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ABSTRACT

Stencil computations are operations on structured grids. They are frequently

found in partial differential equation solvers, making their performance critical to

a range of scientific applications. On modern architectures where data movement

costs dominate computation, optimizing stencil computations is a challenging task.

Typically, domain scientists must reduce and orchestrate data movement to tackle

the memory bandwidth and latency bottlenecks. Furthermore, optimized code must

map efficiently to ever increasing parallelism on a chip.

This dissertation studies several stencils with varying arithmetic intensities, thus

requiring contrasting optimization strategies. Stencils traditionally have low arith-

metic intensity, making their performance limited by memory bandwidth. Contem-

porary higher-order stencils are designed to require smaller grids, hence less memory,

but are bound by increased floating-point operations. This dissertation develops

communication-avoiding optimizations to reduce data movement in memory-bound

stencils. For higher-order stencils, a novel transformation, partial sums, is designed

to reduce the number of floating-point operations and improve register reuse. These

optimizations are implemented in a compiler framework, which is further extended

to generate parallel code targeting multicores and graphics processor units (GPUs).

The augmented compiler framework is then combined with autotuning to produc-

tively address stencil optimization challenges. Autotuning explores a search space of

possible implementations of a computation to find the optimal code for an execution

context. In this dissertation, autotuning is used to compose sequences of optimiza-

tions to drive the augmented compiler framework. This compiler-directed autotuning

approach is used to optimize stencils in the context of a linear solver, Geometric

Multigrid (GMG). GMG uses sequences of stencil computations, and presents greater

optimization challenges than isolated stencils, as interactions between stencils must

also be considered.



The efficacy of our approach is demonstrated by comparing the performance of

generated code against manually tuned code, over commercial compiler-generated

code, and against analytic performance bounds. Generated code outperforms manu-

ally optimized codes on multicores and GPUs. Against Intel’s compiler on multicores,

generated code achieves up to 4x speedup for stencils, and 3x for the solver. On GPUs,

generated code achieves 80% of an analytically computed performance bound.
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CHAPTER 1

INTRODUCTION

Stencil computations are operations on structured grids. A structured grid [1]

represents a uniformly discretized continuous domain, and a stencil application on

the grid is simply an application of a differential operator. Stencil computations are a

ubiquitous pattern in parallel computing, and they are frequently found at the heart

of partial differential equation (PDE) solvers. As PDE solvers are used in a large

fraction of scientific applications, ranging from fluid dynamics to electromagnetics,

the performance of stencil computations is critical to scientific computing.

Stencil computations traditionally have very low arithmetic intensities, where

arithmetic intensity is the number of floating-point operations performed per byte

read from memory. Stencil computations execute as low as 0.2 floating-point op-

erations (flops) per byte. This low arithmetic intensity, combined with the fact

that memory bandwidth of modern machines lags far behind floating-point power,

make stencil computations notoriously memory bandwidth-limited. Thus, improving

performance of stencil computations requires reducing and managing data movement.

The importance of stencil computations in scientific computing, and the widening

performance gap between computation and data movement has motivated efforts from

diverse research communities to develop optimizations for stencils. Code optimiza-

tion experts have designed manual and automatic optimizations to improve mem-

ory bandwidth use, and applied mathematicians have developed compute-intensive

higher-order stencils that need far less memory.

In this dissertation we optimize both traditional memory bandwidth limited sten-

cils and the more compute-intensive higher-order stencils using a compiler-based

approach. Novel optimizations for memory- and compute-bound stencils are imple-

mented in a compiler framework. A compiler-based approach not only helps improve

application programmer productivity, but also allows the code optimization expert
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to leverage decades of compiler research. This compiler-based approach is used to

optimize stencil computations in isolation, and in the context of a linear solver,

Geometric Multigrid.

1.1 Geometric Multigrid and Stencil Computations
Multigrid (MG) [2] methods are extensively used in a variety of numerical simu-

lations to solve linear systems (Ax=b). Multigrid methods use a hierarchy of grids

with different resolutions to accelerate the convergence of iterative linear solvers.

Traditional iterative solvers operate on grids at a single resolution and require a

higher number of iterations. Multigrid uses corrections of the solution from iterations

on the coarser levels to improve the convergence rate of the solution at the finest

level. Geometric Multigrid (GMG) is a special case of MG where the linear operator

A is simply a stencil computation applied to the grid x.

Geometric Multigrid (GMG) is a hierarchical approach to solving a linear system.

GMG has four key operations: smooth, residual, restriction, and interpolation. These

operations all involve computation of stencils and are applied in a sequence known as

the V-cycle and illustrated in Figure 1.1. GMG starts with a large, fine resolution

grid. It applies several iterations of smooth on it, calculates the residual and then

restricts into a smaller, coarser grid. This sequence is applied multiple times until

a bottom grid size is reached. Further smooths are applied to the coarsest grid at

the bottom level. Once the coarsest grid is solved the algorithm applies the solution

to the finer grids. This is done by consecutive applications of smooths followed by

interpolation. Interpolation is the inverse of the restriction operation and interpolates

values from a small coarse grid to a larger, finer one.

Smooth involves a stencil computation followed by pointwise grid updates. Mul-

tiple iterations of smooth are applied at each grid level in GMG; the time spent

in smooth dominates runtime. Residual is also a stencil computation, but unlike

smooth, only a single iteration is required at each level. Restriction and interpolation

are stencil computations which are inverses of each other. Restriction is a reduction

operation which averages multiple points on a fine grid and writes out the value to a

smaller coarser grid. Interpolation is a scatter operation which maps a single point

in a coarse grid to multiple points in a finer grid.
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B o t t o m  S o l v e

Smooth 

Residual

Restriction

Smooth

Interpolation

Figure 1.1: The Geometric Multigrid V-cycle. The hierarchical linear solver
starts with large, fine-resolution grids and comes down the V-cycle by successive
application of smooth, residual, and restriction. The GMG goes back up the V-cycle
by applications of smooths and interpolation.

1.2 Classification of Stencil Computations
Figure 1.2 illustrates the various stencils optimized in this dissertation. The

following four features of stencil computations listed below have been used to char-

acterize the various stencils. These stencil features help understand performance

characteristics and identify optimization challenges and opportunities.

1. Stencil coefficient types

2. Radius of stencils

3. Stencil iteration types

4. Arithmetic intensity of stencils

Table 1.1 lists the stencils from Figure 1.2 with the corresponding characteristics

mentioned above. The first five stencils in Figure 1.2 ((a)-(e)) are used in smooth

and residual. In GMG smooth and residual operations use the same stencil. For

example, the GMG where smooth uses a 7-point stencil will also have a residual

operation using the same 7-point stencil. The last stencil, Figure 1.2(f), represents

both the restriction and interpolation operations. Restriction reads 8-points, averages
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(a) (b)

(c) (d)

beta_i[]

beta_j[]

(e) (f)

Figure 1.2: Visualization of stencils optimized: Figures(a)(b)(c)(d) are constant-
coefficient 3D 7-, 13-, 27- and 125-point stencils, respectively. Figures(e) and (f) are
2D cross-sections of 3D stencils, (e) is a 7-point variable coefficient stencil, and (f)
illustrates restriction and interpolation stencils.
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Table 1.1: Description of stencils optimized. VC and CC stand for variable and
constant coefficient, respectively. #Flops and #Bytes are per update of a grid point,
and we only account for compulsory cache misses. We also take into account write
allocation, that is, we do not consider cache bypass.

Stencil Radius Iterations #Flops #Bytes Arithmetic Intensity
7-point VC 1 GSRB 17 80 0.21
7-point VC 1 Jacobi 17 48 0.35
7-point CC 1 Jacobi 8 24 0.33
13-point CC 2 Jacobi 15 24 0.63
27-point CC 1 Jacobi 32 24 1.33
125-point CC 2 Jacobi 134 24 5.58

8-pt Restriction 1 out-of-place 1 10 0.10

their value, and writes it to a coarser grid. The coarser grid is thus half the size of

the fine grid in each dimension. Interpolation is the inverse operation, where a single

point from the coarse grid is scattered to eight points in the fine grid.

1.2.1 Stencil Coefficient Types

Stencil computations sweep through grids, performing a weighted sum of points

read from an input grid (array). If the weights used are constant scalars, it is termed

a constant coefficient stencil. However if the coefficient or weights change from one

grid point to another, they are not constants and have to be stored in separate grids.

These type of stencil computations are classified as variable coefficient stencils.

Stencils in Figures 1.2 (a)(b)(c)(d) are constant coefficient stencils, the color at

each stencil point in the figures represents the weight or coefficient. Figure 1.2 (e)

represents a 3D variable coefficient 7-point stencil. Like the stencil in Figure 1.2

(a), this stencil also reads in 7 points, but does not use scalar constants for weight;

instead it reads the weights from arrays beta_i, beta_j and beta_k. Code List-

ings 1.1 and 1.2 show simplified code for the 7-point constant coefficient and variable

coefficient stencil operators, respectively. In variable coefficient stencils, in addition

to the input and output grids, the grids corresponding to the coefficients are also

accessed, creating higher traffic throughout the memory hierarchy.
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1 double w1,w2;
2
3 for (k=0;j<N;k++)
4 for (j=0;j<N;j++)
5 for (i=0;i<N;i++){
6
7 phi_out[k][j][i] = w1 * phi_in[k][j][i] +
8 w2 * ( phi_in[k][j][i+1] + phi_in[k][j][i-1]
9 + phi_in[k][j+1][i] + phi_in[k][j-1][i]
10 + phi_in[k+1][j][i] + phi_in[k-1][j][i]);
11
12 }

Listing 1.1: Out-of-place grid sweeps for Jacobi iterations with a 3D 7-point
constant coefficient stencil operator. The code snippet corresponds to the stencil
in Figure 1.2(a). The constant coefficients are w1 and w2.

1
2 int sweep_color;
3
4 for (k=0;j<N;k++)
5 for (j=0;j<N;j++)
6 for (i=0;i<N;i++){
7
8 if((i+j+k+sweep_color) % 2 ==0){
9 phi[k][j][i] =
10 beta_i[k][j][i+1]*( phi[k][j][i+1] -phi[k][j][i] )
11 -beta_i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
12 +beta_j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
13 -beta_j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
14 +beta_k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
15 -beta_k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i]));
16 }
17 }

Listing 1.2: In-place grid sweeps for Gauss-Seidel Red-Black iterations with a
3D 7-point variable coefficient stencil operator. The code snippet corresponds to
the stencil in Figure 1.2(e). The variable coefficients are beta_i, beta_j and
beta_k.
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1.2.2 Radius of Stencils

In stencil computations, at each grid point, a set of neighboring points are read.

The radius of the stencil is the offset of the farthest point read in each dimension.

The 7- and 27-point stencils have a radius of 1, as they read ±1 points in each of

the i,j,k dimensions. Similarly, the 13- and 125-points stencils read ±2 points in

each of the i,j,k dimensions and have a radius of 2. Stencils with a larger radius

need to read in more grid points, and have a larger working set, and also perform an

increased number of floating-point operations.

1.2.3 Common Stencil Iterations

Stencil iterations can be either out-of-place grid sweeps or in-place grid sweeps.

In an out-of-place sweep the grid being updated with computed values is different

from the grids being read. In an in-place sweep, the grid being read and written is

the same. The three common types of stencil iterations are Jacobi, Gauss-Seidel, and

Gauss-Seidel Red-Black (GSRB).

1.2.3.1 Jacobi

Figure 1.3(a) illustrates Jacobi iterations with a 2D 5-point stencil, and Listing 1.1

shows code for Jacobi iterations with a 3D 7-point constant coefficient stencil. The

grid being updated is different from the grid being read. All output grid points

can be updated independently, making Jacobi iterations an embarrassingly parallel

computation.

1.2.3.2 Gauss-Seidel and Gauss-Seidel Red-Black

Gauss-Seidel iterations are in-place grid sweeps, where the grid being updated is

also being read. This means that at a given grid sweep, some point would have been

updated and others would not. This mean that there is a dependence on the grid

points being updated, which limits parallelism.

Gauss-Seidel Red-Black iterations aim to increase the parallelism in Gauss-Seidel

iterations by partitioning the read/write grid into red and black points. The red

points are surrounded by black points and vice-versa. A single Gauss-Seidel iteration

then gets divided into two iterations: a red iteration followed by a black one. The

red iteration updates the red grid points by reading a red point and its neighboring
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Jacobi
Gauss-Seidel

Red-Black

Out-of-place Sweep In-place Sweep

(a) (b)

Figure 1.3: Illustration of (a) Jacobi iterations and (b) Gauss-Seidel Red-Black
(GSRB) iterations with a 2D 5-point stencil on grid. Jacobi is an out-of-place sweep.
To compute a stencil it reads in 5 points from an input grid and writes out a computed
values to an output grid. GSRB partitions the grid points into either red or black
points such that each red point is surrounded by black points and vice versa. Each
GSRB sweep updates either the red or black points. It is an in-place operation, as
the grid being updated is also read. The figure illustrates the update of a red point
which requires its own value and values from the black neighbors.

black points, and the black iteration updates the black points similarly. The red and

black iterations are embarrassingly parallel where all writes are independent.

Figure 1.3(b) illustrates the use of a 2D 5-point stencil in GSRB iterations, where

a red point is being updated with values from itself and the neighboring black points.

Listing 1.2 shows GSRB iterations for a 3D, variable-coefficient 7-point stencil, where

phi is being read and updated. The if-condition which guards the statement ensures

that only red or black points get updated based on the value of sweep_color.

1.2.4 Arithmetic Intensity of Stencils

Arithmetic intensity of a stencil computation is the ratio of floating-point oper-

ations (flops) performed to the memory (in bytes) that needs to be read in from

the DRAM. By quantifying the balance between computation and communication,

arithmetic intensity identifies a stencil as either being limited by memory bandwidth

or floating-point intensity, and thus guides the selection of required optimization.

The arithmetic intensity for the stencil discussed in this dissertation is shown in

Table 1.1. To compute a stencil for Jacobi iterations of the 7-, 13-, 27- and 125-point
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constant coefficient stencils (rows 3-6), we need to read 8 bytes, write allocate 8 bytes

and write 8 bytes, a total of 24 bytes per stencil. The 7-, 13-, 27- and 125-point

stencils need 8, 15, 32 and 134 flops, and thus they have approximate arithmetic

intensities 0.33, 0.63, 1.33 and 5.58, respectively.

Variable coefficient (VC) stencils read in more arrays (grids) and thus have much

higher requirements, as can be seem from rows 1 and 2 in Table 1.1. The Jacobi

iterations for the 7-point VC stencils read (phi, beta_i,beta_j,beta_k) in 32 bytes,

write allocate 8 bytes and write back 8 bytes for a total of 48 bytes per stencil. The

computation executes 17 flops to compute each stencil output. The GSRB iterations

only compute half the grid points in each grid sweep, thus need two sweeps and

double the data movement to update all grid points. Computing each stencil in

GSRB iteration needs 80 bytes per stencil (not 48× 2 = 96, as the same grid is read

and updated, thus write allocation is excluded) and executes 17 flops per stencil.

1.2.5 Summary of Stencils Optimized

In this dissertation the stencils optimized have been illustrated in Figure 1.2, and

their features listed in Table 1.1. Table 1.1 classifies the stencils based on their shape

(radius and #points), size (#points), types of coefficients, iterations, and finally,

the demands they place on the memory bandwidth and floating-point units of the

processor.

In addition to these stencils, the 8-point restriction operation used in Geometric

Multigrid is also a target. This stencil is a reduction operation which takes as input a

larger N3 grid and outputs a smaller (N/2)3 grid; it averages values of 8 points from

the larger grid and writes it to a single point in the smaller one.

1.2.5.1 Higher-Order Methods

In addition to the features listed in Table 1.1, the 7-, 13-, 27- and 125-point stencils

can be classified by the order of the PDE solver they are used in. The order of a PDE

solver denotes how fast the error computed decreases as the grid spacing decreases

(or grid size increases). If a solver computes an error ε using a grid of size 643, as

we decrease grid spacing by half, the grid size increases to 1283 and the error drops

to ε1/p, where p is the order of the method. Thus error drops exponentially as the
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order of a method increases. In this dissertation, the 7-point stencils are second-order

stencils used in second-order solvers. The 13-, 27- and 125-point stencils are used in

higher-order PDE solvers, and they are fourth-, sixth-, and tenth-order, respectively.

1.2.5.2 Grid Boundary Conditions

Stencil computations are applied on structured grids with boundaries which can

be commonly classified into periodic or nonperiodic. Application of a 2D 5-point

stencil with a periodic boundary condition is illustrated in Figure 1.4. Points on the

boundary of the grid have neighbors which wrap around the grid. As illustrated in the

figure, the top-left and top neighbors of the upper-left grid points are the bottom-

left and top-right points, respectively. In this dissertation only periodic boundary

conditions have been considered.

1.3 Approaches to Reducing Data Movement
Traditional stencil computations execute far less than a flop for every byte of data

they need, thus their performance is limited by their heavy memory demands. In

the past on machines with smaller caches, operations on large structured grids could

easily be bound by capacity misses in cache, leading to a variety of studies on blocking

and tiling optimizations [3, 4, 5, 6, 7, 8, 9]. In recent years, numerous efforts have

focused on improving memory bandwidth by increasing temporal locality. Automated

and manual optimizations have attempted to increase locality by fusing multiple

stencil sweeps through techniques like cache-oblivious, time-skewing, wavefront, or

overlapped tiling [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Almost all of these have

concentrated their efforts on isolated stencil computations and have not considered an

entire solver such as GMG. Solvers use a number of stencil computations and require

several optimizations to be applied in sequence. This presents the twin challenges

of developing optimizations that can be composed, and coming up with the best

sequence of optimizations.

To reduce the heavy memory demands of stencil compuations, applied math-

ematicians are adopting higher-order methods for solvers [22, 23]. Higher-order

methods achieve desired accuracy while working on much smaller grids (lower res-

olution). Smaller grids lower memory capacity requirements, which leads to re-
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Figure 1.4: Visualization of periodic boundary conditions for structured grids.
Figure (a) shows a 2D 5-point stencil and (b) illustrates application of the stencil
on the upper-left corner of a 2D grid. Periodic boundary conditions mean points
outside the boundary wrap around the grid. For the 2D 5-point stencil which reads
point 0-4, the points 3 and 4 wrap around the grid as illustrated by the dashed lines.

duced data movement when computations stream through the grids. Higher-order

methods achieve increased accuracy by using stencil computations with a higher

number of floating-point operations. To update a grid point, higher-order stencils

operate on a larger neighborhood of points; this often leads to performance being

limited by the intensity of floating-point computation rather than memory bandwidth.

Optimizing compute-intensive higher-order stencils have received far less attention

than the memory-bound stencils. Manual optimizations [12, 24] and automated

approaches [25, 26] alleviate performance bottlenecks of compute-intensive stencils by

reducing loads and/or computation. Like optimizations for memory bound stencils,

these techniques have only targeted isolated stencil computations on a single large

grid, and not in the context of a solver, and importantly, these optimization efforts

have ignored the interplay between optimizations to reduce computation intensity

and to reduce memory traffic.
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1.4 Optimization Challenges
The wide variety of stencils presents a spectrum of optimization challenges. With

arithmetic intensities that range from 0.2 to over 5 (Table 1.1), stencil computations

stress different subsystems on a node. This section outlines the various optimization

challenges presented by stencils and GMG.

• Memory bandwidth optimizations

Traditionally stencil computations have had very low arithmetic intensities.

This makes the performance of stencil computations notoriously limited by the

memory bandwidth of the machines. To improve memory use, optimizations

often fuse multiple stencil sweeps into one, and trade off redundant floating-

point computation for data movement.

• Difference between stencil applications and smooths

Stencil computations can be expressed as y = Ax, where A is the stencil being

applied to the grid x. Smooths, represented as ( xnew = x + wD−1(b − Ax) ),

require two more arrays b andD−1. This means more data movement and makes

smooths even more memory bandwidth-limited than stencil applications. Thus,

optimizing smooths may require even more aggressive bandwidth optimization

than simple stencil applications.

• Managing floating-point computations

Stencils in Table 1.1 with arithmetic intensity greater than one have high

intensities of floating-point operations. In fact, the 125-point stencil executes

over 5 flops per byte moved. In such cases, the stencil computation may not

even achieve performance corresponding to the DRAM bandwidth because it

is limited by the large number of floating-point operations. Optimizing these

compute-bound stencils requires identifying and exploiting reuse of computation

to reduce floating-point operations. Furthermore, to achieve high floating-point

performance on modern machines, it is essential for stencil codes to effectively

use the SIMD (single instruction multiple data) instructions available on modern

architectures. SIMD instructions process multiple data elements simultaneously
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and can potentially improve floating-point performance by several integer fac-

tors (by the width of the SIMD unit).

• Composing a sequence of optimizations

Optimizations which reuse and reduce floating-point operations and target compute-

bound stencils must be designed to work with optimizations that target memory

bandwidth-limited stencils. Reducing floating-point intensity of a compute-

bound stencil will improve its performance, and may make it limited by the

memory bandwidth. At this point, the optimization needs to be combined with

memory bandwidth optimizations to push the performance even higher.

• Optimization across GMG operators

Geometric Multigrid has five principal operations, of which four (smooth, resid-

ual, restriction, and interpolation) involve calculation of stencils. In addition

to optimizing each of these operators in isolation, it is possible to optimize

across them. For example, fusing two or more of these operations will reduce

the number of times grids must be streamed into memory and improve memory

bandwidth optimization. Unfortunately, such fusion will also involve trade offs

such as increased working set and redundant computation. Finally, effectiveness

of such optimizations will depend on the stencil, iteration, and architecture.

Thus optimizing GMG means searching a larger space of possible optimizations

compared to optimizing a single stencil computation.

• Mapping computation to parallel threads

The increasing number of hardware threads on modern architectures makes

mapping parallelism in stencil codes to threads crucial to performance. There

is a delicate balance of parallelism, locality, redundant computation and working

set in stencil computations. Increasing one of them may adversely affect the

other. To achieve high performance, we must be able to generate and search

many possible parallel variants which implement the same stencil computation.
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1.5 Domain-Specific Optimization Techniques
Even though a large number of optimizations for stencils are known to the compiler

community, current commercial compilers fail to generate highly optimized stencil

code. Static compiling techniques cannot anticipate all possible execution environ-

ments, such as architecture, problem input size, and trade-offs between optimiza-

tions. Thus, state of the art commercial compilers do not typically risk potential

slowdown by applying aggressive optimizations. To address the lack of support

from commercial compilers, several domain-specific compilers and tools have been

developed [27, 28, 29, 30, 31, 26].

These automated approaches tailor their optimizations and code generation to

stencil computations. With the exception of the domain-specific language Halide [31],

all other domain- or application-specific approaches have concentrated on isolated

stencil applicatons. They have not applied their techniques to optimizing an entire

solver with several stencil computations, and they have concentrated efforts on tra-

ditional memory-bound stencils with limited or no emphasis on higher-order stencils.

Another domain-specific approach to optimizing scientific codes presented in [12,

32], builds application-specific code generators. These are then used to generate

many optimized code variants implementing the same computation; these variants

are then searched to find the optimal code. This approach generates very high-

quality code, targets both stencils in isolation and in solvers, and has optimized

compute-intensive stencils. Unfortunately, this approach requires code generators to

be rewritten for each new application without much reuse of optimizations across

application. This requires significant human effort and hurts the productivity of the

optimization expert.

1.6 Domain-Specific Extensions and Autotuning
Autotuning has been used to remedy this situation. Autotuning a computation

involves generating and searching a space of possible implementations of the input

computation to find the optimal code for a given execution context.

This dissertation presents research that extends a compiler framework with known

and novel domain-specific optimizations targeting stencil computations and GMG.

This approach of adding novel optimizations in a compiler framework and leveraging
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the new and known optimization through autotuning is referred to as compiler-

directed autotuning. Building domain-specific optimizations into a compiler frame-

work [33] allows reuse of known optimizations across applications and greatly reduces

the effort of writing application-specific code generators. A domain-specific autotuner

is then created to drive the augmented compiler framework to generate multiple code

variants for a computation, and the best code variant for a given execution is then

empirically found.

The novel transformations for stencils and Geometric Multigrid are built into the

CHiLL [33] compiler framework. CHiLL is a code transformation framework which

supports dependence analysis, loop transformation and code generation. CHiLL

allows composition of optimizations and is developed to support autotuning. The

compiler framework has a scripting language interface; the scripts (also called trans-

formation recipes) are sequences of optimizations which direct compiler application

of transformations [34]. Figure 1.5 illustrates this approach. An autotuner generates

Autotuner

CHiLL
Compiler

framework

CHiLL 
script1

CHiLL 
script2

CHiLL 
script3

gen 
code1.c

gen 
code2.c

gen 
code3.c

Autotuner drives the 
compiler frameworks using 

scripts

Compiler framework
generates many code 

variants and best one is 
selected

Figure 1.5: Autotuning based on the CHiLL compiler framework. CHiLL has
a scripting language interface. Novel transformations were built into CHiLL. The
autotuners implemented in research presented here generated CHiLL scripts to direct
optimization. CHiLL ran the scripts to generate code variants.
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multiple scripts which are used by CHiLL to generate multiple code variants for a

computation, and the best performing variant is finally selected.

The benefit of compiler directed autotuning has been demonstrated in this research

by applying the technique to optimizing stencils in isolation and in the context

of Geometric Multigrid. Novel domain-specific compiler optimizations for memory

limited stencils and compute intensive higher-order stencils have been developed.

Considerable interactions between optimizations for memory and compute bounds

stencils is seen, highlighting the need to compose sequences of optimizations. Further-

more, to target more complex and realistic structured grid codes seen in applications,

optimizations are presented for a GMG benchmark (miniGMG [32]) that proxies block

structured AMR codes. Block structured AMR codes such as CHOMBO [35] are

commonly seen in modern scientific applications. They partition a grid into smaller

sub-grids on which stencil computations are applied, and present more optimization

challenges to the compiler than a stencil being applied to a single grid.

1.7 Contributions
This dissertation presents novel research which uses compiler optimizations and

autotuning to optimize stencil computations and Geometric Multigrid. The contri-

butions of this dissertation are outlined below.

1. Communication-avoiding optimizations

This research develops domain-specific compiler optimizations and uses auto-

tuning to reduce inter- and intra-node communication. The generated code

achieves up to 4x speedup for smooths, 3x for the GMG solver, and matches or

betters highly optimized manually tuned code.

2. Optimize compute-intensive higher-order stencils

Higher-order GMG solvers are implemented to illustrate the high accuracy

obtained by these methods and identify increased intensity of floating-point

operations as the performance bottleneck. Research presented in this disser-

tation develops and implements a novel optimization, partial sums, which

reuses computation to reduce floating-point operations. By using partial sums
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in conjunction with communication-avoiding optimizations, speedups up to 4x

for higher-order smooths are achieved.

3. Parallel code generation for many- and multicore architectures

Research presented in this dissertation uses a compiler framework to generate

optimized OpenMP and CUDA parallel code for stencils to target many- and

multicore architectures. The parallel code generation capability is used to

explore different threading strategies.

1.8 Thesis Structure
The remaining chapters in this disseration are:

• Chapter 2 introduces the CHiLL compiler framework. It describes the basic

compiler abstractions and known compiler optimizations in CHiLL which have

been leveraged in this dissertation.

• Chapter 3 describes the miniGMG benchmark which was used to implement

and optimize Geometric Multigrid. The chapter expains in detail the principal

operations in GMG and their implementation in the benchmark.

• Chapter 4 describes of communication-avoiding optimizations used to opti-

mize memory bandwidth operations in GMG. The chapter first introduces the

optimizations, then explains their implementation details and finally presents

performance results and analysis.

• Chapter 5 motivates the use of higher-order stencils and then identifies perfor-

mance bottlenecks associated with these compute-intensive methods. Motiva-

tions for a new optimization targeting higher-order stencils is presented, followed

by its description and implementation. The performance of the higher-order

stencil is finally presented and the efficacy of higher-order methods is shown.

• Chapter 6 describes code generation for graphics processing units (GPUs).

The chapter explores parallel decomposition strategies to map GMG to the

large number of hardware threads available on these platforms.
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• Chapter 7 discusses research related to optimizing stencil computations and

GMG.

• Chapter 8 presents conclusions and outlines future research.



CHAPTER 2

CHILL

The novel transformations presented in this dissertation are built into the CHiLL

compiler framework [36, 33]. CHiLL is a loop transformation and code generation

framework with a scripting language interface. CHiLL was designed to support

autotuning by allowing sequences of transformations to be composed and applied.

CHiLL also exposes parameters of the transformations for autotuning. The input to

CHiLL is a source code written in C (or Fortran), and a transformation script. The

script describes the set of transformations to be composed to optimize the provided

source [34]. In research presented here, the script is either generated by an autotuner

or written by an expert programmer, but it can also be derived automatically by a

compiler decision algorithm [37]. After applying optimizations, CHiLL generates op-

timized C (or Fortran) code. To target CUDA code generation for NVIDIA GPUs, we

use CUDA-CHiLL [34, 37]. It is a thin layer built on top of CHiLL to generate CUDA

code. This chapter describes fundamental abstractions in CHiLL and CUDA-CHiLL,

and gives examples of how they are used.

2.1 Organization of CHiLL
At the heart of CHiLL is a polyhedral framework that composes complex transfor-

mation sequences. Internally CHiLL uses Omega+, an enhanced version of Omega [38],

and Codegen+ [39]. A polyhedral model represents each statement’s execution in the

loop nest as a lattice point in the space constrained by loop bounds, known as the

iteration space. Then a loop transformation can be simply viewed as a mapping from

one iteration space to another. CHiLL manipulates iteration spaces derived from the

original program, using a dependence graph as an abstraction to reason about the

safety of the transformations under consideration [40]. In CHiLL, iteration spaces are

represented as integer sets, and loop transformations are linear mappings applied to
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these integer sets. Omega+ is used to represent the integer sets as linear mappings,

apply the mappings to the integer sets, and compute data dependences.

In a polyhedral model, after the relations representing loop transformations have

been applied to input iteration spaces, optimized code is generated from the rewritten

iteration spaces. Code generation involves scanning the polyhedra representing the

iteration spaces of an optimized loop nest. The quality of the generated code directly

impacts performance. Therefore, CHiLL uses a code generator called CodeGen+ that

has advanced the state of the art in polyhedral scanning.

In the remainder of this chapter we describe the iteration space of a statement

in a loop nest, relations used to tranform iteration spaces, data dependence, and

legality of transformations. We use these concepts to illustrate four well-known loop

transformations implemented in CHiLL: loop permutation, loop fusion, loop tiling,

and loop skewing. Finally we introduce CUDA-CHiLL, a CUDA code generation tool

built on top of CHiLL.

