์žฌ๋ ฅ์— ๋Œ€ํ•œ ์„ ์ง„ ํ•ญ๋งŒ๋“ค์˜ ์ธ์‹๊ณผ๋Š” ํฐ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜๊ฒ ๋‹ค. ๋˜ํ•œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ฐœ์ „ ๊ณผ์ •์—์„œ ๋ฏผ๊ฐ„ ๊ธฐ์—…๊ณผ ํ•ญ๋งŒ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์ด ์ ๊ทน์ ์œผ๋กœ ์ฐธ์—ฌํ•˜๊ณ  ํ˜‘๋ ฅํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ชจ์Šต์„ ๊ทธ๋ ค๊ฐ€๋Š” ์„ ์ง„ ํ•ญ๋งŒ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์—ฌ์ „ํžˆ ์ •๋ถ€ ์ฃผ๋„ ๋ฐœ์ „ ๋ฐฉ์‹์„ ๊ณ ์ˆ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ€์žฅ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ํ•ด์•ผ ํ•  ํ•ญ๋งŒ ๊ณต์‚ฌ๋“ค์˜ ์—ญํ• ์ด ๋ฏธ๋ฏธํ•œ ๊ฒƒ์€ ํ•œ๊ณ„๋ผ๊ณ  ํ•˜๊ฒ ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ–ฅํ›„ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ดํ–‰์˜๋ฌด ๋“ฑ ํ™˜๊ฒฝ์ ์ธ ๋ฌธ์ œ์™€ ์นœํ™˜๊ฒฝ ์—๋„ˆ์ง€๋กœ์˜ ์ „ํ™˜์ด ์ค‘์š”์‹œ๋˜๊ณ  ์žˆ๋Š” ์‹œ์ ์—์„œ ์ด์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ์ „ํ™˜๊ณ„ํš์ด๋‚˜ ํ•ญ๋งŒ์˜ ์ƒˆ๋กœ์šด ์—ญํ• ์— ๋Œ€ํ•œ ๊ณ ๋ฏผ์ด ๋ถ€์กฑํ•œ ๊ฒƒ๋„ ๋น„๊ต ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์œ ๋Ÿฝ์˜ ํ•ญ๋งŒ๋“ค๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ˆ˜์†Œ ๊ฒฝ์ œ๋กœ์˜ ์ดํ–‰์— ์žˆ์–ด ํ•ญ๋งŒ์˜ ํ•ต์‹ฌ์  ์—ญํ• ์ด ๋น ์ ธ ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ์ธ์‹ ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ์ด์— ๋Œ€ํ•œ ์ •์ฑ…์  ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This study examines the relationship between the concept of smart ports and port competitiveness, which have recently been in the spotlight, and attempts to derive implications for Korea's smart port development direction through various analysis of advanced smart ports. To this end, this research attempted to analyze the policies of Rotterdam Port in the Netherlands and Hamburg Port in Germany, which are most advanced in smart port development and development, using the analysis framework of four smart port evaluation measures established in A. Molavi et al. In terms of operation, advanced smart ports achieved complete automation of the entire loading and unloading process in the port, and not only this, but all processes in the port were pursued for unmanned and efficient use of the advanced technologies of the 4th Industrial Revolution. In terms of the environment, interest in eco-friendly ports is increasing. There is a consensus that ports should no longer be independent areas that exist separately from cities, but should establish reciprocal relationships that interact and develop with residents of neighboring cities. In terms of energy, smart ports are expected to become a key supply base for the future hydrogen society. Taking advantage of the functional advantages of combining marine logistics and land logistics, the core infrastructure of the hydrogen economy, such as hydrogen production, storage, and distribution, is built in ports and attempted to combine them with port functions. In terms of safety and security, ports are becoming a competition for the use of advanced technology. Using high-tech equipment such as aviation, sea, and underwater drones, a system that allows real-time management and supervision by artificial intelligence is being established by transplanting a wide port into a virtual reality twin tower. In the case of Korea, the reality is that it is lagging behind not only European ports that started the development of automated ports early but also automated ports in neighboring China and Singapore. To make up for this, the central government has established a "smart maritime logistics system construction strategy" and plans to operate smart ports in earnest in 2030. However, this plan recognizes smart ports as a sub-factor of the overall logistics function, which only looks at smart ports in the narrow aspect of automated ports, which is very different from advanced ports' perceptions of the future potential of ports. In addition, unlike advanced ports in which private companies and port stakeholders actively participate and cooperate in the development of smart ports, Korea still adheres to the government-led development method, and the role of port authorities to play the most leading role is insignificant. In addition, at a time when environmental problems such as the obligation to transition to a carbon-neutral society in the future and the transition to eco-friendly energy are becoming important, this comparative study was able to derive the lack of concern about the fundamental transition plan or the new role of ports. Unlike ports in Europe, the absence of a key role in the transition to a hydrogen economy seems to stem from a lack of awareness of smart ports, and policy improvements are needed.Chapter 1. Introduction ๏ผ‘ 1.1. Study Background ๏ผ‘ 1.2. Scope and Method of Study ๏ผ’ Chapter 2. Theoretical Discussions and Prior Study Reviews ๏ผ” 2.1. Theoretical discussion of smart ports ๏ผ” 2.1.1. Significance of Ports ๏ผ” 2.1.2. Development of Ports ๏ผ• 2.1.3. Prior Study of Smart Ports ๏ผ– 2.1.4. Smart Port Index (SPI) ๏ผ™ 2.2. Theoretical discussion of port competitiveness ๏ผ‘๏ผ‘ 2.2.1 The Concept of Port Competitiveness ๏ผ‘๏ผ‘ 2.2.2. A Prior Study on Port Competitiveness ๏ผ‘๏ผ“ 2.2.3. Port Competitiveness and Performance Evaluation ๏ผ‘๏ผ• 2.3. The relationship between smart ports and port competitiveness ๏ผ‘๏ผ— 2.3.1. Smart Port Components and Port Competitiveness ๏ผ‘๏ผ— 2.3.2. Trends in Smart Port Development ๏ผ’๏ผ“ 2.4. Results of previous study review ๏ผ’๏ผ— 3.1. Analysis Targets and Data ๏ผ’๏ผ˜ 3.2. Analytical Model ๏ผ’๏ผ™ Chapter 3. Case Analysis ๏ผ“๏ผ’ 3.1. Port of Rotterdam (Netherlands) ๏ผ“๏ผ’ 3.1.1. Background and Status of Smart Port Introduction ๏ผ“๏ผ’ 3.1.2. Operational Aspects of Smart Port ๏ผ“๏ผ” 3.1.3. Environmental Aspects of Smart Port ๏ผ“๏ผ— 3.1.4. Energy Aspects of Smart Port ๏ผ“๏ผ™ 3.1.5. Safety and Security Aspects of Smart Port ๏ผ”๏ผ‘ 3.1.6. Implications ๏ผ”๏ผ“ 3.2. Port of Hamburg (Germany) ๏ผ”๏ผ• 3.2.1. Background and Status of Smart Port Introduction ๏ผ”๏ผ• 3.2.2. Operational Aspects of Smart Port ๏ผ”๏ผ˜ 3.2.3. Environmental Aspects of Smart Port ๏ผ•๏ผ‘ 3.2.4. Energy Aspects of Smart Port ๏ผ•๏ผ“ 3.2.5. Safety and Security Aspects of Smart Port ๏ผ•๏ผ• 3.2.5. Implications ๏ผ•๏ผ– 3.3. Port of Busan (S.Korea) ๏ผ•๏ผ˜ 3.3.1. Background and Status of Smart Port Introduction ๏ผ•๏ผ˜ 3.3.2. Operational Aspects of Smart Port ๏ผ–๏ผ 3.3.3. Environmental Aspects of Smart Port ๏ผ–๏ผ’ 3.3.4. Energy Aspects of Smart Port ๏ผ–๏ผ“ 3.3.5. Safety and Security Aspects of Smart Port ๏ผ–๏ผ” Chapter 4. Conclusion ๏ผ–๏ผ– 4.1. Results of Research ๏ผ–๏ผ– 4.2. Policy Implications ๏ผ—๏ผ 4.3. Limitations of Research ๏ผ—๏ผ” Bibliography ๏ผ—๏ผ– Abstract in Korean ๏ผ˜๏ผ’์„

