237 research outputs found

    Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors

    Full text link
    This paper presents a low-overhead optimizer for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. Architectural diversity among different processors together with structural diversity among different sparse matrices lead to bottleneck diversity. This justifies an SpMV optimizer that is both matrix- and architecture-adaptive through runtime specialization. To this direction, we present an approach that first identifies the performance bottlenecks of SpMV for a given sparse matrix on the target platform either through profiling or by matrix property inspection, and then selects suitable optimizations to tackle those bottlenecks. Our optimization pool is based on the widely used Compressed Sparse Row (CSR) sparse matrix storage format and has low preprocessing overheads, making our overall approach practical even in cases where fast decision making and optimization setup is required. We evaluate our optimizer on three x86-based computing platforms and demonstrate that it is able to distinguish and appropriately optimize SpMV for the majority of matrices in a representative test suite, leading to significant speedups over the CSR and Inspector-Executor CSR SpMV kernels available in the latest release of the Intel MKL library.Comment: 10 pages, 7 figures, ICPP 201

    Automatic mapping of parallel applications on multicore architectures using the Servet benchmark suite

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computers & Electrical Engineering. The final authenticated version is available online at: https://doi.org/10.1016/j.compeleceng.2011.12.007[Abstract] Servet is a suite of benchmarks focused on detecting a set of parameters with high influence on the overall performance of multicore systems. These parameters can be used for autotuning codes to increase their performance on multicore clusters. Although Servet has been proved to detect accurately cache hierarchies, bandwidths and bottlenecks in memory accesses, as well as the communication overhead among cores, up to now the impact of the use of this information on application performance optimization has not been assessed. This paper presents a novel algorithm that automatically uses Servet for mapping parallel applications on multicore systems and analyzes its impact on three testbeds using three different parallel programming models: message-passing, shared memory and partitioned global address space (PGAS). Our results show that a suitable mapping policy based on the data provided by this tool can significantly improve the performance of parallel applications without source code modification.Ministerio de Ciencia e Innovación; TIN2010-16735Ministerio de Educación; FPU; AP2008-01578Xunta de Galicia; INCITE08PXIB105161P

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationStencil computations are operations on structured grids. They are frequently found in partial differential equation solvers, making their performance critical to a range of scientific applications. On modern architectures where data movement costs dominate computation, optimizing stencil computations is a challenging task. Typically, domain scientists must reduce and orchestrate data movement to tackle the memory bandwidth and latency bottlenecks. Furthermore, optimized code must map efficiently to ever increasing parallelism on a chip. This dissertation studies several stencils with varying arithmetic intensities, thus requiring contrasting optimization strategies. Stencils traditionally have low arithmetic intensity, making their performance limited by memory bandwidth. Contemporary higher-order stencils are designed to require smaller grids, hence less memory, but are bound by increased floating-point operations. This dissertation develops communication-avoiding optimizations to reduce data movement in memory-bound stencils. For higher-order stencils, a novel transformation, partial sums, is designed to reduce the number of floating-point operations and improve register reuse. These optimizations are implemented in a compiler framework, which is further extended to generate parallel code targeting multicores and graphics processor units (GPUs). The augmented compiler framework is then combined with autotuning to productively address stencil optimization challenges. Autotuning explores a search space of possible implementations of a computation to find the optimal code for an execution context. In this dissertation, autotuning is used to compose sequences of optimizations to drive the augmented compiler framework. This compiler-directed autotuning approach is used to optimize stencils in the context of a linear solver, Geometric Multigrid (GMG). GMG uses sequences of stencil computations, and presents greater optimization challenges than isolated stencils, as interactions between stencils must also be considered. The efficacy of our approach is demonstrated by comparing the performance of generated code against manually tuned code, over commercial compiler-generated code, and against analytic performance bounds. Generated code outperforms manually optimized codes on multicores and GPUs. Against Intel's compiler on multicores, generated code achieves up to 4x speedup for stencils, and 3x for the solver. On GPUs, generated code achieves 80% of an analytically computed performance bound

    Doctor of Philosophy

    Get PDF
    dissertationEmerging trends such as growing architectural diversity and increased emphasis on energy and power efficiency motivate the need for code that adapts to its execution context (input dataset and target architecture). Unfortunately, writing such code remains difficult, and is typically attempted only by a small group of motivated expert programmers who are highly knowledgeable about the relationship between software and its hardware mapping. In this dissertation, we introduce novel abstractions and techniques based on automatic performance tuning that enable both experts and nonexperts (application developers) to produce adaptive code. We present two new frameworks for adaptive programming: Nitro and Surge. Nitro enables expert programmers to specify code variants, or alternative implementations of the same computation, together with meta-information for selecting among them. It then utilizes supervised classification to select an optimal code variant at runtime based on characteristics of the execution context. Surge, on the other hand, provides a high-level nested data-parallel programming interface for application developers to specify computations. It then employs a two-level mechanism to automatically generate code variants and then tunes them using Nitro. The resulting code performs on par with or better than handcrafted reference implementations on both CPUs and GPUs. In addition to abstractions for expressing code variants, this dissertation also presents novel strategies for adaptively tuning them. First, we introduce a technique for dynamically selecting an optimal code variant at runtime based on characteristics of the input dataset. On five high-performance GPU applications, variants tuned using this strategy achieve over 93% of the performance of variants selected through exhaustive search. Next, we present a novel approach based on multitask learning to develop a code variant selection model on a target architecture from training on different source architectures. We evaluate this approach on a set of six benchmark applications and a collection of six NVIDIA GPUs from three distinct architecture generations. Finally, we implement support for combined code variant and frequency selection based on multiple objectives, including power and energy efficiency. Using this strategy, we construct a GPU sorting implementation that provides improved energy and power efficiency with less than a proportional drop in sorting throughput

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF
    corecore