2.2 Integer Sets and Relations
Iteration spaces and mapping between iteration spaces are represented mathe-

matically using Omega+. Omega+ provides interfaces to represent integer sets and

mappings using Presburger formulas [41]. Presburger formulas are constructed by

combining affine (equality or inequality) constraints on integer variables with the

logical operations ¬, ∧, and ∨, and the quantifiers ∀ and ∃. For example, letS be the

set of integers between 0 and 64, and Seven is the set of even integers in that range.

These sets are defined as follows:

S := {[i] : 0 < i < 64}

Seven := {[i] : ∃α : (0 < i < 64 && i = 2 ∗ α)}

R := {[i]− > [i′] : i′ = i+ 1}

Relations are used to map between sets. They are also expressed using Presburger

arithmetic. The relation R, shown above, adds 1 to each element of the set it is

applied to. Thus, if R is applied to S, it will map it to a new set of integers, where

the numbers will be betweem 0 and 65.
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2.3 Iteration Spaces
In a polyhedral model, loops surrounding a statement can be described as a

polyhedron in an integer linear space. Thus we can represent a loop nest’s iteration

space with a set of inequalities on loop index variables in the affine domain, where

these variables have only integer coefficients. This representation of the iteration

space is suitable for perfectly nested loops (all assignment statements in the innermost

loop). For the loop nest in Listing 2.1, the iteration space of the statement can be

simply represented as:

IS0 := {[i, j] : 0 <= i < N&&0 <= j < N}

For imperfectly nested loops as shown in Listing 2.2, additional information is needed

to capture ordering of statements and represent the loop structure. For the imperfect

loop nest, the statements S1, S2, and S3 are at different levels of nesting. To

reason about the effect of transformations on imperfect loop nests, the iteration space

representation must capture this loop structure.

To capture ordering constraints between statements in an imperfect loop nest,

we add an auxiliary loop to each loop level, with an additional auxiliary loop as the

last dimension. These auxiliary loops sink all statements to the loop level of the

innermost loop. This means the iteration spaces of all the statements in the loop nest

have the same dimensionality. Furthermore, the auxiliary loops are added, ensuring

that the order in which the statements are executed is preserved, in other words, the

lexicographic order of the statements is correct [33]. Thus for an n-deep loop nest,

we have (2n + 1)-dimension iteration spaces, and all statements, irrespective of their

nesting depth, have the same number of dimensions in their iteration space. Although

auxiliary loops carry special meaning during loop transformations, auxiliary loops and

other loops are treated equivalently during code generation. Auxiliary loop iteration

spaces are always constant valued and do not show up in the final code. For the code

Listing 2.2, the iteration spaces of the statements are:

IS1 := {[i, j] : 0 <= i < N&&j = 1}

IS2 := {[i, j] : 0 <= i < N&&0 <= j < i}

IS3 := {[i, j] : 0 <= i < N&&j = i− 1}
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From the 2D iteration space of the statements it can be clearly seen that all the state-

ments have the same loop nesting level (iteration of same dimensionality). Internally,

the 2D space is stored as a 5D space with the help of auxiliary loops.

r1 := {[i, j]− > [0, i, 0, j, 0]}

r2 := {[i, j]− > [0, i, 1, j, 0]}

r3 := {[i, j]− > [0, i, 2, j, 0]}

2.4 Relations for Loop Transformations
CHiLL uses Omega+ to represent iteration spaces as sets, and uses relations to

map between iteration spaces to represent loop transformations. The use of relations

to represent loops is illustrated with the example of loop shifting. For example, the

iteration space for code Listing 2.1 is shown below as IS0. The relation R, which shifts

the iteration space in each dimension by 1, is applied to IS0, the output iteration

space is IS0′.

IS0 := {[i, j] : 1 <= i < N && 1 <= j < N}

R := {[j, i]− > [j′, i′] : i′ = i+ 1 && j′ = j + 1}

IS0′ := R(IS0) := {[j, i] : 2 <= i < N + 1 && 2 <= j < N + 1}

The loop nest corresponding to IS0′ is shown in Listing 2.3. It can be easily

seen that the loop bounds have been shifted by unity in each dimension. In addition,

CHiLL adds a negative shift to the array references to counter the shift in the iteration

space.

In the remaining discussion, relations will be abbreviated to: R := {[i] -> [i’]]},

unless further details are necessary. Each loop transformation from an n-deep loop

nest to a new m-deep loop nest is represented as a relation map. The loops marked

as ci’s in map are the auxiliary loops. Ignoring the auxiliary loop we can rewrite map

as map′.

map := {[c1, l1, , , , , cn, ln, cn+1]− > [c′1, l
′
1, , , , , c

′
m, l

′
m, c

′
m+1]}

map′ := {[l1, , , , , ln]− > [l′1, , , , , l
′
m]}
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1 #define N 64
2
3 void func0(){
4
5 double A[N+2][N+2], B[N+2][N+2];
6 int i,j;
7
8 for(i=1; i<N; i++){
9 for(j=1; j<N; j++){
10 //Statement S0
11 //iteration space IS0
12 A[j][i] = B[j][i-1]
13 +B[j][i]+B[j][i+1];
14 }}
15 }

Listing 2.1: Simple perfectly nested
loop.

1 #define N 64
2 void func1(){
3
4 double Sum[N], A[N][N], B[N];
5 int i,j;
6
7 for(i=0; i<N; i++){
8 //Statement S1
9 //iteration space IS1
10 Sum[i] = 0;
11 for(j=0; j<i; j++){
12
13 //Statement S2
14 //iteration space IS2
15 Sum[i] = Sum[i]
16 +A[j][i]*B[j];}
17
18 //Statement S3
19 //iteration space IS3
20 B[i] = B[i]-Sum[i];
21 }
22 }

Listing 2.2: Loop nest with three
statements at different nesting
levels.

1 #define N 64
2 void func0(){
3 double A[N+2][N+2], B[N+2][N+2];
4 int i,j;
5
6 //Loop bounds have been shifted by (+1)
7 for(i=2; i<=N; i++){
8 for(j=2; j<=N; j++){
9 //Statement S0
10 //Array indices have been shifted by (-1)
11 //Iteration space IS0’
12 A[j-1][i-1] = B[j-1][i-1-1]+B[j-1][i-1]+B[j-1][i+1-1];}}
13 }

Listing 2.3: Loop nest after shifting.
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2.5 Dependence Graph and Legality of Transformations
Dependence analysis [40, 38] is a key component of any compiler framework which

ensures correctness of generated code. CHiLL uses Omega+ for data dependence

(flow, antidependence, output and input dependence) analysis [38]. Using the data

dependence information from Omega+, CHiLL creates a dependence graph for the

statements in the input loop nest. The dependence graph is a standard component

of loop restructuring compilers [40], and in CHiLL, the dependence graph is used to

test for legality of loop transformations.

2.6 Loop Transformations in CHiLL
CHiLL implements a wide range of loop transformation algorithms which trans-

form a loop nest from one state of representation to another, more suitable one.

The representation of a loop nest includes the statements, iteration spaces, and the

dependence graph. Common loop transformations implemented in CHiLL are listed

in Table 2.1, for a complete list refer to the CHiLL user manual [36]. The following

subsection briefly outlines the known loop transformations which have been used in

the research presented in this dissertation.

Table 2.1: A subset of transformations available in CHiLL.
Transformation Purpose
Loop permutation Change the order of loops.

Loop tiling Partition the iteration space to small blocks
and iterate through blocks in sequence.

Loop unrolling Similar to tiling in changing the iteration order,
but uses explicit unrolled loop body.

Loop fusion Fuse distinct loops for different statements into one.

Loop distribution Distribute different statements in a single loop nest
into distinct subloops each enclose a separate statement.

Loop peeling Unrolls a number of iterations from the
beginning or the end of a loop.

Loop splitting Split the original loop to subloops each representing
a disjoint part of the original iteration space.

Loop shifting Adjusts the index of the loop by adding
specified amount to what the the non transformed index.

Loop skewing Modify the iteration space so that multiple
dependences are carried by the same loop nesting level.



25

2.6.1 Loop Permutation

Loop permutation changes the ordering of the loops [40]. For a n-deep loop nest,

given a permutation Π of the loop order, the relation for permutation can be expressed

as:

permute := {[l1, , , , , ln]− > [lΠ1 , , , , , lΠn ]}

CHiLL uses the dependence graph of the loop nest to make sure permutation is legal

and does not violate data dependences. CHiLL also carefully updates auxiliary loops

to reflect the change in loop order [33].

Permutation using CHiLL is illustrated in code Listings 2.4-2.6. Listing 2.4 shows

the input code for a 2D stencil. The CHiLL script driving the transformation is shown

in Listing 2.6. The first three lines direct CHiLL to the loop nest in the given file and

procedure. Line 5, original(), initializes CHiLL, sets up the iteration space (with

auxiliary loops), and collects dependence information for the statements in the loop

nest. The command to permute is given in line 7. The command specifies the final

ordering of the loop nest. The command can be represented by the relation permute’,

which is applied to the iteration space of the loop nest. Once the transformation is

complete, polyhedra scanning generates the output code shown in Listing 2.5.

permute′ := {[l1, l2]− > [l2, l1]}

2.6.2 Loop Skewing

Loop skewing changes the iteration space of a statement in a loop nest by adding

an outer loop index value to an inner loop index. Skewing is illustrated using

Listings 2.4, 2.7, and 2.8. In the generated code in Listing 2.7, the inner loop index

i is now a linear function of outer loop index j. To account for the change is inner

loop bounds, the array references have also been updated. In general, skewing can

be expressed as the relation skew, where ai terms are integer constants. Thus, the

modified loop index is simply a linear combination of the other loop indices. The

CHiLL script shown in Listing 2.8 uses the command skew([0],2,[1,1]). This

directs CHiLL to skew loop level 2 (i) surrounding statement 0, such that the new

loop level 1 is a linear combination of loop levels 1 and 2, with constant terms a1 and

a2 set to 1. The mapping corresponding to this transformation is skew’.
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skew := {[l1, l2, ...., ln]− > [l′1, l2, ...., ln] : l′1 = a1 ∗ l1 + a2 ∗ l2, ....+ an ∗ ln}

skew′ := {[i, j]− > [i′, j] : i′ = 1 ∗ i+ 1 ∗ j}

2.6.3 Loop Tiling

Loop tiling involves decomposing a single loop into two loops, one which executes a

tile of consecutive iterations and one which iterates over the tiles. Listings 2.9 and 2.10

illustrate tiling of the i loop into loops ii and i with 1D tiles of width 16. The CHiLL

command tile(0,2,16,2,counted) tiles loop level 2(i) for statement 0 into tiles

of size 16, and tile controlling loop (ii) is at loop level 2 after the transformation is

complete. For clarity of presentation, we assume that the loop bounds are from 0 to

64 instead of starting from 1, as in the other examples. This simple tile command for

the given problem and tile size can be represented by the mapping tile′16. Mappings

for tiling in general are more complex and further details can be found in [40, 33].

Generated code where both loops i and j are tiled is shown in Listing 2.11, with,

corresponding CHiLL script in Listing 2.12.

tile′16 := {[i, j]− > [i′, ii, j] : i′ = 16 ∗ ii+ k && 0 ≤ k < 16 && 0 ≤ ii < 4}

2.6.4 Loop Fusion

Combining statements in adjacent loops into a single loop nest is known as loop

fusion [40]. Initially, CHiLL will have statements in a loop nest fused whenever

possible. This automatic fusion falls out of CHiLL’s algorithm to add auxiliary

loops to ensure all statements have the same dimensionality of iteration space. The

automatic fusion is illustrated in Listings 2.13 and 2.14. CHiLL will automatically

transform the input code in Listings 2.13 to the fused in Listing 2.14 by making a

call to the original() command. In addition, CHiLL also provides explicit fuse

commands for optimization purposes. Fusion algorithm takes a set of statements and

the loop level as parameters.

In addition to loop transformations such as tiling and fusion, CHiLL can also

be used to compute properties of loop nest computations. The next section uses

Listing 2.15 to illustrate how CHiLL computes data footprint of an array in a loop.
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1 #define N 64
2
3 void stencil2D()
4 {
5 double A[N+2][N+2], B[N+2][N+2];
6 int i,j;
7
8 for(j=1; j<N; i++){
9 for(i=1; i<N; i++){
10 A[j][i] = B[j][i]
11 + B[j][i+1] + B[j][i-1]
12 + B[j+1][i] + B[j-1][i];
13 }}
14 }

Listing 2.4: Input code for 2D stencil computation.

1 #define N 64
2 void stencil2D()
3 {
4 double A[66UL][66UL];
5 double B[66UL][66UL];
6 int i;
7 int j;
8 for (i = 1; i <= 63; i+= 1)
9 for (j = 1; j <= 63; j += 1)
10 A[j][i] = B[j][i] + B[j][i + 1]
11 + B[j][i - 1] + B[j+ 1][i]
12 + B[j - 1][i];
13 }

Listing 2.5: Generated code after loop
permutation.

1 source: stencil2D.c
2 procedure: stencil2D
3 format : rose
4
5
6 original()
7 permute([2,1])

Listing 2.6: CHiLL script
for loop permutation.
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1
2 #define __rose_lt(x,y) ((x)<(y)?(x):(y))
3 #define __rose_gt(x,y) ((x)>(y)?(x):(y))
4 #define N 64
5
6 void stencil2D()
7 {
8 double A[66UL][66UL];
9 double B[66UL][66UL];
10 int i;
11 int j;
12 for (j = 1; j <= 63; j += 1)
13 for (i = j; i <= j + 63; i += 1)
14 A[j][-j + i] = B[j][-j + i]
15 + B[j][-j + i + 1]+ B[j][-j + i - 1]
16 + B[j + 1][-j + i]+ B[j - 1][-j + i];
17 }

Listing 2.7: Generated code after loop skewing.

1 source: stencil2D.c
2 procedure: stencil2D
3 format : rose
4
5
6 original()
7 skew([0],2,[1,1])

Listing 2.8: CHiLL script
for loop skewing.

1 #define N 64
2
3 void stencil2D()
4 {
5 double A[66UL][66UL];
6 double B[66UL][66UL];
7 int i, ii;
8 int j;
9 for (j = 0; j <= 63; j += 1)
10 for (ii = 0; ii <= 3; ii += 1)
11 for (i = 16 * ii; i <= 16 * ii

+ 15; i += 1)
12 A[j][i] = B[j][i]
13 + B[j][i + 1] + B[j][i - 1]
14 + B[j + 1][i] + B[j - 1][i

];
15 }

Listing 2.9: Generated code after loop
tiling.

1 source: stencil2D.c
2 procedure: stencil2D
3 format : rose
4
5
6
7 original()
8 tile(0,2,16,2,counted)

Listing 2.10: CHiLL script for
loop tiling.
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1 #define N 64
2
3 void stencil2D(){
4 double A[66UL][66UL];
5 double B[66UL][66UL];
6 int i, ii;
7 int j, jj;
8 for (jj = 0; jj <= 3; jj += 1)
9 for (ii = 0; ii <= 3; ii += 1)
10 for (j = 16*jj; j<=16*jj+15; j+= 1)
11 for (i = 16*ii; i<=16*ii+15; i+= 1)
12
13 A[j][i] = B[j][i]
14 + B[j][i + 1] + B[j][i - 1]
15 + B[j + 1][i] + B[j - 1][i];
16
17 }

Listing 2.11: Code after tiling loops i, j.

1 source: stencil2D.c
2 procedure: stencil2D
3 format : rose
4
5
6
7 original()
8 tile(0, 2, 16, 1, counted)
9 tile(0, 2, 16, 1, counted)

Listing 2.12: CHiLL script for
tiling loops i and j.

1 #define N 64
2
3 void stencil1D()
4 {
5 double A[N+2];
6 double B[N+2];
7 double C[N+2];
8 int i;
9 int t;
10 for (t = 1; j <2; t++){
11 for (i = 1; i < 64; i ++)
12 A[i]= B[i-1]+B[i]+B[i+1];
13 for (i = 1; i < 64; i ++)
14 C[i]= B[i-1]+B[i]+B[i+1];
15 }
16 }

Listing 2.13: Input code to CHiLL
for the fusion example.

1 #define N 64
2
3 void stencil1D()
4 {
5 double A[N+2];
6 double B[N+2];
7 double C[N+2];
8 int i;
9 int t;
10 for (t = 0; j<=1; t+=1){
11 for (i = 1; i <= 63; i+=1)
12 A[i]= B[i-1]+B[i]+B[i+1];
13 C[i]= B[i-1]+B[i]+B[i+1];
14 }
15 }

Listing 2.14: Automatic loop
fusion in CHiLL after invoking the
command original().

1 #define N 64
2 for (i = 0; i < N; i++)
3 // Statement S0
4 b[i] = a[i-1] + a[i] + a[i+1];

Listing 2.15: Simple loop nest used to compute data footprint.
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2.7 Computing Footprint of Array References
CHiLL can compute a footprint space for each array reference in a loop by using

the iteration space of the loop in conjunction with the array reference. Footprint

computation is explained using Listing 2.15. The statement in the loop has four

array references: b[i], a[i], a[i-1], and a[i+1]. Each array reference generates

a linear mapping which maps a point in the iteration space of the loop to a point in

the data footprint space, which is simply a transformed integer set.

The linear mappings generated by array references a[i-1], a[i], and a[i+1]

are ref−1, ref0 and ref+1, respectively, and can be expressed as:

ref−1 := {[i]− > [i′] : i′ = i− 1}

ref0 := {[i]− > [i′] : i′ = i}

ref1 := {[i]− > [i′] : i′ = i+ 1}

The footprint spaces of these array references are the application of the linear mapping

to the iteration space (IS) of the loop. Thus the footprint spaces of these references

can be represented as:

footprint−1 = ref−1(IS) := {[i] : −1 <= i < 63}

footprint0 = ref0(IS) := {[i]− > [i′] : 0 <= i < 64}

footprint1 = ref1(IS) := {[i]− > [i′] : 1 <= i <= 64}

The union of the footprint spaces gives the footprint accessed by array a. Computing

the union can often result in an overapproximation. Further details of computing

array footprints can be found in [33], and their use in transformations such as datacopy

and array data flow analysis can be found in [33] and [42], respectively.

2.8 Extending Polyhedral Technology in CHiLL
CHiLL is not merely a polyhedral framework, it also allows manipulating the

intermediate representation (IR) of the loops and statements. In fact, loop unrolling

in CHiLL is not a polyhedral transformation [33]. The novel transformations added to

CHiLL as part of this dissertation involve modifying the IR of the input statements,
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and are not polyhedral transformations. To maintain composability of transfor-

mations in CHiLL, the approach taken is to rebuild the polyhedral representation

of the program after the new transformation is applied. This involves correctly

updating iteration spaces of the modified statements and their lexicographic order,

and rebuilding the dependence graph.

2.9 CUDA-CHiLL
Graphics processing unit (GPU) accelerators have become a common hardware

target for scientific computing, as they offer high computing power (teraflops per

node) with better power efficiency than traditional multicores. Chapter 6 in this dis-

sertation explores compiler optimizations and code generation for smooth on NVIDIA

GPUs.

NVIDIA GPUs are programmer using the CUDA programming model. Nvidia

GPU architectures organize the parallelism on a node in a two-level hierarchy, with

a number of streaming multiprocessors (SMs), each of which has a SIMD unit with

several cores. CUDA reflects two-level hierarchy. A CUDA program (called a CUDA

kernel) describes a computation decomposition into a one- to three-dimensional space

of thread blocks called a grid, where a block is mapped to one of the SMs. Each thread

block defines a one- to three-dimensional space. A kernel thread program is executed

for each point in the grid.

To help program NVIDIA GPUs, this dissertation uses CUDA-CHiLL. CUDA-

CHILL is a layer on top of CHiLL which generates parallel CUDA code from sequential

code. Once loop transformations and other optimizations are applied using existing

machinery in CHiLL, parallel CUDA code is generated using CUDA-CHiLL.

2.9.1 Parallel Decomposition

GPUs are a tiled architecture where each streaming multiprocessor (SM) repre-

sents a separate tile. Parallel code should be partitioned across SMs so that each

thread operates on mostly independent, localized data. Subdividing the iteration

space of a loop into blocks or tiles with a fixed maximum size has been widely used

when constructing parallel computations [43, 44, 45]. The shape and size of the
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tile can be chosen to take advantage of the target parallel hardware and memory

architecture.

Tiling was described in Section 2.6.3. Here we use it to create thread and block

loop in CUDA. After tiling, CUDA-CHiLL is used to map one, two or three loop levels

to block indices for grid dimensions, and to map up to three loops to thread indices.

This is illustrated with an example of matrix vector multiplication in Listing 2.16-2.19.

The input sequential code is shown in Listing 2.16. The problem size, and thus

loop trip count is N=1024. The statement in the loop body is called statement S0.

The inputs are an NxN matrix and N-wide vector. CUDA-CHiLL has a lua scripting

language interface. Listing 2.17 shows the lua script which directs CUDA-CHiLL to

generate a CUDA kernel for matrix vector multiply.

For statement 0 in the input code, line 12 in Listing 2.17 tiles the i,j loops. The

tile sizes for loops i and j are TI=32 and TJ=64, respectively. The tile controlling

loops for i and j are ii and k respectively. The final order of the loops is given

by {ii,k,i,j}. Listing 2.18 illustrates the loop restructuring effected by the

tile_by_index command. Loop i has a trip count of TI=32, and the tile controlling

loop ii has a trip count of N/TI = 32. Similarly, loop j has a trip count of TJ=64,

and the tile controlling loop k has a trip count of N/TJ=16.

After tiling, the loop levels are assigned to CUDA blocks and threads using the

cudaize command. Line 17 in Listing 2.17 uses the cudaize command to assign

loop ii to a block dimension, and loop i to a thread dimension. As can be seen

in Listing 2.18, the loops are marked to be assigned to blocks and threads, and

Listing 2.19 shows the generated CUDA kernel execute by each thread. Loops ii

and i have been replaced with per thread and per block identifiers bx and tx, and

corresponding array references have been updated by CUDA-CHiLL.

2.10 Summary
This chapter describes the CHiLL compiler framework and the CUDA-CHiLL

extension. CHiLL was designed to support autotuning by allowing easy and correct

composition of transformations. CHiLL leverages polyhedral technology and inter-

nally uses Omega+ and Codegen+ to mathematically represent and manipulate loops
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1 #define N 1024
2
3 void normalMV(float c[N][N], float a[N], float b[N]) {
4 int i, j;
5
6 for (i = 0; i < N; i++)
7 for (j = 0; j < N; j++)
8 a[i] = a[i] + c[j][i] * b[j];
9 }

Listing 2.16: The input sequential code for matrix vector multiply

1 TI=32
2 TJ=64
3 N=1024
4
5 tile_by_index(0, {"i","j"},
6 {TI,TJ}, {l1_control="ii", l2_control="k"},
7 {"ii", "k", "i", "j"})
8
9 cudaize(0, "mv_GPU", {a=N, b=N, c=N*N},
10 {block={"ii"}, thread={"i"}}, {})

Listing 2.17: CUDA-CHiLL script for matrix-vector multiply.

1 // ~cuda~ preferredIdx: bx
2 for(ii = 0; ii <= 31; ii++) {
3 for(k = 0; k <= 15; k++) {
4 // ~cuda~ preferredIdx: tx
5 for(i = 32*ii; i <= 32*ii+31; i++) {
6 for(j = 64*k; j <= 64*k+63; j++) {
7 s0(i,j);
8 }}}}

Listing 2.18: Tiled Code with candidate loops for CUDA blocks and threads.

1
2 __global__ void mv_GPU(float *a,float (*c)[1024],float *b)
3 {
4 int j;
5 int k;
6 int bx;
7 bx = blockIdx.x;
8 int tx;
9 tx = threadIdx.x;
10 for (k = 0; k <= 15; k += 1)
11 for (j = 64 * k; j <= 64 * k + 63; j += 1)
12 a[tx + 32 * bx] = a[tx + 32 * bx] + c[j][tx + 32 * bx] * b[j];
13 }

Listing 2.19: Generated CUDA kernel for matrix vector multiply
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and to generate output code, respectively. Transformations described in this disserta-

tion were built into CHiLL. This enabled composition of novel transformations with

known compiler techniques developed over many decades of research.



CHAPTER 3

THE miniGMG BENCHMARK

This chapter describes Geometric Multigrid (GMG), a family of algorithms used

to accelerate the convergence of iterative solvers. The basic operations in a Geometric

Multigrid are essentially stencil computations or a mix of stencils and pointwise

updates. In the past most compiler research in optimizing stencils concentrated on

stencil computations in isolation. In contrast this dissertation focuses on optimizing

a linear solver that uses multiple stencils.

To that end, optimized stencil kernels are generated for the the miniGMG

benchmark. miniGMG is a compact Geometric Multigrid benchmark which proxies

multigrid solvers in Adaptive Mesh Refinement (AMR) applications; it has over 2000

lines of C code with a dozen performance-critical functions. Compiler techniques are

used to optimize important stencil kernels in miniGMG which dominate runtime.

The following sections present the baseline implementation of the miniGMG bench-

mark and highlight the stencil computations in the context of the overall solver.

miniGMG has five principal operations: smooth, residual, restriction, interpolation,

and ghost zone exchange executed in a sequence known as the V-cycle. The next

section presents details of the V-cycle in miniGMG and describes the data decompo-

sition and parallelism used. Code skeletons are used to make our discussion concrete.

We end the chapter by describing challenges to optimizing miniGMG.

3.1 V-cycle
Multigrid methods provide a powerful technique to accelerate the convergence of

iterative solvers for linear systems and are therefore used extensively in a variety

of numerical simulations. Conventional iterative solvers operate on data at a single

resolution and often require too many iterations. Multigrid simulations create a

hierarchy of grid levels and use corrections of the solution from iterations on the
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coarser levels to improve the convergence rate of the solution at the finest level.

Geometric multigrid (GMG) begins with a structured mesh, where each progressively

coarser grid contains half the grid points in each dimension. Given the fact that

the operators are the same irrespective of grid spacing, this exponential reduction

in grid sizes can bound multigrid’s computational complexity to O(N), where N is

the number of variables. When performance is highly correlated to computational

complexity, the time spent on the finer grids will dominate the run time.

Figure 3.1 visualizes the structure of a multigrid V-cycle for solving Luh = fh, in

which L is the operator, u is the solution, f is the right-hand side, and superscripts

represent grid spacings. At each grid spacing, multiple smooth operators reduce the

error in the solution. The smooth can be a simple relaxation such as Jacobi, or

something more complex, like a Gauss-Seidel, Red-Black (GSRB).

The right-hand side of the next coarser grid is defined as the restriction of the

residual (fh −Luh). Eventually, the grid (or collection of grids) cannot be coarsened

any further using geometric multigrid. At that point, most algorithms switch to a

bottom solver that can be as simple as multiple relaxations or as complicated as

algebraic multigrid, a Krylov iterative solver, or a direct sparse solver. Once the

coarsest grid is solved, the multigrid algorithm applies the solution (a correction) to

progressively finer grids. This requires an interpolation of u2h onto uh. Smooth at

the finer grid resolution is applied on the new correction.

3.2 Domain-Decomposition and Parallelism
miniGMG executes the V-cycle on a 3D domain. As shown in Figure 3.2, the

benchmark creates a global 3D domain, and partitions it into subdomains of sizes

similar to those found in multigrid solvers in real-world AMR applications such as

CHOMBO [35]. Our configuration of miniGMG fixes the domain (problem) size to a

2563 discretization on each multicore or GPU node, and uses subdomains of size 643.

Thus at the finest level of the V-cycle, the 2563 domain is decomposed into a list of

64 boxes or subdomains1 of size 643. We subsequently use the terms subdomains and

boxes interchangeably.

1miniGMG supports varying the subdomain (box) size; usually AMR applications use sizes from
323 to 1283.
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progress within V-cycle	


Figure 3.1: The multigrid V-cycle for solving Luh = fh. Note, superscripts denote
grid spacing.

Figures 3.2 and 3.3 presents the problem sizes, parallel decomposition, and the

V-cycle that was used for the research presented here. The global 2563 domain was

decomposed into 643 boxes or subdomains at the finest resolution. Smooth (Luh =

fh), the residual (fh − Luh) is computed on these 643 boxes and then they are

coarsened to 323 boxes using the restrict operation (Section 1.1). This sequence is

continued till we reach the bottom level of the V-cycle. In our implementation we use

a truncated V-cycle where restriction stops at the 43 level (the bottom level). Thus

our configuration of miniGMG has 5 (643, 323, 163, 83, 43) levels for the V-cycle. As

this dissertation is focused on optimizing the multigrid V-cycle on a single node, a

simple relaxation scheme using the smooth applied on the finer grid is also used at the

bottom level. The simple relaxation scheme at the bottom level is sufficient to attain

single-node multigrid convergence.2 After smooths are applied at the coarsest 43 level,

the boxes are interpolated to finer 83 boxes. The sequence of applying smooths and

interpolations is continued until we reach the finest 643 boxes. At the finest level

further smooths are applied and the V-cycle is complete.

The baseline implementation of miniGMG uses the MPI+OpenMP model to ex-

press parallelism on traditional multicore architectures. MPI is a library specification

2miniGMG includes both CG and BiCGStab bottom solvers to enable scalable multigrid imple-
mentations. For experiments where we have scaled to a larger number of nodes the bottom solver
has been modified to use BiCGStab.



38

Collection of 
subdomains 
owned by an 
MPI process 

one subdomain 
of 643 elements 

Figure 3.2: Visualization of the domain/process/subdomain hierarchy in miniGMG.

for message-passing [46]. miniGMG decomposes the global domain (2563) into a

list of subdomains which is then partitioned among MPI processes. For example,

as illustrated in Figure 3.3, on a machine with four sockets we may have four MPI

processes. Each process gets a (256×128×128) chunk of the global domain containing

16 boxes of size 643. Inside a MPI process the list of boxes is processed in parallel,

each box is computed by an OpenMP thread. As we go down the V-cycle moving

from larger, finer grids to smaller, coarser ones, the number of boxes remains the

same and the work per thread decreases, thus reducing parallelism.

Applying a stencil on the boundary of a structured grid requires points exterior

to the grid, as illustrated in Figure 3.4. The figure shows a 2D 5-point stencil being

applied to an interior and a boundary point on a 4×4 grid. To apply the stencil on

the boundary, an extra layer of points called a ghost zone 3 (gray colored points) is

required. Thus to compute the illustrated stencil on a 4×4 grid, a larger 5×5 grid

needs to be allocated.

