
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

An Autotuning Framework for Intel Xeon Phi Platforms.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΕΥΘΕΡΙΟΣ - ΙΟΡΔΑΝΗΣ ΧΡΙΣΤΟΦΟΡΙΔΗΣ

Επιβλέπων : Δημήτριος Σούντρης

Αν. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2016

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών

An Autotuning Framework for Intel Xeon Phi Platforms.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΛΕΥΘΕΡΙΟΣ - ΙΟΡΔΑΝΗΣ ΧΡΙΣΤΟΦΟΡΙΔΗΣ

Επιβλέπων : Δημήτριος Σούντρης

Αν. Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 21η Ιουλίου 2016.

. .

Δημήτριος Σούντρης
Αν. Καθηγητής Ε.Μ.Π.

. .

Νεκτάριος Κοζύρης
Καθηγητής Ε.Μ.Π.

. .

Κιαμάλ Πεκμεστζή
Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2016

. .

Ελευθέριος - Ιορδάνης Χριστοφορίδης
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Ελευθέριος - Ιορδάνης Χριστοφορίδης, 2016.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό
μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή
προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου
Πολυτεχνείου.

Περίληψη

Έχουμε πλέον εισέλθει στην εποχή όπου ο όγκος των δεδομένων προς επεξεργασία είναι ασύλληπτα
μεγάλος και τα συστήματα/εφαρμογές που καλούνται να χρησιμοποιήσουν τόσο όγκο πληροφορίας
αδυνατούν, όταν στηρίζονται στις παραδοσιακές μεθόδους. Γι’ αυτό το λόγο, έχουν δημιουργηθεί
πολυπήρηνα συστήματα, σύγχρονες αρχιτεκτονικές υπολογιστών και μέθοδοι παράλληλης επεξεργα-
σίας με στόχο να λύσουν το παραπάνω πρόβλημα με αποδοτικό και γρήγορο τρόπο. Ωστόσο, τα νέα
υπολογιστικά συστήματα και οι τρόποι επεξεργασίας διαθέτουν ένα μεγάλο βαθμό πολυπλοκότητας
στη λειτουργία τους, τον οποίο και μεταφέρουν στην προσαρμογή των εφαρμογών και προγραμμά-
των που χειρίζονται μεγάλους όγκους δεδομένων. Ταυτόχρονα, έχουν δημιουργηθεί όρια απόδοσης
και κατανάλωσης ενέργειας τα οποία είναι απαραίτητο να τηρούνται για την εξοικονόμηση πόρων
και ενέργειας. Μέχρι στιγμής, αυτά τα δύο κομβικά σημεία καλείται να εκτελέσει ο ίδιος ο προγραμ-
ματιστής. Πρέπει να αναλύσει το κάθε πρόγραμμα ανεξάρτητα και να εξετάσει τον τρόπο εκτέλεσής
του μέχρι να βρει την κατάλληλη μορφή που θα τηρεί τους περιορισμούς που έχουν τεθεί. Προφα-
νώς, αυτό το έργο αποτελεί πολύ δύσκολη δουλειά και συνήθως η προσαρμογή προγραμμάτων από
ανθρώπους δεν εξαντλεί όλα τα περιθώρια βελτίωσης. Συνεπώς, καθίσταται απαραίτητη η δημιουρ-
γία ενός εργαλείου που θα αυτοματοποιεί αυτό το έργο και θα παρέχει αποδοτικότερες μορφές των
προγραμμάτων σε μικρό χρονικό διάστημα.

Η παρούσα διπλωματική εργασία παρουσιάζει τον Autotuner, ένα άμεσο και κλιμακωτό εργαλείο που
αναπτύχθηκε ειδικά για την πλατφόρμα Intel Xeon Phi coprocessor και προτείνει, για κάθε εφαρμογή
που δέχεται, περιβάλλοντα διαμόρφωσης για την αποδοτικότερη εκτέλεσή τους στην πλατφόρμα.
Αντικαθιστά έτσι την χειρονακτική δουλεία που έπρεπε να κάνει ο προγραμματιστής καθώς καλού-
νταν να εξερευνήσει 2,880 διαφορετικά περιβάλλοντα εκτέλεσης. Αντί να αναλύει κάθε εφαρμογή
πάνω σ’ όλα τα περιβάλλοντα εκτέλεσης, χρησιμοποιεί πληροφορίες που το εργαλείο έχει αποθηκεύ-
σει από προηγούμενες εφαρμογές. Η λειτουργία του βασίζεται σε μια collaborative filtering μέθοδο
έτσι ώστε γρήγορα και με ακρίβεια να κατηγοροποιεί μια εφαρμογή σε σύνολα περιβάλλοντων εκτέ-
λεσης βρίσκοντας ομοιότητες με προηγούμενες εφαρμογές που έχουν βελτιστοποιηθεί.

Ο Autotuner ελέγθηκε πάνω σε ένα σύνολο απαιτητικών και διαφορετικών εφαρμογών από δύο σύγ-
χρονες σουίτες και οι μετρήσεις ήταν πολύ ενθαρρυντικές. Συγκεριμένα, σε λιγότερο από 8 λεπτά για
κάθε εφαρμογή o Autotuner πρότεινε ένα περιβάλλον διαμόρφωσης που η απόδοσή του ξεπερνούσε
το 90% της καλύτερης εκτέλεσης.

Λέξεις κλειδιά

αυτόματη προσαρμογή, αυτόματη διαμόρφωση, μηχανική μάθηση, Intel Xeon Phi επεξεργαστής, πο-
λυπύρηνα συστήματα, συμβουλευτικό σύστημα, μοντέλο μοιραζόμενης μνήμης, παρακολούθηση, με-
γάλος όγκος δεδομένων.

5

Abstract

We have already entered the era where the size of the data that need processing is extremely large and
the applications that use them face difficulties if they follow the traditional ways. For that reason, new
approaches have been developed, multi- andmany- core systems, modern computing architectures and
parallel processing models that aim to provide a solution for that problem efficiently and in a timely
manner. However, these new computing systems kai processing methods are characterized by a lot
inner complexity and that complexity is transfered also to programs’ and applications’ tuning which
analyze big data. Concurrently, there have beed set performance and power limitations that need to
comply with. Until now, these twomajor tasks are tackled by the application developer himself. He has
to analyze every application independently and examine the its execution in order to find the version
that will fulfill the restraints that have been set. Obviously, this is an onerous task and usually hand
tuning does not fully exploit the margins for improvement. Hence, it is crusial the developement of a
tool that will automate program tuning and will provide efficient tuned programs in a small period of
time.

This diploma thesis presents, the Autotuner, an online and scalable tool that was developed specifi-
cally for the Inte Xeon Phi coprocessor and suggests for every incoming application, a performance
effective and energy-saving tuning configuration. It substitutes the hard work the application devel-
oper had to do, as he had to explore 2,880 different tuning configurations. Instead of analyzing every
application against every tuning configuration, it uses previously cached information from already
checked applications. The Autotuner is based on a collaborative filtering technique that quickly and
with accuracy classifies an application with respect to sets of tuning configurations by identifying
similarities to previously optimized applications.

The Autotunerwas tested against a set of demanding and diverse applications from twomodern bench-
mark suites and the evaluation looked very promising. Particularly, in less than 8 minutes for every
appplication the Autotuner suggested a tuning environment in which the application achieved more
than 90% of the best tuning configuration.

Key words

automatic tuning, machine learning, Intel Xeon Phi coprocessor, manycore systems, multicore sys-
tems, recommender system, shared memory model, monitoring, big data.

7

Ευχαριστίες

Η παρούσα διπλωματική εργασία σηματοδοτεί την ολοκλήρωση των σπουδών μου στη σχολή των
ΗλεκτρολόγωνΜηχανικών καιΜηχανικώνΥπολογιστών του Ε.Μ.Π. και κλείνει ένα ταξίδι στο χώρο
των υπολογιστών που αν την πρώτη μέρα φαινόταν ενδιαφέρον σήμερα φαντάζει συναρπαστικό και
μοναδικό. Οι γνώσεις και οι εμπειρίες που απέκτησα με εξέλιξαν σαν άνθρωπο και με βοήθησαν να
αναπτύξω τη δική μου σκέψη ως μηχανικός.

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου κ. Δημήτριο Σούντρη για την εμπι-
στοσύνη που μου έδειξε, για το θερμό του καλοσώρισμα όταν πρωτοπήγα στο microlab και για την
συνεχή του αμέριστη υποστήριξη. Με βοήθησε να εφαρμόσω την θεωρία στην πράξη και έτσι να έχω
μια πιο πρακτική προσέγγιση αλλά ταυτόχρονα σωστά θεμελιωμένη. Επίσης θα ήθελα να εκφράσω
την ευγνομωσύνη μου τον Δρ. Σωτήρη Ξύδη ο οποίος μου μετέφερε την ιδέα του και μαζί την ανα-
πτύξαμε περισσότερο - θεωρώ προς το καλύτερο - με αποτέλεσμα αυτή την εργασία. Η καθοδήγησή
του καθ’ όλη τη διάρκεια της διπλωματικής μου και η προτροπή του για το κάτι παραπάνω συνέβαλαν
μόνο θετικά στο σύνολο αλλά και σε μένα τον ίδιο.

Τέλος, οφείλω ένα μεγάλο ευχαριστώ στους γονείς μου που ήταν και είναι πάντα δίπλα μου και με
στηρίζουν, καθώς και στα κοντινά μου πρόσωπα και φίλους, παλιούς και νέους, στην Ελλάδα και στο
εξωτερικό, με τους οποίους η συναναστροφή και η ανταλλαγή ιδεών διέρυνε τους ορίζοντες μου και
με έκανε καλύτερο. Η φιλία τους είναι αναντικατάστατη και καθένας και καθεμία έχει σημαδέψει τον
χαρακτήρα μου.

Ελευθέριος - Ιορδάνης Χριστοφορίδης,

Αθήνα, 21η Ιουλίου 2016

9

Εκτεταμένη Περίληψη

Εισαγωγή

Είναι γνωστό πως ύστερα από περίπου πέντε δεκαετίες, ερχόμαστε στο τέλος του νόμου του Moore.
Η κατασκευή μικρότερων τρανζίστορ δεν εγγυάται πια ότι θα είναι γρήγορα, ενεργειακά αποδοτικά,
έμπιστα και φθηνότερα. Ωστόσο αύτο δεν σημαίνει ότι η πρόοδος της υπολογιστικής ικανότητας έχει
φτάσει στα όρια της, αλλά ότι η φύση της έχει αλλάξει. Έτσι, παράλληλα με την πιο αργή βελτίωση
της απόδοσης του υλικού (hardware), το μέλλον των υπολογιστών ορίζεται κυρίως από τρεις άλλες
κατηγορίες.

Η πρώτη είναι το λογισμικό. Πολλά παραδείγματα ανάμεσα στα οποία και το AlphaGo[19], έχουν
αποδείξει ότι μεγάλα κέρδη στην απόδοση είναι εφικτά μέσω νέων αλγορίθμων, διατηρώντας το
υλικό. Η δεύτερη είναι το ”cloud”, το δίκτυο των κέντρων δεδομένων που διαθέτουν on-line υπη-
ρεσίες. Εφόσον μοιράζονται τους πόρους τους, οι υπολογιστές μπορούν ομαδικά, να αυξήσουν κατά
μεγάλες ποσότητες τις δυνατότητές τους. Τέλος, η τρίτη κατηγορία βρίσκεται στις νέες αρχιτεκτονι-
κές υπολογιστών. Αξιοσημείωτα παραδείγματα είναι οι πολυπύρηνοι επεξεργαστές και οι επιταχυντές
(GPGPUs, FPGAs). Αυτές οι αρχιτεκτονικές υποστηρίζουν επίσης τον παραλληλισμό εκτέλεσης εν-
τολών και συντάσουν την High Performance Computing (HPC) area.

Σχετικά με την τελευταία κατηγορία που αναφέραμε, παρατηρούμε ότι τα παράλληλα υπολογιστικά
συστήματα γίνονται συνεχώς πιο πολύπλοκα. Οι αιτίες βρίσκονται κυρίως στην εκθετική αύξηση των
δεδομένων προς επεξεργασία και στις πιο απαιτητικές εφαρμογές (π.χ. επιστήμες, βελτιστοποίηση,
προσομοιώσεις). Τα συστήματα του παρελθόντος είναι ανίκανα να επεξεργαστούν τόσα δεδομένα
στο χρόνο που ο κόσμος πλέον αναμένει. Γι’ αυτούς τους λόγους, τα HPC συστήματα με μέγιστη
απόδοση πολλών τετράκις εκατομμυρίων πράξεων κινητής υποδιαστολής, έχουν εκατοντάδες χιλιά-
δες πυρήνες οι οποίοι πρέπει να είναι ικανοί να δουλεύουν αποδοτικά ταυτόχρονα και να μοιράζονται
έξυπνα τους υπολογιστικούς τους πόρους. Χρησιμοποιούν επίσης επιταχυντές υλικού με συγκεκρι-
μένη λειτουργία και εξελιγμένες μεθόδους στην αποθήκευση δεδομένων, ισορροπία φορτίου και στην
ενδοεπικοινωνία. Δυστυχώς, οι εφαρμογές όπως είχαν σχεδιαστεί για να εκτελούνται, δεν αποδίδουν
το μεγίστο με αυτά τα συστήματα. Συνεπώς, υψηλές ποσότητες ενέργειας και χρημάτων χάνονται
εξαιτίας της χαμηλής διεκπεραιωτικής ικανότητας κάθε επεξεργαστή. Για να αλλάξη αυτή η κατά-
σταση, οι προγραμματιστές πρέπει να μελετήσουν ατομικά την αρχιτεκτονική κάθε συστήματος και
να προσαρμόσουν το προγραμμά τους με τέτοιο τρόπο ώστε να εκμεταλλέυονται κάθε μονάδα υλικού
βέλτιστα. Μόνο τότε η εφαρμογή θα φτάνει τη μέγιστη δυνατή ρυθμαπόδοση του συστήματος.

Πέρα από την καθαρή απόδοση, είναι αναγκαία και η μείωση της κατανάλωσης ενέργειας αυτών των
συστημάτων. Η ενεργειακή κρίση έχει θέσει όρια στις ποσότητες ενέργειας που κάθε σύστημα κανα-
λώνει. Προς αυτό τον στόχο, ο προγραμματιστής εφαρμόζει προχωρημένες τεχνικές τόσο υλικού όσο
και λογισμικού που δημιουργούν μια κατάσταση που πρέπει να φτάσει σε ισορροπία μεταξύ απόδο-
σης και εξοικονόμησης ενέργειας, με αποτέλεσμα να αυξάνεται επιπλέον η διαδικασία προσαρμογής.
Συγκεντρώνοντας όλα τις επιλογές και τις διαμορφώσεις που ένας προγραμματιστής έχει να ζυγίσει
για να προσαρμόσει κατάλληλα την εφαρμογή του, ένα ομογενές σύστημα μεταμορφώνεται τελικά
σε ένα ετερογενές, το οποίο περιπλέκει περισσότερο την κατάσταση.

11

Επιπλέον, οι προγραμματιστές αφιερώνουν σημαντικό χρόνο για να προσαρμόσουν την εφαρμογή
τους σε συγκεκριμένα συστήματα. Αυτή είναι μια κυκλική διαδικασία συλλογής δεδομένων, αννγνώ-
ρισης περιοχών κώδικα που μπορούν να βελτιωθούν και πάλι προσαρμογή αυτών των περιοχών [24].
Επομένως, αυτή η διαδικασία είναι κοπιαστική, χρονοβόρα και μερικές φορές πρακτικά αδύνατη για
να γίνει χειροκίνητα.

Ο στόχος είναι να αυτοματοποιηθεί αυτή η διαδικασία με καλύτερα αποτελέσματα απ’ αυτά της
συντηρητικής μεθόδου. Για να πετύχει αυτό η ερευνητική κοινότητα έχει διαιρέσει την διαδικασία
προσαρμογής στα εργαλεία ανάλυσης απόδοσης και στα εργαλεία αυτόματης προσαρμογής. Και ο
ακαδημαϊκός και ο εμπορικός κόσμος, έχουν αναπτύξει εργαλεία που υποστηρίζουν και εν μέρει αυ-
τοματοποιούν την αναγνώριση και την παρακολούθηση εφαρμογών [13, 43]. Επίσης, ειδική αναφορά
λαμβάνει το Roofline model [65] το οποίο αποκαλύπτει τα όρια απόδοσης μιας αρχιτεκτονικής μαζί
με τη θέση μιας εφαρμογής που εξετάζεται, δίνοντας μια πιο πρακτική οπτική στη διαδικασία της
προσαρμογής.

Τα εργαλεία, μέχρι τώρα, δεν παράγουν αυτόματα ένα βέλτιστο εκτελέσιμο, αντιθέτως περιορίζουν
την λειτουργία τους στον χαρακτηρισμό περιοχών κώδικα και σε απλές συμβουλές προς τον προ-
γραμματιστή, ο οποίος χειροκίνητα κάνει κάθε αλλαγή στον κώδικα και προχωράει με δοκίμες και
λάθη. Συνεπώς, τα τελευταία χρόνια πολύ έρευνα έχει γίνει πάνω στην αυτοματοποίηση της διαδικα-
σίας προσαρμογής. Στρατηγικές που έχουν χρησιμοποιηθεί, έχουν σαν κρίσιμο σημείο την αυτόματη
και αποδοτική αναζήτηση του καλύτερου συνδυασμού παραμέτρων του περιβάλλοντος εκτέλεσης για
κάθε εφαρμογή σε κάθε αρχιτεκτονική. Οι ιδέες που έχουν ανακαλυφθεί στον τομέα της αυτόματης
προσαρμογής έχουν δώσει ενθαρρυντικά αποτελέσματα και έχουν οφελήσει τους προγραμματιστές
[52, 60, 38].

Ένα πρωτοπόρο παράδειγμα πολυπύρηνων συστημάτων που χρησιμοποιείται σήμερα είναι η Intel
Many Integrated Core Architecture (Intel MIC)[4], ένας συνεπεξεργαστής που αναπτύχθηκε από την
Intel. Το πρωτότυπο κυκλοφόρησε το 2010 με το κωδικό όνομα Knights Ferry. Ένα χρόνο αργό-
τερα το Knights Corner ανακοινώθηκε και από τον Ιούνιο του 2013 ο συνεπεξεργαστής είναι στην
δεύτερη γενιά του Knights Landing. Πολύ σύντομα, μαζί με τα Intel Xeon processors-based συστή-
ματα, έγιναν τα κύρια συστατικά των υπερ-υπολογιστών. Αυτή τη στιγμή, ο Tianhe-2(MilkyWay-2)
o υπερ-υπολογιστής στο Εθνικό Κέντρο υπερ-υπολογιστών Guangzhou, κατέχει την πρώτη θέση στη
περίφημη λίστα Top500 list[15] και περιλαμβάνει 32,000 Intel Xeon E5-2692 12C στα 2.200 GHz
and 48,000 Xeon Phi 31S1P, φτάνοντας τα 33,862.7 TFLOP/S. Ωστόσο, πολλές εφαρμογές δεν έχουν
προσαρμοσθεί ακόμα για να εκμεταλλεύονται το μέγιστο μέγεθος παραλληλισμού, τους υψηλούς ρυθ-
μούς ενδοεπικοινωνίας και μεταφοράς δεδομένων καθώς επίσης και τις διανυσματικές δυνατότητες
του Intel Xeon Phi. Για να φτάσουμε υψηλές αποδόσεις μ’ αυτή την πλατφόρμα χρειαζόμαστε πολύ
προσπάθεια στην παραλληλοποίηση, στην ανάλυση και στην βελτιστοποίηση στρατηγικών [33].

Άρα, αναζητώντας και αξιολογώντας την διαδικασία προσαρμογής σε ένα σύστημα τελευταίας τε-
χνολογίας όπως ο Intel Xeon Phi, είναι σίγουρα μια πολύτιμη και ευοίωνη συνεισφορά στους τομείς
του HPC και της αυτοματοποιημένης προσαρμογής.

