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ABSTRACT 

URBAN METABOLISM AND LAND USE MODELING FOR URBAN DESIGNERS 
AND PLANNERS: 

A LAND USE MODEL FOR  
THE INTEGRATED URBAN METABOLISM ANALYSIS TOOL 

 
SEPTEMBER 2016 

 
MOHAMAD FARZINMOGHADAM 

 
B.S., SHAHID BEHESHTI UNIVERSITY 

 
M.ARCH, TARBIAT MODARES UNIVERSITY 

 
M.ARCH, UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Elisabeth M. Hamin  

  
Predicting the resource consumption in the built environment and its associated 

environmental consequences (urban metabolism analysis) is one of the core challenges facing 

policy-makers and planners seeking to increase the sustainability of urban areas. There is a 

critical need for a single integrated framework to analyze the consequences of urban growth 

and eventually predict the impacts of sustainable policies on the urbanscape.  

This dissertation presents the development of an Integrated Urban Metabolism 

Analysis Tool (IUMAT) – an analytical framework that simulates urban metabolism by 

integrating urban subsystems in a single comprehensive computational environment. It 

reviews the existing literature on urban sustainability, urban metabolism, as well as 

introducing the general framework for IUMAT. IUMAT uses three separate models for 

quantifying environmental impacts of land-use transition, consumption of resources, and 

transportation. This work outlines the development of IUMAT Land-Use Model that uses 

Remote Sensing, GIS, and Artificial Neural Networks (ANNs) to predict land use change 

patterns. By using Density-Based Spatial Clustering and normal equations, this dissertation 
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introduces a method for generating building-form variables from Light Detection and 

Ranging (LIDAR) data, which can be used as a new determinant factor in land-use change 

modeling. The proposed Land-use Model, within IUMAT or other analytical models, can be 

useful to local planning officials in understanding the complexity of land-use change and 

developing enhanced land-use policies. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Sustainable Cities 

In the next decade and a half, a majority of the world’s population will be living in 

urban areas, and cities in developing countries are expected to have the fastest growth (UN 

Population Fund, 2007). Cities are major consumers of the world’s primary energy and 

produce 71 percent of greenhouse gas (GHG) emissions (International Energy Agency, 

2008). After World War II, cities faced critical social, economic, and environmental 

problems due to rapid urban renewal and expansion. Growing public awareness about 

economic, social, and environmental crises in US urban and suburban areas (Babcock, 1966) 

precipitated the establishment of the National Environmental Act (NEPA 1970) mandating 

all federal agencies and major projects funded by the federal government to prepare 

environmental assessments (Fischer, 2003). In 1987, the United Nations World Commission 

on Environment and Development published a report that provided a now widely-accepted 

definition of “sustainable development”. The definition of sustainable development is to 

respond to current human needs without compromising the ability of future generations to 

meet their own needs (Butlin, 1989). The UN also published Agenda 21 (a UN Action Plan) 

as an outcome of the 1992 UN summit in Rio, Brazil, outlining strategies for sustainable 

development and growth (Doyle, 1998). Since then, creating sustainable communities, 

reducing resource consumption, and minimizing negative environmental impacts have 

become a key goal of the urban planning and design community. 

Agenda 21 outlines strategies for sustainable development, but does not provide a 

direct application for cities in particular (Doyle, 1998; Newman, 1999). Since ecological 

footprints of cities extend far from their territories, to create a truly sustainable ecosystem, 
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the concept of sustainable development has to be integrated into different scales and sectors 

of urban and suburban areas (Lenzen & Peters, 2010; Næss, 2001).  

Sustaining human life means creating a balance between humans and nature while 

also satisfying the economic and social needs of current and future generations (Fiksel & 

Frederickson, 2012). The balance between society, economy, and environment (three aspects 

of sustainable development), is necessary for the creation of this harmony. Scholars have 

investigated design methods and urban policies to identify key parameters of this balance. 

Wheeler & Beatley (2004) proposed land-use, urban design, transportation, economic 

development, environmental justice, social equity, resource use, urban restoration, and green 

architecture as critical dimensions for sustainable urban development.  

In many cases, the complexity and intertwined aspect of urban systems are reflected 

in solutions developed by researchers. For example to address commuter based 

transportation-driven air pollution, strategies ranging from improving public transportation to 

mixed land-use regulations are introduced. Some scholars like Cervero (2004) propose 

flexible suggestions for promoting sustainable development. Cervero suggests a concept of 

“Adaptive cities” or “adaptive transit” for encouraging the public to use public 

transportation. In his proposal, planners either control urban development by more restricted 

land-use regulation to create an adaptive urbanscapes within an existing transit system (light 

railway and subway), or they implement combined transportation systems that are suitable 

for low-density development. Other researchers such as Gehl (2014) and Pucher et al. (1999) 

promote cheap and pollution-free alternatives for the same planning problem. Creating 

walkable and bike-friendly urbanscapes requires implementing strategies that favor 

compactness, density, and pedestrian infrastructure as well as modifying social behaviors and 

norms (Pucher et al., 1999).  
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There are two major driving forces behind creating a balance between environment 

and society. One is to reduce resource consumption while the other is focused on social-

environmental equality. The first effort falls within the context of urban metabolism: to 

quantify flows of energy, natural resources, and waste into and out of cities in order to 

advance policies for sustainable urban development. Some scholars like Calthorpe (1993), 

suggested redefining urbanscape by increasing density in residential areas, improving 

network connectivity, protecting open space, and promoting Transit-Oriented Development 

to conserve energy and water. One alternative for resources conservation is controlling urban 

sprawl by promoting smart growth and regulating restrictive land-use policies. Infill 

development could encourage construction within municipal boundaries instead of 

urbanization on green land outside cities. There are many advantages to this approach such as 

infrastructure cost reductions, improvement of density, and diversification (Wheeler & 

Beatley, 2004). Expanding energy efficiency building codes and decreasing the cost of 

renewables may reduce urban energy usage. And to address limited natural resources, 

sustainable development policies promote recycling and re-manufacturing to replace a ‘one-

way loop’ with a ‘closed resource loop cycle’ to decrease landfills. In addition, changing 

social behavior is another key factor in this regard (Girardet, 2004). 

The social-environmental equality movement surfaced in the 1980s, when the idea of 

environmental justice emerged in response to concerns about the fairness of decision process 

in selections of hazardous sites. Since then, the concept of social-environmental equality 

expanded, ranging from equitable public places to diversified urban policies. Social-

environmental equality includes all citizens regardless of gender or race in the decision-

making process of developing and implementing fair policies and regulations. Organizing, 

educating, and empowering citizens especially by grassroots organizations became part of the 
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urban sustainability movement to combat social segregation, racial tensions, crime, 

congestion, and poor environmental quality (Bullard & Johnson, 2000). 

Balancing between economic systems and other aspects of sustainable urban 

development is a challenge. Most economic development approaches do not account for 

environmental and social factors. The long-term cost of environmental pollution, excessive 

use of resources, and destruction of the natural environment are absent from most 

calculations of economic growth (Wheeler & Beatley, 2004). While some scholars (e.g. 

Hawken et al., 2013; Pearce & Turner, 1990) suggest changing the whole economic structure 

as a solution, others (e.g., Roseland & Soots, 2007; Shuman, 1998) propose solutions to 

replace the global economy with local economies and self-reliant communities. Pearce & 

Turner (1990) developed the concept of environmental economics to integrate these concerns 

in financial analysis, and Hawken et al., (2013) promoted changing incentives and subsidies 

to reward sustainable business practices. 

Many parameters in urban systems are complexly intertwined. Most of the existing 

urban problems are outcomes of unbalanced and inclined decisions toward one or multiple 

variables in urban development such as income inequality in economic development (Trotter, 

2004), race specific public policy (Wilson, 2012), social segregation in housing policy 

(Nelson et al., 2004; Keating, 2000; Sugrue, 2014), displacement of poor minorities in urban 

renewal (Teitz, 1996), environmental impacts of urban developments (Johnson, 2001), and 

social injustice in environmental regulation (Nabalamba & Warriner, 1998). Urban planning 

decisions at different scales influence each other, and success or failure of a decision or a 

policy often depends on the participation of a wide range of stakeholders in cities (Frey, 

2003; Wheeler & Beatley, 2004). 

One of the critical concerns of the urban planners and designers is to move toward 

creating sustainable communities by minimizing resource consumption and negative 
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environmental impacts. City counselors have implemented policies from neo-traditional 

development, compact city, urban containment, and eco-city principles to manage the 

environmental consequences of urban development. Although these efforts have had some 

positive impact on the urban environment, there are limitations to the ways that micro-scale 

environmental data can be used to measure and evaluate the social and economic parameters 

of large-scale sustainability indicators. Lack of empirical research evaluating the 

effectiveness of urban policy (Bengston et al., 2004), and the inadequacy of advanced 

methodological approaches for complex urban systems (Ellis, 2002; Gordon & Richardson, 

1997) have given rise to mixed results about the effectiveness of these policies (Ellis, 2002; 

S. Handy, 2005; Jabareen, 2006). Subsequently, the consequences of sustainable policy 

efforts on urban environments are neither clear nor straightforward (Tanguay et al., 2010).  

Planners need to consider interrelated social, economic, and environmental factors to 

formulate appropriate responses to increased demand for resources, growth in energy and 

material intensive industries, demographic transitions, urbanization and social disparities, and 

loss of habitat in rapidly expanding cities (Lehmann 2011). Implementing a reliable urban 

sustainability analysis tool that can properly address the environmental impacts of urban 

growth and development will be crucial in the following decades.  

1.2 Sustainable Urban Form   

In 2003, Frey linked the well-established planning goals of the ‘good city’, to 

sustainable development. The ‘good city’ provides necessities for urban life including 

housing, infrastructure, accessibility and employment in a safe, secure, aesthetically pleasing 

physical environment. A good city is a place free from crime, pollution, noise, and accidents. 

It has a sense of place, appropriate image, good reputation, and prestige for residences. Under 

a holistic approach to urban design and planning, even if all social, economic and 
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environmental policies and decisions work together, it is not possible to have a good city 

unless we consider urban form as a key parameter. There are many unsolved concerns about 

the relation between urban form and sustainability, however, without damaging natural and 

cultural resources, urban form can easily be adapted well to the requirements of change and 

growth (Okata & Murayama, 2011). The relation between urban form and sustainability of 

cities can be categorized into three sections: formulating indices for quantifying urban forms, 

investigating the association between urban forms and environmental/social/economic 

impacts, and exploring an optimum urban form in terms of environmental impacts. 

Research on the development of an urban form index grew out of studies on 

formulating urban sprawl, as a reflection of public concern about racial segregation, resource 

consumption, and environmental pollution that are typically associated with urban sprawl in 

the United States. Sprawl is defined differently ranging from low-density development or 

separation of land-uses to automobile dependency. Lopez and Hynes (2003) defined an urban 

sprawl index in metropolitan areas by calculating the percentage of total population in high-

density versus low-density census tracks. Sutton (2003) introduced a measurable urban 

sprawl index as a simple regression model between the natural logarithm of urban population 

and area to fairly compare Urban Sprawl in different districts. In 2003, Ewing et al. included 

other variables like residential density, land-use mix, concentration degree of activities, and 

street accessibility in a multi-dimensional sprawl index. This sprawl index is used as four 

dependent variables of travel and transportation for measuring average vehicles per 

household, percentage of commuting by public transportation, average of work-travel time, 

and walking duration.  

In addition to urban sprawl, the degree of shape irregularity is another feature in 

quantifying urban form that shows the relation between the urban spatial pattern and 

ecological processes. The irregularity of shape is integrated into a shape complexity index by 
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calculating a fractal ratio of perimeter to area (Huang et al., 2007). This index can be 

combined with urban continuity that represents the degree of fragmentation among patches in 

an urbanscape measured as a ratio of the main contiguous to total built-up areas (Bechle et 

al., 2011). Other indices like compactness index, centrality (average distance of parts to city 

center), population density, open space ratio are also critical in the urban form analysis 

(Huang et al., 2007). In a comprehensive study for formulating urban form, Hamidi et al., 

(2015) redefined and validated the urban sprawl index (Ewing et al., 2003) and compactness 

by using principal component analysis. In that study, socio-economic parameters with urban 

form indices were explored in different categories such as land-use mix, development 

density, and activity centering. The activity centering variable indicates the decentralization 

of the population and associated activities. Handy and Clifton (2001) measured neighborhood 

accessibility in the district and urban scale by calculating weighted distributions of different 

activities based on distance, time, and cost. 

For monitoring and assessing the environmental consequence of urbanization, 

quantifying the spatial pattern of urban form is essential. Urban planners usually employ 

urban form indices such as urban sprawl and degree of fragmentation in formulating different 

sustainable strategies. Most studies on the relation between urban forms and sustainability 

focus on public transportation, travel behavior, accessibility, energy consumption, lifecycle 

analysis, and ecological assessments. Among them, finding the relation between 

transportation and land-use pattern or urban form is common. Cervero and Gorham (2009) 

and Friedman et al. (1994) explore resident travel patterns by comparing different groups like 

auto-dependent versus pedestrian friendly neighborhoods, or suburban versus urban districts. 

The oversimplification of urban form parameters, ignoring control variables, and the 

multicollinearity between variables affects the validity of these studies. Other socioeconomic 

factors were added to the urban form indices in optimizing urban form and transportation 



 
 

 
8 

pattern. In 2006, Newman and Kenworthy investigated the relation between urban population 

and automobile density and defined the minimum density (population and employment) that 

would justify public transportation and amenities. Despite using sound empirical 

methodologies, that study ignored control variables such as environmental, and other urban 

form parameters. 

In 2001, Ewing and Cervero found that travel behavior is a function of the built 

environment and the socio-economic characteristics of an urban area. However, the 

significance of this relation relies on different parameters. The study demonstrated that urban 

design features such as skylines, building facades, open space, and other micro-scale 

parameters have minimal impact on primary trips (home to work or home to others) but 

affect secondary trips within an activity district. The general assumption of Ewing and 

Cervero (2001) study is that urban design is simply focused on small-scale and aesthetic 

interventions. Scholars like Madanipour (1997) have a different perspective about the scale 

and scope of urban design. If certain urban features individually affect the travel behavior, it 

is probable that multiple variables collectively have different impacts on travel patterns. For 

example, improving sidewalks could improve walkability and accessibility of local roads, but 

have no impact on regional transit patterns. Creating composite parameters may be helpful in 

this respect. Cambridge Systematics (1994) combined twenty independent land-use and 

urban design variables into five principal components such as mixed land-use, availability of 

convenience services, accessibility of services, public safety, and aesthetically pleasing 

environment. On the other hand, most scholars believe single regression modeling is not 

enough for capturing the complex interactions between urban form and travel behavior. For 

example, in contrast to Ewing and Cervero (2001), Chao and Qing, (2011) suggest that urban 

form has no direct influence over VMT or transportation energy consumption. It indirectly 

affects the householder’s behavior like the type of car they purchase. 
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Urban design impacts energy use in other ways as well. Green urban infrastructure 

promotes healthy ecosystems, clean air, recreation, urban cohesiveness by moderating local 

climate, and preserving natural environment (Alberti, 2000). Replacing the natural 

environment with built forms creates more constructed surfaces that absorb more solar 

radiation and reduce natural cooling effects such as evapotranspiration and tree shading. 

Transportation and building systems also generate more waste heat and increase the urban 

heat island index. Ewing and Rong (2008) propose a framework for understanding the 

relation between urban form and residential energy consumption by using the urban sprawl 

index introduced by Ewing et al., 2003. This study introduces housing choices and urban heat 

island effect (local temperature) as mediators for determining the association between urban 

form indices and residential energy use. Norman et al. (2006) investigate the relationship 

between urban density and energy use with GHG emissions by implementing Life Cycle 

Analysis (LCA) method. Despite oversimplification and many subjective assumptions about 

urban systems, their study shows low-density developments are more energy and GHG 

emissions intensive compared to high-density districts. It also shows that defining an 

appropriate unit of analysis can affect the conclusion in a study. For example, by changing 

the unit from GHG per square meter to GHG per person, differences between low and high-

density districts increase significantly.  

Glaeser and Kahn (2010) combine transportation and householder energy use in GHG 

emissions and found a negative association between land-use regulation and GHG emissions. 

This study concluded that more restricted land-use regulations push new developments from 

denser areas like city centers to places, which produce more GHG emissions like suburban 

areas. On the other hand, Stone and Rodgers (2001) show that higher density development 

contributes more radiant heat energy to heat island emissions compared to lower density 

development. 
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Until the last decade, it was generally accepted that a compact city is an optimum 

sustainable urban form. Researchers are investigating the difference between compact and 

dispersed developments for improving urban form (Williams et al., 2000). Newton (2000) 

studied the environmental impacts of edge cities, corridor cities, and fringe cities as 

alternative scenarios for future urban growth. The concept of compact cities, as an ideal 

sustainable urban form, has received both credit and critique. Improving social interactions, 

safety, energy efficiency, accessibility and affordable public transportation are a few positive 

arguments for the compact city. However, as congestion escalates, high financial incentives 

for social controls and limited open spaces are some negative arguments against this concept 

(Ellis, 2002; Frey, 2003; Gordon & Richardson, 1997). Researchers also investigate other 

parameters such as density, concentration, dispersal, and mixed use to find an effective 

balance between urban form and sustainability (Williams et al., 2000, Buxton, 2000; Newton 

et al., 2000). 

There is no universal definition for sustainable urban form. Some researchers like 

Newman and Kenworthy (1989) suggest centralized urbanscape with higher density, while 

others like Owens and Rickaby (1992) list centralized and decentralized districts, as 

sustainable development patterns. In these examples, the primary difference is in selecting a 

homogenous monocentric pattern or polycentric development (Frey, 2003). Decentralized 

independent communities linked by public transportation are also suggested as another form 

of sustainable city structure (Haughton & Hunter, 2004). Frey (2003) studied four 

hypothetical alternatives (core, satellite, linear, and polycentric) of macro-structure for urban 

form with the same population and open space ratio. The study concluded that there is not a 

single urban form that fulfilled all sustainability criteria. Each model has advantages and 

disadvantages, depending on weighting and design priorities. Guy and Marvin (2000) argued 
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that instead of searching for one ideal sustainable urban form, multiple sustainable forms are 

needed based on diversified necessities and requirement of urban settlements. 

Jabareen (2006) summarized the concept of sustainable urban forms into seven 

design strategies: high density, mixed land-uses, compactness, social and cultural diversity, 

passive solar strategies, increasing green infrastructure, and sustainable transportation. These 

approaches are categorized into four types of sustainable development: neo-traditional 

development, urban containment, compact city, and eco-city (Jabareen, 2006). Most attempts 

to achieve sustainable cities are focused not only on urban form but also on other 

sustainability aspects such as ecological footprint (Holden, 2004), political dimension 

(Bulkeley & Betsill, 2005), urban agriculture (Smith & Nasr, 1992), and quality of life 

(McMahon, 2002). Different urban forms can offer diverse qualities of sustainability (Frey, 

2003, Burton et al., 2003), despite the fact that a single model of sustainable urban form is 

not applicable in all situations (Guy and Marvin, 2000), there are widely accepted principles 

of sustainable urban form that serve for evaluating different scenarios (Scheer & Scheer 

2002). The overall urban fabric is still considered a powerful connector of the integrated, 

interlinked, and complex sustainability variables, and has direct impact on the success or 

failure of sustainability policies. 

1.3 Sustainable Development Assessment in Cities 

UN Commission on Sustainable Development (CSD) in 1992 published a list of 

indicators covering environmental, social, economic and institutional aspects of sustainable 

development. Later, CSD created a hierarchical framework for governmental assessment that 

grouped sustainable indicators in fifteen main topics and 38 sub-topics (Singh et al., 2009). 

Now, it has become common for city officials, state, regional governments, and even small 

organizations to implement models for Sustainable Development Assessment. These models 
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can also be used in decision-making processes or as public participatory tools. Using simple 

and visual techniques to present the results of complex quantitative analysis is helpful for 

officials and public to comprehend complicated and intertwined phenomena (Warhurst, 

2002).  

One of the challenges in formulating a Sustainable Development Assessment model 

is defining individual sustainability indicators and composite indicators. In 2005, Krajnc and 

Glavič used a framework of sustainability indicators and grouped them into social, economic, 

and environmental categories. Indicators were normalized and weighted using an analytic 

hierarchy process. By summing up the values from sub-indices, a sustainable composite 

index can be obtained. Selection and combination of indicators depend on organizational 

values, which could be altered depending on goals and conclusion about sustainable 

development  (Singh et al., 2009).  For example, Circle of Sustainability by Global Compact 

Cities Programme recommends understanding urban social life across an integrated series of 

economical, ecological, political and cultural indicators, while in ecosystem-based indices, 

the sustainability process index measures the process of production from raw material to 

accommodation and installation in the biosphere (Narodoslawsky & Krotscheck, 1995). 

Urban Sustainability Index, City Development Index, Sustainable Cities Index, Compass 

Index of Sustainability are some comprehensive indices developed for implementation in 

cities. In 2002, Zhang developed 22 individual indicators for calculating Urban Sustainability 

Index. By using an analytical hierarchy process, these indicators are weighted for providing 

scores for three urban sustainability areas: the urban coordination, development capacity, and 

urban development potential. City Development Index designed by UN Human Settlements 

(HABITAT) is composed of five weighted indices: infrastructure, waste, education, health, 

and production index. Normalization value of City Development Index ranging between zero 

to hundred is used to rank cities based on development level (Böhringer & Jochem, 2007). 
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Other examples are designed to deal with specific programs (such as Sustainable Seattle for 

confronting public health crises). This method operates in a broader context by covering 

issues such as resources and population change, environment, economy, and education. 

