
 We demonstrate the feasibility of applying carpooling big data in metropolitan studies. 

 We propose a data-driven three-step method to characterize the metropolitan polycentricity in-

depth and comprehensively 

 Beijing Metropolitan Region has a hierarchical polycentric structure and an influence sphere 

beyond the administrative boundary. 

 The heterogeneity of human activity performance and role for each regional center is 

remarkable. 
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Characterizing the Polycentric Spatial Structure of Beijing 1 

Metropolitan Region Using Carpooling Big Data 2 

Abstract 3 

Polycentric metropolitan regions are a high-level urbanization form characterized 4 

with dynamic layout, fuzzy boundary and various human mobility performances. 5 

Owing to the complexity of polycentricity, it can be difficult to understand their spatial 6 

structure characteristics merely based on conventional survey data and method. This 7 

poses a challenge for authorities wishing to make effective urban land use and transport 8 

policies. Fortunately, the presence and availability of big data provides an opportunity 9 

for scholars to explore the complex metropolitan spatial structures, but there are still 10 

some research limitations in terms of data use and processing, unit scale, and method. 11 

To address these limitations, we proposed a three-step method to apply the carpooling 12 

big data in metropolitan analysis including: first, locating the metropolitan sub-centers; 13 

second, delimiting the metropolitan sphere; third, measuring the performance of 14 

polycentric structure. The developed method was tested in Beijing Metropolitan Region 15 

and the results show that the polycentric metropolitan region represents a hierarchical 16 

regional center system: one primary center interacting with seven surrounding 17 

secondary centers. These metropolitan centers have a strong attraction, which results in 18 

the continuous expansion beyond the administrative boundary to radiate more adjacent 19 

jurisdictions. Furthermore, the heterogeneity of human activity performance and role 20 

for each regional center is remarkable. It is necessary to consider the specific role of 21 

each sub-center when making metropolitan transport and land use policies. Compared 22 

with previous studies, the proposed method has the advantages of being more reliable, 23 

accurate and comprehensive in characterizing the polycentric spatial structure. The 24 

application of carpooling big data and the proposed method would provide a novel 25 

perspective for research on the other metropolitan regions. 26 

Key words: Polycentric spatial structure, functional boundary, carpooling, commuting, 27 

Beijing Metropolitan Region 28 

1. Introduction 29 

In recent decades, the urban sprawl and job decentralization have given rise to 30 

metropolitan regions (MRs) that extend geographically beyond the boundaries of single 31 

urban cores to multiple interconnected centers (Meijers &Burger, 2010). Urban 32 

planners have realized that the development of multiple centers with mixed use has 33 

become a necessary choice for megacities to overcome typical urban diseases around 34 

the central business district (CBD), such as traffic congestion, environmental pollution, 35 

and the heat island effect (Liu et al., 2020). Although it is still arguable about which 36 

urban form is the most efficient and sustainable, the polycentric development is 37 

considered as a normative planning strategy to reach important objectives in terms of 38 

enhancing regional economic competitiveness, environmental sustainability and social 39 

cohesion (Davoudi, 2003). The characterization of metropolitan polycentricity, more 40 
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generally, urban spatial structure, has become an important research topic (Schleith et 41 

al., 2016; Lin et al., 2015, Zhen et al., 2017). 42 

The metropolitan polycentric spatial structures are often characterized with 43 

dynamic layout and fuzzy boundary, as well as various human activity performances of 44 

multiple regional centers (Veneri 2013; Fang and Yu, 2017; Hu et al., 2018; Liu et al., 45 

2020). Traditionally, regions and their structures have been measured based on survey 46 

data (Wong and Huang, 2017), most of which are static, limited by survey cycle time, 47 

are either expensive, or gathered for administrative purposes (Elwood et al., 2012). 48 

Owing to the complexity of polycentricity, it can be difficult to understand their spatial 49 

structure characteristics merely based on conventional survey data and method. This 50 

poses a challenge to implement this planning strategy in practice, such as designing 51 

sustainable land use and transport policies that are effective across planning areas with 52 

multiple municipalities. Fortunately, the presence and availability of big data provides 53 

us an opportunity to address this challenge. Some scholars have attempted to investigate 54 

the urban polycentric structure based on diverse big data (Wong and Huang, 2017; 55 

Zhang et al., 2017; Zhen et al., 2017; Wan et al., 2018), but there are still some research 56 

limitations in terms of data use and processing, unit scale, and method.  57 

First, a more competent dataset and the innovations about data application need to 58 

be emphasized. The current higher level of information communication technology 59 

(ICT) and associated device usage record a large amount of activity data from nearly 60 

all residents (Lynch, 2008; Allam and Newman, 2018). Scholars and planners have used 61 

massive night light data from satellite images (Gao et al., 2015; Zhang and Su, 2016), 62 

geo-web data from mobile applications (Sobolevsky et al., 2013; Wong and Huang, 63 

2017), and taxi GPS data (Liu et al., 2015; Zhang et al., 2018) to better depict spatial 64 

performance of human activities. Some features of these data sources, however, limit 65 

their usage for exploring the metropolitan structure in practice. For example, the 66 

saturation effects of night light data make it difficult to reflect the intensity and spatial 67 

distribution of human activities exactly, especially in developed regions (Liu et al., 68 

2012), while the Geo-referenced data from mobile applications have the disadvantages 69 

of positional uncertainty and representation vagueness (Li et al., 2013; Longley et al., 70 

2015). On the other hand, seldom studies have focused on this topic on a delicate scale 71 

of data application, such as a grid level. One reason is that obtaining a high-quality 72 

dataset is difficult in traditional approaches. Another reason is the unsolved issues in 73 

data consistency, especially for different data resources, inconsistent scales and diverse 74 

formats (Liu et al., 2020). 75 

Second, most previous studies directly used the administrative divisions in the 76 

topic of metropolitan polycentricity. Limited to data sources or just for convenience, 77 

without exception, most of the studies on BMR (Long et al., 2013; Zhou et al., 2014) 78 

or metropolitan regions in other countries (Angel and Blei, 2016; Burger et al., 2011; 79 

Veneri 2013) ignored the territory problem. Simply using the administrative divisions 80 

as the geographical divisions would hinder the sophisticated investigation into the 81 



regional development (Shi and Cao, 2020) and cause the unpredictable regional bias 82 

due to inconsistency in size (Liu et al., 2020). Moreover, it is more likely to encounter 83 

a modifiable areal unit problem when applying these local administrative units in 84 

comparative analyses across countries (Veneri 2013).  85 

Third, the heterogeneity of human activity performance and role for each regional 86 

center is largely overlooked, which may be also due to the insufficient data source. 87 

Owing to different geographical and social environment, the regional centralization 88 

versus decentralization and clustering versus dispersion performance can be various not 89 

only from one country (or region) to another (Veneri 2013; Hu et al., 2018), but also 90 

among different centers within a same metropolitan region. A comprehensive 91 

investigation on this regional centers’ heterogeneity is necessary to determine the 92 

priority of public resource assignment and make more targeted land use and transport 93 

policies. The combination of morphological and functional approach on characterizing 94 

the polycentric structure is a good choice for contemporary complex MRs (Riguelle et 95 

al., 2007). However, most studies involved the performance of sub-centers merely 96 

consider one specific facet, such as the job density and share (Angel and Blei, 2016), 97 

job-housing relationship (Lin et al., 2015), commuting duration (Hu et al., 2018). 98 

Furthermore, works on the regional centers’ roles in metropolitan regions receive much 99 

less attention. Only Giuliano and Small (1991) conducted a cluster analysis using 32 100 

centers as observations and eight industry shares as variables. They found that the more 101 

service-oriented centers tend to be at higher densities and somewhat closer to the core 102 

area. 103 

To address these limitations in previous studies, we first use the carpooling big 104 

data under a grid-based Geographic Information System (GIS) environment and 105 

propose a three-step method: first, identifying the metropolitan CBD and sub-centers 106 

by a grid-based clustering algorithm; second, delimiting the metropolitan sphere of 107 

influence based on a three-fold judgment criterion; third, measuring the human activity 108 

performance and role of each center using two set of morphological and functional 109 

indexes. The emerging carpooling big data can help put this three-step task into practice.  110 

The objective of this paper is to characterize the metropolitan polycentric spatial 111 

structure in-depth and comprehensively with the advantage of big data. More 112 

specifically, first, we need to demonstrate the feasibility of carpooling data in 113 

metropolitan studies and find the way to use these data. Furthermore, we need to 114 

determine the advanced clustering algorithm, delimiting approach and measurement 115 

system based on the carpooling data and literature review, to realize the proposed three-116 

step method. Last, applying our data and method in the Beijing Metropolitan Area, we 117 

hope the associated results and findings can provide valuable insights for metropolitan 118 

land use and transport planning. 119 

The rest of this paper is organized as follows. Section 2 presents a review of the 120 

relevant literature. Section 3 details the methodology used to measure the metropolitan 121 



spatial structure. The proposed method is tested in the case of Beijing Metropolitan 122 

Region and the results are analyzed and compared with similar studies in Section 4. 123 