Συνεισφορά

Σ’ αυτή την διπλωματική, αναπτύξαμε ένα αυτοματοποιημένο εργαλείο για τον Intel Xeon Phi συνεπε-
ξεργαστή βασισμένο σε αναλυτικές μεθόδους. Ο στόχος του είναι να απαλάξει τον προγραμματιστή
από την χειροκίνητη προσαρμογή του μεταγλωτιστή και του περιβάλλοντος εκτέλεσης βρίσκοντας
αποδοτικά και βέλτιστα τη λύση με το καλύτερο αποτέλεσμα λαμβάνοντας υπ’ όψη και την καθαρή
απόδοση και την ενέργεια.

Συνοπτικά, ο Autotuner έχει μια offline βάση δεδομένων με δεδομένα απόδοσης από ένα σύνολο δια-
φορετικών εφαρμογών εκτελεσμένων σε ένα σύνολο από παραμέτρους. Αυτά τα δεδομένα συλλέχθη-

12

σαν χρησιμοποιώντας το LIKWID[62], ένα ελαφρύ εργαλείο για x86 πολυπύρηνα περιβάλλοντα. Το
εργαλείο μας χρησιμοποιεί αυτά τα δεδομένα για να βρει συσχετισμούς μεταξύ εφαρμογών και παρα-
μέτρων προσαρμογής που εξετάζονται. Για να το πετύχει αυτό βασίζεται σε μια τεχνική collaborative
filtering technique[48, 35] και στην ιδέα της Singular Value Decomposition (SVD)[50]. Έτσι, οι εφαρ-
μογές και οι παράμετροι προσαρμογής προβάλλονται στο χώρο χαρακτηριστικών. Αυτός είναι ένας
σύνολο γνωρισμάτων τα οποία αποτελούνται από τιμές παραμέτρων και τη βαθμωτή σχέση των εφαρ-
μογών και των παραμέτρων μ’ αυτά τα γνωρίσματα. Στη συνέχεια, κάθε εφαρμογή που καταφθάνει,
εκτελείται για μερικά διανύσματα παραμέτρων και προβάλλεται στον κατασκευασμένο χώρο χαρα-
κτηριστικών με βάση τις δικές της βαθμολογίες. Οι συσχετίσεις με κάθε χαρακτηριστικό παράγονται
με αποτέλεσμα, οι άγνωστες βαθμολογίες να μπορούν να υπολογιστούν. Στο τέλος, έχουμε ένα γε-
μάτο διάνυσμα με τις προγνώσεις για όλες τις παραμέτρους, από το οποίο μπορούμε να διαλέξουμε
την καλύτερη που αντιστοιχεί σε συγκεκριμένο διάνυσμα παραμέτρων.

Επίσης, το εργαλείο που αναπτύξαμε στηρίζει την εφαρμογή της μηχανικής μάθησης και των δυνα-
τοτήτων της στο πεδίο της αυτόματης προσαρμογής και συμβάλλει σημαντικά σ’ αυτό. Πέρα από τις
γρήγορες προγνώσεις και την καλή απόδοση, η μέθοδος singular value decomposition μειώνει επί-
σης το χώρο που χρειάζεται για τον χαρακτηρισμό των εφαρμογών έναντι των παραμέτρων, και έτσι
αποθηκεύει τεράστια πληροφορία σε μικρό χώρο.

Μια ματιά στα αποτελέσματα μας λέει ότι, ο Autotuner καταφέρνει να δίνει συνεχώς ένα διάνυσμα
προσαρμογής που καταλαμβάνει περισσότερο του 90% της εκτέλεσης που αντιστοιχεί στην καλύτερη
προσαρμογή. Επίσης, αυτό συμβαίνει σε λιγότερο από 8 λεπτά, που είναι ο χρόνος για τον μερικό
χαρακτηρισμό της εφαρμογής. Η εικόνα 0.1 δείχνει την απόδοση που επιτυγχάνει από τις προγνώσεις
για 6 εφαρμογές.

Σχήμα 0.1: Απόδοση από της προβλέψεις σε χρόνο λιγότερο από 8 λεπτά μερικού χαρακτηρισμού.

13

Πειραματική Πλατφόρμα και Περιβάλλον

Αρχιτεκτονική

Σ’ αυτή την εργασία χρησιμοποιήσαμε τον συνεπεξεργαστή της Intel, Intel®Xeon Phi™της σειράς
3100 με κωδικό όνομα Knights Corner. Τα χαρακτηριστικά του φαίνονται παρακάτω:

• 22nm μέγεθος επεξεργαστή

• Intel Many Integrated Core (MIC) αρχιτεκτονική

• Πολυεπεξεργαστής μοιραζόμενης Μνήμης και τρέχει Λίνουξ

• 57, in-order, dual issue, x86 πυρήνες στα 1.1GHz με 4 νήματα υλικού ο καθένας

• 6 GB GDDR5 κύρια μνήμη στα 240 GB/δευτερόλεπτο

• 32ΚΒ L1 (εντολών & δεδομένων) kai 512 KB L2 για κάθε φυσικό πυρήνα.

Όλοι η πυρήνες και οι επιτηρητές μνήμης συνδέονται πάνω σε ένα αμφίδρομο δακτυλίδι (ODI) όπως
φαίνεται στο Σχήμα 0.2.

Σχήμα 0.2: Ο συνεπεξεργαστής σε επίπεδο πυριτίου[46].

Επίσης το μικροαρχιτεκτονικό διάγραμμα του επεξεργαστή φαίνεται στο παρακάτω Σχήμα 0.3

Παράμετροι Προσαρμογής

Οι παράμετροι προσαρμογής που χρησιμοποιήθηκαν για την δημιουργία του χώρου αναζήτησης πάρ-
θηκαν από επιλογές κατά την μεταγώττιση αλλά και από παραμέτρους εκτέλεσης. Στον παρακάτω
πίνακα 0.1 φαίνονται συγκετρωτικά:

Συνολικά, αποτελούν 2,880 συνδυασμούς.

14

Σχήμα 0.3:Μικρο-αρχιτεκτονική ενός φυσικού πυρήνα του συνεπεξεργαστή[46].

Flag Arguments

-O[=n] n=2,3
-opt-prefetch[=n] n=0,2,3,4
-opt-streaming-stores [keyword] keyword=never,always
-opt-streaming-cache-evict[=n] m=0,1,2,3
-unroll enabled/disabled
huge pages enabled/disabled
affinity [type] type=scatter,balanced
cores 19,38,57
threads per core 2,3,4

Πίνακας 0.1: Παράμετροι προσαρμογής.

Εφαρμογές Αναφοράς

Οι εφαρμογές που επιλέχθησαν για τον έλεγχο και την αξιολόγηση του συστήματος παρατηρούνται
σε πολλές σημερινές πειραματικές εφαρμογές των ημερών μας. Προέρχονται από τις σουίτες Rodinia
και NAS Parallel Benchmarks.

Παρακάtω φαίνονται τα χαρακτηριστικά τους συγκεντρωτικά:

Χαρακτηρισμός των Εφαρμογών ως προς το Χώρο Αναζήτησης

Προκειμένου να δείξουμε ότι οι εφαρμογές μας επηρεάζονται από την διακύμανση του χώρου αναζή-
τησης των παραμέτρψν προσαρμογής, τις αξιολογούμε ως προςMFlops/δευτ. και βλέπουμε πως κάθε
μια παράμετρος επηρεάζει την κατανομή της απόδοσής της.

Παρατηρούμε ότι, οι εφαρμογές έχουν μεγάλη διακύμανση στην απόδοσή τους ως προς κάθε παρά-
μετρο. Συνεπώς, ο χώρος αναζήτησης είναι ικανοποιητικός και πλήρης, δηλαδή κάθε μια παράμετρος
μπορεί να επηρεάζει αρνητικά ή θετικά την εκτέλεση μιας εφαρμογής.

15

(α�) (β�)

(γ�) (δ�)

(ε�) (στ�)

(ζ�) (η�)

Σχήμα 0.4: Διαγράμματα βιολιά για τις παραμέτρους τους χώρου προσαρμογής.
16

Application Domain MFlops

LUD Linear Algebra 350,950.0
Hotspot Physics Simulation 3,144.5
Hotspot3D Physics Simulation 3,770.0
Streamcluster Data Mining 1,716.0
K-means Data Mining 63,492.0
LavaMD Molecular Dynamics 14,720.0
Heartwall Medical Imaging 175.9
Myocyte Biological Simulation 2331.2
srad_v1 Image Processing 103,462.0
srad_v2 Image Processing 151,200.0
Back Propagation Pattern Recognition 469.8
NN Data Mining 182.4
CFD Fluid Dynamics 157,347.4
pre-CFD Fluid Dynamics 168,371.0

Πίνακας 0.2: Εφαρμογές Αναφοράς από τη σουίτα Rodinia.

Benchmark Class MFlops

BT A 168,300.0
SP A 85,000.0
LU A 119,280.0
FT B 92,050.0
MG C 155,700.0
CG B 54,700.0

Πίνακας 0.3: Εφαρμογές Αναφοράς από τη σουίτα NAS Parallel Benchmarks.

O Autotuner:
Υπόβαθρο & Υλοποίηση

Ο Autotuner έχει δύο στάδια, το offline και το online, τα οποία και επεξηγούμε παρακάτω.

Offline Στάδιο

Κατά το offline στάδιο χτίζεται η βάση μάθησης που θα χρησιμοποιηθεί. Οι εφαρμογές που θα την
αποτελούν τρέχουν στον Intel Xeon Phi για κάθε δυνατό διάνυσμα παραμέτρων προσαρμογής. Από
την εκτέλεση αυτή, με τη χρήση του Likwid εργαλείου, συλλέγουμε τις τιμές των μετρητών απόδο-
σης από τους οποίους κατασκευάζουμε μετρικές. Αυτές είναι: IPC, MFlops/sec, Bandwidth, Time,
Vectorization, Power. Με αυτές λοιπόν συντάσουμε ένα csv αρχείο για κάθε εφαρμογή. Το σύνολο
όλων των csv αρχείων αποτελεί τη βάση μάθησής μας.

Online Στάδιο

Κατά το online στάδιο γίνεται η πρόβλεψη του βέλτιστου διανύσματος προσαρμογής για κάθε εισερ-
χόμενη εφαρμογή. Όπως και στο offline στάδιο, η εφαρμογή που έρχεται εκτελείται στον συνεπε-
ξεργαστή και χαρακτηρίζεται άλλα για πολύ λιγότερα διανύσματα παραμέτρων προσαρμογής από το
σύνολο, τάξη 1%. Στη συνέχεια μαζί με την βάση μάθησης από το offline στάδιο, μέσω μιας κρίσιμης

17

συνάστησης που ορίζει το σχέδιο βαθμολογία μας, φτιάχνουν το σύνολο εκπαίδευσης του μοντέλου
για την πρόβλεψη των βαθμολογιών.

Το μοντέλο αυτό ανήκει στην οικογένεια των συστημάτων σύστησης (recommendation systems) και
συγκεκριμένα στην κατηγορία collaborative filtering (συνεργατικό φιλτράρισμα). Το μοντέλο αυτό
προβάλλει τους χρήστες-εφαρμογές και τα αντικείμενα-διανύσματα προσαρμογής στον ίδιο χώρο
όπου μπορούν να συγκριθούν. Ο χώρος αυτός ονομάζεται latent factors.

Η μορφή του μοντέλου μας είναι:

r̂ui = µ+ bu + bi + puq
T
i

Το μοντέλο προσαρμόζεται μηδενίζοντας το τετραγωνικό λάθος με κάθε παρατήρηση που του δί-
νουμε:

min
p∗,q∗,b∗

L =
∑
u,i∈K

(rui − µ− bu − bi − puq
T
i)

2 + λ1

∑
u

∥pu∥2 + λ2

∑
i

∥qi∥2 + λ3

∑
u

b2u + λ4

∑
i

b2i

Η παραπάνω συνάρτηση μηδενίζεται με την χρήση της μεθόδου Stochastic Gradient Descent (προ-
σέγγιση με στοχαστική κλίση) και δεν έχει αναλυτική λύση.

Γραφικά, τα δύο στάδια φαίνονται στα παρακάτω σχήματα:

Σχήμα 0.5: Offline στάδιο.

18

Σχήμα 0.6: Online στάδιο.

19

Αποτελέσματα

Παρακάτω παρουσιάζουμε τα αποτελέσματα για την κρίσιμη συνάρτηση MFlops/sec/Watt. Για το
λάθος της πρόβλεψης χρησιμοποιούμε το ριζικό μέσο τετραγωνικό λαθος (RMSE).

Αρχικά πρέπει να βρούμε το μέγεθος του latent factor χώρου ο οποίος χαρακτηρίζει επαρκώς της
εφαρμογές και τα διανύσματα προσαρμογής. Στο Σχήμα φαίνεται ότι ο μέγεθος είναι 12, καθώς από
εκεί και έπειτα δεν έχουμε κάποια μείωσει του RMSE.

Σχήμα 0.7: RMSE για μεταβλητό αριθμό χαρακτηριστικών με ή χωρις επανατροφοδότηση.

Στη συνέχεια πρέπει να δούμε πως συμπεριφέρεται το μοντέλο ανάλογα με το μέγεθος του μερικού
χαρακτηρισμού κάθε εισερχόμενης εφαρμογής. Έτσι έχουμε το παρακάτω σχήμα:

Παρατηρούμε ότι για κάθε μέγεθος έχουμε παραπάνω από 90% απόδοση ως πρός την καλύτερη εκτέ-
λεση. Πιο συγκεκριμένα μπορούμε να δούμε τις αποδόσεις συγκριτικά με την καλύτερη εκτέλεση και
την βασική.

Συζήτηση

Ο Autotuner αποδεικνύεται ότι είναι αποτελεσματικός σε πολλά περιβάλλοντα. Σε ποικίλες βάσεις
από τις οποίες μαθαίνει, σε διαφορετικές συναρτήσεις βαθμολογίας και μέγεθος μάθησης. Πάντα
όμως θα πρέπει να είμαστε προσεκτικοί με την ανάθεση τιμών στη στοχαστική προσέγγιση (SGD),
δηλαδή στους παράγοντες μάθησης και ρύθμισης ώστε να αποφεύγεται το overfitting των δεδομένων

20

Σχήμα 0.8: Μέσο RMSE για 12 χαρακτηριστικά και μεταβλητό μέγεθος εκπαίδευσης με ή χωρις
επανατροφοδότηση.

Σχήμα 0.9: Σύγκριση απόδοσης για 12 χαρακτηριστικά, 2%, 5% and 10% γνωστές βαθμολογίες, με
ή χωρις επανατροφοδότηση.

μάθησης και ταυτόχρονα να συγκλίνει σε αποδεκτές τιμές. Τα προβλεπόμενα διανύσματα παραμέ-
τρων ξεπερνούν την απόδοση της βασικής ρύθμισης των εφαρμογών και δείχνουν λεπτομερή προ-
σαρμογή για κάθε εφαρμογή. Αυτό είναι πολύ σημαντικό χαρακτηριστικό καθώς είναι πολύ δύσκολο
για έναν προγραμματιστή να προσαρμώσει με λεπτομέρεια μια εφαρμογή. Χρειάζεται να εκτελέσει

21

ανάλυση απόδοσης για κάθε μορφή του προγράμματος ώστε να βρει τα κρίσιμα σημεία στον κώδικα
που χρειάζονται βελτίωση. Αυξάνει την απόδοση σταδιακά και όχι άμεσα.

Επίσης, ο Autotuner είναι σχετικά γρήγορος μόλις γίνει online. Το offline μέρος του είναι το πιο
χρονοβόρο αλλά το πλεονέκτημα έγκειται ότι χρειάζεται να γίνει μόνο μια φορά. Αν η βάση μάθησης
περιλαμβάνει 14 εφαρμογές, η καθεμία με μέσο χρόνο εκτέλεσης 15 δευτερόλεπτα, τότε για 2,880 δια-
νύσματα παραμέτρων και 4 εκτελέσεις το καθένα παίρνουμε ένα άθροισμα 2,419,200 δευτερολέπτων
ή 672 ωρών. Από εκεί και έπειτα, για κάθε εισερχόμενη εφαρμογή χρειαζόμαστε μερικό χαρακτηρι-
σμό πάνω στο 0.1%-1% του συνόλου των διανυσμάτων παραμέτρων. Αυτό το βήμα χρειάζεται 4-40
λεπτά το πολύ και ο Autotuner επιστρέφει σε λιγότερο από 30 δευτερόλεπτα την πρόγνωση για το
διάνυσμα παραμέτρων. Ανάλογα με τα επίπεδα απόδοσης που ψάχνουμε, το μέγεθος μάθησης ποικί-
λει και συνεπώς και ο χρόνος που χρειάζεται το online τμήμα. Πάντα ωστόσο, ξεπερνάμε το 90% της
εκτέλεσης που αντιστοιχεί στο καλύτερο διάνυσμα παραμέτρων. Επίσης, μπορούμε να ζητήσουμε και
την προβλεπόμενη απόδοση για οποιαδήποτε διάνυσμα παραμέτρων.

Τέλος, αν χρησιμοποιήσουμε επανατροφοδότηση περιμένουμε να πάρουμε βελτιωμένες προβλέψεις
καθώς το μοντέλο μαθαίνει περισσότερο από κάθε εισερχόμενη εφαρμογή. Στα πειράματά μας, δεν
προσέξαμε κάποια μεγάλη πρόοδο καθώς το πλήθος των εφαρμογών που ελέγξαμε ήταν μικρό και
η επίδραση δεν πρόλαβε να διαδοθεί. Θεωρούμε όμως ότι είναι ένα λογικό επιχείρημα αυτό και θα
πρέπει να θεωρείται αποδεκτό.

Ο πίνακας 0.4 δείχνει τα μέσα ποσοστά απόδοσης των προβλέψεων που ελέγθησαν στα πειράματά
μας.

Training size Best Rating Base Rating

0.1% 90.06% 131.42%
0.2% 93.39% 136.28%
0.5% 95.06% 138.71%
1% 94.53% 137.94%
2% 95.43% 139.25%
5% 95.47% 139.31%
10% 95.85% 139.87%

Πίνακας 0.4:Μέσα ποσοστά απόδοσης των προβλεπόμενων διανυσμάτων παραμέτρων ως προς την
βέλτιστη και την βασική βαθμολογία.

Για να συγκρίνουμε με άλλα εργαλεία, ο Autotuner παρουσιάζει πολλά πλεονεκτήματα. Αρχικά, οι
οδηγοί για τη χειροκίνητη προσαρμογή δεν είναι ικανοί να οδηγήσουν στη βέλτιστη διαμόρφωση
για κάθε συγκεκριμένη εφαρμογή. Προτείνουν γενικές αλλαγές και περιβάλλοντα εκτέλεσης για την
πλειοψηφία των εφαρμογών. Δεύτερον, ο Autotuner είναι ικανός να επιστρέψει το καλύτερο προβλε-
πόμενο διάνυσμα παραμέτρων ανάμεσα σε ένα πολύ μεγάλο χώρο αναζήτησης σε σύντομο χρονικό
διάστημα, ξεπερνώντας σε απόδοση τα επαναληπτικά εργαλεία αναζήτησης. Αν και τα τελεταία εγ-
γυόνται ότι θα επιστρέψουν το καλύτερο διάνυσμα, ο Autotuner επιστρέφει διανύσματα που φτάνουν
σε μεγαλύτερα επίπεδα της 90% της απόδοσης του καλύτερου διανύσματος προσαρμογής.

Ως εργαλείο, ο Autotuner αναπτύχθηκε για την προσαρμογή και διαμόρφωση εφαρμογών που εκτε-
λούνται φυσικά πάνω στον Intel Xeon Phi Coprocessor. Όμως, η πλατφόρμα δεν αποτελεί όριο και αν
προσαρμόσουμε την εκτέλεση και τον μερικό χαρακτηρισμό για μια διαφορετική αρχιτεκτονική το
εργαλείο μας μπορεί πολύ εύκολα να προσαρμοστεί και να δουλέψει αποδοτικά για το νέο σύστημα.

