8,562 research outputs found

    The Computational Power of Beeps

    Full text link
    In this paper, we study the quantity of computational resources (state machine states and/or probabilistic transition precision) needed to solve specific problems in a single hop network where nodes communicate using only beeps. We begin by focusing on randomized leader election. We prove a lower bound on the states required to solve this problem with a given error bound, probability precision, and (when relevant) network size lower bound. We then show the bound tight with a matching upper bound. Noting that our optimal upper bound is slow, we describe two faster algorithms that trade some state optimality to gain efficiency. We then turn our attention to more general classes of problems by proving that once you have enough states to solve leader election with a given error bound, you have (within constant factors) enough states to simulate correctly, with this same error bound, a logspace TM with a constant number of unary input tapes: allowing you to solve a large and expressive set of problems. These results identify a key simplicity threshold beyond which useful distributed computation is possible in the beeping model.Comment: Extended abstract to appear in the Proceedings of the International Symposium on Distributed Computing (DISC 2015

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    JAG: Reliable and Predictable Wireless Agreement under External Radio Interference

    Get PDF
    Wireless low-power transceivers used in sensor networks typically operate in unlicensed frequency bands that are subject to external radio interference caused by devices transmitting at much higher power.communication protocols should therefore be designed to be robust against such interference. A critical building block of many protocols at all layers is agreement on a piece of information among a set of nodes. At the MAC layer, nodes may need to agree on a new time slot or frequency channel, at the application layer nodes may need to agree on handing over a leader role from one node to another. Message loss caused by interference may break agreement in two different ways: none of the nodes uses the new information (time slot, channel, leader) and sticks with the previous assignment, or-even worse-some nodes use the new information and some do not. This may lead to reduced performance or failures. In this paper, we investigate the problem of agreement under external radio interference and point out the limitations of traditional message-based approaches. We propose JAG, a novel protocol that uses jamming instead of message transmissions to make sure that two neighbouring nodes agree, and show that it outperforms message-based approaches in terms of agreement probability, energy consumption, and time-to-completion. We further show that JAG can be used to obtain performance guarantees and meet the requirements of applications with real-time constraints.CONETReSens

    Self-stabilizing leader election in dynamic networks

    Full text link
    The leader election problem is one of the fundamental problems in distributed computing. It has applications in almost every domain. In dynamic networks, topology is expected to change frequently. An algorithm A is self-stabilizing if, starting from a completely arbitrary configuration, the network will eventually reach a legitimate configuration. Note that any self-stabilizing algorithm for the leader election problem is also an algorithm for the dynamic leader election problem, since when the topology of the network changes, we can consider that the algorithm is starting over again from an arbitrary state. There are a number of such algorithms in the literature which require large memory in each process, or which take O(n) time to converge, where n is size of the network. Given the need to conserve time, and possibly space, these algorithms may not be practical for the dynamic leader election problem. In this thesis, three silent self-stabilizing asynchronous distributed algorithms are given for the leader election problem in a dynamic network with unique IDs, using the composite model of computation. If topological changes to the network pause, a leader is elected for each component. A BFS tree is also constructed in each component, rooted at the leader. When another topological change occurs, leaders are then elected for the new components. This election takes O (Diam) rounds, where Diam is the maximum diameter of any component. The three algorithms differ in their leadership stability. The first algorithm, which is the fastest in the worst case, chooses an arbitrary process as the leader. The second algorithm chooses the process of highest priority in each component, where priority can be defined in a variety of ways. The third algorithm has the strictest leadership stability; if a component contains processes that were leaders before the topological change, one of those must be elected to be the new leader. Formal algorithms and their correctness proofs will be given

    The broadband debate: A documentary research on the broadband policy in Australia

    Get PDF
    Against a current trend of investing in the next generation networks (NGNs) by using public funds, the Australian government has recently initiated a so-called National Broadband Networks (NBN) project to invest up to AUD$36 billion tax payer's money on building a national wide fibre broadband network aiming to cover 93 per cent Australian by 2020. As being the most costly infrastructure-building project in Australian history, the NBN project will use a public-private-partnership as the instrument to deliver super-fast broadband services, create jobs and promote the country's economy at large. This article will critically analyse the NBN project in Australia and highlight the challenges that are coming alone at this early stage of the deployment, so the Australia's experience of pubic investment in broadband networks can be shared and lessons can be learned. --

    The Cord (November 10, 2010)

    Get PDF

    v. 72, issue 4, October 1, 2004 [publication says v. 74]

    Get PDF

    Fostering Collaboration in Emerging Three-Tiered Spectrum Markets

    Get PDF
    Ensuring optimum spectral efficiency is a critical requirement for current wireless networks to cope with the ever-growing flow of wireless data traffic, using limited spectral resources. As such, spectrum sharing, which allows different grades of users, as well as multiple networking standards to co-exist and utilize in the same frequency band, has become a topic of great intrigue. Due to the inherent advantages of these schemes, the US government has opened up vast amounts of federal spectrum that supports spectrum sharing. The Citizens Broadband Radio Service (CBRS) proposed by the Federal Communications Commission (FCC) is one of them. A tiered spectrum sharing approach, CBRS allows end commercial users to share the radio spectrum with federal incumbent users in the 3,550-3,700 MHz range. Employing a light leasing approach, the FCC aims to encourage the licensed providers of CBRS called the Priority Access License (PAL), to lease/share their licensed spectrum with unlicensed users named the General Authorized Access (GAA) for limited duration, which is essential for the maximum utilization of the CBRS bandwidth, but the current approach proves ineffective for that purpose. In this thesis, we propose a novel clustered framework to facilitate this sharing, where GAA users are grouped into multiple distinct geographical clusters and request access to licensed spectrum through the clusters in a collaborative manner rather than individually. Each cluster will nominate a central entity denoted as the GAA leader to communicate their requests to the PAL operators, as well as establish temporary connections with PAL access points once granted permission for licensed CBRS access, to be used by GAAs outside the operators coverage range. The leaders will also receive information from the PAL operators regarding the number of requests they are willing to accept and transmit that to the GAAs within the cluster. This process reduces the amount of information flow between the licensed and unlicensed entities, thereby providing a convenient platform for CBRS spectrum sharing. In order to determine the leader, the role of which can be assumed by any of the GAA users within the cluster, we formulate a distributed leader selection algorithm algorithm called the LSA, which takes into account the signal strength of the PAL access points available the GAA users, as well as the network density of each GAA node, to assign a score called the leader evaluation score (LES) to each GAA user and nominate the user with the highest score as the leader. To encourage PAL operators to frequently share their licensed spectrum, we incorporate a government reward model, where operators are incentivized by gaining access to additional spectrum for limited periods based on their level of sharing
    • …
    corecore