Most sustainable assessment methods use the familiar triangular model with three 

vertices of environment, economy, and society for measuring a multitude of combinations of 

strategies and targets, in contrast, Ness et al. (2007) suggests a framework, which includes 

indicators, product-related assessment, and integrated assessment. Indicators are categorized 

into integrated (like ecological footprint and wellbeing index), regional flow indicators (like 

input and output analysis and substance flow analysis), and non-integrated variables. 

Product-related assessment consists of product/service related analysis for capturing energy 

flow of material or product and breaks into life cycle assessment, life cycle costing, material 

flow analysis, and energy flow analysis. And integrated assessment tool analyzes 

regional/local projects and policies based on system analysis approaches like Risk and 

Vulnerability Analysis. To account for uncertainties in the real world, Peterson et al. (2003) 

suggest contrasting hypothesis and scenario planning to explore the consequences of a 

decision. Combinations of scenario planning, incorporating qualitative, and quantitative 

information with sustainable assessment techniques can create a robust tool for measuring 

urban sustainability. 

Despite scientific approaches applied to sustainable assessment methods, there is still 

a high degree of subjectivity in initial assumptions (Singh et al., 2009). Tanguay et al. (2010) 

analyzed local indicators for measuring the sustainability in cities. Around two hundred 

indicators from 17 different studies are categorized into three aspects of sustainability 

development: environmental, economic, and social dimensions. Tanguay et al. concluded that 

only 15% of indicators are used more than four times in different studies. This study reveals 

the lack of consensus on definition and standardization of sustainability indicators. In 2009, 
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Singh et al. provided an overview of sustainable indices and methodological approaches 

implemented to measure sustainable development. The study concluded that there are 

subjective judgments in normalizing and weighting these indicators. And few attempts 

considered an integrated approach for measuring economic, social and environmental aspects 

for creating composite indicators. The process of constructing composite indicators is also 

important, since, poorly designed composite indicators could provide misleading guidelines. 

Other challenges like lack of information at local or district level, uncertainty in the quality of 

data, and inconsistency in classification could affect the comparability of results (Pannell, 

1997). Achieving sustainable communities cannot be feasible unless policies, decisions, and 

designs incorporating the complexity of urban systems are combined in a comprehensive 

approach. Sustainable assessment indicators are defined subjectively in relation to particular 

goals and organized in different analytical structures. For developing a robust methodology, 

it is necessary to define well-established goals towards sustainability that are selected by the 

appropriate communities of interest.  

1.4 Urban Metabolism 

In 1965, Wolman published a pioneering paper about the metabolism of cities. This 

research was a response to the shortage of water and pollution of air in American cities as a 

result of rapid urban growth and provides the fundamental basis for researchers working on 

the quantitative assessment of urban flows. In his analysis, Wolman calculates the overall 

flow of energy, material, water and waste in a hypothetical American urban district with a 

population over 1 million. This study mostly concentrated on sanitary water systems presents 

a simplified version of urban metabolism, and for the first time, Wolman introduced a holistic 

quantifying approach for capturing footprints of intertwined urban systems. Since then, 

researchers have explored urban metabolism analysis in real cities such as Tokyo (Hanya & 
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Ambe, 1976), Brussels (Duvigneaud & Denayeyer-De Smet, 1977), and Hong Kong 

(Newcombe et al., 1978). After four decades, the urban metabolism analysis is still prevalent 

in analyzing urban systems (Færge et al., 2001; Huang & Hsu, 2003; Zhang et al., 2009). 

 Urban metabolism is a metaphorical framework to study the interactions of natural 

and human systems in urban districts. Urban metabolism refers to “the sum total of the 

technical and socio-economic processes that occur in cities resulting in growth, production 

of energy and elimination of waste” (Kennedy et al., 2007, p.44). Urban metabolism analysis 

is a way of quantifying material, energy, water and waste flows in an urban area (Sahely et 

al., 2003).  In 2011, Kennedy et al. proposed four applications of urban metabolism: defining 

sustainability indicators, urban GHG accounting, developing dynamic mathematical models 

for policy analysis, and creating design tools.  

Qualitative and quantitative methods are two general approaches to urban metabolism 

analysis (Heynen et al., 2006 & Tarr, 2002). Qualitative method categorized under political 

science suggests urban political ecology to solve interconnected political, social, economic 

and ecological processes. Quantitative method considered urban metabolism under energy 

equivalents and mass flux (Material Flow Analysis) concerning flows of water, materials, and 

nutrients within urbanscape (e.g. Odum, 1983, Heynen et al., 2006 & Tarr, 2002). 

Implementing the thermodynamic approach in capturing ecology and ecological economics 

proposed by Odum (1996), and Brown & Ulgiati (1997) opened a new analytical framework 

for simulating interaction between natural and urban environments. In 1999, Newman 

furthered the idea of Urban Metabolism to “Extended Metabolism” by including livability 

factors in the analysis of the urban systems. The Extended Metabolism model employs 

additional indicators such as socioeconomic factors, health, and leisure to improve the quality 

of life in urbanscapes while reducing resource consumption and waste production. 
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Most of the empirical studies break down urban systems into a separate framework 

and develop individual models for one or multiple features of urbanscape (e.g. Sahely and 

Kennedy (2007) addressing water-related issues, Hammer and Giljum (2006) on material 

stocks and flows). Different tools have been developed for simulating urban metabolism. 

iTEAM (Integrated Transportation and Energy Activity-Based Model) employs micro-

simulation agent-based for evaluating policies and predicts future energy consumption by 

converting agents’ decisions to energy demands (Almeida et al., 2009). Other tools such as 

CitySim implements a normative methodology for optimizing urban resource flows instead 

of projecting their future state (Robinson et al., 2009). SynCity, integrated tool for modeling 

urban energy systems, simulates citizens’ activities for calculating resource demands 

(Keirstead et al., 2010). A more comprehensive tool, UrbanSim, predicts behaviors of urban 

agents by integrating three interrelated urban systems; land-use, transportation and the 

environment (Vanegas et al., 2009). Despite some conceptual commonalities, these 

simulation tools are developed to capture a certain property of specific urban spaces with 

particular modeling targets (Mostafavi et al., 2014) and do not consider urban systems as a 

cohesive and interrelated structure. Existing urban metabolism analysis tools like CitySim 

(Robinson et al., 2009) and SynCity (Keirstead et al., 2010) simulate urbanscapes in a single 

scale and do not adjust modeling framework based on the essence of the phenomenon. Lack 

of robust methods in dealing with uncertainty and multidimensionality especially in capturing 

human behavior is still a significant problem in modeling urban systems. And finally, most 

existing simulation tools are relatively weak in visualizing mathematical results of urban 

simulations. This weakness might damage their practical implications in planning and design 

process.   

Urban metabolism analysis is a comprehensive assessment tool for planners, 

designers, and policy makers and provides tangible perspective about energy efficiency, 
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emission control, material cycling, waste management, and effectiveness of infrastructure 

within urbanscape. In other words, urban metabolism analysis evaluates environmental 

impacts of policy and design scenarios. Designing an urban simulation tool that captures the 

complexities of an urban system is not trivial. Even assigning ‘buildings’ as the simplest unit 

in urbanscape is complicated when combined with other economic, social, and environmental 

factors. One way to account for urban complexity is to maximize the number of explanatory 

variables that affect the desired dependent variables. Even if we assumed that the changes in 

an urbanscape are regulated by a simple mechanism, due to numbers of possible options for 

the subsystem, the level of complexity is still high. Moreover, subsystem interdependency is 

dynamic and fluctuates between different states 

1.5 Research Goals 

There is a critical need for a single integrated framework to analyze the consequences 

of urban growth and eventually predict the impacts of sustainable policies on the urbanscape. 

Interrelation and complexity of urban systems require the simulation approach that 

simultaneously integrates socioeconomic, physical, and environmental features of 

urbanscape. This dissertation aims to address this need by developing a tool – an Integrated 

Urban Metabolism Analysis Tool (IUMAT) – an analytical framework that simulates urban 

metabolism by integrating urban subsystems in a single comprehensive computational 

environment.  

IUMAT will quantify the environmental impacts driven by 

decisions/policies/designs within an urban region. 

The IUMAT framework also includes livability factors such as health, employment, 

income, education, leisure activities and accessibility. IUMAT integrates different databases 

and creates statistical associations between socioeconomic parameters with other spatial 
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factors. IUMAT focuses on five major indicators of urban metabolism:  land-use, energy 

consumption, water use, material resources, and air quality. The framework applies these 

indicators into three separate models: Land-Use Model, Transportation Model, and EMW 

(Energy, Material, and Water) Model. In the simulation process, these models work together, 

and one model may call for results of another model when it is necessary. My overall 

research questions are:  

How to create a holistic framework that can assist city officials to understand the 

overall sustainability of a city?  What are the parameters in land-use, physical, 

environmental, cultural, institutional, socioeconomic variables that can be implemented in 

urban metabolism analysis?  

Within IUMAT framework, my research focuses on developing a framework for the 

Land-Use Model to assist urban designers and planners in policymaking. The body of 

scholarship on the relationship and environmental impacts of land-use and urban form is 

extensive. Most of the previous work (Friedman et al., 1994; Ewing & Cervero, 2001; 

Newman & Kenworthy, 2006; Cervero & Gorham, 2009) focused on the effects of urban 

sprawl on travel behavior and transportation trends in metropolitan areas. The recent versions 

of these studies (Chao & Qing, 2011) integrate socioeconomic factors in urban sprawl. 

Despite lingering questions about validity and accuracy, existing research (eg. Hamidi et al., 

2015; Chao & Qing, 2011) indicates that integration of more variables into the analysis 

improves model predictions about human behavior and urban systems.  

In the IUMAT Land-Use Model, the effects of different urban activity parameters 

that differ from one place to another can be explored, and different conclusions/planning 

decisions could be formulated based on various hypotheses and models. The IUMAT Land-

Use Model uses an Artificial Neural Networks structure. The emergence, relation, and 
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interaction of urban units are governed by dynamic sets of algorithms that are generated 

through an automated learning process.  My research goal is: 

To test the effectiveness of using the Artificial Neural Networks and pattern recognition 

techniques to analyze land-use change and predict future development patterns 

In this study, I develop a land-use model within IUMAT framework and examine 

different combinations of explanatory variables for predicting land-use transformation. I 

investigate research gaps in existing land-use models and propose alternatives within the 

IUMAT Land-use Model (IUMAT-LUM). Methodologically, I focus on identifying the 

appropriate computational approaches for optimizing of the interaction between involving 

parameters in predicting changes in land-use and building form. I also investigate weather 

unsupervised machine learning and pattern recognition techniques are appropriate in this 

area. 

1.6 Dissertation Structure   

The remainder of my dissertation is organized into five chapters. The second chapter 

defines the concept of the urban metabolism and its relations to sustainability. It reviews the 

empirical literature and the existing urban metabolism simulation tools. It outlines our 

methodology to metabolism analysis and introduces Integrated Urban Metabolism Analysis 

Tool (IUMAT). Chapter 3 specifies analytical models characterized the dynamics of choice, 

time, and scale in the IUMAT framework. It presents Land-Use, Transportation, and EMW 

(Energy, Water and Materials) models within IUMAT framework. This chapter describes the 

modeling structure as well as modeling methodologies. Chapter 4 defines the IUMAT-LUM 

modeling structure and describes emerging methods in modeling land-use changes. It outlines 

our approach to generating building form variables from LIDAR measurements and other 

explanatory variables from GIS vector databases. I present a case study, the implementation 
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of the proposed IUMAT-LUM framework to the town of Amherst in Massachusetts. 

Different scenarios are used for generating multiple land-use models. In the final and 

concluding chapter (5), I discuss what we have been able to accomplish with IUMAT-LUM 

and the limitations of the research as well as a discussion of future directions and goals for 

the IUMAT framework.  

1.7 Roles and Responsibilities 

In 2012, Dr. Simi Hoque introduced the idea of IUMAT, an urban scale analytical 

tool. IUMAT is a collaborative project developed by the Green Building research group in 

the UMass Building Systems graduate program over the last four years. In collaboration with 

Nariman Mostafavi, a Ph.D. candidate in Building Systems, we published two papers about 

IUMAT and the IUMAT framework in peer-reviewed journals (Mostafavi, Farzinmoghadam 

& Hoque, 2014; Mostafavi et al., 2014); these are chapters two and three, respectively. We 

also presented the IUMAT framework and energy modeling approach at the Association of 

Collegiate Schools of Planning (ACSP) conferences; 55th Annual ACSP Conference 

(Mostafavi, Farzinmoghadam, & Hoque, 2015) and 54th Annual ACSP Conference 

(Mostafavi, Farzinmoghadam, & Hoque, 2014). Dr. Hoque supervises the overall 

management and the timing of this project while providing research guidance to the team, 

which is supported by Urban Planning professors, Elisabeth Hamin and Henry Renski. 

Chapter 2 of this dissertation, Integrated Urban Metabolism Analysis Tool (IUMAT), is the 

first IUMAT project's publication. Chapter 3, a framework for integrated urban metabolism 

analysis tool (IUMAT), is about the IUMAT modeling structure. This interdisciplinary 

project represents a collaborative effort among faculty and students in the Regional Planning 

and Building Construction Technology programs. Table 1.1 presents my roles and 

responsibilities in the first two IUMAT papers. For the remainder of my Ph.D. studies, I was 
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solely responsible for research on IUMAT Land-Use Model, which is presented in the last 

three chapters of this dissertation. 

 
Table 1.1: My roles and responsibilities for first two IUMAT papers 
 
 Section Responsibility 

2.3 Background and Literature Review Contributor for the section 

2.4 Urban Metabolism and Sustainability Leader for the section 

Prepared Graphic 

2.5 Urban Metabolism Simulation Tools Contributor for the section 

2.6 IUMAT Contributor for the section  

Prepared Graphic 

2.7 Conclusion Contributor for the section 

3.2 Introduction Contributor for the section 

3.3 Background Contributor for the section 

3.4 Overview of IUMAT framework Contributor for the section 

3.5 Demographic Factor Contributor for the section 

3.7 Land cover Leader for the section 

3.8 Transportation Leader for the section  

Prepare Graphic  

3.9 Energy, water and materials Contributor for the section  

Prepared Graphic 

3.10 Aggregation Leader for the section  

Prepared Graphic 

3.11 Conclusion Contributor for the section  
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CHAPTER 2 
 

INTEGRATED URBAN METABOLISM ANALYSIS TOOL (IUMAT) 

 

The following chapter was published in the Urban Policy and Research Journal, 

Volume 32(1), in October 2013; the text below is the same as that publication. Nariman 

Mostafavi, Dr. Simi Hoque (Corresponding Author), and Dr. Benjamin Weil are other 

coauthors in this published article. The following citation can be used for citing this paper: 

Mostafavi, N., Farzinmoghadam, M., Hoque, S., & Weil, B. (2014). Integrated urban 
metabolism analysis tool (IUMAT). Urban Policy and Research, 32(1), 53-69. 

2.1 Abstract 

The determinant share of cities in global primary energy use and greenhouse gas 

emissions highlights the importance of dissemination and development of reliable urban 

planning and policy tools. To reach sustainable urban development, having a comprehensive 

understanding of the concept of urban metabolism is critical. This work is the first step 

toward the development of an Integrated Urban Metabolism Analysis Tool (IUMAT) that 

seeks to consider all three social, economic and environmental capitals of an urban region in 

a multidisciplinary context. This tool is intended to provide a quantitative approach to 

assessing the sustainability indicators in a city. A literature review on the urban metabolism 

and urban-scale simulation tools is carried out to highlight the achievements as well as 

scientific gaps in the existing research, and to determine the objectives and functionalities 

that are expected from IUMAT. 

2.2 Introduction 

Cities are responsible for 67 per cent of the primary energy use and nearly 71 per cent 

of greenhouse gas (GHG) emissions on a global scale (International Energy Agency, 2008). 
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The majority of the world’s population resides in urban areas, and cities are expected to 

experience a 48 per cent growth by 2030, with the fastest rate of growth in the developing 

economies of Asia and Africa (UN Population Fund, 2007). Moreover, smaller cities and 

towns are expected to have a dominant role in urban population growth. This means that the 

development and dissemination of reliable urban planning and policy tools that address 

environmental concerns will be crucial in the decades ahead. To mitigate the consequences of 

this growth, city counselors have initiated climate action plans, adaptation and mitigation 

policies, and energy conservation mandates to spur the development of high performance 

buildings, sustainable transportation, and increased green space. Although these efforts are 

assumed to have some positive impacts on the urban context, it is still unknown to what 

extent these actions can influence the overall sustainability of a city. A set of policy and 

planning options may be optimal for one city while counterproductive for another. 

Integrating the implications and impacts of built and natural forms, open space, 

transportation, sanitation and municipal services is essential to prioritizing how to best 

conserve natural resources and reduce GHG emissions for each unique city. 

2.3 Background and Literature Review 

Many different terms have been used to refer to the characterization, quantification 

and analysis of urban energy and mass flows, among which ‘metabolic’ analysis is the most 

popular. This section provides a review of studies useful in guiding the development of an 

urban metabolism analysis tool. The following does not completely cover the growing body 

of literature regarding the concept of urban metabolism analysis, but highlights key 

approaches and methods that have been adopted by researchers so far.  

Forty years ago, in the wake of rapid urban expansion, Abel Wolman (1965) 

published a pioneering article on the metabolism of cities, which is regarded as a 
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fundamental basis for researchers working on quantitative assessments of city energy and 

resource flows. The concept of urban metabolism was developed by Wolman as a response to 

deteriorating urban water and air quality in America, a trend that remains a challenge to 

urban sustainable development worldwide. He quantified the overall input and output flux of 

energy, water, materials and waste in a hypothetical American urban region with a population 

of 1 million. Since then, many researchers have conducted urban metabolism studies all 

around the world, using different perspectives, methodologies and frames.  

Urban metabolism can be defined as “the sum total of the technical and socio-

economic processes that occur in cities resulting in growth, production of energy and 

elimination of waste” (Kennedy et al., 2007, p. 44). Urban metabolism analysis is a way to 

qualify inlet and outlet flows of materials, water, energy and waste in an urban area (Sahely 

et al., 2003).  

The first studies of urban metabolism for actual cities were conducted in the 1970s on 

Tokyo (Hanya & Ambe, 1976), Brussels (Duvigneaud & Denayeyer-De Smet, 1977) and 

Hong Kong (Newcombe et al., 1978). The Brussels metabolism study was distinctive in that 

it included natural energy balances, going beyond quantification of human-activity induced 

energy flows (Kennedy et al., 2011). After these formative studies in the 1970s, interest in 

urban metabolism waned for almost a decade. During the last 20 years, the concept has 

gained traction, with tens of papers published on the subject.  

Generally, there are two popular methodological frameworks used in metabolism 

studies. Some focus on qualitative methods categorized under a political science context (e.g. 

Heynen et al., 2006), while others are categorized under a quantitative or historical context 

(e.g. Tarr, 2002). Some researchers such as Swyngedouw and Heynen (2003) and Keil (2003) 

suggested the approach of urban political ecology to solve interconnected political, social, 

economic and ecological processes. Heynen et al. (2006) addressed the importance of 
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regarding urbanization as a socio-ecological process of change. Tarr (2002) explored the use 

of land, water and air resources from 1800 to 2000 in the city of Pittsburgh. Lennox and 

Turner (2004) suggested long multi-decadal timeframes and regional context for temporal 

and spatial scales for settlement studies. Douglas et al. (2002) investigated changes in land-

use, material flows and river morphology in the Manchester urban area over the last two 

centuries.  

A review of papers published in the last decade on urban metabolism shows that, 

within the quantitative context, two different analytical approaches are common. Metabolism 

has been described in terms of energy equivalents (e.g. Odum, 1983) or, in terms of mass flux 

with respect to a city’s flows of water, materials and nutrients—also known as Material Flow 

Analysis (MFA). Odum applied his method for a case study on Paris using the data provided 

by Stanhill (1977). His approach has been used in a study on Miami, Florida by Zucchetto 

(1975) who studied the relationships between natural systems, energy data and economics. 

The introduction of the emergy concept in ecology and ecological economics provided a tool 

for analyzing natural systems and investigating the interface between natural and human 

systems. Odum (1996) clarified the fundamentals of an emergy theory, suggesting a 

thermodynamic approach to urban metabolism models, which includes embodied energy or 

emergy (solar energy equivalents) flows. Some proposed that indices and ratios based on 

emergy flows can be calculated and used to evaluate different types of systems (Brown & 

Ulgiati, 1997). While Odum’s method has not become mainstream, it was used by Huang and 

Hsu, for Taipei, Taiwan (Huang, 1998; Huang&Hsu, 2003), who studied the connection 

between ecological systems and urban economics. Zhang et al. (2009) used an emergy-based 

indicator system to evaluate metabolic factors of Beijing for the period 1990–2004.  

Material flow analysis (MFA) of stocks and flows of resources is quantified in terms 

of mass, and is unlike Odum’s approach, which concentrates on energy equivalents. These 



 

 
26 

studies typically report energy flows in terms of joules, and a city’s flows of water, materials 

and nutrients in terms of mass fluxes (Kennedy et al., 2011). Baccini and Brunner (2012) 

explained the use of MFA applications in examining metabolic characteristics of urban areas. 