When a grid is geometrically decomposed or tiled into smaller grid tiles, each

grid tile needs a ghost zone. This is illustrated in Figure 3.5, where a 12×12 grid is

decomposed into 4×4 tiles. Each grid tile or subdomain has a ghost zone which is a

3Ghost zones are also known as halo regions.
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Figure 3.3: Execution of the miniGMG V-cycle. A node is assigned a 2563 domain
which is decomposed into a list of 643 subdomains (boxes). The list of subdomains
is partitioned into MPI processes. The subdomains owned by each MPI process are
then computed in parallel by a single OpenMP thread.

copy of the boundary points of its neighboring subdomains. This can be seen in the

color coding used in the figure. The tile at the center has blue interior points, and

colors of its ghost zone points correspond to the interior grid points of its neighbors.

After a stencil computation sweeps through the entire domain and updates each

point on the grid, the neighboring subdomains must exchange ghost regions to avoid

having stale values. The ghost zone points are read but not updated during the stencil

computation, and thus their exchange is necessary to ensure correctness. The size of

the ghost zone and data exchange pattern depends on the shape of the stencil used.

The global 3D domain (2563 at the finest level) corresponds to equally-sized grids.

The grids represent the correction, right-hand side, residual, and stencil coefficients

and each grid is stored as a separate array. It is important to note that the grids or

arrays corresponding to the global domains are not allocated as contiguous chunks or

memory. Instead miniGMG allocates the subdomains within a level as equally sized
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(a) (b)

Figure 3.4: Application of a 2D 5-point stencil of a 4x4 2D grid. (a) Shape of the
stencil. (b) Application of this stencil of an interior and boundary point of the grid.
Ghost zone is shaded gray.

Figure 3.5: Visualization of ghost zones and data exchange between subdomains.
A 12×12 domain (grid) is geometrically decomposed to 9, 4×4 subdomains (tiles).
Each subdomain needs a ghost zone which must be exchanged between neighboring
tiles after a stencil computation is applied to the entire domain.
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grids (arrays), each grid contiguous in memory. This means at the finest level of the

V-cycle a list of 643 grids is allocated instead of 2563 grids.

The miniGMG benchmark allocates contiguous memory for the grids and in-

cludes the extra memory to support ghost zones needed by the suddomains. Thus,

at each level of the V-cycle, the memory allocated for a grid of a subdomain is

(subdomain_size+2∗ghost_zone)3. At the finest level where we use 643 subdomains

with a one deep ghost zone, the baseline allocates the 643 grids as 663 contiguous

elements.

The benchmark implements optimized routines which exchange the ghost zones

via buffers. The data exchange does not use floating-point operations but still needs

significant time. The shape of the stencil determines the data exchange pattern

between subdomains, and the data exchange is required after every stencil sweep of

the domain is complete.

3.3 V-cycle and Operator Code Skeletons
This section uses code skeletons extracted from the miniGMG benchmark to make

the smooth, residual, and restriction/interpolations concrete. It start with code for

the V-cycle to highlight the sequence in which these operations and the ghost zone

exchanges are invoked.

Lines 1−20 in Listing 3.1 illustrate going down the miniGMG V-cycle and lines

24−35 show the bottom solves. Code for going back up the V-cycle has been omitted

for brevity.

Application of multiple smooths at each level (0 being the finest and NumLevel

being the bottom) is shown in lines 2−15. Lines 10−14 show the smooth being

applied to the subdomains (boxes) in parallel, and lines 6−7 highlight the ghost zone

exchange required prior to and between applications of each smooth. Application of

residual (line 16) is similar to smooth. Residual is also applied in parallel on the

boxes and there is a ghost zone exchange prior to the residual computation.

Unlike smooth, residual is only applied once. Restriction (line 19) follows residual,

it is computed once and applied in parallel on the boxes. No ghost zone exchange is

required prior to applying restriction. Going back up the V-cycle is similar, but the

residual is not applied, and restrict is replaced by interpolation. Lines 24−35 show
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1 for(level=0; level<NumLevel; level++){
2 for ( smooth=0; smooth<NumSmooths; smooth++ ){
3
4 // communication phase...
5 // the boxes exhange boundaries with neighbors
6 exchange_boundary_phi();
7
8 // apply smooth on each box in parallel
9 # pragma omp parallel for private (box)
10 for (box=0; box<NumBoxInSubdomain; box++){
11 color=smooth;
12 gsrb_smooth_function(Domain->SubDomain[box],phi,rhs,color);
13 }
14 }
15 compute_residual();
16 // restrict to form the coarse and smaller grid
17 // We go down the v-cycle, ie. from a 64^3 grid to a 32^3 grid
18 compute_restriction();
19 }//down
20
21 // bottom solve....
22
23 for (smooth=0; smooth<NumBottomSmooths; smooth++){
24
25 exchange_boundary_phi();
26
27 // apply smooth on each box in parallel
28 # pragma omp parallel for private (box)
29 for (box=0; box<NumBoxInSubdomain; box++){
30 color=smooth;
31 gsrb_smooth_function(Domain->SubDomain[box],phi,rhs,color);}
32 }//bottom solve
33 }
34 // back up the v-cycle.....

Listing 3.1: miniGMG V-cycle
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the bottom solve being applied with the ghost zone exchanges between each applica-

tion. The bottom smooth is applied many more times than the number of smooths

at other levels.

3.3.1 Smooth

Smooths using a number of stencils have been optimized in this dissertation.

miniGMG has been configured to use smooths with Gauss-Seidel Red-Black (GSRB)

and Jacobi iterations of variable-coefficient stencils, and Jacobi iterations of constant-

coefficient stencils. This section presents a smooth using a variable-coefficient stencil.

Listing 3.2 shows code for a smooth (Luh = fh), where L = a~αI − b∇~β∇.

Programmers often wish to maintain flexibility and thus create smooth operators

by composing multiple simpler operators, as illustrated in Listing 3.2. The smooth

operator calculates the Laplacian, Helmholtz, and a Gauss-Seidel relaxation in se-

quence. The first loop nest (lines 2−13) calculates ∇~β∇u, storing it to a temporary

array. This loop executes the variable-coefficient stencil. It reads in points from

the grid phi and multiplies it with appropriate coefficients from beta_i, beta_j and

beta_k. The next loop nest (lines 15−20) updates that temporary by calculating

a~αu− b∇~β∇u. The final loop-nest(lines 22−29) performs the GSRB relaxation using

the temporary array.

The same variable-coefficient stencil can be used with Jacobi relaxation. List-

ings 3.3 and 3.4 compare the loop structure corresponding to GSRB and Jacobi

relaxes respectively. For clarity, the statements for Laplacian, Helmholtz and the

Relaxation from Listing 3.2 have been represented by S0, S1 and S2. Jacobi iterations

have statements even_S0, even_S1, and even_S2, odd_S0, odd_S1, and odd_S2.

Statement odd_S0 executes the same stencil as even_S0, except in odd_S0 the array

temp is read and phi is updated. Similarly in odd_S1 and odd_S2, temp and phi

are interchanged. Thus, odd-numbered smooth applications with Jacobi relaxations

update temp, and even-numbered smooths update phi. The crucial difference between

the two relaxation schemes is the complex if-condition used in GSRB (line 26 in

Listing 3.2). Jacobi updates every point on the grid and does not have this condition,

and has a simpler if-condition to check whether phi or temp gets updated.
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1 // Laplacian(phi) = b div beta grad phi
2 for (k=0;j<N;k++)
3 for (j=0;j<N;j++)
4 for (i=0;i<N;i++)
5 // statement S0
6 temp[k][j][i] =b*h2inv*(
7 beta_i[k][j][i+1]*( phi[k][j][i+1] -phi[k][j][i] )
8 -beta_i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
9 +beta_j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
10 -beta_j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
11 +beta_k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
12 -beta_k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i]));
13
14 // Helmholtz(phi) = (a alpha I - laplacian)*phi
15 for (k=0;j<N;k++)
16 for (j=0;j<N;j++)
17 for (i=0;i<N;i++)
18 // statement S1
19 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i]-temp[k][j][i];
20
21 // GSRB relaxation: phi = phi - lambda * (helmholtz-rhs)
22 for (k=0;j<N;k++)
23 for (j=0;j<N;j++)
24 for(i=0;i<N;i++){
25 // color is 0 for Red pass, 1 for Black
26 if((i+j+k+color) % 2 ==0)
27 // statement S2
28 phi[k][j][i] = phi[k][j][i]-lambda[k][j][i]*(temp[k][j][i]-rhs[k][j

][i]);
29 }

Listing 3.2: Smooth operator with Gauss-Seidel Red-Black relaxations.
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1
2
3 for (k=0;j<N;k++)
4 for (j=0;j<N;j++)
5 for (i=0;i<N;i++)
6 //Laplacian
7 S0();
8
9 for (k=0;j<N;k++)
10 for (j=0;j<N;j++)
11 for (i=0;i<N;i++)
12 //Helmholtz
13 S1();
14
15 for (k=0;j<N;k++)
16 for (j=0;j<N;j++)
17 for(i=0;i<N;i++)
18 if((i+j+k+color)/2==0)
19 // GSRB update
20 S2();

Listing 3.3: GSRB relaxation.

1 if(smooth_application % 2 == 0)
{

2
3 for (k=0;j<N;k++)
4 for (j=0;j<N;j++)
5 for (i=0;i<N;i++)
6 even_S0();
7
8 for (k=0;j<N;k++)
9 for (j=0;j<N;j++)
10 for (i=0;i<N;i++)
11 even_S1();
12
13 for (k=0;j<N;k++)
14 for (j=0;j<N;j++)
15 for(i=0;i<N;i++)
16 even_S2();
17 } else{
18
19 for (k=0;j<N;k++)
20 for (j=0;j<N;j++)
21 for (i=0;i<N;i++)
22 odd_S0();
23
24 for (k=0;j<N;k++)
25 for (j=0;j<N;j++)
26 for (i=0;i<N;i++)
27 odd_S1();
28
29 for (k=0;j<N;k++)
30 for (j=0;j<N;j++)
31 for(i=0;i<N;i++)
32 odd_S2();
33 }

Listing 3.4: Jacobi relaxation.
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3.3.2 Residual

Residual uses the same stencil as smooth. The code is illustrated in Listing 3.5.

For brevity of presentation the residual computation has been shown as one loop nest

instead of separate loop nests similar to the baseline smooth. Like smooth, residual

uses a stencil and requires ghost zone data, and thus ghost zones are exchanged before

computing the residual. The residual is computed once per multiple application of

smooth and contributes far less to the overall solve time.

3.3.3 Restriction and Interpolation

Restriction and interpolation are integral operations to the Geometric Multigrid.

The restriction operation is applied when going down the multigrid V-cycle. Restric-

tion takes as input a grid corresponding to the residual and computes a coarser-grained

grid from it. The code for restriction is shown in Listing 3.6. The piecewise constant

restriction used here is common to finite-volume methods. It is a constant-coefficient

stencil which reads in eight points from the input fine-resolution grid, computes an

average and writes it to a coarser output grid. The output grid is half the size of

the input grid in each dimension, and this leads to the nonunit loop strides, and

the indexing of the coarse grid involves a division by the constant coarsening factor.

The difference in size between input and output grids for the restriction operation

differentiates it from the other stencil operations which use equal-sized grids. The

other feature unique to the stencil used in the restriction operation is that it does

not read the ghost zone points of the input fine grid. Thus no ghost zone exchange

is required prior to applying the restriction.

Interpolation is a scatter operation which performs the inverse of restriction. It

maps a point from a coarse grid to eight points in the fine grid when going up the

V-cycle. Interpolation is not an optimization target in this dissertation.

3.4 Optimization Challenges
Optimizations for miniGMG need to address three broad performance challenges

on current and future architectures:

• Reducing data movement.

Stencil computations are commonly memory-bandwidth limited, and thus,
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1 // Input: Residual Operator
2 for(k=0;k<K;k++)
3 for(j=0;j<J;j++)
4 for(i=0;i<I;i++)
5 // statement S3 : Compute residual
6 res[k][j][i] = rhs[k][j][i]
7 - a * alpha[k][j][i] * phi[k][j][i]
8 + b*h2inv*(
9 beta_i[k][j][i+1]*( phi[k][j][i+1]-phi[k][j][i] )
10 -beta_i[k][j][i] *( phi[k][j][i] -phi[k][j][i-1])
11 +beta_j[k][j+1][i]*( phi[k][j+1][i]-phi[k][j][i] )
12 -beta_j[k][j][i] *( phi[k][j][i] -phi[k][j-1][i])
13 +beta_k[k+1][j][i]*( phi[k+1][j][i]-phi[k][j][i] )
14 -beta_k[k][j][i] *( phi[k][j][i] -phi[k-1][j][i])
15 );

Listing 3.5: Residual operator

1 // Input: Restriction Operator
2 for(k=0;k<K;k+=2)
3 for(j=0;j<J;j+=2)
4 for(i=0;i<I;i+=2)
5 coarser_res[k/2][j/2][i/2] = 0.125 *(
6 res[k ][j ][i] + res[k ][j ][i+1] +
7 res[k ][j+1][i] + res[k ][j+1][i+1] +
8 res[k+1][j ][i] + res[k+1][j ][i+1] +
9 res[k+1][j+1][i] + res[k+1][j+1][i+1]
10 );

Listing 3.6: Restriction operator
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minimizing data traffic is the single most important factor in optimizing them

for modern architectures. Geometric Multigrid uses a sequence of stencil com-

putations, and thus optimizations for GMG must aim to increase locality for

both individual stencils and across stencil computations.

• Parallel code generation.

With the increasing number of threads on a node, expressing parallelism in the

generated code is crucial to getting good performance. Parallel code generation

for miniGMG is particularly interesting, as parallelism decreases on descending

the V-cycle and threading strategies need to be tailored to adapt to the level of

the V-cycle.

• Managing floating-point computation.

Smooths in Geometric Multigrid can use compute-intensive stencils leading to

floating-point computations being the bottleneck. In such cases optimizations

must aim to reuse computation to reduce floating-point operations. In addition

to computation reuse, code generation must efficiently use architectural features

such as SIMD-units which boost the performance of floating-point operations.

There is considerable interaction between these optimizations, for example, local-

ity increasing optimizations for the miniGMG may increase computation and decrease

parallelism. To explore these trade-offs, automatic code-tuning frameworks must

compose and apply sequences of optimizations. Generating high-performance code

will require searching the space of such compositions to pick the one best suited for

a given input stencil and target architecture.



CHAPTER 4

COMMUNICATION-AVOIDING

OPTIMIZATIONS

The principal operations in the Geometric Multigrid commonly execute less than

one floating-point operation for every byte of data. This low arithmetic intensity,

coupled with the fact that data movement is far more expensive than floating-point

operations, makes the performance of miniGMG memory bandwidth limited. Thus,

the key to achieving high performance is to reduce data movement.

In this chapter we introduce the types of data movement in the miniGMG bench-

mark, followed by the description of optimizations targeting data traffic. The de-

scription of the optimizations is followed by the details of their implementation in the

compiler. The final part of the chapter presents the performance results and analysis

of the generated code.

As the focus of this chapter is on reducing data movement, the variable-coefficient

3D 7-point stencil is used in this chapter. Variable-coefficient stencils read in many

more arrays when compared to constant-coefficient ones, and consequently require

higher volumes of data movement. Thus, applying the optimizations developed here

on variable-coefficient stencils highlights the efficacy of the optimizations.

4.1 Types of Communication
Data movement in the miniGMG can be classified as either horizontal communi-

cation or vertical communication:

• Vertical Communication

The Geometric Multigrid operators smooth, residual, restrict and interpolation

(Listings 3.2, 3.5 and 3.6), are all three deep loop nests which sweep over

3D grids. Each 3D grid is stored as an array, and sweeping or streaming
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through them generates data movement through the memory hierarchy. This

memory traffic generated by each application of an operator is termed vertical

communication.

• Horizontal Communication

Sections 3.1 to 3.3 describe how miniGMG decomposes the global domain into

subdomains which are processed in parallel using threads (OpenMP) and pro-

cesses (MPI). After an operation such as a smooth is applied to the subdomains,

a ghost zone exchange between neighboring subdomains is required. This data

movement between threads and processes to update the ghost zones is called

Horizontal communication.

4.2 Communication-Avoiding Optimizations
Vertical communication is required for each operator application as it sweeps

through 3D grids, and horizontal communication is required between operator ap-

plications to update ghost zones. This chapter presents optimizations to reduce both

types of data movement. Table 4.1 lists the optimizations and the type of data

movement they target. The optimizations are presented in the context of miniGMG

used with a variable-coefficient smooth and residual, Listings 3.2 and 3.5, respectively.

The variable-coefficient stencils used in these operations have a very low arithmetic

intensity and highlight the data-movement optimizations.

4.2.1 Fusing Components of Smooth

Programmers often wish to maintain flexibility and thus create smooth operators

by composing multiple simpler operators, as illustrated in Listing 3.2 and 3.4. The

smooth operator calculates the Laplacian, Helmholtz, and either a Gauss-Seidel or

Jacobi relaxation in sequence. Each of these simpler operators is a loop nest which

sweeps through the grids. The finest level of the miniGMG V-cycle has a 2563 domain

per node decomposed into 643 subdomains. Each subdomain stores the grids for phi,

temp, alpha, beta_i, beta_j, beta_k, lambda and rhs as 663 arrays; the net

memory requirement of these arrays is more than 1GB of memory and does not fit

into last-level caches. Since the finer grids do not fit into the last-level cache, each
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Table 4.1: The table illustrates the classification of optimizations described in
this chapter as reducing vertical communication, horizontal communication, or both.
Parallel code generation has been been left out as it is not a communication-avoiding
optimization but helps improve wavefront, which reduces vertical communication.

Optimization Vertical Horizontal
Smooth Operator Fusion X -

Deep Ghost Zones - X
Wavefront X -

Residual Restriction Fusion X -
Smooth-Residual-Restriction Wavefront X X

loop nest or grid sweep results in data movement between DRAM and the last-level

cache.

The three separate loop nests in smooth generate high DRAM traffic as the grids

are streamed into cache three times. To reduce this data movement, the compiler fuses

the multiple smooth operators together. Fusion is itself a vertical communication-

avoiding optimization, since the results computed by one operator will remain in

cache when used as input by the next operator.

The output of fusion for the GSRB and Jacobi smooths is outlined in Listings 4.1

and 4.2, respectively. Loop fusion for the GSRB smooth requires the if-condition

that previously guarded just the GSRB update statement S2() to now guard the

execution of all three statements S0(), S1(), and S2().

An additional communication-avoiding optimization for the GSRB smooth is to

replace the array temp with a scalar and not write it back to memory on completion.

The first two statements write to temp, and the last statement uses the value written

to update phi. Replacing temp with a scalar saves vertical communication associated

with accessing temp, this is not possible in the Jacobi smooth where temp is used

across the two (k,j,i) loop nests.

4.2.2 Deep Ghost Zones

Smooth contains a stencil computation which requires ghost zones. Stencil com-

putations performed on the boundary of the subdomains read these ghost zone points

but do not compute values to update them. Thus, after a stencil computation sweeps

through the grids, the ghost zone values become stale and they need to be updated
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1 for (k=0;j<N;k++){
2 for (j=0;j<N;j++){
3 for (i=0;i<N;i++){
4
5 if((i+j+k+color)%2==0){
6
7 S0(k,j,i); /*Laplacian*/
8 S1(k,j,i); /*Helmholtz*/
9 S2(k,j,i); /*GSRB relaxation*/
10
11 }/*end if*/
12 }}}

Listing 4.1: Fused GSRB smooth.

1 if(sweep % 2 == 0) {
2
3 for (k=0;j<N;k++){
4 for (j=0;j<N;j++){
5 for (i=0;i<N;i++){
6
7 even_S0(k,j,i); /*Laplacian*/
8 even_S1(k,j,i); /*Helmholtz*/
9 even_S2(k,j,i); /*Jacobi relaxation*/
10 }}}
11
12 }else if(sweep %2 == 1){
13
14 for (k=0;j<N;k++){
15 for (j=0;j<N;j++){
16 for (i=0;i<N;i++){
17
18 odd_S0(k,j,i); /*Laplacian*/
19 odd_S1(k,j,i); /*Helmholtz*/
20 odd_S2(k,j,i); /*Jacobi relaxation*/
21 }}}
22
23 }/*end if*/

Listing 4.2: Fused Jacobi smooth.
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by data exchange with neighboring subdomains. Deeper ghost zones reduce ghost

zone exchanges by performing redundant computations to update ghost zones. This

is illustrated in Figure 4.1, where a 2D 5-point stencil is applied to a 4x4 grid with

a two-deep ghost zone. The first stencil application computes values for a 6x6 grid,

(blue points are updated), the following stencil sweep uses the 6x6 grid to compute

the values for the final 4x4 grid (red points). The second stencil sweep was possible

without a prior data exchange because the first sweep updated a 6x6 grid, which meant

the ghost zone to compute the 4x4 grid has updated values. The blue points shown in

Figure 4.1(b) are computed redundantly but they reduced horizontal communication

with each consecutive stencil sweep working on a smaller grid. Thus, deeper ghost

zones reduce the frequency of horizontal communication.

Deeper ghost zones exchange fewer messages but change the pattern of communi-

cation between neighboring subdomains. Figure 4.2 shows the communication pattern

for a two-deep ghost zone used by a 2D 5-point stencil. When compared to Figure 3.5,

it is evident that a larger message corresponding to deeper ghost zones must be

exchanged. In addition to the larger messages, the number of neighbors involved also

increases, as corner points in the ghost zone also need to be updated.

The output code for GSRB and Jacobi smooths with deeper ghost zones are shown

in Listings 4.3 and 4.4, respectively. A new t-loop has been added to apply smooth

multiple times. The loop bounds for the k,j, and i-loops are now functions of t to

ensure that with each application of smooth the region of the grid which is computed

shrinks in all dimensions and uses only valid data. In addition to the loop bounds,

the if-condition used in GSRB also has to include the loop index t, since consecutive

smooths update either the red or black points.

Deeper ghost zones reduce horizontal communication at the expense of redundant

computation. As one goes down the V-cycle, the coarser grids have much-reduced

computation and cannot afford redundant computation. Thus ghost zone depth must

be tuned for each level of V-cycle to find the optimum balance.

4.2.3 Wavefront Computation

Deep ghost zones allow multiple smooths to be applied before a ghost zone ex-

change. As each smooth application is a grid sweep, the multiple grid sweeps generate
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(a) (b)

Figure 4.1: Two applications of a 3D 5-point stencil on a 4x4 grid with a two-deep
ghost zone. (a) The stencil is first applied on a 8x8 grid to compute the values for
the 6x6 grid (blue points). The outer layer of grid points shaded grey are read and
used as the ghost zone. (b) The second stencil sweep uses the 6x6 grid to compute
the output of the 4x4 grid (red points). For the second stencil sweep, the blue points
are used as the ghost zone.

Figure 4.2: Deeper ghost zone changes the communication pattern and volume
between a subdomain and its neighbors. A one-deep ghost zone requires exchange
with left, right, top, and bottom neighbors. An additional layer of ghost zone now
requires exchange with neighbor on the corners as well. In addition, a larger volume
of data must be exchanged.
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1 /* d = ghost zone depth */
2 for (t=0;t<d;t++){
3 for (k=t-(d-1);j< N +(d-1);k++){
4 for (j=t-(d-1);j< N +(d-1);j++){
5 for (i=t-(d-1);i< N +(d-1);i++){
6
7 if((i+j+k+t+color)%2==0){
8
9 S0(t,k,j,i); /*Laplacian*/
10 S1(t,k,j,i); /*Helmholtz*/
11 S2(t,k,j,i); /*GSRB relaxation*/
12
13 }/*end if*/
14 }}}}

Listing 4.3: Fused GSRB smooth with overlapped ghost zones.

1 /* d = ghost zone depth */
2 for (t=0;t<d;t++){
3
4 if(t %2 == 0) {
5
6 for (k=t-(d-1);j< N +(d-1);k++){
7 for (j=t-(d-1);j< N +(d-1);j++){
8 for (i=t-(d-1);i< N +(d-1);i++){
9
10 even_S0(t,k,j,i); /*Laplacian*/
11 even_S1(t,k,j,i); /*Helmholtz*/
12 even_S2(t,k,j,i); /*Jacobi relaxation*/
13 }}}
14
15 }else if(t %2 == 1){
16
17 for (k=t-(d-1);j< N +(d-1);k++){
18 for (j=t-(d-1);j< N +(d-1);j++){
19 for (i=t-(d-1);i< N +(d-1);i++){
20
21 odd_S0(t,k,j,i);/*Laplacian*/
22 odd_S1(t,k,j,i); /*Helmholtz*/
23 odd_S2(t,k,j,i); /*Jacobi relaxation*/
24 }}}
25
26 }}/*end if*//*end t*/

Listing 4.4: Fused Jacobi smooth with overlapped ghost zones..
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high vertical communication between the caches and DRAM. A wavefront computa-

tion is used to reduce this vertical communication. A wavefront fuses multiple grid

sweeps into one, thereby reducing DRAM traffic.

Wavefront computation is explained in terms of GSRB smooth, which uses a 3D

7-point stencil, and then extended to the Jacobi smooth. The following discussion

assumes that a four-deep ghost zone is used, which means four GSRB smooths are

applied: red (R1), black (B1), Red (R2), and finally, a black (B2) sweep. GSRB

partitions the grid into red and black points, where a red point has only black

neighbors and vice-versa. A red sweep updates red points and a black sweep updates

black ones.

A sweep through a 3D N×N×N grid can be visualized as streaming through N

{k = 0, ...., N − 1} 2D N×N ij-planes. A Wavefront computation fuses the four grid

sweeps R1-B1-R2-B2 into one by computing values for a set of four ij-planes at a

time. This is illustrated in Figure 4.3(a), which shows the cross section of a 3D grid

and illustrates how a wavefront works on ij-planes. The first red sweep, R1, on plane

k = z + 3 is computed, followed by B1 on plane k = z + 2, R2 on k = z + 1, and B2

on plane k = z. At this stage, plane k = z has gone through all four sweeps and the

wavefront now performs the same sequence on planes k = z+4 to k = z+1, as shown

in Figure 4.3(b). An ij-plane goes through all the four sweeps R1, B1, R2, and B2

as the wavefront progresses through it, and in one sweep of the grid, four smooths

are applied. The wavefront described here processes four planes, and is thus termed

four deep.

Jacobi smooth uses an out-of-place stencil computation where every odd-numbered

smooth application read phi and updates temp, and every even-numbered application

reads temp and updates phi. Figure 4.4 illustrates a four-deep wavefront for the

Jacobi smooth. The wavefront needs a four-deep ghost zone and fuses four smooths

into one. The figure highlights the ping-pong between temp and phi.

Jacobi iterations like GSRB use a 3D 7-point stencil, and thus read in three

ij-planes: top, center, and bottom, and outputs a single ij-plane. In the wavefront

shown in Figure 4.4, the first plane output is updated to temp. Plane k = z + 7 of

temp is computed using planes k = z + 8 (top), k = z + 7 (center), and the bottom
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Figure 4.3: Progress of the GSRB wavefront.
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Figure 4.4: Jacobi wavefront.
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plane k = z + 6 of phi. The next step of the wavefront updates phi and computes

plane k = z + 5 of phi using planes k = z + 6, k = z + 5, and k = z + 4 from temp.

The next two updates proceed similarly, as shown in the figure.

In the wavefront for Jacobi iterations, there is a difference of 2 between the planes

that are updated; for example, in Figure 4.4 planes z + 7, z + 5, z + 3, and finally

z + 1 are updated in sequence. The GSRB wavefront, on the other hand, updates

4 consecutive planes: z + 3, z + 2, z + 1, and z. This crucial difference between

wavefronts for GSRB and Jacobi iterations arises from data dependences and means

that many more planes need to be read and be held in memory for Jacobi iterations,

leading to a larger working set.

Code Listings 4.5 and 4.6 show the skeleton code for the four-deep GSRB and

Jacobi wavefronts applied on a 643 box, respectively. It is important to note that in

both code fragments the k- and t-loops have been interchanged (or permuted). The

time step t-loop which was previously outermost and was responsible for applying

multiple grid sweeps is now nested inside the outermost k-loop. This means the

k-dimension is scanned or iterated through only once and corresponds to a single grid

sweep. The two innermost j- and i-loops are not changed, as we do not modify how

points in an ij-plane are updated/traversed.

The modified indexing used in the statements (S0, S1, ...) in the two code

listings determines the order in which the ij-planes are updated in the wavefront

computations. The indexing of the statements prior to creating a wavefront were

of the form (t,k,j,i) i.e., S0(t,k,j,i) (Listing 4.3). In the GSRB wavefront

the indexing changes to (t,k-t,j,i), and for Jacobi it is (t,k-2*t,j,i). The

modified array index expression for the k-dimension means that at each iteration of

the t-loop, the ij-plane that is updated is one (GSRB) or two (Jacobi) planes lower

than the one updated in the previous iteration of t. As seen previously, for four

iterations of the t-loop (from 0 to 3), this translates to planes k = z + 3, k = z + 2,

k = z + 1, and k = z getting updated for GSRB. And for Jacobi, these are planes

k = z + 7, k = z + 5, k = z + 3, and k = z + 1.
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1 for (k = -3; k <= 66; k++) {
2 for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {
3 for (j = t-3; j <= -t+66; j++) {
4 for (i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2)
5 {
6 S0(t,k-t,j,i); /* Laplacian */
7 S1(t,k-t,j,i); /* Helhmoltz */
8 S2(t,k-t,j,i); /* GSRB */
9 }}}}

Listing 4.5: GSRB Wavefront for a 643 box with a four-deep ghost zone.

1
2 for (k = -3; k <= 70; k++) {
3 for (t = max(0,k-66); t <= min(3,intFloor(t+3,3)); t++) {
4 if(t % 2 == 0){
5 for (j =t-3; j <= 66-t; j++) {
6 for (i= -3; i<=66; i++)
7 {
8 even_S0(t,k-2*t,j,i); /* Laplacian */
9 even_S1(t,k-2*t,j,i); /* Helhmoltz */
10 even_S2(t,k-2*t,j,i); /* GSRB */
11 }
12 }}
13 if(t % 2 == 1){
14 for (j =t-3; j <= 66-t; j++) {
15 for (i= -3; i<=66; i++)
16 {
17 odd_S0(t,k-2*t,j,i); /* Laplacian */
18 odd_S1(t,k-2*t,j,i); /* Helhmoltz */
19 odd_S2(t,k-2*t,j,i); /* GSRB */
20 }
21 }
22 }
23 }}

Listing 4.6: Jacobi Wavefront for a 643 box with a four-deep ghost zone.
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4.2.4 Parallel Code Generation

Wavefronts hold multiple planes in memory, thus increasing the working set. This

may lead to spilling out of the faster caches (L1/L2). We generate nested multi-

threaded code via OpenMP to share planes across threads and reduce the working

set per thread.