22

Προτάσεις για Έρευνα

ΟσυγκεκριμένοςAutotuner μπορεί να εξελιχθεί σε πολλές κατευθύνσεις. Πρώτα, μπορεί να προστεθεί
μηχανισμός ώστε να αξιολογεί επίσης και παραπάνω της μιας εκτέλεσης πάνω στον συνεπεξεργαστή.
Αυτό σημαίνει ότι θα είναι ικανός να μετράει την παρέμβαση μεταξύ των εφαρμογών που εκτελούν-
ται και να τις αναθέσει σε ξένα μεταξύ τους σύνολα πυρήνων, κάτω από περιορισμούς απόδοσης
και ενέργειας. Επίσης, ο host, Intel Xeon Processor, μπορεί επίσης θα γίνει μέρος της εξίσωσης και
να αλλάξει η προσέγγιση την εκτέλεσης. Το κύριο εκτελέσιμο περιβάλλον αλλάζει σ’ αυτό του host
και ο συνεπεξεργαστής χρησιμοποιείται για offloading υπολογιστικά απαιτητικών περιοχών κώδικα.
Έτσι, ο Autotuner πρέπει να παρακολουθεί την εκτέλεση της εφαρμογής και στον επεξεργαστή και
στον συνεπεξεργαστή και να εξερευνήσει τις παραμέτρους προσαρμογής με στόχο να ωφεληθεί από
την αρχιτεκτονική του. Οπότε, ο Autotuner μπορεί να αποκτήσει ένα πιο γενικό χαρακτήρα υποστη-
ρίζοντας διαφορετικές αρχιτεκτονικές και μεθόδους εκτέλεσης, επεκτείνοντας σε GPUs και σε άλλες
πολυπύρηνους επεξεργαστές.

Η χρησιμοποίηση της μηχανικής μάθησης στην αυτόματη προσαρμογή είναι μια πολύ ευοίωνη προ-
σέγγιση και αποδείξαμε ότι είναι εφικτό να επιτύχουμε σπουδαία αποτελέσματα.

23

Contents

Περίληψη . 5

Abstract . 7

Ευχαριστίες . 9

Εκτεταμένη Περίληψη . 11

Contents . 25

List of Figures . 27

List of Tables . 29

1. Introduction . 31
1.1 Contribution . 33
1.2 Thesis Structure . 34

2. Related Work . 37
2.1 Performance Analysis . 37

2.1.1 Gprof . 37
2.1.2 OmpP . 38
2.1.3 Vampir . 38
2.1.4 PAPI . 38
2.1.5 Intel® VTune™Amplifier . 38
2.1.6 Likwid . 38
2.1.7 Paradyn . 39
2.1.8 SCALASCA . 39
2.1.9 Periscope . 39

2.2 Performance Autotuning . 39
2.2.1 Self-Tuning libraries . 40
2.2.2 Compiler optimizations search . 40
2.2.3 Application parameters search . 40
2.2.4 Compiler optimizations & Application parameters search 41

2.3 Autotuners tested on Intel Xeon Phi . 42
2.4 How our work is different from the bibliography? 44

3. Experimental Testbed & Environment . 45
3.1 Intel Xeon Phi . 45

3.1.1 Architecture . 45
3.1.2 Performance Monitoring Units . 47
3.1.3 Power Management . 47

3.2 Roofline Model . 49

25

3.2.1 Model’s Background . 49
3.2.2 The Roofline of our Testbed . 50

3.3 Tuning Parameters . 51
3.3.1 Compiler’s Flags . 51
3.3.2 Huge Pages . 53
3.3.3 OpenMP Thread Affinity Control . 54

3.4 Applications Used . 55
3.4.1 Rodinia Benchmarks Suite . 55
3.4.2 NAS Parallel Benchmarks . 58

3.5 Characterization of the Tuning Space . 59

4. The Autotuner:
Background & Implementation . 65
4.1 Collaborative Filtering . 65

4.1.1 The Latent Factor Model . 66
4.1.2 Stochastic Gradient Descent . 69

4.2 Offline Stage . 70
4.2.1 Structure . 70
4.2.2 The Composition of the Learning Base . 71

4.3 Online Stage . 78

5. Experimental Results . 81
5.1 Accuracy of Predictions . 81

5.1.1 Rating: MFlops/sec per Watt . 81
5.1.2 Rating: IPC per Watt . 88

5.2 Comparison with the Brute Force Search . 97
5.3 Energy Aware and Unaware Predictions . 99

6. Discussion . 103
6.1 General Assessment . 103
6.2 Future Work . 104

Bibliography . 105

Appendix . 111
6.3 Source Code . 111

26

List of Figures

0.1 Απόδοση από της προβλέψεις σε χρόνο λιγότερο από 8 λεπτά μερικού χαρακτηρισμού. 13
0.2 Ο συνεπεξεργαστής σε επίπεδο πυριτίου[46]. 14
0.3 Μικρο-αρχιτεκτονική ενός φυσικού πυρήνα του συνεπεξεργαστή[46]. 15
0.4 Διαγράμματα βιολιά για τις παραμέτρους τους χώρου προσαρμογής. 16
0.5 Offline στάδιο. 18
0.6 Online στάδιο. 19
0.7 RMSE για μεταβλητό αριθμό χαρακτηριστικών με ή χωρις επανατροφοδότηση. . . . 20
0.8 Μέσο RMSE για 12 χαρακτηριστικά και μεταβλητό μέγεθος εκπαίδευσης με ή χωρις

επανατροφοδότηση. 21
0.9 Σύγκριση απόδοσης για 12 χαρακτηριστικά, 2%, 5% and 10% γνωστές βαθμολογίες,

με ή χωρις επανατροφοδότηση. 21

1.1 Performance achieved from predicted configurations in less than 8 minutes profiling. 34

3.1 Overview of the coprocessor silicon and the On-Die Interconnect (ODI)[46]. 45
3.2 Architecture of a Single Intel Xeon Phi Coprocessor Core[46]. 46
3.3 Roofline model . 51
3.4 Affinity Types (a) Scatter (b) Balanced. 55
3.5 Violin plots for the affinity and cores-threads tuning parameters. 61
3.6 Violin plots for the prefetch, unroll and optimization level tuning parameters. 62
3.7 Violin plots for the huge pages and streaming stores tuning parameters. 63
3.8 Violin plots for different tuning parameters relative to base configuration. 64

4.1 Fictitious latent factor illustration for users and movies[48]. 67
4.2 The first two features from a matrix decomposition of the Netflix Prize data[48]. . . 73
4.3 Two-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized to

the base rating). 74
4.4 Three-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized

to the base rating). 75
4.5 Two-dimensional graph of the applications, rating IPC/Watts. 77
4.6 Break up of a rating. 79
4.7 Autotuner’s components. 79

5.1 RMSE for a number of features with or without feedback. 82
5.2 Average RMSE for a number of features and training size with or without feedback. . 83
5.3 Normalized ratings of predicted configurations with respect to training size. 84
5.4 Performance comparison for 12 features, 2%, 5% and 10%known ratings, with feedback. 85
5.5 RMSE for different number of features, with or without feedback based upon the learn-

ing base 2. 87
5.6 RMSE for a number of features with or without feedback. 89
5.7 Average RMSE for a number of features and training size with or without feedback. . 90
5.8 Normalized ratings of predicted configurations with respect to training sizes. 90

27

5.9 Performance comparison for 9 features, 0.5%, 1%, 2% and 5% known ratings, without
feedback. 91

5.10 RMSE for different number of features, with or without feedback based upon the learn-
ing base 2. 94

5.11 RMSE for different number of features, with or without feedback based upon the learn-
ing base 3. 95

5.12 RMSE for different number of features, with or without feedback based upon the learn-
ing base by Pearson’s similarity. 96

5.13 Predicted configurations ratings normalized to the best one with respect to training size. 96
5.14 Performance comparison for 6 features, 0.1%, 0.2% and 5% known ratings, without

feedback. 97
5.15 Performance vs Time, autotuner without feedback, 0.1% and 2% training sizes . . . 98
5.16 Performance vs Time, autotuner with feedback, 0.1% and 2% training sizes 99

28

List of Tables

0.1 Παράμετροι προσαρμογής. 15
0.2 Εφαρμογές Αναφοράς από τη σουίτα Rodinia. 17
0.3 Εφαρμογές Αναφοράς από τη σουίτα NAS Parallel Benchmarks. 17
0.4 Μέσα ποσοστά απόδοσης των προβλεπόμενων διανυσμάτων παραμέτρων ως προς

την βέλτιστη και την βασική βαθμολογία. 22

3.1 Coprocessors core’s cache parameters. 46
3.2 Some hardware events of the coprocessor. 48
3.3 Coprocessor’s power consumption on different power states[45]. 49
3.4 Summary of tuning parameters. 54
3.5 Summary of Rodinia Applications . 58
3.6 Summary of NAS benchmarks. 60

4.1 Table with the training and test sets from the 2D neighboring. 75
4.2 Coefficient matrix for all the applications when rated by 1 76
4.3 Table with the training and test sets from the coefficient matrix 4.2. 77
4.4 Table with the training and test sets from the 2D projection 4.5. 77
4.5 Coefficient matrix for all the applications when rated by 2 78

5.1 Learing and regulating rates used. 82
5.2 Correlations between the predicted configurations and the best one by application and

by average for different training sizes. 84
5.3 Predicted ratings for 12 features, 2%, 5% and 10% known ratings, with feedback along

with the actual and the base ratings. 85
5.4 Best configurations both actual and predicted. 86
5.5 Learing and regulating rates used. 88
5.6 Correlations between the predicted configurations and the best one by application and

by average for different training sizes. 91
5.7 Predicted ratings for 9 features, 5% and 10% known ratings, without feedback along

with the actual and the base ratings. 92
5.8 Best configurations both actual and predicted. 93
5.9 Minimum, maximum and average correlations of the 0.1%, 0.2% and 5% predicted

configurations with the best one. 97
5.10 Percentage change of raw performance between energy aware and unaware predictions.100
5.11 Best configurations both actual and predicted for energy aware and non-aware ratings. 101

6.1 Average percentages of the predicted configurations from the best and base ratings. . 104

29

Chapter 1

Introduction

It is evident that after almost five decades, the end of Moore’s law is in sight. Making transistors
smaller no longer guarantees that they will be faster, power efficient, reliable and cheaper. However,
this does not mean progress in computing has reached its limit, but the nature of that progress is
altered. So, in parallel with the now slower improvement of raw hardware performance, the future of
computing will be primarily defined by improvements in three other areas.

The first one is software.Many examples and very recently AlphaGo[19], have demonstrated that huge
performance gains can be achieved through new algorithms, persevering the current hardware. The
second is the ”cloud”, the networks of data centers that deliver on-line services. By sharing their re-
sources, existing computers can greatly add to their capabilities. Lastly, the third area lies in new com-
puting architectures. Examples are multi- and many-core processors, accelerators(GPGPUs,FPGAs).
These new architectures support also parallelism and they form theHigh PerformanceComputing(HPC)
area.

Focusing on the latter, we note that parallel computer systems are getting increasingly complex. The
reasons mainly lie in the exponential upsurge of data to interpret and the far more demanding appli-
cations (e.g. sciences, optimization, simulations). Systems of the past are incapable of processing that
data quickly as the world demands. For these reasons, HPC systems today with a peak performance
of several petaflops have hundreds of thousands of cores that have to be able to work together and
use their resources efficiently. They consist of hardware units that accelerate a specific operation and
they use evolved ideas in data storage, load balancing and intercommunication. Unfortunately, appli-
cations as they were used to run, do not deliver the maximum performance when they are ported on
these systems. As a consequence, high amount of energy and money are being lost because of the low
processor utilization. To reverse that state, programmers need to understood their machine’s unique
architecture and tune their program in a way that exploits every hardware unit optimally. Only then
their program will get the maximum capable throughput.

Besides performance, there is a need to reduce power consumption of those systems. The energy crisis
sets limitations to the amounts of power every system consumes. Towards that goal, a programmer
applies advanced hardware and software techniques (e.g. GPUs, Dynamic Voltage and Frequency
Scaling) which create a trade-off between performance and power saving, thus increasing the difficulty
of the tuning process. By assembling all the choices and the configurations that a programmer has to
weight in order to tune effectively his application, a homogeneous system transforms eventually into
a heterogeneous one, which complicates programming tasks.

However, the tuning process is not at all easy. Application developers are investing significant time to
tune their codes for the current and emerging systems. This tuning can be described as a cyclic process
of gathering data, identifying code regions that can be improved, and tuning those code regions[24].
Alas, this task is toilsome, time-consuming and sometimes practically forbidden to be carried out
manually.

The goal is to automate that task and outperform the human tuning. To accomplish that the research

31

community has divided the tuning process into two blocks, performance analysis tools and perfor-
mance autotuning tools. Both the academic and the commercial world have developed tools that
support and partially automate the identification and monitoring of applications[13, 43]. Moreover,
special reference receives the Roofline model[65] which exposes the performance ceilings of an ar-
chitecture along with the position of the application under evaluation, thus providing more accurate
guidance in the tuning procedure.

The tools, until now, do not produce automatically an optimized executable, on the contrary they limit
their operation to characterizations of code regions and simple suggestions to the developer, who man-
ually makes any changes and repeats the tuning phase. As a result much research has been dedicated
during the latest years to automate the tuning phase. Strategies that are employed, have as critical point
to automatically and efficiently search for the best combination of parameter configurations of the ex-
ecution environment for each particular application on a specific architecture. The ideas that have
emerged in the area of automatic tuning have provided encouraging results and have highly benefited
application programmers [52, 60, 38].

A leading example of manycore systems that is used today is Intel Many Integrated Core Architec-
ture (Intel MIC)[4], a coprocessor developed by Intel. The first prototype was launched in 2010 with
the code name Knights Ferry. A year later the Knights Corner product was announced and from
June 2013 the coprocessor is in its second generation Knights Landing. Very soon, along with Intel
Xeon processors-based systems, they became the primary components of supercomputers. Currently,
Tianhe-2(MilkyWay-2) the supercomputer at National Supercomputer Center in Guangzhou, which
holds the first place in the Top500 list[15], is composed of 32,000 Intel Xeon E5-2692 12C at 2.200
GHz and 48,000 Xeon Phi 31S1P, reaching 33,862.7 TFLOP/S. However, many applications have not
yet been structured to take advantage of the full magnitude of parallelism, the high interconnection and
bandwidth rates and the vectorization capabilities of the Intel Xeon Phi. Achieving high performance
with that platform still needs lot of effort on parallelization, analysis and optimization strategies[33].

Hence, investigating and evaluating tuning on a state of the art system, such as Intel Xeon Phi, is
certainly a very valuable and a promising contribution in the areas of HPC and auto-tuning.

32

1.1 Contribution

In this thesis, we develop an auto-tuning framework for Intel Xeon Phi co-processors based on analyt-
ical methods. Its purpose is to relieve the application developer from configuring the compiler and the
execution environment by efficiently and optimally finding the solution that delivers the best outcome
in respect of performance and power.

Shortly, the Autotuner has an offline database of performance data from a set of diverse applica-
tions executed on a set of configurations. These data were collected using LIKWID[62], a lightweight
performance-oriented tool suite for x86 multicore environments. The framework uses these data to
find correlations between the applications and the configurations that are being examined. To achieve
this it uses a collaborative filtering technique[48, 35] that exploits the idea behind Singular Value De-
composition (SVD)[50]. Hence, applications and configurations are mapped to a feature space. That
is a set of attributes, which consists of some configurations, and the scalar relation of the applications
and the configurations to those attributes. Then each new application that arrives, is minimally profiled
to a couple configurations and then it is projected to the constructed feature space, based on its ratings
for the known configurations. Correlations with each feature are produced and consequently, its un-
known ratings can be calculated. In the end, we have a fully populated vector with predicted ratings
for all the configurations, from which we are able to choose the best predicted rating that corresponds
to a specific configuration.

In addition, the auto-tuning framework we developed substantiates the employment of machine learn-
ing techniques and the utilization of their capabilities in the scarce field of autotuners and contributes
significantly to it. Besides the fast predictions and the good performance, singular value decomposition
also reduces the space needed for the characterization of the applications against the configurations,
thus storing huge info in small space.

To have a glance at our results, the Autotuner manages to constantly report a tuning configuration
that achieves more than 90% of the performance that corresponds to the best execution. In addition,
that happens in less than 8 minutes, which is the time for the partial profiling of the application over a
couple tuning configurations. Figure 1.1 shows the performance achieved from the predicted config-
urations for 6 applications.

33

Figure 1.1: Performance achieved from predicted configurations in less than 8 minutes profiling.

1.2 Thesis Structure

The thesis is organized as follows:

Chapter 2

We describe performance analysis and tuning tools along with worth noting examples. In addition
some related auto-tuners and their field of application. Lastly, we point out the main differences be-
tween our auto-tuning framework and the rest of the bibliography.

Chapter 3

We describe the system we used, Intel Xeon Phi and the application programming interface (API).
Furthermore we present the Roofline model [reference] for the Intel Xeon Phi. Lastly, we define our
tuning exploration space and we describe the applications used in the evaluation.

Chapter 4

We present meticulously the strategy and the theory behind the Autotuner and its building blocks.
How we extract information while executing an application and how we apply collaborative filtering
for our recommendation system.

34

Chapter 5

We demonstrate the experimental results and the efficiency of the Autotuner. We perform an scrupu-
lous evaluation with many varying parameters.

Chapter 6

We briefly conclude and refer to future work.

Appendix A

User manual and source code for the set up of the Autotuner framework.

35

Chapter 2

Related Work

2.1 Performance Analysis

Performance analysis tools support the programmer in gathering execution data of an application and
identifying code regions that can be improved. Overall, they monitor a running application. Perfor-
mance data are both summarized and stored as profile data or all details are stored in trace files.

State of the art performance analysis tools fall into two major classes depending on their monitoring
approach:

• profiling tools

• and tracing tools

Profiling tools summarize performance data for the overall execution and provide information such
as the execution time for code regions, number of cache misses, time spent in MPI routines, and
synchronization overhead for OpenMP synchronization constructs.

Tracing tools provide information about individual events, generate typically huge trace files and
provide means to visually analyze those data to identify bottlenecks in the execution.

Representatives for these two classes are Gprof[3], OmpP[36], Vampir[17], PAPI[26], Likwid[62]
and Intel® VTune™Amplifier[43].

2.1.1 Gprof

Gprof is the GNU Profiler tool. It provides a flat profile and a call graph profile for the program’s
functions. Instrumentation code is automatically inserted into the code during compilation, to gather
caller-function data. The flat profile shows how much time the program spent in each function and
how many times that function was called. The call graph shows for each function, which functions
called it, which other functions it called, and how many times. There is also an estimate of how much
time was spent in the subroutines of each function. Lastly there is the annotated source listing which
is a copy of the program’s source code, labeled with the number of times each line of the program
was executed. Yet, Gprof cannot measure time spent in kernel mode (syscalls, waiting for CPU or I/O
waiting) and it is not thread-safe. Typically it only profiles the main thread.

37

2.1.2 OmpP

OmpP is a profiling tool specifically for OpenMP developed at TUM and the University of Tennessee.
It is based on instrumentation with Opari, while it supports the measurement of hardware performance
counters using PAPI. It is capable to expose productivity features such as overhead analysis and detec-
tion of common inefficiency situations and determines certain overhead categories of parallel regions.

2.1.3 Vampir

Vampir is a commercial trace-based performance analysis tool for MPI, from Technische Universität
Dresden. It provides a powerful visualization of traces and scales to thousands of processors based on
a parallel visualization server. It relies on the MPI profiling interface that allows the interception and
replacement of MPI routines by simply re-linking the user-application with the tracing or profiling
library The tool is well-proven and widely used in the high performance computing community for
many years.

2.1.4 PAPI

The Performance API (PAPI) project specifies a standard application programming interface for ac-
cessing hardware performance counters available on most modern microprocessors. Developed at the
University of Tennessee, it provides two interfaces to the underlying counter hardware; a simple, high
level interface for the acquisition of simple measurements and a fully programmable, low level ,inter-
face directed towards users with more sophisticated needs. In addition, it provides portability across
different platforms. It can be used both as a standalone tool and as lower layer of 3rd party tools (ompP,
Vampir etc.)

2.1.5 Intel® VTune™Amplifier

Intel® VTune™Amplifier is the commercial performance analysis tool of Intel. It provides insight into
CPU and GPU performance, threading performance and scalability, bandwidth, caching, hardware
event sampling etc. In addition, it provides detailed data for each OpenMP region highlights tuning
opportunities.

2.1.6 Likwid

Likwid (Like I knew What I Am Doing) developed at University of Erlangen-Nuremberg, is a set of
command-line utilities that addresses four key problems: Probing the thread and cache topology of
a shared-memory node, enforcing thread-core affinity on a program, measuring performance counter
metrics, and toggling hardware prefetchers. An API for using the performance counting features from
user code is also included.