They studied the metabolism of the anthroposphere by exploring effects of material fluxes on 

the biosphere. Using the MFA method, Warren-Rhodes and Koenig (2001) updated the 

Newcombe et al. (1978) study on urban metabolism of Hong Kong focusing on the trends in 

waste generation and resource consumption. Hendriks et al. (2000) illustrated MFA as a tool 

for environmental policy making, carrying out case studies of Vienna and the Swiss low 

lands. Codoban and Kennedy (2008) employed MFA to explore flows of water, energy, food 

and waste in Toronto neighborhoods. Schulz (2007) used MFA to examine overall 

environmental effects of urban systems in Singapore. The challenge of implementing MFA is 

that the specific environmental impacts associated with material flows must also include 

consumption and post-consumption processes (disposal technologies for example). In 

addition, an ecosystem’s vulnerability to urban processes is a function of geographic factors 

(Schulz, 2007). In response to this problem, some studies such as Wackernagel and Rees 

(1996) (for Vancouver, Canada) and Folke et al. (1997) (for cities in Baltic Europe) have 

assessed the urban metabolism using the application of ecological footprint techniques. 

Fischer-Kowalski and Hu¨ttler (1998) analyzed characteristic features of MFA according to 

system level, frame of reference, and types of flows being studied. Barrett et al. (2002) 

applied the MFA method to the City of York, UK followed by ecological footprint analysis to 

understand the pressure on the environment by material flows. Niza et al. (2009) quantified 

the material balance of Lisbon for 2004. Zhang and Yang (2007) explored the efficiency of 

urban material metabolism for Shenzhen City in China regarding socio-economic 

development during 1998–2004. Browne et al. (2009) measured the change in total materials 

metabolic inefficiency for Limerick, Ireland from 1996 to 2002.  
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Some researchers, such as Sahely and Kennedy (2007), analyzed the urban 

metabolism by addressing water-related issues. Hermanowicz and Asano (1999) highlighted 

water metabolism in a city and investigated applications of wastewater reuse, correlating 

reuse application with patterns of water use. Gandy (2004) addressed the importance of water 

as a key dimension to the social production of urban space. Kane and Erickson (2007) 

explored water supply for New York City from an urban metabolism perspective considering 

interactions between urban cores and rural hinterlands. Baker et al. (2009) emphasized the 

importance of developing hydrologic balance for cities as a strong and fundamental tool for 

urban water managers. The´riault and Laroche (2009) studied hydrologic metabolism in the 

administrative boundaries of the Greater Moncton region, New Brunswick, by quantifying 

water input and output and carrying out a water balance for the period 1984–2004.  

Studies based on nutrient flows are the least common, and most of them have focused 

on individual substances such as phosphorus and nitrogen, such as Færge et al. (2001) for 

Bangkok and Burstro¨m et al. (2003) for Stockholm. Færge et al. developed a nutrient 

balance model considering the nitrogen and phosphorous cycle for Bangkok province. 

Burstro¨m et al. explored the municipal material flow of nitrogen and phosphorus for the city 

of Stockholm. Barles (2007) studied flows of food and nitrogen in Paris for the period 1801–

1914. Bohle (1994) studied the urban food metabolism by using an urban metabolism 

perspective to explore supply, production, consumption and distribution of food in 

developing countries. Forkes (2007) developed a nitrogen balance of the urban food cycle for 

the city of Toronto, Canada.  

Some studies have taken approaches that cannot be categorized exactly under what 

was explained above. For instance, Bergba¨ck et al. (2001), SoKrme et al. (2001) and Svide´n 

and Jonsson (2001) studied the urban metal flows in Stockholm. Fung and Kennedy (2005) 

presented a macroeconomic model to link economic drivers with urban metabolism 
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parameters. Deilmann (2009) studied the relationship between the surface of the cities and 

urban metabolism.  

However, the conception of urban metabolism has not remained devoid of alterations 

over time. Newman and co-workers (Newman et al., 1996; Newman, 1999) studied the 

metabolism of Sydney proposing the inclusion of livability factors toward an extended 

metabolism model, by considering indicators of employment, health, housing, education, 

income, leisure and community activities. Inclusion of quality of life in urban metabolism is 

also mentioned by Stimson et al. (1999), who have emphasized the livability and long-term 

viability of cities in addition to environmental sustainability.  

Kennedy et al. (2007) suggest that consequent impacts of growth and development of 

cities, such as water accumulation in urban aquifers, imported construction materials, trapped 

heat in rooftops and pavements, and nutrients deposited in the soil and waste dumps, 

gradually cause changes in the metabolism of cities. They used available data from previous 

urban metabolism studies in eight different cities across the world and analyzed four 

fundamental cycles of energy, materials, water and nutrients, and related the differences 

between the metabolism of the cities to cultural factors, stage of development and age in 

addition to urban population density and climate conditions. 

Shimoda et al. (2004) simulated residential energy consumption by end use in Japan’s 

Osaka City by summing up every one-hour energy use by 23 types of household and 20 

dwelling types and multiplying the results by the number of households in each category 

based on weather data, set temperatures of heating and cooling, set temperature and amount 

of hot water supply, occupants’ schedule of activities, appliances’ energy performance and 

thermal properties of the buildings. They published a related paper in 2007 on quantitative 

evaluation of the effects of different energy conservation measures on residential energy 

consumption in Osaka City (Shimoda et al., 2007).  



 

 
29 

Ngo and Pataki (2008) conducted a metabolic study by analyzing input and output 

flows of energy, water, food and pollutants for Los Angeles County in California in 1990 and 

2000. Their intent was to determine whether the urban development in Los Angeles County 

was moving toward environmental sustainability or away from it by comparing per capita 

input and output flows of energy, water, solid waste, food and GHG emissions for the study 

period 1990–2000. Baynes et al. (2011) addressed some of the contrasts between two 

different methodologies of an input–output consumption approach and a regional production 

method for urban energy consumption analysis of the metropolitan area of Melbourne, 

Australia.  

Jin et al. (2009) suggested a policy-making platform for urban sustainability by 

incorporating system dynamics into the ecological footprint instead of snapshots, focusing on 

a case study of Wanzhou, China in 2005. Turner and West (2011) underlined the importance 

of capturing the long-term dynamics for strategic planning of infrastructural electricity 

generation for the state of Victoria, Australia.  

Huber and Nytsch-Geusen (2011) suggested some simplifications to accelerate large 

scale urban districts’ simulation process via coupling building and plant simulation integrated 

with a three-dimensional (3D) computational energy analysis simulation for a case study of a 

new German–Iranian project of an urban area with 2000 planned residential buildings in 

northern Iran. Strzalka et al. (2011) developed a method for urban scale heating energy 

demand forecasting by 3D city modeling of a case study area with over 700 buildings in 

Ostfildern, Germany, outlining the feasibility of linking simulation tools with 3D 

geographical information system (GIS)/3D city models by making use of a GIS interface that 

provides inputs for a simulation model.  

Some Canadian researchers incorporated an object- and agent-based micro-simulation 

framework called ILUTE for urban systems modeling that integrates demographics 
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evolution, land use and transportation. In this framework, the system state that changes from 

initial base case to an end state is defined in terms of the agents as dwelling units, 

households, firms, individuals, etc. that together define the urban area, which is to be 

modeled. ILUTE simulates the behavior of these agents (changes in labor force participation, 

residential location, travel and activity attributes, etc.) over specified time steps 

(Chingcuanco and Miller, 2011).  

Howard et al. (2012) apportioned the energy consumption by end use in New York 

City’s building sector using a spatial model for almost 860 000 tax lots. They performed a 

multiple linear regression method to develop annual end-use energy consumption by 

obtaining total fuel and electricity intensities for eight different building types.  

2.4 Urban Metabolism and Sustainability 

During the first years of the 20th century, city planners developed a utopian vision of 

an urban environment in, which humans live in harmony with nature (Fishman, 1982). 

Although this vision disregarded social, economic and ecological differences between the 

communities, it was revived during a period of rapid urban renewal in Europe after the 

Second World War. As a short-term consequence, cities faced noticeable social and 

economic conflicts due to daily life interactions between culturally and economically diverse 

communities. However, the ecological problems had a more long-term impact that designers, 

planners and researchers started responding to in the late 20th century by presenting climate 

action plans, adaptation and mitigation policies and other sustainable policies; efforts that can 

smooth the way toward development of urban sustainability.  

After the 1987 report published by the Brundtland commission (United Nations (UN) 

World Commission of Environment and Development), the concept of sustainable 

development entered the lexicon of administrators, planners and community representatives. 
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One of the most critical challenges is to introduce sustainable development into current urban 

activities by relevant stakeholders. This is a concern that requires ambitious strategies to 

better protect natural resources, limit energy consumption and reduce atmospheric pollution 

(NÆSS, 2001).  

Conceptually, sustainability is related to improving or maintaining the integrated 

systems of the natural networks that collectively make up the life on this planet. The planet’s 

capacity to support its population is decided by natural limitations and human behavior 

regarding environmental, economic, cultural and demographic variables. Sustainability deals 

with the level of impacts on the earth caused by the human population. It is not only 

concerned with the magnitude of the population, but also with the choices made by that 

population.  

In the past two decades, the fundamental concepts of sustainable development have 

been applied to more and more sectors at different scales. For example, the growing 

awareness of the harmful impacts of the construction industry and its diverse features’ 

contribution to environmental degradation has led to the establishment of building 

environmental assessment methods in different countries such as LEED (USA), LEED 

Canada (Canada), BREEAM (UK), CASBEE (Japan) and NABERS (Australia) 

(Papadopoulos and Giama, 2009).  

Cities are undoubtedly the main sources of GHG emissions as they are major 

consumers of materials, energy, water and food. However, it may be important to include 

suburbs and periurban areas in some analyses (Lenzen & Peters, 2010), as these areas 

represent the interactions between the rural and urban regions, where land and landscape are 

being consumed as a food source (Lehmann, 2011). Today, many cities have extended their 

ecological footprint far beyond the lands they actually occupy, while the number of fast-

growing cities in developing nations is increasing at an alarming rate. Given the consumption 
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of resources and consequent generation of waste, cities should essentially evolve into more 

sustainable ecosystems (Kenworthy, 2006). This reduction in use of natural resources and 

waste generation should take place simultaneously with improvement of cities’ livability in 

an extended model of urban metabolism (Newman, 1999). Simultaneous protection of the 

environment with increasing social equity in a steady state economy may be the most 

prominent challenge of urban sustainable development (Campbell, 1996).  

The UN action plan for sustainable development, which was an outcome of the 

UNCED (United Nations Conference on Environment and Development) held in Rio de 

Janeiro in 1992, known as Agenda 21, outlines principal action plans toward sustainability 

(Doyle, 1998), but does not clearly demonstrate how those can be applied to cities (Newman, 

1999). Although most of the challenging environmental arguments and debates were fought 

outside the circle of management of the cities in the past, governments, environmentalists and 

industry universally have recognized the need for coming back to cities today (Newman, 

1999). 

Sustainable urban development can be better understood by considering both notions 

of urban environmental sustainability and urban development simultaneously (Ravetz, 2000). 

Achieving a balance between human activities in a city and urban environmental resources 

must be viewed in a multidisciplinary context by socio-political, economic– industrial and 

resource–environmental systems. The familiar sustainable development triangular model 

with three vertices of environment, economy and society contains a multitude of 

combinations of strategies and targets that bring together socio-political issues with physical 

sciences (see Figure 2.1).  

In the early 1990s, researchers such as Girardet (1992) began to investigate the 

connection between sustainable development and urban metabolism. Kennedy et al. (2011) 

proposed four practical applications of urban metabolism for planners and designers as 
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defining sustainability indicators, urban GHG accounting, developing dynamic mathematical 

models for policy analysis and creation of design tools.  

Pivo (1996) suggested that the six basic principles for urban sustainable development 

are compactness, completeness, conservation, comfort, coordination, and collaboration. 

Krajnc and Glavic (2005) used a framework of sustainability indicators grouped into three 

categories of social, economic and environmental. Both positive and negative indicators were 

then normalized and weighted using an analytic hierarchy process and by summing up the 

values from sub-indices, a composite sustainable index was obtained. There are some other 

studies that have studied the impacts of technological methods such as water and waste 

management, low carbon emissions and air pollution control on sustainable urbanization and 

protection of the urban environment (Shen et al., 2012). 

 
Figure 2.1: Triangular model of sustainable development 

 

In the field of urban planning, designers and planners have presented different 

guidelines toward the goal of developing sustainable cities, but most generally addressed 

qualitative rather than quantitative features, which leaves many of the problems of the 

evaluation process unresolved. Urban metabolism studies have driven designers toward 
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qualitative results, giving them a better perspective of urban ecology changes with design 

strategies. In terms of applications of urban metabolism, two different attitudes can be 

distinguished among contemporary studies on urban metabolism. The first outlook analyses 

the current data from different sources and summarizes the available data on usually one 

specific feature of urban metabolism. This approach mainly concentrates on data collection to 

be presented to policy makers, planners and designers. These kinds of studies do not present 

any quantitative methods for future prediction, or provide metrics for evaluating design 

sustainability. The other outlook focuses on one urban feature such as water, land use or 

transportation and suggests quantitative methods for further studies. None of these attitudes 

offers a comprehensive picture of the connections between the multiple interacting physio-

morphological flows and stocks that characterize urban metabolism. Another challenge is that 

for some of the urban stocks, straightforward methods are not available for accurate 

quantifications of trajectory or state of flows and even disaggregating the different kinds of 

flows and stocks do not necessarily reduce the complexities. For example, urban green space 

can be measured in terms of area or number of trees, but to what level and how it affects the 

public wellbeing or amenity is difficult to quantify. In addition, ecosystems are exposed to 

continuous change even without human related activities, which adds uncertainty in linking 

ecosystem evolutions to urban activities. A scientific measurement method to assess the pros 

and cons of a holistic urban design proposal has yet to be developed. 

2.5 Urban Metabolism Simulation Tools 

Indicators for measuring urban metabolism factors need to be defined and delimited 

based on the goals and objectives of the study. Intertwined environmental, technological, 

spatial, physical, cultural, ethical, political and economic features of urban life will result in a 

multidimensional urban metabolism assessment framework. Demographic transitions, 
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growing urbanization and social disparities, loss of habitat and biodiversity, progressive 

increase in demand for resources, and growing energy and material-intensive industries in 

rapidly expanding cities should be understood by researchers who are trying to formulate 

urban responses (Lehmann, 2011).  

There are a large number of tools available for simulating different aspects of urban 

activities, but these efforts are fragmented and do not reflect the interrelationships between 

different stocks and flows. In some cases, two or more of these tools are coupled and 

combined in order to simulate different scenarios, for example, a plant simulating tool with a 

building simulation tool (Huber & Nytsch-Geusen, 2011). For urban energy analysis as an 

example, disaggregate approaches have been popular historically, where only an individual 

static component of the urban system is investigated such as residential energy demand (e.g. 

Nesbakken, 1999) or urban transportation (e.g. Berkowitz et al., 1990). However, energy 

consumption in urban areas is the outcome of human decisions and activities, and energy 

demand of different interrelated urban sectors (commercial, residential and transportation) is 

connected through this system of human activity (Chingcuanco and Miller, 2011). 

Understanding the interactions between different sectors is critical to assessing or evaluating 

new policies. As an example for a city such as Toronto, due to higher residential per capita 

energy demand in central areas compared to the suburbs as a result of looser construction 

codes and old infrastructure, higher heating demands can offset savings created by shorter 

commutes in the long term (Chingcuanco and Miller, 2011). The importance of a holistic 

approach to urban metabolism analysis can be realized from this simple example.  

A modest number of tools have recently been developed for modeling in urban scale. 

Some of them such as iTEAM (Integrated Transportation and Energy Activity-Based Model), 

which is a tool for policy evaluation, employ agent-based micro-simulation to project and 
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give a perspective of the future of the urban region’s energy consumption. These tools model 

decisions taken by the agents and convert them into energy demands (Almeida et al., 2009).  

Some other tools implement a normative methodology and concentrate on optimizing 

energy consumption within the urban system rather than drawing projections of the future 

state. As an example, CitySim has been conceived to simulate a building’s energy flows with 

an engineering approach, aiming to develop a more comprehensive model by incorporating 

flows of materials, water and waste to optimize urban resource flows (Robinson et al., 2009).  

SynCity is another toolkit for integrated modeling of urban energy systems. It has a 

layout model as the first component that seeks an optimal city design to minimize energy 

consumption, cost and carbon emissions. The agent activity micro-simulation model creates 

the demand for resources by simulating daily activities of the citizens in that layout. 

Afterwards a macro-level resource technology network model that takes available process 

types in addition to spatially and temporally distributed resource demands as inputs, is 

designed to interface with engineering models and provide technical end-use detailed maps 

(Keirstead et al., 2009).  

UrbanSim is another micro-simulation discrete choice model of relationships between 

land use, transportation and the environment (Vanegas et al., 2009). It is an open source 

urban simulation system that takes a dynamic, disequilibrium approach for temporal basis in 

contrast to a cross-sectional, equilibrium approach (Waddell, 2002). The design of UrbanSim 

attempts to create models (demographic transition model, household location choice model, 

etc.) that represent behaviors of an essential set of agents (household, person, business, 

developer, market) (Waddell, 2011). 
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2.6 IUMAT 

Despite the recent 30-year attention to the concept of urban metabolism, urban 

policymaking has been slow to use urban metabolism analysis as a decision aid. Although 

concerns about the environmental characteristics of cities have grown in the last decades, 

‘greening cities’ has mainly been interpreted as improving the visual appearance of urban 

areas by creating more green spaces. However, cities not only should be environmentally 

pleasant, but also ecologically viable. The urgent need to develop accurate and effective 

sustainable policies is not well enough incorporated into urban planning tools, although the 

significance of sustainable urban development is understood by most city planners and urban 

managers (Yan et al., 2003).  

The difficulties in simulating connections between variables of urban systems such as 

natural and built forms, network infrastructures and transportation, microclimate impacts and 

shading, waste management and water systems, and location and orientation make the 

process of sustainable urban design a complicated procedure. Hence, urban modeling tools 

often fail to give an accurate prediction and a robust quantification of relations between urban 

characterizing parameters (Noth et al., 2003). Most of the tools that are in use today apply an 

aggregate, cross-sectional, equilibrium approach. Simplifications that ignore continual 

dynamics of change in urban systems produce outcome results that deviate greatly from 

actuality.  

An integrated analysis of the complicated and inextricably bound up global issues of 

environment–health and consumption–life style, needs approaches and methods that go 

beyond traditional boundaries between familiar disciplines. A new methodology and 

modeling tool for urban metabolism analysis is needed, using an approach that identifies and 

integrates five major indicators of urban metabolism: land use, energy consumption, material 
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flows, water and resources, and air quality. Furthermore, different sectors of urban 

area/activity must be classified as part of this matrix of indicators. These sectors are 

residential, commercial, industry, education, government, transportation and open space. An 

accurate analysis of urban metabolism should address water and material consumption, 

sewage and waste production, energy use, emissions to the atmosphere and urban heat island 

effect in urban regions under alternative scenarios. Buildings, as indices of an urban area in 

addition to spaces that connect them together, are the recipients and transmitters of numerous 

flows and streams based on multiple sets of variables (see Figure 2.2).  

 
 

Figure 2.2: Variables and outcomes of the urban metabolism analysis tool 
 

Robust and accurate results from any kind of simulation of an urban complex require 

all three capitals of social, economic and environmental be studied with rigor. To assess both 

morphological and psychological attributes of urban life, with a focus on the 

environmental/analytic side of urban metabolism assessment, the study will be stabilized on 

two linked axes of environmental–economy and environmental–society fragments. As shown 

in Figure 2.3, resource inputs to a city (land, energy, food, water, materials and resources) are 

used due to regular dynamics of settlement (transportation, economic and cultural priorities) 
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and generate livability and the waste generation associated with that (sewage, solid and liquid 

waste, toxics and air pollutants, GHGs, waste heat and noise) (Newman, 1999).  

 

 
 

Figure 2.3: Trend from resources to livability and waste 
 

Given most strategic urban planning tools are focused on energy use, transportation 

and land use, a new integrated urban metabolism analysis tool (IUMAT) should be designed 

with a framework that observes the interactions among quality of life, urban transformation 

processes, resource flows and waste streams (Rotmans and Van Asselt, 2000). Such an 

IUMAT will do the following:  

1. Reconsider the urban footprint. Urban metabolism requires redefinition of the 

urban ecosystem and its borders and limits. 

2. Assess current trends in a city. IUMAT provides possibilities to examine ongoing 

flows in a city such as energy, water and material consumption, waste and sewage 

production, and GHG emission rates.  
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3. Integrate interrelated features of urban dynamics. IUMAT creates more 

evaluative/calculative integration among intertwined sectors of urban life.  

4. Increase urban efficiency and effectiveness. By addressing connections between 

the urban divisions, IUMAT can prepare a prolific ground toward more efficient utilization of 

natural resources and a more sustainable future.  

5. Improve urban control and planning systems. IUMAT can provide a systematic 

and coherent structure for strategic planning in urban scale.  

To achieve the objectives of IUMAT, five main functions can be expected from the 

tool:  

1. Organizational function. Improvements that IUMAT can cause to control and 

planning systems, gives more flexibility to city planners in managing resource utilization and 

energy and material flows in an urban area.  

2.Monitoring function. IUMAT enables effective and applied use of the available 

existing data. It simplifies harmonization of the data and points out were the data is scattered.  

3. Evaluative/calculative function. IUMAT examines the current situation and 

alternative policies with regard to their social, economic and environmental consequences.  

4. Comparative function. The tool enables comparison between alternative planning 

and design scenarios based on the evaluative assessments.  

5. Policy function. IUMAT helps development of sustainable strategic planning 

toward reaching a balance between social, economic and environmental domains of an urban 

area and its surroundings. 