Figure 4.5 illustrates how an ij-plane in a box gets shared between a number of

OpenMP threads for the GSRB smooth with a four-deep wavefront. The four threads

tile the iteration space of the j-loop. Each thread processes the four R-B-R-B planes

of the wavefront before needing to synchronize.

Code Listings 4.7 and 4.8 show skeleton codes for a four-deep GSRB and Jaobi

wavefront applied on a 643 box, respectively. In Listing 4.5 there is a single thread

processing the box, and in Listing 4.7 there are 12 OpenMP threads collaboratively

processing the box. The j-loop in Listing 4.5 which performed 70 iterations (-3 to

66) has been tiled, and each tile is assigned to a thread. With 12 threads, each thread

gets d70/12e = 6 iterations. Line 16 shows where the threads working on a box need

to synchronize. The synchronization point is after the completion of the t-loop. This

means that threads can process all four sweeps R-B-R-B before synchronizing.

The OpenMP barrier in line 16 of Listing 4.7 means that all the threads working on

a box wait for all other threads to finish processing a set of 4 planes before proceeding.

This is expensive and not required in this case, as each thread only needs to sync

with its immediate neighbors. For example, in Figure 4.5 thread 2 needs to sync with

thread 1 and thread 3. To ameliorate the effect of the expensive barrier we followed the

strategy of expert manual tuners in [32] and generated code to implement spinlocks.

An array of locks depending on the number of collaborating threads was created, and

each thread only waited on its two neighbors. Spinlocks improve performance, but

unfortunately this is not a portable approach and breaks programming (OpenMP)

abstractions.

Collaborative threading with multiple threads per box for the Jacobi wavefront

is shown in Listing 4.8. The generated code is simpler, but the threading is more

expensive. This is because, due to data dependences, the threads must synchronize

after each plane is processed. This is more expensive than GSRB, where multiple

planes can be processed before synchronization. For the Jacobi, the OpenMP parallel
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Figure 4.5: Multiple threads working collaboratively to process a subdomain/box

for directive was used rather than creating an OpenMP parallel region, as in the case

of GSRB.

Generating code where multiple threads process a box creates three strategies for

thread decomposition. As illustrated in Figure 4.6, we can have interbox parallelism,

nested parallelism and intrabox parallelism. Each box is processed by a single thread

in interbox parallelism, and in intrabox parallelism a single box is processed with all

threads working on it. Nested parallelism has multiple boxes with multiple threads

working inside each box and leverages nested parallelism in OpenMP. As shown in

Figure 4.6, on a system with six threads we can have six boxes being processed in

parallel by a single thread, or x boxes being processed with y threads in them such

that x × y = 6, or have a single box with all 6 threads working on it. Larger boxes

have a bigger working set than the smaller boxes down the V-cycle, which suggests

that the system should assign more threads per box for the larger grids, and fewer

threads for the smaller grids — ultimately the thread distribution is optimized via

autotuning.
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1 #pragma omp parallel private (...) num_threads(12)
2 {
3 tid=omp_get_thread_num();
4
5 for (k = -3; k <= 66; k++) {
6 for (t = 0; t <= min(3,intFloor(t+3,2)); t++) {
7 for (j = 6*tid-3; j <= min(6*tid+2,66); j++) {
8 for (i= t-3+intMod(-k-color-j-(t-3),2); i<=-t+66; i+=2)
9 {
10 S0(t,k-t,j,i); /* Laplacian */
11 S1(t,k-t,j,i); /* Helhmoltz */
12 S2(t,k-t,j,i); /* GSRB */
13 }
14 }
15 }
16 #pragma omp barrier (or explicit locks)
17 }
18 }

Listing 4.7: Threaded GSRB Wavefront for a 643 box with a four-deep ghost
zone.
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1 #pragma omp parallel private(....) num_threads(3)
2
3 for (k = -3; k <= 70; k++) {
4 for (t = max(0,k-66); t <= min(3,intFloor(t+3,3)); t++) {
5 if(t % 2 == 0){
6
7 #pragma omp for
8 for (j =t-3; j <= 66-t; j++) {
9 for (i= -3; i<=66; i++)
10 {
11 even_S0(t,k-2*t,j,i); /* Laplacian */
12 even_S1(t,k-2*t,j,i); /* Helhmoltz */
13 even_S2(t,k-2*t,j,i); /* GSRB */
14 }
15 }
16 }
17 if(t % 2 == 1){
18
19 #pragma omp for
20 for (j =t-3; j <= 66-t; j++) {
21 for (i= -3; i<=66; i++)
22 {
23 odd_S0(t,k-2*t,j,i); /* Laplacian */
24 odd_S1(t,k-2*t,j,i); /* Helhmoltz */
25 odd_S2(t,k-2*t,j,i); /* GSRB */
26 }
27 }
28 }
29
30 }
31 }

Listing 4.8: Threaded Jacobi Wavefront for a 643 box with a four-deep ghost
zone.
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Inter-Box Parallelism
Thread Configuration <6,1>

Nested Parallelism
Thread Configuration <2,3>

Intra-Box Parallelism
Thread Configuration <1,6>

6 threads working in parallel

<X,Y> : X boxes, Y threads/box

Figure 4.6: Example parallel decompositions on Hopper, which has 6-cores per
socket. All the boxes in a subdomain may work in parallel, or all the threads may
work on one box collaboratively, or nested parallelism may be used.

4.2.5 Residual-Restriction Fusion

Wavefront computation introduced in Section 4.2.3 fuses multiple sweeps of a

box/grid into one and reduces vertical communication. We extend the same strat-

egy of fusing multiple grid sweeps into one by fusing the residual and restriction

computations into one sweep.

Unfortunately there exists a data dependence between residual (Listing 3.5) and

restriction (Listing 4.9) which prevents this fusion. The dependence arises because

every iteration of the triply nested ijk-loop residual updates a single point on the

output (finer) grid. Restriction needs to read 8 points from the finer grid and restrict

it to a single output point of the coarser grid. If the loop were naively fused, restriction

would read points on the input finer grid before they were correctly updated.

To break this data dependence, a new compiler transformation was designed to

fuse restriction with the other preceding operators. A novel compiler transformation

was developed which converts the restriction stencil into an accumulation. This

conversion breaks the data dependence and enables the sequence of loops to be fused.

The transformation converts restriction, an 8-point out-of-place stencil, to an

accumulation. Listing 4.10 shows the output of this transformation. In line 12 of

the output code each point from the input grid is read, multiplied by coefficient, and
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scattered to the correct output point in the coarse grid. Instead of requiring to read

8 points, restriction now reads a single point from the fine grid, and thus the data

dependence is broken. Since we are generating an accumulation, care must be taken

to zero out the values in the output grid points before accumulating to them, and

this is performed in line 6 of Listing 4.10.

The output of the residual-restriction fusion is shown in Listing 4.11. Line 6

zeroes out planes of the coarse grid before accumulating. The nested for-loop (lines

10-14) computes the residual (S4) and immediately scatters it to the correct point in

the output coarse grid. Thus residual-restriction is now complete in one grid sweep

performed by the common outermost k-loop.

4.2.6 Smooth-Residual-Restriction Wavefront

We extend the wavefront strategy further to create an even deeper wavefront

from fused smooths, residual, and restriction. This fuses six grid sweeps (4 smooths,

residual and restriction) into one sweep. To eliminate the ghost zone exchange

required prior to residual computation we have to increase the ghost zone depth

to five from the previously used four. The deeper ghost zone reduces horizontal

communication further. The wavefront created then reduces vertical communication.

The deeper wavefront means a larger working set. The working set is managed by

generating nested parallel code.

The smooth-residual-restriction wavefront is illustrated in Figure 4.7. The cross-

section of a box shows a wavefront that is six planes deep. The first four planes

compute 2 GSRB sweeps, the fifth plane computes the residual, and the last plane

computes the restriction and writes to the coarser output grid.

Listing 4.12 illustrates the code generated for this wavefront for the GSRB smooth

applied to a 643 box with a five-deep ghost zone. There are three threads working

collaboratively inside the box, and they synchronize using spin locks (lines 36-38).

The code illustrates that the k-loop was skewed against the time t-loop, and then

they are permuted, making k the outer loop and giving a single grid sweep (in the

k-dimension). The smooths (lines 9-16) are followed by initializing a plane of the

output coarser grid (lines 18-23), and then the computation of residual and restriction
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1 /* Input: Restriction Operation */
2 for(k=0;k<K;k+=2)
3 for(j=0;j<J;j+=2)
4 for(i=0;i<I;i+=2)
5 coarser_res[k/2][j/2][i/2] = 0.125 *(
6 res[k ][j ][i] + res[k ][j ][i+1] +
7 res[k ][j+1][i] + res[k ][j+1][i+1] +
8 res[k+1][j ][i] + res[k+1][j ][i+1] +
9 res[k+1][j+1][i] + res[k+1][j+1][i+1]
10 );

Listing 4.9: Restriction operation.

1 /* Output: Restriction as a Scatter Operation */
2 for(k=0;k<K;k+=2)
3 for(j=0;j<J;j+=2)
4 for(i=0;i<I;i+=2)
5 /* statement S4 : Initialize coarse_res*/
6 coarser_res[k/2][j/2][i/2] = 0;
7
8 for(k=0;k<K;k++)
9 for(j=0;j<J;j++)
10 for(i=0;i<I;i++)
11 /* statement S5 : Restrict fine_res to coarse_res */
12 coarser_res[k/2][j/2][i/2] += 0.125* res[k][j][i];

Listing 4.10: Restriction as an accumulation.

1 /* Output: Restriction as a Scatter Operation */
2 for(k=0;k<K;k++){
3 if(k%2 == 0){
4 for(j=0;j<J;j+=2){
5 for(i=0;i<I;i+=2){
6 S4();/* statement S4 : Initialize coarse_res*/
7 }}
8 }
9
10 for(j=0;j<J;j++){
11 for(i=0;i<I;i++){
12 S3();/* Compute residual */
13 S5();/* statement S5 : Restrict fine_res to coarse_res */
14 }}
15
16 }/* End K */

Listing 4.11: Fused residual-restriction.
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Figure 4.7: Wavefront applying smooths, residual and restriction.
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1 #pragma omp parallel private(...)\
2 shared(locks) num_threads(3)
3 {
4 tid = omp_get_thread_num();
5 num_threads = omp_get_num_threads();
6 left = min(tid - 1,0);
7 right = max(tid + 1,num_threads - 1);
8
9 for(k = -4; k <= 67; k++){
10 for(t = 0; t <= min(3,intFloor(k+4,2)); t++){
11 for(j = 24*tid-4; j <= 24*tid + 19; j++){
12 for(i= -4+intMod(-k-color-j-(t-4),2); i<=67; i+=2) {
13 S0(t,k-t,j,i); /* Laplacian */
14 S1(t,k-t,j,i); /* Helhmoltz */
15 S2(t,k-t,j,i); /* GSRB */
16 }}} /* End t,j,i */
17
18 if(4<=k && intMod(k,2) == 0){
19 for(j = max(24 * tid - 4,0);
20 j <= min(62,24 * tid + 18); j += 2){
21 for(i = 0; i <= 62; i += 2 ) {
22 S4(t,k-t,j,i); /* Initialize coarse_res */
23 }}} /* End if */
24
25 if(4<=k){
26 for(j = max(24 * tid - 4,0);
27 j <= min(62,24 * tid + 18); j ++){
28 for(i = 0; i <= 63; i ++ ) {
29 S3(t,k-t,j,i); /* Compute residual */
30 S5(t,k-t,j,i); /* Restrict fine_res to coarse_res */
31 }}} /* End if */
32
33 /* After computing the 5-deep wavefront */
34 /* Threads sync with their right and left neighbors */
35
36 locks[tid] = k;
37 if(left!= tid){ while (locks[left] < k) pause();}
38 if(right!= tid){ while (locks[right] < k) pause();}
39
40 }/* End k */
41
42 }/* End OMP region */

Listing 4.12: Simplified generated code for threaded wavefront with GSRB and
residual and restriction fused. The code is specialized for a 643 box, with a
five-deep ghost zone and 3-threads working inside a box.



70

to the coarser grid (lines 25-31). The threads synchronize after completing multiple

smooths, residual, and the restriction. This deep wavefront is applied when going

down the V-cycle. On the way back up, residual and restriction are replaced by the

interpolation operation. Hence we use a four-deep wavefront going back up the V-

cycle, but the ghost zone depth is still fixed at five, resulting in excess communication.

In a similar manner, wavefront computations can be generated for Jacobi style

stencils, but Jacobi stencils present additional challenges to the memory system.

Jacobi reads and writes to different arrays, leading to an even larger working set.

Collaborative threading for Jacobi stencils is less effective, since due to dependences,

threads must synchronize after computing each plane, unlike GSRB, where all the

planes in the wavefront can be computed before the threads need to synchronize.

Thus, deeper wavefront may not always help Jacobi smooths.

4.3 Autotuning Opportunities
The optimizations described in the previous sections create an interesting space

of possible optimization sequences. Generating optimal code for each type of smooth

at each level of the V-cycle requires us to select the most appropriate sequence of

optimizations from this space. The following list outlines the optimizations which are

candidates for autotuning.

• Ghost zone depth

The ghost zone depth governs the amount of redundant computation performed,

the frequency of MPI communication, and controls the depth of a wavefront

computation. As memory bandwidth is a key limitation only for larger box

sizes, the optimal value for ghost zone depth varies for different box sizes in the

V-cycle.

Ghost zone depth depends on the radius of the stencil used. Ghost zones are

integer multiples of the stencil radius. The 3D 7-point stencil which has a

radius of 1 can have ghost zone depths 1,2,3,4, ... A stencil of radius 2, such

as the 3D 13-point stencil, can have ghost zones of depth 2,4,6, ... In general,

the range of possible values of ghost zone depth is from stencil_radius to

stencil_radius × number_of_stencil_applications. For the 7-point stencils,
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where smooth can be applied up to four times, the ghost zone depth can vary

from 1 to 4.

• Wavefront

Wavefront computations dramatically reduce DRAM traffic but involve code

with complex loop bounds. Creating a wavefront after using deep ghost zones

is a binary decision. In the current code generation strategy, the ghost zone

depth and number of planes in the wavefront (depth of wavefront) are identical.

• Smooth-residual-restriction fusion and wavefront

Fusing smooth-residual-restriction requires an even larger ghost zone and cre-

ating a wavefront computation involving many planes. The decision to apply

this optimization is binary and depends on the type of stencil, iteration, level

of V-cycle, and architecture.

• Thread decomposition

Threading is nested at two levels. As shown in Figure 4.6, miniGMG already

uses a set of OpenMP threads for each box. The final generated code also

introduces multiple threads per box. Since the box size varies across V-cycles

in a GMG computation, the optimal number of threads per box also varies with

the level of the V-cycle and type of stencil computation. The space of possible

thread decompositions on a machine with n threads is <x, y> where x× y = n.

4.4 Compiler Implementation
This section describes the implementation of the transformations described in

Section 4.2. The transformations were implemented in the CHiLL compiler framework

which was described in Chapter 2. The compiler abstractions introduced in that

chapter — iterations spaces, dependence graphs, and data dependences, are used

here to describe the implementation.

The discussions that follow explain the implementation details using the GSRB

smooth as an example. The GSRB smooth has a more complex iteration space and

presents more challenges. If handling Jacobi iterations demands additional attention,

the implementation details regarding that are highlighted.
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The order of optimizations presented in this section is different from Section 4.2.

Instead of presenting the optimizations in the order they are applied, first the novel

domain-specific compiler transformations are presented (Sections 4.4.1 to 4.4.3). This

is followed by a subsection of how the data dependence graph of the input code

needs to manipulated. Sections 4.4.5 and 4.4.6 describe optimizations which are

implemented using known compiler transformations already built into CHiLL. The

final subsection describes how we generated parallel OpenMP code.

4.4.1 Fusing Components of Smooth

The input code for GSRB and Jacobi iterations shown in Listings 3.2 and 3.4

consist of three statements, S0, S1, and S2, that correspond to the three smooth

operators, Laplacian, Helmholtz, and GSRB, respectively. Once parsed by CHiLL,

the iteration spaces corresponding to these operators are as follows:

ISS0 := {[k, j, i] : 0 ≤ k < N&&0 ≤ j < N&&0 ≤ i < N};

ISS1 := {[k, j, i] : 0 ≤ k < N&&0 ≤ j < N&&0 ≤ i < N};

ISS2 := {[k, j, i] : 0 ≤ k < N&&0 ≤ j < N&&0 ≤ i < N&&k+j+i+2α+color = 0};

Note that ISS2 has an additional term in its iteration space related to the if-condition

in the GSRB code which checks the color of grid points. Iteration spaces for the

statements do not have this additional term.

In the case of Jacobi, loop fusion falls out implicitly from the iteration space

alignment algorithm, which attempts to carve out a unified iteration space for the

imperfect loop nest of the original code [33]. The statements in Jacobi smooth have

identical iteration spaces without fusion preventing dependences. Thus, CHiLL is

able to automatically fuse the three loop nests.

In GSRB smooth, the iteration spaces for the three statements are not identical,

and there exists a data dependence between the statements which prevents loop fu-

sion. This data dependence is detected by CHiLL, and reported as a fusion-preventing

dependence. The data dependence between S2 and S0 is related to the reads and

writes of phi and does not allow fusion of the three loops. However, we make

the observation that the iteration spaces for the Laplacian and Helmholtz operators
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(statements S0 and S1) compute values of temp that are never used by the S2 of

GSRB.

We use array data-flow analysis to analyze the iteration spaces and access expres-

sions and derive a conservative approximation of the elements of temp defined in S0

and S1 and used in S2 [42]. Using techniques to compute data footprint associated

with array references (described in Section 2.7), CHiLL determines that the array

region read by S2 is a proper subset of the regions defined by S0 and S1. Since temp

is a local variable redefined on every sweep, and it is not live after the smooth operator

is completed, it is safe to contract the iteration spaces of S0 and S1 to match that of

S2.

In the fused code, the compiler recognizes that array temp is a local variable, and

does not need to be rewritten back to memory. Because there are no dependences on

temp crossing iteration boundaries, scalar replacement is then employed to make this

a scalar that is overwritten on each iteration of the loop.

4.4.2 Overlapping Ghost Zones

Once fused, the iteration spaces from the previous section end up with a combined

iteration space that matches that of statement S2. We observe that introducing ghost

zones as in the previous section is really just introducing a new loop t and changing

the bounds for each of the loops in the fused loop nest to compute ghost regions and

generate a hypertrapezoidal iteration space.

Due to the presence of the if-condition in the GSRB smooth, the iteration space

is a hypertrapezoid with holes. The iteration space IS has two distinct parts, arising

from the loop nest and also the relation (k+j+i+2α+color=0) which represents the

if-condition; the iteration space is the conjunction of these terms. We added a new

domain-specific transformation which maps the old iteration space with the new loop

t using the mapping map. The mapping map will take IS, the iteration space of the

input loop nest, and map it to the iteration space IS ′ of the modified loop nest. In

addition to this, the variable color needs to get updated with every sweep of the

grid. This mean the values of color will also be affected by the additional loop. For

this purpose, we apply another mapping map′ to update color.
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map := {[k, j, i]→ [t, k′, j′, i′] : 0 ≤ t < d

&& k − d+ 1 + t ≤ k′ < k + d− t

&& j − d+ 1 + t ≤ j′ < j + d− t

&& i− d+ 1 + t ≤ i′ < i+ d− t};

IS ′ := map(IS);

map′ := {[color]→ [color + t]};

The application of map′ will cause the value of color to be updated everywhere it

appears, including within the statements. Although in our current implementation

this relation is provided to the implementation, it could be derived automatically

through analysis or domain knowledge. This gives a new relation for the if-condition

as (k+j+i+2α+color+t=0). The conjunct of the new iteration space and the new

term gives us the final modified iteration space.

4.4.3 Stencils as Accumulation

The accumulation transformation described in Section 4.2.5 targets constant-

coefficient out-of-place stencils, such as the 8-point stencil of the restriction operator.

As is standard with polyhedral compiler frameworks, we require that all subscript

expressions are affine, or linear combinations of the loop indices and loop-invariant

variables.

Examining the statement associated with a stencil computation, the compiler

computes a bounding box of the points in the stencil statement, such that each

dimension derives its lower and upper bound from the minimum and maximum values

in that dimension.

Concretely, at every iteration ~I = 〈i1, i2, i3〉 ∈ IS, we compute a single output of

the stencil computation. For a 2D 5-point stencil, for example, this requires loading

{[i1][i2], [i1][i2 ± 1],[i1 ± 1][i2],[i1 ± 1][i2 ± 1]} from input array in, and writing the

weighted sum of these points to output array out[i1][i2] on every iteration. Using the

above notation, we can rewrite an out-of-place constant-coefficient p-point stencil as

a weighted sum of p points.
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out[i1][i2][i3] =

p∑
m=1

wm ∗ in[i1 + om1 ][i2 + om2 ][i3 + om3 ]

Each stencil pointm is characterized by its constant-coefficient wm, and the vector

offset from the iteration ~I, ~Om = 〈om1 , om2 , om3 〉. The bounding box is computed from

the lower and upper bounds for each dimension.

lb1 = minmo
m
1 , lb2 = minmo

m
2 , lb3 = minmo

m
3

ub1 = maxmo
m
1 , ub2 = maxmo

m
2 , ub3 = maxmo

m
3

BoundingBox = {[b1, b2, b3] : lb1 ≤ b1 ≤ ub1, lb2 ≤ b2 ≤ ub2, lb3 ≤ b3 ≤ ub3}

If the set of points of the stencil and its bounding box represent the identical volume,

as in the case of the 8-point restriction operation, we call this a full stencil. In our

implementation we will restrict this accumulation optimization to computations on

full stencils. If we are willing to tolerate complex control flow to determine what

points to execute, and therefore potentially inefficient code, more general stencils can

be supported by the compiler using operations such as convex hull and set difference,

which are supported in CHiLL/Omega+.

The key concept is that the compiler rewrites the statement, representing the sten-

cil as an accumulation, and modifies the loop nest accordingly. From the perspective

of a polyhedral compiler, it adds additional loops to the iteration space IS for the

computation, and replaces the stencil statement with a different statement that reads

and accumulates into the output variable. For correctness, the compiler must also

create a new statement and iteration space to initialize the output variable. These

steps are shown in Figure 4.8.

The example below illustrates this approach for the restriction operator, the

iteration space IS is:

IS = {[k, j, i] : ∃α : (0 ≤ k, j, i < N && i, j, k = 2 ∗ α)}

The original stencil statement is modified and two new statements are created, S1

(initialization) and S2 (accumulation) are as follows — the coefficient c1 is the common
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Initialize Output:

Assume stencil statement S0 has iteration space IS
Create initialization statement S1 with iteration space IS.

out[l1][l2][l3] = 0;

Insert S1 lexicographically before S0.

Expand the iteration space for the accumulation:

Create a mapping M for IS to incorporate BoundingBox.

M := {[l1, l2, l3]→ [l′1, b1, l
′
2, b2, l

′
3, b3] :

l′1 = l1, l
′
2 = l2, l

′
3 = l3,

lb1, lb2, lb3 ≤ b1, b2, b3 ≤ ub1, ub2, ub3}

Apply M to IS to create new iteration space IS’
IS’ = M(IS)

/* In special case IS’ can be simplified to */
/* coalesce the loops and is described in the text */

Replace S0 with the new statement S2:

Create new statement S2 with iteration space IS’.

out[l1][l2][l3] += in[l1+b1][l2+b2][l3+b3];

Figure 4.8: Code generation steps for accumulation transformation.

constant-coefficient of the stencil. If the stencil has unique coefficients, we will use

coeff[b1][b2][b3] instead:

S1: coarser_res[k/2][j/2][i/2] = 0;

S2: coarser_res[k/2][j/2][i/2] + = c1 ∗ res[k + b1][j + b2][i+ b3];

The iteration space for the initialization statement S1 is the original iteration

space for the restriction loop, which we call IS. The iteration for S2 is modified. In

Figure 4.8, the relation M maps the original iteration space IS to the new iteration

space IS ′. For the restriction computation, where there is a stride on the original
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loops and the bounding box is contained within the stride, it is beneficial to apply

an additional coalescing transformation to IS to eliminate the loops associated with

the bounding box and convert the k, j, and i loops to unit stride accesses.

IS’ = M(IS);

M ′ := {[k, b1, j, b2, i, b3]→ [k′, j′, i′] :

k − b1 ≤ k′ ≤ k + b1

&& j − b2 ≤ j′ ≤ j + b2

&& i− b3 ≤ i′ ≤ i+ b3};

ISfinal = M’(IS’);

When the code generator scans the loop nests associated with IS and ISfinal, the

compiler then derives the code shown as the output of Listing 4.10. Although not

strictly a polyhedral transformation, the new statements and loop iteration spaces

are essentially converting subscript expressions to loop iteration spaces, and rely

heavily on the polyhedral framework abstractions. A similar approach is used in

CHiLL to introduce statements and modify the iteration space when performing loop

unrolling [37].

4.4.4 Rebuilding the Dependence Graph

CHiLL maintains a dependence graph based on data dependences of the input

code. The dependence graph is commonly used to check the legality of transforma-

tions being applied. The domain-specific transformations that were added to CHiLL

and described in Sections 4.4.1 to 4.4.3 do not use the dependence graphs for legality

checking. In fact, once these new transformations are applied, the dependence graph is

rendered obsolete, as the data dependences have been modified. The data dependence

graph is rebuilt after applying each of the new transformations to ensure that we

do not stop the legal composition of transformations after the novel stencil-specific

optimizations have been applied. The dependence graph for the modified program is

rebuilt by running the dependence analysis over the intermediate representation of

the transformed code.
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4.4.5 Wavefronts

Wavefront computations are created by using known loop transformations skew-

ing and permute. The motivation for this particular sequence of transformations

is explained using the GSRB smooth with a 3D 7-point stencil and illustrated in

Figure 4.9.

Figure 4.9(a) shows the iteration space for four stencil applications (t = 0,1,..,3)

of the stencil on the grid. For clarity of presentation, we have represented this

4D iteration space as a 2D space by projecting out the i and j dimensions. This

means a point in the k-axis represents an ij-plane. Thus, a point (z,T) in this space

corresponds to the ij-plane with k=z having the t=T stencil sweep applied to it. As

seen previously, computing an output plane for the 3D 7-point stencil requires reading

in three planes. Thus computing plane (z,T) depends on reading planes (z-1,T-1),

(z,T-1), and (z+1,T-1); that is, the top, center and bottom planes computed from

the previous grid sweep/time step.

The four stencil applications which are grid sweeps are visualized in Figure 4.9(a)

by the arrows showing the direction of loop traversal. The iteration space is scanned

horizontally, which means the ij-planes are streamed from DRAM, creating high data

traffic. Ideally we want to hold each ij-plane in memory and apply all four stencil

applications on it before moving on to the next plane to reduce data movement. This

means scanning the iteration space vertically, as shown in in Figure 4.9(b). Scanning

the iteration space vertically, means permuting loops t and k; that is, in Figure 4.9(a)

t was the outermost loop, but in Figure 4.9(b) k will be the outer loop, with t nested

inside it.

Unfortunately there is a data dependence which prevents this desired loop permu-

tation. The data dependence is illustrated in Figure 4.9(c). The point (2,2) depends

on points (1,1), (2,1), and (3,1). Loop permutation would mean executing point

(2,2) just after executing (2,1) but before (3,1); this is illegal and prevented by our

compiler.

To break this data dependence, we skew the iteration space as shown in Fig-

ure 4.9(d). As can be seen, after skewing, loop permutation of vertical scanning of

the iteration space is legal. The skewing and permutation for GSRB is performed
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Figure 4.9: Loop skewing and loop permutation to create a wavefront.
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in CHiLL by the mappings skewgsrb and permute. The skewing factor for GSRB

as shown in skewgsrb is one. The skewing factor is governed by data dependences

and depends on the iteration type (GSRB vs. Jacobi) and stencil radius. For Jacobi

iteration using the same 3D 7-point stencil we need to skew k against t by a factor of

two. The skewing relation for Jacobi is shown as skewjacobi. The effect of the larger

skewing factor can be seen in Figure 4.4; there is a separation of two between planes

getting updated, whereas consecutive planes get updated in the GSRB wavefront

(Figure 4.3).

skewgsrb := {[t, k, j, i]→ [t, k + t, j, i]}

skewjacobi := {[t, k, j, i]→ [t, k + 2t, j, i]}

permute := {[t, k, j, i]→ [k, t, j, i]}

4.4.6 Smooth Residual Restriction Fusion

A deep wavefront with smooth, residual, and restriction is created using the same

technique of skew and permute. The input code to the compiler from which the deep

wavefront is generated is a sequence of loops nests. The first triply nested loop nest is

for smooth, followed by residual and restriction. The time step t-loop which controls

the application of these stencils is added to surround the three loop nests. In the

input code residual and restriction follow smooths as expected.

The first step is to convert the restriction to an accumulation. This is followed

by the use of loop fusion to fuse residual and restriction together. The next step is

to skew the k-loops of all the statements against the outermost t-loop, as done in

Section 4.4.5, and then permute loops k and t to create the wavefront.

4.4.7 Parallel Code Generation

Parallel OpenMP code generation follows the compiler transformations. The

parallel code generation strategies for Jacobi and GSRB smooth are considerably

different. For GSRB, an OpenMP parallel region is used whereas for Jacobi iterations

we use an OpenMP parallel-for construct.
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For GSRB (Listing 4.7) we tile the j-loop and assign each each tile a thread.

This involves injecting nodes into the AST to setup OpenMP threads correctly and

to replace index variables in the code with thread identifiers.

The entire loop nest for GSRB is marked as an OpenMP parallel region and the

loops and loop body are parsed to generate the variables in the private OpenMP

clause (line 1). The number of threads in the num_threads clause is provided to

CHiLL via a script, and a node for this clause is added to the AST.

The number of threads that is provided as input to CHiLL is used to tile the

j-loop. The tiled loop is then removed from the AST and the loop index in the code

is replaced by the thread identifier tid. Finally at the end of the k-loop an OpenMP

barrier or spinlocks are added by injecting nodes into the AST.