    Characterizing the polycentric spatial structure of Beijing Metropolitan Region using carpooling big data

    Get PDF
    Polycentric metropolitan regions are a high-level urbanization form characterized with dynamic layout, fuzzy boundary and various human activity performances. Owing to the complexity of polycentricity, it can be difficult to understand their spatial structure characteristics merely based on conventional survey data and method. This poses a challenge for authorities wishing to make effective urban land use and transport policies. Fortunately, the presence and availability of big data provides an opportunity for scholars to explore the complex metropolitan spatial structures, but there are still some research limitations in terms of data use and processing, unit scale, and method. To address these limitations, we proposed a three-step method to apply the carpooling big data in metropolitan analysis including: first, locating the metropolitan sub-centers; second, delimiting the metropolitan sphere; third, measuring the performance of polycentric structure. The developed method was tested in Beijing Metropolitan Region and the results show that the polycentric metropolitan region represents a hierarchical regional center system: one primary center interacting with seven surrounding secondary centers. These metropolitan centers have a strong attraction, which results in the continuous expansion beyond the administrative boundary to radiate more adjacent jurisdictions. Furthermore, the heterogeneity of human activity performance and role for each regional center is remarkable. It is necessary to consider the specific role of each sub-center when making metropolitan transport and land use policies. Compared with previous studies, the proposed method has the advantages of being more reliable, accurate and comprehensive in characterizing the polycentric spatial structure. The application of carpooling big data and the proposed method would provide a novel perspective for research on the other metropolitan regions

    Perspectives on Dual-Purpose Smart Water Power Infrastructures for Households in Arid Regions

    Get PDF
    In hot arid climates, freshwater and power are produced simultaneously through seawater desalination since these regions receive little rainfall. This results in a unique urban water/power cycle that often faces sustainability and resilience challenges. Elsewhere, such challenges have been addressed through smart grid technologies. This chapter explores opportunities and initiatives for implementing smart grid technologies at household level for a case study in Qatar. A functional dual-purpose smart water/power nanogrid is developed. The nanogrid includes multiloop systems for on-site water recycling and on-site power generation based on sustainability concepts. A prototype dual-purpose GSM-based smart water/power nanogrid is assembled and tested in a laboratory. Results of case study implementation show that the proposed nanogrid can reduce energy and water consumptions at household level by 25 and 20%, respectively. Economic analysis shows that implementing the nanogrid at household level has a payback period of 10 years. Hence, larger-scale projects may improve investment paybacks. Extension of the nanogrid into a resilient communal microgrid and/or mesogrid is discussed based on the concept of energy semantics. The modularity of the nanogrid allows the design to be adapted for different scale applications. Perspectives on how the nanogrid can be expanded for large scale applications are outlined

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Unionโ€™s Cohesion Policy and Common Agricultural Policy Arguably, the concept of โ€˜the villageโ€™ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of โ€˜smart villageโ€™. It highlights in which ways โ€˜smart villageโ€™ is distinct from โ€˜smart cityโ€™. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.
    • โ€ฆ
    corecore