Section 5 conducts a comparison with other works and provides some policy 124 

suggestions based on the results. Finally, Section 6 summarizes our major conclusions 125 

and some points for future research. 126 

2. Literature review 127 

2.1 The spatial structure of metropolitan regions 128 

The design of urban transport and land use policies are frequently on the basis of 129 

people’s perceptions of the current spatial structure of cities or regions (Angel and Blei, 130 

2016). These perceptions inform decision-makers of what can and should be done — 131 

in terms of public plans and investments as well as regulatory reforms of land use — to 132 

improve urban land use and transportation systems in the coming years. Therefore, 133 

scholars in related fields have been working on defining regions and their spatial 134 

structure, especially on the functional regions with complex structures, e.g., the 135 

Metropolitan Regions. A metropolitan region can be thought of a multi-functional 136 

region consisting of a densely populated urban core and its less-populated surrounding 137 

territories, sharing industry, infrastructure, and housing (Squires, 2002). From the 138 

perspective of spatial scope, a metropolitan region is similar with a large metropolitan 139 

area belt defined by Fang and Yu (2017), which usually comprises multiple mega-cities 140 

and tens of millions of populations.  141 

In the abstract, the term metropolitan spatial structure can be regarded the 142 

discernible patterns in the distribution of human activity in cities (Anas et al., 1998), 143 

especially the discernible patterns in the distribution of residences and workplaces and 144 

the commuting flows that connect them to each other (Angel and Blei, 2016). The latter 145 

study argued there can be five types of spatial structures in cities: the Maximum 146 

Disorder model, the Mosaic of Live-Work Communities model, the Monocentric City 147 

model, the Polycentric City model, and the Constrained Dispersal model. Among them, 148 

the Polycentric City model was defined as that workers commute to a discrete set of 149 

identifiable employment sub-centers—including but not restricted to the CBD—located 150 

throughout the metropolitan region.  151 

In recent decades, worldwide metropolitan spatial structure has experienced great 152 

changes along with population decentralization or regional integration. The classic 153 

monocentric model has gradually lost its power to explain these evolutions (Clark, 154 

2000). In western cities, the polycentric model has been widely involved in 155 

metropolitan structure studies (Burger et al., 2011; Veneri, 2013), while currently the 156 

disperse model has also been proposed in some large western metropolises (Dong, 2013; 157 

Angel and Blei, 2016). As a contrast, the evolutions of metropolitan structure in 158 

developing countries are at a slow pace; most studies focus on the transformation of 159 

metropolitan regions from monocentric to polycentric (Fernandez-Maldonado et al., 160 

2014; Hashem and Mehdi, 2017). In China, under the influences of both the market 161 



force and government interventions, many large urban areas, such as Beijing, Shanghai, 162 

Guangzhou and Shenzhen, also present polycentric structure (Liu et al., 2015; Huang 163 

et al., 2017; Lv et al., 2017), although the number and the size of employment sub-164 

centers tend to be limited. Exploring the polycentric spatial structure can provide a 165 

wider knowledge of metropolitan spatial organization, which is significant to make 166 

scientific spatial planning policies and public resource assignments.  167 

2.2 The characterization of metropolitan polycentric spatial structure 168 

The previous studies on the characterization of metropolitan polycentricity 169 

frequently focused on one or more of these three broad issues: a) the identification on 170 

the regional sub-centers; b) the delineation of the metropolitan spatial extension; c) the 171 

measurement on the human activity performance (especially the employment 172 

performance). 173 

A necessary first step in the characterization of polycentric MA concerns the 174 

identification of metropolitan sub-centers (Anas, Arnott, & Small, 1998). The 175 

identification of sub-centers can provide a wider understanding of metropolitan spatial 176 

organization, which is necessary for any spatial planning policy (Veneri, 2013). 177 

Numerous studies have examined the location of sub-centers and their boundaries by 178 

identifying centers (Veneri, 2013, Fernandez-Maldonado et al., 2014, Huang et al., 2017; 179 

Hu et al., 2018). Although various practical approaches have been proposed for 180 

identifying layout of sub-centers, the employment density-based indexes are most 181 

widely applied (Zhou et al., 2001; Angel and Blei, 2016; Guzman et al., 2017). Zhou et 182 

al. (2001), for instance, measured the centrality of a city using urban employment data 183 

for five industries in China. Considering the work-commuting flows do not represent 184 

all the movements that take place in a metropolitan region, we may neglect the urban 185 

nodes that can indeed be central for activities related to consumption, study and leisure 186 

in their way. As a consequence, it is necessary to distinguish the concept of employment 187 

sub-center from the wider one of urban sub-center. Veneri (2013) indicated that a 188 

metropolitan sub-center must have a minimum degree of productive variety and can 189 

supply a wide range of urban functions. The point density of origins and destinations 190 

(OD) of resident trips based on GPS trajectory data, involving a variety of human 191 

activities, can help us investigate which area has higher agglomeration capacity and 192 

productive variety in an urban system (Yue et al., 2012; Liu et al., 2015), which can be 193 

a rational centrality index for locating the CBD and other general sub-centers. 194 

As a complex, dynamic and huge systems, metropolitan spatial structure are 195 

typically characterized by fuzzy boundaries. Defining the spatial boundaries of MRs 196 

from a variety of aspects is one of the traditional tasks in urban geography and planning 197 

(Ouředníček et al., 2018). A major reason behind the need to delineate the metropolitan 198 

regions is that official information at that scale are frequently based on administrative 199 

or legally-defined regions (Moreno-Monroy et al., 2020), while the latter cannot adapt 200 

timely to rapid changes in spatial population and economic activities, causing a 201 

persistent misalignment between legal and functional boundaries. Metropolitan regions 202 



are frequently delimited by functional approaches, relying on commuting ties between 203 

local units and regional centers (Bosker et al., 2019). In practice, for example, Japan set 204 

the standard of its metropolitan regions with the number of commuting population and 205 

the proportion of the population commuting to the central area of the metropolis in the 206 

1960s (Fang and Yu, 2017). Since then, commuting density index has become a 207 

universally accepted determinant of the metropolitan circles’ boundaries (Schleith et al. 208 

2018; Ouředníček et al., 2018). Such methods are likely to be accurate to delineate 209 

metropolitan regions, but the lack of commuting data in many countries limit a global 210 

and consistent delineation (Moreno-Monroy et al., 2020). Another method frequently 211 

used in looking at the potential region scope is the accessibility measures. A trade-off 212 

between economies and diseconomies of commuting to metropolitan sub-centers can 213 

determine the growth boundary of MRs to some degree. One of the classic accessibility 214 

measures applied is the time-threshold based contour measure, also be called isochrone 215 

measure (Geurs & van Wee, 2004; Sánchez-Mateos et al., 2014). The isochrone 216 

measure provides evidence of the spatial scale expansion of urban regions by the 217 

increasing number of municipalities, people and jobs that can be reached within a 218 

certain time budget. Although this indicator is considered straightforward for 219 

implementation and interpretation, it has some theoretical shortcomings. First, the wide 220 

variety of travel time budgets used in literature means the difficulty of establishing a 221 

unique value of the time threshold, which greatly varies from country to country 222 

(Reggiani et al., 2011). Second, it does not take into account a distance-decay function 223 

to weight the opportunities (Sánchez-Mateos et al., 2014). Hence the area delimited by 224 

a travel time budget value should only be considered as a potential interaction 225 

metropolitan sphere.  226 

There are also plenty of scholars focusing on the specific human activity 227 

performance of metropolitan polycentric structure, especially the employment 228 

performance, such as the regional job-housing relationship, interaction intensity 229 

between centers, and commuting efficiency. Two main approaches have been used to 230 

measure these performances– morphological and functional (Veneri, 2013; Sánchez-231 

Mateos et al., 2014). The morphological approach is based on identifying nodes (centers) 232 

and characterizing them in terms of size and complementarities to other nodes (Giuliano 233 

and Small, 1993). A growing body of literature attempts to measure spatial structure by 234 

investigating the job-housing relationship for cities or regions (Wan et al. 2018; Zhang 235 

et al., 2017), while Lee & Gordon (2011) and Angel & Blei (2016) used the share of 236 

jobs in sub-centers (and CBD) to explore the whether a metropolitan structure has 237 

polycentric structure. The functional approach is based on characterizing centers by 238 

their interconnecting flows (Sánchez-Mateos et al., 2014). In previous studies, scholars 239 

mainly measured the spatial flows patterns in metropolitan regions from two 240 

perspectives. The first concerns the flow intensity. The flows of people and freight are 241 

key ties that connect the discrete physical resources of a city into an integrated system, 242 

and flow intensities can represent the spatial-interaction strengths between places. 243 

Based on the measurement of flow intensity to centers, a series of indexes were 244 



proposed to reveal spatial structure of cities or regions, such as the network dominance 245 

index (Limtanakool et al., 2007), the flow centrality (Veneri, 2013), the connection 246 

intensity (Zhen et al. 2017). The second focus is on the flow cost. (or travel cost), e.g. 247 

passenger travel time (or distance). Some scholars have studied the impact of 248 

polycentric structure on commuting time (Lin et al., 2015; Zhao et al., 2011) and others 249 

explored complex metropolitan structures by using a travel-time based accessibility 250 

index to show the interplay between the transport network and land use (Li et al., 2018; 251 