The Jacobi iteration uses simpler OpenMP code. The entire loop nest is marked

with #pragma omp parallel. A private clause and num_threads clause are

added to this pragma in the same way as was done for the GSRB code. Tiling

and barriers are not used for Jacobi; the j-loop is simply marked as parallel with

#pragma omp for. All the OpenMP directives are nodes in the compiler AST. After

all loop transformations are complete, they are added by injecting appropriate nodes

into the AST of the generated code.

4.5 Putting It Together
Our approach to generating code variants and selecting the best version relies

on using CHiLL through its script-based interface. We generate CHiLL scripts (also

called transformation recipes) which are run to generate variants of smooth, residual,

and restriction. In similar fashion to the autotuning work by Williams et al. [32],

we stitched together variants of the functions generated by CHiLL using tables of

pointers. Thus a call to the smooth routine in miniGMG would look up a table of

function pointers and make the call to the appropriate variant of smooth.

As the goal of this work is to develop domain-specific optimization techniques for

GMG, our autotuner was specialized for the miniGMG implementation. A driver

program instantiates template transformation recipes that are then applied to the

input code to generate the optimized code.
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Listing 4.13 shows an example recipe or CHiLL script used to generate a variant of

the GSRB smooth. Lines 3-6 specify the problem size, in this case we are generating

code for a 643 box. Line 12 adds ghost zones which are four deep. Lines 16-17

create a wavefront and lines 21-22 generates code with 12 threads working inside

the box. The commands in this recipe refers to applying a transformation to a

statement at a particular loop level. In the script, S0 corresponds to all the statements

of smooth: Laplacian, Helmholtz, and GSRB updates. Once they are fused, the

same transformations are applied to the set of statements. The only differences

for the recipe for the smooth including Jacobi is that there are two statements to

which the transformations are applied, corresponding to odd/even iterations, and the

dependence distance for skewing is different.

The CHiLL script in Listing 4.13 is an instantiated template of a script to generate

a wavefront for the GSRB smooth. The template has been instantiated with a ghost

zone depth of 4, a wavefront computation being set to true and the number of threads

working in a box being set at 12. Through an external python script, autotuning varies

the values of parameters to create multiple scripts which are used to generate GSRB

smooth variants.

Listing 4.14 illustrates a complex script that was used to create a deep wavefront

which fused smooths, residual, and restriction. S0 are the statements of smooth, S1

is residual. In this script, first restriction is converted to an accumulation (line 13),

then residual, restriction, and smooth are fused (lines 17-24), and finally a wavefront is

created (line 28-19) and parallel code generated (32-33). This script is an instantiated

template to generate code for fused smooth, residual, and restriction with ghost depth

set to 5, wavefront set to true, and 12 threads per box.

4.6 Results
This section presents an overview of the experimental platforms, the problem

solved by miniGMG, and the configuration of miniGMG. This is followed by a detailed

analysis of our performance results.
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1 #code generation is
2 #specialized to problem size
3 known (K == 64)
4 known (J == 64)
5 known (I == 64)
6
7 #initializes CHiLL’s
8 #abstraction of loops
9 original()
10
11 #ghost zone depth is d == 4
12 add_ghosts([S0], L1, d)
13
14 #skew followed by permute
15 #to create a wavefront
16 skew ([S0], 2, [1,1])
17 permute ([S2,S1,S3,S4])
18
19 #parallel code generation
20 #tile j-loop, then the tiled loop
21 #is assigned to a parallel region
22 tile(S0,3,6,2, counted)
23 gen_omp_parallel_region(0,0)

Listing 4.13: CHiLL script to create a four-deep wavefront for GSRB smooth
with OpenMP threading
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1 #code generation is
2 #specialized to problem size
3 known (K == 64)
4 known (J == 64)
5 known (I == 64)
6
7 #initializes CHiLL’s
8 #abstraction of loops
9 original()
10
11 #ghost zone depth is d == 5
12 add_ghosts([S0,S1,S2], L1, d)
13
14 #convert restrict to
15 accumulation
16 stencil_to_restrction(S2)
17
18 #converting restriction to accumulation
19 #creates statements which are then fused together
20 fuse([S1,S2,S3],1)
21 fuse([S1,S2,S3],2)
22 fuse([S1,S2,S3],3)
23 fuse([S1,S2,S3],4)
24 fuse([S1,S2,S3],5)
25
26 #moves statement initializing coarse grid to zero
27 #to right position
28 distribute([S2,S3], 4)
29
30 #deep wavefront computation
31 skew ([S0,S1,S2,S3], 3, [0,1,1])
32 permute([S1,S3,S2,S4,S5])
33
34 #Generate OpenMP code
35 tile(S0, 4, 18, 3, counted)
36 gen_omp_parallel_region(0,0)

Listing 4.14: CHiLL script to create a wavefront for GSRB smooth, residual, and
restriction with OpenMP threading
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4.6.1 Problem Specification

We use a double-precision, finite-volume discretization of the variable-coefficient

operator L = a~αI − b∇~β∇ (Listing 3.2), with periodic boundary conditions as the

linear operator within our test problem. The right-hand side f (in Luh = fh) is

sin(2πx)sin(2πy)sin(2πz) on the [0,1] cubical domain. The u, f , and ~α are cell-

centered data, while the ~β’s are face-centered.

4.6.2 miniGMG Configuration

In all our experiments the size of the global 3D domain at the finest level of the

V-cycle is 2563 per node. The global 3D domain is decomposed into a list of 64, 643

subdomains or boxes. At the bottom or coarsest level of the V-cycle we use 43 boxes,

and global domain 643. The truncated V-cycle has 5 levels with box sizes 643, 323,

163, 83 and 43.

While going down the V-cycle (finer→coarser) we apply 4 GSRB (red-black-red-

black) smooths. At the bottom level of the V-cycle (on 43 boxes) we apply 48 smooths,

and while going back up the V-cycle (coarser→finer) 4 more smooths are applied.

Thus 48 smooths are applied to boxes at the bottom level, and at all other levels

the boxes go through two phases of four consecutive smooths, hence 8 overall. For

the Jacobi smooth the same number of smooth applications is used; 4 going down

and up the V-cycle, and 48 bottom smooths.

4.6.3 Manually Optimized and Baseline miniGMG

The generated code was compared to the implementation of miniGMG presented

in Chapter 3 and to a manually optimized version from Williams et al. [32]. In this

chapter we refer to the implementation of miniGMG described in Chapter 3 as the

baseline version.

The manually optimized version has fused the components of smooth, used deep

ghost zones, and wavefronts. The code also uses multiple OpenMP threads working on

a box or subdomain and fuses the restriction and residual computations. In addition,

it has other optimizations, such as software prefetching and explicit SIMDization.

The differences between the compiler-generated code and the manually optimized

code are presented alongside analysis of the performance results.
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4.6.4 Evaluated Platforms

We evaluate the benefits of our compiler technology on two commodity processor

architectures similar to those used by Williams et al. in [32]. The machines used are

the National Energy Research Scientific Computing Center (NERSC) supercomput-

ers, Hopper and Edison. In both cases, we use the default Intel compiler available

on the NERSC machines with -O3 -fno-alias -fno-fnalias and either -xAVX

or -msse3.

Edison is a Cray XC30 at NERSC. Each node contains two 12-core Xeon Ivy

Bridge chips, each with four DDR3-1600 memory controllers and a 30MB L3 cache [47].

Each core implements the 4-way AVX SIMD instruction set and includes both a 32KB

L1 and a 256B L2 cache.

Hopper is a Cray XE6 at NERSC. Each node contains four 6-core Opteron chips,

each with two DDR3-1333 memory controllers and a 6MB L3 cache [48]. Each core

implements the 2-way SSE3 SIMD instruction set and includes both a 64KB L1 and

a 512KB L2 cache.

The details of the machines are summarized in Table 4.2. On an Edison node we

have used MPI processes to match the number of sockets. The 2563 domain is divided

into the two processes, with each getting a problem size 256× 256× 128 (x× y× z).

A four-socket Hopper node has four MPI process, each working on a problem size

256× 128× 128.

4.6.5 Analysis of GSRB Smooth Performance

Figure 4.10 compares the performance of the generated code for the 7-point

variable-coefficient GSRB smooth against the baseline smooth and the manually

optimized code on Hopper. The x-axis shows the box sizes corresponding to the

levels of the V-cycle, and the y-axis plots the speedups of the generated and manually

tuned code against the baseline smooth. Table 4.3 tabulates the best-performing

code variants selected by autotuning. Similarly, Figure 4.11 and Table 4.4 compare

the performance of GSRB smooth on Edison, and tabulates the best-performing code

variants.

In addition to plotting the speedup achieved by generated and manually optimized

codes, Figures 4.10 and 4.11 also plot (the blue dots) the Roofline memory (DRAM)
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Table 4.2: Overview of evaluated platforms.
Intel AMD

Core Architecture Ivy Bridge Opteron
Clock (GHz) 2.40 2.1
DP GFlop/s 19.2 8.4

Data Cache (KB) 32+256 64+512
Intel AMD

Chip Architecture Xeon E5-2695v2 Opteron 6172
Cores 12 6

Last-level Cache 30 MB 5 MB
DP GFlop/s 230.4 50.4

Memory Capacity 32 GB 8 GB
Cray XC30 Cray XE6

System (Edison) (Hopper)
CPUs/Node 2 4

STREAM Bandwidth 88 GB/s 48 GB/s
Compiler icc 14.0.0 icc 13.1.3

bounds [49] for GSRB smooth. The Roofline Model uses bound and bottleneck anal-

ysis to represent architecture performance as a function of requisite data movement

and computation. The Roofline bounds show the maximum speedup that can be

achieved over the baseline GSRB smooth when the three components of the smooth

have been fused, and the performance bottleneck of the computation is the DRAM

bandwidth. The speedup achieved by the generated code over the Roofline bound

illustrates the effectiveness of the communication-avoiding wavefront optimization.

4.6.5.1 Computing Roofline Memory Bounds

The Roofline bounds are computed by dividing the total volume of data moved

from the DRAM to the caches for a single grid sweep by the DRAM bandwidth. The

data volume is computed for all the arrays: phi, the betas, lambda, and rhs. The

bounds are computed assuming wavefront optimization is not applied, which means

a single smooth is applied per grid sweep. Thus the data moved from DRAM to the

caches can be computed as:

Data Moved = iterations * boxes * grid size * arrays (R+W) * size of double
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Figure 4.10: Speedups of CHiLL-generated and manually tuned GSRB smooth
relative to the baseline code on Hopper. The speedups are shown for all levels of the
V-cycle. Generated code outperforms expert-written code on all sizes except the 323

box, and always outperforms baseline code.

Table 4.3: Configurations of best-performing code variants for GSRB smooth on
Hopper.

Box Size Ghost Zone Depth Thread Decomposition Code Variant

643 4 <2,3> wavefront
323 4 <2,3> wavefront
163 2 <6,1> wavefront
83 2 <6,1> fused
43 4 <6,1> fused
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Figure 4.11: Speedups of CHiLL-generated and manually tuned GSRB smooth
relative to the baseline code on Edison. The speedups are shown for all levels of the
V-cycle. Generated code outperforms expert written code on all sizes except the 323

box, and always outperforms baseline code.

Table 4.4: Configurations of best-performing code variants for GSRB smooth on
Edison.

Box Size Ghost Zone Depth Thread Decomposition Code Variant

643 4 <4,3> wavefront
323 4 <4,3> wavefront
163 2 <12,1> wavefront
83 2 <12,1> fused
43 2 <12,1> fused
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The number of iterations is 80: 4 smooths going down the V-cycle, 4 smooths going

back up the V-cycle, and there are 10 V-cycles. There are 64 boxes or subdomains,

grid size including the ghost zone range from 663 for the finest boxes to 63 for the

coarse boxes. There are 7 arrays read and 1 written, thus 8 arrays, and 8 bytes for

each double precision number. This formula assumes ideal DRAM traffic, accounting

for only compulsory cache misses. Based on the above formula, the ideal execution

time of smooth is data moved divided by DRAM bandwidth (e.g. 88GB/s for Edison).

The Roofline bounds plotted in Figures 4.10 and 4.11 are the speedup of the ideal

execution time over the time taken by baseline smooth. The bounds for boxes smaller

than 323 are not shown, as the total memory required for boxes at these levels fits

into the last-level caches.

4.6.5.2 Optimizations and Smooth Performance

To understand the salient characteristics of performance, we examine each opti-

mization at a time. The first optimization is fusing the components of smooth. Fusing

the operators in smooth yields speedups on all grid sizes across all architectures.

Though loop fusion does increase the working set, the benefit of reducing vertical

data movement is far greater. In fact, even at the lower levels of the V-cycle where

all the boxes fit into the last-level caches, fusion improves performance.

After fusion the next steps in optimization are adding deeper ghost zones and using

the deep ghost zones to create a wavefront computation. Deep ghost zones reduce

the number of horizontal messages sent at the cost of redundant computation and

increased size of each grid. Wavefront computations reduce vertical communication

but increases the working set and requires code with complex loop bounds. For

optimal performance at each level of the V-cycle we first need to find the best ghost

zone depth, and then we need to decide if a wavefront computation is beneficial.

The finer 643 and 323 grids do not fit into the last-level caches, and we expect

wavefront computations with deep ghost zones to give a performance win. As the

grids get smaller and coarser and fit into the last-level cache, the redundant compu-

tation and increased grid sizes become expensive. In fact, the grids at the coarsest

subdomain for a four-deep ghost zone increases from approximately 12KB to nearly
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100KB. Thus we expect the benefit of a wavefront and deep ghost zones to diminish

as we go down the V-cycle.

This trend is clearly visible in Tables 4.3 and 4.4. Hopper and Edison both support

a four-deep wavefront for 643 and 323 boxes and a two-deep wavefront for 163 boxes.

On Hopper a four-deep wavefront for the finest grid achieves a speedup of 3.5x over

the baseline implementation and outperforms the heavily optimized manually tuned

code. On Edison and its large caches, increasing ghost zone depth allows for more

on-chip locality and, thus, even higher speedups. At the finest level, Edison supports

a four-deep wavefront and shows speedups close to 4.5x. The smaller 83 and 43

subdomains use a deep ghost zone, but cannot support a wavefront. On these coarse

boxes the cost of the redundant computation was offset by the reduced messages sent

to exchange ghost zones.

Next we look at parallel code generation and inter- and intra-box parallelism. On

tradition multicore-based architectures miniGMG uses MPI+OpenMP to express par-

allelism. Each socket in Hopper and Edison runs a MPI process with 6 and 12 threads

per process, respectively. The number of threads per socket/MPI process is set to

the number of cores. We represent threading as 〈boxes in parallel, threads per box〉.

Where boxes in parallel refers to the number of boxes being processed in parallel

at a time in each MPI process, and threads per box refers to the number of threads

working on a box. The total number of threads in a process is set to the number

of cores thus boxes in parallel * threads per box = #cores. Baseline miniGMG has

interbox parallelism, where each box is processed by an OpenMP thread. Thus the

baseline configurations for Hopper and Edison are 〈6, 1〉 and 〈12, 1〉, respectively.

Wavefront computations increase locality and reduce vertical communication to

DRAM, but increase the working set. To manage the larger working set we use thread

blocking, where multiple threads work on a box creating intrabox parallelism. Since

OpenMP threads have an overhead associated with them, the finer grids with larger

working sets benefit from multiple threads per box. As the grids become coarser and

the working set decreases, mulitple threads inside a box become expensive to sustain,

and degrade performance. The thread decomposition for each level of the V-cycle

shown in Tables 4.3 and 4.4 clearly illustrates this trend for the GSRB smooth on



92

both Hopper and Edison. The 643 and 323 boxes use multiple threads, but boxes

coarser than 323 are processed by a single thread. On Hopper 643 and 323 boxes have

three threads process each box and two such boxes are processed in parallel, hence

the configuration 〈2, 3〉. On Edison for these box sizes the configuration is 〈4, 3〉.

Boxes coarser than 323 cannot support multiple threads and they are processed in

parallel by a single thread on both the architectures. After tuned application of the

above optimizations, generated code for GSRB smooth outperforms manually tuned

code for all V-cycle levels except 323 box sizes. The manually tuned smooth was

highly optimized for the finer grids, since the time spent on smooth on the finest 643

grid dominates runtime. The compiler-generated, problem-size-specific code that was

tuned for each level of the V-cycle. As can be in seen in Figures 4.10 and 4.11, spe-

cialization for problem size meant the generated code clearly outperformed manually

tuned code on the smaller grids.

The manually optimized smooth performs communication-avoiding optimization

with a four-deep wavefront. It uses intrabox parallelism where all the threads (Hopper-

6, Edison-12) in a MPI process work on a single box. In addition, it performs explicit

software prefetching from DRAM into caches as an additional memory-bandwidth op-

timization. The manually optimized code also unrolled loops and generated explicity

SIMD instructions based on the architecture; SSE on Hopper, AVX on Edison.

The generated code outperforms manually tuned on 643 boxes by specializing for

problem size and searching different threading configurations. The tuning process

selected nested parallelism, with three threads inside each box and multiple boxes

being processed in parallel, instead of having all threads work collaboratively on a

single box. The nested parallelism provides better load balancing and significantly

improves performance. The lack of loop unrolling and explicit SIMD code generation

did not hurt the performance of generated code, since smooth is heavily DRAM

memory-bandwidth limited. Smooth is limited by memory bandwidth even after a

wavefront, and Unrolling and SIMD code generation, which improve floating-point

performance, do not provide a benefit in this memory limited scenario.

Figure 4.12 quantifies the overall speedup on the MG solver attained via the CHiLL

compiler as a function of optimizations employed for the 7-point variable-coefficient
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optimizations in the CHiLL compiler. The performance results are categorized by
type of smooth and architecture. “VC” is variable-coefficient.
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operator using either the Jacobi or the GSRB smooth. We observe that just applica-

tion of the best communication-avoiding wavefront smooth (requiring 4 ghost zones)

can improve performance of the entire solver by up to 2.4×.

4.6.6 Smooth, Residual and Restriction Fusion

After optimizing smooth, stencil reordering is used to fuse the residual and re-

striction operations. This fusion significantly accelerates these two operations, but

as shown in Figure 4.12, the overall benefit for the solver is relatively small. This

is expected, as the total data movement eliminated by the residual-restriction fusion

is a small fraction of the overall MG solver, which uses 4 smooths going down the

V-cycle (presmooths) and 4 when going back up (postsmooths).

To further reduce both horizontal and vertical communication we fuse all op-

erations of presmoothing into a single wavefront (“+Wavefront(everything)” in Fig-

ure 4.12) that performs all smooths, residual, and restriction with a single communi-

cation phase requiring the exchange of a five-deep ghost zone. The current version of

miniGMG supports a single ghost depth at a given level of V-cycle. This means we

use a five-deep ghost zone for the 643 boxes to support a five-deep smooth-residual-

restriction wavefront when going down the V-cycle. On the way back up, we can

only have a four-deep wavefront, and this results in extra communication cost for the

wider-than-required ghost zone.

The performance benefit of the deep wavefront is highly dependent on architecture

and smooth. A communication-avoiding Jacobi smooth requires a significantly larger

per-cache working set than a communication-avoiding GSRB smooth using multiple

threads per box. As GSRB is more likely to maintain a working set in the L2, it should

be no surprise that we see a more significant benefit from a communication-avoiding

GSRB smooth — up to 2.5× on Edison. The working set continues to balloon as one

fuses the residual and restriction calculations. At this point, it is unlikely that the

working set will be maintained in the L2, thus resulting in reduced bandwidth to the

L3 and a differentiation of Hopper and Edison, with the latter attaining a significant

net speedup over 3× for the variable-coefficient GSRB.
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4.7 Summary and Conclusion
In this chapter we have described compiler technology and autotuning to auto-

mate communication-avoiding optimizations for the smooth, residual, and restriction

operators in a geometric multigrid computation. We have tested our optimizations

on computations with variable-coefficient stencil which stress the memory systems

heavily.

Our results show that the optimizations lead to speedups as high as 4× for

smooths and over 3× for the entire solver, and that different optimization strategies

are needed at different levels of the V-cycle. Gains also vary for the two smooth

operators GSRB and Jacobi, and for the two different architectures, thus pointing to

the value of autotuning in finding the best set of optimizations for a given execution

context. In addition a novel compiler transformation was developed to convert a

stencil computation into an accumulation which enables loop fusion and further

reduces communication and improves performance.

For the GSRB smooth we are able to match or better the performance of man-

ually tuned codes written by experts. The compiler-generated code avoids low-level

optimizations performed by manual tuners, but it is still able to match performance,

as it can search a richer space of optimizations, such as different parallel thread

decompositions. In addition, the optimizations added to the compiler framework

take the wavefront strategy further by fusing all operators, smooth, residual, and

restriction into a single wavefront. The manually tuned code has a wavefront for

smooth, and fuses residual and restriction but does not fuse everything together into

a single wavefront. Finally, we show that such a deep wavefront works for a GSRB

smooth but not Jacobi.

The approach to optimizing the GMG illustrated in this chapter also applies to

other GMG implementations that use different smooths. In the following chapter we

use smooths which use stencils of varying size and shape. The stencil size and shape

determine ghost zone depths and dependence distance, and we apply the optimizations

presented here by tailoring them to the stencil.



CHAPTER 5

OPTIMIZATIONS FOR COMPUTE-INTENSIVE

STENCILS

Finite-Volume/Finite-Difference solutions for partial differential equations (PDE)

have, at their base, computations of stencils. In this context, a stencil approximates

the application of a differential operator to a function evaluated on a rectangular grid.

The error in the approximation is proportional to some integer power p of the grid

spacing (p is referred to as the order of accuracy of the discretization).

For a given partial differential operator, the number of points required in a stencil

typically increases as a polynomial in the order of accuracy. This is in contrast to

the exponential dependence on p in the reduction of the error. Furthermore, larger

stencils, while requiring larger numbers of floating-point operations, can be organized

to require a comparable degree of main memory data movement as their lower-order

counterparts. Thus, with processor architectures becoming more compute-intensive,

high-order schemes are increasingly important, as they can achieve greater accuracy

with less data movement. This property, combined with the need for computational

scientists to minimize the memory capacity required to obtain a given level of error

in their simulations, has been motivating the effort to increase the order of accuracy

of stencil-based algorithms for PDE solvers.

For higher-order methods, the high arithmetic intensity of larger stencils limits

performance. Thus, higher-order methods may not even achieve performance cor-

responding to the DRAM bandwidth. To address these performance bottlenecks,

this chapter introduces and evaluates a novel compiler transformation, partial sums.

Partial sums works by recognizing that for almost all stencils, there is data and opera-

tion reuse between neighboring points. This reuse is more significant for higher-order

stencils, which examine many more neighboring input points to compute each output
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point. Partial sums is used to exploit this reuse to reduce loads, while removing

floating-point operations that are redundant across multiple output calculations, thus

improving both computation and memory costs of the higher-order stencils. The

transformation recognizes that stencil computation can be reordered, and therefore

computes and reuses partial results in partial sums.

Finally, this chapter explores combining partial sums with the communication-

avoiding and thread-scheduling optimizations presented in Chapter 4. By composing

transformations we can take a higher-order smooth, remove its computation bottle-

neck, and make it bandwidth-limited. We can then further improve performance by

applying communication-avoiding optimizations.

5.1 Stencil Definitions and Accuracy
A stencil is a linear transformation of the form: L(a)i =

∑
j αjai+j. This chapter

considers a collection of test problems for stencil calculations, all of which are dis-

cretizations of Poisson’s equation ∆(φ) = f , where ∆φ ≡
∑d

i=0
∂2φ
∂x2i

. Here f is some

given function, and we want to solve for φ. For this study, we assume that φ and f

are periodic functions on [0, 1]d, i.e., φ(x) = φ(x + q) for all integer tuples q, and

similarly for f . We compute approximate solutions on a rectangular lattice φhi ≈ φ(ih)

by solving the stencil equations (superscripts denote grid spacing) Lhφh = fh, where

fh = f(ih), h = 1/N for some integer N. In that case, the periodicity of the exact

solution translates into periodicity on the lattice: φhi+q1 = φhi , and similarly for fh.

Thus, we will evaluate our operator and solve our equations on the grid [0, N − 1]d,

and use periodicity to evaluate stencil dependences that are not on that grid.

In this work, we examine the four representative stencils operators shown in

Figure 5.1. Points with the same color have the same value for the coefficient.

Stencils with the high degree of symmetry shown here are a consequence of the use

of centered-difference approximations on rectangular grids, which is ubiquitous in

discretizations of Poisson’s equation and other constant-coefficient, elliptic operators

on such grids. The standard approximation for explicit integrations use either the

well-known 7-point [22] or 13-point stencils [50], with second- and fourth-order ac-

curacy, respectively. The sixth-order (27-point) and tenth-order (125-point stencils)

in our study are what are known as Mehrstellen stencils. They achieve their stated
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(a) (b) (c) (d) 

Figure 5.1: (top) Visualizations of the discretized 3D Laplacian operators (stencils)
used in this chapter. (bottom) 2D cross sections through the centers of 3D stencils.
Color is used to denote the coefficient associated with that point. The 27- and 125-
point stencils have complex symmetries that we exploit.

accuracy only if the right-hand side is preprocessed. Rather than solving Lhφh = fh,

one solves Lhφh = Mfh, where M is a stencil operator whose coefficients sum to 1.

This is a one-time operation applied to the right-hand side, prior to applying whatever

solution algorithm is used (e.g., geometric multigrid (GMG), as is used here), and

hence does not have significant impact on the performance of the solver. The 27-point

stencil and the associated Mehrstellen correction stencil are classical, and can be

found in [22]. The 125-point stencil and its associated Mehrstellen correction stencil

are new, and will be published elsewhere [23]. For the purposes of this paper, it is

only necessary to know the symmetries of the operator, which are summarized in

Figure 5.1. The accuracy claims for this method will be verified in Section 6.3.

5.2 Stencil Reordering: Partial Sums
The partial sum transformation described in this chapter targets constant-coefficient,

out-of-place stencils1. This section illustrates the partial sum transformation, and

1defined in Chapter 1.
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details of the compiler implementation are presented in Section 5.3, and performance

impact as well as interaction with other optimizations is described in Section 5.4.

For an illustration of computing stencils via partial sums, consider the 9-point

2D stencil in Listing 5.1. The 9-point stencil is the 2D analog of the 27-point 3D

stencil of Figure 5.1(c). Figure 5.2 illustrates the application of this stencil for three

consecutive iterations <j,i>, <j,i+1> and <j,i+2> of the inner loop i. When the

stencil is applied at <j,i> to compute out[j][i], inputs in[j][i+1], in[j-1][i+1] and

in[j+1][i+1] are reused in the next two iterations of the i loop. The rectangle in bold

in Figure 5.2 highlights the points that are reused. If we conceptualize the stencil

as a box, these points are the right edge for iteration 〈j, i〉, the center for iteration

〈j, i+ 1〉 and the left edge for iteration 〈j, i+ 2〉.
Therefore, we employ an optimization that avoids loading all nine inputs of the

2D 9-point stencil, but instead loads only the right edge while reusing data from

the previous two iterations of the i loop. At iteration 〈j, i〉, the right edge points

in[j][i+1], in[j-1][i+1] and in[j+1][i+1] are loaded. We capture the contribution

these points make to the outputs at 〈j, i〉, 〈j, i+ 1〉, and 〈j, i+ 2〉 by calculating the

weighted sum of the loaded edge with coefficients corresponding to the right, left,

and center edge, as illustrated in Figure 5.3. The compiler constructs an array of

coefficients to be used in the partial sum transformation. If we visualize the array of

coefficients as a box as in Figure 5.3, with its entries corresponding to coefficients of

the stencil, then the weighted sum of input array points with the right edge of the array

of coefficients computes B0, the center computes B1, and the left edge computes B2.

B0 is used to compute the output at 〈j, i〉, while B1 and B2 are buffered for outputs

at the next two iterations of the i loop.

The use of buffers is illustrated in Figure 5.4 (top). The arrow marked 1 for the

entry R[i] corresponds to B0. Arrows marked 2 and 3 for entries C[i+1] and L[i+2]

correspond to B1 and B2, respectively. Finally, the output at <j,i>, out[j][i], is

computed as the sum R[i]+C[i]+L[i]. The buffer entry R[i] was computed in the

current iteration <j,i>, whereas C[i] and L[i] were computed and entered in the

buffer in previous iterations <j,i-1> and <j,i-2>, respectively.

As mentioned earlier, symmetries in stencil coefficients are ubiquitous, and we

exploit symmetry to reduce floating-point operations in computing B0, B1, and B2.
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The colors in the array of coefficients in Figure 5.3 represent symmetry, with each color

representing a unique coefficient. The code implementing partial sums in Figure 5.4

(bottom) can now be explained using Figure 5.3 and Figure 5.4 (top). Symmetry

about the j−axis means B0 and B2 (entries for R[i] and L[i+2]) are equal and do

not have to be recomputed (line 3 in Figure 5.4). Symmetry about the i−axis means

in[j-1][i+1] and in[j+1][i+1] will always be multiplied by the same coefficient, and

thus we store their sum in r2 ; in[j][i+1] is loaded to r1. B0 is the weighted sum of r1

and r2 with coefficients w1 (blue) and w2 (green) (line 1 in Figure 5.4), respectively,

and B1 with coefficients w3 (red) and w2 (green) (line 2).

In a similar manner, for 3D stencils we compute partial sums of 2D planes instead

of 1D edges, and the array of coefficients in three dimensions instead of two. Figure 5.5

shows a 2D cross-section of a 3D stencil, and the symmetries present. With increasing

number of symmetries the number of unique coefficients decreases. The 3D 125-point

stencil we optimize in this dissertation exhibits symmetries about the i,j, and k-axes

and diagonals, as shown in Figure 5.5(d).

Figure 5.6 shows a 2D plane of the 3D array of coefficients for the 125-point

stencil. Each 2D plane has 6 unique coefficients labeled from 0-5. When computing

partial sums with the 125-point stencil, the leading 2D plane of 25 points is loaded

and used to compute buffer entries. As shown in Figure 5.6, the 25 points are then

decomposed into six factors, r0 to r5, which are multiplied by the unique coefficient

and then summed to compute the buffer entries. This is similar to the 2D 9-point

stencil discussed above, where the leading edge had two unique coefficients and was

thus factored and stored in r1 and r2.