IUMAT will take both normative and predictive approaches by taking advantage of 

positive features of both statistical and engineering methodologies, and making proper use of 

statistics in favor of engineering models.  
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With respect to the conceptual urban triangle, IUMAT’s evaluative/calculative 

instrument will observe inter-flows within the environmental capital along with intra-flows in 

environmental–social and environmental–economic axes (see Figure 2.4). The 

evaluative/calculative instrument will include a calculative simulation model (linked to a 

GIS) to assess the quantitative trends for urban indices within specified geographic/ time 

borders, which is a mathematical approach to the conceptual triangular model. GIS improves 

the process of keeping records and enables better visualization of distributions in the urban 

area. IUMAT will use buildings as a reference point to indicate urban areas and will 

categorize buildings and spaces between them as components of the urban area that are 

sources of different flows in the model, due to natural processes and human activities. 

  
 

Figure 2.4: Inter-flows and intra-flows to be investigated by IUMAT 

2.7 Conclusion 

Environmental concerns associated with the worldwide growth of the urban sector 

outline the importance of development of reliable urban planning and policy tools. Although 

different guidelines have been presented by researchers and urban planners toward the goal 
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of a sustainable urban ecosystem, qualitative features have been addressed most generally 

rather than quantitatively so far. The concept or urban metabolism can be applied as a basis 

for quantitative evaluation of the overall sustainability in a city. However, to carry out a 

realistic study, realms of the urban metabolic analysis should be extended as to integrate 

social, economic and environmental capitals of a city within the borders of the study. A 

holistic/integrative approach should be considered in the process of designing the tools that 

aim to simulate and analyze the intertwined physiological and morphological characteristics 

of the urban metabolism.  

Most of the available tools for simulation of different flows and streams in urban 

scale take a cross-sectional, equilibrium approach on usually one component of urban life 

such as land use, transportation and energy consumption. Development of tools such as 

IUMAT provides a ground for formulating urban responses that reflect the dynamics of 

natural and human-induced change in urban systems. The holistic design proposal employed 

by IUMAT will monitor/evaluate trajectory and state of interrelated urban flows and stocks 

in order to enable comparison between alternative planning scenarios in favor of sustainable 

urban design and strategic planning. Hence, IUMAT will have the capability to continually 

switch between normative and predictive frameworks, and statistical and engineering 

methodologies to enable effective use of available statistical data in the process of policy 

making. Buildings and spaces that connect them together are transmitters and recipients of 

different flows and streams that will be referred to by IUMAT as indices of an urban area. 

IUMAT will apply a matrix of variables that considers five major indicators of urban 

metabolism (land-use, energy consumption, material flows, water and resources, and air 

quality) within different sectors of the urban area/activity (residential, commercial, industry, 

education, government, transportation and open space) based on type, location, occupancy, 

etc. of the buildings and other indicators that are related to quality of life, such as level of 
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income, education, etc. It will report sewage and waste production, atmospheric emissions, 

energy consumption breakdown and transportation (in terms of vehicle miles traveled), and 

will develop a basic framework for quantitative overall sustainability evaluation in cities. 

IUMAT applies a mathematical approach to the conceptual triangular model of sustainability 

and investigates inter-flows within the environmental capital along with intra-flows in 

environmental–social and environmental– economic axes. By connecting to GIS, IUMAT 

will enable designers and city planners to manipulate geographical/time borders of the 

analysis and provide an accessible structure for assessing ongoing trends and transformation 

processes in a city and improving urban control and planning systems. This will also ease the 

process of data harmonization and mapping the availability or absence of useful information. 
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CHAPTER 3 
 

A FRAMEWORK FOR INTEGRATED URBAN METABOLISM ANALYSIS TOOL 

(IUMAT) 

 

The following chapter was published in the Building and Environment Journal, 

Volume 82, in December 2014. Nariman Mostafavi and Dr. Simi Hoque (Corresponding 

Author) are other coauthors in this article. The following citation can be used for citing this 

paper: 

Mostafavi, N., Farzinmoghadam, M., & Hoque, S. (2014). A framework for integrated urban 
metabolism analysis tool (IUMAT). Building and Environment, 82, 702-712. 

3.1 Abstract 

IUMAT (Integrated Urban Metabolism Analysis Tool) is a system-based 

sustainability analysis tool. It quantifies and aggregates the social, economic and 

environmental capitals of urban activity in an integrated framework focusing on the 

metabolic flows of urban development. This paper builds on previous work on urban 

metabolism and advances an analytical framework that defines how the consumption of 

resources and resulting environmental impacts are calculated as indices of sustainability in an 

urban region. The benefits of integrated urban modeling using the proposed framework as 

well as the data sources are detailed. The underlying analytical framework for the proposed 

tool applies the dynamics of choice, time, and scale towards dynamically interpreting 

demographic and economic factors. IUMAT's calculative models for land cover, 

transportation, and energy/water/resource use are described as well as the modality of 

connections between the models.  
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3.2 Introduction 

Cities are on the front line of climate change. Government officials are aggressively 

targeting cities to reduce energy waste and cut carbon emissions. Today, cities are major 

consumers of resources and producers of waste having extended their ecological footprints 

far beyond their official borders. A secure plan for future global development will require 

cities to evolve into more sustainable ecosystems (Lenzen and Peters, 2010; Næss, 2001). 

However, due to their large size, socioeconomic structures and geopolitical attributes the 

patterns of change in cities are very complex (Hall, 1998). A comprehensive analysis of the 

dynamic of urban resource flows is critical to understand and address ecological challenges 

in the path towards a sustainable urbanized planet (Akimoto et al., 2008; Vera and Langlois, 

2007). In this context, urban planning researchers have made great strides in developing 

methods to understand and model resource usage among different demographic populations 

(P_erez-Lombard et al., 2008). This knowledge base has extended to quantify how building 

type, location, and clustering impacts urban flows (Ratti et al., 2005). This paper describes 

the framework for an integrated urban metabolism analysis tool (IUMAT) to enable 

policymakers to assess the impact of changes to demographics, economics, land cover, 

transportation, energy and water and material resources. IUMAT is expected to promote 

greater understanding about the impact of environmental policies and development strategies 

at an urban scale, focusing on areas where sustainable urban planning and growth are critical 

to climate change mitigation and greenhouse gas reduction.  

Urban metabolism is an analytical method for understanding the impact of urban 

development (Niza et al., 2009). It is a way of integrating and rationalizing the disciplinary 

boundaries between urban analysis, planning and policy (Gonz_alez et al., 2013). The use of 

urban metabolism in planning urban developments has the potential to greatly advance efforts 
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to assess the overall sustainability in urban regions (Kennedy et al., 2011). A major challenge 

for policymakers and planners is to bridge the gap between field measurements and 

numerical studies (Park et al., 2012), associated with connecting and integrating the different 

functions and outputs to characterize the total urban system (Shen et al., 2013). While urban 

scale analytical tools exist for a wide range of applications, including land use/cover 

mapping, wind and solar analysis, traffic simulations, and building performance, integrated 

assessments of the aggregate environmental consequences of urban development remain a 

grand challenge (Mostafavi et al., 2014). This limitation may critically undermine our 

understanding of the benefits and tradeoffs of programs and policies intended to improve the 

overall sustainability of a city. 

3.3 Background 

There are a multitude of methods and tools available for analyzing urban processes 

and activities. In general, urban policymakers use BMPs, or Best Management Practices, 

rather than quantitative data to support policy decisions (Punter, 2007). Many BMPs are 

derived from singular case studies that have been scaled up for an urban region. For example, 

greening the roof of one building may alleviate storm water management for the building, 

improve the microclimate around the building, and reduce energy loads for the building. 

However, this does not mean that greening all the roofs on all the buildings will necessarily 

have the same benefits for an entire city. 

The concept of simulating urban sectors to support design decisions is not new. In 

1989, SimCity, a city management simulation environment was released for gamers to build 

houses, streets, factories, airports, and parks with metrics for crime, pollution, and economic 

stability. The most recent version, SimCity 4, offers sustainable design measures such as 

solar and wind power generation, sustainable transportation choices, and energy efficient 
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building standards (SimCity, 2016,). SimCity and others, such as ESRI's CityEngine, are 

mainly design tools that emphasize visualization and data reporting, and offer little 

opportunity for quantitative analyses. In the research community, tools to quantify urban 

performance measures are emerging. 

UrbanSim, developed at the University of Washington, combines land use and 

transportation development with economic impacts, and has been applied to actual urban 

contexts (Patterson & Bierlair, 2010). The intended users are Metropolitan Planning 

Organizations (MPOs) and non-governmental organizations. UrbanSim calculates the effects 

of infrastructure and policy decisions with outcomes, such as motorized and non-motorized 

accessibility, housing affordability, greenhouse gas emissions, and the protection of open 

space and environmentally sensitive habitats. SUNtool is a European urban neighborhood-

modeling tool that integrates building performance with its surrounding microclimate effects 

(Robinson et al., 2007). The focus of SUNtool is buildings, particularly predicting the 

optimal built form of an urban neighborhood with regard to optimizing pedestrian comfort 

and building energy efficiency. At the Massachusetts Institute of Technology, the Sustainable 

Urban Design Lab is developing an urban modeling tool that analyzes day-lighting potential, 

walkability, and operational energy use (Reinhart et al., 2007). UMI is a Rhino-based design 

environment that is intended to be used at the early stages of urban design and planning 

interventions to assess the environmental performance of urban neighborhoods. Mostafavi et 

al. (2014) present a comprehensive perspective of the characteristics of existing urban scale 

modeling tools. 

UrbanSim, SUNtool, and UMI are important to understanding how targeted features 

within an urban environment perform. These urban simulation packages are designed for 

specific areas and with specific goals. Yet, the interdependence of subsystems in a city 
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necessitates the application of methodologies that bring together the social, economic and 

environmental capitals of urban life to predict, analyze, and evaluate sustainability measures. 

For most of the existing tools, singular static components of urban activity/life are the 

focus. In some cases, a few subsystems are combined (transportation and land use for 

instance), but the relationships within the flux of urban flows are not aggregately 

investigated. IUMAT aims to develop an integrated modeling structure that defines the urban 

area as a single system, rather than dividing it into different sectors to be solved separately. It 

is capable of handling overlapping features. The IUMAT integrative/analytical framework 

defines buildings and spaces that connect them as indicators of an urban area. In other words, 

the existence of building or land defines the study area for IUMAT. This perspective 

forecloses the rural-urban dichotomy in planning tools and approaches. 

Developing a simulation framework for urban metabolism analysis is not trivial. The 

framework must include different scales of spatial interaction that dynamically influence how 

urban system parameters are affected. The resulting model must balance precision and 

accuracy, parsing the range of variables that characterize an urban area. Increased complexity 

may lead to loss of flexibility or unmanageable time steps. The boundaries of the system need 

to be well defined and the statistical dependences between random variables need to be 

meticulously tracked to minimize the chances of correlations being interpreted as causation 

patterns. 

In self-organizing systems, dynamics will automatically drive the system toward a 

state of equilibrium. In cities that are large disordered systems, some properties can be 

reliably described by averaging over a sufficiently large population that can represent the 

whole system (Wilson, 2000). Quantities that are regarded as self-averaging produce a 

normal distribution of variations around a frequent mean, which itself is generated as the 
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result of random interplays between factors from highly disordered subsystems. The 

challenge is where these borders should be drawn to make use of averaging techniques. 

Buildings are complex systems and that complexity is intensified when combined 

with other urban systems such as transportation or land use. The major task in simulating 

complex systems is simulating the complexity itself. This may require maximizing the 

number of independent variables that affect the desired dependent variable. Moreover, the 

mathematical formulation must describe real world interdependency and nonlinearity. 

Designing an urban simulation methodology that can capture all the complexities of the real 

world examples is not possible. Even if it is assumed that the paths of change are governed 

by simple mechanisms in an urban region, complexity still exists due to the number of 

possible initial conditions the subsystems might have. In addition, due to the interdependence 

of subsystems in a city, the system is always oscillating between different possible 

equilibriums. Regional system mathematical models can be used as triggers that enable 

pointing out the separating leaps from one specific state of equilibrium to another. The 

IUMAT framework will determine these critical points for different states in different urban 

arrangements. 

The format of results and visualizing techniques for the simulation outcomes need to 

be analyzed. The display of large collections of urban data should take aggregation 

approaches that combine city blocks and buildings into legible clusters without limiting the 

user's perspective on the data or obstructing their mental model of the urban region (Chang et 

al., 2007). The efforts toward urban modeling visualization are mostly independent, with 

graphics researchers focusing on visualizing spatial representations while the planning 

community focuses on quantifying urban dynamics and patterns (Vanegas et al., 2010). A 

participatory urban planning decision making platform can reasonably take advantage of 

improvements in visualization techniques (Drettakis et al., 2007) to produce complex spatial 
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descriptions of the urban region that are consistent with cognitive insight. IUMAT will 

advance this further with coherent simulation results view models. 

3.4 Overview of IUMAT framework 

The IUMAT framework focuses on the urban region primarily as a collection of 

buildings, rather than an economic system. Therefore the urban dynamics are modeled in 

terms of any kind of change caused to these core elements of the city, whether it is variation 

in the number of existing buildings or changes in building program or demographic and 

economic factors inside the buildings. Any of these changes can affect the spatial distribution 

of transportation patterns and other urban flows or even the shape of urban development 

during the desired time intervals of study. The IUMAT framework simulates changes in 

demographics, economics, land cover, transportation, energy and water and material 

resources as reflected in the core urban elements. Three specific analytical models 

characterize the dynamics of choice, time, and scale in the IUMAT framework. The modeling 

structure is further defined by levels of resolution and associated methodologies.  

3.4.1 Dynamics of choice 

Buildings, as core elements, effect changes to the surroundings as they go through 

phases of transformation. Aside from the impact of natural forces, patterns of change take 

place as urban agents take actions that can have repercussions throughout the entire system. 

Agents as producers and consumers of services and goods are expected to make choices 

about their locations and activities in a way that best serve their prime interests. The choices 

made by different types of agents are limited by the environment in, which they act. 

Associations and inter-dependencies within the regional systems and urban agents impact the 

process of decision making over the course of time. In addition, the environment is itself not 
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static. Understanding the behavior of the agents underpins much of regional and urban 

theory. This is done through discrete choice modeling of continuous variables by defining 

intervals (Hoyos, 2010). Engineering modeling techniques are used to analyze the boundary 

conditions within the borders of each interval. 

3.4.2 Dynamics of time 

In addition to agent choice, associations and inter-dependencies within the regional 

systems and urban agents impact the process of decision-making (Tian & Qiao, 2014). Many 

parameters are defined or at least influenced by the joint decisions of agents in the past. 

These previous decisions create a backdrop against which new decisions are made. But how 

rapidly change occurs in the backdrop depends on the phase and stage of development. 

3.4.3 Dynamics of scale 

A third issue is the scale at which the dynamics of choice and time should be 

introduced and simulated. To illustrate with an example, simulating the changes in population 

growth at the scale of a household or block, is meaningless in terms of overall urban 

environmental impacts. But at the scale of the county, it can offer insights into how the urban 

system may be influenced. By zoning the city into smaller subdivisions based on type of 

activity, demographics and economic drivers, the modeling structure can be underpinned by 

several levels of resolution, demanding a certain type of method assigned at different scales. 

In discrete zone conceptualization of the space, flows are assumed to be migrating back and 

forth between the centroids of the zones. The movement of phenomena within any of these 

zones or regions, or the spatial interactions between collections of regions are modeled. This 

requires and enables as well, an ability to swing from fine to coarse gradients. Depending on 
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the output or phenomenon being analyzed, simulating urban flows must occur at a range of 

different scales. 

3.5 Demographic Factor 

IUMAT's approach to simulation in larger scales implicitly forces collecting and 

collating statistical information on population dynamics, characterizing the ways that 

demographic factors influence diverse urban processes. The U.S. Census Bureau keeps track 

of census count and publishes a public report every decade that summarizes demographic 

data at both state, county and town levels. These reports are helpful in understanding urban 

population and defining directions of growth and patterns of change in demographic texture 

to support projections. Both demographic (e.g. ethnicity, age, sex) and non-demographic (e.g. 

unemployment, public amenities) parameters can impact the trends of population growth and 

the decision making process by the people. 

Complex structural models are used to analyze the effect of non-demographic 

variables on population growth. Simple trend extrapolation methods use straightforward 

mathematical techniques to find the best fit to the observed pattern of population growth 

(Smith & Sincich, 1992). The latter kind of projection based on historical trends does not 

account for the causes behind the pattern (Smith et al, 2001). In the middle of the spectrum 

are cohort-component methods that divide the population into an assortment of cohorts that 

are subject to births, deaths and migration. These methods are more data intensive compared 

to extrapolation methods (Alho, 1990). IUMAT employs cohort-component methods to make 

projections of population growth and composition over the time based on availability of data 

and level of details desired. These methods are best for this framework since they do not 

completely disregard assortments of the population that can relate to environmental 

consequences and at the same time do not necessitate dealing with details in an unwanted 
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rigid fashion. As an example, the extent that an adult who is active in the job market travels 

or uses energy is not the same of an infant or a retired elderly member of the household. So in 

this case the population is divided into four different age/sex groups of 0-6, 6-18, 18-65 and 

65 plus. For making projections for cohort population in k-years, we use the following 

equation: 

𝑃! 𝑡 + 𝑘 =   𝑃! 𝑡 ∗   𝑆! 𝑡, 𝑡 + 𝑘 + 𝑁! +𝑀! − 𝑂! 
 

where 𝑃! 𝑡 + 𝑘   is the population of cohort i in k-years after t; 𝑃!(𝑡) is the population 

of cohort i at t;  𝑆! 𝑡, 𝑡 + 𝑘  is the survival ratio between t and t + k; 𝑁!   is the number of new 

population in i group both from birth or aging from the lower age group; 𝑀! is the net 

migrants number; and 𝑂! is the population that goes to the upper age group in k years. These 

elements are calculated based on specific characteristics of the study area.  

The main goal of IUMAT is to provide a basis for understanding the environmental 

impacts of collaborative decisions made by a population of human beings within municipal 

borders of an urban region. As long as comparing environmental impacts of different 

scenarios is of concern and the projection of population is not geared to strategic planning for 

facilities and public services provisions, cohort-component methods are acceptable and 

reliable, since they allow grouping of the population based on characteristics that impact the 

resources use intensity, without addition of unnecessary details. Demographic factors that 

could be practical in such a study are actual size, age composition and spatial distribution of a 

population. How the population is distributed into households and how those households can 

be grouped based on size and age composition can become important as well. Crude birth, 

mortality and migration rates are demographic components of change that should be applied 

to each defined subdivision of the population to enable projections for a desired time period. 
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3.6 Economic Factor 

The environmental impact of a set of economic variables (e.g. income, employment, 

energy pricing, and taxing regulations) is a key part of the IUMAT framework. By using an 

arrangement of multipliers (factors) to estimate changes in environmental impacts, alterations 

in economic variables are modeled. Overall processes of economic transformation, patterns 

of growth or decline in regional economy, or if the economy is export or import oriented are 

beyond the scope of this framework. However, how certain economic statistics are related to 

behavioral aspects of acting agents will be analyzed and the general structure of the economy 

will be considered in identification of decision makers and active agents. 

 IUMAT defines governments, households and businesses as the three main 

economic decision makers in urban life. Transactions are governed by supply and demand 

forces operating in merchandise, financial and labor markets. To illustrate, the buying power 

of an average household is influenced by generic characteristics of the regional economy, but 

a parameter such as the average amount of savings per household might not necessarily have 

immediate environmental impacts, though it can make a difference to behavioral attributes 

and lead to a gradual changes in overall status of local economy in long term. Moreover, the 

aggregated income of families directly impacts household energy consumption. 

The consumption of resources by households can be represented as functions of 

household level of wealth, gross income, or perceived economic security. IUMAT simulates 

economic indicators related to energy consumption and environmental conservation. This 

enables mapping correlations between specific economic indicators and environmental 

impacts. Variables such as population size, average age, educational achievements, average 

household/family size, average family compositions, median household/family income, 

earnings per job, per capita income by location, number of owner/renter occupied units, 



 

 
55 

employment factors, and multitude of other possible indicators define default average values 

in scattered sets of data. This enables comparative analysis of the study region against other 

standards at different scales and facilitates immediate evaluation of baseline economic 

features of the area. A data set for employment by main industries will identify how different 

industrial activities influence regional economic prosperity. 

The economic theory applied to a region depends on scale of the study and size of the 

economy being analyzed as well as availability of data at various geographic levels. 

Determining the economic borders of the study needs to be carried out coherently to enable 

tracking the flows of interaction between the local economy and larger economies of which 

the study region is a part. 

Economic base theory is widely implemented in urban economic studies and assumes 

that households spend money either to import services and goods exogenously or 

endogenously from local businesses (Rutland & O'Hagan, 2007). Input-output analysis is 

another economic accounting analysis method to investigate inter-industry transactions 

(Leontief, 1974). This kind of analysis focuses on the intermediate flows of goods and 

services within the industrial and producer division of the economy.  

Analyses based on households or industrial transaction oversimplify and 

overcomplicate the IUMAT framework. Defining the demand only with regards to final 

consumer side of the economy in the economic base theory is inaccurate and simplistic. The 

addition of value to the final products as they flow down the economic chain to consumers 

creates unnecessary complexity. A new method needs to be defined. The unit of economic 

analysis in the IUMAT framework is the building, which forms the unit structure of urban 

economy. Regardless of the building's placement in the production-consumption chain, its 

part in transmitting and receiving varied flows can be tracked as separate economic 

transactions in contact with other separate units. 
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3.7 Land cover 

In the IUMAT framework, land is defined in spatial coordinates that characterize land 

cover and use. Prevailing land cover characteristics influence, inform, or control possible 

prospects of use. And, certain types of land use necessitate alterations to the existing land 

cover. Changes to land use and cover are also governed and limited by rules and regulations 

enacted by public or private administrative authorities. 