Sánchez-Mateos, et al., 2014). Furthermore, a number of scholars (Zhen et al. 2017; 252 

Chen et al., 2014) have suggested that a multi-criteria approach needs to be adopted to 253 

better understand the human activity performance of complex polycentric structure.  254 

Furthermore, some scholars have recognized it is more rigorous and accurate to 255 

measure the performance of spatial structure on the basis of valid center layout and 256 

functional boundary in a given metropolitan region (Zhen et al., 2017; Sun and Lv, 257 

2020). However, limited by data or just for convenient, most studies on metropolitan 258 

performance paid less attention on these two steps, but directly use directly took the 259 

lower-level administrative divisions as the regional centers and took the boundary of 260 

higher-level administrative division as the scope of whole study area. 261 

2.3 The potential of carpooling big data in metropolitan studies 262 

With the advent of the sharing economy era, on-demand carpooling services have 263 

become popular in many countries by their benefits of reducing travel costs, total fuel 264 

consumption, and carbon emissions compared to driving in single-occupancy vehicles. 265 

Carpooling trip data have two key advantages compared with conventional taxi trip data 266 

in metropolitan studies. First, smartphone-based carpooling mainly caters for 267 

commuting trips; commuting flows can be used to effectively uncover the spatial 268 

structure of an urban system (Angel and Blei, 2016). In general, non-professional 269 

carpooling drivers have their own jobs, so commuting is their primary travel purpose. 270 

Yongqi et al. (2018) conducted an empirical study on internet based ride-sharing travel 271 

patterns and demonstrated that carpooling primarily serves commuters from the 272 

perspective of data visualization and mathematical method. Second, the service scope 273 

of carpooling trips can spread over the whole metropolitan area. Carpooling can be a 274 

feeder for public transit to support commuting, and other travel activities, between 275 

suburban and urban areas, central and satellite cities. Some research has also implicitly 276 

viewed the application scope of carpooling as the metropolitan area (Xing et al., 2009; 277 

Najmi et al., 2017). Due to its commuting function and broader service scope, 278 

carpooling big data has huge advantages for exploring metropolitan spatial structures, 279 

which have not been utilized for metropolitan study to date.  280 

3. Methodology 281 

3.1 Identifying the study area 282 

Beijing is located on the North China Plain and covers an area of 16,400 km2. It 283 

includes 16 urban, suburban, and rural districts, with 21.71 million permanent residents 284 



in 2017 (BMBS, 2018). According to the new “Beijing General City Planning (2016-285 

2030)”1, the administrative region of Beijing has four different functional areas based 286 

on the layout of its urban space: a) the central city area (six inner districts including 287 

Xicheng district, Dongcheng district, Haidian district, Chaoyang district, Shijingshan 288 

district and Fengtai district); b) the city sub-center (i.e. Tongzhou district); c) the new 289 

city on the plain, including four suburban districts – Daxing district, Fangshan district, 290 

Changping district, Shunyi district, and one planned community – Yizhuang economic 291 

development zone, located within Daxing district; d) the eco-conservation area (the 292 

mountainous area, comprising of the five remaining districts). The locations of these 293 

four areas are shown in Fig. 1 (right). Based on the conceptual definition of 294 

Metropolitan regions, the Beijing Metropolitan Region (BMR) can be said to comprise 295 

of the highly-populated central city area and its surrounding close-connected territories. 296 

Most of previous works focusing on the BMR, simply took the Beijing administrative 297 

region as the study area (Long et al., 2013; Tian et al., 2010). Given the continual sprawl 298 

of this metropolitan region, however, we cannot determine intuitively whether Beijing's 299 

administrative boundary is identical to the functional boundary of BMR or not. In 300 

general, the size of the BMR ought to be smaller than Beijing-Tianjin-Hebei Urban 301 

Agglomeration (BTH-UA), i.e., the broad region covering Beijing, Tianjin and 11 302 

prefectural cities of the neighboring Hebei Province, also shown in Fig. 1 (left). 303 

Therefore, we take the wider BTH-UA as our initial study area before delineating the 304 

BMR. 305 

 306 
Fig. 1. The Beijing-Tianjin-Hebei Urban Agglomeration and the fourfold functional components 307 

of Beijing 308 

Although we cannot ascertain, at this stage, the specific sphere of the BMR, we do 309 

know the urban area of Beijing is frequently regarded as the core of the BMR and even 310 

                                                 
1 http://www.bjghw.gov.cn/web/ztgh/ztgh000.html 
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of BTH-UA. A preliminary visualized analysis of the spatial structure of Beijing was 311 

thus conducted using the density distribution of the OD points of the carpooling trips, 312 

as presented in Fig. 2. Most of the carpooling trips took place within the 6th-ring-road 313 

of Beijing, aggregating to be some highly-populated centers, while few people travel 314 

by carpooling in the outer suburbs. There are a large number of carpooling trips to/from 315 

railway stations and the airport, as well as to/from the traditional Central Business 316 

District (CBD). Intuitively, the BMR doesn’t seem to have a uniform polycentric 317 

structure, but has one continuous large-scale settlement within the 5th-ring-road and 318 

some small-scale settlements scattered around the 6th-ring-road. In other words, the 319 

BMR has a hierarchical polycentric structure. In reality, this form of metropolitan 320 

structure is common globally, especially in developing countries (Lin et al., 2015).  321 

 322 
Fig. 2. The spatial distribution of carpooling trips in Beijing 323 

3.2 Dataset and preliminary analysis 324 

The dataset used here contains 15 million randomly sampled records of carpooling 325 

trips that occurred in BTH-UA between October 2017 and December 2017 (92 days in 326 

total). These carpooling trips were provided by an application-based system named 327 

DiDi Hitch, which was developed by the DiDi transportation company. DiDi is the 328 

largest ride-hailing service company in China and one of the largest on-demand ride 329 

sourcing service platforms in the world (DiDi, 2018). There are 922,021 carpooling 330 

drivers and 4,074,158 passengers included in the dataset. Each trip record includes a 331 

unique identifier for each driver and passenger, passengers’ pick-up/drop-off locations 332 

(longitude and latitude) and the associated time stamp, as well as the actual distance 333 

travelled. Abnormal data where distance travelled was less than 1km or travel time was 334 

less than 5 minutes was removed from database, removing only 94,550 trips in total. To 335 

investigate the characteristics of the Beijing’s carpooling big data, we conducted 336 

statistical analysis on the temporal and spatial distribution of the carpooling trips as 337 

shown in Fig. 3.  338 

From the temporal perspective, the morning peak (7:00-9:00) and evening peak 339 
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(17:00-19:00) are obvious on workdays (Monday to Friday); up to 35% of daily trips 340 

are made during these times, while the same period on non-workdays only accounts for 341 

26% of daily trips. In contrast, only 20% of conventional taxi trips are made within 342 

peak hours (Yongqi et al., 2018). This suggests a higher proportion of carpooling trips 343 

are made by commuters compared with taxi trips; this accords with the commuting 344 

function of carpooling trips demonstrated in previous works (Liu et al., 2019; Yongqi 345 

et al. 2018). For this dataset, we assumed that most carpoolers departing between 6:00 346 

to 9:00 on workdays would be commuting for three reasons. Firstly, commuting trips 347 

in Beijing are generally concentrated within peak hours of workdays (BTI, 2018). There 348 

is no reason to suspect carpooling trips would be an exception. Secondly, people living 349 

in outer suburbs, especially out of Beijing, are likely to need more time to travel to their 350 

inter-city workplaces and thus may set off earlier. Taking Beijing as destination, for 351 

example, the percentage of inter-city carpooling trips departing to total trips from 6:00 352 

to 7:00 on workdays is higher than the percentage departing during other hours; the 353 

former accounts for 12%, while later hours less than 4% on average. Thirdly, the 354 

evening peak is likely to include a higher proportion of leisure travel, with a proportion 355 

of commuters travelling to entertainment venues rather than going straight home 356 

(Yongqi et al., 2018). The inflection point of hourly carpooling trips at 19:00-20:00 357 

shown in Fig. 3(top) may result from some people going home from entertainment 358 

venues.  359 

From the spatial perspective, not only are there intra-city commuting carpooling 360 

trips, but some commuters travel from their residential cities to another one, shown in 361 

Fig. 3 (bottom). The average distance of morning commuting carpooling trips is 23.1km, 362 

which is much higher than the average distance travelled by other passenger 363 

transportation modes in Beijing, which are, for example, 9.9 km and 13.3 km for taxi 364 

trips and urban rail transit trips respectively (BTI, 2018). Moreover, the inter-city 365 

carpooling trips have a longer average travel distance (83.4km) compared to intra-city 366 

carpooling trips. This implies that the service scope of carpooling can exceed the 367 

administrative boundary of Beijing and the may spread throughout the BMR. Moreover, 368 

the influence sphere of BMR seems not accordance with the administrative boundary 369 

of Beijing. This analysis supports our premise that carpooling data can be used to 370 

represent commuting flows of the metropolitan region and characterize the 371 

metropolitan structure.  372 



 373 

Fig. 3. Workday and non-workday carpooling orders number distribution by hour (top) and intra-374 

city and inter-city commuting carpooling trips distribution by traveling distance (bottom) 375 