Listing 5.2 shows simplified generated code for the 3D 27-point stencil. Three

buffers are allocated, for the left, center, and right planes; and three scalars are

created for three unique coefficients in each 2D plane. In the general case, the number

of buffers required is twice the radius of the stencil plus one (radius is 1 for 7- and

27-point stencils, 2 for 13- and 125-point stencils). Partial Sums can be thought of

as computing the output in two sweeps on the innermost i loop. As shown in the

listing, the first loop computes the entries in the the three buffers, and the second

loop sums these entries to compute the final output. In the compiler-generated code
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1
2 for (j=0; j<N; j++)
3 for (i=0; i<N; i++)
4 out[j][i] = w1*(
5 in[j-1][i ] + in[j+1][i ] +
6 in[j ][i-1] + in[j ][i+1]
7 ) +
8 w2*(
9 in[j-1][i-1] + in[j+1][i-1] +
10 in[j-1][i+1] + in[j+1][i+1]
11 ) +
12 w3* (in[j ][i ] );

Listing 5.1: The input code for a 2D 9-point stencil

i

j

Stencil Application 
at <j,i>

Stencil Application 
at <j,i+1>

Stencil Application 
at <j,i+2>

(a)

(b)

(c)

Figure 5.2: Visualization of 2D 9-point stencil application on a 2D grid. Figure
shows stencil operator being applied on three consecutive iterations of the inner loop
(j,i), (j,i+1) and (j, i+2). The edge of points {(j+1, i+1), (j, i+1), (j-1, i+1)}, bound
by the bold rectangle, get reused by the three iterations. The coefficients of the stencil
are color coded, blue = w1, green = w2, and red = w3.
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(i,j) (0,0)

(1,1)

B0B1B2

input array

array of 
coefficients

Figure 5.3: Illustration of deriving partial sums. The right edge from the input
array is loaded and multiplied by weights stored in the array of coefficients. The sum
of products of the loaded points and the right, center, and left edges of the array of
coefficients are BO, B1, and B2, respectively.

R i

C i+1

L i+2

…

…

…

…

…

…

<j,i>

2

1

3

<j,i+1>

<j,i+2>

r1 = in[j][i+1];
r2 = in[j+1][i+1] + in[j-1][i+1];

out[j][i] = L[i] + C[i]+ R[i];

R[i]     = w1 * r1 + w2 * r2;

C[i+1] = w3 * r1 + w1 * r2;

L[i+2] = R[i];

1

2

3

Figure 5.4: The reuse of the leading edge of points loaded at iteration <j,i> gets
captured in three buffers R, C, and L (top). Buffer entires R[i] (1), C[i+1] (2), L[i+2]
(3) correspond to B0, B1, and B2 from Figure 5.3. The loaded edge is factored into
r1 and r2 based on symmetry of the color-coded coefficients. The factors are used
to compute B0, B1, and B2. The final output out[j][i] is the sum of buffer entries.
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(a) (b) (c) (d) 

Figure 5.5: Increasing symmetries in coefficients allows us to increasingly reduce
floating-point computation. Symmetry about the j−axis (in b) permits discarding
half the coefficients, and symmetry about the i−axis (c) and the diagonal (d) lets the
compiler consider even fewer coefficients.
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4

2

1

3 4 5

1 2 4

0 1 3

4

5

2

4

1 2 4

3 4 5

r0 = in[k][j][i+2];

r1 = in[k+1][j][i+2] + in[k][j+1][i+2] 
+ in[k-1][j][i+2] + in[k][j-1[[i+2] ;

r2 = in[k+1][j+1][i+2] + in[k+1][j-1][i+2] 
+ in[k-1][j+1][i+2] + in[k-1][j-1][i+2] ;

r3 = in[k+2][j][i+2] + in[k][j+2[[i+2] 
+ in[k-2][j][i+2] + in[k][j-2[[i+2] ;

r4 = in[k+2][j+1][i+2] + in[k+2][j-1[[i+2] 
+ in[k+1][j+2][i+2] + in[k+1][j-2][i+2] 
+ in[k-1][j+2][i+2] + in[k-1][j-2[[i+2]
+ in[k-2][j+1][i+2] + in[k-2][j-1[[i+2];

r5 = in[k+2][j+2][i+2] + in[k+2][j-2[[i+2] 
+ in[k-2][j+2][i+2] + in[k-2][j-2][i+2] ;

k

j
i

Figure 5.6: Visualization of a 2D plane from the 3D array of coefficients for the
125-point stencils (left). As shown in Figure 5.5(d), there are 6 unique coefficients 0-5.
When applying the 125-point stencil at iteration <j,i> using partial sums, the leading
2D plane of 25 points is loaded and factored according to the unique coefficients
(right). The six factors r0 - r5 are multiplied by appropriate coefficients to compute
partial sums which are then buffered. The factors are created by summing loaded
points which are multiplied by the same coefficient, and coeffient 0 corresponds to
loaded point in[k][j][i+2].
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1 // distance of farthest stencil point
2 // from origin per dimension
3 int radius = 1;
4
5 // allocate 2*radius+1 buffered partial sums,
6 // N is grid (box) dimension
7 // create (radius+1)*(radius+2)/2 temporaries
8
9 double B0[N], B1[N], B2[N];
10 double r1, r2, r3;
11
12 for (k=0; k<N; k++){
13 for (j=0; j<N; j++){
14
15 // preamble code sets up the pipeline
16 ....
17
18 // steady state computation
19 // computation of the buffer entries
20 for(i=0; i<(N-radius); i++){
21
22 r1 = phi[k][j][i+1];
23 r2 = phi[k+1][j ][i+1] + phi[k-1][j ][i+1] +
24 phi[k ][j-1][i+1] + phi[k ][j+1][i+1];
25 r3 = phi[k+1][j+1][i+1] + phi[k+1][j-1][i+1]+
26 phi[k-1][j+1][i+1] + phi[k-1][j+1][i+1];
27
28 B2[i] = w1*r1 + w2*r2 + w3*r3;
29 B1[i+1] = w2*r1 + w3*r2 + w4*r3;
30 B0[i+2] = B2[i];
31 }
32
33 // summing the buffer entries
34 // In actual code these two loops get fused
35 for(i=0; i<(N-radius); i++)
36 phi_new[k][j][i] = B0[i] + B1[i] + B2[i];
37 ...
38 // cleanup code to avoid extra computation
39 ...
40 }
41 }

Listing 5.2: Output code for 3D 27-point stencil, optimized using partial sums.
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we fuse the loops together using loop fusion.

While a reference implementation of the 9-point stencil necessitates 11 floating-

point operations (8 adds, 3 multiplies) to compute each output point, our approach

requires only 9 floating-point operations (3 adds and 4 multiplies for the partial

sums, plus 2 adds to sum the symmetric partial results). The reduction in floating-

point operations becomes more significant with the size and dimension of the stencil

operator; for example, the 125-point stencil has 124 adds, but once optimized it has

only 38 for a more-than-3× reduction.

An additional advantage of this approach is that it results in code amenable

to SIMD code generation, AVX and SSE for our target architectures. Intuitively,

SIMDization is enabled because the calculations in the loop, including the partial

sum calculations, have unit stride across the innermost i dimension. While we are

unable to isolate the SIMDization benefits, we performed an experiment to illustrate

the differences between the 125-point stencil code before and after the partial sum op-

timization. Using Intel Architecture Code Analyzer (IACA), we profiled both versions

of the code on an Intel Westmere i5-540M platform.2 In the partial-sum-optimized

code, all floating-point adds use SIMD instructions, whereas only about two-thirds

of the adds in the baseline code use SIMD instructions. However, L1 and shuffle

bandwidth can limit the ultimate benefit from increased SIMDization.

5.2.1 Composition of Optimizations

The partial sum optimization reduces floating-point operations in compute-bound

kernels to make them more memory-bound. Once memory-bound, communication-

avoiding optimizations introduced in Chapter 4 can be used to further improve

performance.

5.3 Compiler Implementation
The partial sum transformation described in the previous section has been im-

plemented in CHiLL, and extends previous communication-avoiding optimizations

in CHiLL targeting GMG described in Chapter 4. Building new transformations

into a polyhedral framework easily allows for composition of transformations as

2IACA does not run on our target machines.
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long as data dependences are not violated. We compose partial sums with loop

transformations to target both computation and communication bottlenecks. This

section describes the abstractions used by the compiler in the automation of the

partial sum transformation.

We make the following assumptions about the input code to our framework.

As is standard with polyhedral compiler frameworks, we require that all subscript

expressions are affine, or linear combinations of the loop indices and loop-invariant

variables. The partial sum optimization requires that the subscript expressions are

separable, such that each dimension references just a single loop index. Partial Sum

applies to out-of-place stencils. Out-of-place updates are loop nest computations

where the right-hand sides are read-only matrices per stencil sweep (e.g. Jacobi).

Currently we are limited to constant-coefficient, out-of-place stencils.

5.3.1 Background Review

In most representative applications, stencils are implemented as multidimensional

loop nest computations (all stencils considered are 3D ). As described in Chapter 2,

in CHiLL, we represent this loop nest by an iteration space IS, which mathematically

describes polyhedra corresponding to points in the 3D iteration space:

IS = {[l1, l2, l3] : 0 ≤ l1, l2, l3 < N} (5.1)

By convention, l3 is the innermost loop of a 3D loop nest. It is standard to normalize

iteration spaces to start at 0. Bounds’ constraints can be far more complex, but for

simplicity of explanation, we show an upper bound that is a constant or variable.

5.3.2 Abstractions for Partial Sums

Examining the statement associated with a stencil computation, the compiler

builds four abstractions to perform the partial sum optimization: (1) StencilPoints

refers to the set of points that comprise the stencil, offset from a specific iteration

in the 3D iteration space; (2) BB is the axis-aligned bounding box of StencilPoints,
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such that each dimension derives its lower and upper bound from the minimum and

maximum values in that dimension; (3) Coeff is a 3D array the same size as BB to

hold the coefficients for the points in the stencil; and, (4) Buffer is a set of arrays that

are used to hold the partial sums in the generated code. This subsection describes how

these abstractions are derived automatically by the compiler and used by the code

generator to produce code analogous to the example in Listing 5.2. For simplicity, we

assume a unit stride for the loop iteration spaces, but extensions for nonunit-stride

loops are straightforward.

5.3.3 Deriving StencilPoints and BoundingBox (BB)

At every iteration ~I = 〈i1, i2, i3〉 ∈ IS, we compute a single output of the stencil.

We can rewrite an out-of-place, constant-coefficient p-point stencil as a weighted sum

of p points, with wm representing the coefficient for point m. A vector offset from

iteration ~I for each point m is then ~Om = 〈om1 , om2 , om3 〉. The compiler computes BB

from lower and upper bounds for each dimension of these offsets (i.e., lb1 = minmo
m
1 ,

ub1 = maxmo
m
1 , . . .). This notation gives rise to the following definitions:

out[i1][i2][i3] =

p∑
m=1

wm ∗ in[i1 + om1 ][i2 + om2 ][i3 + om3 ]

StencilPoints =

p⋃
m=1

~Om

BB = {[b1, b2, b3] : lb1 ≤ b1 ≤ ub1, lb2 ≤ b2 ≤ ub2, lb3 ≤ b3 ≤ ub3}

5.3.4 Deriving Coefficients (Coeff)

If StencilPoints and BB represent the identical volume, as in the 27-point stencil,

we call this a full stencil. The star-shaped 7-point stencil operators of Figure 5.1(a)

are not full. A set difference mathematically determines the holes in the stencil.

The compiler creates an array Coeff, the same size as BB, to store the coefficients

for the partial sum. For simplicity of explanation, we will assume Coeff is centered

at 〈0, 0, 0〉 and allows negative indices. Points ~B = 〈b1, b2, b3〉 ∈ BB which belong

to StencilHoles, are set to zero in the array of coefficients, and others are assigned
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appropriate constant values. We can then rewrite the stencil computation at each

output point ~I using the following equations:

StencilHoles = BB− StencilPoints

Coeff[b1][b2][b3] =

{
0 : ( ~B) ∈ StencilHoles
wm : ( ~B = ~Om) ∈ StencilPoints

out[i1][i2][i3] =
∑
~B∈BB

Coeff[b1][b2][b3] ∗ in[i1 + b1][i2 + b2][i3 + b3]

5.3.5 Deriving Partial Sums and Buffers

We form partial sums for subsets of BB, planes for a 3D stencil or similarly, lines

for a 2D stencil as in Figure 5.4. Planek is the p1, p2 plane inside the BB at p3 = k.

The BB can be partitioned into (ub3 − lb3 + 1) such planes (corresponding to the

stencil radius plus 1); there is a corresponding plane in Coeff such that points in BB

are array indices for elements in Coeff. We can compute an output point ~I as a sum

of partial sums PS k at each plane k ∈ BB, which is staged in a buffer. There are

(ub3 − lb3 + 1) buffers, each as wide as the trip count of the inner loop. Within the

innermost loop, the values in the buffers are summed to compute the output. These

rewrites of the stencil are captured as follows:

Planek = {[p1, p2, p3] : lb1, lb2 ≤ p1, p2 ≤ ub1, ub2; p3 = k}

PSk(~I) =
∑

~P∈Planek

Coeff[p1][p2][p3] ∗ in[i1 + p1][i2 + p2][i3 + p3]

Bufferk[i3] = PSk(~I)

out[i1][i2][i3] =

ub3∑
k=lb3

Bufferk[i3]
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5.3.6 Exploiting Reuse in Partial Sums

The optimizations derived from partial sums recognize that loads associated with a

plane have reuse in the third dimension. At iteration ~I, the rightmost plane Planer(~I),

where r = ub3, is of particular importance. This is the leading plane in the bounding

box of the stencil (in the direction of increasing third dimension), and it corresponds

to the right edge of the 2D stencil described in Section 5.2. We load only this plane,

and reuse it for other output points. Let ~Ik = 〈i1, i2, i3 + k〉 ∈ IS, 0 ≤ k ≤ (ub3− lb3).

Planer(~I) is the same set of points as Planer−1(~I1), and Planer−k(~Ik) in general.

Planer(~I) can thus be used to compute (ub3− lb3 + 1) partial sums. The partial sums

are computed by using points from Planer(~I) and sweeping through the planes of

Coeff ; the results are buffered in Bufferr−k[i3 + k], for the range of values of k.

Buffer and output at (~I) are computed from PS as in the previous step.

We can now derive the partial sums from just the load of Planer(~I). The following

is computed ∀k, 0 ≤ k ≤ (ub3 − lb3):

PSr−k( ~Ik) =
∑

~P∈Planer

Coeff[p1][p2][ub3 − k] ∗ in[i1 + p1][i2 + p2][i3 + p3]

5.3.7 Exploiting Symmetry to Reduce Floating-Point Operations

Figure 5.5 shows that several coefficients in each plane of Coeff have the same

value. This means multiple points in Planer use the same coefficient to compute

partial sums. For each unique coefficient, we sum the points in Planer that use it.

This sum is stored, and multiplied by the appropiate weight to calculate the partial

sums, and does not have to be recomputed. In our current implementation we check

for symmetry in BB about the axes and diagonals in a plane and across planes before

implementing our floating-point reducing optimization. This technique can be easily

extended to work with fewer degrees of symmetry. When all the symmetries are

present, BB is a cube such that upper and lower bounds are the same, lb = -ub, and

the coefficients in each 〈p1, p2〉 plane are symmetric about the p2 and p3 axes and

diagonals.



110

In any 2D plane of Coeff, the coordinates of unique coefficients are defined as UC

= {〈p1, p2〉 : 0 ≤ p1 ≤ p2 ≤ ub}, corresponding to the colored octant in Figure 5.5(d).

From reflections about the axes and diagonals, for any point 〈p1, p2〉 ∈ UC, the set of

reflected points Ref(p1, p2) = {〈±p1,±p2, ub〉, 〈±p2,±p1, ub〉} in Planer are weighted

with the same coefficient Coeff [p1][p2][ub-k]. The sum of the points in the input

in, corresponding to 〈p1, p2〉, is Rp1p2 . We rewrite partial sums using the factored

terms to exploit symmetry. For stencils with zero-valued coefficients in Coeff, like the

7-point stencil, we take care not to generate redundant factored terms. The following

is computed ∀k, 0 ≤ k ≤ (ub− lb):

Rp1p2 =
∑

〈x,y〉∈Ref(p1,p2)

in[x][y][ub]

PSr−k( ~Ik) =
∑

〈p1,p2〉∈UC

Coeff[p1][p2][ub− k] ∗ Rp1p2

Bufferr−k[i3 + k] = PSr−k (5.2)

5.3.8 Code Generation

Once the compiler has performed the rewriting steps described above, it must

generate the transformed code. The steps of code generation are described in detail

in Figure 5.7. The compiler must create the buffer objects, and compute their values

using the rewriting shown in Eqn.(2) directly above. It must also modify the original

stencil statement to refer to the buffers rather than the input code. As we near

the upper bound while iterating through the inner-loop, there will be no need to

calculate all the partial sums, and we will go off the end of the allocated buffers.

The figure shows the restricted iteration space, and loop peeling [40] to address this.

We also generate a code variant where IS’ equals the original IS, which does extra

computation, allocates buffers longer than the loop bound, but has no cleanup code.

Both the code variants perform similarly.
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Allocate buffer objects:
Assume stencil statement S0 has iteration space IS defined in Eqn.5.1.
Create ub3− lb3 + 1 (2ub+1, when symmetrical) buffers, Buffer lb3 , . . . , Bufferub3 .
Each buffer is an array of length N (from IS ).
Create (1+ub)(2+ub)/2 scalars to hold sums Rp1p2 for each unique coefficient in
a plane.

Insert statements to compute buffers.
Create a new compound statement S1 that has (1+ub)(2+ub)/2 statements to
compute the sums Rp1p2 .
To S1 append ub3 − lb3 + 1 statements to compute the buffers.
Each statement is of the form in Eqn.5.2
Since all values in Coeff are constant, these are copied directly into the statement
(not an array reference).
Insert S1 lexicographically before S0.

Update S0 to use buffers.
Create a new statement S2 that computes the output at ~I from the sum of all
buffers.
Replace S0 with S2.

Update IS.
Decrease the number of iterations of IS to avoid going off the end of the buffers.
Create new iteration space
IS’ = {[l1, l2, l3] : 0 ≤ l1, l2 < N&& 0 ≤ l3 < N − (ub3 − lb3) }
Peel off remaining iterations and use S0.

Figure 5.7: Code generation steps for partial sum transformation.

5.4 Experimental Results
To investigate the efficacy of partial sums, we apply it to various discretizations

of Poisson’s equation, with orders of accuracy p ranging from 2 to 10. Numerical

solutions to Poisson’s equation are ubiquitous in simulations of a variety of physi-

cal problems, including fluid dynamics, astrophysics, electromagnetics, and plasma

physics. We evaluate our approach in the context both of applying the operators in

a stand-alone fashion, and within a Geometric Multigrid (GMG) method for solving

Poisson’s equation using these discretizations.

In this section we present performance results and analysis using our optimizing

compiler technology. Additionally, the Roofline performance model is used to help
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quantify attainable performance. The Roofline model provides a nominal upper

bound to attainable performance.

5.4.1 Review of Evaluated Platforms

We evaluate the benefits of our compiler technology using the systems described

in Chapter 4, and detailed in Table 4.2. The following is a brief summary of the two

platforms.

Edison is a Cray XC30 at NERSC. Each node contains two 12-core Xeon Ivy

Bridge chips, each with four DDR3-1600 memory controllers and a 30MB L3 cache.

Each core implements the 4-way AVX SIMD instruction set and includes both a 32KB

L1 and a 256B L2 cache. With a high flop-to-byte ratio, we expect this machine to be

memory-limited for most operations without communication-avoiding optimizations.

Hopper is a Cray XE6 at NERSC. Each node contains four 6-core Opteron chips,

each with two DDR3-1333 memory controllers and a 6MB L3 cache. Each core uses

the 2-way SSE3 SIMD instruction set and includes both a 64KB L1 and a 512KB L2

cache. Hopper’s lower machine balance may result in the 125-point operator being

compute-limited.

On each platform, we used the installed Intel compiler with flags: -O3 -fno-alias

-fno-fnalias and either -xAVX or -msse3.

5.4.2 Problem Solved on miniGMG

Multigrid is a fast linear solver that uses an iterative and recursive approach to

solve elliptic PDEs. Each iteration of a multigrid solve requires performing a V-Cycle.

As shown in Figure 3.1, a V-Cycle involves performing stencil operations (smooths)

on progressively coarser (smaller) grids, solving a coarse grid problem, and then using

that coarse-grid solution to correct the fine-grid solution.

The implementation described in this chapter uses the miniGMG benchmark

introduced in 3. The miniGMG configuration used in the chapter is described in the

previous chapter, Section 4.6.2. The benchmark creates a block structured 3D grid

partitioned into subdomains (boxes) which are distributed among processes. In all

experiments, our finest grid in miniGMG is 2563 cells. This 2563 grid is decomposed

into disjoint 643 boxes (requiring ghost zone exchanges) distributed among multiple
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processes on one compute node. To optimize for NUMA, we run with one MPI process

per NUMA node (2 per Edison node and 4 per Hopper node). miniGMG implements

a multigrid V-Cycle that is terminated when each box reaches 43 cells. At each level,

we apply four weighted Jacobi smooths using the relevant stencil shown in Figure 5.1.

Our experiments run a fixed 10 V-Cycles with a point relaxation bottom solver that

performs 48 smooths.

As in Chapter 4, the smooths are decomposed into three separate loop nests: the

first applies one of the stencils to an array and writes to the temporary array, the

second reads the temporary array and forms either the Poisson or Helmholtz operator,

while the third performs a weighted Jacobi update of the current solution.

We construct a manufactured solution:

utrue = sin13(2πx)sin13(2πy)sin13(2πz)+sin13(6πx)sin13(6πy)sin13(6πz) on [0, 1]3

and symbolically apply the Laplacian to it to find a nominal right-hand side f . We

then apply the appropriate Mehrstellen correction and solve Lhuh = Mfh. We

compare uh and utrue under the l2 norm to calculate error.

5.4.3 Experimental Methodology

The input to CHiLL is source code written in C or Fortran and a script describing

the set of transformations to be composed to optimize the provided source. Listing 5.3

shows the loop structure of input code for Jacobi smooth with various stencils.

Listing 5.4 illustrate a CHiLL script to optimize a 125-point smooth and create a

wavefront computation with partial sums.

The first few line of the CHiLL script initializes the compiler framework, then line

14-15 creates a wavefront computation. A new script command for the partial sum

transformation called partial_sums has been implemented in CHiLL, which identifies

the stencil statement to which this transformation should be applied. After creating a

wavefront, partial_sums is applied to the two stencil operations. Partial sums creates

multiple statement, thus loop fusion is needed to fuse all statements together. Finally

OpenMP parallel code is generated using the final CHiLL command in the script. The

command directs the compiler to insert an OpenMP parallel-for surrounding the third

loop in the loop nest (outermost loop is number one), and set the number of threads

to 4.
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1 if(even_sweep){
2
3 for (k=0;j<N;k++)
4 for (j=0;j<N;j++)
5 for (i=0;i<N;i++)
6 //stencil operator
7 even_statement_S0()
8
9 for (k=0;j<N;k++)
10 for (j=0;j<N;j++)
11 for (i=0;i<N;i++)
12 //form Poisson or Helmholtz operator
13 even_statement_S1()
14
15 for (k=0;j<N;k++)
16 for (j=0;j<N;j++)
17 for (i=0;i<N;i++)
18 //Jacobi update
19 even_statement_S2()
20
21 } else {
22
23 for (k=0;j<N;k++)
24 for (j=0;j<N;j++)
25 for (i=0;i<N;i++)
26 //stencil operator
27 odd_statement_S0()
28
29 for (k=0;j<N;k++)
30 for (j=0;j<N;j++)
31 for (i=0;i<N;i++)
32 //form Poisson or Helmholtz operator
33 odd_statement_S1()
34
35 for (k=0;j<N;k++)
36 for (j=0;j<N;j++)
37 for (i=0;i<N;i++)
38 //Jacobi update
39 odd_statement_S2()
40 }

Listing 5.3: Loop structure of the input Jacobi smooth. The even and odd
statements are identical, excpect that the input and output grids/arrays are
swapped. Statement 0 applies the 7,13,27,125-point operators. The code for the
stencil operators are listed in Appendix A.
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1 #code generation is
2 #specialized to problem size
3 known (K == 64)
4 known (J == 64)
5 known (I == 64)
6 known (ghost_zone == 4)
7
8 #initializes CHiLL’s
9 #abstraction of loops
10 original()
11
12 #skew followed by permute
13 #to create a wavefront
14 skew ([0,1,2,3,4,5], 2, [3,1])
15 permute ([2,1,3,4])
16
17 #apply partial sums
18 #to the two stencil operations
19 #for the Jacobi smooth
20 partial_sums(0)
21 partial_sums(5)
22
23 #fuse the statements created
24 #by the partial_sums transformation
25 fuse([0,1,2,3,4,5,6,7,8,9], 4)
26
27 #parallel code generation
28 #add omp parallel for to loop level 3 (j)
29 #with num_threads set to 4
30 omp_par_for(3, 4)

Listing 5.4: CHiLL script to create a 2-deep wavefront with partial sums for
Jacobi smooth with 125-point stencil.
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CHiLL scripts are created to vary the depth of the ghost zone (thus the depth of

the wavefront), which depends on the radius of the stencil. The number of threads is

also varied, and scripts are created with partial sums turned on and off.

5.4.4 Computing Roofline Memory Bounds

Tables 5.1 and 5.2 provide the Roofline memory bounds for ApplyOp and smooth,

respectively. Roofline memory bounds place an upper limit on the number for sten-

cils that can be computed if the bottleneck is DRAM bandwidth. The results are

expressed in terms of Million Stencils per second. Thus computing a stencil sweep on

a 2563 grid in a second means 2563 ÷ 106 or 16.78 million stencils per second.

The analysis required to compute these bounds is explained with the concrete

example of the 7-point stencil used in ApplyOp on Edison. We apply the stencil

on a 256 domain which has been split into 64 643 subdomains. Each subdomain is

a 663 grid or array to account for the one deep ghost zone. Computing ApplyOp

requires reading in and writing out 64, 663 double precision arrays. As we do not

perform explicit cache bypass we generate memory traffic for reading in the arrays,

write allocation for the arrays and finally write back. The total memory traffic is D

= 3 × 8 × 64 × 663 bytes. Edison’s observed stream bandwidth of B = 88 GB/s,

and the time required to stream in and write out the two arrays is T = D/B. Thus

if we are bottlenecked by memory bandwidth, in time T, the number of stencils

computed would be S = 64× 643, and the number of millions stencils computed per

second would simply be S /(T×106) or 3343. The other entries in the two tables are

computed similarly. Stencils with a larger radius require deeper ghost zones and need

more data movement and have lower Roofline bounds.

Smooths ( xnew = x + wD−1(b − Ax) ) require two more arrays than ApplyOp

(y = Ax). The right-hand side b and the inverse of the diagonal D−1 need to be

streamed in from DRAM. The data traffic for the Jacobi smooth with a seven point

is D’= 5× 8× 64× 663 bytes. Smooths have higher memory movement compared to

ApplyOp, and thus have lower Roofline bounds.
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Table 5.1: The table shows the Roofline memory (DRAM) bounds for ApplyOp
computation with four different stencils. ApplyOp reads in a grid, applies the stencil
operator to it and writes out the computed values to a different output grid. The
bounds are expressed in terms of Million Stencils per Second that can be computed
when DRAM bandwidth is the bottleneck. The stencil was applied to a 2563 domain
which was split into a list of 643 sudomains. To account for ghost zones a 643 sudomain
translates to 663 and 683 grids for stencils with radius 1 and 2 respectively. Stencils
with larger radius require larger data volumes and have lower Roofline memory
bounds.

Roofline Memory Bound (2563 domain per node)
Stencil MStencils per second

Stencils Radius Hopper Edison
7, 27-point 1 1824 3343

13, 125-point 2 1667 3057

Table 5.2: The table shows the Roofline memory (DRAM) bounds for the Jacobi
smooths using four different stencils. The bounds are expressed in terms of Million
Stencils per Second that can be computed when DRAM bandwidth is the bottleneck.
In addition to input and output grids, smooths require reading in two more grids
(arrays) rhs and lambda. This extra data movement means smooths have lower
Roofline bounds than ApplyOp.

Roofline Memory Bound (2563 domain per node)
Stencil MStencils per second

Stencils Radius Hopper Edison
7, 27-point 1 1094 2006

13, 125-point 2 1000 1834

5.4.5 Stencil Performance

To highlight the memory bottleneck on modern multicore processors as well as dif-

ferentiate ApplyOp (y = Ax) characteristics from smooth characteristics, Figure 5.8

presents ApplyOp (stencil in isolation) performance on the finest (2563) grid, using

either the baseline implementation or CHiLL with the Partial Sums optimization.

We provide a memory bound based (blue circle) on the Roofline performance model

derived from the size of the arrays (including ghost zones) and the bandwidths of the

target machines listed in Table 4.2.

As shown in Figure 5.8, baseline performance is close to the Roofline bound for

most cases. The use of the partial sums optimization to eliminate unnecessary
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Figure 5.8: ApplyOp (y=Ax) stencil performance attained with the CHiLL compiler
by optimization, operator, and platform. The Roofline memory bound is for the
noncommunication-avoiding implementation. Partial sums can move compute-limited
operations towards a memory-limited state.
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floating-point adds and regularize the computation for efficient SIMDization signif-

icantly improved performance and ensured performance came close to the Roofline

bound. Note, however, that the compute-intensive 125-point stencil fell well below

its Roofline bound.

5.4.6 Smooth Performance on the Fine Grid

The core operation in a multigrid solver is a smooth. It is applied multiple times in

sequence on each level of the multigrid V-Cycle. As such, we may apply a wavefront

or time-skewing technique to overcome the memory bandwidth limit for ApplyOp.

We use a fixed 2563 problem for all experiments. Although this ensures we may

compare smooth performance when using different discretizations of the Laplacian

(different stencils), it also implies that the result using a 125-point operator will be

more accurate. Please note that unlike a simple stencil operation (y = Ax), a smooth

( xnew = x + wD−1(b − Ax) ) requires significantly more data movement, including

reading arrays for the right-hand side b and the inverse of the diagonal D−1. As a

result, our smooth is nominally memory-limited for all operators.

Figure 5.9 presents smooth performance on the finest grid (2563) as a function

of operator, platform, and optimization. Once again we have included a Roofline

bound (blue circle) to indicate the nominal performance bound of a smooth prior to

any kind of communication-avoiding algorithmic change. Observe that the baseline

implementation of the smooth is well below the Roofline bound in all cases. This is a

result of the smooth being applied in two stages — application of the linear operator,

and using that result to correct x. Enabling the “Fusion” optimization in CHiLL

allows the compiler to automatically fuse these operations and eliminate the access

to the intermediate temporary array. This significantly reduces data movement and

allows the more memory-intensive 7- and 13-point smooths to reach their Roofline

bounds.