To the previous list have been added lately PA tools that automate the analysis and improve the scal-
ability of the tools. In addition, automation of the analysis facilitates a lot the application developer’s
task.

These tools are based on the APART Specification Language, a formalization of the performance
problems and the data required to detect them, with aim of supporting automatic performance analysis
for a variety of programming paradigms and architectures.

Some are:

38

2.1.7 Paradyn

Paradyn[11] is a performance measurement tool for parallel and distributed programs from University
of Wisconsin, and it was the first automatic online analysis tool. It is based on a dynamic notion of
performance instrumentation andmeasurement. Unmodified executable files are placed into execution
and then performance instrumentation is inserted into the application program and modified during
execution. The instrumentation is controlled by the Performance Consultant module, that automati-
cally directs the placement of instrumentation. The Performance Consultant has a well-defined notion
of performance bottlenecks and program structure, so that it can associate bottlenecks with specific
causes and specific parts of a program.

2.1.8 SCALASCA

SCALASCA[13] is an automatic performance analysis tool developed at the German Research School
on Simulation Sciences, the Technische Universität Darmstadt and Forschungszentrum Jülich. It is
based on performance profiles as well as on traces. It supports the performance optimization of par-
allel programs by measuring and analyzing their runtime behavior. The analysis identifies potential
performance bottlenecks - in particular those concerning communication and synchronization - and
offers guidance in exploring their causes.

2.1.9 Periscope

Periscope[39] is an automatic performance analysis tool for highly parallel applications written in
MPI and/or OpenMP developed at Technische Universität München. Unique to Periscope is that it
is an online tool and it works in a distributed fashion. This means that the analysis is done while
the application is executing (online) and by a set of analysis agents, each searching for performance
problems in a subset of the application’s processes (distributed). The properties found by Periscope
point to code regions that might benefit from further tuning.

Many more tools have been developed over the years. We mentioned some examples with particular
interest.

2.2 Performance Autotuning

The core of the tuning process is the search for the optimal combination of code transformations and
parameter settings of the execution environment that satisfy a specific goal. This creates an enormous
search space which further complicates the tuning task. Thus, automation of that step is more than
essential. Much research has been conducted on that matter and as a result many different ideas have
been published. These can be grouped into four categories:

• self-tuning libraries for linear algebra and signal processing like ATLAS, FFTW, OSKI, FEniCS
and SPIRAL;

• tools that automatically analyze alternative compiler optimizations and search for their optimal
combination;

• autotuners that search a space of application-level parameters that are believed to impact the
performance of an application;

• frameworks that try to combine ideas from all the other groups.

39

2.2.1 Self-Tuning libraries

The Automatically Tuned Linear Algebra Software[1] (ATLAS) supports the developers in applying
empirical techniques in order to provide portable performance to numerical programs. It automati-
cally generates and optimizes the popular Basic Linear Algebra Subroutines (BLAS) kernels for the
currently used architecture.

Similarly, FFTW[34] is a library for producing efficient signal processing kernels on different archi-
tectures without modification.

OSKI[9] is a collection of low-level C primitives that provide automatically tuned computational
kernels on sparse matrices, for use in solver libraries and applications.

The FEniCS Project[20] is a collaborative project for the development of innovative concepts and tools
for automated scientific computing, with a particular focus on the solution of differential equations by
finite element methods.

Divergent from the previous, SPIRAL[56] is a program generation system (software that generates
other software) for linear transforms and an increasing list of other mathematical functions. The
goal of Spiral is to automate the development and porting of performance libraries producing high-
performance tuned signal processing kernels.

2.2.2 Compiler optimizations search

This approach is based on the need for more general and application independent auto-tuning. Hence,
the goal is to define the right compiler optimization parameters on any platform. Such tools are divided
into two categories, depending on their strategy.

Iterative search tools iteratively enable certain optimization parameters and run the compiled pro-
gram while monitoring its execution. Following, based on the outcome, they decide on the new
tuning combination. Due to the huge search space, they are relatively slow. In order to tackle
that drawback some algorithms have been built that prune the search space.

Triantafyllis et al[63] as well as Haneda et al[41] enhance that idea by employing heuristics and
statistic methods achieving remarkable results.

Machine Learning tools use knowledge about the program’s behavior and machine learning tech-
niques (e.g. linear regression, support vector machines) to select the optimal combination of
optimization parameters. This approach is based on an automatically build per-system model
which maps performance counters to good optimization options. This model can then be used
with different applications to guide their tuning. Current research work is also targeting the
creation of a self-optimizing compiler that automatically learns the best optimization heuristics
based on the behavior of the underlying platform, as the work of Fursin et al[37] indicates. In
general, machine learning tools explore a much larger space and faster comparing with iterative
search tools.

Ganapathi et al[38], Bergstra et al[25], Leather et al[49] and Cavazos et al[27] are some who
have experimented with machine learning techniques in auto-tuning with auspicious results.

2.2.3 Application parameters search

Somehow more specific, this approach evaluates application’s behavior by exploring its parameters
and implementation. By parameters we refer to global loop transformations (i.e. blocking factor, tiling,

40

loop unroll, etc) and by implementation we refer to which algorithms are being used. Thus, this tech-
nique requires in advance some info regarding the application and which parameters should be tuned,
although it is able to get some generality regarding applications with common functions such as matrix
multiplications.

Tools in this category are also divided into two groups. 1. Iterative search tools 2. andMachine learning
tools.

The Intel Software Autotuning tool (ISAT)[51] is an example of iterative search tool which explores
an application’s parameter space which is defined by the user. Yet, it is a time consuming task.

The Active Harmony system[61] is a runtime parameter optimization tool that helps focus on the
application-dependent parameters that are performance critical. The system tries to improve perfor-
mance during a single execution based on the observed historical performance data. It can be used to
tune parameters such as the size of a read-ahead buffer or what algorithm is being used (e.g., heap sort
vs. quick sort).

Focusing on the algorithmic autotuning, Ansel et al[22] developed PetaBricks a new implicitly parallel
programming language for high performance computing. Programswritten in PetaBricks can naturally
describe multiple algorithms for solving a problem and how they can be fit together. This information
is used by the PetaBricks compiler and runtime to create and autotune an optimized hybrid algo-
rithm. The PetaBricks system also optimizes and autotunes parameters relating to data distribution,
parallelization, iteration, and accuracy. The knowledge of algorithmic choice allows the PetaBricks
compiler to automatically parallelize programs using the algorithms with the most parallelism.

A different approach followed by Nelson et al[55], interacts with the programmer to get high-level
models of the impact of parameter values. Thesemodels are then used by the system to guide the search
for optimization parameters. This approach is calledmodel-guided empirical optimization wheremod-
els and empirical techniques are used in a hybrid approach.

Using a totally different method from everything else MATE (Monitoring, Analysis and Tuning
Environment)[53] is an online tuning environment for MPI parallel applications developed by the
Universidad Autònoma de Barcelona. The fundamental idea is that dynamic analysis and online mod-
ifications adapt the application behavior to changing conditions in the execution environment or in
the application itself. MATE automatically instruments at runtime the running application in order
to gather information about the applications behavior. The analysis phase receives events, searches
for bottlenecks by applying a performance model and determines solutions for overcoming such per-
formance bottlenecks. Finally, the application is dynamically tuned by setting appropriate runtime
parameters. All these steps are performed automatically and continuously during application execu-
tion by using the technique called dynamic instrumentation provided by the Dyninst library. MATE
was designed and tested for cluster and grid environments.

2.2.4 Compiler optimizations & Application parameters search

The last category mixes ideas and strategies from both the last two, achieving very positive results.
Some solutions are problem targeted, meaning that they are implemented for specific applications and
some others are more general as they tackle a bigger and more diverse set of applications. Proportion-
ally, their complexity is increasing.

Many autotuning methods have been developed focusing on signal processing applications, matrix
vector multiplication and stencil computations. They take into account both application’s and sys-
tem’s environment parameters. Contributions to this approach come from S. Williams[66] who im-
plements autotuners for two important scientific kernels, Lattice Boltzmann Magnetohydrodynamics
(LBMHD) and sparse matrix-vector multiplication (SpMV). In an automated fashion, these autotuners

41

explore the optimization space for the particular computational kernels on an extremely wide range
of architectures. In doing so, it is determined the best combination of algorithm, implementation, and
data structure for the combination of architecture and input data.

As stencil computations are difficult to be assembled into a library because they have a large va-
riety and diverse areas of applications in the heart of many structured grid codes, some autotuning
approaches[31, 47, 30] have been proposed that substantiate the enormous promise for architectural
efficiency, programmer productivity, performance portability, and algorithmic adaptability on exist-
ing and emerging multicore systems.

General autotuners need more information about each application they examine, and for that reason
a performance tool is also needed to reckon the bottlenecks and the critical areas that will deliver
more performance by optimization. Popular examples are Parallel Active Harmony, the Autopilot
framework and the AutoTune project.

The Parallel Active Harmony[60] is a combination of the Harmony system and the CHiLL[29] com-
piler framework. It is an autotuner for scientific codes that applies a search-based autotuning approach.
While monitoring the program performance, the system investigates multiple dynamically generated
versions of the detected hot loop nests. The performance of these code segments is then evaluated in
parallel on the target architecture and the results are processed by a parallel search algorithm. The best
candidate is integrated into the application.

The Autopilot[57] is an integrated toolkit for performance monitoring and dynamical tuning of het-
erogeneous computational grids based on closed loop control. It uses distributed sensors to extract
qualitative and quantitative performance data from the executing applications. This data is processed
by distributed actuators and the preliminary performance benchmark is reported to the application
developer.

AutoTune project[52] extends Periscope with plugins for performance and energy efficiency tuning,
and constitutes a part of the Periscope Tuning Framework (PTF)[39]. PTF supports tuning of appli-
cations at design time. The most important novelty of PTF is the close integration of performance
analysis and tuning. It enables the plugins to gather detailed performance information during the eval-
uation of tuning scenarios to shrink the search space and to increase the efficiency of the tuning plugins.
The performance analysis determines information about the execution of an application in the form
of performance properties. The HPC tuning plugins that implemet PTF are: Compliler Flags Selec-
tion Tuning, MPI Tuning, Energy Tuning, Tuning Master Worker Application and Tuning Pipeline
Applications.

An ongoing tuning project is X-TUNE[18] which evaluates ideas to refine the search space and search
approach for autotuning. Its goal is to seamlessly integrate programmer-directed and compiler-directed
auto-tuning, so that a programmer and the compiler system can work collaboratively to tune a code,
unlike previous systems that place the entire tuning burden on either programmer or compiler.

Readex project[12] is another current project which aims to develop a tools-aided methodology for
dynamic autotuning for performance and energy efficiency. The project brings together experts from
two ends of the compute spectrum: the system scenario methodology[40] from the embedded systems
domain as well as the High Performance Computing community with the Periscope Tuning Frame-
work (PTF).

2.3 Autotuners tested on Intel Xeon Phi

Many researchers have been experimenting on the coprocessor developed by Intel to establish a work-
ing and useful autotuner. Intel Xeon Phi coprocessor is interesting among the HPC community because

42

of its simple programming model and its highly parallel architecture. Hence, there is a trend to derive
its maximum computational power through fine automatic tuning.

Wai Teng Tang et al[59] implemented sparse matrix vector multiplication (SpMV), a popular kernel
among many HPC applications that use scale-free sparse matrices (e.g. fluid dynamics, social net-
work analysis and data mining), on the Intel Xeon Phi Architecture and optimized its performance.
Their kernel makes use of a vector format that is designed for efficient vector processing and load bal-
ancing. Furthermore, they employed a 2D jagged partitioning method together with tiling in order to
improve the cache locality and reduce the overhead of expensive gather and scatter operations. They
also employed efficient prefix sum computations using SIMD and masked operations that are spe-
cially supported by the Xeon Phi hardware. The optimal panel number in the 2D jagged partitioning
method varies for different matrices due to their differences in non-zero distribution, hence a tuning
tool was developed. Their experiments indicated that the SpMV implementation achieves an aver-
age 3x speedup over Intel MKL for scale-free matrices, and the performance tuning method achieves
within 10 % of the optimal configuration.

Williams et al[64] explored the optimization of geometric multigrid (MG) - one of the most important
algorithms for computational scientists - on a variety of leading multi- and manycore architectural
designs, including Intel Xeon Phi. They optimized and analyzed all the required components within an
entire multigrid V-cycle using a variable coefficient, Red-Black, Gauss-Seidel (GSRB) relaxation on
these advanced platforms. They also implemented a number of effective optimizations geared toward
bandwidth-constrained, wide-SIMD, manycore architectures including the application of wavefront
to variable-coefficient, Gauss-Seidel, Red-Black (GSRB), SIMDization within the GSRB relaxation,
and intelligent communication-avoiding techniques that reduce DRAM traffic. They also explored
message aggregation, residual restriction fusion, nested parallelism, as well as CPUand KNC-specific
tuning strategies. Overall results showed a significant performance improvement of up to 3.8x on
the Intel Xeon Phi compared with the parallel reference implementation, by combining autotuned
threading, wavefront, hand-tuned prefetching, SIMD vectorization, array padding and the use of 2MB
pages.

Heirman et al[42] extent ClusteR - aware Undersubscribed Scheduling of Threads (CRUST), a varia-
tion on dynamic concurrency throttling (DCT) specialized for clustered last-level cache architectures,
to incorporate the effects of simultaneous multithreading, which in addition to competition for cache
capacity, exhibits additional effects incurred by core resource sharing. They implemented this im-
proved version of CRUST inside the Intel OpenMP runtime library and explored its performance
when running on Xeon Phi hardware. Finally, CRUST can be integrated easily into the OpenMP run-
time library; by combining application phase behavior and leveraging hardware performance counter
information it is able to reach the best static thread count for most applications and can even outper-
form static tuning on more complex applications where the optimum thread count varies throughout
the application.

Sclocco et al[58] designed and developed a many-core dedispersion algorithm, and implemented it us-
ing the Open Computing Language (OpenCL). Because of its low arithmetic intensity, they designed
the algorithm in a way that exposes the parameters controlling the amount of parallelism and possi-
ble data-reuse. They showed how, by auto-tuning these user-controlled parameters, it is possible to
achieve high performance on different many-core accelerators, including one AMD GPU (HD7970),
three NVIDIAGPUs (GTX 680, K20 and GTXTitan) and the Intel Xeon Phi. they not only auto-tuned
the algorithm for different accelerators, but also used auto-tuning to adapt the algorithm to different
observational configurations.

ppOpen-HPC[54] is an open source infrastructure for development and execution of large-scale scien-
tific applications on post-peta-scale (pp) supercomputers with automatic tuning (AT). ppOpen-HPC
focuses on parallel computers based on many-core architectures and consists of various types of li-
braries covering general procedures for scientific computations. The source code, developed on a PC

43

with a single processor, is linked with these libraries, and the parallel code generated is optimized
for post-peta-scale systems. Specifically on the Intel Xeon Phi coprocessor, the performance of a par-
allel 3D finite-difference method (FDM) simulation of seismic wave propagation was evaluated by
using a standard parallel finite-difference method (FDM) library (ppOpen-APPL/FDM) as part of the
ppOpen-HPC project.

2.4 How our work is different from the bibliography?

The autotuning framework we developed is based on data mining. The autotuner derives its sugges-
tions from an already known set of profiled applications against the full set of configuration space.
Thus, it is sensitive on the choice of those applications that constitute its initial knowledge. It belongs
in the category of machine learning autotuners like Ganapathi[38]. It explores mainly compiler and
execution environment parameters because the configuration space of the coprocessor is large enough.
There is not a specified target group of applications to autotune. It performs well independently of the
current testing application that is why it is a general autotuner.

From our experience with this framework and the employment of data mining techniques, we conclude
that valuable knowledge and fine tuning can be derived from their use and at the same time in timely
fashion with high accuracy.We know the optimal tuning of many applications, we need only to project
them to newly machine architectures in a way to benefit from their capabilities and specifications.
Then it is able to find correlations between them and unoptimized applications in order to suggest the
optimal tuning.

The idea to use data mining techniques in autotuning for a heterogeneous - because of its vary con-
figurations - coprocessor came from the work of Delimitrou and Kozyrakis[32] who developed an
heterogeneity- and interference-aware scheduler, Paragon, for large-scale datacenters. Paragon is an
online and scalable scheduler based on collaborative filtering techniques to quickly and accurately
classify an unknown incoming workload with respect to heterogeneity and interference in multiple
shared resources.

44

Chapter 3

Experimental Testbed & Environment

3.1 Intel Xeon Phi

3.1.1 Architecture

In this work we used an Intel®Xeon Phi™coprocessor of the 3100 Series with code name Knights
Corner. It is Intel’s first many-cores commercial product made at a 22nm process size that uses Intel’s
Many Integrated Core (MIC) architecture. A coprocessor needs to be connected to a Host CPU, via
the PCI Express bus and in that way they share access to main memory with other processors.

The coprocessor is a symmetric multiprocessor (SMP) on-a-chip running Linux. It consists of 57 cores
who are in-order dual issue x86 processor cores, they support 64-bit execution environment-based
on Intel64 Architecture and are clocked at 1.1GHz. Each one has four hardware threads, resulting
in 228 available hardware threads. They are used mainly to hide latencies implicit to the in-order
microarchitecture. In addition to the cores, the coprocessor has six memory controllers supporting
two GDDR5 (high speed) memory channels each at 5GT/sec. Each memory transaction to the total
6GBGDDR5memory is 4 bytes of data resulting in 5GT/s x 4 or 20GB/s per channel. 12 total channels
provide maximum transfer rate of 240GB/s. Then it consists of other device interfaces including the
PCI Express system interface.

All the cores, the memory controllers, and PCI Express system I/O logic are interconnected with a high
speed ring-based bidirectional on-die interconnect (ODI), as shown in Figure 3.1. Communication
over the ODI is transparent to the running code with transactions managed solely by the hardware.

Figure 3.1: Overview of the coprocessor silicon and the On-Die Interconnect (ODI)[46].

45

At the core level, exclusives 32-KB L1 instruction cache and L1 data cache as well as a 512-KB Level
2 (L2) are assigned to provide high speed, reusable data access. In Table 3.1 we are summarized the
main properties of the L1 and L2 caches.

Parameter L1 L2

Coherence MESI MESI
Size 32 KB + 32 KB 512 KB
Associativity 8-way 8-way
Line size 64 Bytes 64 Bytes
Banks 8 8
Access Time 1 cycle 11 cycles
Policy Pseudo LRU Pseudo LRU

Table 3.1: Coprocessors core’s cache parameters.

Furthermore, fast access to data in another core’s cache over the ODI is provided to improve perfor-
mance when the data already resides “on chip.” Using a distributed Tag Directory (TD) mechanism,
the cache accesses are kept “coherent” such that any cached data referenced remains consistent across
all cores without software intervention. There are two primary instruction processing units. The scalar
unit executes code using existing traditional x86 and x87 instructions and registers. The vector pro-
cessing unit (VPU) executes the Intel Initial Many Core Instructions (IMCI) utilizing a 512-bit wide
vector length enabling very high computational throughput for both single and double precision cal-
culations. Along there is an Extended Math Unit (EMU) for high performance key transcendental
functions, such as reciprocal, square root, power and exponent functions. The microarchitectural dia-
gram of a core is shown in the Figure 3.2.

Figure 3.2: Architecture of a Single Intel Xeon Phi Coprocessor Core[46].

Each core’s instruction pipeline has an in-order superscalar architecture. It can execute two instruc-
tions per clock cycle, one on the U-pipe and one on the V-pipe. The V-pipe cannot execute all instruc-
tion types, and simultaneous execution is governed by instruction pairing rules. Vector instructions are
mainly executed only on the U-pipe. The instruction decoder is designed as a two-cycle fully pipelined
unit, which greatly simplifies the core design allowing for higher cycle rate than otherwise could be
implemented. The result is that any given hardware thread that is scheduled back-to-back will stall in
decode for one cycle. Therefore, single-threaded code will only achieve a maximum of 50% utilization

46

of the core’s computational potential. However, if additional hardware thread contexts are utilized, a
different thread’s instruction may be scheduled each cycle and full core computational throughput
of the coprocessor can be realized. Therefore, to maximize the coprocessor silicon’s utilization for
compute-intensive application sequences, at least two hardware thread contexts should be run.