Furthermore, we tested whether carpooling trips data could substitute for 376 

household travel surveys to describe the commuting demand of all residents. To do this 377 

we collected data on the size of the employed population for all cities in the BTH-UA 378 

to represent the real commuting demand, and explored its correlation with the 379 

distribution of carpooling trips. Considering Beijing’s employment population and trip 380 

numbers have different orders of magnitude from the other cities, we took the logarithm 381 

for both variables, as shown in Fig. 4. With the R-squared and elasticity coefficients 382 

equal to 0.66 and 1.49 respectively, there is a relatively high positive log-linear 383 

correlation between commuting carpooling trips and commuting population. This 384 

suggests using carpooling trips made within morning peak hours to represent the 385 

commuting flows of residents in the BMR is a reasonable assumption. 386 

 387 
Fig. 4. Log-linear fitting for commuting carpooling trips and employment population 388 
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3.3 Methods and tools of data analysis 389 

3.3.1 Research framework 390 

Given our preliminary identification of the BMR and analysis on the carpooling 391 

trips data, Fig. 5 outlines the three-step method used to measure the polycentric 392 

metropolitan structure. Firstly, we developed a grid-based clustering algorithm to 393 

identify the CBD and sub-centers of the metropolitan region. Secondly, we delineated 394 

the specific metropolitan functional sphere based on the regional commuting intensity 395 

and commuting accessibility to centers. Lastly, combining the morphological approach 396 

and functional approach, we developed two sets of indexes to measure human activity 397 

performance and investigate the possible role of each center, visualized by the last two 398 

concept maps, respectively. The multi-criteria quantitative indexes, including three 399 

density-based indexes and three flow-based indexes, estimated by the carpooling trip 400 

data within the defined metropolitan sphere. We would introduce the specific method 401 

and define the index system in more details in the subsequent sections. 402 

 403 

Fig. 5. Method framework of this study based on carpooling big data 404 

3.3.2 Algorithm on identifying the regional centers 405 

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 406 

algorithm is widely used to form clustering in large scale data due to its simple 407 

calculation structure and low computing cost (Tang et al., 2015; Ester et al., 1996). 408 

Taking clusters of origin and destination points as metropolitan centers can transcend 409 
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the limitation of administrative units.  410 

In carpooling trip dataset, although we know the position where a customer is 411 

picked up or dropped off, the exact place or building that the customer comes from or 412 

goes to is unknown. Given that a small spatial unit usually has a single land use, we can 413 

reasonably aggregate trips to obtain spatial interactions between these small spatial 414 

units. These small units could be traffic analysis zones (TAZs), grids, or parcels 415 

segmented by major roads. Due to a lack of TAZ data, we take grids as the basic unit 416 

of density clustering.  417 

There are two parameters we need to set before conducting this grid-based 418 

clustering method (Liu et al., 2017). We set the parameter ε (search radius) as the 419 

smallest 2-cell neighborhood to guarantee the basic search scope only covers one 420 

adjacent unit in each direction and obtain accurate clustering results. As for the MinPts 421 

(the minimum number of OD points within the 2-cell search scope to form a cluster), 422 

we need to choose a rational value based on the local situation as follows. 423 

Focusing on the region surrounded by the 6th-ring-road, i.e. the central city areas 424 

and inner suburbs of Beijing (see Fig. 2), we partitioned this area into 1,050 (30 425 

lines×35 rows) cells with a unit area of 1.8km×1.8km; these are a similar size to the 426 

latest (2010) Traffic Analysis Areas (TAZs) for this area. We obtain preliminary cluster 427 

results based on four values of MinPts using the grid-based DBSCAN algorithm, shown 428 

in Fig. 6. Obviously, as MinPts rises, the total number grid cells within clusters reduces, 429 

but the separation between the central cluster and outer clusters increases. Compared 430 

with Fig. 6 (b) and (c), when the density threshold is 200,000, there are less clusters 431 

(only five) in Fig. 6 (a) and its central cluster (the red cells) is so dominant that it 432 

consumes some outer clusters. When the value of MinPts reaches 300,000 in Fig. 6 433 

(d), the separation between the central cluster and the outer clusters is more evident at 434 

the cost of outer clusters vanishing. We take the cluster results with parameter 435 

MinPts=230,000 in Fig. 6 (b) as the final sub-center system; this captures more outer 436 

clusters whilst matching the five new cities on the plain, introduced in Beijing city plans 437 

(as shown in Fig. 1). 438 

 439 



(a)                               (b) 440 

 441 

(c)                               (d) 442 

Fig. 6. The clustering results when the density threshold 𝑚𝑖𝑛𝑃𝑡𝑠 takes (a) 200000, 443 

(b) 230000, (c) 250000 and (d) 300000, respectively. 444 

3.3.3 Method on delimiting the metropolitan influence sphere 445 

We determine whether a certain region belongs to a metropolitan region based on 446 

a threefold judgment criterion: a) regional commuting population number; b) regional 447 

commuting intensity to the metropolitan sub-centers; c) regional commuting 448 

accessibility to the metropolitan sub-centers. We disperse the study area as grids under 449 

the GIS environment; a grid can be regarded as a part of the metropolitan region, if it 450 

has the certain commuting population, higher commuting interaction with metropolitan 451 

centers and is reachable within a rational time threshold. This grid-based boundary is 452 

dynamic and fully independent from local jurisdictions boundaries with cross-country 453 

comparability.  454 

For the first judgment criterion a), therefore, we can exclude the grids generating 455 

less commuting trips than a preset lower threshold to extract the grids (regions) with 456 

sufficient commuting populations. For the judgment criterion b), we use the carpooling-457 

based commuting rate (CR) as a measurement of the commuting interaction to the 458 

metropolitan centers. Based on the regional unit of grid, 
kCR  here is the ratio between 459 

the sum of commuting carpooling trips 
1

m o

kii
N

  from a certain grid k  to every sub-460 

center i  and the total number of commuting trips o

kN  from grid k , shown in Eq. 1. 461 

 = 1,2, m  is the set of sub-centers and i ;   1,2, n   is the set of grids 462 

k . Note that the set of sub-centers is the subset of the set of grids, i.e.  . A 463 

contour map of all grids’ CR was used to visualize the distribution of sub-centers’ 464 

influence; this was produced using the interpolation algorithm embedded in the ArcGIS 465 

software.  466 

 
1

 = 
m o o

k ki ki
CR N N

               (1) 467 



For the third judgment criterion c), the isochrone or contour measure can be used 468 

to define catchment areas by determining their limits within certain travel times to the 469 

metropolitan centers, assessing the number of accessible job opportunities within each 470 

time threshold. This isochrone measure is formulated in Eq.2 as an expression of 471 

accessibility index AI  depending on a Boolean function t

kx  and on the sum of job 472 

opportunities to all centers 
1

 
m o

kii
N

 from grid k . The Boolean function 1t

kx   if the 473 

commuting times of major carpoolers from grid k  to centers less than predetermined 474 

time threshold t  and 0t

kx  , otherwise. Accessibility index AI  is the sum of 475 

commuting trips from all the associated grids.  476 

 
1 1

=    
n m t o

k kik i
AI x N

                (2) 477 

To avoid the theoretical shortcomings mentioned in literature, in this paper, (1) we 478 

pick out the cells (grids) with sufficient commuting population and commuting intensity 479 

and visualize their spatial distribution as initial metropolitan sphere; (2) we depict a 480 

sequence of isochrone maps with different commuting time thresholds and select a 481 

isochrone map approximate to the former spatial distribution; (3) we delimit the 482 

metropolitan boundary based on the overlapping content of the former initial sphere 483 

and the latter isochrone map. 484 

3.3.4 Measurement on the performance of polycentric structure 485 

We measure the performance of a metropolitan region based on two sets of indexes: 486 

three density based indexes including the job density (JD), job share (JS) and job-487 

housing ratio (JHR); three flow-based indexes including the flow-centrality ratio (FCR), 488 

connection intensity (CI) and time-threshold based cumulative trip ratio (CTR). These 489 

indexes are calculated based on the information of carpooling trips within above 490 

delimited metropolitan sphere. 491 

To investigate the morphological patterns of sub-centers, we used the employment 492 

aggregation performance of each sub-center as measurement indexes. 1) Job density 493 

(JD) is the number of jobs to each sub-center per unit area. Since the number of jobs 494 

for each area was not available, we used a proxy based on commuting carpooling trips; 495 

so it is in following indexes. 2) Job share ( iJS ) is the percent of a sub-center’s job 496 

number accounting for the total jobs within the metropolitan region, shown in Eq.3. 497 

The d

iN  is the commuting carpooling trips to the sub-center i  and the d

kN  is the 498 

commuting trips to the grid k . 3) Job-housing ratio ( iJHR ) is the ratio of total 499 

employment number to local employed residents number within each sub-center, shown 500 

in Eq.4. d

iN  and o

iN  is the commuting carpooling trips taking sub-center i  as 501 

destination and origin, respectively. 502 

 
1

=  
nd d

i i kk
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               (3) 503 



