3,736 research outputs found

    Towards Electronics-based Emergency Control in Power Grids with High Renewable Penetration

    Full text link
    Traditional emergency control schemes in power systems usually accompany with power interruption yielding severely economic damages to customers. This paper sketches the ideas of a viable alternative for traditional remedial controls for power grids with high penetration of renewables, in which the renewables are integrated with synchronverters to mimic the dynamics of conventional generators. In this novel emergency control scheme, the power electronics resources are exploited to control the inertia and damping of the imitated generators in order to quickly compensate for the deviations caused by fault and thereby bound the fault-on dynamics and stabilize the power system under emergency situations. This emergency control not only saves investments and operating costs for modern and future power systems, but also helps to offer seamless electricity service to customers. Simple numerical simulation will be used to illustrate the concept of this paper.Comment: arXiv admin note: text overlap with arXiv:1504.0468

    Towards electronics-based emergency control in power grids with high renewable penetration

    Get PDF
    Many traditional emergency control schemes in power systems accompany with power interruption, yielding severely economic damages to customers. Aiming at alleviating this remarkable drawback, this paper sketches the ideas of a viable alternative for traditional remedial controls for power grids with high penetration of renewables, in which the renewables are integrated with synchronverters to mimic the dynamics of conventional generators. In this novel emergency control scheme, the power electronics resources are exploited to control the inertia and damping of the imitated generators in order to quickly compensate for the deviations caused by fault and thereby bound the fault-on dynamics and stabilize the power system under emergency situations. The control design is based on solving convex optimization problems tractable for large scale power grids. This emergency control not only saves investments and operating costs for modern and future power systems, but also helps to offer seamless electricity service to customers. Simple numerical simulation will be used to illustrate the concept of this paper.National Science Foundation (U.S.) (Award No. 1508666)Masdar Institute of Science and TechnologyRussia (Federation). Ministry of Education and Science (grant No. 14.615.21.0001)Russia (Federation). Ministry of Education and Science (grant code: RFMEFI61514X0001

    Challenges, issues and opportunities for the development of smart grid

    Get PDF
    The development smart grids have made the power systems planning and operation more efficient by the application of renewable energy resources, electric vehicles, two-way communication, self-healing, consumer engagement, distribution intelligence, etc. The objective of this paper is to present a detailed comprehensive review of challenges, issues and opportunities for the development of smart grid. Smart grids are transforming the traditional way of meeting the electricity demand and providing the way towards an environmentally friendly, reliable and resilient power grid. This paper presents various challenges of smart grid development including interoperability, network communications, demand response, energy storage and distribution grid management. This paper also reviews various issues associated with the development of smart grid. Local, regional, national and global opportunities for the development of smart grid are also reported in this paper

    Enlargement and Integration Action Activity Workshop on Costs, Benefits and Impact Assessment of Smart Grids for Europe and Beyond

    Get PDF
    Smart Grids are a key component of the European strategy toward a low-carbon energy future. Growing environmental and energy security concerns represent a major driver for the renovation and improvement of existing energy infrastructure. In this context, Enlargement and Integration countries will have to face substantial investments in the coming years to upgrade and modernise their energy networks towards smart power grids. Wind and solar electricity retain the greatest potential to contribute and increase the shares of renewable electricity production; however, current electricity transmission and distribution systems do not generally appear adequate to reliably cope with large-scale penetration of such variable renewables based generating plants (whether centralised or distributed). Significant investments will need to be mobilized. Most energy investments are long life and capital intensive, therefore investment decisions taken now will have an impact for many years. When planning the electricity system of the future, it is necessary to adopt an integrated approach to assess the interrelated physical, environmental, cyber, social, economic and policy challenges where a fair allocation of short term costs and long term benefits among different players is a precondition for reducing uncertainties and incentivize investments. In this context the workshop will discuss how these developments can provide examples and opportunities for E&I countries to build smart grids and will present and discuss approaches and methodologies for cost – benefit analysis that should include all the costs and benefits that smart grid projects can bring to the energy system at large and to society. The workshop will discuss the impacts of smart grids not only in monetary terms, but also through the identification of externalities and social impacts that can result from the implementation of Smart Grid. The workshop will benefit from the on-going experience in Enlargement and Integration Countries on smart grid developments.JRC.F.3-Energy Security, Systems and Marke

    Challenges for the Goal of 100% Renewable Energy Sources to Fit the Green Transition

    Get PDF
    The increasing penetration of Renewable Energy (RE) into the electrical market is desirable in terms of sustainability. Nevertheless, it is a challenge that all the interested actors shall address from both the technical and economical points of view. This paper provides an overview of the main challenges and solutions towards the technological transition to an electrical system with 100% renewable energy sources in terms of innovations and operative limits of the traditional systems. These innovative paradigms will also address the social impact and government policies
    • …
    corecore