The coprocessor silicon supports virtual memory management with 4 KB (standard), 64 KB (not
standard), and 2 MB (huge and standard) page sizes available and includes Translation Lookaside
Buffer (TLB) page table entry cache management to speed physical to virtual address lookup as in
other Intel architecture microprocessors.

The Intel Xeon Phi coprocessor includes memory prefetching support to maximize the availability
of data to the computation units of the cores. Prefetching is a request to the coprocessor’s cache and
memory access subsystem to look ahead and begin the relative slow process of bringing data we expect
to use in the near future into the much faster to access L1 and/or L2 caches. The coprocessor provides
two kinds of prefetch support, software and hardware prefetching. Software prefetching is provided
in the coprocessor VPU instruction set. The processing impact of the prefetch requests can be reduced
or eliminated because the prefetch instructions can be paired on the V-pipe in the same cycle with
a vector computation instruction. The hardware prefetching (HWP) is implemented in the core’s L2
cache control logic section.

3.1.2 Performance Monitoring Units

In order to monitor hardware events, the coprocessor is supported by a performance monitoring unit
(PMU). Each physical Intel Xeon Phi coprocessor core has an independent-programmable core PMU
with two performance counters and two event select registers, thus it supports performance monitoring
at the individual thread level. User-space applications are allowed to interface with and use the PMU
features via specialized instructions such as RDMSR, WRMSR, RDTSC, RDPMC. Coprocessor-
centric events are able to measure memory controller events, vector processing unit utilization and
statistics, local and remote cache read/write statistics, and more[44]. In Table 3.2, are shown some
important hardware events of the coprocessor. The rest can be found on [2].

3.1.3 Power Management

Unlike the multicore family of Intel Xeon processors, there is no hardware-level power control unit
in the coprocessor. Instead power management (PM) is controlled by the coprocessor’s operating
system and is performed in the background. Intel Xeon Phi coprocessor power management software
is organized into two major blocks. One is integrated into the coprocessor OS running locally on
the coprocessor hardware. The other is part of the host driver running on the host. Each contributes
uniquely to the overall PM solution.

The power management infrastructure collects the necessary data to select performance states and
target idle states for the individual cores and the whole system. Below, we describe these power
states[44, 45]:

Coprocessor in C0 state; Memory in M0 state In this power state, the coprocessor (cores and
memory) is expected to operate at its maximum thermal design power (TDP), for our coprocessor that
is 300 Watts. While in that state, all cores are active and run at the same P-state, or performance state.
P-states are different frequency settings that the OS or the applications can request. Each frequency
setting of the coprocessor requires a specific voltage identification (VID) voltage setting in order to
guarantee proper operation, thus each P-state corresponds to one of these frequency and voltage pairs.

47

Event Description

CPU_CLK_UNHALTED The number of cycles (commonly known as clock-
ticks) where any thread on a core is active. A core
is active if any thread on that core is not halted.
This event is counted at the core level at any given
time, all the hardware threads running on the same
core will have the same value.

INSTRUCTIONS_EXECUTED Counts the number of instructions executed by a
hardware thread.

DATA_CACHE_LINES_WRITTEN_BACK Number of dirty lines (all) that are written back,
regardless of the cause.

L2_DATA_READ_MISS_MEM_FILL Counts data loads that missed the local L2 cache,
and were serviced from memory (on the same In-
tel Xeon Phi coprocessor). This event counts at the
hardware thread level. It includes L2 prefetches
that missed the local L2 cache and so is not use-
ful for determining demand cache fills or standard
metrics like L2 Hit/Miss Rate.

L2_DATA_WRITE_MISS_MEM_FILL Counts data Reads for Ownership (due to a store
operation) that missed the local L2 cache, and
were serviced from memory (on the same Intel
Xeon Phi coprocessor). This event counts at the
hardware thread level.

Table 3.2: Some hardware events of the coprocessor.

P1 is the highest P-state setting and it can have multiple sequentially lower frequency settings referred
as P2,P3,…,Pn where Pn is the lowest pair.

Some cores are in C0 state and other cores in C1 state; Memory in M0 state When all four
threads in a core have halted, the clock at the core shuts off, changing his state to C1. The last thread
to halt is responsible to collect idle residency data and store it in a data structure accessible to the
OS. A coprocessor can have some cores in C0 state and some in C1 state with memory in M0 state.
In this case, clocks are gated on a core-by-core basis, reducing core power and allowing the cores
in C1 state to lose clock source. After a core drops in C1 state, there is the option the core shuts
down, become electrically isolated. That is the core C6 state and it is decided by the coprocessor’s
PM SW, which also writes to a certain status register the current core’s status before issuing HALT to
all the threads active on that core. The memory clock can be fully stopped to reduce memory power
and memory subsystem enters M3 state. The price of dropping into a deeper core C state is an added
latency resulting from bringing the core back up to the non-idle state, so the OS evaluates if the power-
savings are worthwhile.

The coprocessor in package Auto-C3 state; Memory in M1 state If all the cores enter C1 state,
the coprocessor automatically enters auto-package C3 (PC3) state by clock gating also the uncore part
of the card. For this transition both the coprossesor’s PM software and the host’s coprocessor PM
are involved, that is because it may be needed a core to return to C0 state and in order to happen the
coprossesor PM SWmust initiate it. In addition, the host’s coprocessors PM may override the request
to PC3 under certain conditions, such as when the host knows that the uncore part of the coprocessor
is still busy. Finally, the clock source to the memory can be gated off also, thus reducing memory

48

power. This is the M1 state for the memory.

The coprocessor in package Deep-C3; Memory in M2 state In this state only the host’s copro-
cessor PM SW functions and decides for the transitions as it has a broader sense of the events on
the coprocessor and the coprocessor’s PM SW is essential suspended for the power savings. So the
host’s coprocessor PM SW looks at idle residency history, interrupts (such as PCI Express traffic),
and the cost of waking the coprocessor up from package Deep-C3 to decide whether to transition from
package Auto-C3 state into package Deep-C3 state. In package Deep-C3 the core voltage is further
reduced and the voltage regulators (VRs) enter low power mode. The memory changes to self-refresh
mode, i.e. M2 state.

The coprocessor in package C6; Memory in M3 state The transition to this state can be initiated
from both the coprocessor and the host. More reductions in power consumption are done in the uncore
part, the cores are shut off and the memory clock can be fully stopped, reducing memory power to its
minimum state (M3).

The Table 3.3 shows the power consumed in each state.

Coprocessor’s Power State Power(Watts)

C0 300
C1 <115
PC3 <50
PC6 <30

Table 3.3: Coprocessor’s power consumption on different power states[45].

3.2 Roofline Model

The roofline model is a visual performance model that offers insights to programmers on improving
parallel software for floating point computations relatively to the specifications of the architecture used
or defined by the user. Proposed by Williams et al [65], it has been used and proved valuable both to
guide manual code optimization and in education. Therefore, creating the roofline for our testbed will
aid us in the characterization of the autotuning process, how exactly the unoptimized and optimized
benchmarks move in the 2D space. Firstly, we describe the roofline model and its background.

3.2.1 Model’s Background

The platform’s peak computational performance - generally floating operations - together with the
peak memory bandwidth - generally between the CPU and the main memory - create a performance
”ceiling” in the 2 dimensional space. These peak values are calculated from the hardware specifi-
cations. On the x-axis is the operational intensity, which is defined as the amount of floating points
operations per byte of main memory traffic. On the y-axis is the performance. Both axis are in log
scale. The roofline is visually constructed by one horizontal and one diagonal line. The horizontal line
is the peak performance and the diagonal is the performance limited by memory bandwidth. Thus, the
mathematical equation is:

Roofline(op. intensity) = min(BW * op. intensity, peak performance)

49

The point where the two lines intersect:

Peak Performance = Operational Intensity * Memory Bandwidth

is called ridge point and defines the minimum operational intensity that is required in order to reach
maximum computational performance. In addition, the area on the right of the ridge point is called
computational bound and on the left memory bound.

Besides using the peak values calculated from the architecture, one can create a roofline using soft-
ware peak values (lower than the ones from hardware) such as performance limited to thread level
parallelism , instruction level parallelism and SIMD, without memory optimizations (e.g. prefetches,
affinity). In addition, more realistic performance ceilings can be obtained by running standard bench-
marks such as the high-performance LINPACK[8] and the Stream Triad[14] benchmarks. We assume
that any real world application’s performance can be characterized somewhere between totally mem-
ory bandwidth bound (represented by Stream Triad) and totally compute or Flop/s bound (represented
by Linpack).

For a given kernel, we can find a point on the x-axis based on its operation intensity. A vertical
line from that point to the roofline shows what performance is able to achieve for that operational
intensity[65]. From the definition of the ridge point, if the operational intensity of the kernel is on
the left of the ridge point then the kernel is bound from the bandwidth performance and if it is on
the right then the kernel is bound from the peak computational performance. So, by plotting along
with the peak performances also the performances from the software tunings, it can be reckoned what
optimizations will benefit the most the kernel under examination, guide in other words the developer
for the optimum tuning appropriately.

3.2.2 The Roofline of our Testbed

As we noted before, our testbed consists of one Intel Xeon Phi coprocessor 3120A. From the technical
specifications we can calculate the theoretical peak computational performance. With 57 cores, each
running at maximum 1.1GHz, a 512-bit wide VPU unit and support of the instruction fused multiply
and add (FMA) enabling two floating point operations in one instruction, the peak computational
performance is obtained from the formula:

Clock Frequency × Number of Cores × 16 lanes(SP floats) × 2(FMA) FLOPs/cycle

So, by substituting the technical specification values we get: 2006.4 GFlops/sec for SP and 1003.2
GFlops/sec for DP, which is usually the reported one. The theoretical bandwidth between the CPU
and the main memory is 240GB/sec.

By running the standard performance benchmarks with the appropriate optimizations, we get from
Linpack 727.99111 GFlops/sec (DP) and from Stream triad we get 128.312 GB/sec. Both values are
very close to the ones reported by Intel using the same benchmarks[6]. The choice of these two bench-
marks provides a strong hypothesis and we may argue that even if they remain far from ideal reference
points, they represent a better approximation than the hardware theoretical peaks because they at least
include the minimum overhead required to execute an instruction stream on the processing device[21].

1 The performance reported was achieved with the following configuration: compact affinity, 228 threads, size=24592,
ld=24616, 4KB align. The optimized benchmark from the Intel was used[5]

2 The performance reported was achieved with the following configurations as they are suggested here[10]: 110M ele-
ments per array, prefetch distance=64,8, streaming cache evict=0, streaming stores=always, 57 threads, balanced affinity.

50

So, now we can compute the operational intensity (OI) of the ridge point for both the theoretical and
the achievable peak performances, as: (using double precision)

OIthR =
1003.2

240
= 4.18Flops/Byte

OIacR =
727.9911

128.31
= 5.67Flops/Byte

Figure 3.3 shows the roofline model for our testbed in double precision.

Figure 3.3: Roofline model

3.3 Tuning Parameters

In this section, we describe the parameters we used to build our tuning space. It is composed of com-
piler’s flags as well as environmental configurations for the tuning of each application. The compiler
is the system’s default, Intel®C Intel®64 Compiler XE for applications running on Intel®64, Version
14.0.3.174 (icc).

3.3.1 Compiler’s Flags

The compiler’s flags used where chosen from the icc’s optimization category.

-O[=n]

Specifies the code optimization for applications.
Arguments:

51

O2: Enables optimizations for speed. Vectorization is enabled at O2 and higher levels. Some basic
loop optimizations such as Distribution, Predicate Opt, Interchange, multi-versioning, and scalar
replacements are performed. More detailed information can be found on [16].

O3: Performs O2 optimizations and enables more aggressive loop transformations such as Fusion,
Block-Unroll-and-Jam, and collapsing IF statements. TheO3 optimizationsmay not cause higher
performance unless loop and memory access transformations take place. The optimizations may
slow down code in some cases compared to O2 optimizations.

-opt-prefetch[=n]

This option enables or disables prefetch insertion optimization. The goal of prefetching is to reduce
cache misses by providing hints to the processor about when data should be loaded into the cache.
Arguments:

0: Disables software prefetching.

2-4: Enables different levels of software prefetching.

Prefetching is an important topic to consider regardless of what coding method we use to write an
algorithm. To avoid having a vector load operation request data that is not in cache, we can make sure
prefetch operations are happening. Any time a load requests data not in the L1 cache, a delay occurs
to fetch the data from an L2 cache. If data is not in any L2 cache, an even longer delay occurs to fetch
data from memory. The lengths of these delays are nontrivial, and avoiding the delays can greatly
enhance the performance of an application.

-opt-streaming-stores [keyword]

This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.
Arguments:

never: Disables generation of streaming stores for optimization. Normal stores are performed.

always: Enables generation of streaming stores for optimization. The compiler optimizes under the as-
sumption that the application is memory bound.

Streaming stores are a special consideration in vectorization. Streaming stores are instructions espe-
cially designed for a continuous stream of output data that fills in a section of memory with no gaps
between data items. An interesting property of an output stream is that the result in memory does not
require knowledge of the prior memory content. This means that the original data does not need to
be fetched from memory. This is the problem that streaming stores solve - the ability to output a data
stream but not use memory bandwidth to read data needlessly. Having the compiler generate stream-
ing stores can improve performance by not having the coprocessor fetch caches lines from memory
that will be completely overwritten. This effectively avoids wasted prefetching efforts and eventually
helps with memory bandwidth utilization.

52

-opt-streaming-cache-evict[=n]

This option specifies the cache eviction (clevict) level to be used by the compiler for streaming loads
and stores. Depending on the level used, the compiler will generate clevict0 and/or clevict1 instruc-
tions that evict the cache-line (corresponding to the load or the store) from the first-level and second-
level caches. These cache eviction instructions will be generated after performing the corresponding
load/store operation.
Arguments:

0: Tells the compiler to use no cache eviction level.

1: Tells the compiler to use the L1 cache eviction level.

2: Tells the compiler to use the L2 cache eviction level.

3: Tells the compiler to use the L1 and L2 cache eviction level.

-unroll[=n]

This option tells the compiler the maximum number of times to unroll loops.
Arguments:

0: Disables loop unrolling.

N/A: With unspecified n, the optimizer determines how many times loops can be unrolled.

The Intel CCompiler can typically generate efficient vectorized code if a loop structure is not manually
unrolled. Unrolling means duplicating the loop body as many times as needed to operate on data using
full vectors. For single precision on Intel Xeon Phi coprocessors, this commonly means unrolling 16-
times. In other words, the loop body would do 16 iterations at once and the loop itself would need to
skip ahead 16 per iteration of the new loop.

3.3.2 Huge Pages

To get good performance for executions on the coprocessor, huge memory pages (2MB) are often
necessary for memory allocations on the coprocessor. This is because large variables and buffers are
sometimes handled more efficiently with 2MB vs 4KB pages. With 2MB pages, TLBmisses and page
faults may be reduced, and there is a lower allocation cost.

In order to enable 2MB pages for applications running on the coprocessor we can either manually
instrument the program with mmap system calls or use the hugetlbfs library[7]. In our case, we used
the hugetlbfs library dynamically linked with the applications.

Although, Manycore Platform Software Stack(MPSS) versions later than 2.1.4982-15 support “Trans-
parent Huge Pages (THP)” which automatically promotes 4K pages to 2MB pages for stack and heap
allocated data, we use the hugetlbfs library to allocate data directly in 2MB pages. This is useful be-
cause if the data access pattern is such that the program can still benefit from allocating data in 2MB
pages even though THP may not get triggered in the uOS.

So, we examined the performance of the applications with huge pages enable or not.

53

3.3.3 OpenMP Thread Affinity Control

Threading and Thread placement

As a minimum number of threads per physical core we set 2 because of the two-cycle fully pipelined
instruction decoder as wementioned in the coprocessor’s architecture.We examine the performance of
each application on 19, 38 and 57 physical cores andwith the different combinations of enabled threads
per corewe get 38, 57, 76, 114, 152, 171 and 228 threadswith different howevermappings on the cores.
That is implemented by using the environmental variable KMP_PLACE_THREADS=ccC,ttT,ooO,
where:

C: denotes the number of physical cores

T: denotes the number of threads per core

O: denotes the offset of cores

So, with this variable we specify the topology of the system to the OpenMP runtime.

Affinity

In order to specify how the threads are bound within the topology we use the environmental variable
KMP_AFFINITY[=type], where type:

scatter: The threads are distributed as evenly as possible across the entire system. OpenMP thread num-
bers with close numerical proximity are on different cores.

balanced: The threads are distributed as evenly as possible across the entire system while ensuring the
OpenMP thread numbers are close to each other.

Below, the Figure 3.4 illustrates the two different affinity types. We note that both types use cores be-
fore threads, thus they gain from every available core. In addition, while in balanced thread allocation
cache utilization should be efficient if the neighbor threads access data that is near in store. Generally
however, tuning affinity is a complicated and machine specific process.

In the Table 3.4 we present a summary of the tuning parameters with their possible values. The total
combinations are 2880 tuning states.

Flag Arguments

-O[=n] n=2,3
-opt-prefetch[=n] n=0,2,3,4
-opt-streaming-stores [keyword] keyword=never,always
-opt-streaming-cache-evict[=n] m=0,1,2,3
-unroll enabled/disabled
huge pages enabled/disabled
affinity [type] type=scatter,balanced
cores 19,38,57
threads per core 2,3,4

Table 3.4: Summary of tuning parameters.

54

(a)

(b)

Figure 3.4: Affinity Types (a) Scatter (b) Balanced.

3.4 Applications Used

In order to build and evaluate our autotuner for the coprocessor we used applications from two bench-
marks suites, the Rodinia Benchmark Suite[28] and the NAS Parallel Benchmarks[23]. We focused
only on applications with floating point operations and profiled them against the previous tuning states.
We used the OpenMP implementations.

3.4.1 Rodinia Benchmarks Suite

Rodinia is a benchmark suite for heterogeneous computing. It includes applications and kernels which
target multi- and manycore CPU and GPU platforms. The choice of applications is inspired by Berke-
ley’s dwarf taxonomy. It has been shown[28] that Rodinia covers a wide range of parallel commu-
nication patterns, synchronization techniques and power consumption and has led to some important
architectural insight, such as the growing importance of memory bandwidth limitations and the con-
sequent importance of data layout.

Below we list the applications and kernels we used along with some specifications.

55

LU Decomposition(LUD)

LU Decomposition is an algorithm to calculate the solutions of a set of linear equations. The LUD
kernel decomposes a matrix as the product of a lower triangular matrix and an upper triangular ma-
trix. This application has many row-wise and column-wise interdependencies and requires significant
optimization to achieve good parallel performance. The size of the matrix was 8000x8000.

Hotspot

Hotspot is a thermal simulation tool used for estimating processor temperature based on an architec-
tural floor plan and simulated power measurements. It includes the 2D transient thermal simulation
kernel of HotSpot, which iteratively solves a series of differential equations for block temperatures.
The inputs to the program are power and initial temperatures. Each output cell in the grid represents
the average temperature value of the corresponding area of the chip. There is also a 3 dimensional
implementation of the same application. For the standard version we used arrays with 1024x1024
elements for the temperature and the power.

Streamcluster

Streamcluster solves the online clustering problem. For a stream of input points, it finds a pre-determined
number of medians so that each point is assigned to its nearest center. The quality of the clustering is
measured by the sum of squared distances (SSQ) metric. The original code is from the Parsec Bench-
mark suite developed by Princeton University. We used 32768 data points per block and 1 block.

K-means

K-means is a clustering algorithm used extensively in data mining. This identifies related points by
associating each data point with its nearest cluster, computing new cluster centroids, and iterating until
convergence. We used 494020 objects with 34 attributes each.

LavaMD

The code calculates particle potential and relocation due to mutual forces between particles within
a large 3D space. This space is divided into cubes, or large boxes, that are allocated to individual
cluster nodes. The large box at each node is further divided into cubes, called boxes. 26 neighbor
boxes surround each box (the home box). Home boxes at the boundaries of the particle space have
fewer neighbors. Particles only interact with those other particles that are within a cutoff radius since
ones at larger distances exert negligible forces. Thus the box size is chosen so that cutoff radius does
not span beyond any neighbor box for any particle in a home box, thus limiting the reference space
to a finite number of boxes. The space examined was divided into 8000 cubes each with dimensions
20x20x20.