  =   d o

i i iJHR N N               (4) 504 

To explore the functional performance of the sub-center system, three 505 

measurement indexes are proposed based on the carpooling trip flows between sub-506 

centers, from the two perspectives of flow intensity and flow cost. 507 

Flow-centrality ratio is another form of human activity based regional centrality 508 

index, besides the OD density. In this paper, flow-centrality ratio is the ratio of regional 509 

in-degree index to the associated out-degree index. The former represents the number 510 

of flows that directly enter each sub-center, while the latter is the number of flows that 511 

directly exit each sub-center. Hence the flow-centrality ratio (
iFCR ) for sub-center i  is 512 

computed based on the formula Eq.5, where the in-degree indicator ikI  is the number 513 

of carpooling trips (or commuting carpooling trips) towards the sub-center i  from the 514 

grid k  and the out-degree indicator kiO  is the number of carpooling trips  (or 515 

commuting carpooling trips) from the sub-center i  towards the grid k . Note that any 516 

of the grid k  is not in the associated sub-center i . We can compare this functional 517 

centrality index with the trip density index we used in identifying the sub-center to 518 

examine the regional central role in a metropolitan network. 519 

 
1 1

 =  
n n

i ik kik k
FCR I O

               (5) 520 

Connection intensity is another essential index to analyze the potential function of 521 

each sub-center. For the sub-center l , its connection intensity ljCI  with sub-center j  522 

is the percentage of carpooling trips towards sub-center j  from sub-center l  523 

accounting for all carpooling trips from the sub-center l , where ,l j  and l j , 524 

shown in Eq.6. A higher value of ljCI  means sub-center l  has a closer connection 525 

with sub-center j . 526 

 
1

 =
m

lj jl ili
CI O O

               (6) 527 

The commuting time distribution of passenger flows to each center can help us 528 

explore the level of flow cost and traffic performance in a given metropolitan network. 529 

Taking sub-center i  as a destination, the time-threshold based cumulative trip ratio 530 

( t

iCTR ) is the ratio between the sum of commuting carpooling trips t

ikI  from grid k  531 

that can reach the sub-center i  within a certain time threshold t  and all commuting 532 

trips ikI  from grid k  to this sub-center, shown in Eq. 7. For example, a 30min

iCTR  533 

value of 0.75 indicates that 75% of all jobs (commuting carpooling trips) in 534 

metropolitan region can reach sub-center i  within a particular time threshold of 30 535 

minutes. The use of a relative value eliminates ill effects due to the large variations of 536 



population scale between higher-order centers and lower-order centers. 537 

 
1 1

 =
n nt t

i ik ikk k
CTR I I

                (7) 538 

4. Results 539 

4.1 Clustering the layout of metropolitan centers  540 

Mapping the clustering results onto the Beijing road network, we replaced the 541 

cluster codes with the name of corresponding administrative districts or planned 542 

districts that locate each cluster (Fig.7). These clusters identify the built-up areas of the 543 

inner urban and suburban areas. Note that we separated the Tongzhou cluster from the 544 

largest central cluster (red cells) considering its relatively isolated topologies and 545 

independent administrative attribution2. As expected, the current BMR is a hierarchical 546 

polycentric sub-center system. The majority of the area covered by the six inner districts 547 

of Beijing constitutes the core city (the largest cluster), i.e. the primary center or the 548 

higher-order sub-center. The built-up areas of the Tongzhou district and five new cities, 549 

as well as the new settlement around airport can be regard as secondary centers (or 550 

lower-order sub-centers). Some basic information on the sub-centers of the BMR is 551 

given in Table 1. Both the trip numbers and the area of the core city are larger than the 552 

sum of all other seven secondary centers together. The core city also has the highest 553 

OD point density; this further illustrates the core city’s dominant role within the BMR. 554 

Of the secondary centers, the Tongzhou cluster is the largest in each value. With the 555 

smallest area among all the secondary centers, the Changping cluster has the second 556 

highest density; this may be due to its more intensive build-up area. Overall, 56% of 557 

carpooling trips are from or to these sub-centers and 78% of these trips associated with 558 

sub-centers pick up or drop off in the core city. 559 

 560 

                                                 
2  Tongzhou district was declared as Beijing’s administrative sub-center by local authorities in 2015. 
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Fig. 7. Spatial location of central cities in Beijing Metropolitan region 561 

Table. 1. Basic statistical analysis of sub-centers 562 

Hierarchy Primary Secondary 

Centers Core city Tongzhou Yizhuang Airport Fangshan Daxing Shunyi Changping 

Carpooling 

trip number 

(103) 

6872 1107 827 762 532 513 301 219 

Area (km2) 888 139 130 107 94 87 49 29 

OD Density 

(103/km2) 
10.91 8.55 7.31 7.49 6.10 6.16 6.51 7.69 

4.2 Delimiting the metropolitan boundary  563 

Before defining the boundary of this metropolitan region, the broader area of BTH-564 

UA was divided into 7000 grid cells (70 lines×100 rows), each with an area of 565 

7km×7km. The larger grid cells (than the grid used in sub-centers identification) are to 566 

ensure the sufficient carpooling trips and commuting population in each grid cell that 567 

the proposed positive correlation between commuting carpooling trips and commuting 568 

population applies.  569 

For the first judgment criteria of regional commuting population constraint, we 570 

preset a filter threshold of 65 trips per grid cell and remove cells with less origin points 571 

for commuting rate estimation. Sixty-five trips could guarantee there is at least one trip 572 

every workday on average during the three months covered by the sample data. There 573 

are 657 grids cell left, less than 10% of total grid cells.  574 

For the second judgment criteria of commuting intensity, the commuting rate of 575 

each grid cell to sub-centers is estimated by the Eq.1. Then we used the Kriging 576 

interpolation method to smooth the commuting rate spatial distribution and produce a 577 

contour map of the commuting rate, shown in Fig. 8. Note we take the commuting rate 578 

of 5% as the lower commuting intensity threshold and we only include and depict the 579 

grid cells with commuting rate beyond this threshold. The region comprised by all of 580 

these qualified grids is defined as the metropolitan commuting sphere (MCS). 581 

Remarkably, the metropolitan commuting sphere of the sub-centers is beyond 582 

Beijing administrative district, gradually decaying from inside to outside the BMR. For 583 

the continuous settlement areas, commuting rates spread in the shape of concentric rings 584 

over the south-central region of Beijing with the core city as the heart; the sub-center 585 

commuting rate of the innermost rings exceeds 80%. Unsurprisingly, the sub-center 586 

commuting rate of the eco-conserving area is less than 5% due to the limitations 587 

imposed by the mountainous geographical environment. There are also some relative 588 

isolated pockets separated by rural areas, especially in the surrounding cities beyond 589 

the Beijing administrative district, like Baoding city, Zhangjiakou city, and Langfang 590 

city (see Fig. 8). For the scattered pockets with higher commuting rates, these 591 



commonly aggregate and distribute along the expressways (the red lines); this 592 

demonstrates the important role of high grade transportation facilities in the process of 593 

urban evolution. For example, Tianjin is a developed city that has strong 594 

communication links with Beijing and other cities in BTH-UA. The level of commuting 595 

by carpooling between Tianjin and the sub-centers of Beijing, however, is very low, 596 

maybe because the Beijing-Tianjin inter-city railway, with its high speeds and high 597 

departure frequencies, provides a more attractive option for travelling between these 598 

two cities than carpooling.  599 

 600 

Fig. 8. Contour map of commuting rate to the sub-centers of the BMR. The regions with 601 

commuting rate beyond 5% are defined as the metropolitan commuting sphere. 602 

For the third judgment criteria of commuting accessibility, the multiple-time-603 

threshold commuting isochrones are calculated and shown in Fig.9. If there are more 604 

than half of commuters from a certain grid can reach the sub-centers within 1 hour, we 605 

regarded these regions are 1-hour accessible, shown as the dark green grids; similar for 606 

the other time thresholds. The travel time thresholds take from 1 hour to 3 hours, step 607 

by half hour. It can be seen that the 2.5-hour accessible regions are approximate to the 608 

scope of above MCS. Hence we define the overlapping region that are 2.5-hour 609 

accessible and with commuting rate beyond 5% as the BMR; it covers about a 100km 610 

radius of region around the Beijing core city and can be regarded as the outer 611 

commuting circle. BMR excludes the mountainous areas of Beijing and extends beyond 612 

the administrative boundary of Beijing and further to the adjacent counties of Baoding 613 

and Langfang city, which involves 23 counties in BTH-UA and about 30 million people 614 

(in 2016). Furthermore, all of these sub-centers are within the 1.5-hour accessible 615 

regions and covering a 50km radius circle and these inner areas can be regarded the 616 

core commuting circle of the BMR. Compared with the previous related study with a 617 
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study duration from 1995 to 2010 (Shi and Cao, 2020), the spatial range of BMR 618 

delimited in this paper is broader and radiating more adjacent jurisdictions but not based 619 

on the administrative units. This shows that these regional centers have strong attraction 620 

and caused the continuous expansion of BMR. 621 

 622 

Fig. 9. Multiple-time-threshold based commuting isochrones and the influence sphere of BMR. 623 