Notwithstanding government rules and regulations, there are multiple elements that 

shape the way a parcel of land is used. Different economic and physical drivers such as the 

price of land, accessibility, capacity to support different types of use, as well as distribution 

of activities in the surrounding pieces influence land use (Verburg et al., 2004). Land cannot 

exist isolated and land development could force changes to the surrounding area. For an in-

depth land use analysis all parcels of land have to be classified into different categories of use 

and land cover as a means to characterize the human-land relationship. 

Changes in land use are not free of environmental consequences (Lambin & 

Meyfroidt, 2010). Sustainable land use planning is predicated on minimizing transformation 

of green-sites into brown-sites with simultaneous sufficient provision of land for urban 

activities (Schädler et al., 2012). Replacing permeable land with impervious surfaces 

increases the risk of flooding (Pattison & Lane, 2012). Intense use of air conditioning units 

and dark paving materials trigger the heat island effect in urban areas (Tremeac et al., 2012). 

New developments require roads to support traffic to and from developed sites. 

Contamination of soil or groundwater may occur if toxic materials permeate. Development of 

land may also disturb the ecosystem and pose threats to biodiversity of the region (Schiesari 

et al., 2013). Although quantification of all these various impacts is beyond the scope of the 

IUMAT framework. Net carbon emissions from development due to differences in carbon 
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sequestration capacity of alternative land covers, and the urban heat island effect are 

quantified. 

Cities are made up of varied types of land use each possessing unique quantifiable 

demographic and economic characteristics that are best represented and understood using 

Geographical Information Systems (GIS) (Geyer et al., 2010). GIS land use mapping uses 

discrete zones (versus continuous space representation) that treat borders of properties as 

geographic boundaries between zones. Discrete conceptualization of the space enables 

mathematical formulation and use of computational techniques. Land use mapping is the 

starting point in embedding functionalities of GIS approaches into urban simulation where 

discrete zones can be referenced and identified using algebraic subscripted and superscripted 

factors such as Zone No.   !"#$%  !"#$  !"#!$%&'(!"#  !"#$  !"#!$%&'( . Using GIS features for planar 

conceptualization of space allocation of activities in buildings and other spatial units enables 

appending non-spatial data to layer attribute tables. The accurate mapping of land use 

location is necessary for the integration of transportation and resource consumption patterns. 

The IUMAT framework employs two distinctive GIS approaches, distinguishing between 

mapping and modeling techniques. 

In 1965, a classifying numeric coding scheme that was based on the Standard 

Industrial Classification system (SIC), the Standard Land Use Coding Manual (SLUCM), 

was introduced by the Bureau of Public Roads (Federal Highway Administration) and the 

Urban Renewal Administration (Department of Housing) (Standard land use coding manual, 

1965). In 1994 American Planning Association (APA) provided a report for the Federal 

Highway Administration (FHWA) to update the 1965 SLUCM and create a more 

comprehensive and up to date coding system with better adaptability to GIS networks 

(Lawson et al., 2012). APA's Research Department introduced Land Based Classification 
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Standards (LBCS) via five main dimensions: activity, function, structure type, site 

development character, and ownership based on different case studies at different scales 

(Land based classification system, 2016). IUMAT uses the APA's 2001 LBCS tables and the 

associated color-coding system as a standardized land use coding system for mapping 

purposes. 

For modeling objectives, a different system is required. Changes in land cover may 

occur naturally due to climate conditions as well as human induced alterations. The IUMAT 

framework employs Anderson et al. (1976) land coding system for monitoring conversion of 

natural land to built environment. Since transformations of green-fields into brown-fields 

usually originate from new construction or change of use projects, this system classifies land 

into nine basic categories as urban/built-up, agricultural, rangeland, forest land, water, 

wetland, barren land, tundra, perennial snow/ice. The impact of changes in land cover is 

quantified in the context of buildings as core elements. Land cover is the cornerstone of the 

land use analysis and is based on transformation of land cover between nine principal 

categories introduced in the Anderson land use classification system (See Figure 3.1). 
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Figure 3.1: Land Use analysis algorithms for IUMAT 
   

3.8 Transportation 

Transportation systems are designed to support mobility associated with land use 

allocation in a community. Urban transportation planning is aimed at creating the most viable 

alternative systems of transportation based on the type and volume of activity and 

compactness of settlement. The transportation simulation implemented by IUMAT 

determines the traffic-related environmental consequences of change in land use, and 

characterizes mobility within the urban region. This is the fundamental distinction between 

the IUMAT framework and other methods of transportation modeling. In transportation 

modeling scenarios, individuals make choices for their urban travels based on many factors 

such as cost, comfort, availability of public transport, time, and privacy (Klöckner, 2004). In 

contrast, the IUMAT framework focuses on the environmental consequences resulting from 

the demand for various traffic modes. 
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The IUMAT study area is divided into a network of separate traffic analysis zones 

(TAZs). The TAZs are buildings grouped as neighborhoods with relatively uniform 

distribution of activity throughout the zone. Every TAZ is assigned a centroid that is an 

optimal distance from buildings. The centroid connects the street network nodes. The path 

taken from the centroid of a zone (origin) to one's destination is called a trip. The number of 

the trips originating from or ending in a TAZ changes according to land use types in a zone 

and the amount of attractions a zone has to offer, along with demographic and economic 

factors that are directly related to the trip generation process. Traffic demand models are 

specified to include the demand for travel as well as specific features of the traffic analysis 

zones. After comparing the traffic flows calculated by the travel demand model against the 

actual collected traffic flow data, the calibrated model can be used to forecast traffic flows 

generated by different cases of growth and alternative types of human activity. The most 

common travel demand modeling process, commonly known as Four Step Travel Demand 

prediction incorporates four separate key parts (McNally, 2008). Trip generation predicts trip 

frequency from and to a traffic analysis zone as an origin or destination. Trip distribution in 

which the generated trips are distributed between the TAZs, mode choice that predicts the 

proportion of trips by alternative modes of travel, and finally route choice whence the trips 

are assigned to routes of transportation network that connect the TAZs (See Figure 3.2). 
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Figure 3.2: Four-step travel demand prediction model used by IUMAT 
 
 

Traffic analysis zones are connected to the street network nodes from the centroid of 

the zones. In this framework based on the land use type (or building type), the trip generation 

process will be carried out in trip/building and trip/acre format for indoor and outdoor types 

of activity respectively. This indicates that IUMAT's travel demand model generates the trips 

at a lower level (buildings) before assigning them to the TAZ centroids compared to 

conventional transportation modeling software. Within every building, parameters such as 

number of workers and students per household, level of education and income, number of 

vehicles owned by the household, size and age distribution of the family, and availability of 

attractions at the nearby zones are all factors that impact the number of trips being produced 

by a residential building. At the scale of the zone, parameters such as density of development 

and distribution of land use type are effective as they specify overall characteristics of the 

zones. Trip distribution is carried out using the well-known gravity model based on number 

of produced and attracted travels and impeding factors between the zones such as time and 

cost (Erlander, 1990): 

T!" =
A!  F!"  K!"

A!  F!"  K!"
!

!!!

∗   P! 
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where Tij is the number of trips generated at zone i and destined at zone j; Pi is total 

number of trips generated at zone i; Aj is the total trip attraction at zone j; Fij is the friction 

factor relating to travel impedance between i and j; and Kij is a socio-economic adjustment 

factor. 

The mode choice model estimates the percentage of trips assigned to different 

transportation modes based upon trip characteristics, quality of public transportation systems, 

vehicle ownership, environmental literacy and behavior of travelers. Route choice modeling 

focuses on using a minimum time route algorithm. In this method trips that cross the 

boundary of the study area are ignored. These four steps are not necessarily followed in a 

sequential chain. For instance, availability of transportation modes at/to a zone will impact 

trip production/attraction of the zone. Also the impedance associated with different 

transportation modes (such as expected time for public transportation vehicles) might affect 

decisions made by travelers. 

The travel demand produced by buildings is assigned to a TAZ centroid, and the 

origin-destination matrices show the number of trips between different zones and within each 

zone, involving different modes of travel. These matrices are introduced to the route choice 

model to calculate miles travelled in different traffic modes. Quality of the public 

transportation fleet, efficiency of personal cars, and types of fuel put into vehicles are 

factored by calculating carbon emission based on results from the route choice model. 

IUMAT has the capacity to project factors such as traffic volume, average peak hour traffic 

(PHV) and average daily traffic (ADT) for all of the traffic links. 

This approach differentiates between person trips (public transportation) and vehicle 

trips (automobile), but does not require characterizing the trips as home based work, home 

base non-work or any other type. Trip chaining is not IUMAT's intent. However, it has 

advantages over conventional transportation modeling structures that may assume 
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transportation demand is only generated at residential TAZs. IUMAT accounts for 

commercial and industrial transportation as well as public transportation. Given that the 

number of public transportation trips is not directly influenced by decisions made by 

individual travelers (bus system runs on a given schedule regardless of how many people 

choose the bus mode on a certain day), public transportation emissions are calculated 

separately and added up to the aggregate transportation emissions figure. The demand for 

public transportation produced by residents of individual buildings is estimated by modeling 

the public transportation schedules of different modes. This methodology enables analyzing 

traffic demand based on distribution of human activity (land use) and emphasizes 

environmental impact analysis of the transportation related issues tailored towards analyzing 

policies towards mitigation of negative environmental impacts (see Figure 3.3). 

  
 

Figure 3.3: Transportation algorithms for IUMAT 
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3.9 Energy, water and materials 

Creating environmentally sound policies requires the ability to analyze and project 

impacts and implications of different growth and development scenarios. Energy, water and 

material (EWM) flows must be optimized to mitigate resource consumption. IUMAT's model 

for EWM is a bottom-up model for generating daily spatial distribution demand profiles for a 

large number of buildings from different urban sectors. Detailed information on buildings 

and neighborhood characteristics extend the accuracy of the model to higher levels. The 

flexibility of the model enables switching between statistical and engineering methodologies, 

even in the absence of fine scale data. By employing regression analysis methods, electricity 

and fuel intensities are determined for building types based on size, location, and year of 

construction. 

The EWM model works in connection with the GIS mapping model that stores land 

use (building type and land cover) data in attribute tables. This component is critical since the 

building type and land cover are the physical factors with most substantial impacts on 

resource use. Moreover, mapping provides an effective visual communication of the physical 

structure of the urban area. Connector tools that associate the databases with various data 

layers tag the buildings' geometry by type of use including social and economic 

characteristics required for predicting EWM profiles. 

The layers contain analytical components to convey land use and cover. Generic 

EWM templates based on loads, gross area, window-to-wall ratio, year of construction, 

activity types etc. are stored in the background to be accessed when collected data is 

insufficient. The templates reflect the building codes based on location, type of use and year 

of construction. Depending on the technology used for energy generation, different amounts 

of water may be consumed. Supplying the required water is itself associated with energy use. 
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The IUMAT EWM model characterizes the energy, water and material use dependencies 

between five subcategories (land cover, transportation, energy, water, materials) using 

calculative algorithms. The constructed network of algorithms is presented in Figure 3.4 and 

Figure 3.5.  

  
 

Figure 3.4: Energy use algorithms for IUMAT 
 
 

For a list of organizations and manufacturing unit types the North American Industry 

Classification System (NAICS, 2016), which has replaced the Standard Industrial 

Classification (SIC) in 1997 is used by IUMAT. To collect primary template energy data, end 

use consumption surveys provided by the U.S. Energy Information Administration (EIA) that 

are Residential Energy Consumption Survey (RECS), Commercial Building Energy 

Consumption (CBECS), Manufacturing Energy Consumption (MECS), and Transportation 

(RTECS) for the establishments classified within NAICS subsector codes provide the basis 
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for a general understanding of patterns of energy use in different sectors (EIA consumption 

and efficiency, 2016). 

The deterministic component of the models is critical in showing the correlations 

between independent variable and the environmental impact which is of interest. Initial 

examination of the data and the interpretation of the expected patterns provide the basic 

insight for choosing the models. In order to deduce the parameters of deterministic models, 

fitting techniques need to be applied. In addition, a complete understanding of the physical 

nature of patterns is essential. For example, having a constant number of residents, energy 

and water usage of the household should increase with the living space area. But this increase 

is not expected to be of the same nature: the impact of increasing square footage on water use 

is less significant compared to its impact on energy use. Dividing a household of four into 

two separate households of two is not expected to affect the amount of potable water use, to 

the same extent that it does for the energy demand. 

The functional response for water usage versus living are is more likely to be of a 

f   x = !"!

!!  !  !!
 type function (since a maximum limit is expected for a constant number of 

residents), compared to energy use versus living area, which is likely to follow a power 

functional response of response of g  (x) = 𝑐𝑥! (0 < d < 1) nature. However, the existence of 

noise around the expected pattern (deterministic model) is theoretically unavoidable. The 

noise appears in the system due to both measurement (variability in measurements) and 

process (unmeasurable randomness in the system) errors, and leads to larger confidence 

intervals and lower statistical power for inferring the desired environmental patterns. The 

errors need to be explained by probability distributions that stand for variations around the 

expected (fitted) value. The probability distribution can be regarded as a mechanism for data 

generation in simulation cases that generates data points in a random fashion that are 
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expected to occur in real case examples. Since the desired outcome of simulation processes 

by IUMAT is basically numeric values (numbers for resource use intensity for example), 

which is a continuous range, normal distribution and other probability distributions (if 

necessary) for continuous data will be used for describing the stochastic component of the 

models. 
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Figure 3.5: Water and material use algorithm 
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3.10 Aggregation 

IUMAT holistic framework (Figure 3.6) incorporates four primary components: 

a. Input/output interfaces that directly communicate with the user through setting, 

translating, coding, and exporting data. 

b. Spatial storage unit that holds the Spatial Compiled simulation results. This unit 

keeps record of socio-economic attributes as well. 

c. Models that are the main simulation engines for capturing the urban metabolism 

features. 

d. Coordinators that are responsible for data distribution between the models. 

Each of these components consists of different sub-units such as data generator 

model, spatial data store, IUMAT wizard connector, metabolism models, and data exporter. 

Raw data and user inputs are introduced at the input entry, while topography, land use and 

socio-economic elements are spatially compiled and disaggregated. The data generator takes 

advantage of compiled data to generate large samples. The Energy, Material and Water 

Model (EMW Model), Transportation Model and Land Use Model work within the IUMAT 

Wizard connector. This connector is responsible for querying data from/to the data storage 

unit. This unit also controls the data distribution and facilitates communication between 

metabolism models. With respect to local regulations and policies, users are able to actively 

manage modeling coefficients and parameters within the models. The Wizard connector 

forwards projected data and real-time data to the Calibration Model that provides statistical 

comparison results and marginal errors for users' review. Based on statistical results, this 

Model also provides suggestions for calibration of the simulation models. The Result 

Aggregator Model compiles and aggregates simulation results and creates a detailed report. 
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Finally, user is able to create different comparative maps or spatial data exports of simulation 

results by adjusting preferences in the Exporter and Visualizer Tool. 

 

 
 

Figure 3.6: IUMAT holistic structure 

3.11 Conclusion 

Cities are complex systems that require large-scale simulation tools to quantify, 

analyze, and predict environmental impacts. IUMAT aims to simulate the inter-dependencies 

between the variables and subsystems of an urban region to create an integrated framework 

for computing urban environmental performance. 

IUMAT uses spatial and temporal data for comprehensive microscale analysis. There 

are high levels of uncertainty in urban temporal and spatial dynamics, plus cities are open 

systems that are continually interacting with the environment. This requires conceptualizing 

the urban simulation framework in a way that maximizes the prospects for practical 
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collection of data (statistical methods) and enables executing randomization procedures based 

on probability functions of different variables (engineering methods). IUMAT models the 

city as a complex system using an iterative network of distribution models that generate and 

assign locational variables in patterns derived from maximized probability distribution 

functions. Inductive statistical methods and data fitting techniques are employed to examine 

how different parameters (atomic elements of the model) relate urban variables to observed 

patterns of data. Practical limitations of the framework are the availability of data and 

capability of mathematical analysis methods in handling large numbers of parameters. 

The IUMAT framework supports collection of a database that reflects the syntax of 

the urban study area. It motivates understanding buildings as individual agents that are 

embedded with relationships and rules to mimic real scenarios of change in the urban 

context. To achieve both mapping and modeling goals, statistical methods are employed to 

create functional data patterns wherever the existing information is unavailable. The 

presented framework demonstrates a method to investigate the influence of dynamics and 

demographic/economic factors in an intertwined network of land cover, transportation, and 

energy/water/materials use analysis. IUMAT is distinctive from existing land 

use/energy/transportation simulation tools because it focuses on the environmental 

consequences of development rather than correlated outcomes. 

IUMAT models the impacts of social/economic/physical factors on the environmental 

footprint of a group of buildings at varying scales. It is a calculative/evaluative tool not 

restricted to rural/urban dichotomies. Its outputs help to inform the overall sustainability of 

different classes of urban settlement in terms of energy/water/materials use, waste/sewage 

production, and atmospheric emissions. 
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CHAPTER 4 
 

DEVELOPING AN AUTOMATED METHOD FOR THE APPLICATION OF LIDAR 

IN IUMAT LAND-USE MODEL: ANALYSIS OF LAND-USE CHANGES USING 

BUILDING-FORM PARAMETERIZATION, GIS, AND ARTIFICIAL NEURAL 

NETWORKS  

The following chapter will be submitted to the Computers, Environment and Urban 

systems Journal. Nariman Mostafavi and Dr. Simi Hoque (Corresponding Author) are other 

coauthors in this article.  

 

4.1 Abstract 

Predicting the resource consumption in the built environment and its associated 

environmental consequences (urban metabolism analysis) is one of the core challenges facing 

policy-makers and planners seeking to increase the sustainability of urban areas. The study of 

land-use change has many implications in infrastructure design, resource allocation, and 

urban metabolism simulation. This paper presents a Land-use Model that uses Remote 

Sensing, GIS, and Artificial Neural Networks (ANNs) to predict urban growth patterns 

within the IUMAT framework (Integrated Urban Metabolism Analysis Tool), which is an 

analytical platform for quantifying overall sustainability in the urbanscape. 

Our work outlines a method for generating building-form variables from Light 

Detection and Ranging (LIDAR) data by using Density-Based Spatial Clustering and normal 

equations. In addition to physical, institutional, cultural, and environmental parameters 

commonly studied, building form is introduced as a new determinant factor in land-use 

change modeling. Land-use data, transportation arteries, physical and environmental 

characteristics, and building forms are converted into a spatial grid system with a 6x6 meters 
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cell resolution. We apply kernel density estimation techniques and Euclidean distance to the 

nearest neighboring cell (K-dimensional-tree algorithm) for generating explanatory variables 

such as density, proximity, and land cover estimates.  

The Town of Amherst in Western Massachusetts for the period of 1971-2005 is used 

as a case study for testing the model. We employ a backpropagation method for training the 

ANNs models based on explanatory variables. A computer algorithm calibrates and 

statistically tests the ANNs models based on calibration and test data for selecting the 

optimum ANNs model with the lowest error on the calibration data. ANNs modeling is used 

to avoid the subjectivity of modelers or data format in the results. By isolating the weights of 

each explanatory variable in the models, this study highlights the influence of building 

geometry on future development scenarios. This Land-use Model, within IUMAT or other 

analytical models, may be useful to local planning officials in understanding the complexity 

of land-use change and developing enhanced land-use policies.  

4.2 Introduction 

Mountain snowpack declination (Mote et al., 2005), unprecedented drought in 

California (Mann & Gleick, 2015), and Atlantic Hurricane trends (Mann & Emanuel, 2006) 

are some examples of the changing climate and as the U.N. Climate Chief clearly expressed 

“This transformation is unstoppable” (UN releases draft agreement on climate change, 2015). 

Human activities and rapid urbanization are two major sources of GHG emissions 

(International Energy Agency, 2008, Grimm et al., 2008). While the world population living 

in the urban or suburban areas is expected to grow 25 percent between 2011 and 2050 

(Crossette et al., 2011), more studies provide evidence highlighting strong association 

between land-use change and climate change (Melton et al., 2016, Heald & Spracklen, 2015, 
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Pielke et al., 2002). Planners develop policies for minimizing environmental impacts of land-

use change like air pollution (Mage et al., 1996), waste (Kennedy et al., 2009), and soil 

erosion (Chen, 2007) in urban and suburban districts. However, understanding the processes 

and parameters involved in land-use transition remains one of the most challenging tasks in 

the planning community. To address this issue, planners have employed advanced methods 

such as Cellular Automata and Artificial Neural Networks to capture land-use change. Land-

use models improve our perception of the causes and consequences of existing spatial 

pattern, and the extent of future changes (Verburg et al., 2004). 

4.2.1 Existing Land-use Model and Modeling Approach 

Early land-use models with deterministic approaches concentrated solely on 

modeling deforestation (Lambin, 1997). More recent methods implement dynamic methods 

to simulate complex land cover changes like urbanization (Carrero et al., 2014). Land-use 

and urban models can be categorized based on modeling approaches: spatial approaches, 

dynamics of time and scale, and planning applications (Silva & Wu, 2012). These models 

investigate the interaction of involved parameters at a micro scale (eg. TLUMIP (Weidner et 

al., 2009), UrbanSim (Waddell et al., 2003), ILUMASS (Wagner & Wegener, 2007)), or a 

macro scale (eg. LTM (Pijanowski et al., 2002)), or at multiple scales (eg. WiVsim (Spahn 

and Lenz, 2007)). Land-use changes and urban growth models in the long term (eg. 