Heartwall

The Heart Wall application tracks the movement of a mouse heart over a sequence of 30 (maximum
104) 744x656 ultrasound images to record response to the stimulus. In its initial stage, the program
performs image processing operations on the first image to detect initial, partial shapes of inner and

56

outer heart walls. These operations include: edge detection, SRAD despeckling, morphological trans-
formation and dilation. In order to reconstruct approximated full shapes of heart walls, the program
generates ellipses that are superimposed over the image and sampled to mark points on the heart walls
(Hough Search). In its final stage, program tracks movement of surfaces by detecting the movement
of image areas under sample points as the shapes of the heart walls change throughout the sequence
of images.

Myocyte

Myocyte application models cardiac myocyte (heart muscle cell) and simulates its behavior. The
model integrates cardiac myocyte electrical activity with the calcineurin pathway, which is a key
aspect of the development of heart failure. The model spans large number of temporal scales to reflect
how changes in heart rate as observed during exercise or stress contribute to calcineurin pathway acti-
vation, which ultimately leads to the expression of numerous genes that remodel the heart’s structure.
It can be used to identify potential therapeutic targets that may be useful for the treatment of heart
failure. Biochemical reactions, ion transport and electrical activity in the cell are modeled with 91 or-
dinary differential equations (ODEs) that are determined by more than 200 experimentally validated
parameters. The model is simulated by solving this group of ODEs for a specified time interval. The
process of ODE solving is based on the causal relationship between values of ODEs at different time
steps, thus it is mostly sequential. At every dynamically determined time step, the solver evaluates
the model consisting of a set of 91 ODEs and 480 supporting equations to determine behavior of the
system at that particular time instance. If evaluation results are not within the expected tolerance at
a given time step (usually as a result of incorrect determination of the time step), another calculation
attempt is made at a modified (usually reduced) time step. Since the ODEs are stiff (exhibit fast rate
of change within short time intervals), they need to be simulated at small time scales with an adaptive
step size solver. The simulation time interval used is 30msec and the number of instances of simulation
228.

Speckle Reducing Anisotropic Diffusion(SRAD)

SRAD is a diffusion method for ultrasonic and radar imaging applications based on partial differential
equations (PDEs). It is used to remove locally correlated noise, known as speckles, without destroy-
ing important image features. SRAD consists of several pieces of work: image extraction, continuous
iterations over the image (preparation, reduction, statistics, computation 1 and computation 2) and
image compression. The sequential dependency between all of these stages requires synchronization
after each stage (because each stage operates on the entire image). The inputs to the program are ul-
trasound images and the value of each point in the computation domain depends on its four neighbors.
The dimensions used were 502x458 over 1000 iterations. For the second version we used 6000x6000
image over 100 iterations.

Back Propagation

Back Propagation is a machine-learning algorithm that trains the weights of connecting nodes on a
layered neural network. The application is comprised of two phases: the Forward Phase, in which the
activations are propagated from the input to the output layer, and the Backward Phase, in which the
error between the observed and requested values in the output layer is propagated backwards to adjust
the weights and bias values. In each layer, the processing of all the nodes can be done in parallel. The
size of the layer used was 4,194,304.

57

Nearest Neighbors(NN)

NN finds the k-nearest neighbors from an unstructured data set. The sequential NN algorithm reads
in one record at a time, calculates the Euclidean distance from the target latitude and longitude, and
evaluates the k nearest neighbors. We looked for the k=8 nearest neighbors over 22,800,000 records.

Computational Fluid Dynamics(CFD)

The CFD solver is an unstructured grid finite volume solver for the three-dimensional Euler equations
for compressible flow. The CFD solver is released with two versions: one with precomputed fluxes,
and the other with redundant flux computations. Both versions used 97,000 elements.

The Table 3.5 shows all the Rodinia applications used characterized by their domain and their floating
point operations.We calculated the floating point operations manually by scrutinizing the source code.

Application Domain MFlops

LUD Linear Algebra 350,950.0
Hotspot Physics Simulation 3,144.5
Hotspot3D Physics Simulation 3,770.0
Streamcluster Data Mining 1,716.0
K-means Data Mining 63,492.0
LavaMD Molecular Dynamics 14,720.0
Heartwall Medical Imaging 175.9
Myocyte Biological Simulation 2331.2
srad_v1 Image Processing 103,462.0
srad_v2 Image Processing 151,200.0
Back Propagation Pattern Recognition 469.8
NN Data Mining 182.4
CFD Fluid Dynamics 157,347.4
pre-CFD Fluid Dynamics 168,371.0

Table 3.5: Summary of Rodinia Applications

3.4.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a small set of programs designed to help evaluate the perfor-
mance of parallel supercomputers. The benchmarks are derived from computational fluid dynamics
(CFD) applications and consist of five kernels and three pseudo-applications in the original ”pencil-
and-paper” specification. The benchmark suite has been extended to include new benchmarks for
unstructured adaptive mesh, parallel I/O, multi-zone applications, and computational grids. Problem
sizes in NPB are predefined and indicated as different classes. Reference implementations of NPB are
available in commonly-used programming models like MPI and OpenMP.

For our work, once again we used only benchmarks with floating point operations and profiled them
against the tuning states defined in the previous section.

Block Tri-diagonal solver (BT)

BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional compress-
ible Navier-Stokes equations. The finite differences solution to the problem is based on an Alternating

58

Direction Implicit (ADI) approximate factorization that decouples the x, y and z dimensions. The re-
sulting systems are Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension.
The problem size used was class A.

Scalar Penta-diagonal solver (SP)

SP is a simulated CFD application that has a similar structure to BT. The finite differences solution
to the problem is based on a Beam-Warming approximate factorization that decouples the x, y and z
dimensions. The resulting system has Scalar Pentadiagonal bands of linear equations that are solved
sequentially along each dimension. The problem size used was class A.

Lower-Upper Gauss-Seidel solver (LU)

LU is a simulated CFD application that uses symmetric successive over-relaxation (SSOR) method
to solve a seven-block-diagonal system resulting from finite-difference discretization of the Navier-
Stokes equations in 3-D by splitting it into block Lower and Upper triangular systems. The problem
size used was class A.

Discrete 3D fast Fourier Transform (FT)

FT contains the computational kernel of a 3-D fast Fourier Transform (FFT)-based spectral method.
FT performs three one-dimensional (1-D) FFT’s, one for each dimension. The problem size used was
class B.

Multi-Grid on a sequence of meshes (MG)

MG uses a V-cycle MultiGrid method to compute the solution of the 3-D scalar Poisson equation. The
algorithm works continuously on a set of grids that are made between coarse and fine. It tests both
short and long distance data movement. The problem size used was class C.

Conjugate Gradient (CG)

CG uses a Conjugate Gradient method to compute an approximation to the smallest eigenvalue of a
large, sparse, unstructured matrix. This kernel tests unstructured grid computations and communica-
tions by using a matrix with randomly generated locations of entries. The problem size used was class
B.

The Table 3.6 shows all the NAS Benchmarks used along with their class size and their total floating
point operations.

3.5 Characterization of the Tuning Space

In this section we evaluate the tuning’s space level of variance over the applications used. As a perfor-
mance rate we use the (MFlops/sec)/Watt3. In particular, we compare how the different arguments of
the tuning variables affect the performance of the applications. In addition, we prove that the chosen

3 The power consumed is the maximum power reported by micsmc tool, for the whole coprocessor during the execution.

59

Benchmark Class MFlops

BT A 168,300.0
SP A 85,000.0
LU A 119,280.0
FT B 92,050.0
MG C 155,700.0
CG B 54,700.0

Table 3.6: Summary of NAS benchmarks.

tuning space is able to improve the performance of an application relative to a base configuration 4.
Hence, we are aiming for the configurations that correspond to a performance greater than 1.0.

The largest deviation can be observed in the configurations of working threads and their affinity. The
Figure 3.5 depicts how different applications respond to variation of the previous tuning parameters.
If we try to derive a general rule of cores, threads and affinity from our benchmark set, it appears
difficult to choose a configuration with certainty, as Figures 3.5e and 3.5f show. That is an expected
result because each application is affected differently from the configurations.

Following, we present the violin plots for the tuning parameters prefetch, unroll and optimization
level. Especially for the latter one we noticed small variations. Figure 3.6 shows the performance gain
or deterioration for two selected applications.

Concerning the prefetch parameter we notice that between the 3 levels of software prefetch (2,3 and
4) no obvious difference exists. Therefore, that parameter should me examined more thoroughly and
precisely in the future.

Noticeable alterations also occur in the configuration of huge pages and streaming stores. Figure 3.7
shows that. Some configurations may not change dramatically the performance of an application as
we observe in Figure 3.7c.

To compare with the base configuration, Figure 3.8 shows the distribution of the performance relative
to the base for the different configuration parameters. We see that there are many variations and some
parameters benefit applications positively and some negatively. For instance, the mean performance
of the application mg (Figure 3.8f) when evaluated on the optimization level seems to be degraded.
Yet, the 4th quartiles exceed the base performance and these are the configurations we need. For the
hotspot3D (Figure 3.8d) the mean performance is constantly over 1.0 and under 1.2. In particular for
the option 0 (disabled prefetches) the ratio exceeds 1.2. The performance gain can even reach ×2 the
base configurations, such as in Figure 3.8e. The applications that have been selected to illustrate the
distributions are the ones that presented the most variation from the corresponding parameter.

Overall, we can argue that our benchmark set is characterized by adequate deviation in respect of the
tuning space and can be used in our goal of extracting features characterized by our tuning parameters.
We will explain in more detail our method in the next chapter.

4 As a base configuration we define the execution of an application without any compiler optimization but using every
available hardware thread for its parallel execution. The thread affinity by default is set to balanced.

60

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Violin plots for the affinity and cores-threads tuning parameters.

61

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Violin plots for the prefetch, unroll and optimization level tuning parameters.

62

(a) (b)

(c) (d)

Figure 3.7: Violin plots for the huge pages and streaming stores tuning parameters.

63

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.8: Violin plots for different tuning parameters relative to base configuration.

64

Chapter 4

The Autotuner:
Background & Implementation

In this chapter, we present our autotuner. We answer the questions how it works and of what it is
composed. The autotuner has two stages the offline and the online. During the offline stage the learn-
ing base is being built by profiling a set of representative applications against every configuration in
our tuning space. That needs to happen only once and it is apparently the most time consuming part.
Then, the autotuner is always online, meaning that he is able to provide us with a tuning recommen-
dation for any application we query him, as long as the application has been profiled against a very
small percentage of the tuning space (≈ 10%). To derive its recommendations it uses a collaborative
filtering technique based on matrix factorization, similar to the solutions given on the Netflix Prize
competition[48].

In the following section, we define collaborative filtering in order to substantiate our methodology in
the development of the autotuner. Then, we describe the offline and the online stages.

4.1 Collaborative Filtering

The world nowadays is overwhelmed by products for specific tastes and variety of needs, making
a difficult choice for the consumers. Hence, an essential goal arises to match consumers with the
most appropriate products. That is accomplished by developing recommender systems, which analyze
patterns of user interest in items to provide personalized suggestion. Many services like Amazon,
Netflix, Google and Yahoo want to enhance their customers experience by making recommender
systems a rigid part of their businesses. An example can be found in the entertainment business where
movies and TV shows are rated by each user. Their ratings expose a trend and a personal taste which
can be processed in order to suggest them unrated movies with high possibility of success.

Recommendation systems use a number of different technologies. We can classify these systems into
two broad groups[50].

• Content-based systems examine properties of the user or the item to characterize its nature. For
example, a user profile could include demographic information, his favorite actor and genre,
whereas a movie profile could include attributes regarding its genre, the participating actors, its
box office popularity, and so forth. Of course, content-based systems require explicit information
that might not be available or easy to collect.

• Collaborative filtering systems analyze relationships between users and interdependencies among
products to identify new user-item associations. Based on these associations they make their rec-
ommendations. Their advantage over content filtering is they do not require domain knowledge
and avoid the need for extensive data collection. In addition, relying directly on user behavior

65

allows uncovering complex and unexpected patterns that would be difficult or impossible to
profile using known data attributes. Lastly, they rely only on past user behavior.

Collaborative filtering (CF) has been a very popular approach in the past decade to recommenda-
tion systems. Especially from 2006, when Netflix announced their contest to find a more accurate
movie recommendation system than their current, Cinematch, and from 2009 when the grand prize
was awarded to team ”Bellkor’s Pragmatic Chaos” for developing a system which improved by 10%
the root mean square error (RMSE) of the recommendations compared with its predecessor.

To deepen into the case, CF has two primary areas: neighborhood methods and latent factor models
[48].

The neighborhood methods are centered on computing the relationships between items or, alterna-
tively, between users. For a user oriented approach, the user’s rating for a particular item is calculated
based on the similar users’ ratings for that item. Similar (or neighbor) users are other users that tend
to give the same ratings to the same items. In a sense, these methods transform items to the user space
by viewing them as baskets with assigned users. This way, we no longer need to compare users to
items, but rather directly relate users to users. It is important to realize that the same applies to items
also and that is called the duality of the similarity[50]. To measure similarity many functions are used
such us the Jaccard Distance, the Cosine Distance, the Pearson Distance and more.

The latent factor models, such as Singular Value Decomposition (SVD), comprise an alternative ap-
proach by transforming both items and users to the same latent factor space (20 to 100 factors inferred
from the ratings pattern), thus making them directly comparable. From another perspective, these fac-
tors comprise a computerized alternative to the human created movie attributes in the content-based
systems. For example, when the products are movies, factors might measure obvious dimensions such
as comedy vs. drama, amount of action, or orientation to children; less well defined dimensions such as
depth of character development or “quirkiness”; or completely uninterpretable dimensions. For users,
each factor measures how much the user likes movies that score high on the corresponding movie
factor.

Figure 4.1 illustrates the latent factor approach, which characterizes both users and movies using two
axes. Male vs. Female and Serious vs. Escapist. For this model, similarity between user-movie, user-
user and movie-movie can be reckoned by their dot product. For instance, Gus we expect to give high
rating to Dump and Dumper and to Independence Day because their cosine is close to 1. In contrast,
Gus will not like at all The Color Purple. In addition, Jane and Peter have a cosine close to 1 hence,
they will have many similar ratings.

If we change users with applications and items with tuning configurations then we can map our prob-
lem of autotuning to the one of suggesting movies to users. In our approach we use a latent factor
model, an instance of SVD, which we present in the following section.

4.1.1 The Latent Factor Model

Our model is a combination of two:

a. Baseline predictor

b. Matrix Factorization

For the following we define as K the set of the known ratings, rui the rating of user u for the item i.

66

Figure 4.1: Fictitious latent factor illustration for users and movies[48].

Baseline Predictor

It has been noted that much of the observed rating values are due to effects associated with either
users or items independently of their interaction, thus standard CF models are unable to capture the
true interactions between them. That is explained by the fact that CF data exhibit large user and item
biases, i.e. systematic tendencies for some users to rate higher than others, and for some items to
receive lower ratings than others. Baseline predictors filter these biases, and leave the part of the
signal that truly represents user-item interaction.

A baseline prediction for an unknown rating rui is denoted by bui and accounts for the user and item
effects:

bui = µ+ bu + bi

where µ denotes the global average rating. The parameters bu, bi measure the observed variations of
user u and item i from the average.

An example from users movies, suppose we want a baseline prediction for the rating of the movie
Independence Day by user Dave. Now, say that the average rating over all movies is µ = 3.4. On the
one hand, Independence Day is better than an average movie, so it tends to be rated 0.6 stars above the
average. On the other hand, Dave is a generous user, who tends to rate 0.3 stars higher than the average.
Thus, the baseline predictor for Independence Day’s rating by Dave would be 3.4 + 0.6 + 0.3 = 4.3.
The biases bu, bi can be calculated by solving the least squares problem:

min
b∗

∑
(u,i)∈K

(rui − µ− bu − bi)
2 + λ(

∑
u

b2u +
∑
i

b2i)

67

Here, the first term
∑

(u,i)∈K(rui−µ−bu−bi)2 strives to find bu’s and bi’s that fit the given ratings. The
regularized term λ(

∑
u b

2
u+

∑
i b

2
i) avoids overfitting by penalizing the magnitudes of the parameters.

This least square problem can be solved fairly efficiently by the method of stochastic gradient descent.

Matrix Factorization

Matrix factorization is the cause behind the most successful realizations of latent factor models. It is
able to map both users and items to a joint latent factor space of dimensionality k, such that user-item
interactions are modeled as inner product in that space. Accordingly, each item i is associated with a
vector qi ∈ Rk, and each user u is associated with a vector pu ∈ Rk. For a given item i the elements of
the qi measure the extent to which the item possesses those k factors. A positive value denotes the item
is completely characterized by the corresponding factor, whereas a negative value the exact opposite.
For a given user u the elements of the pu measure the extent to which the user is interested towards
those factors. Again a positive values means he likes that factor, while on the contrary a negative value
means he dislike it. The resulting dot product, puqTi , captures the interaction between user u and item
i, the user’s overall interest in the item’s characteristics. This approximates user’s u rating of item i,
which is denoted by rui, leading to the estimate[48]:

r̂ui = puq
T
i

The major challenge is computing the mapping of each user and item to their factor vectors. After the
recommender system completes this mapping, it is relative easy to estimate the rating a user will give
to any item.

By examining that model, we can relate it to singular value decomposition (SVD), a well established
technique for identifying latent semantic factors in information retrieval. However, applying SVD to
explicit ratings in the CF domain raises difficulties due to the sparseness of the user-item rating matrix.
It needs a complete matrix in order to produce legit results. Moreover, carelessly addressing only the
relatively few known entries is highly prone to overfitting. Earlier works relied on imputation to make
the rating matrix dense. Yet, it is proven very expensive as it significantly increases the amount of
data. In addition, inaccurate imputation might distort the data considerably. Hence, processing only
the observed ratings and building directly on those the model, while avoiding overfitting, is considered
a reliable approach.

A recent enlightening example, is the Netflix challenge. The data consisted of approximately 500K
users and 17K movies producing a total of 8.5 billions ratings. However, of those total ratings only
around 100M where known. There were missing 98.8% of the values. Hence, any imputation to make
the matrix dense would be based on a minute proportion of the total ratings, and probably falsifying
the data. In addition, a complete matrix would need 34 GBytes (supposing 4 Bytes per rating) which
is a huge amount of memory and very time consuming to process. And lastly, computing the SVD
of a immense matrix is nearly impossible and excessively demanding. Instead, if there exists a map
of the users and the movies in the latent factor space of dimensionality k=40 for instance, the stor-
age requirements and the computational work are lesser (matrices 500Kx40 and 17Kx40 total 82.72
MBytes).

Back to the definitions, in order to calculate the factor vectors pu and qi, the system minimizes the
regularized squared error on the set of known ratings[48]:

min
p∗,q∗

∑
(u,i)∈K

(rui − puq
T
i)

2 + λ(∥pu∥2 + ∥qi∥2)

The system learns themodel by fitting the previously observed ratings. However, the goal is to general-
ize those previous ratings in a way that predicts future, unknown ratings. Thus, the system should avoid

68

overfitting the observed data by regularizing the learned parameters, whose magnitudes are penalized.
The constant λ controls the extent of regularization and is usually determined by cross-validation. The
minimization is typically performed by either stochastic gradient descent or alternating least squares.

Our Model

By combining the two previous models, we benefit from both approaches. We model in parallel both
biases and true interactions between users and items. So, our model is comprised of four components,
as follows:

r̂ui = µ+ bu + bi + puq
T
i (4.1)

The system learns by minimizing the squared error function (or loss function):

min
p∗,q∗,b∗

L =
∑
u,i∈K

(rui−µ−bu−bi−puqTi)2+λ1

∑
u

∥pu∥2+λ2

∑
i

∥qi∥2+λ3

∑
u

b2u+λ4

∑
i

b2i (4.2)

In our work, for each learned parameter we used different regulators λ1, λ2, λ3, λ4 in order to achieve
better accuracy. In addition, to minimize the regularized squared error we used stochastic gradient
descent which we explain in the next section.

4.1.2 Stochastic Gradient Descent

For each given rating, the system computes the corresponding prediction error:

eui = rui − r̂ui = rui − (µ+ bu + bi + puq
T
i) (4.3)

According to stochastic gradient descent, the current estimate of the error function (4.3) is updated by
one training example at a time. So, for each training example, we take the derivative of the loss function
with respect to each parameter and adjust the latter according to the following iterative formula:

xk+1 ← xk − η
∂L

∂xk

where η is the learning rate which leverages how much our update modifies the feature weights and
is unique for each parameter.