For better presentation, we excluded the grids with commuting trips less than 10. 624 

For further understanding the defined metropolitan influence sphere, we 625 

conducted the statistical analysis on the specific commuting accessible trips and regions, 626 

shown in Table 2. More than half of commuting trips cannot reach the sub-centers 627 

within 1.5 hours in this metropolitan region. When up to 2.5 hours, the majority of 628 

commuters (96%) can reach these sub-centers; this also supports our previous decision 629 

on selecting the 2.5-hour threshold in defining the BMR. Moreover, from 1-hour to 2-630 

hour, there is a significant gap between the actual accessible trip number and the 631 

expected accessible trips number calculated based on the Eq.2; this reflects the strong 632 

fluctuation of commuting times within the core circle of BMR because of the serious 633 

road congestion. The area of accessible regions is not totally consistent with the area of 634 

accessible regions with sufficient commuting intensity and the differences between 635 

them become wider along with the ascending time thresholds; this demonstrates that a 636 

longer travel time can erode the regional commuting intensity to metropolitan centers, 637 

especially for the outer commuting circle area. 638 

Table. 2. Multiple-time-threshold commuting accessible trips and regions 639 

Time thresholds 1h 1.5h 2h 2.5h 3h 

Actual accessible trips 67744 538406 733581 1072096 1098538 

Expected accessible trips 128794 939406 1100748 1113519 1114804 

Actual accessible trip ratio 6% 48% 66% 96% 99% 

Total accessible grid number 27 127 192 246 280 

100km

50km

Travel time 

thresholds

1h 1.5h 2h 2.5h 3h MCS  ( CR >5% )

BTH - UA

BMA



Accessible grid number within 

MCS (CA>5%) 
25 121 176 209 226 

4.3 Measuring the performance of the metropolitan region 640 

4.3.1 Qualifying the employment aggregation performance 641 

For the morphological patterns of sub-centers, we qualified the employment 642 

aggregation performance based on the carpooling big data and three indexes are shown 643 

in Table. 3. As expected, the higher-order center, the core city of Beijing is the most 644 

important employment agglomeration zone as it has the highest job density and job 645 

share (beyond 60%) in the BMR. The core city’s JBR of 144.4% shows its serious 646 

imbalance between the living and working provision for citizens. In total, 81.9% of 647 

commuters take the core city and sub-centers as their destination; this also demonstrates 648 

that the hierarchical polycentric structure of BMR with a dominant core center. This 649 

total proportion is highly larger than the jobs share of employment centers including 650 

the CBD for the 50 largest metropolitan regions in the U.S. (24.6±1.8% in 2000, Angel 651 

and Blei, 2016). Compared with the constrained dispersal form of American cities, the 652 

BMR still does not have a single, integrated labor market where workers and 653 

workplaces are matched at a truly metropolitan scale. Although local government 654 

planned Tongzhou to be an administrative sub-center of Beijing, so far it mainly 655 

provides housing for people working in the core city, which has the lowest JBR and the 656 

second lowest jobs density. Fangshan also performs poorly for local employment 657 

attractions with the lowest job density. As the only national Economic-Technological 658 

Development Area (ETDA) in Beijing, Yizhuang has these three indexes ranking 659 

second only to the core city. The new city built surrounding the Beijing Capital 660 

International Airport also attracts plenty of job-seekers from the BMR. Distinctively, 661 

Shunyi has a good job-housing balance and a moderate job density. 662 

Table. 3. The employment aggregation performance of sub-centers in the BMR 663 

Centers Core city Tongzhou Daxing Yizhuang Shunyi Airport Fangshan Changping 

Job density 

(per km2) 
918.86 327.40 332.25 731.20 455.49 524.63 231.02 383.09 

Job share 60.9% 3.5% 2.1% 7.1% 1.7% 4.2% 1.6% 0.8% 

Job-housing 

ratio 
144.4% 41.6% 65.8% 129.1% 91.9% 128.4% 46.1% 62.4% 

4.3.2 Discerning the flow interaction performance 664 

For the functional patterns of sub-centers, we discerned the flow interaction 665 

between the sub-centers based on the carpooling big data and three indexes including 666 

flow-centrality ratio, connection intensity and time-threshold based cumulative trip 667 

ratio are calculated; the former two indexes are shown in Table. 4. 668 

Considering the diverse activities and commuting trips, we estimated the multi-669 

flows centrality and commuting-flow centrality, respectively, based on the formula Eq.5. 670 



Considering the regions satisfying FCR>1 as the metropolitan first-order centers, most 671 

of sub-centers, even the core city, are of poorly flow-based centrality; these results are 672 

highly different with the identification of OD density based centrality. Core city and 673 

other two employment centers (Yizhuang and Airport) perform prominent in the 674 

commuting-flow centrality, while other centers still cannot reach the threshold value 675 

(FCR=1). Especially, affiliating to the core city and without a local employment base, 676 

Tongzhou is with the lowest commuting-flow centrality. We conjecture that the forming 677 

and growing of BMR’s polycentricity can be more of the result a decentralization of 678 

employment from a congested core city (or CBD) than the consequence of a 679 

coalescence or integration process, like many European metropolitan regions (Veneri, 680 

2013). The decentralization here can be defined as the movement of populations and 681 

their activities (residential function, employment, services, administration, etc.) from 682 

the core cities to the hinterland. Therefore, density measures based on the former idea 683 

can be more appropriate to be used as the centrality indexes. Except for Shunyi, all the 684 

outer (lower-order) sub-centers have highly close connections with the core city 685 

(CI >70%), which also reflects the dominated function of the core city within in the 686 

BMR. As for the connection intensity of core city to outer center secondary centers, 687 

beyond one fourth of passenger flows from core city are towards the Tongzhou; this 688 

indicates the construction of this administrative sub-center has taken effect and shared 689 

the huge population pressure of core city. The Shunyi has barely connection with core 690 

city, but has a relative independent status in this metropolitan region. 691 

Table. 4. The connections between the core city and lower-order sub-centers within the BMR 692 

Places Core city Tongzhou Daxing Yizhuang Shunyi Airport Fangshan Changping 

Multi-flows 

centrality 
0.96 0.97 1.01 0.96 0.91 1.22 1.03 0.97 

Commuting-

flow centrality 
2.78 0.34 0.63 1.46 0.91 1.33 0.39 0.61 

CI (outer centers 

to core city) 
/ 76.7% 72.8% 71.9% 51.2% 76.4% 84.1% 87.0% 

CI (core city to 

outer centers) 
/ 27.2% 11.9% 17.9% 3.5% 21.8% 12.5% 5.1% 



 693 

Fig. 10. Commuting flow distribution based on commuting carpooling trips within BMR 694 

To further explore the commuting interactions between sub-centers within this 695 

metropolitan, we depicted the commuting flows between various orders of sub-centers 696 

and the associated hinterlands in a Sankey diagram (Fig.10). 71.4% of the commuting 697 

carpooling trips are related to the core city, whose workers mainly come from the broad 698 

hinterlands of Beijing, Tongzhou and other cities. Reverse commuting trips from the 699 

core city to the secondary centers account for 24.9% of the total commuting trips from 700 

the core city. Most of these take new employment sub-centers (Yizhuang and Airport) 701 

and the hinterlands as destinations and are the most important part of the local 702 

employment sources. This result can be regarded as evidences of metropolitan 703 

suburbanization and the polycentric nature, which is accordance with our viewpoint in 704 

the forming of BMR. Notably, more than two thirds of the external commuters to 705 

Shunyi are from neighboring communities; this embodies Shunyi’s function as an 706 

employment base for local citizens. Apart from the core city, commuting connections 707 

from Shunyi to Airport and from Tongzhou to Yizhuang are also very strong, maybe 708 

due to their adjacent geographical locations. 709 

As a measure of flow interaction cost, the time-threshold based cumulative trip 710 

ratio (CTR) of carpoolers departing to each center within morning peak hours were 711 

computed from 0 to 3 hours by a 15-minute interval. These distribution curves of the 712 

eight centers are shown in Fig. 11. At first glance, the cumulative commute time 713 

distributions of trips to the eight sub-centers are similar. These each distribution curve 714 

is composed of double S-shaped curves of short-distance trips (travel time <1.5h) and 715 

long-distance trips (>1.5h) and there is an obvious flat segment neighboring the 1.5-716 



hour join line. The S-shaped curves of short-distance trips rise sharply at each side of 717 

the 30-minute time threshold, while the S-shaped curves of long-distance trips show 718 

dramatic changes around the 2-hour time threshold. These characteristics of the curves 719 

demonstrate the uneven distribution of carpoolers’ commuting times. Most of short-720 

distance commuters need to reach their workplaces within 1 hour, while most of long-721 

distance commuters will finish their trips within 2.5 hours. According to the previous 722 

results of commuting isochrones, the short-distance trips to these centers are mainly 723 

from the core city and its adjacent centers, while most of trips from the outer suburbs 724 

or other cities are the long-distance trips.  725 

 726 

Fig. 11. Cumulative commute duration frequency distribution of carpoolers travelling to regional 727 

centers with varying time thresholds 728 

Although the cumulative commuting time distributions shown in Fig. 11 are 729 

similar, there exist obvious differences among different destinations. Carpoolers 730 

working in the core city need the longest commuting time and nearly half of them 731 

cannot reach their workplaces within 1.5 hours, while commuters to outer sub-centers 732 

spend less time. Carpoolers to Fangshan often need the least time cost; there even is 733 

more than a 20% difference between the core city and when the commute time threshold 734 

is 30 minutes. Carpoolers travelling to Yizhuang and the Airport settlement, both of 735 

which perform well in terms of employment attractions, also spend considerable time 736 

commuting. People living and working in the employment centers show a higher 737 

tolerance to long-distance commutes. A number of studies have found that a longer 738 

commute time is associated with lower levels of both life satisfaction and happiness 739 