FEARLUS, Cioffi-Revilla & Gotts, 2003), medium term (eg. CLUE-S (Verburg et al., 

2002)), or short term are developed for different planning tasks (Silva & Wu, 2012). 

Cellular Automata (CA) based models (eg. SLEUTH (Jantz et al., 2010), iCity 

(Stevens et al., 2007), Metronamica (van Delden et al., 2005)), Agent-Based Models (eg. 

STAU-Wien (Loibl & Toetzer, 2003), SIMPOP (Sanders et al., 1997)), Genetic Algorithms 
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(Tseng et al., 2008), and Artificial Neural Networks (eg. ART-MMAP (Liu & Seto, 2008; 

Omrani et al., 2012; Pijanowski et al., 2014) are four intelligent approaches to modeling land-

use changes. CA models and Agent-Based Models work with spatial data while other 

methods need to be integrated with other spatial techniques (Carrero et al., 2014). CA is used 

for capturing long term conversion of non-urban to urban land in urban growth models. In 

this dynamic discrete modeling technique, each cell responds to the same set of rules based 

on states of neighboring cells while ignoring the global spatial context and characteristics of 

built environment (Vanegas et al., 2010). In contrast to CA, the interaction between agents in 

an urban context is included in Agent-Based Models. The latter method still applies simple 

behavioral rules influenced by localized context, in comparison to CA models, but there are 

limited attempts for validating models by observed data (Vanegas et al., 2010). Genetic 

Algorithms is a method used to generate and optimize a set of parameters for complex 

problems with high levels of uncertainty (Jenerette & Wu, 2001) However, the logic behind 

the rules is difficult to parse (Tseng et al., 2008). 

Similar to Genetic Algorithms, Artificial Neural Networks (ANNs) apply machines 

with the mathematical logic capacity like human neural systems to solve sophisticated 

problems such as land-use changes and urban growth (Basse et al., 2014). ANNs are 

interconnected networks of neurons comprised of input, output, and hidden layers. 

Interrelational weights between nodes are updated by implementing different algorithms and 

an internal transfer function (Aisa et al., 2008). Users are responsible for defining the number 

of hidden layers, regularization value, learning rate, learning iteration numbers, and data 

encoding techniques (Tseng et al., 2008). 

ANNs, with the aid of spatial analysis methods, are capable of simulating land-use 

and urban changes by integrating the variety of environmental, social, and political variables. 
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For example, in ART-MMAP, Liu & Seto (2008) predict urban growth by learning from past 

trends and regularized weights of socioeconomic variables. Tayyebi et al. (2011) use an 

ANNs-based model for predicting urban growth boundaries, based on variables such as built 

areas, accessibility to roads, green areas, and service stations. Maithani (2009) proposed 

coupling ANNs with GIS and remote sensing measurements for generating site variables and 

reducing subjectivity in urban growth modeling. The non-parametric characteristic of ANNs 

models may be considered an alternative to estimating land-use transition probabilities in CA 

simulation models (Almeida et al., 2008). Unlike common statistical methods, ANNs do not 

make assumptions about the data distribution and can reduce the subjectivity in modeling 

complex phenomena such as urban growth where there is high nonlinearity between variables 

(Maithani, 2009). ANNs also perform better in predicting land-use classes changes compared 

to other well-known non-linear models like Classification and Regression Trees (CART) and 

Multivariate Adaptive Regression Splines (Tayyebi & Pijanowski, 2014). Integration of 

Multiple Neural Networks in urban growth models could improve the modeling accuracy and 

enhance modeling capacity in capturing spatial heterogeneity (Wang & Mountrakis, 2011). 

However, calibration and validation of ANNs models remains a challenge (Basse et al., 

2014). Although Triantakonstantis & Mountrakis (2012) believe there is no need for 

multicollinearity and spatial correlation assumption in ANNs analysis, others like Garg and 

Tai (2012) assume that ANNs models cannot automatically deal with data interrelationships 

in training data. One of the main weakness is the “black box” behavior of ANNs models 

where users cannot specifically extract rules or conclusions from the learning process 

(Triantakonstantis & Mountrakis 2012). 

The integration of land-use vector data and urban form in urban simulation may 

improve our understanding of human behavior (Silva & Wu, 2012) in different areas such as 
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transportation and travel behavior (Chao & Qing, 2011; Ewing & Cervero, 2001; Newman & 

Kenworthy, 2006; Cervero & Gorham, 2009), accessibility (Handy & Clifton, 2001), energy 

use (Ewing & Rong, 2008), life cycle analysis (Norman et al., 2006), ecological assessments 

(Bereitschaft & Debbage, 2013), and environmental impacts (Anderson et al., 1996; Ellis, 

2002; Ewing & Rong, 2008; Frey, 2003; Gordon & Richardson, 1997; Newton, 2000; 

Williams et al., 2000). These studies confirm that the integration of a comprehensive set of 

land-use and urban form variables (e.g. Hamidi et al., 2015; Chao & Qing, 2011) improve 

prediction of complex problems, and even provide results that contradict conventional 

wisdom. For example, Glaeser and Kahn (2010) found that more restrictive land-use 

regulations increase urban GHG emissions by promoting new developments in the periphery 

of cities. Urban form variables such as concentration, dispersal, mixed use (Buxton, 2000; 

Newton et al., 2000), urban continuity (Bechle et al., 2011), centrality, compactness index, 

and open space ratio (Huang et al., 2007), in combination with urban sprawl index (Lopez 

and Hynes, 2003; Sutton, 2003) are also used in analyzing the metabolic performance of 

cities. For example, Bereitschaft and Debbage (2013) study the relation between urban 

continuity and shape complexity indices with air pollution. These indices are also integrated 

into landscape metrics for exploring evolutions of land-use and urban growth (Ji et. al, 2006; 

Luck & Wu, 2002). In other studies, multi-dimensional sprawl indices (Hamidi et al., 2015, 

Ewing et al., 2003) integrated with socioeconomic variables and urban form indices are 

applied for measuring transportation. 

Urban and building form indices play an essential role in modeling human behavior 

and urban systems. Three-dimensional urban geography research performs better when 

compared to two-dimensional analysis in capturing the complexity of built environment 

(Thill et al., 2011). Researchers have investigated the effects of a building’s height on 
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different areas such as heat island, rainwater runoff, pollution, and habitability (Lin et al., 

2014). For example building heights influence the rainfall run-off process in an urban 

environment. Integration of building heights in urban hydraulic models enhances modeling 

capacity for capturing the water run-off and plays a significant role in storm water 

management (Isidoro & Lima 2014). Combined with other morphological properties of 

buildings such as roof area and compactness, building height is used to extract urban land-use 

categories (Barnsley et al., 2003). The vertical aspect of urbanscape influences parameters 

such as humidity, wind direction and speed, and solar radiation; these effects create different 

microclimates and thermal comforts within urban districts (Palme & Ramírez, 2013). In 

addition to thermal property, building heights are critical in analyzing visual and acoustical 

effects of urbanscape. Ko et al. (2011) evaluated impacts of building heights on road traffic 

noise for identifying areas with excessive environmental noise. Moreover, the vertical growth 

of urbanscapes significantly influences "livability" in urbanscapes (Lin et al., 2014). 

Comprehensive 3D geospatial database of urbanscape not only is a valuable resource for 

analyzing different aspects of urban systems, but also is useful during emergencies by 

reducing the response time on multi-level structures (Lee & Zlatanova, 2008; Kwan & Lee, 

2005).  

 While most urban models focus on horizontal growth patterns, few investigate the 

impacts of vertical characteristics of urbanscape into predicting land-use changes. In this 

study, we explore the possibility of using building form indices in land-use modeling. In 

contrast to environmental, physical, institutional, and cultural data, many planning and design 

agencies do not have the resources or knowledge to develop a comprehensive vectorized 

database of urban and building geometry. Parameterization of roof shape provides enough 

information about most of the architectural characteristics of a building such as geometric 
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prototype, footprints, site coverage, courtyard ratio, the number of floors, height, and 

building orientations. Therefore, building form is identified as roof shape in this study. 

LIDAR data, which is the 3-dimensional measurement of the built environment, is a valuable 

resource for creating building form parameters. Our research introduces an automated 

method for generating building form variables from LIDAR measurements.  

This approach is integrated into the IUMAT Land-Use Model (IUMAT-LUM) with 

an ANNs modeling structure and is applied to and validated for the town of Amherst, 

Massachusetts. The IUMAT, Integrated Urban Metabolism Analysis Tool, is an analytical 

platform for quantifying overall sustainability in the urbanscape. Unlike other urban 

metabolism studies, IUMAT analyzes an urban area as a single entity and simulates urban 

metabolism by taking all urban subsystems in modeling without directly dividing them. Unit 

of analysis in IUMAT is buildings, which serve as key indicators in all sectors of urban 

activities. IUMAT evaluate the environmental impacts in an urbanscape by measuring land-

use change, transportation, and consumption of energy and water (Mostafavi et al., 2014). 

IUMAT Land-Use Model (IUMAT-LUM) is one of three IUMAT models that simulates 

urban growth and future development patterns.  

4.2.2 Chapter Structure and Research Questions 

The Town of Amherst is selected as a case study because of its steady growth of the 

built environment and the availability of geospatial and LIDAR databases essential for 

modeling land-use transitions. Our research questions are: 

1. How can Light Detection and Ranging data (LIDAR) be transformed into a 

determinant factor (building form indices) in land-use modeling?  
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2. Does building form indices in combination with other spatial explanatory variables 

improve the predictive power of land-use modeling? 

The remainder of this paper is organized into three additional sections. The 

Methodology section (2) outlines our approach for generating building form variables from 

LIDAR measurements and other explanatory variables from GIS vectorized databases that 

are usually available through public agencies or town planning boards. It summarizes the 

Artificial Neural Network (ANNs) embedded in the structure of IUMAT-LUM. Section 3 

(Implementation and Results) describes the study area and databases applied in this study. 

We explain the implementation of the proposed IUMAT-LUM framework to the town of 

Amherst. Different combinations of explanatory variables are combined and used for 

generating multiple land-use models. The impacts of the building form variables in predicting 

changes in the pattern of the built environment are also explored. In the final and concluding 

section (4), we discuss IUMAT-LUM results and its potential for integrating into other urban 

metabolism and land-use policy studies.   

4.3 Methodology 

4.3.1 Data Preparation Process 

Land-use models are used to investigate the relationships between socioeconomic 

characteristics and the built environment in order to analyze and predict land-use change. In 

addition to physical, institutional, cultural, and environmental parameters commonly studied, 

in this paper, we integrate building and urban form as a new determinant factor for modeling 

land-use change. We investigate the influence of building form indices extracted from 

LIDAR measurements on patterns of new developments. The three main components of the 

IUMAT-LUM framework are the Building Form Generator, the Spatial Variables Generator, 
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and the Simulator (Figure 4.1 and 6). The Building Form Generator applies different 

algorithms for extracting building form variables from LIDAR data. The Spatial Variables 

Generator compiles these variables and GIS vector data into a spatial grid system and 

employs spatial functions for calculating density, proximity, and land cover estimates. 

Generated explanatory variables are split into training, calibration, and test data for training 

and calibrating ANNs models in the Simulator. And finally, optimized ANNs training 

weights are applied to simulate land-use change. The algorithms of IUMAT-LUM are written 

in Python to generate, process, and analyze data.   

4.3.2 Building Form Generator 

Airborne LIDAR is a remote survey technology, which generates 3D points with 

coordinates (x and y) and elevation information (z) about the natural and built environment 

without any projection and shadow distortions (Yan et al., 2015). Compared to aerial and 

satellite images, LIDAR data is more useful for extracting building 3D models especially 

when dealing with large sets of objects (Zhang et al., 2006). Building and urban 3D models 

have many applications in planning and urban design such as measuring energy performance, 

creating virtual urban models, and assessing urban heat island (Jensen, 2009). For the last 

decade, researchers have developed several algorithms for converting LIDAR data to 

building 3D models at the urban scale (Grammatikopoulos et al., 2015; Yan et al., 2015; 

Palmer & Shan, 2005; You et. al, 2003). Schwalbe et al. (2005) categorized these algorithms 

into model-driven and data-driven methods. Data-driven algorithms identify planes in cloud 

points or combine LIDAR measurements with other data sources like imagery to extract 

building 3D models, while in model-driven approaches, limited predefined geometry models 

are fitted to the LIDAR measurements. 
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The Building Form Generator in IUMAT-LUM integrates a model-driven approach 

in its framework and employs five steps towards converting LIDAR measurements to 

building variables (Figure 4.1). In the first step, the Building Clusters Detector applies a 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm 

introduced by Ester et al. (1996). LIDAR points provided by public agencies can have a 

classification type such as ground, low vegetation, or building assigned to it, which define the 

type of object represented by that point. The Clusters Detector selects LIDAR points in the 

building class within an urban block, classifies points with higher density together as 

buildings, and sets low-density regions as outliers. The DBSCAN algorithm is suitable for 

detecting arbitrary shapes with high efficiency on large databases without specifying 

numbers of clusters for the algorithm. The Cluster Detector uses the DBSCAN algorithm in a 

Scikit-learn library (Python). Users are responsible for adjusting min_samples and eps 

parameters, which define minimum density of points in clusters (of buildings). The min-

sample specifies the minimum number of points in a region and the eps parameter represents 

the maximum distance allowed by the algorithm between points in each cluster.  
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Figure 4.1: Conceptual framework of IUMAT-LUM data preparation process 
 

If building boundary vector data exists in spatial databases, the Building Form 

Generator checks the positions of cluster points relative to those boundaries. In step 2, using 

a Ray Crossing Number method (Shimrat, 1962), the model assigns zero to points inside a 

building footprint and one to points outside. The Cluster Detector outcomes are then used in 

the Geometry Cluster Detector (Step 3), which applies Mean Shift and Fuzzy clustering 

algorithms for identifying geometric components in each building cluster. Mean shift is a 

non-parametric technique for detecting modes of a density (Eq. 1 and Eq. 2) and was 

originally proposed for image segmentation and analysis of multidimensional spaces 

(Comaniciu & Meer, 2002). Within a given building cluster, the algorithm initially selects 

centroid candidates and updates candidates' positions to be the means of points in each 

iteration. 

 m(x) = 
!(!!!!)  !!

!
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K(x) = 𝑒𝑥𝑝  (−||  𝑥  ||!)   (2) 
 

where K is a Gaussian kernel density estimation function of squared distances 

between points and the cluster centroid. The algorithm ends when the difference between 

m(x) and x is small (m(x) → x). The numbers of geometric components are defined based on 

the size of a building and examined by Fuzzy Clustering. This soft clustering method gives 

each point a degree of belonging to different clusters instead of assigning concretely to a 

particular group. If the fuzzy partition coefficient is more than 0.9, the Cluster Detector 

breaks a building component down into multiple ones (Figure 4.2).  

 

 
 

Figure 4.2: Examples of the Cluster Detector results in Amherst: Mean shift and Fuzzy 
Clustering algorithms are used for grouping LIDAR points in each building and defining 

geometry components. Each color represents one geometry component 
 

In the step 4, the Geometry Detector uses three predefined geometry models to 

identify geometric types for each building component: one linear model for a flat roof, two 

linear models for a gable and single sloped roof, and one non-linear model for gambrel roof 
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(Figure 4.3 and Figure 4.4). For each component, the algorithm fits three predefined models 

and selects a model with the lowest mean squared error (MSE). For the optimization of 

computing performance, we use the normal equations that perform faster compared to other 

non-vectorize least square regression techniques. The normal equations apply matrix 

derivatives for minimizing the model’s error to calculate the fitting parameters (Eq. 3 and 

Eq.4). 

 
𝜃   = (𝑋!×𝑋)!!×𝑋!×𝑦  (3) 

 
𝑀𝑆𝐸   = !

!
(𝑦  − (𝜃  ×𝑋!)!!)!!

!!!   (4) 
 

where X is a matrix 𝑀!  ×  !!! of coordinates (x and y values), y is a m-dimensional 

vector 𝑉! of elevation information. 𝜃  is a n+1-dimensional vector 𝑉!!! of fitting 

parameters, m is number of points in each geometric components, and n is number of 

coordinates (two in our study). 

 
 

Figure 4.3: Example of Geometry Detector fitting results:  three predefined models fitted to 
a building component and the algorithm selects a model with lowest MSE value  
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In the final step, for each building, the Building Form Variables Generator calculates 

building form variables (Eq. 5) and generates building information variables such as area, 

number of floors, and height. 

 
𝐶!"   = 𝑛!"#$%&' + (𝑐𝑙_𝑡𝑦𝑝𝑒!×𝑐𝑙_𝑝!)   +   (𝑖𝑓  𝑐𝑙_𝑒𝑥𝑡!   , 1)!

!!!   (5) 

where 𝑛!"#$%&'is the number of geometric components in a building, 𝑐𝑙_𝑡𝑦𝑝𝑒! is a 

categorical value for each geometry type, 𝑐𝑙_𝑝! is the portion of building for each type, and 

𝑐𝑙_𝑒𝑥𝑡! is binary value for the existence of overhang. 𝐶!" is a continuous variable indicating 

the complexity level for a building’s geometry. Higher 𝐶!" values specify that a building has 

diverse cluster types, more overhangs, and complex components.  

 

 
 

Figure 4.4: Examples of the Geometry Detector outcomes in Amherst: algorithm fits three 
predefined models to each geometry component and detects roof types. 
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4.3.3 Spatial Variables Generator 

Once the Building Form Generator has completed the five step process to generate 

building form variables, the next phase involves the selection of different sets of site-specific, 

proximity, or neighboring indicators as external and internal driving forces for land-use 

changes. The algorithm converts building form variables, which have coordinate information 

to GIS vector data and combines it with spatial databases. IUMAT-LUM Spatial Variables 

Generator employs five steps in coding the GIS vector data to the input data required for 

training ANNs models (see Figure 4.1). The Spatial Variables Generator converts building 

form variables in addition to other physical, institutional, cultural, and environmental 

parameters into the same projection and then into spatial grid system with a 6x6 meters cell 

resolution. For example, the adopted system in Amherst has the total of 1,933,022 cells (71.9 

km2) that defines the simulation domain. The Spatial Variables Generator creates ten 

descriptive variables (Table 4.1) that include a land-use type of each cell. Similar to other 

studies (Almeida et al., 2008), we convert related land-use types into one category, e.g. 

different residential densities are transformed into one. In doing so, we reclassified 21 land-

use classes into 8 groups: residential, commercial, educational, industrial, recreational, urban 

infrastructure, and non-urban. The Spatial Variables Generator uses the k-dimensional tree 

algorithm or KD tree (Bentley, 1975) for searching the nearest neighborhood and calculating 

the proximity variables (Table 4.2). KD tree is suitable for avoiding inefficiencies in brute-

force computations as the required number of calculations are reduced by encoding the k-

dimensional data into new partitioned regions. The algorithm then calculates Euclidean 

distance between each cell and nearest neighboring cell (Pijanowski et al. 2002) for each 

parameter (e.g. commercial). 
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Table 4.1: Summary of descriptive variables 
 
 Variable Description 
1 x Latitude converted to feet 
2 y Longitude converted to feet 
3 z Elevation in feet 
4-
9 

conservation, vegetation, water, 
recreational, railroad, educational  

Binary variables 

10 Trans Binary variable: impermeable surfaces related to 
transportation network (Paved road, parking, 
driveway) 

 
 

Next, the Spatial Variables Generator produces eleven candidate parameters for 

density variables (Table 4.3 and Table 4.4) using Kernel density estimation (Scott, 2015) 

with Gaussian function. Kernel density estimation is a nonparametric spatial agglomeration 

for pre-smoothing data, especially with large samples and variables. The algorithm uses a 

specified distance from a cell's center to estimate the probability density variables. These 

variables indicate relations of each cell with local actions and global patterns. For 

maximizing computing performance, the Spatial Variables Generator normalizes all 

descriptive, proximity, and density variables (ranging from 0.00 to 1.00) by subtracting each 

variable from the minimum value and dividing the product by the maximum value. In the 

final step, the algorithm creates a binary transition variable for phase transition from one state 

to another. It detects land-use changes in different periods and assigns zero to non-change 

conditions and one to land-use changes. In most cases, we might have an unbalanced 

database due to the small ratio of land-use changes compared to stable states, which results in 

skewed model outcomes. In IUMAT-LUM, we use a downsampling method (Provost, 2000) 

to deal with unbalanced databases, which is explained later in this paper. 
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Table 4.2: Proximity variables (Euclidean distance) 
 Variable  Description 
11 d_residential 

 

Distance to nearest residential areas (Land-use class: multi-family 
residential, high density residential, medium density residential, 
and low density residential) 

12 d_commercial 
 

Distance to nearest commercial areas (Land-use class: 
commercial) 

13 d_m_comerci
al  

Distance to main commercial district 

14 d_city_center  Distance to nearest city center 
15 d_rec 

 
Distance to recreation spaces (Land-use class: participation 
recreation, spectator recreation, and water-based recreation) 

16 d_ind 
 

Distance to industries (Land-use class: mining, industrial, and 
waste disposal) 

17 d_edu  Distance to educational (University, college, and school) 
18 water  Distance to water bodies 
19 d_m_road 

 
Distance to primary roads (Transportation networks: paved road, 
tunnel, and bridge) 

20 d_s_road  Distance to roads (Transportation networks: Unpaved road) 
21 d_busstop  Distance to public transportation (In Amherst case, bus stops) 
 
 
Table 4.3: Summary of density variables (Kernel density estimation) 
 Variable  Description 
22 agri_kde  Kernel density of agricultural (Land-use class: cropland, pasture) 
23 forest_kde 

 
Kernel density of forest (Land-use code: forest and non-forested 
Wetland) 

24 water_kde  Kernel density of water bodies 
25 res_kde  Kernel density of residential districts 
26 com_kde  Kernel density of commercial areas 
27 rec_kde  Kernel density of recreational regions 
28 ind_kde  Kernel density industrial areas 
29 edu_kde  Kernel density of educational spaces (University, college, and school) 
30 trans_kde 

 
Kernel density of paved surface (Transportation networks including 
driveway and parking Lot) 

31 walk_kde 
 

Kernel density of sidewalks & bike-path (Transportation networks type: 
bike or walk path, lead walk, detach sidewalks, and attached sidewalks) 
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Table 4.4: Building-form variables extracted from LIDAR measurements and converted 
to density variable (Kernel density estimation) 
 
 Variable  Description 
32 b_height_kde  Kernel density of building height 
33 comp_v_kde  Kernel density of Building-form complexity index  
 

4.3.4 Artificial Neural Network 

IUMAT-LUM employs an ANNs-based land-use change model, which is a robust 

machine learning tool for recognizing complex patterns in data (Skapura, 1996). There are 

four major multi-layer network architectures; Backpropagation (Rumelhart et al., 1986), 

Hopfield (Hopfield, 1982), Counter propagation (Hecht-Nielsen, 1987), and LAMSTAR 

network (Graupe, 1999). In the IUMAT-LUM framework, we employ the backpropagation 

algorithm, which is the most common. Drawing from biological neural networks, ANNs are 

composed of several layers of nodes called multi-layer perceptrons- an input layer, one or 

multiple hidden layers, and an output layer (Figure 4). Associated weights control mapping 

from one node to connected nodes and the activation operation or squashing function is a 

nonlinear function, which regulates relations between nodes and keeps cell output between 

certain limits (Graupe, 2013). 