Let’s calculate for instance the derivative with respect to pu:

∂L

∂pu
= 2(rui − µ− bu − bi − puq

T
i)(−qi) + 2λ1pu

∂L

∂pu
= −2(euiqi + λ1pu)

Hence, the corresponding formula becomes:

pu ← pu − η1
∂L

∂pu

pu ← pu + η1(euiqi − λ1pu) (4.4)

Accordingly, for the rest parameters, the formulas end up being:

qi ← qi + η2(euipu − λ2qi) (4.5)
bu ← bu + η3(eui − λ3bu) (4.6)
bi ← bi + η4(eui − λ4bi) (4.7)

69

The updates continue until there is no meaningful change in the parameters after two consecutive
iterations or until we reach a predefined number of iterations. We need to note that the learning rates
ηj , j = 1, 2, 3, 4 and the regulators λj , j = 1, 2, 3, 4 are obtained by grid exploration.

By having established the analytical background of our methodology, we proceed with the description
of the autotuner.

4.2 Offline Stage

4.2.1 Structure

In this stage, the learning base is constructed in order to be used later. An application is evaluated
against every tuning configuration by extracting metrics from the hardware performance counters
while it is executed. Towards that goal, we need to use the performance counters the coprocessor
provides and calculate Cycles per Instruction (CPI) for every thread, bandwidth between the CPUs
and the main memory, vectorization, power consumed and execution time.

A tool that can easily probe the performance counters with minute latency is Likwid[62], a perfor-
mance monitor tool for the GNU Linux operating system.

So, for an application we establish the tuning state (compiler’s flags and execution environment) and
run the executable inside likwid-perfctr, a command line tool from the likwid suite, for simple end-to-
end measurements that can be used as an application wrapper. With that command line tool we define
the event set which consists of that many events as there are physical counters on a given CPU, in our
case two. Because we need to take measurements from seven hardware events, we run the executable
four times.

The hardware events which are monitored are:

• INSTRUCTION_EXECUTED: Counts the number of instructions executed by a hardware
thread.

• CPU_CLK_UNHALTED: The number of cycles (commonly known as clockticks) where any
thread on a core is active. A core is active if any thread on that core is not halted. This event is
counted at the core level at any given time, all the hardware threads running on the same core
will have the same value.

• L2_DATA_READ_MISS_MEM_FILL:Counts data loads that missed the local L2 cache, and
were serviced from memory (on the same Intel Xeon Phi coprocessor). This event counts at the
hardware thread level. It includes L2 prefetches that missed the local L2 cache and so is not
useful for determining demand cache fills or standard metrics like L2 Hit/Miss Rate.

• L2_DATA_WRITE_MISS_MEM_FILL: Counts data Reads for Ownership (due to a store
operation) that missed the local L2 cache, and were serviced from memory (on the same Intel
Xeon Phi coprocessor). This event counts at the hardware thread level.

• DATA_CACHE_LINES_WRITTEN_BACK:Number of dirty lines (all) that arewritten back,
regardless of the cause.

• VPU_ELEMENTS_ACTIVE: Increments by 1 for every element to which an executed VPU
instruction applies. For example, if a VPU instruction executes with a mask register containing
1, it applies to only one element and so this event increments by 1. If a VPU instruction executes
with a mask register containing 0xFF, this event is incremented by 8. Counts at the hardware
thread level.

70

• VPU_INSTRUCTIONS_EXECUTED: Counts the number of VPU instructions executed by
a hardware thread. It is a subset of INSTRUCTIONS_EXECUTED.

Specifically for the execution time, the value from the time stamp counter (TSC) is taken, and it reports
the wall clock time. Each physical core has a TSC for all the hardware threads which counts cycles
while the core is in the C0 state. While we monitor only the performance counters of the threads we
have enabled, meaning that the assigned cores are always in C0 state, the TSC increments based on
the active core frequency. Hence, we argue that it is a rational way of measuring the wall clock time.

After collecting the hardware events we need to pre-process them and reckon the metrics, before the
learning base is populated. Below, we present the formulas used, where the values are the average
ones from the threads used.

• CPI:

CPIthread =
CPU_CLK_UNHALTED

INSTRUCTION_EXECUTED
, CPIcore =

CPIthread
#threads per core

• BW:

Bytes transferred = (L2_DATA_READ_MISS_MEM_FILL
+ L2_DATA_WRITE_MISS_MEM_FILL
+ DATA_CACHE_LINES_WRITTEN_BACK) ∗ 64Bytes

BW =
Bytes transferred
Execution Time

• Vectorization:

V ectorization =
VPU_ELEMENTS_ACTIVE

VPU_INSTRUCTIONS_EXECUTED

Lastly, the power is extracted by using micsmc utility developed by Intel. It uses the Symmetric Com-
munications Interface (SCIF), the capabilities designed into the coprocessor OS, and the host driver to
deliver the coprocessor’s status. That method is called ”in-band”.Micsmc reports the 1-secondmoving
average of the total power that is being consumed on the coprocessor at any given time, in watts. This
form of power analysis is chosen because it is thermally relevant. This averaging provides correlation
to real-world measureable thermal events. For example, if we only measure instantaneous power, we
may see spikes in power levels for very short durations that will not have measureable impacts to the
silicon temperature on the heat sink or other thermal solution[67].

The result is a comma separated values (csv) file for each application, in the form:

Configuration, CPI, BW, Vectorization, Power, Time

where configuration is the set of the tuning parameters that produced the corresponding metrics. The
file has 2880 lines, as many configurations in our tuning space.

4.2.2 The Composition of the Learning Base

Avery important step to build our autotuner is to choose the applications that will compose the learning
base. An application that will be part of the base needs to be different from the already existing ones
and exhibit, by itself or as a member of a small number of similar applications, a set of features than

71

can represent a larger group of applications. In other words, we need the learning base to be diverse
so that any new incoming application has as many similarities as possible with the others in the base.

One way to achieve this is to factorize all of our set. The applications are mapped to the latent factor
space and can be projected into a 2-dimensional space (alternatively 3-dimensional) in respect of the
2 (or 3) major latent factors, which are the most descriptive dimensions for applications and tuning
configurations.

The factorization is based on the Singular Value Decomposition (SVD). Through SVD, a matrix A :
n×m can be written in the form:

A = UΣV T

where:

1. r is the rank of A. We refer to this value as the dimension of the latent factor space.

2. U is a n× r column-orthonormal matrix; that is, each of its columns is a unit vector and the dot
product of any two columns is 0.

3. Σ is a r× r diagonal matrix. The elements of Σ are called singular values of A and they appear
in decreasing order of magnitude.

4. V is am× r column-orthonormal matrix. V T is the transposed form.

In order to create the application and the configurations latent factor vectors, we can use the products
of SVD in the following way:

pu = U
√
Σ

qi = V
√
Σ
T

So, pu measures the correlation between application u and each feature and qi measures the correlation
between tuning configuration and each feature. Note however, this method is validated only when the
initial matrix A is complete. Unless A is full, not legit correlation factors can be produced.

Let’s examine the Netflix example which is more intuitive. Figure 4.2 shows the first two factors
from the Netflix data matrix factorization. Movies are placed according to their factor vector (qi). By
observing the movies shown we can easily derive the meaning of the factor vectors. The first one
(x-axis) has on the one side lightweight comedies and horror movies aimed at a male or adolescent
audience (Road Trip, Freddy vs. Jason), while the other side contains drama or comedy with serious
undertones and strong female leads (Sophie’s Choice, Moonstruck). The second factor vector (y-axis)
has independent, critically acclaimed, quirky films (Punch-Drunk Love, Being John Malkovich) on
the top, and on the bottom, mainstream formulaic films (Armageddon, The Fast and the Furious).
Appealing to all types seems to be TheWizard of Oz, right in themiddle.Moreover there are interesting
intersections in the corners. On the top left corner, Kill Bill:Vol. 1 meets Natural Born Killer, both
arty movies that play off violent themes. On the bottom right, The Sound of Music meets Sister Act,
two serious female-driven movies and mainstream crowd-pleasers[48].

Based on the previous observations, we came up with the idea that if we fully know the ratings of some
movies then we will be able to produce the ratings of other similar movies, partially unknown, rather
easily as they have near factor vectors. So, in the Figure 4.2 we may try and group some movies and
choose one or two to represent a neighborhood. For instance, consider the group The Longest Yard,
The Fast and the Furius, Armageddon, Catwoman, Coyote Ugly and that we choose as representatives
the movies The Fast and the Furius and Catwoman. Then, for the rest of the movies as well as for
any other that it would happen to have the same features (mainstream formulaic and lightweight films,
e.g. Transporter, Batman), their full rating vector would be approximated with a small error, even with

72

Figure 4.2: The first two features from a matrix decomposition of the Netflix Prize data[48].

very few ratings known. Hence, with high certainty we would provide ratings for partially unknown
movies.

We should note however that the 2-dimensional space is able to mislead us, as it hides differences
between items which are separated by their 3th, 4th, …, Rth feature and present them next to each
other. For that reason we will examine our autotuner in respect of the learning base also.

Another way to create our learning base, more analytically substantiated, is by finding the correlations
between the applications in the latent factor space using a similarity function. A widely used function
is the Pearson’s correlation and that is because of its attribute being invariant to adding and scaling.
If we have one dataset {x1, . . . , xn} containing n values and another dataset {y1, . . . , yn} containing
n values then the Pearson’s correlation coefficient is defined as:

corrx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ = 1
n

∑n
i=1 xi and analogously for ȳ.

Based on the coefficients, we may divide the set of applications into a training and a test set. We define
the similarity threshold at the 0.80.

The second method works best when we have a large enough latent factor space, and consequently
the 2-dimensional projection hides a large proportion of the information for each application. Later,
in our analysis we use both methods to derive a learning base.

Back to our problem of applications-configurations, we define two ratings of an application (u) for a

73

configuration (i) as:

rui1 =
MFlops/sec

Watts
(Normalized to the base run) (4.8)

rui2 =
IPC

Watts
(4.9)

For the rui1 , we define as the base rating the rating achieved when the application runs on the co-
processor with no compiler optimizations and using every hardware thread available with balanced
affinity.

We create therefore twomatricesA1, A2 of sizeNxM whereN = 20 is the number of the applications
andM = 2880 is the number of the total tuning configurations. By applying the matrix factorization
(SVD) to both matrices we map the applications and the configurations to a joint latent factor space
from which we are able to create a 2-dimensional graph with respect to the two major latent factors.
Figures 4.3 and 4.5 present the first two latent vectors of our data for the applications.

Figure 4.3: Two-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized to the
base rating).

Considering the 2-dimensional latent factor space (Figure 4.3) which was created based on the rating
1, we can divide the applications into a training and a test set (Table 4.1). (Note that this is a typical
neighboring as we will variate our learning base later)

However, from the 3-dimensional projection we see the groups are ambiguous. Figure 4.4 shows that.
For instance, it seems that myocyte is close to streamcluster and backprop to kmeans. We need to
substantiate our composition of learning base and towards that goal we will use the second method.

Using the Pearson’s similarity function 4.2.2, the following coefficient matrix is calculated, Table 4.2.
We choose the neighbor threshold at 0.80 and with boldface we annotate the applications that have

74

Training set Test Set

cfd, pre_euler backprop
streamcluster,lavaMD lu
hotspot3D, kmeans bt
hotspot, lud bt
nn, ft sp
myocyte, cg mg
sradv1, sradv2

Table 4.1: Table with the training and test sets from the 2D neighboring.

Figure 4.4: Three-dimensional graph of the applications, rating MFlops/sec/Watts (Normalized to
the base rating).

similarity greater than or equal to the threshold. That neighboring is more rational and we expect to
get more satisfying and accurate predictions. The training and the test sets are composed as:

75

nn kmeans BP cfd HS3D sradv1 SC lud myocyte lavaMD HW HS sradv2 pre_euler bt ft sp cg lu mg

nn 1.00 0.64 0.73 0.63 0.75 0.79 0.68 0.29 0.73 0.71 0.60 0.75 0.74 0.53 0.67 0.71 0.70 0.40 0.65 0.50
kmeans 0.64 1.00 0.69 0.65 0.73 0.63 0.66 0.28 0.69 0.69 0.59 0.66 0.67 0.53 0.53 0.60 0.55 0.42 0.59 0.47
BP 0.73 0.69 1.00 0.68 0.83 0.72 0.77 0.29 0.78 0.78 0.63 0.76 0.75 0.56 0.59 0.67 0.61 0.38 0.66 0.51
cfd 0.63 0.65 0.68 1.00 0.65 0.73 0.61 0.36 0.62 0.84 0.67 0.67 0.76 0.66 0.66 0.77 0.71 0.75 0.71 0.65
HS3D 0.75 0.73 0.83 0.65 1.00 0.72 0.80 0.33 0.80 0.78 0.73 0.81 0.74 0.54 0.64 0.72 0.64 0.35 0.75 0.51
sradv1 0.79 0.63 0.72 0.73 0.72 1.00 0.67 0.44 0.67 0.77 0.63 0.73 0.77 0.63 0.69 0.73 0.71 0.49 0.71 0.62
SC 0.68 0.66 0.77 0.61 0.80 0.67 1.00 0.22 0.81 0.66 0.64 0.71 0.65 0.46 0.55 0.56 0.58 0.25 0.60 0.41
lud 0.29 0.28 0.29 0.36 0.33 0.44 0.22 1.00 0.33 0.41 0.27 0.24 0.44 0.49 0.38 0.29 0.37 0.30 0.30 0.60
myocyte 0.73 0.69 0.78 0.62 0.80 0.67 0.81 0.33 1.00 0.68 0.62 0.76 0.64 0.50 0.59 0.60 0.59 0.36 0.64 0.43
lavaMD 0.71 0.69 0.78 0.84 0.78 0.77 0.66 0.41 0.68 1.00 0.70 0.74 0.85 0.73 0.74 0.82 0.74 0.62 0.78 0.63
HW 0.60 0.59 0.63 0.67 0.73 0.63 0.64 0.27 0.62 0.70 1.00 0.68 0.66 0.54 0.69 0.72 0.68 0.37 0.75 0.53
HS 0.75 0.66 0.76 0.67 0.81 0.73 0.71 0.24 0.76 0.74 0.68 1.00 0.74 0.54 0.62 0.64 0.65 0.33 0.67 0.50
sradv2 0.74 0.67 0.75 0.76 0.74 0.77 0.65 0.44 0.64 0.85 0.66 0.74 1.00 0.67 0.72 0.83 0.71 0.61 0.75 0.60
pre_euler 0.53 0.53 0.56 0.66 0.54 0.63 0.46 0.49 0.50 0.73 0.54 0.54 0.67 1.00 0.65 0.63 0.60 0.61 0.57 0.50
bt 0.67 0.53 0.59 0.66 0.64 0.69 0.55 0.38 0.59 0.74 0.69 0.62 0.72 0.65 1.00 0.72 0.88 0.43 0.88 0.55
ft 0.71 0.60 0.67 0.77 0.72 0.73 0.56 0.29 0.60 0.82 0.72 0.64 0.83 0.63 0.72 1.00 0.75 0.52 0.75 0.65
sp 0.70 0.55 0.61 0.71 0.64 0.71 0.58 0.37 0.59 0.74 0.68 0.65 0.71 0.60 0.88 0.75 1.00 0.50 0.86 0.57
cg 0.40 0.42 0.38 0.75 0.35 0.49 0.25 0.30 0.36 0.62 0.37 0.33 0.61 0.61 0.43 0.52 0.50 1.00 0.41 0.49
lu 0.65 0.59 0.66 0.71 0.75 0.71 0.60 0.30 0.64 0.78 0.75 0.67 0.75 0.57 0.88 0.75 0.86 0.41 1.00 0.57
mg 0.50 0.47 0.51 0.65 0.51 0.62 0.41 0.60 0.43 0.63 0.53 0.50 0.60 0.50 0.55 0.65 0.57 0.49 0.57 1.00

Table 4.2: Coefficient matrix for all the applications when rated by 1

76

Training set Test Set

nn, kmeans, hotspot hotspot3D
backprop, cfd lavaMD
sradv1, sradv2 myocyte
streamcluster, lud ft
cfd, pre_euler sp
bt,cg, mg lu

Table 4.3: Table with the training and test sets from the coefficient matrix 4.2.

Accordingly, from the Figure 4.5, we can create application neighbors, when rated by 2: (similarly
this is a typical neighboring)

Figure 4.5: Two-dimensional graph of the applications, rating IPC/Watts.

Training set Test Set

myocyte, kmeans lu
hotspot, hotspot3D nn
heartwall, backprop sradv2
bt, sp, sradv1 mg
lavaMD, pre_euler cfd
ft, lud, cg streamcluster

Table 4.4: Table with the training and test sets from the 2D projection 4.5.

Analogously with the previous rating, we create also the learning base that the coefficient matrix
depicts. Using the Pearson’s similarity function for this rating, we get the following correlations. The

77

similarity threshold is set again to 0.80.

nn kmeans BP cfd HS3D sradv1 SC lud myocyte lavaMD HW HS sradv2 pre_euler bt ft sp cg lu mg

nn 1.00 0.65 0.85 0.64 0.95 0.93 0.68 0.38 0.83 0.82 0.84 0.76 0.54 0.73 0.88 0.59 0.81 0.61 0.79 0.52
kmeans 0.65 1.00 0.63 0.51 0.63 0.69 0.54 0.33 0.57 0.57 0.59 0.64 0.39 0.71 0.64 0.41 0.61 0.59 0.55 0.37
BP 0.85 0.63 1.00 0.60 0.85 0.84 0.67 0.37 0.77 0.75 0.78 0.71 0.52 0.70 0.79 0.59 0.72 0.55 0.74 0.50
cfd 0.64 0.51 0.60 1.00 0.63 0.67 0.57 0.15 0.59 0.62 0.63 0.58 0.49 0.29 0.61 0.55 0.60 0.46 0.61 0.50
HS3D 0.95 0.63 0.85 0.63 1.00 0.90 0.68 0.38 0.83 0.82 0.86 0.75 0.56 0.71 0.87 0.62 0.79 0.59 0.81 0.52
sradv1 0.93 0.69 0.84 0.67 0.90 1.00 0.68 0.42 0.82 0.82 0.83 0.77 0.59 0.70 0.88 0.64 0.83 0.62 0.79 0.62
SC 0.68 0.54 0.67 0.57 0.68 0.68 1.00 0.32 0.64 0.53 0.63 0.52 0.43 0.50 0.64 0.56 0.60 0.51 0.54 0.48
lud 0.38 0.33 0.37 0.15 0.38 0.42 0.32 1.00 0.39 0.38 0.39 0.31 0.29 0.52 0.43 0.31 0.37 0.29 0.36 0.41
myocyte 0.83 0.57 0.77 0.59 0.83 0.82 0.64 0.39 1.00 0.77 0.84 0.72 0.58 0.69 0.83 0.62 0.68 0.55 0.75 0.53
lavaMD 0.82 0.57 0.75 0.62 0.82 0.82 0.53 0.38 0.77 1.00 0.87 0.73 0.75 0.73 0.89 0.74 0.72 0.55 0.83 0.59
HW 0.84 0.59 0.78 0.63 0.86 0.83 0.63 0.39 0.84 0.87 1.00 0.76 0.71 0.70 0.89 0.76 0.75 0.51 0.88 0.62
HS 0.76 0.64 0.71 0.58 0.75 0.77 0.52 0.31 0.72 0.73 0.76 1.00 0.55 0.66 0.76 0.55 0.69 0.53 0.71 0.50
sradv2 0.54 0.39 0.52 0.49 0.56 0.59 0.43 0.29 0.58 0.75 0.71 0.55 1.00 0.57 0.70 0.76 0.49 0.36 0.65 0.52
pre_euler 0.73 0.71 0.70 0.29 0.71 0.70 0.50 0.52 0.69 0.73 0.70 0.66 0.57 1.00 0.75 0.59 0.68 0.47 0.71 0.52
bt 0.88 0.64 0.79 0.61 0.87 0.88 0.64 0.43 0.83 0.89 0.89 0.76 0.70 0.75 1.00 0.75 0.82 0.59 0.81 0.62
ft 0.59 0.41 0.59 0.55 0.62 0.64 0.56 0.31 0.62 0.74 0.76 0.55 0.76 0.59 0.75 1.00 0.51 0.33 0.66 0.56
sp 0.81 0.61 0.72 0.60 0.79 0.83 0.60 0.37 0.68 0.72 0.75 0.69 0.49 0.68 0.82 0.51 1.00 0.74 0.73 0.55
cg 0.61 0.59 0.55 0.46 0.59 0.62 0.51 0.29 0.55 0.55 0.51 0.53 0.36 0.47 0.59 0.33 0.74 1.00 0.50 0.44
lu 0.79 0.55 0.74 0.61 0.81 0.79 0.54 0.36 0.75 0.83 0.88 0.71 0.65 0.71 0.81 0.66 0.73 0.50 1.00 0.53
mg 0.52 0.37 0.50 0.50 0.52 0.62 0.48 0.41 0.53 0.59 0.62 0.50 0.52 0.52 0.62 0.56 0.55 0.44 0.53 1.00

Table 4.5: Coefficient matrix for all the applications when rated by 2

The training and the test set are composed of the following applications:

Training Set Test Set

nn, kmeans backprop
hotspot, hotspot3D heartwall
sradv2, sradv1, myocyte
cfd, pre_euler lavaMD
streamcluster, lud sp
ft, mg, bt, cg lu

Hence, starting from the above groups we form our learning base and investigate how our recommen-
dation system behaves.