Unfortunately, the more compute-intensive 27- and 125-point stencils demand

efficient SIMDization to reach their Roofline bounds. Enabling the “Partial Sums”

optimization in CHiLL allows the compiler to automatically restructure these stencils

to eliminate superfluous additions and regiment the computation for SIMDization by
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Figure 5.9: Jacobi smooth performance attained with the CHiLL compiler by
optimization, operator, and platform. The Roofline memory bound is for the
noncommunication-avoiding (no wavefront) implementation and is lower than Ap-
plyOp due to additional data movement like the RHS. The wavefront transformation
allows CHiLL to exceed this limit.
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the backend compiler. The benefit is clear — a more than doubling of 125-point

smooth performance and performance near the Roofline bound for all operators.

Naively, one may conclude that reaching the Roofline-bound represents the upper

end of performance. However, this simply implies that a new set of algorithmic

optimizations are required to further improve performance.

As smooths are applied in sequence within the multigrid V-Cycle, it is possible

to view their execution as a quadruply nested loop. Manually reordering these

loops is beneficial, but unproductive. Conversely, our additions to CHiLL allow

the compiler to automatically add ghost zones and restructure the loops into a

communication-avoiding “wavefront” without loss of accuracy (the result is bit iden-

tical) or productivity. As seen in Figure 5.9, our approach attains roughly a 2×

performance boost for the 7- and 27-point smooth on Edison. (Note, “All Optimiza-

tions” include tuned nested OpenMP.) Whereas Edison is heavily memory-limited,

Hopper is not. As such, the benefit of a communication-avoiding algorithm is limited

on Hopper. Communication-avoiding 13- and 125-point smooths suffer on two axes.

First, generating wavefronts for these operators requires skewing loops by the larger

stencil radius. This larger skew factor increases the working set, increases cache

pressure and makes it difficult to fit the working set in the fastest caches. Second, the

125-point operator is likely compute-bound on Hopper and nearly compute-bound on

Edison. Thus, the potential benefit from communication-avoiding is small.

5.4.7 Smooth Performance Throughout the V-Cycle

Unlike simple explicit methods that only need to attain high performance for a

stencil on a large grid, multigrid requires high performance on grids of exponentially

varying size. In Figure 5.10, we explore the performance of the 27- and 125-point

smooths on Edison as they operate on coarser (smaller) grids. Examining the baseline

implementation for the 27-point operator shows the expected rise in performance

when moving to the coarser grids, which nominally fit in ever lower levels of cache.

Note, the first smooth at each level will inevitably read from DRAM. As such, high

cache bandwidths only amortize this slow initial smooth. On small grids, efficient

12-way OpenMP multithreading becomes impossible and performance drops. The
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125-point smooth sees a similar behavior but to a lesser degree, as it is ultimately

compute-limited.

As optimizations are enabled in CHiLL, we see the compiler can nearly sustain

constant performance for the 2563, 1283, and 643 levels for the 27-point operator

by automatically tuning for the optimal optimizations. Similarly, Table 5.3 shows

the compiler continually shifts the set and parameterization of the optimizations

employed for the 125-point smooth at each level of the V-Cycle. A manually optimized

implementation would likely only target the fine grid and would thus deliver lower

performance on the coarse grids, while significantly increasing programmer overhead.

The partial sums optimization requires a two-pass approach in which the first

creates a few auxiliary results. The cost of this initial pass is amortized on large

arrays but becomes an impediment on small arrays. Thus the benefit of partial sums

decreases on the smaller grids.

5.4.8 miniGMG Solver Performance and Error

Figure 5.11 presents the performance of the miniGMGmultigrid solver using either

the existing Intel compiler (baseline) or our optimizing CHiLL compiler as a function

of discretization and platform. Performance is expressed in millions of degrees of

freedom solved per second (DOF/s). For this scalar problem, fine-grid cell is one

degree of freedom. Thus, solving a 2563 grid in 1 second would equate to computing

16.78 million DOF/s. Generally, the CHiLL compiler can provide an overall speedup

of about 2× using all available optimizations. The attained speedup was a bit less

on the 13-point operator, as it did not benefit from partial sums, and achieving high

performance on a communication-avoiding wavefront is particularly challenging.

When comparing raw performance (MStencil/s), results show that the 7- and

27-point operators were comparable with the 125-point operator, attaining about

half the throughput. However, this only conveys half the story. As highlighted in

Figure 5.12, miniGMG with the Mehrstellen correction attains roughly 2,370× and

377,000× better accuracy for our test problem using the 27- or 125-point operators

(respectively) than miniGMG attained using the 7-point operator. As we move to

ever finer domains, the benefit increases. Thus, if the goal were to solve to a particular
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Figure 5.10: Jacobi smooth performance on Edison attained with the CHiLL
compiler as a function of level in the V-Cycle (2563 fine grids down to 163 coarse
grids) for the 27- and 125-point operators. Observe that the reference implementation
of the memory-limited 27-point operator receives a cache boost on the coarser levels,
while the compute-limited 125-point does not.
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Table 5.3: CHiLL was able to select optimizations uniquely for each multigrid level
and platform. <#,#>denotes the number of inter- and intra-box threads with nested
OpenMP.

125-point smooth on Edison
Level 2563 1283 43 323 163

Box Size 643 323 163 83 43

Operator Fusion X X X X X
Partial Sums X X X X X

Wavefront Depth 2 - - - -
Nested OpenMP <4,3> <12,1> <12,1> <12,1> <12,1>

125-point smooth on Hopper
Level 2563 1283 43 323 163

Box Size 643 323 163 83 43

Operator Fusion X X X X X
Partial Sums X X X X X

Wavefront Depth 1 - - - -
Nested OpenMP <6,1> <6,1> <6,1> <6,1> <6,1>
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Figure 5.11: miniGMG performance (millions of degrees of freedom solved per
second) using either the Intel compiler (baseline) or the CHiLL compiler. The
labels indicate the overall solver speedup attained via CHiLL. The performance of
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numerical error, using the Mehrstellen correction with these discretizations reduces

total data movement by several orders of magnitude.

5.4.9 Distributed Memory Results

Distributed memory experiments were run to illustrate that the performance

benefit of CHiLL-generated code is not lost with weak scaling. Figure 5.13 presents

multigrid solver time to solution using the 27-point constant coefficient operator and

the matrix-free BiCGStab bottom solver when weak-scaled from one compute node

to 1331 nodes (31,944 cores) on Edison and Hopper, with each node assigned a

2563 domain partitioned into 643 boxes. Each NUMA node runs an MPI process

of either 8 threads (Edison) or 6 threads (Hopper). Observe that the CHiLL compiler

successfully provides a speedup of 1.27x–1.45x on Edison and 1.54x–1.70x on Hopper

over our baseline code at scale.

The increase in time-to-solution in this MG+Krylov hybrid solver is attributable

to a few factors. First, MPI send/recv message time increases with scale. Second,

BiCGStab is not an O(N) algorithm, and thus the bottom solver requires more and

more iterations as the problem scales. Third, the performance of MPI AllReduce

degrades with scale despite the high-performance Aries interconnect. Thus the net

performance benefit of CHiLL is amortized by these two inefficiencies. It should be

noted that at large scales, 8 V-Cycles were required to converge, while at small scales,

9 V-Cycles were required (8 V-Cycles barely missed the convergence criterion), thus

amortizing the impact of the degradation in network performance.

5.5 Conclusions
High-order discretizations of the Laplacian often result in compute-intensive sten-

cils that perform more than an order of magnitude more floating-point operations

per point than the traditional second-order discretization. The paradigm shift from

compute-limited architectures to bandwidth-limited architectures has revitalized in-

terest in these methods. In this chapter, we explored several novel augmentations

to the CHiLL compiler designed to improve the computational performance of these

stencils. Using the miniGMG multigrid benchmark, we showed that the compiler

could nearly quadruple the performance of the 125-point Jacobi smooth on Edison



128

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

1 10 100 1000 10000 

M
G

 S
ol

ve
 T

im
e 

(S
ec

on
ds

) 

Compute Nodes (24 cores each) 

miniGMG Weak Scaling 
Hopper(Baseline) 
Hopper(CHiLL) 
Edison(Baseline) 
Edison(CHiLL) 
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illustrates weak-scaled miniGMG time to solution using either the baseline code or
the CHiLL compiler. Four weighted Jacobi relaxations are used at each level, with
BiCGStab as the bottom solver, and a 2563 domain per node.
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and reach the Roofline performance bound. Moreover, we showed the compiler could

tune optimizations independently by platform and multigrid level.

To highlight the true potential of high-order methods, we examined the reduction

in error as we increase resolution. We show that our tenth-order method using the

compact 125-point stencil in conjunction with a Mehrstellen correction attains tenth-

order accuracy and provides a 1000× increase in accuracy for every 8× increase in

memory. This has the tremendous potential of reducing total data movement and

total energy (across a supercomputer) by many orders of magnitude compared to the

second-order multigrid solver.



CHAPTER 6

GEOMETRIC MULTIGRID ON GPUs

Graphics processing unit (GPU) accelerators are a popular hardware target for

scientific codes. This dissertation concentrates on programming NVIDIA GPUs

using the CUDA prgoramming model [51]. The CUDA programming model exposes

parallelism via a hierarchy of parallel threads. CUDA threads are grouped into thread

blocks, and the thread blocks are arranged in a grid.

Unfortunately, to target CUDA, the original stencil codes written in C must

be completely rewritten to map to the hierarchical parallelism exposed by CUDA.

Furthermore, when mapping computation to CUDA threads, the programmer has to

considermemory coalescing [51]. When consecutive CUDA threads access consecutive

memory locations in memory, the accesses can be coalesced into a single access,

improving memory bandwidth use.

Rewriting stencil codes to target GPUs places a significant programming burden

on application scientists. Furthermore, several parallel implementations of the same

computation need to be maintained, thus increasing the complexity of scientific

applications. Ideally, the programmer should be able to use automated tools to

generate optimized and architecture-specialized stencil codes from a single naive

implementation.

To address the productivity challenges highlighted above, research presented in

this dissertation uses CHiLL and CUDA-CHiLL. CUDA-CHiLL extends code gener-

ation capabilities of CHiLL to generated CUDA code, and enables exploring different

strategies for mapping code to CUDA threads and blocks. By using CHiLL or

CUDA-CHiLL, OpenMP or CUDA code can be generated from the same naive se-

quential input. This chapter demonstrates that CUDA-CHiLL improves programmer

productivity without sacrificing performance. Code generated by CUDA-CHiLL
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matched code written by expert programmers and achieves 80% of the Roofline

performance bound.

6.1 Gauss-Seidel Red-Black (GSRB) Smooth on GPUs
In this chapter we focus on using CUDA-CHiLL to generate high-performance

GSRB smooth (Listing 3.2). GSRB smooth uses a 7-point variable coefficient stencil

and places very high demands on memory bandwidth. In similar fashion to the

previous chapters we optimize smooth in context of the miniGMG benchmark.

In this chapter we run miniGMG on a single GPU card. Similar to the problem

size on a multicore node, we use a 2563 domain on a single GPU. At the finest level of

the V-cycle, the domain is split into a list of 64 boxes of size 643 each. This discussion

focuses on automatic high-performance CUDA code generation from C, and does not

perform communication-avoiding optimizations, such as wavefronts.

6.1.1 Strategy for Parallel Decomposition of Smooth

The parallelism in smooth is mapped to the two-level parallelism hierarchy in

CUDA, which is expressed in terms of a grid of thread blocks. As illustrated in

Figure 6.1, smooth is implemented in miniGMG using a 3D grid of 2D thread blocks.

The rationale behind 2D thread blocks is that the 2D blocks are used to tile the i

and j dimensions of each box (i is the dimension of unit stride), and the k dimension

is not tiled (k dimension has the largest stride). Not tiling the dimension of maximum

stride is known as Rivera Tiling [4], and has been shown to improve the performance

of 3D scientific codes. A dimension of the 3D grid is used to map to each box or

subdomain, the other two dimensions of the 3D grid control the number of thread

blocks working on each box. Using a 3D grid allows exploring a larger space of parallel

decompositions, as the 3D grid can easily be reduced to a 2D grid by setting one of

the two dimensions of the grid to unity (the third dimension of the grid is always set

to the number of boxes).

To make the explanation concrete, we use an example thread decomposition of

a 2563 domain which is split into a list of 64, 643 subdomains. The 3D CUDA

grid of thread blocks has dimensions {BX=2 (dimension i), BY= 4 (dimension

j), BZ=64 (number of boxes)}. Each 2D thread block in this grid has dimensions
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{TX=32(dimension i), TY= 16 (dimension j)}. The BZ dimension of the grid maps

to boxes (subdomains), each ij-plane {BX=2, BY= 4} of thread blocks in the grids

is assigned to a single 643 box or subdomain. Thus, there are eight thread blocks

working inside a box, and 64 {BZ=64} planes of 2D thread blocks, with each plane

working on box. This block and grid arrangement is shown in Figure 6.1.

Figure 6.2 illustrates how the 2D CUDA thread blocks process each 643 box.

The thread blocks encompass the ij-planes of the box, but not the k-dimension. In

terms of memory layout, i is the fastest-changing dimension and k the slowest. As

mentioned earlier, in this decomposition, the dimension k is not tiled. Thus, each

CUDA thread computes 64 output grid points (in the k dimension), and each thread

block computes 32(TX)*16(TY)*64 = 32,768 output points. The optimized smooth

in miniGMG uses a 3D grid of dimension {BX=2, BY= 16, BZ=64}, and 2D thread

blocks {TX=32, TY= 4} [52].

6.2 Code Generation with CUDA-CHiLL
CUDA-CHiLL parallelizes a sequential C implementation of GSRB smooth and

generates parallel CUDA code. The input C code for smooth is shown in Listing 6.1.

To be able to effectively parallelize the computation inside each box and across boxes,

our input code has a four-deep loop nest, and we start with the three statements fused

into one loop nest. The outermost loop iterates through all the boxes in the domain.

Furthermore, our arrays (grids) are four-dimensional, reflecting the outermost box

loop.

To correctly accommodate four-dimensional array references, the grid creation and

allocation routines in miniGMG benchmark had to be modified. Each 643 subdomain

(box) has a number of associated 663 grids. Thus for the entire domain (2563), each

grid : phi, beta_i, beta_j, beta_k, rhs, lambda, alpha, is a list of 663 grids. In

the miniGMG benchmark, each 663 grid is allocated a contiguous chunk of memory,

but consecutive grids for a component, e.g., phi, are not contiguous in memory. The

memory allocation was changed such that each grid is still a contiguous chunk of

memory, but grids for each component are also contiguous.
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Figure 6.1: Organization of CUDA threads into a 3D (2,4,64) grid with 2D (32,16)
thread blocks. Each 2D (X,Y) plane in the 3D grid has 8 2D thread blocks of
dimension (32,16). Each 2D plane in the 3D grid works on a single subdomain (box)
in miniGMG, and there are 64 such planes to process 64 subdomains.
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Figure 6.2: Illustration of work done by each thread block. Figure (a) shows 8,
(32,16) thread blocks working on a 643 subdomain (box), with each thread computing
a column of 64 output points. The blue column in figure (b) represents the 32*16*64
= 32,768 output grid points computed by each thread block.
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1 #define PR_SIZE 64
2 #define NUM_BOXS 64
3
4 void smooth_GSRB(double a, double b, double h, int sweep){
5
6 double _phi[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
7 double _rhs[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
8 double _alpha[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
9 double _beta_i[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
10 double _beta_j[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
11 double _beta_k[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
12 double _lambda[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
13
14 double h2inv = 1.0/(h*h);
15 int i,j,k;
16 int box;
17 int color = sweep;
18 double _t;
19
20 for(box=0; box<NUM_BOXS; box++){
21 for(k=1; k<=PR_SIZE; k++){
22 for(j=1; j<=PR_SIZE; j++){
23 for(i=1; i<=PR_SIZE; i++){
24 if(( i+ j + k + (color) ) % 2 == 1 ) {
25
26 _t = b*h2inv*(
27 _beta_i[box][k][j][i+1] *( _phi[box][k][j][i+1]-_phi[box][k][j][i] )
28 -_beta_i[box][k][j][i] *( _phi[box][k][j][i]-_phi[box][k][j][i-1] )
29 +_beta_j[box][k][j+1][i]*( _phi[box][k][j+1][i]-_phi[box][k][j][i] )
30 -_beta_j[box][k][j][i] *( _phi[box][k][j][i]-_phi[box][k][j-1][i] )
31 +_beta_k[box][k+1][j][i]*( _phi[box][k+1][j][i]-_phi[box][k][j][i] )
32 -_beta_k[box][k][j][i]*( _phi[box][k][j][i]-_phi[box][k-1][j][i] ));
33
34 _t = a*_alpha[box][k][j][i]*_phi[box][k][j][i] - _t;
35
36 _phi[box][k][j][i] = _phi[box][k][j][i] -
37 _lambda[box][k][j][i]*(_t -_rhs[box][k][j][i]);
38
39 }}}}}
40 }

Listing 6.1: Input C code for GSRB smooth with 4D arrays
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6.2.1 Mapping to Blocks and Threads

The parallelization strategy for miniGMG used by expert programmers described

in Section 6.1.1 is also used to generate CUDA code with CUDA-CHiLL. CUDA-

CHiLL is used to tile the input four-deep loop nest to create two more loop levels. To

create a 3D grid with 2D thread blocks, three out of these six loops are then mapped

to blocks in the 3D grid, and two loop levels are mapped to threads in a 2D block.

Listing 6.2 illustrates the script1 that drives CUDA-CHiLL to generate a CUDA

kernel for GSRB. The tile commands in line 12 of the script tile the loops in the

input loop nest. The first argument to tile is the statement number (CUDA-CHiLL

treats the entire loop body as a single statement). The next argument is the set

of input loops to be tiled. This is followed by the tile sizes, the names of the tile

controlling loops, and the final order of resulting tiled and tile controlling loops.

Listing 6.3 shows the structure of the loop nest after tiling. The tile controlling

loop bb and kk have a single iteration and are not generated by CUDA-CHiLL. This

effectively means that loops box, and k have not been tiled. The cudaize command in

line 17 of Listing 6.2 then marks the candidate loops for block and thread dimensions.

Loops box, jj and ii are marked as dimensions of the 3D grid. Loops i, and j are

marked as the dimensions of the 2D thread blocks. During CUDA code generation

the loops marked as dimensions for grids and blocks are removed, and array references

to those loop indices are replaced with block indices (bx, by, bz) or thread indices

(tx, ty).

6.2.2 Extensions to Code Generation in CUDA-CHiLL

CUDA-CHiLL was built on top of CHiLL to generate CUDA code. It uses CHiLL

to apply loop transformations (such as tiling), and then leverages the code generation

capabilities of Codegen+. Once Codegen+ scans the polyhedra representing the

iteration space of the loop nest, it creates an intermediate representation or abstract

syntax tree (AST) representation of the ouptut code. CUDA-CHiLL works on this

AST and modifies it to generate CUDA code by mapping loops to thread and block

indices. In the current implementation, only normalized loops can be mapped to a

1Section 2.9 introduces CUDA-CHiLL scripts written in the Lua scripting language.
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1 init("gsrb.cu", "gsrb",0,0)
2 dofile("cudaize.lua")
3
4 --tile size
5 N=64
6 TI=32
7 TJ=16
8 TK=64
9 TZ=64
10 --end tile sizes
11
12 tile_by_index(0,
13 {"box","k","j", "i"},{TZ,TK, TJ, TI},
14 {l1_control="bb", l2_control="kk", l3_control="jj", l4_control="ii"},
15 {"bb","box","kk","k","jj","j","ii","i"})
16
17 cudaize(0, "kernel_GPU",{},
18 {block={"ii","jj","box"},
19 thread={"i","j"}},{})

Listing 6.2: CUDA-CHiLL Lua script for GSRB smooth.

1 // ~cuda~ preferredIdx: bz
2 for(box = 0; box <= 63; box++) {
3
4 // ~cuda~ preferredIdx: k
5 for(k = 1; k <= 64; k++) {
6
7 // ~cuda~ preferredIdx: by
8 for(jj = 0; jj <= 3; jj++) {
9
10 // ~cuda~ preferredIdx: ty
11 for(j = 0; j <= 15; j++) {
12
13 // ~cuda~ threadLoop preferredIdx: bx
14 for(ii = 0; ii <= 1; ii++) {
15
16 // ~cuda~ preferredIdx: tx
17 for(i = intMod(-j-k-color-1,2); i <= 31; i += 2) {
18
19 S0();
20
21 }}}}}}

Listing 6.3: Tiled code with candidate loops for CUDA blocks and threads.
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thread/block index, which means candidate loops must have a lower bound of 0, and

a unit stride.

The complex if-condition involving a modulo operation in GSRB presents a code

generation challenge to CUDA-CHiLL. This is because the if-condition which guards

the statement in GSRB gets fused into the innermost for-loop once Codegen+ creates

an output. This can be seen in the innermost loop in Listing 6.3, which has a complex

conditional with a modulo condition as a lower bound, and the loop has strided access.

Thus, the loop is not normalized, and cannot be mapped to a thread or block index.

To remedy the situation, CUDA-CHiLL was extended to handle such strided loops.

The modulo condition will be removed from the lower bounds of the loop, and the

loop stride will be reduced to one. The if-condition with the modulo would be pushed

back into the loop body by creating a new AST node for the if-condition and wrapping

the statement in the loop inside the AST node. This change checks to see if the stride

of the loop matches the right hand side of the modulo in the if-condition. The output

CUDA code in Listing 6.4 illustrates how the if-condition gets pushed back into the

body of the loop. In this dissertation, CUDA-CHiLL was also extended to support

creation of 3D grids introduced in CUDA 4.0.

6.2.3 Space of Generated GSRB Variants

A simple autotuner was written in Python to generate CUDA-CHiLL scripts to

create variants of GSRB smooth. The generated code variants were then run in the

miniGMG framework. Code variants were created by varying the dimensions of the

2D thread block. If the size of a thread block is <TX,TY>, the dimension of the

3D grid is <64/TX, 64/TY, 64>, where each suddomain is 643. The variants were

created by varying TX from 8 to 64, and TY from 4 to 64 such that TX*TY is at

least 32 (warp size), and TX*TY ≤ 1024 (maximum number of threads per block).

6.3 Experimental Results
As done in previous chapters, GSRB smooth was optimized in the context of

miniGMG. However, miniGMG was completely rewritten to target GPUs [52]. This

section first describes miniGMG on GPUs, then presents the experimental method-

ology used, and finally presents Roofline bounds and performance results.
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1 __global__ void __smooth_GSRB( double a, double b, double h, int sweep){
2
3 double _phi[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
4 double _rhs[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
5 double _alpha[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
6 double _beta_i[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
7 double _beta_j[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
8 double _beta_k[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
9 double _lambda[NUM_BOXS][PR_SIZE+2][PR_SIZE + 2][PR_SIZE + 2];
10
11 int color = sweep;
12 double h2inv = 1.0/(h*h);
13 int k;
14 int by; by = blockIdx.y;
15 int bz; bz = blockIdx.z;
16 int tx; tx = threadIdx.x;
17 int ty; ty = threadIdx.y;
18 double _t;
19
20 for (k = 1; k <= 64; k += 1)
21 if ((tx - (-ty - k - color - 1)) % 2 == 0) {
22
23 _t = b * h2inv * (_beta_i[bz][k][ty + 16 * by + 1][tx + 1 + 1] *
24 (_phi[bz][k][ty + 16 * by + 1][tx + 1 + 1]
25 -_phi[bz][k][ty + 16 * by + 1][tx + 1])
26 - _beta_i[bz][k][ty + 16 * by + 1][tx + 1]
27 * (_phi[bz][k][ty + 16 * by + 1][tx + 1]
28 - _phi[bz][k][ty + 16 * by + 1][tx + 1 - 1])
29 + _beta_j[bz][k][ty + 16 * by + 1 + 1][tx + 1]
30 *(_phi[bz][k][ty + 16 * by + 1 + 1][tx + 1]
31 - _phi[bz][k][ty + 16 * by + 1][tx + 1])
32 - _beta_j[bz][k][ty + 16 * by + 1][tx + 1]
33 * _phi[bz][k][ty + 16 * by + 1][tx + 1]
34 - _phi[bz][k][ty + 16 * by + 1 - 1][tx + 1])
35 + _beta_k[bz][k + 1][ty + 16 * by + 1][tx + 1]
36 *(_phi[bz][k + 1][ty + 16 * by + 1][tx + 1]
37 - _phi[bz][k][ty + 16 * by + 1][tx + 1])
38 - _beta_k[bz][k][ty + 16 * by + 1][tx + 1]
39 * (_phi[bz][k][ty + 16 * by + 1][tx + 1]
40 - _phi[bz][k - 1][ty + 16 * by + 1][tx + 1]));
41
42 _t = a * _alpha[bz][k][ty + 16 * by + 1][tx + 1]
43 * _phi[bz][k][ty + 16 * by + 1][tx + 1] - _t;
44
45 _phi[bz][k][ty + 16 * by + 1][tx + 1] = _phi[bz][k][ty + 16 * by + 1][tx +

1]
46 - _lambda[bz][k][ty + 16 * by + 1][tx + 1]
47 * (_t - _rhs[bz][k][ty + 16 * by + 1][tx + 1]);}
48 }

Listing 6.4: Generated CUDA code for GSRB smooth. The generated code is for
2D thread blocks (TX=64, TY=16) and 3D grid (BX=1, BY=4,BZ=64).



139

6.3.1 miniGMG on GPUs

The GPU (device) is connected to the CPU (host) via the PCIe bus. Because

GPU and CPU have separate memories, data transfer between the two chips has to

be over the PCIe bus, which has far lower bandwidth than DRAM bandwidths. To

avoid data transfer over the PCIe bus, the grid creation routines in miniGMG were

modified to allocate data directly on the GPU. The grid allocation on the GPU was

similar to the CPU implementation. Instead of allocating single large grids for the

entire domain, the domain was decomposed into subdomains or boxes, which were

were allocated as contiguous chunks of memory.

In addition to the grids, buffers for ghost zone exchanges were also allocated

directly on the GPU device. Routines to initialize grids, exchange ghost zone data

and the operations smooth, residual, restrict, and interpolations were all rewritten in

CUDA to reflect the allocation of grids on the device.

6.3.2 Experimental Methodology

The miniGMG benchmark with optimized GSRB smooth was run on a single

NVIDIA Kepler K20c card. The relevant details of the card/chip are listed in

Table 6.1. The problem solved on the GPU is described in Section 4.6.1.

The miniGMG benchmark is used to solve a 2563 domain on a single GPU node.

The domain is decomposed into a list of 643 subdomains at the finest level of the

GMG V-cycle. The experiments were performed by running 480 iterations of GSRB

smooth (240 Red, 240 Black iterations) on the finest grids. Figures 6.3 and 6.4 show

the performance of code generated by CUDA-CHiLL. Execution times of smooth

Table 6.1: Overview of evaluated NVIDIA GPU.
NVIDIA Kepler K20c

Shared Multiprocessor (SMX) per Chip 13
CUDA cores per SMX 192
CUDA cores per Chip 2496

DP GFlop/s 1170
Global Memory 5 GB

Effective DRAM Bandwidth (SHOC) 147.77 GB/s
Shared Memory + L1 cache per SMX 64KB

Thread Private Registers per SMX 256KB
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generated by CUDA-CHiLL and handtuned smooth are plotted in Figure 6.3. Fig-

ure 6.4 plots the percentage of effective DRAM bandwidth achieved by generated and

handtuned codes.

6.3.3 Optimizations in Handtuned Code

The manually tuned code for GSRB smooth [52] is highly optimized. There are

three variants of handtuned code: the first, labeled "Handtuned" in the plots, relies

on caching only, while the second relies on explicit use of shared memory. The

third variant, labeled Handtuned-VL, achieved the best performance, but required

extensive code restructuring. The expert programmer collapsed the i and j loops,

and then divided the iterations of the collapsed loop across (448 wide) vectors.

The expert programmer also searched thread and block configurations, and se-

lected (BX=2, BY=16, BZ=64) as dimensions of the 3D grid, and (TX=32, TY=4)

as the block size. All manually tuned versions replaced the if-condition in GSRB with

a ternary operator. Use of shared memory for smooth degraded performance and is

not discussed further.

6.3.4 Performance of Smooth

Figure 6.3 plots the execution time for 480 iterations of GSRB smooth. The

generated code is able to slightly better the performance achieved by the highly tuned,

manually written code variants. Interestingly, autotuning using CUDA-CHiLL selects

a different thread and block configuration than manual tuning as the best performing

code variant. The performance trend highlighted in Figure 6.3 indicates that memory

coalescing was the most important factor in achieving performance. Thus, having

thread blocks with larger i dimensions improved performance.

To get a better understand of the performance of this memory-bandwidth-bound

computation, the percentages of DRAM bandwidth achieved by the manually tuned

and generated codes are plotted in Figure 6.4. The effective bandwidth achieved is

calculated as the data moved by 480 iterations of GSRB divided by execution time.

The SHOC benchmark measures the effective DRAM bandwidth (with ECC turned

on) achieved on this chip as 147.77 GB/s [53]. Data moved is computed in similar

fashion to Section 4.6.5.1, and is computed as:
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Data Moved = iterations * boxes * grid size * arrays (R+W) * size of double

The number of iterations is 480, there are 64 boxes or subdomains, grid size

including ghost zones in 663. There are 7 arrays read and 1 written, thus 8 arrays,

and 8 bytes for each double precision number. This formula assumes ideal DRAM

traffic, accounting for only compulsory cache misses. Based on the above formula and

observed execution times, we see that the generated CUDA-CHiLL kernel achieves a

very high fraction, i.e., 80%, of the effective DRAM bandwidth on the chip.

6.4 Conclusions
Research presented in this dissertation uses CUDA-CHiLL to address the pro-

ductivity and performance challenges of optimizing stencil computations on GPUs.

CUDA-CHiLL is used to generate high-performance CUDA codes for GSRB smooth

from a simple sequential C input. Autotuning is used to drive code generation to

create a space of possible CUDA thread and block decompositions.

This chapter demonstrates that the CUDA-CHiLL-generated GSRB smooth achieves

impressive performance. The generated code betters the performance of highly tuned

manually written code, and achieves 80% of the performance bound computed by

the Roofline model. The generated code does not resort to low-level optimizations,

instead, CUDA-CHiLL achieves high performance by searching a richer space of par-

allel decompositions. This clearly shows the power of autotuning used in combination

with code generation to generate high-performance stencil codes.