 Training is a procedure for updating the weights and bias in ANNs until a specified 

Mean Squared Error (MSE) is reached, i.e. the optimum difference between expected values 

and predicted results. Each training iteration involves three phases, which include forward 

propagation, backpropagation, and adjustment of weights (Rumelhart et al., 1986). The 

algorithm randomly initializes a matrix of weights to ANNs' nodes; in each cycle, it runs the 

inputs through the network using activation functions and generates output hypothesis 

(forward propagation). Each hidden node sums the input values with different weights, 
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calculates output by applying the assigned activation function, and sends output value to next 

layer nodes. In backpropagation, the algorithm then updates the weights by calculating partial 

derivatives to minimize the error function. 

 
 

Figure 4.5: ANNs architecture with Back Propagation learning procedure 
 
 

The number of hidden layers and nodes in ANNs models are critical parameters 

(Huang & Huang, 1991) that could affect the modeling performance and goodness of fit. For 

optimization purposes, IUMAT-LUM updates ANNs models over training data, in each 

cycle, as numbers of hidden layers and nodes increase until validation errors, F1 score, and 

iteration time satisfy the initial condition for optimization. F1 score is a statistical method for 

evaluating the accuracy of a classification model by integrating precision and recall 

(Raghavanet al., 1989). Precision, positive predictive values, indicates the fraction of correct 

positive outcomes from all predicted positives. Recall, sensitivity values, shows the portion 
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of valid positives out of expected positives. A higher F1 score value ranging from zero to one 

indicates the better prediction of an ANNs-Cl model. 

Since ANNs has the tendency for overfitting to training data (Triantakonstantis & 

Mountrakis, 2012), in the IUMAT-LUM framework, we divide a given dataset into three 

sections of training, validation, and test sets. The ANNs Model Builder runs a learning 

process over the training data, and validates models by calculating the MSE over a 

calibration set. In doing so, the algorithm selects an optimal ANNs model that is not 

overfitted to the training data. And finally, the Land-use Simulator runs the optimized ANNs 

model over test data for simulating changes over time specified by users (Figure 4.6). 

Multicollinearity refers to the strong correlation between dependent variables and is 

one of the main challenges in machine learning, especially in ANNs algorithms, which 

cannot automatically exclude relevant parameters (Garg & Tai, 2012). To deal with 

multicollinearity, instead of using data transformation methods like Principal Component 

Analysis, in IUMAT-LUM, we evaluate the correlation between variables and select those 

with no strong correlation. Since Pearson's r method only controls the linear relation between 

variables, we use Spearman's rank-order correlation to evaluate the monotonic relationship 

between parameters. 
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Figure 4.6: Conceptual structure of IUMAT-LUM Simulator 

4.4 Implementation and Results  

4.4.1 Study area and Databases 

Amherst, Massachusetts for the period of 1971-2005 is used to test the IUMAT-LUM 

framework. Located in the Connecticut River Valley, Amherst has three institution of higher 

education - the University of Massachusetts, Hampshire College, and Amherst College. The 

town has an area of 71.9 km2 and has experienced a steady population growth, from 26,331 

total population in 1970 to 37,819 in 2010. Amherst has diverse land-use classes ranging 

from relatively high-density commercial to forest and cropland. A random distribution of 

urban and non-urban lands as well as a consistent trend of land-use changes since 1971 are 

valuable resources for generating and testing the land-use model. Additionally, the Amherst 

Planning Board in collaboration with UMass Campus Planning has comprehensive remote 

sensing and GIS vector data available. LIDAR measurements provided by the Town of 

Amherst are used to generate the building form variables. Zoning, vegetation, hydro system, 



 
 
 

 
 
 

94 

building boundaries produced by the town, as well as transportation networks, land-use 

(1971-2005), topography, educational institutes boundaries provided by MassGIS are 

compiled in Spatial Variable Generator for producing explanatory variables (Figure 4.7).   

In most urban areas, the number of cells without change is usually more than ones 

with land-use change. One common approach to deal with imbalanced data is to alter the 

balance artificially by upsampling or downsampling datasets (Provost, 2000). Dividing the 

Amherst dataset into three time-intervals (e.g. 1971-1985, 1985-1999, and 1999-2005), we 

downsampled (Huang, B. et al., 2009) or ignored cells from the majority. In each set, the 

algorithm assigns a value of one to cells that change in that time interval and zero to those 

that do not. The algorithm then measures the number of cells with changes and resamples 

from the no-change cells (Figure 4.8). In doing so, the adopted 6x6 meters cell resolution in 

Amherst with a total of 1,933,022 cells is adjusted in different datasets (Table 4.5). For 

example, in the 1971-1985 set, 20,132 cells were selected from the land-use map where 

10,066 cells (assigned a value of one) belong to the cells that transitioned from non-urban in 

1971 to built-up in 1985 while another half (assigned a value of zero) are sampled from non-

urban cells in both 1971 and 1985. We also check the balance at different intervals by 

measuring transition probabilities of datasets. Rather than using discrete sets, the algorithm 

combines three datasets and randomly divides it into 60% data as a training set, 20% data for 

a cross-validation, and 20% data as a testing set (Raj et al., 2010). In this way, the ANNs 

model is trained based on a continuous historical trend (from 1971 to 2005), not a discrete 

snapshot and can simulate future patterns with higher accuracy. Calibration and testing 

datasets are used for checking overfitting and determining if the ANNs model predictions 

over untrained data are reliable. 
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4.4.2 ANNs Structure, Calibration, and Validation 

In our study, we also assess ANNs classification model (ANNs-Cl) and ANNs 

regression model (ANNs-Rg) performances in predicting land-use change in Amherst by 

comparing MSE values. In the IUMAT-LUM Simulator, ANNs-Cl has three hidden layers; 

each has nodes equal to numbers of dependent variables, with one rectifier, two sigmoid 

activation functions. The normalized exponential function is applied to the output layer, so 

ANNs-Cl generates a zero or one value for outcomes. With a similar structure, ANNs-Rg 

uses a sigmoid activation function for the output layer, so the outcomes range between zero 

and one, which determines probabilities of land-use change for cells. A value of one indicates 

a maximum potential for a future change while a value of zero indicates a low probability. 

The algorithm initially runs ANNs models over the training datasets for a hundred iterations 

and updates the weights. After initial training, weights and bias are used in a separate 

computational loop, which uses training data for updating weights and the calibration set for 

calculating the MSE. Once it identifies a specified MSE value, the training process is halted. 

The optimum ANNs model with the lowest error on the calibration data is checked with the 

test dataset for over-fitting and under-fitting of the ANNs model. Higher MSE of the test data 

indicates that the model is over-fitted to the training data, while lower MSE of the test data 

demonstrates the reliability of the model in predicting untrained data. 
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Figure 4.7: Maps of proximity and density variables in Amherst (1971-1985) 
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Figure 4.8: Maps of downsampled datasets present patterns of land-use change in Amherst 
from 1971 to 2005. Top: Transition pattern from non-urban to urban types in different time 

intervals. Bottom: Land-use change patterns within different urban classes. 
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Table 4.5: Transition probabilities in ANNs datasets for Amherst 
  

 Number 
of cells 

Global Transition 
probabilities 

Global Transition 
probabilities 
Urban Cells 

Global Transition 
probabilities Non-

Urban Cells 
Training 20,132 0.0451 0.0318 0.0496 
Calibration 21,308 0.0497 0.0306 0.0574 
Test 12,758 0.1187 0.2252 0.0583 
 

For isolating the effect of each explanatory variable in the land-use model, we use the 

inverse version of the “drop one out” approach (Washington et al., 2010, Tayyebi et al., 

2011). We run a series of normal equations for measuring variable effects in modeling land-

use change within all six databases. For each iteration, the algorithm adds a new variable to 

matrix X, updates theta (Eq. 3), and measures the MSE value (Eq. 4). Figure 4.9 shows the 

trend of MSE values. For the first run, latitude (x), longitude (y), and height (z) are initially 

used in matrix X. For the second iteration, the binary variable of conservation is added to the 

matrix X. All independent variables listed in Table 4.1 -Table 4.4 have positive impacts on 

model MSE values that vary from a dataset to a dataset (Figure 4.9). For example, the 

distance to residential has more impact in land-use transformation of non-urban transition 

data compared to urban data. In urban databases, residential districts, educational institute, 

and the forestlands improve the predictability of the model, while in non-urban datasets 

agricultural lands, green infrastructure, and transportation networks have significant effects 

on land-use transformation. In another analysis, the relative effect of building form variables 

on land-use modeling is separately explored. After the first run with basic variables (x, y, z), 

building height and building complexity indices are added to the list of variables for the next 

two iterations (Table 4.6). In Amherst, these building indices improve prediction of the land-

use model by 11% in non-urban and 19% in urban datasets. 
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Table 4.6: Mean squared error of land-use models with included variables for the 
statistical analysis. x, y, and z as basic variables are used for the initial run and dependent 
variables (Table 4.1 - Table 4.4) are included in the final run. 
  

 
Initial 
Run 

Building 
Height 

Building 
Complexity 

Index 

All dependent 
variables included 

Non-urban Training set 0.2436 0.2378 0.2158 0.1540 
Non-urban Calibration set 0.2442 0.2395 0.2191 0.1524 
Non-urban Testing set 0.2442 0.2376 0.2142 0.1526 
Urban Training set 0.2316 0.2310 0.1884 0.1391 
Urban Calibration set 0.2294 0.2289 0.1909 0.1421 
Urban Testing set 0.2322 0.2316 0.1885 0.1381 
 

 
 

Figure 4.9: Improvement trend of model MSE values in predicting land-use change while 
adding one independent variable in each iteration 
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4.4.3 ANNs Simulation Results 

After successful training and calibration, bias and weights of ANNs models are used 

for forecasting land-use change in the test data. The accuracy value of each model is 

measured by comparing predicted outcomes applied to the test data versus expected values. 

In non-urban datasets, overall testing data accuracy for the best fit simulation is 90% in 

ANNs regression model and 92% in ANNs classification model with 0.65 F1 Score. While in 

urban datasets, ANNs models have better predictions where overall testing data accuracy for 

both models is 98% and F1 score for classification model is 0.66 (Figure 4.10). It is observed 

that Simulator performs better in predicting state changes in urban cells and differences 

between MSE values of ANN classification and regression models steadily decrease till they 

reach to the global minimum. However, for non-urban sets, the models arrive at global 

optimum more quickly and have higher differences between MSE values of ANNs-Cl and 

ANNs-Rg models. 

For visual comparison, model simulation outcomes for Amherst were converted into 

color-coded maps, while in ANNs-Rg models, which generate local transition probabilities 

ranging from zero to one, the outcomes were transformed into thematic maps for better 

visualization (Figure 4.11). The results indicate that the IUMAT-LUM can produce 

satisfactory predictions about patterns and scope of changes with slight differences between 

simulated results and the observed situation. One reason for these discrepancies is the 

complex spatial interactions and behavioral differences of land-use classes within urban 

systems like green infrastructure or transport networks. Another reason is the interaction 

between land-use types that are not included in IUMAT-LUM. The emergence or evolution 

of a particular class in a region creates different situations for neighboring cells, which results 

in changing ultimate land-use pattern (Basse et al., 2014). In addition, socioeconomic 
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characteristics are another deterministic parameter, which has not been integrated into 

IUMAT-LUM framework at this stage. 

 
 

Figure 4.10: Mean Squared Error decay curve regarding the IUMAT-LUM ANNs models 
after 600 iterations. Top: MSE trend of ANNs classification and regression models in non-

urban datasets. Bottom: MSE trend of ANNs models in urban datasets. 
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Figure 4.11: Land-use simulation results for the Town of Amherst from 1971 to 2005. Left: 
Map of the testing dataset that shows the expected value in urban and non-urban cells; red 

presents cells with a transition and blue shows stable cells. Center: Map of ANNs-Cl 
predicted values; green represents areas with changes and blue shows areas without any 

changes. Left: Thematic map of ANNs-Rg predicted values ranging from zero to one (yellow 
to red) that represent land-use change probability. 
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4.5 Conclusions and Future Development 

In this Chapter, we described how the IUMAT-LUM framework applies Remote 

Sensing, GIS, and Artificial Neural Networks to simulate urban growth patterns. In IUMAT-

LUM, the Building Form Generator integrates vector GIS routines and LIDAR data to 

building variables in five steps. We outlined a method for extracting building geometry 

variables by implementing Density-Based Spatial Clustering, Mean Shift, and Fuzzy 

clustering algorithms for detecting geometric clusters. We fit three predefined normal 

equation models (using a model-driven approach) to identify the form of each component in 

the Geometry Detector. In addition to physical, environmental, cultural, and institutional 

parameters commonly explored in land-use modeling, we introduced building form indices as 

a new determinant factor in simulating land-use change. We applied the IUMAT-LUM 

framework to the town of Amherst, Massachusetts. Outcomes suggested where land-use 

transition will be more likely. IUMAT-LUM distinguishes urban regions (residential, 

commercial, educational, and industrial areas) from non-urban lands (forest, water bodies, 

agriculture, conservation), and predicts transition probabilities in each group. Our results 

indicate that building form indices in combination with other spatial explanatory variables 

improve the predictive power of land-use modeling. In the town of Amherst, building form 

indices improve model predictions by 11% in non-urban and 19% in urban datasets. Regions 

with higher building geometry index have higher probabilities of land-use transitions, in 

other words, more built-up urban areas will have more land-use change compared less built-

up areas.  As such, the effects of building form index are more noticeable in urban zones than 

non-urban areas. 

In future, our focus will be on predicting the type of new development. Impacts of 

explanatory variables might alter from one type to another land-use type (Basse et al., 2014); 
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for example, greater walkability index promotes residential developments rather than 

industrial ones, or distance to major roads have similar impacts on residential and 

commercial type. Like Carrero et al. (2014) and Tayyebi & Pijanowski (2014), we believe 

that single ANNs modeling methods cannot solely provide a robust approach for simulating 

different land-use types. In the next stage of this research, multiple ANNs will be integrated 

into IUMAT-LUM for modeling different types of land-use change. Although the predefined 

geometry models used in this study can recognize common building forms, in the next stage, 

we will develop a comprehensive archive of predefined models for detecting more complex 

geometries. This unsupervised method for parameterizing building geometry can also be 

automated and integrated into other urban metabolism analytical tools similar to the IUMAT 

framework (Mostafavi et al., 2014).  

 Decision makers and city planners can use IUMAT-LUM model for determining 

roles of explanatory parameters on land-use changes and studying future patterns. They can 

prioritize the planning resources for future scenarios. The IUMAT-LUM approach to 

predicting future growth pattern within cities borders is based on historical trends. 

Comparing simulation results with observed outcomes after implementing a policy could 

provide new insights into impacts of a particular planning policy. Planners can predict 

possible developments in environmentally sensitive regions, and regulate non-urban 

conservation policies accordingly. As an analytical tool for land-use modeling, it is hoped 

that IUMAT-LUM can be integrated with urban metabolism analyses for developing 

sustainable land-use policies that account for the complex spatial relationships of dependent 

parameters. 
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CHAPTER 5 

CONCLUSION 

5.1 IUMAT for Planning and Design 

Rapid and unplanned urbanization creates social disparities, loss of habitat, resource 

consumption, and waste production (Lehmann 2011). In response, different sustainable 

policies, climate action plans, and energy conservation mandates are widely developed to 

minimize environmental impacts and offset greenhouse gas emissions. It is unknown whether 

a set of sustainable strategies will have the desired aggregate effects on the overall urban 

systems or the counterproductive effects. There is a critical need for a modeling framework 

to analyze the impacts of sustainable policies on the urbanscape. Over the past decades, a 

number of modeling tools have been developed for simulating urban metabolism and 

analyzing sustainability within urban systems. 

Many of the existing models, instead of considering the urban systems as a cohesive 

and interrelated structure, broke down the complex urban systems into separate sections and 

developed individual models for one or multiple aspects of the urban metabolism such as 

modeling energy consumption (Howard et al. 2012), land-use change and material flows 

(Douglas et al., 2002), relation between urban economics and ecological systems (Huang, 

1998; Huang & Hsu, 2003), and water-related issues (Sahely and Kennedy, 2007). IUMAT 

has a holistic modeling structure that integrates and quantifies the overall aspects of urban 

systems. In this comprehensive approach, each phenomenon and the interactions between 

these features are simulated while the framework provides a quantitative result for an overall 

sustainability performance.  
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Different tools have been developed for simulating urban metabolism; some such as 

iTEAM (Integrated Transportation and Energy Activity-Based Model) are for evaluating 

policies by implementing micro-simulation agent-based modeling approach and predicts 

future energy consumption by converting agents’ decisions to energy demands (Almeida et 

al., 2009). Others like Citysim (Robinson et al., 2009) work as an optimization tool and do 

not have the capacity to project the resource consumption. The goal of CitySim is to establish 

a complement model by incorporating flows of materials, water, and waste for optimizing 

urban resource flows (Robinson et al., 2009). SynCity, an agent activity micro-simulation 

model, monitors citizens’ daily activities for calculating resource demands (Keirstead et al., 

2010). UrbanSim, another micro-simulation discrete choice model, investigates the 

association between land-use, transportation, and the environment by employing a dynamic 

equilibrium approach (Vanegas et al., 2009). This open source urban simulation tool 

replicates the behaviors of urban agents like households, businesses, developers, and markets 

in separate models (Waddell, 2011). 

IUMAT’s main focus is capturing the land-use, energy consumption, water and 

resources and air quality features categorized as five major indicators of urban metabolism. 

In IUMAT framework, socio-economic indices are associated with buildings as a basic unit 

in calculations; each unit is classified together with a matrix of these indices. By simulating 

flows between recipients or transmitters, IUMAT analyzes the interaction between units to 

address energy use, material and water consumption, waste and sewage production, and 

emission to the atmosphere under an alternative scenario in compared to observed data. 

Unlike the existing simulation tools, Integrated Urban Metabolism Analysis Tool (IUMAT) 

is a modeling framework that takes existing data of the urban subsystems without directly 

dividing into different sectors. IUMAT framework simulates the future state based on the 
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past trend data while suggesting recommendations for the optimization by comparing 

different design scenarios. 

IUMAT has a similar bottom-up modeling structure like ILUTE (Chingcuanco and 

Miller, 2011) and simulates the behavior of urban agents. In contrast to ILUTE, IUMAT 

includes resource flows in analytical framework in addition to land-use, transportation, and 

environment systems. Socio-economic structure of the city plays a significant role in 

simulating the behavior of agents in urbanscapes. Some tools like SynCity integrate the social 

and economic features in investigating an optimal urban design based on energy 

consumption, cost, and carbon emission. Complex ones like Urbansim (Waddell, 2002) use 

agents’ characteristics in finding relationships between land-use, transportation, and the 

environment. IUMAT associates buildings, the smallest unit of analysis, with socioeconomic 

features to capture the behavior of agents in relation with other aspects of urban systems.  

Existing analytical tools such as Urbansim (Waddell, 2002), ILUTE (Chingcuanco 

and Miller, 2011), and Citysim (Robinson et al., 2009) simulate urbanscapes in a single scale. 

While IUMAT employs a range of different scales in modeling and depends on the essence 

of the phenomenon, simulating occurs at a different range. For example, for capturing the 

overall urban environmental impacts, analyzing population changes is more meaningful at the 

scale of a city than building levels. Planners and designers have an opportunity to adapt the 

complexity level of the model based on a project’s needs and purposes. IUMAT can also 

adapt simulation structure to local political and social conditions alongside providing national 

comparative results. Depending on modeling purposes, IUMAT Models employs a 

combination of aggregate (Average) or disaggregate (individual) approached for behavioral 

resolutions. For defining Units, space, and time, IUMAT models can use different ranges 

from Macroscopic (Aggregate values for Large Zones), Microscopic (Disaggregate Values) 



 
 
 

 
 
 

108 

and Mesoscopic (combination of both) approaches. The IUMAT framework generates data in 

finer resolution by implementing synthesis methods like Monte Carlo simulation.  