(Kahneman et al., 2004; Choi et al., 2013). In the developed cities of China like Beijing, 740 

these negative correlations are also significant, especially when commute times are 741 

more than 1 hour per trip (Nie and Sousa-Poza, 2018; Yin et al., 2019). Beijing 742 

government planned to reduce its average commuting time within the Fifth Ring Road 743 
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(similar with the core city in this paper) from 97 minutes in 2014 to 60 minutes in 20203. 744 

However, except for those travelling to the centers of Shunyi and Fangshan, less than 745 

50% of carpoolers can reach a center within one hour during morning peak hours. The 746 

average driving speed of carpooling commuters within the BMR is only 22.17 km/h, 747 

illustrating the severe traffic congestion problems in this mega metropolitan region. 748 

According to previous studies or reports on commute in Beijing, the average 749 

commuting time to regional centers are from 30 minutes to 50 minutes (Lin et al., 2015; 750 

Hu et al., 2018; BTI, 2018). The obvious differences can be partly due to the longer 751 

travel distance of carpooling service and partly due to the broader study area. Overall, 752 

the performance of the road network in the BMR seems lower than the expectations of 753 

citizens and decision makers. 754 

4.3.3 Investigating the role of each sub-center 755 

Using the proposed spatial indexes, including the job-density, job-housing ratio, 756 

the workforce source composition, resident employment distribution and connection 757 

intensity of each sub-center, the driving force of sub-center forming and primary role 758 

of each sub-center in this metropolitan region can be revealed, which are listed in Table 759 

5. 760 

Taking the BMR as an example, the core city has dominant performance in all 761 

sorts of indexes due to its strong employment and residence centralization among this 762 

metropolitan region. There is no doubt that core city is the primary center of BMR. 763 

Reverse commuting trips (trips from core city to secondary centers) account for nearly 764 

50% of total commuting trips to the Yizhuang and Airport (see Fig.10), which means 765 

the employment decentralization from the core city is the important cause of forming 766 

these two sub-centers. Yizhuang and Airport have the higher employment aggregation 767 

performance only inferior to the core city (see Tab.3) and the commuting-flow 768 

centrality ratio above the threshold value (see Tab.4), hence they can be regarded two 769 

employment sub-centers of the BMR. In contrast to Yizhuang, the Airport (and its 770 

associated built-area) has a close connection with the core city, maybe because of its 771 

special function as a transportation hub. In contrast, Tongzhou and Fangshan have the 772 

lowest local jobs density and JBR (see Tab.3); most of commuters (about 70%, see 773 

Fig.10) from these two sub-centers are towards the core city. These places grow and 774 

evolve mainly by residence decentralization from core city, maybe because the higher 775 

living cost and house price of the latter, which be regarded as commute towns 776 

surrounding the core city. There still is a long way for Tongzhou to be the administrative 777 

sub-center. As for Daxing and Changping, it is difficult to directly indicate the driving 778 

force of regional development and define their functional property considering their 779 

mediocre performance in both employment aggregation (see Tab.3) and commuting 780 

distribution (see Fig.10). Therefore, we tentatively identify them as mixed-role cities 781 

forming by mixed forces, which can evolve by more than one trajectories possible in 782 
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the future. Considering the longer travel distances to the core city, the residents of 783 

Changping need to pay a higher commuting cost for working in the core city, so 784 

Changping is more likely to become a satellite city under sustained economic 785 

development, while Daxing is more susceptible to becoming another employment sub-786 

centers, if decision-makers adopt powerful measures to improve local employment 787 

attraction. Compared with other centers, Shunyi shows its specificity in many 788 

quantitative indexes: its job density is not very high, but has relatively balanced Job-789 

housing ratio, commuting-flow centrality close to 1, and less connection with core city 790 

(see Tab.3 and Tab.4). As a local employment base, Shunyi with is relatively 791 

independent of the core city in terms of both mobility connection and geographic 792 

location. 70% of commuters towards Shunyi are from its surrounding hinterlands (see 793 

Fig.10). The forming of this center can be a result of spatial coalescence or integration 794 

process, by the extension of the metropolitan influence over close systems of small and 795 

medium-sized cities. Hence we can consider Shunyi as a satellite city of Beijing 796 

downtown. 797 

Table. 5. The forming process and main roles of sub-centers in the BMR 798 

Places Driving force Regional role 

Core city 
Employment and residence 

centralization 
Primary center 

Tongzhou Residence decentralization Commuter town 

Daxing Mixed-forces Mixed-functions city 

Yizhuang Employment decentralization Employment sub-center 

Shunyi Spatial integration Satellite city 

Airport Employment decentralization Employment sub-center and transportation hub 

Fangshan Residence decentralization Commuter town 

Changping Mixed-forces Mixed-functions city 

5. Discussion 799 

5.1 Comparison with studies on metropolitan spatial structure 800 

Comparing with previous works on typical metropolitan regions or urban regions, 801 

either in developed country or developing country, the method developed in this study 802 

has the advantages of being more reliable, accurate and comprehensive.  803 

First, the advantage of reliability in this research is manifested by the fact that the 804 

carpooling big data used in this paper is dynamic, massive and more applicable to 805 

metropolitan study. Most of previous studies on metropolitan structure based on survey 806 

data or secondary data may be limited by the periodicity and subject of surveys; thus it 807 

is difficult to obtain updated and independent conclusions. For example, Angel and Blei 808 

(2016) recognized that a number of important recent changes, like revival of city centers 809 

and CBDs as centers of employment, have occurred in the intervening 15 years, raising 810 

the question as to whether their conclusions still hold. Burger et al. (2011) and Veneri 811 

(2013) used commuting flow survey data to uncover the spatial structure of city-regions 812 



in British and Italy, respectively. Several authors, however, have pointed out that 813 

journey-to-work travel should be used with other indicators to provide realistic insights 814 

into the interdependence of places and structure in urban systems (Lambregts et al., 815 

2005; Parr and Hewings, 2007). Studies attempting to reveal the city structure based on 816 

other emerging big data, such as taxi trip data (Liu et al., 2015), fail to show the 817 

metropolitan characteristics due to lack of information on long-distance commuting 818 

within a given metropolitan region. We can extract reliable, up-to-date and consistent 819 

information on the urban spatial structure based on carpooling big data, which is vital 820 

for numerous applications central to urban planning and land use analysis. 821 

Second, rather than using the administrative divisions of Beijing Municipality, we 822 

clustered the polycentric layout under a grid-based, GIS-enabled environment and 823 

delimited this metropolitan sphere based on a threefold criterion. The identification 824 

methods on study area are more rigorous and the associated results can be more accurate. 825 

In fact, there would be a significant difference in the value of some indexes based on 826 

different metropolitan spheres, when the inter-city trips were identified incompletely. 827 

Within the Beijing Metropolitan Region (BMR), the inter-city trips beyond the 828 

municipal boundary of Beijing accounted for 11.2% of total trips. These trips obviously 829 

have different spatial-temporal characteristics compared with the trips within Beijing. 830 

More specifically, the inter-city trips had much longer travel distances and travel times 831 

(31.3km and 92min on average) than the latter (20.3km and 71min on average). If we 832 

simply took Beijing Municipality as the case study, we would not only miss the chance 833 

of understanding the flow-base patterns of these inter-city trips, but also cause a 834 

considerable estimation error of some density-based indexes, especially for the outer 835 

sub-centers. For example, the differences of job density and job share would reach 13% 836 

and 8% for Tongzhou and be up to 25% and 31% for Fangshan, comparing using the 837 