This chapter presents performance results for optimized smooth for the finest box

sizes. Tuning smooth for all levels of V-cycle and generating and optimizing CUDA

code for residual and restriction is left as future work. Furthermore, an important

observation regarding the read-only arrays in the generated CUDA code smooth was

that the native CUDA compiler (nvcc) was not able to map the read-only arrays:

betai, betaj,..., to the read-only data caches on the GPU. Future work can also look at

using CUDA-CHiLL to explicitly map read-only arrays to the read-only data caches.



CHAPTER 7

RELATED WORK

Due to their importance in scientific computation, stencil computations have a

rich history of both manual and automated optimization techniques. This chapter

briefly describes past and current research in optimizations for stencil codes. The

description of related work is divided into four categories. 1) First, we describe

optimizations to reduce data movement. We look at past techniques to reduce

capacity misses, followed by more current optimizations to improve memory band-

width use, and trade redundant computation for reduced message passing. 2) Next,

we look at stencil reordering optimizations. These optimizations generally target

compute-intensive stencils, but in this dissertation they have been used for both

compute- and bandwidth-limited stencils. 3) Most optimization efforts targeting

stencils usually focus on constant-coefficient stencils. There are a few exceptions.

This section describes research efforts that optimize solvers, and not just stencils in

isolation. 4) The final sections describe both automated and manual optimizations

targeting stencils on GPUs.

7.1 Optimizations to Reduce Data Movement
In the past, operations on large structured grids could easily be bound by capacity

misses in cache, leading to a variety of studies on blocking and tiling optimizations [3,

4, 5, 6, 7, 8, 9]. However, a number of factors have made such approaches progressively

obsolete on modern platforms. On-chip caches have grown by orders of magnitude

and are increasingly able to capture sufficient locality for the fixed box sizes associated

with typical MG methods. The rapid increase in on-chip parallelism has also quickly

out-stripped available DRAM bandwidth resulting in bandwidth-bound performance.

Thus, in recent years, numerous efforts have focused on increasing temporal lo-

cality by fusing multiple stencil sweeps through techniques like cache-oblivious, time-
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skewing, wavefront, or overlapped tiling [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Most

of these efforts have been concentrated on 2D stencils, which are not as common as

3D stencils in scientific computing, and almost none of them have targeted variable-

coefficient stencils. Variable-coefficient stencils require much larger volumes of data

movement, and hence need more aggressive bandwidth optimizations. Furthermore,

most research optimizes out-of-place stencil sweeps such as Jacobi iterations. Opti-

mizing GSRB is less common, but one exception is the related work from Treibig.

They implement a 2D GSRB on SIMD architectures by separating and reordering

the red and black elements [54], additionally a 3D multigrid on an IA-64 (Itanium)

is implemented via temporal blocking.

The most closely related work consists of domain-specific compilers for parallel

code generation from a stylized stencil specification [27, 28, 29] or from a code

excerpt [30]. Pochoir uses a cache-oblivious strategy, which limits the control over

the code generation [28]. The other compilers introduce parallelism and ghost zones

through tiling and expanding both the data set and the tile size, rather than starting

with already parallel code [30, 29]. These tiling approaches do not produce the

hyper-trapezoidal loop nests presented in this dissertation, but rather compute and

then ignore some incorrect results. None of these approaches appear capable of

supporting the optimization of a collection of operators, particularly if GSRB is

included.

7.2 Stencil Reordering Optimizations
The novel transformation described in Chapter 5 reorders stencil computation to

exploit reuse and reduce floating-point operations. A similar transformation, array

common subexpression elimination [25], was built into the ZPL compiler. The next

subsection details the difference between these two approaches. This is followed by a

description of other stencil-reordering techniques, both manual and automated.

7.2.1 Comparison with Array Common Subexpression Elimination

A compiler formulation of a related reordering transformation called array com-

mon subexpression elimination was described in [25]. Array common subexpression

elimination is implemented using an abstraction called a tablet, which records the
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structure of the stencil inputs and their coefficients. To capture reuse, redundancy

conditions, heuristics and benefit functions are used to generate subtablets of the

tablet. The subtablets are used to compute partial sums which are reused via scalar

temporary variables. This method of exploiting reuse through the subtablets is more

complex but more general than the partial sums method. The subtablet construction

allows for reuse of points other than a plane and enables handling of multistatement

stencils. However, exploiting reuse in scalar registers introduces a scalar dependence

across loop iterations and inhibits instruction-level and SIMD parallelization by native

backend compilers.

In contrast, the partial sums approach always picks the leading plane of points,

and it buffers the computed partial results in vectors. Picking the leading plane and

explicitly looking for symmetry to reduce redundant computation is simpler than

using heuristics, redundancy conditions, and cost functions to discover reuse and

symmetry from subtablets. Further, partial sums avoids introducing dependences

and generates code easily vectorized by the native backend compiler.

7.2.2 Other Stencil Reordering Techniques

Manual optimization of stencil computations have developed techniques such as

semi-stencils to reduce loads [24], and using array common subexpression elimination

after unrolling to reduce floating-point computations [12, 5]. In [12, 5], the authors

unroll the loops of the stencil computation to expose array common subexpressions

and reorder computation to reduce floating-point operations using a stencil-specific

code generator. Our approach is automated, and does not rely on unrolling.

Polyhedral techniques for reconfigurable computing construct custom storage struc-

tures to exploit reuse [55], but are limited to reuse between consecutive iterations and

do not consider higher-order stencils.

Recent work reorders stencil computations from the direct specification of the

stencil as an update from a set of input points [26]. Stencils are converted to

an accumulation, and then loop shifting exposes register reuse of the same input,

contributing to different output. Their approach does not reduce floating-point

computations.
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Though data layout transformation (DLT) [56] is not a stencil reordering trans-

formation, it was developed to improve SIMD code generation for stencil codes, and

thus improve floating-point performance. DLT was designed to eliminate the data

stream alignment problem in generating SIMD code for stencil computations. DLT

transposes stencil inputs so that multiple computations can be performed in SIMD

registers without the costly shifting of data across iterations of the innermost loop.

Partial sums access aligned planes and buffer them in separate arrays; thus, we have

addressed stream alignment without requiring the data transpose.

7.3 Optimizations for Solvers
Most efforts in automatic optimization of stencil computations have concentrated

on isolated stencil computations, where a stencil operator is applied to a structured

grid. Far less attention has been paid to optimizing a solver, where there are multiple

stencils and more data movement involved. In the recent past Olschanowsky et al.

used a semiautomatic approach [57] to optimize a PDE solver. The domain-specific

language Halide [31], which has generally focused on optimizing image processing

pipeline, has also been used to optimize miniGMG. Finally, Chan et al. used auto-

tuning to improve precision and performance of multigrid by switching algorithms at

different levels (grid resolutions) of the solver [58].

Olschanowsky et al. [57] study block-structured AMR code, where the domain

has been decomposed into subdomains or boxes. This paper uses loop shifting and

fusion with wavefront techniques to reduce data movement. They, however, do not

take into account the stencil computation being applied multiple times, and hence

do not consider data movement incurred when ghost zone exchange take place. They

also use inter- and intra-box threading, but do not use nested parallelism.

When optimizing a complex proxy application such as miniGMG, we have to

optimize several stencil operators and how they work together. To the best of our

knowledge, the DSL Halide [31] which focuses on image processing pipelines is the

only other auomated framework to do so. Halide is now being considered to optimize

scientific stencil kernels as well. It has recently been used to optimize miniGMG and

HP-GMG. Research from Halide has not considered distributed memory experiments,
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communication-avoiding optimizations such as increasing ghost zones, and the use of

higher-order stencils.

Chan et al. explored how, using an autotuned approach, one could restructure

the MG V-cycle (to switch from an iterative to direct method depending on the

MG level) to improve time-to-solution in the context of a 2D, constant-coefficient

Laplacian [58]. This approach uses autotuning to choose algorithms for each level of

the multigrid. This technique is orthogonal to our implemented optimizations and

can be incorporated in future work.

7.4 Stencil Computations on GPUs
There has been a significant body of work on optimizing stencil computations

to target GPUs. This section divides the related work into two broad categories:

manually optimized stencil codes and domain-specific languages and tools. These

two techniques are further divided into optimization efforts that only optimize single

grid sweeps, and those that use wavefront or temporal tiling (blocking) optimizations

to fuse multiple grid sweeps into one.

7.4.1 Manual Optimization Efforts

Initial work on manual or semiautomatic optimizations for stencils was done by

Datta et al. [12]. They achieved an unprecedented 36 Gflops (Double Precision) on

an NVIDA GTX 280 card. Their work optimized constant-coefficient stencils, and

did not use wavefront optimizations on the GPU.

Micikevicius [59] manually optimized higher-order stencil (orders 6 to 12) in iso-

lation and in a solver. These higher-order stencils are shaped like the 13-point stencil

in Chapter 5. This optimization effort used shared memory in addition to the other

optimizations presented in [12].

Nguyen et al. [11] explored using larger ghosts and temporal tiling in an approach

they termed 3.5D-tiling. They were not able to improve performance for 3D stencils

using these approaches on GPUs. This was because their technique increased redun-

dant computation, and the older GPUs (GTX285) became compute bound easily.

Recent work from Maruyama and Aoki [60] manually optimizes a 3D, 7-point,

constant-coefficient stencil. They used a number of optimization techniques, including
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use of shared memory with warp specialization, and exploiting read-only caches

using a compiler intrinsic. They also used temporal tiling (similar to the wavefront

computation discussed in Chapter 4). In fact, this is the only research effort to date

that has successfully used temporal tiling with 3D stencils. They ran their optimized

code on the NVIDIA Kepler K20x. On this architecture they achieve around 80% of

the Roofline performance. With temporal tiling, they are able to achieve 20% further

improvement in performance. The CUDA code generated by CUDA-CHiLL was run

on an NVIDIA K20c GPU. The K20c and K20x are very similar GPUs, with k20x

being more powerful with an additional SMX and higher memory bandwidth. On the

K20c GPU, the generated code also achieves 80% of the Roofline performance.

7.4.2 Domain-Specific Automated Optimization Efforts

There have been many domain-specific approaches to optimizing stencils on GPU

accelerators. These efforts can be classified as programming language extensions to

target GPUs, domain-specific languages that optimize stencil computations for both

GPUs and multicores, and finally, code generators for stencils on GPU.

Mint [61] is a programming language extension for stencils on a GPU. It lets the

programmer optimize stencils on a GPU by decorating code with pragmas. The gen-

erated code was slightly slower than hand-tuned code, and did not explore temporal

tiling.

Most domain-specific languages [62, 27, 31] for stencil computations target both

multicores and GPUs. Of these, [62, 27] do not support shared memory or temporal

tiling or large ghost zones on GPUs. Halide [31], as discussed earlier, is a mature

DSL which is designed primarily for image processing pipeline. It has been used to

optimize miniGMG on GPUs, but their details have not been published.

Stencil-specific code generators have been used to generate and autotune stencil

code on GPUs [30, 29]. These techniques target shared memory. Temporal tiling and

overlapped tiling are used in [30], but these techniques are shown to work only with

2D-stencils.
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7.5 Summary and Conclusions
In summary, research presented in this dissertation optimizes a wide spectrum of

stencil computations of varying arithmetic intensities, and it optimizes these stencils

in isolation and in the context of a solver. This is in contrast to most research pub-

lished on stencils which does not look at solvers. Furthermore, this dissertation focuses

on developing compiler transformations that allow composing sequences of compiler

transformations. CHiLL’s ability to compose transformations allows it to take a

higher-order smooth operator, remove its computation bottleneck with partial sums

and make it bandwidth-limited, and then further apply DRAM bandwidth-reducing

optimizations. No prior work has combined reducing floating-point operations with

communication-avoiding optimization for higher-order stencils. Furthermore, no prior

research in automated tools has used stencil reordering to enable loop fusion as was

done in Section 4.4.3. Converting stencils to an accumulation is a form of stencil

reordering, and it enables fusion of the residual and restriction operations.

On modern GPUs, we are able to achieve performance comparable to highly tuned

stencil codes when we do not account for temporal tiling. Temporal tiling or wavefront

is a powerful technique, and is important future work for both miniGMG and CUDA-

CHill. As shown by [60], in the future, as GPUs become more powerful and can

support redundant computation, temporal tiling will be feasible for 3D stencils. It

must be also be noted that, with the exception of research presented here, and the two

domain-specific tools, Halide [31] and Mint [61], no other research effort has optimized

variable-coefficient stencils on GPUs.



CHAPTER 8

FUTURE RESEARCH AND CONCLUSIONS

This dissertation presents research to address the programmer productivity and

performance challenges of stencil computations. The optimization challenge posed by

the wide variety of stencil computations and the increasing complexity of computer

architectures places a huge burden on domain scientists. Compiler frameworks and

autotuners can greatly reduce programming effort by optimizing and mapping an

architecture-agnostic implementation to different platforms. The research presented

in this dissertation aims to free application scientists from architecture-specific code

tuning by using autotuners which leverage domain-specific compiler optimizations.

8.1 Contributions
The benefit of compiler-based autotuning has been demonstrated in my research by

optimizing stencils and Geometric Multigrid. Novel domain-specific compiler transfor-

mations for communication-avoiding and optimizations for higher-order stencils were

developed and built into the CHiLL compiler framework. The novel optimizations

implemented in CHiLL were designed to work with existing loop transformations such

as loop tiling, permutation, and unrolling. The autotuner uses CHiLL to generate

code that is run in the miniGMG framework. MiniGMG is a mini-app developed by

Williams et al. to proxy adaptive mesh refinement (AMR). The compiler framework

has been extended to generate optimized OpenMP code to target multicores, and

CUDA for GPUs. My research on compiler-directed autotuning has been published

in [63], and autotuning and code generation for GPUs has appeared in [37].

Communication-avoiding optimizations reduce horizontal communication (between

processors) and vertical communication (between a processor and its memory hierar-

chy) by generating overlapped ghost zones and parallel wavefront, respectively. These

optimizations improve the performance of stencil computations with low arithmetic



151

intensity. Higher-order stencils require smaller grids and thus incur lower data move-

ment, but these stencils have increased floating-point computations, thus are compute

limited. Optimizations for higher-order stencils reduce the number of floating-point

operations and improve register reuse. Communication-avoiding optimization and

parallel code generation for multicores appears in [64, 65], and the novel optimization

for higher-order stencils is introduced in [66]. The effectiveness of compiler-directed

autotuning is illustrated in [66], as the optimization for compute-intensive stencils is

composed with communication-avoiding optimizations and parallel code generation

to tune higher-order solvers.

8.1.1 Optimizing Memory Bandwidth Limited Stencils

Stencil computations and variable coefficient stencils, in particular, are tradition-

ally memory-bandwidth bound with a low arithmetic intensity. With data movement

costs dwarfing computation, reducing communication and effective use of the memory

hierarchy is critical for high performance. To reduce horizontal communication we

introduced a novel domain-specific compiler transformation which creates overlapped

ghost zones (overlapped tiling). Vertical communication was addressed by creating

a parallel wavefront computation to reduce DRAM traffic. Wavefront generation

requires many levels of loop tiling, skewing, and permutation. Parallel code generation

was then used to reduce working set and improve load balance.

Using these communication-avoiding optimizations, our autotuner generated a

tuned parallel wavefront with (over 4x) speedups over code generated by the state-

of-the-art icc compiler and matched the performance of highly tuned code. The gen-

erated code is further optimized by fusing smooth, residual, and restriction operators

and generating a nested parallel wavefront. To enable such aggressive fusion, a novel

compiler transformation which converts a stencil computation into an accumulation

was required. The wavefront generated used even deeper ghost zones, further reducing

communication and taking performance beyond that of manually tuned code.

8.1.2 Optimizing Compute-Intensive Higher-Order Stencils

Higher-order stencils have high arithmetic intensity, hence their performance is

limited by increased floating-point operations and poor register reuse. A novel trans-
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formation called partial sums was designed to optimize higher-order stencils. This

transformation aims to remove the bottlenecks of high arithmetic intensity and poor

register reuse and achieve performance corresponding to the memory bandwidth.

Partial Sums reorders stencils to improve register use and improve SIMDization.

It computes sums of a subset of array points accessed and buffers their reuse of

following computations. Symmetry in the stencil coefficients (when present) is ex-

ploited to reduce flops. Once the transformed stencil computation is memory bound,

communication-avoiding optimization can be then applied to further optimize the

code.

To test the efficacy of higher-order stencils and partial sums, sixth- and tenth-order

(27- and 125-point stencils respectively) smooths were implemented in miniGMG.

Unlike previous efforts to optimize higher-order stencils, which only considered flops

or register reuse, compiler-based autotuning allowed us to explore optimizations

to address both the computation and memory bottlenecks. Generated tuned code

achieved high performance and relied on considerable interplay between Partial Sums,

communication-avoiding optimizations, and parallel code generation. Optimized codes

showed speedups over 4x for smooths and up to 3x improvements for the solver. This

translates to optimized tenth-order smooth running at half the speed of optimized

second-order smooth, but giving many orders of magnitude better accuracy.

8.1.3 Parallel Code Generation

The efficient mapping of computation to parallel processing elements on a node is

critical in achieving high performance on current and emerging architectures. Unfor-

tunately, writing high-performance parallel code is very challenging, and not perfor-

mance portable across architectures. To improve productivity without sacrificing the

performance of manually optimized codes, this dissertation uses CHiLL to generate

high-performance parallel code targeting modern multicores and GPUs from the same

sequential input. CHiLL was used to generate optimized stencil codes using either

OpenMP or CUDA, from the same naive sequential C input.

To target multicores, the code generation capabilities of CHiLL are extended to

generate OpenMP code. OpenMP code generation in CHiLL supports two types of
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parallelism: flat and nested parallel OpenMP. Nested parallel OpenMP is used to

manage the working set and improve load balance.

This disseration uses CUDA-CHiLL to target NVIDIA GPUs. CUDA-CHiLL is a

thin layer built on top of CHiLL to generate CUDA code. This dissertation improves

CUDA-CHiLL to enable handling complex loop bounds present in Gauss-Seidel Red-

Black (GSRB) smooth. CUDA-CHiLL is then used to generate CUDA code variants

with different parallel decomposition, and autotuning is used to pick the best variant.

The CUDA-CHiLL-generated code outperforms manually tuned code from experts,

and achieves 80% of the computation’s Roofline performance bound.

8.2 Future Work
Even though optimizing stencil computations is a mature research area1, the grow-

ing diversity in architectures and stencils, combined with a lack of code-optimizing

tools, still places a huge optimization burden on the programmer (domain scientist).

This dissertation attempts to remedy this situation by using compiler optimizations,

both novel and known, combined with autotuning to improve programmer produc-

tivity and code performance. The promising results shown in this dissertation can be

extended to address other challenges common to computations on structured grids.

This section briefly describes a few research areas where compiler optimizations and

autotuning can be developed to benefit stencil computations.

8.2.1 Nonperiodic Boundary Conditions

All the stencil computations that are optimized in this dissertations have periodic

boundary conditions. Unfortunately, stencil computations that are used in scientific

applications such as AMR frequently have complex nonperiodic boundary conditions.

To optimize such real-world scientific codes, the optimizations presented in this thesis

must be extended to handle complex boundary conditions.

Periodic boundary conditions simplified application of communication-avoiding

optimizations. For example, a wavefront computation involves fusing multiple smooths

(stencil sweeps of a grid) into one grid sweep. This was done using the compiler

1The earliest stencil specific compiler I came across in my research was the Connection Machine
convolution compiler [67] from 1991.
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transformations skew and permute. In the case of nonperiodic boundary conditions,

the smooth is preceded by a grid sweep to update the boundaries. Creating a

communication-avoiding wavefront computation may then involve creating a wave-

front of smooths interleaved with boundary updates. Generating such a complex

wavefront will require a wide variety of loop transformations, and new domain-specific

techniques may be required to enable aggressive loop fusion.

8.2.2 Target Emerging Many-Core Architectures

In addition to GPUs, the emergence of many-core nodes from Intel, such as the

Xeon Phi, will necessitate revisiting code optimizations for stencil computations.

Targeting the Intel many-core architecture will require managing the larger number

of hardware threads, and using the wide SIMD units efficiently.

Single instruction multiple data (SIMD) instructions work on multiple data ele-

ments simultaneously, thus can improve the performance of floating-point operations

by integer factors. As the SIMD units on many-core are wider than traditional multi-

cores, the efficient use of the SIMD units on Xeon Phi will be critical to performance.

The vectorization of GSRB codes will have to be investigated, as native compilers

have not been able to vectorize loops with strides. New compiler transformations may

be necessary to improve the performance of GSRB on these machines. Furthermore,

code generation for higher-order stencils on the Xeon Phi will be challenging. Thus,

the effectiveness of Partial Sums and SIMD code generation has to be revisited for

the wider SIMD units. In addition to wide SIMD units, generated code has to use

the fine-grained parallelism of many-core architectures efficiently.

8.2.3 Code Generation for Emerging Runtimes

Optimizing stencil computations to target the increaing parallelism on future

architectures will require code generation to leverage emerging runtimes. To effi-

ciently use the increasing number of hardware threads, code generation can explore

task-based parallelism in runtimes such as Open Community Runtime (OCR) [68]

and Habanero [69]. In addition, code generation can use these runtimes to express

point-to-point communication, which is currently not supported in OpenMP. The lack

of point-to-point communication hindered the implementation of a threaded wavefront
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in Chapter 4, and forced the compiler to generate low-level spinlocks. Using emerging

runtime to address such drawbacks and to effectively map code to parallel hardware

will be critical to generating high-performance stencil codes on futures architectures.

8.3 Conclusion
Optimizing stencil computations on modern machines presents a daunting chal-

lenge to application programmers. To improve productivity and performance, this

dissertation presents a compiler-directed autotuning technique specialized for stencils.

This approach allows us to exploit domain-specific knowledge via novel stencil-specific

optimization, while letting us leverage decades of compiler research. Autotuning then

creates sequences of optimizations, which then drive the compiler to generate code

variants. Finally the best variant is selected for the given execution context. This

ability to compose and apply sequences of optimizations, combined with autotuning,

will be critical to making code optimization tools that can target complex real-world

scientific applications.



APPENDIX

STENCILS

The following code snippets illustrate the constant-coefficient stencils used in

Chapter 5.

A.1 Seven Point Stencil
1 #define ALPHA (-6.0)
2 #define BETA (1.0)
3
4 _out[k][j][i] = ALPHA * _in[k][j][i]
5 + BETA * ( _in[k][j+1][i] + _in[k][j-1][i]
6 + _in[k-1][j][i] + _in[k+1][j][i]
7 + _in[k][j][i-1] + _in[k][j][i+1] );

Listing A.1: 7-point stencil.

A.2 Thirteen Point Stencil
1 #define ALPHA (-90.0/12.0)
2 #define BETA (16.0/12.0)
3 #define GAMMA (-1.0/12.0)
4
5 _out[k][j][i] = ALPHA * _in[k][j][i]
6
7 + BETA * ( _in[k-1][j][i] + _in[k+1][j][i] +
8 + _in[k][j-1][i] + _in[k][j+1][i]+
9 + _in[k][j][i-1] + _in[k][j][i+1])

10 + GAMMA * ( _in[k-2][j][i] + _in[k+2][j][i] +
11 + _in[k][j-2][i] + _in[k][j+2][i]+
12 + _in[k][j][i-2] + _in[k][j][i+2]);

Listing A.2: 13-point stencil.
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A.3 Twenty Seven Point Stencil
1 #define ALPHA (-128.0/30.0)
2 #define BETA (14.0/30.0)
3 #define GAMMA (3.0/30.0)
4 #define DELTA (1.0/30.0)
5
6 _out[k][j][i] = ALPHA * _in[k][j][i]
7 + BETA * ( _in[k-1][j][i] + _in[k][j-1][i]
8 + _in[k][j+1][i] + _in[k+1][j][i]
9 + _in[k][j][i-1] + _in[k][j][i+1])

10 + GAMMA * ( _in[k-1][j][i-1] + _in[k][j-1][i-1]
11 + _in[k][j+1][i-1] + _in[k+1][j][i-1]
12 + _in[k-1][j-1][i] + _in[k-1][j+1][i]
13 + _in[k+1][j-1][i] + _in[k+1][j+1][i]
14 + _in[k-1][j][i+1] + _in[k][j-1][i+1]
15 + _in[k][j+1][i+1] + _in[k+1][j][i+1])
16 + DELTA * ( _in[k-1][j-1][i-1] + _in[k-1][j+1][i-1]
17 + _in[k+1][j-1][i-1] + _in[k+1][j+1][i-1]
18 + _in[k-1][j-1][i+1] + _in[k-1][j+1][i+1]
19 + _in[k+1][j-1][i+1] + _in[k+1][j+1][i+1]);

Listing A.3: 27-point stencil.
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A.4 Hundred Twenty Five Point Stencil
1 double c0= -1.0/7560;
2 double c1= 2.0/14175 ;
3 double c2 = -11.0/16200;
4 double c3= 4.0/2025;
5 double c4= -16.0/14175;
6 double c5= -11.0/2100;
7 double c6= 64.0/1575;
8 double c7= 256.0/2835;
9 double c8 = 776.0/1575;

10 double c9= -6848.0/1575;
11
12 _out[k][j][i] = c9 * _in[k][j][i]+
13 +c8 * ( _in[k-1][j+0][i+0]+ _in[k+0][j-1][i+0]+
14 _in[k+0][j+0][i-1]+ _in[k+0][j+0][i+1]+
15 _in[k+0][j+1][i+0]+ _in[k+1][j+0][i+0])
16 +c5 * ( _in[k-2][j+0][i+0]+ _in[k+0][j-2][i+0]+
17 _in[k+0][j+0][i-2]+ _in[k+0][j+0][i+2]+
18 _in[k+0][j+2][i+0]+ _in[k+2][j+0][i+0])
19 +c3 * ( _in[k-2][j-1][i+0]+ _in[k-2][j+0][i-1]+
20 _in[k-2][j+0][i+1]+ _in[k-2][j+1][i+0]+
21 _in[k-1][j-2][i+0]+ _in[k-1][j+0][i-2]+
22 _in[k-1][j+0][i+2]+ _in[k-1][j+2][i+0]+
23 _in[k+0][j-2][i-1]+ _in[k+0][j-2][i+1]+
24 _in[k+0][j-1][i-2]+ _in[k+0][j-1][i+2]+
25 _in[k+0][j+1][i-2]+ _in[k+0][j+1][i+2]+
26 _in[k+0][j+2][i-1]+ _in[k+0][j+2][i+1]+
27 _in[k+1][j-2][i+0]+ _in[k+1][j+0][i-2]+
28 _in[k+1][j+0][i+2]+ _in[k+1][j+2][i+0]+
29 _in[k+2][j-1][i+0]+ _in[k+2][j+0][i-1]+
30 _in[k+2][j+0][i+1]+ _in[k+2][j+1][i+0] )
31 +c7 * ( _in[k-1][j-1][i+0]+ _in[k-1][j+0][i-1]+
32 _in[k-1][j+0][i+1]+ _in[k-1][j+1][i+0]+
33 _in[k+0][j-1][i-1]+ _in[k+0][j-1][i+1]+
34 _in[k+0][j+1][i-1]+ _in[k+0][j+1][i+1]+
35 _in[k+1][j-1][i+0]+ _in[k+1][j+0][i-1]+
36 _in[k+1][j+0][i+1]+ _in[k+1][j+1][i+0] )
37 +c2 * ( _in[k-2][j-2][i+0]+ _in[k-2][j+0][i-2]+
38 _in[k-2][j+0][i+2]+ _in[k-2][j+2][i+0]+
39 _in[k+0][j-2][i-2]+ _in[k+0][j-2][i+2]+
40 _in[k+0][j+2][i-2]+ _in[k+0][j+2][i+2]+
41 _in[k+2][j-2][i+0]+ _in[k+2][j+0][i-2]+
42 _in[k+2][j+0][i+2]+ _in[k+2][j+2][i+0])
43 +c6 * ( _in[k-1][j-1][i-1]+ _in[k-1][j-1][i+1]+
44 _in[k-1][j+1][i-1]+ _in[k-1][j+1][i+1]+
45 _in[k+1][j-1][i-1]+ _in[k+1][j-1][i+1]+
46 _in[k+1][j+1][i-1]+ _in[k+1][j+1][i+1] )
47 +c4 * ( _in[k-2][j-1][i-1]+ _in[k-2][j-1][i+1]+
48 _in[k-2][j+1][i-1]+ _in[k-2][j+1][i+1]+
49 _in[k-1][j-2][i-1]+ _in[k-1][j-2][i+1]+
50 _in[k-1][j-1][i-2]+ _in[k-1][j-1][i+2]+
51 _in[k-1][j+1][i-2]+ _in[k-1][j+1][i+2]+
52 _in[k-1][j+2][i-1]+ _in[k-1][j+2][i+1]+
53 _in[k+1][j-2][i-1]+ _in[k+1][j-2][i+1]+
54 _in[k+1][j-1][i-2]+ _in[k+1][j-1][i+2]+
55 _in[k+1][j+1][i-2]+ _in[k+1][j+1][i+2]+
56 _in[k+1][j+2][i-1]+ _in[k+1][j+2][i+1]+
57 _in[k+2][j-1][i-1]+ _in[k+2][j-1][i+1]+
58 _in[k+2][j+1][i-1]+ _in[k+2][j+1][i+1] )
59 +c1 * ( _in[k-2][j-2][i-1]+ _in[k-2][j-2][i+1]+
60 _in[k-2][j-1][i-2]+ _in[k-2][j-1][i+2]+
61 _in[k-2][j+1][i-2]+ _in[k-2][j+1][i+2]+
62 _in[k-2][j+2][i-1]+ _in[k-2][j+2][i+1]+
63 _in[k-1][j-2][i-2]+ _in[k-1][j-2][i+2]+
64 _in[k-1][j+2][i-2]+ _in[k-1][j+2][i+2]+
65 _in[k+1][j-2][i-2]+ _in[k+1][j-2][i+2]+
66 _in[k+1][j+2][i-2]+ _in[k+1][j+2][i+2]+
67 _in[k+2][j-2][i-1]+ _in[k+2][j-2][i+1]+
68 _in[k+2][j-1][i-2]+ _in[k+2][j-1][i+2]+
69 _in[k+2][j+1][i-2]+ _in[k+2][j+1][i+2]+
70 _in[k+2][j+2][i-1]+ _in[k+2][j+2][i+1] )
71 +c0 * ( _in[k-2][j-2][i-2]+ _in[k-2][j-2][i+2]+
72 _in[k-2][j+2][i-2]+ _in[k-2][j+2][i+2]+
73 _in[k+2][j-2][i-2]+ _in[k+2][j-2][i+2]+
74 _in[k+2][j+2][i-2]+ _in[k+2][j+2][i+2] );

Listing A.4: 125-point stencil.
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