Visualization, another key feature in urban modeling, could alter the effectiveness of 

a modeling tool. Most existing simulation tools are relatively weak in visualizing the 

mathematical results, which affect the practical implications in planning or design process.  

In traditional or static visualization techniques, tools use thematic map using GIS or 

geographically weighted interactive map. In the collaborative approach, with sophisticated 

computer graphics such as virtual reality visualization technique (Drettakis et al., 2007), and 

integrated 3D model and data view (Chang et al., 2007, C. A. Vanegas et al., 2010), users 

have more flexibility and freedom in exploring the data. Lack of in-depth understanding of 

simulation results, distorted representation, and restricted access are some limitations of static 

visual representations. On the other hand, lack of real-time visual representation of results 

can affect the participatory level in the decision-making process (Drettakis et al., 2007). By 

enhancing visualization techniques, providing real-time visualization representation and 

integrating with GIS and online web-services, IUMAT can perform as a compelling planning 

and design tool that assists decision making, participatory, and design process.  

IUMAT uses different descriptive statistical methods for capturing general trends of 

change and relevant parameters. Simple bivariate analyses such as graphical representation 

and coefficient correlation are employed to investigate the relationship between variables. 

The algorithm normalizes all explanatory variables between zero and one by subtracting each 

variable from the minimum value and dividing the product by the maximum value. 

Descriptive and inferential analyses (including mean, median, standard deviation, etc.) are 

used for multiple variables to create multi-component variables. In the IUMAT framework, 

descriptive methods are used within the database for formulating different hypotheses. For 
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example an association between commercial distribution and household purchasing power, 

graphical representation and statistical analysis of data will be easier.  

Choosing relevant and appropriate variables in modeling complex urban systems is a 

challenging process since there are several independent variables involved. Instead of 

common statistical methods, IUMAT-LUM use Artificial Neural Networks (ANNs) that do 

not make assumptions about the data distribution. ANNs diminish the degree of subjectivity 

in modeling complex phenomena such as land-use change where there is high nonlinearity 

between variables (Maithani, 2009). IUMAT recognize patterns in data rather than finding 

unique relations.  

Depending on the modeling purpose, IUMAT employs a combination of aggregate 

(Average) or disaggregate (individual) approaches for behavioral resolutions. For defining 

unit, space, and time, IUMAT uses different ranges from Macroscopic (Aggregate values for 

Large Zones), Microscopic (Disaggregate Values) and Mesoscopic (a mixture of two 

methods). When the data in microscale is not available, IUMAT generates data in finer 

resolution by using synthesis methods (Monte Carlo simulation). For quantitative analysis of 

overall sustainability performance, IUMAT framework also uses a procedural modeling 

approach to integrate different aspects of urban systems and capture interactions between 

parameters. Users can adjust the number of variables and alter coefficients in models that 

exist within the IUMAT framework. Procedural (set of parameters) modeling techniques 

developed by Müller et al. (2006) mostly used models that try to capture the physical 

environment of urbanscape like CityEngine (Vanegas et al., 2010). This approach is helpful 

in dealing with complex systems with a high level of uncertainty. 
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5.2 Limitations of the Research 

The accuracy of IUMAT to analyze and evaluate the impact of urban metabolism 

depends on the availability of microscale data. One primary challenge for this project was to 

develop methodologies to generate data for missing microscale databases. Gathering and 

organizing an appropriate microscale data for IUMAT was beyond the scope of this study. 

But, simple techniques sometimes were implemented for generating the missing and 

necessary data. For example, IUMAT-LUM simulates the land-use transition from 1971-

2005 in the town of Amherst, but LIDAR data was only available for 2005. Since the 

probability of rebuilding a structure is negligible in Amherst, we assumed that buildings are 

the same from 1971 to 2005. Therefore, by using land-use data, building information 

measurements was used to regenerate LIDAR data for 1985 and 1971. For more complex 

parameters, we use national and regional databases to formulate the general framework, 

relations, and analytical models. Some coefficients would be altered if IUMAT models were 

implemented in other locations. By using UMass Amherst and Amherst City as a case study 

for this research, we demonstrated that the IUMAT holistic framework can be implemented 

for urban metabolism analysis, but the same framework is not applicable for using in another 

urbanscape. 

Artificial Neural Networks (ANNs) are embedded in the modeling structure of the 

IUMAT-LUM. ANNs are interconnected networks of simple units similar to human neural 

systems that apply the mathematical logic capacity to solve sophisticated problems such as 

land-use changes and urban growth. ANNs do not make any assumption about data 

distribution and decrease the degree of subjectivity in modeling complex phenomena. One of 

the main weaknesses of ANNs models is the “black box” behavior. In many cases, users 

cannot extract specific rules from the modeling process. For simulating complex phenomena 
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such as land-use change, which requires wide ranges of variables, the model recognizes 

patterns in data rather than finding unique relations. Researchers cannot derive definite 

causality between land-use pattern change and an independent variable from IUMAT-LUM 

results. Also, the effects of independent variables might alter from one land-use type to 

another class (Basse et al., 2014); therefore, single ANNs model cannot solely be adequate 

for simulating different land-use types (Carrero et al., 2014; Tayyebi & Pijanowski, 2014). 

Due to the complexity of ANNs modeling structure and time limitation for this dissertation, 

IUMAT-LUM employs one ANNs model for predicting the land-use change. This modeling 

structure limits the capacity of the IUMAT-LUM in formulating and analyzing different 

planning scenarios. ANNs models have a tendency for overfitting the data. This characteristic 

could be regarded both as a potential and a weakness. In the current state of IUMAT-LUM, 

the model cannot be overfitted to one particular land-use type, since it recognizes the overall 

patterns of change.  

The algorithms of IUMAT-LUM are written in Python to generate, process, and 

analyze data. Python is an object-oriented programming language with a dynamic 

interpretation. This programming language supports packages and modules, and is very 

attractive for rapid application development. Since there is no compilation step in the 

computing process, the edit-test-debug cycle is relatively fast and effective when compared 

to other programming languages. These characteristics make Python a suitable candidate for 

developing IUMAT-LUM framework. But Python is a high-level language and allows the 

programmer to develop algorithms closer to how humans think. This particular character 

makes Python codes 10 to 100 times slower than other low-level languages such as C++. The 

IUMAT-LUM requires significant computing power that was not available at the time of this 



 
 
 

 
 
 

112 

dissertation; therefore, numbers of validation and testing of the proposed model were limited 

in this study.  

In many cases, changes of involving parameters in land-use modeling are not limited 

to the boundaries of urbanscape. For example, demographic changes in city-center 

neighborhoods might bring more housing developments in suburban districts. Some of the 

existing models appropriately consider this issue in their methodologies. But it is challenging 

to analyze land-use transition if the microscale data is not available outside city boundaries. 

Recognizing this obstacle, IUMAT-LUM simulates land-use change only within borders of 

the town of Amherst.  

IUMAT-LUM, at the current stage, should be regarded as a pilot project until other 

external validation measures are conducted. The town of Amherst was selected as the only 

case study for testing the IUMAT-LUM framework and the idea of how urban form indices 

affects land-use transitions. Although the results provide enough evidence for such a causal 

relationship between building form and land-use change, I cannot draw any general 

conclusion. The results might be helpful in forming a new hypothesis that can be tested in 

different locations. Big cities such as Austin, Denver, and Seattle with a higher rate of urban 

growth and more comprehensive databases compared to Amherst are appropriate future case 

studies. In doing so, we can also integrate other demographic, employment, and economic 

parameters in future analysis. Other independent variables such as different public 

transportation systems, tree canopy, and flood zone restriction clearly influence the outcomes 

of IUMAT-LUM, but this model did not specifically test them. Besides, impacts of building 

geometries indices on the land-use modeling can be explored through a variety of building 

and urban morphologies in metropolitan areas. Since the major part of this study was to 

develop the modeling framework of IUMAT-LUM, outcomes of the proposed model did not 
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compare with other existing models for validation. In addition, no public or elected officials 

have reviewed the IUMAT-LUM framework, so the practicality and usefulness for 

professional applications were not yet verified. 

At this stage of the research, we have focused on urban metabolism in separate 

models without connecting them. One of the main goals behind this endeavor was to create a 

framework to analyze an urban area as a single entity and simulate urban metabolism by 

taking major urban subsystems into the modeling without directly dividing them. Currently, 

the IUMAT Land-Use and EMW models have been in development. Both models share 

similar approaches and principles that will be combined in the future of this collaborative 

research. 

5.3 Future Direction 

5.3.1 Professional and Public Engagement in the IUMAT Framework 

The idea of public engagement has become part of planning theory and practice to 

assure fairness in the decision-making process (Arnstein, 1969). Now practitioners and 

theorists promote integrative approaches that offer comprehensive and inclusive solutions for 

solving social, economic, and environmental problems (Stollman et al., 2000). Decisions 

made without including all stakeholders in the process cannot result in sustainable urban 

development. Recent planning approaches, like communicative planning (Innes & Booher, 

1999), collaborative planning (Healey, 1997), and participatory planning (Forester, 1999) 

provides an opportunity for integrative approaches. But collaborative approaches are not 

enough to manage sophisticated interactions in the complex urban systems with a wide range 

of variables (Bulmer, 2001; Higgs, 2006; Howard & Gaborit, 2007). Rational and goal-



 
 
 

 
 
 

114 

oriented methods for measuring and setting targets are still employed by planners dealing 

with urban conflicts and advancing sustainable solutions.  

In this context, a combined method that has the advantage of rational (comprehensive 

planning) and participatory planning process could be an important alternative. One primary 

purpose of IUMAT is to facilitate the decision-making process for stakeholders. We 

anticipate building a platform within IUMAT to collect and incorporate public opinion. 

IUMAT framework will have a feedback system for engaging the public in current and future 

planning or design scenarios. Experts will combine public input with national and regional 

coefficients stored in the IUMAT framework to change local parameters within IUMAT 

models. The stakeholders involved in the operation and management of cities will need to 

collaborate within the IUMAT environment to find solutions for social and environmental 

conflicts in the urbanscape.  

The participatory platform in IUMAT framework collects feedback while educating 

the public about different environmental impacts. In future, a web-based spatial application 

will be integrated into IUMAT framework for capturing public opinion about different 

scenarios in an active method. The algorithm will combine inputs and synthesize into 

spatially aggregated data in the simulation process. This platform will provide real-time 

results for public opinion (like socioeconomic alterations and environmental impacts) and 

educate citizens about the implications of different policy and programming decisions. The 

platform will simplify and represent complex urban systems into a visual format to improve 

the effectiveness of the participatory process.  

In its data structure, however, IUMAT remains part of rational planning and is based 

on data inputs from professionals (city counselors, policymakers, urban designers, and 

planners) and public imported into the IUMAT framework for different applications such as 
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public policies, land-use spatial regulation, micro-scale data, and coefficient values. For 

supporting stakeholders in decision-making, IUMAT models will simulate future status of 

urban systems and associated impacts based on existing policies. Models can also provide the 

detailed information about the effects of an individual policy.  IUMAT framework will have 

the capacity to present a real-time visualization of simulation results. This character is an 

opportunity for understanding the supply and demand and exploring different aspects of an 

individual policy relatively quick. IUMAT can also raise different sets of suggestions for 

optimizing environmental impacts based on user preferences. Greater ability to visualize the 

simulation outcomes of these policies will educate public and enable a fairer, more 

participatory local process. In the policy-making cycle, IUMAT will support planners in 

monitoring the implementation phase, evaluating impacts, and deciding on future actions. 

In addition to public policies, new urban development projects can be directly 

introduced into the IUMAT spatial framework. Depending on availability of data, planners 

can use micro socio-economic data or aggregated databases for the simulation process. A 

new development project has spatial and socio-economic implications in an urbanscape. The 

IUMAT-LUM captures the effects of these spatial changes within urbanscape. Effects of 

these changes on socioeconomic characteristics will alter the simulation results in the 

IUMAT-EMW and transportation models. For example, a new affordable housing project 

might increase spatial densities in a neighborhood in addition to altering socioeconomic 

parameters.  

The IUMAT framework provides both descriptive and statistical outcomes. Users 

input policies, micro-scale data, maps, etc. will be transformed and compiled in the spatial 

repository. An interactive explorer embedded in the IUMAT framework works as a platform 

for exploring the current condition in a city. Spatial representation of simulation results such 
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as land-use change, energy usage, and GHG emissions will also be accessible in the explorer. 

Descriptive outcomes in multilayers thematic maps assist designers/policy-makers to analyze 

current urban conditions and find sensitive regions. This resource is helpful for investigating 

causalities of different phenomena and formulating explanatory hypotheses. Designers can 

develop alternative scenarios in response to new assumptions, implement into IUMAT 

framework, run the simulation, and export analysis results for further review. 

IUMAT aggregator wizard transforms the simulation results into different statistical 

and spatial formats. For multiple planning scenarios (comparative analysis), like most 

analytical and simulation tools, IUMAT wizards also provides comparable tabular data and 

graphical reports. IUMAT statistical results that usually are too technical and detailed for the 

general public are converted into simpler formats. These aggregated analyses improve public 

knowledge about the technical side of the planning process. In doing so, instead of just 

gathering public opinion at early stages and excluding them from the rest of the process, 

IUMAT promotes more active engagement in the decision-making process.   

By enhancing visualization techniques, providing a real-time representation, and 

integrating with an online spatial web application, IUMAT performs as a comprehensive 

planning and design assist tool for policymaking, public engagement, and the design process. 

Planners and designers adjust the level of complexity in the framework based on a project’s 

needs and purposes, and they can alter the simulation structure by local political and social 

conditions. Public input is gathered and organized into different scenarios, which are tested in 

models. Simulation results can be presented in comparative maps to provide an in-depth 

visual understanding of environmental impacts alongside detailed statistical results. IUMAT 

exporter and visualizer is capable of creating different spatial file formats such as Shapefile, 

Spatial Data File, Vector Product Format (VPF) and Geo-JSON depending on user 
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preferences. These formats are compatible for importing into Arch map or other mapping 

tools for further analysis or public sharing. 

IUMAT-LUM is responsible for simulating future growth based on an understanding 

of past urban trends that are not limited to the physical and environmental characteristics of 

an urbanscape. Socioeconomic parameters, new land-use regulations by policymakers, social 

interactions of citizens also affect urban growth patterns. The influences of these parameters 

vary from one land-use class to another. Therefore, one simple model cannot capture all 

changes in an urban region. In future, IUMAT-LUM will have different interconnected 

ANNs models. For generating these models, various national/regional databases will be 

spatially analyzed with supervised machine-learning algorithms. In doing so, the IUMAT-

LUM framework will be able to implement most urbanscapes as long as similar robust 

samples exist in IUMAT databases. Such simulation results are not accurate enough for 

policymaking, and there is still a need for developing localized models. Coefficients in 

generated models based on national averages are calibrated and validated by local data to be 

acceptable for implementation in the planning process. 

When IUMAT-LUM is implemented in an existing urban district, the general 

structure of IUMAT models does not change in the process of localization, and coefficients 

are adjusted based on microscale local database. For new urban development projects, 

IUMAT uses similar precedents stored in the IUMAT repository. For localization of IUMAT 

models, we need at least three structurally similar microscale data collected every 5 or 10 

years. Supervised computational algorithm updates variables, coefficients, and ANNs 

models. The algorithm can be adjusted based on data availability and project needs. 

Validation of analytical methods by case studies at the University of Massachusetts and the 

town of Amherst prove that this approach is effective in simulating urban metabolism with an 
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acceptable confidence level. The validation shows the possibility of implementation of this 

approach in capturing the complexity of urban systems. 

After gathering and analyzing public/professional input, and calibrating models by 

current data, IUMAT models provide the following outcomes: IUMAT-LUM simulates 

urban heat island effect, current and projected growth patterns, spatial analysis of socio-

economic characteristics, sensitive and congestions areas, and current and anticipated urban 

form patterns. The EMW model applies IUMAT-LUM results to capture current and 

projected resource consumption (including energy, water, and material), solid waste and 

sewage production, and associated atmospheric emissions. The transportation model 

simulates the travel behavior of residences, Vehicle Mileage Traveled (VMT) per household, 

public transportation, and associated GHG emissions. 

5.3.2 IUMAT Land-Use Model  

Planners can employ IUMAT Land-Use Model (IUMAT-LUM) as a policy tool, 

translating policies with spatial implications into maps. More sophisticated strategies can also 

be broken down into smaller parts and transformed into spatial data and combined with other 

historical data. Using these spatial databases as inputs, IUMAT-LUM learns from past trends 

and provides predictions about future land-use change. IUMAT-LUM cross-validates 

generated outcomes with expected results for calibration of the model. If micro-data for a 

particular period is available especially when a planning policy is implemented, it may also 

be applied in IUMAT-LUM to determine the effects on spatial patterns. Once the model is 

generated, there are several analytical steps in the procedure. First, planners import the same 

policy with different spatial characteristics into databases and simulate future patterns for the 

same region. The results are compared with districts that are not affected by this policy. 
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Another application of this model is sensitivity analysis of future growth patterns. A 

generated model can simulate land-use transitions with and without environmental 

conservation regulations. By comparing these results, planners gain insight about the 

implications of the regulations within the study area. And, by assigning appropriate periods 

for simulations, both long term and short-term goals for a policy can also be tested. 

IUMAT-LUM generates a comprehensive vectorized database of urban and building 

geometry from LIDAR data. The generated vectorized databases provide information about 

the architectural characteristics of a building such as a footprint, site coverage, courtyard 

ratio, number of floors, height, and building orientation. In the next step, IUMAT-LUM 

could employ statistical methods to associate building form vectorized databases with other 

databases for generating a distribution of social and economic indicators, using local 

averages of parameters like household size in two stories single-family detached home. Since 

individuals share resources, the need of households does not increase proportionally with an 

increase in the size of a family. Therefore, instead of using a proportional approach, IUMAT-

LUM employs equivalence scales to calculate the adjusted parameters per capita (OECD, 

2013).  

IUMAT-LUM assigns socioeconomic characteristics to each building. For example, 

for a 1,100 square feet two-story single-family detached home in a particular neighborhood, 

the algorithm may assign a three for household size, $100K for incomes, a college degree for 

education, depending on the user-provided averaged data. The IUMAT-EMW model, which 

is not the subject of this research, also uses these parameters along with architectural 

characteristics of buildings for measuring water, energy, materials consumption, as well as 

associated GHG emissions in a district. Planning and design strategies imported into 

IUMAT-LUM could change future modeled predictions of growth patterns, alter these 
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adjusted parameters, and change GHG emissions. Results could provide a reference point and 

measurement unit for comparing design and planning strategies as well as measuring 

sustainability targets. 

The next stage of this research is combining, calibrating, and validating the IUMAT 

models. The relation between these models is not one-way or linear. For example, outcomes 

of IUMAT-LUM can be tested in the transportation model to detect inconsistencies in travel 

data behavior. We will develop a coordinator that governs the relation between models and 

data distribution. The ultimate goal of this project is to develop a computer-based program, 

which can be used in both research and practical sustainable urban development projects. 

Researchers, designers, and planners can use this framework to assess future growth patterns 

in a city, analyzing design and policy strategies.  

For identifying complex geometries in the IUMAT-LUM framework, we will 

develop a comprehensive archive of predefined models in the next stage of this research. An 

automated method for generating building geometry from LIDAR measurements, introduced 

in Chapter 4, produces information about many architectural characteristics in an urbanscape 

such as geometric prototype, footprints, site coverage, mass to space ratio, number of floors, 

and building orientation. Many planning agencies do not have comprehensive 3D geospatial 

databases about geometries of existing buildings. Taking advantage of the image analysis 

techniques that convert street views to physical attributes such as materiality and facade 

details, the proposed method could assist planning agencies to develop vectorized building-

form databases for future analysis. For example, new methodologies for investigating the 

relative influence of urban form on travel mode and behavior (Handy, 1996; McMillan, 

2007) can be explored by including building geometries into calculations. These types of 

analysis could be more applicable for local agencies, as the proposed building 
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parameterization method offers a relatively quick approach for developing local databases. 

Although the center of the sustainable urban form debate is the relation between urban form 

(mostly refers to land-use characteristics) and travel energy use, it is important to understand 

the impacts of urban forms on the operational energy consumption of buildings (Holden & 

Norland, 2005). In the future, the proposed model can investigate different design strategies 

and find the sustainable consumption pattern for a case study by combining the building-form 

database with socioeconomic and environmental parameters. 

Land-use change is necessary for social and economic development; it occurs through 

a series of nonlinear transitions and has different socioeconomic and environmental 

consequences (Lambin & Meyfroidt, 2010). A completed version of the proposed land-use 

model can assist the planners and designers in understanding the impacts associated with 

land-use change. Regarding socioeconomic impacts, the land-use model could be employed 

in different areas: for example, the model can predict fluctuations in the housing market by 

modeling the effects of excessive land-use regulations, or it can anticipate availability of 

public amenities by simulating conversion patterns in open spaces. The IUMAT-LUM will 

model the future pattern of suburbanization that is associated with intensification of social 

and economic segregation (Wu, 2006). In terms of environmental consequences, one simple 

step is to associate land-use transition to different conversion factors and calculate 

atmospheric emissions. IUMAT-LUM can also be applied to investigate the heat island 

effects by capturing land cover changes from green to new developments and impermeable 

surfaces. Results of the model can predict land changes from agricultural and croplands to 

urban development; such transitions diminish the amount of land for the food industry and 

create other environmental impacts such as soil erosion and salinization (Lubowski et al. 

2006). In all of these cases, the proposed land-use model can potentially be developed to 
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assist planners in defining different scenarios to change the current trends or to develop new 

sets of policies. 
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