Beijing administrative boundary with using the defined metropolitan sphere. 838 

Considering the common existence of inter-city trips in other urban areas, this type of 839 

incomplete analysis on metropolitan structure and corresponding estimation errors may 840 

exist in other studies. Moreover, this delimiting method can provide effective 841 

alternative boundaries for metropolitan planning, especially in highly dynamic cities 842 

such as Beijing. 843 

Last, to uncover the metropolitan spatial structure in-depth and comprehensively, 844 

we combined the density-based morphological and flow-based functional approach 845 

based on a twofold index system. If we only use the employment density-based methods 846 

to measure the performance, we may miss the chance to investigate the commuter towns, 847 

like Tongzhou in BMR, and the sub-centers without any particularly high employment 848 

density, but still as a local center of the metropolitan territory, like Shunyi in BMR. On 849 

the other hand, if we measure the polycentric structure only by interaction flows, like 850 

some studies (Limtanakool et al., 2009; Veneri 2013), it is difficult to find the 851 

metropolitan centers in accordance with the real-world, referring to the flow-centrality 852 

indexes in Tab.4. Hence, the combination of a morphological and functional approach 853 



can avoid drawing lopsided conclusions to some degree. Compared with the macro-854 

research focusing on the structure of tens of cities, e.g., Burger et al. (2011) in English 855 

and Welsh and Angel and Blei (2016) in America, this work first proposed a more 856 

delicate method to in-depth investigate each center in a given metropolitan region.  857 

5.2 Takeaways for practice 858 

The emerging of on-demand carpooling services generate massive trip data that 859 

have commuting function and broader service scope. This provide us a good chance to 860 

understand the metropolitan structure better and then support making metropolitan 861 

development planning. Based on the results of this paper, some extended suggestions 862 

are listed as the takeaways for practice, not only for BMR, but also for other cities. 863 

First, an effective policy change in transportation and land use patterns, including 864 

the regulations, taxes and subsidies and public investments, shall focus on helping the 865 

great majority of actual travelers, especially the commuters, with the least expense. 866 

Hence, we can divide the metropolitan regions with polycentric structure inner and 867 

outer two commuting circles to make the associated policies that can facilitate 868 

commuting by promoting the transport modes and routes, respectively. For the inner 869 

(core) commuting circle covering all centers with higher job density, the authorities 870 

should focus on reducing the gaps between expected traveling times and actual ones by 871 

relieving the road traffic congestion. For this issue, we can encourage the ridesharing 872 

modes, improve the service level and extend the capacity of public transport. For the 873 

outer commuting circle covering the broader hinterlands, the authorities should seek to 874 

guarantee the mobility demand of longer-range metropolitan travelers to reach their 875 

destinations quickly and economically, especially for commuters during the rush hours. 876 

For example, we can build the suburban or intercity railways and link them with the 877 

inner metro networks to reduce the proportion of long-distance trips by car. Local 878 

planners should seek to strike a balance between keeping the attraction of the 879 

metropolitan centers and avoiding excessive urban sprawl when developing their 880 

polycentric development strategies.  881 

Moreover, when making local policies, we shall consider the specific role of each 882 

sub-center within a given metropolitan region. The metropolitan development planning 883 

treats all centers without difference can waste the social resources or even hinder the 884 

normal development of local city. For the primary center (core city) with the highest 885 

job shares and unbalanced job-housing relationship, planner should try to optimize the 886 

job-housing distribution (e.g., encouraging local employment in the metropolitan sub-887 

centers and hinterlands) and improve the urban carrying capacity. For the employment 888 

sub-centers, to reduce commute travel and to improve quality of life in the long-run, it 889 

is important to plan and provide the housing and services suitable for local workers, 890 

while for the commuter towns, we shall pay more attention to the construction of local 891 

residential infrastructure and the promoting measures on the transport modes and routes 892 

from these towns to core city. For the satellite cities with the potential to be a new 893 

metropolitan region, policy-makers should focus more on its link with surrounding 894 



hinterlands, rather than its connection with core city. For the mix-functions city, the first 895 

thing for authorities maybe is to determine a clear regional development orientation 896 

before making the associated planning. 897 

Although we take the BMR as a case study, the application of carpooling big data 898 

and the proposed method of identifying the polycentric structure would provide a novel 899 

perspective for research on other metropolitan regions. Like many emerging 900 

metropolitan regions in the developing world, BMR has a polycentric structure, a large 901 

but under-developed hinterland, and an ambitious local authority with a strong intention 902 

to create a mega-region (Shi and Cao, 2020). For the data availability, carpooling 903 

services have been emerging in many large cities and their associated metropolitan 904 

regions. Table 6 lists several current online carpooling services provided by the major 905 

platforms and their respective development scales. Hundreds of millions of carpooling 906 

trips in hundreds of cities generate massive data that can be used in metropolitan studies. 907 

More specifically, in the UK, the majority of metropolitan regions is with polycentric 908 

forms (Burger et al., 2011), and the local social enterprise Liftshare has more than 909 

500,000 active members, who share more than 1 million journeys each month4. In 910 

Shanghai, another mega-city with polycentric structure of China, there are about 800 911 

thousand carpooling trips through the Didi Hitch APP during one month (September, 912 

2017). Therefore, the research framework and some conclusions on BMR in this paper 913 

may have potentials to be applied to the other metropolitan regions for a similar 914 

research purpose, which gives this research a global relevance. 915 

Table 6. The characteristics and scales of online carpooling services provided by typical platforms 916 

(Data source: the official websites of the respective TNCs) 917 

Major 

platforms 
Launch time Trip purpose Popular regions Service scale 

Blablacar 2006 
Long-distance trip 

including commuting 

22 countries mainly in 

Europe and Latin 

America 

87 million users, 30 billion 

kilometers shared since 2003 

Didi Hitch 2015 
Diverse, mainly for 

commuting 

351 major cities in 

China 

30 million registered drivers; 

up to 2 million daily orders 

Waze Carpool 2016 Commuting 
America, Brazil, 

Mexico 

60 million users, up to 1 

million monthly orders 

6. Conclusion 918 

As social, economic and political institutions have changed, contemporary MRs 919 

are characterized by more complex spatial structures. Fortunately, the rapid 920 

development of big data technology offers us an opportunity to better measure the 921 

metropolitan polycentricity and then make targeted metropolitan land use and transport 922 

planning. Using carpooling big data, we identified the polycentric layout of Beijing 923 
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Metropolitan Region based on a grid-based clustering algorithm. Then we delimited 924 

this metropolitan using the overlapping area of higher commuting intensity region with 925 

sufficient population and 2.5-hour commuting contour. Lastly, a two-group index 926 

system was established to measure the performance of metropolitan polycentricity. This 927 

three-step method driven by carpooling big data are more reliable, accurate and 928 

comprehensive, based on which we provide some valuable insights to global knowledge. 929 

Regional centers identification and boundary definition shall be the first two 930 

necessary steps before conducting in-depth analysis on human activity performances of 931 

metropolitan polycentric structure, while the combination of a morphological and 932 

functional approach can avoid drawing lopsided conclusion on these performances. The 933 

emerging carpooling big data with commuting function on a metropolitan scale can 934 

help realize these approaches. 935 

The polycentric metropolitan region represents a hierarchical center system: one 936 

primary center interacting with seven surrounding secondary centers. These regional 937 

centers have such a strong attraction that results in the continuous spatial expansion 938 

beyond the original administrative boundary to radiate more adjacent jurisdictions. The 939 

proposed center identification method can help recognize the places where the public 940 

resources shall be assigned, while the boundary delimiting method can provide 941 

effective alternative boundaries for metropolitan planning. Furthermore, the 942 

heterogeneity of human activity performance and role for each regional center is 943 

remarkable. The employment sub-centers have higher job density and job-housing ratio, 944 

while the commuter towns show reverse trends in employment density indexes, but 945 

have closer connections with the core city. An independent satellite city with local 946 

employment base perform better in job-housing balance and commuting duration. 947 

Travelers working in the core city need the longest commuting time, while commuters 948 

to outer sub-centers spend less time. It is necessary to consider the specific role of each 949 

sub-center within a given metropolitan area before making more delicate transportation 950 

and land use policies. 951 

This study can be regarded as a starting point with respect to researches on 952 

metropolitan spatial structure using carpooling data. The limitation needs to be stated. 953 

Although we have shown the positive correlation between commuting carpooling trips 954 

and employment population, without considering the impact of public transit flows on 955 

the structure of the metropolitan region, there will be some differences between the 956 

metropolitan spatial structure uncovered using carpooling data and the reality. As 957 

mentioned previously, the interaction between the sub-center system and Tianjin is 958 

likely to be underestimated due to travel splitting caused by the presence of the inter-959 

city high-speed railways. Therefore, it is necessary to integrate the carpooling data with 960 

the data of other transport modes and human activities in metropolitan regions to 961 

improve the proposed method and associated results.  962 

The methodological challenge of using unconventional source of data does 963 



dominate the paper, hence further work is needed in the development of this research. 964 

First, we have indicated that various sub-centers can play different roles in a 965 

metropolitan region; then it is interesting to investigate the relationship between 966 

different sub-centers by observing the extent to which their functions are 967 

complementary or alternative. Second, we illustrated a novel method to explore the 968 

metropolitan structure based on the carpooling big data. Due to the limitation in the 969 

Beijing case study, it is suggested to apply similar data to the various structural forms 970 

of global cities. Considering there are tens of huge cities with millions of carpooling 971 

trips annually in China, our further work is to scan the spatial structure of other 972 

metropolitan regions and then conduct a comparative analysis to dig the underlying 973 

laws and meanwhile demonstrate the wider suitability of the proposed method. 974 
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