4.3 Online Stage

In this stage, the tuning recommendation happens. Any new incoming application to run natively
on the coprocessor, is profiled against a small proportion of the tuning configuration, in the same
way as the profiling was implemented in the offline stage. Then it gets into the autotuner who uses
the application’s partial profiling along with his own established base to produce the application’s
personal tuning configuration. The mechanism behind the recommendation is the latent factor model
we described in Section 4.1.1. In particular, a set of applications ratings for configurations, which
includes the whole learning base plus the ratings from the partial profiling of the new application, is
used to train our model 4.1. Using the stochastic gradient descent 4.1.2, we try to minimize the squared
error function 4.2. So, a rating is described as in Figure 4.6 and therefore the prediction is the sum of
the four parts.

The outcome is two vectors of application and configuration biases and two matrices, one for the
applications and one for the configurations with values that represent the preferences over the latent
factor space.

The size of the partial profiling will be examined along with the composition of the learning base,
targeting both speed and accuracy over the system. In addition, towards improving our base and con-
sequently recommendation’s accuracy, we consider providing feedback to the system from the partial

78

Figure 4.6: Break up of a rating.

profilings. So, gradually our autotuner refines his recommendations. That also means that the size of
the tuning configurations’ set for the online stage could also decrease while the autotuner is online,
contributing to lesser time spent on new applications’ profiling. However, as the base grows, the pro-
cessing time of the latent factor model also increases. Thus, we need to investigate that also and find
a trade-off between recommendation accuracy and time.

The autotuner and its building blocks are illustrated in the Figure 4.7 below.

Figure 4.7: Autotuner’s components.

79

Chapter 5

Experimental Results

In this chapter we present the accuracy of our autotuner in respect of the learning base composition,
of the number of features, of the profile size for the incoming applications and of their feedback. In
the last part we compare the tuning configurations when we use an energy aware and an no energy
aware rating, so that we measure power savings.

To summarize our setup, our learning base (see 4.2.2) has been fully profiled against 2880 tuning
configurations. Each application that belongs to the learning base ran natively on the Intel Xeon Phi
coprocessor. Each new application was partially profiled against a varying but small proportion of the
tuning configurations.

Based on the aforementioned setup’s description we examine our autotuner.

5.1 Accuracy of Predictions

In order to measure our predictions, we employ the root mean square error (RMSE) metric and then
we compare the best predicted configuration with the best actual one as measured during normal
execution. The RMSE is defined as:

RMSE =

√∑
(u,i)∈K(rui − r̂ui)2

|K|

where K is the training set.

The ratings, as we mentioned before, are two:

1. rui1 = MFlops/sec
Watts (normalized to the base rating)

2. rui2 = IPC
Watts

and we examine both.

5.1.1 Rating: MFlops/sec per Watt

The initial learning base includes the applications: nn, kmeans, backprop, cfd, sradv1, streamcluster,
lud, heartwall, hotspot, sradv2, pre_euler, bt, cg and mg. A total of 14 applications. Ratings are pre-
dicted for hotspot3D, lavaMD, myocyte, ft, sp and lu. This composition of the learning base and the
test applications is based on the Pearson’s similarity function described in Section 4.2.2. In addition,
as a training percent from the incoming applications we use 10% of the total tuning configurations,
chosen randomly.

81

η1 η2 η3 η4 λ1 λ2 λ3 λ4

0.002 0.002 0.002 0.003 0.01 0.01 0.02 0.03

Table 5.1: Learing and regulating rates used.

For the latent factor model, we used the following learning and regulating rates, Table 5.1, which
where reckoned by grid search.

Firstly, we examine the number of features used to describe the latent factor space with and without
feedback. Figure 5.1 shows the RMSE.

Figure 5.1: RMSE for a number of features with or without feedback.

We notice that after 12 features every test application has its RMSE stabilized. Some applications,
such us myocyte and hotspot3D reach their best RMSE with about 8 features. However, that is caused
by the amount of similar applications in the learning base. For example, myocyte is close to only
streamcluster. Hence, we can choose 12 features as our dimension of latent factor space, the minimum
number as we are time aware and we care about the respond time of the autotuner. Furthermore, from
the RMSE with feedback we do not see any obvious improvement and that may be caused to the
small amount of feedback ratings used from the incoming applications that do not add significant
information to our learning base. However, from the similarity definition we know that some test
applications have resemblances, lavaMD and ft, sp and lu, so we choose the feedback version.

Now, we may examine the average RMSE for different training sizes of the incoming applications and
number of features. Figure 5.2 shows the RMSE as a function of two variables, number of features
and size of training set, with and without feedback.

82

Figure 5.2: Average RMSE for a number of features and training size with or without feedback.

It is apparent that the average RMSE for the known 1% and 2% training ratings of the new appli-
cations is high comparable with the rest training sizes, however not at prohibited levels. The 5% of
the configurations, which accounts for only 144 random tuning configurations, provides an average
RMSE very close to the one achieved when we know half the ratings (50% training size). The 10%
does not lead to any major improvement, but it is also an acceptable time consuming option which
should be examined also. So, we will examine the predictions of both the 5% and 10% training sizes.
The dimension of the latent factor space to which the model exhibits the best RMSE is 12 features
and slight better it is for 13 features. The feedback version also seems to add some accuracy, which is
more notable at the higher training sizes (>10%).

With reference to a latent feature space of dimension 12, we compare the predicted rating for different
training sizes of the incoming applications, with or without feedback as well as the correlation between
the predicted configurations and the actual best one in the latent factor space. For that relation we use
the Pearson function (4.2.2). The smaller the training size the faster the tuning prediction, thus we
start from very low sizes: 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%. From the previous Figure (5.2), as
the RMSE for small sizes was increasing, we expect that the small sizes’ predicted configurations will
present major divergences from the actual best one, which translates to small correlations. Figure 5.3
shows the average predicted ratings normalized to the best one.

We notice that on average the lowest rating we achieve we the predicted configurations is 90.49%
without feedback and 92.65% with feedback relative to the best rating. In addition, the base con-
figuration reaches the 70.0%, so we have a major improvement. However, we need to see also the
configurations that correspond to these values and their relation with the actual best. Table 5.2 shows
the correlation coefficients of the tuning configurations by application and by average.

83

Figure 5.3: Normalized ratings of predicted configurations with respect to training size.

Training Sizes

0.1% 0.2% 0.5% 1% 2% 5% 10%

nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb

hotspot3D 0.56 0.56 0.56 0.56 0.56 0.56 0.70 0.71 0.73 0.70 0.73 0.73 0.73 0.73
lavaMD 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.69 0.69 0.66 0.66 0.66 0.66
myocyte 0.81 0.81 0.78 0.78 0.78 0.61 0.60 0.60 0.78 0.78 0.78 0.60 0.78 0.60
ft 0.77 0.78 0.78 0.87 0.87 0.87 0.87 0.87 0.92 0.93 0.92 0.92 0.92 0.92
sp 0.95 0.75 0.89 0.88 0.95 0.88 0.85 0.95 0.95 0.95 0.91 0.95 0.95 0.88
lu 0.68 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.85 0.90 0.90 0.90

Average 0.76 0.78 0.78 0.80 0.81 0.77 0.78 0.80 0.83 0.83 0.81 0.80 0.82 0.78

Table 5.2: Correlations between the predicted configurations and the best one by application and by
average for different training sizes.

With boldface are annotated the maximum correlations for each application and average. Overall, the
predicted tuning configurations have from the least 0.1% a correlation greater than 0.70 with the best
one. On average, the closest configurations to the actual one occur for the 2%. Yet, since for every
training size we have a rating greater than 90% of the best and a tuning configuration with correlation
to the best one greater than 0.70 we may choose the training size which satisfies our needs both in
accuracy and time.

Further to the evaluation of the predictions, we present the performance achieved of the predicted
values specifically for the 2%, 5% and 10% training sizes, compared to the best ones and to the base
configuration. These are the training sizes with the most relative predicted configurations to the best
one (>0.80). Figure 5.4 shows the four performances for test set, as it was created in the Section 4.2.2,
when the predictions are run with feedback.

We see that the predicted configurations are very close to the actual ones. In addition, the improvement
from the base configuration is apparent. The predicted configurations from every training size are
almost equal, so the best choice would be the one that satisfies also the time constraints, i.e. provides
the fastest result. Thus the 2% is the optimum size of known ratings for the current model. Table 5.3
shows the exact ratings.

In order to finish our evaluation we need also to look with more detail and compare the configuration

84

Figure 5.4: Performance comparison for 12 features, 2%, 5% and 10% known ratings, with feedback.

Ratings

Application Actual Predicted 2% Predicted 5% Predicted 10% Base

hotspot3D 15.066466 13.667847 13.635916 13.635916 10.00
lavaMD 11.271719 10.160522 10.502893 10.502893 10.00
myocyte 12.166096 11.732373 11.812218 11.812218 10.00
ft 13.712121 13.478020 13.536496 13.536496 10.00
sp 12.665992 12.132006 12.132006 11.203003 10.00
lu 12.879007 12.643508 12.643508 12.643508 10.00

Table 5.3: Predicted ratings for 12 features, 2%, 5% and 10% known ratings, with feedback along
with the actual and the base ratings.

vectors of the best and the predicted performances. Then we can find the features that benefit each
application. Table 5.4 presents the configuration vectors for the best actual and the predicted 2%, 5%
and 10% ratings.

The configuration vectors generally agree over the number of cores and threads and over thread affin-
ity. They also have common optimization level and unroll policy. Some alterations are noted over the
huge pages, e.g. lavaMD, however that may be caused to the fact that huge pages do not affect a lot
the execution of the application. The memory requests may be few and can be served both from a 4KB
and a 2MB page without comparable latency. Furthermore, streaming stores do not always agree on
the cache eviction, but that may be also irrelevant because the cache eviction depends on the problem
size. Lastly, prefetch presents also some differences between the best actual and the predicted config-
urations vector. As a compiler’s flag prefetch represents a finer tuning, hence it is difficult to expose

85

Tuning
C
onfigurations

opt
prefetch

sstores
cache

evict
unroll

huge
pages

affinity
cores

threadspercore

hotspot3D
A
ctual

2
0

alw
ays

2
✓

✓
scatter

19
2

Predicted
2%

3
0

alw
ays

0
✓

✓
balanced

19
3

Predicted
5%

3
0

alw
ays

3
✓

-
balanced

19
3

Predicted
10%

3
0

alw
ays

3
✓

-
balanced

19
3

lavaM
D

A
ctual

3
4

alw
ays

2
✓

-
balanced

38
2

Predicted
2%

3
4

alw
ays

1
✓

✓
balanced

57
4

Predicted
5%

2
2

alw
ays

0
✓

-
balanced

57
3

Predicted
10%

2
2

alw
ays

0
✓

-
balanced

57
3

m
yocyte

A
ctual

3
2

never
-

-
✓

balanced
19

4
Predicted

2%
2

3
never

-
✓

-
balanced

19
3

Predicted
5%

3
0

alw
ays

3
✓

-
balanced

19
3

Predicted
10%

3
0

alw
ays

3
✓

-
balanced

19
3

ftA
ctual

2
2

alw
ays

0
-

-
scatter

57
2

Predicted
2%

3
2

alw
ays

0
-

✓
scatter

57
2

Predicted
5%

2
2

alw
ays

0
✓

-
scatter

57
2

Predicted
10%

2
2

alw
ays

0
✓

-
scatter

57
2

spA
ctual

2
2

alw
ays

1
✓

-
balanced

38
2

Predicted
2%

2
2

alw
ays

0
✓

✓
balanced

38
2

Predicted
5%

2
2

alw
ays

0
✓

✓
balanced

38
2

Predicted
10%

3
4

alw
ays

3
✓

-
balanced

38
2

luA
ctual

2
2

never
-

✓
✓

balanced
38

2
Predicted

2%
2

2
alw

ays
0

✓
✓

balanced
38

2
Predicted

5%
2

2
alw

ays
0

✓
✓

balanced
38

2
Predicted

10%
2

2
alw

ays
0

✓
✓

balanced
38

2

T
able

5.4:
B
estconfigurationsboth

actualand
predicted.

86

its effects. In addition, it is also a parameter affected by the problem size. By looking at the results as
a whole, the predictions are more than satisfying with fine accuracy.

To continue our evaluation, we will vary our learning base in order to observe how it behaves. The
test set will remain the same. From the coefficient matrix we can get the applications that are similar
to the test set (correlation >0.80). So, each testing application is connected with the following ones:

• hotspot3D, backprop, streamcluster, myocyte, hotspot

• lavaMD, cfd, sradv2, ft

• myocyte, hotspot3D, streamcluster

• ft, lavaMD, sradv2

• sp, bt, lu

• lu, bt, sp

If we leave only those relatives applications in our learning base we expect not to get a big degradation
in our predictions. We refer to the new learning base as ”learning base 2”. Figure 5.5 shows the RMSE
for the test applications.

Figure 5.5: RMSE for different number of features, with or without feedback based upon the learning
base 2.

Eventually, the learning base 2 seems to be insufficient and the threshold of the 0.80 does not fully
expose the similarities between the applications. For instance, myocyte’s RMSE is constant at around

87

1.0 whichmeans that streamcluster does not fully characterize its attributes. Furthermore, even though
hotspot3D has 0.8 correlation with myocyte, in the feedback version it does not provide noteworthy
improvement. The same applies also to the applications ft, hotspot3D, lu. If we lower the threshold
to 0.70 then the learning base will almost be identical with the first tested but omitting lud, cg, mg.
Hence, we will have the same outcome.

Overall, good results were achieved with a latent factor dimension of 12 and feedback. The train-
ing size of the incoming applications depends on the accuracy of the predictions we aim, hence for
training sizes of 0.1%-1% that require 3-30 minutes we get an accuracy around 0.70 and for training
sizes of 2%-5% that require 57-144 minutes we get an accuracy greater than 0.80. Still, always our
performance exceeds the 90% of the best configuration.

5.1.2 Rating: IPC per Watt

The initial learning base includes the applications: myocyte, kmeans, hotspot, heartwall, backprop,
lavaMD, hotspot3D, lud, sradv1, pre_euler, sp, ft, bt and cg. A total of 14 applications. Ratings are
predicted for sradv2, cfd, streamcluster, nn, lu and mg. The composition of the learning base was
derived from the neighboring of the 2 dimensional projection described in Section 4.2.2. In addition,
as a training percent from the incoming applications we use 10% of the total tuning configurations,
chosen randomly. For the latent factor model, we used the following learning and regulating rates,
Table 5.5, which where reckoned by grid search.

η1 η2 η3 η4 λ1 λ2 λ3 λ4

0.002 0.001 0.005 0.005 0.01 0.01 0.01 0.01

Table 5.5: Learing and regulating rates used.

Firstly, we examine the number of features required to describe the latent factor space with andwithout
feedback. Figure 5.6 shows the RMSE.

We notice that after 9 features the RMSE is stabilized at 0.2375 without feedback and 0.2387 with
feedback, on average. Thus, we can choose 9 features as our dimension of latent factor space, which
provides the fastest predictions as higher dimensions impute more latency. In addition, feedback does
not seem to benefit a lot our predictions. The best RMSE with feedback happens for features=11,
RMSE=0.2373 on average. So, we may argue that our learning base is consistent and does not need
any more information or that the knowledge from the partial profilings do not provide any substantial
contribution to the recommender model. Hence, we may also choose the non feedback version in order
to save time along with space. It should be noted that in order to be considerable the time and the space
latency from the feedback version, many applications should be tested as one application may add a
couple of seconds and space in the scale of bytes, depending on the training size.

Now, we may examine the average RMSE for different training sizes of the incoming applications and
number of features. Figure 5.7 shows the RMSE as a function of two variables, number of features
and size of training set, with and without feedback.

We notice that the biggest alterations happen between training sizes 1%, 2% and 5%, while the RMSEs
for the higher training sizes are very closewith the latter one. For oncemore, we observe that the RMSE
converges to 0.24 after 9 features for training sizes >5%. Overall, a good choice would be 5% or 10%
for the training size, as they produce a satisfactory RMSE. However, that should also be examined
by the prediction accuracy. The 20% does not provide considerable improvement when we take into
account the time needed for the partial profiling, around 576 tuning configurations. Furthermore, by
looking at the 50% we see no dramatic improvement, so probably the error remaining is due to the

88

Figure 5.6: RMSE for a number of features with or without feedback.

incompleteness of the model used. Yet, it is negligible. Lastly, feedback seems that it does not affect
our current model, hence we choose the most time saving approach, i.e. without feedback.

Besides the RMSE for the training sizes, the predictions accuracy compared to the best tuning con-
figuration should be evaluated. For that reason, the autotuner is run with training sizes 0.1%, 0.2%,
0.5%, 1%, 2%, 5%, 10%, a latent space dimension of 9 with and without feedback. The parameter
”prediction accuracy” consists of both performance achieved relative to the maximum and correla-
tion between the predicted tuning configuration and best one. The relation is defined by the Pearson
function, as done before. Figure 5.8 shows the average predicted ratings normalized to the best one.

As we expected, the bigger the training size the better the performance achieved. Still, for training
sizes >1%, the rating is steady at around 95%. For every training size, the ratings exceed the 85% of
the best configuration, both in the feedback and non feedback version. Slightly worse is the feedback
version so we could choose the no feedback version. That is not a general rule, as the specific test set
behaves in that way, for a more wider set of incoming applications in respect of features, feedback
should be considered because it has been proved to improve the tuning suggestions. Lastly, the base
configuration accounts to only 67.8% of the best one, so our predictions increase by a 25% which is
a considerable percentage.

To deepen our evaluation, we will examine the predicted tuning configurations of each application
that correspond to the previous training sizes with respect to their similarity with the best tuning con-
figuration. The similarity is calculated in the full latent feature space. Table 5.6 presents the similarity
coefficients.

For all the training sizes the correlation is greater than or equal to 0.75 and in particular for the training

89

Figure 5.7: Average RMSE for a number of features and training size with or without feedback.

Figure 5.8: Normalized ratings of predicted configurations with respect to training sizes.

sizes 0.5%,1%,2%,5% and 10% the similarities are over 0.80, which is a good result. With boldface
are annotated the coefficients with the largest values over the training sizes for each application. On
average, the best tuning configurations are produced for training sizes greater than 0.5%.

Next we will examine more meticulously the accuracy and the efficiency of our predictions for 9
features, without feedback, for 0.5%, 1%, 2% and 5% as the training size, because these values provide
good performance and tuning configurations.

90

Training Sizes

0.1% 0.2% 0.5% 1% 2% 5% 10%

nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb nfb fb

sradv2 0.75 0.75 0.73 0.73 0.78 0.73 0.76 0.73 0.76 0.81 0.83 0.83 0.83 0.83
cfd 0.75 0.82 0.82 0.75 0.93 1.00 0.95 0.99 0.99 0.96 0.96 0.96 0.96 0.95
streamcluster 0.78 0.78 0.78 0.74 0.78 0.80 0.80 0.78 0.79 0.80 0.80 0.79 0.80 0.80
nn 0.77 0.77 0.76 0.77 0.84 0.76 0.84 0.84 0.83 0.83 0.83 0.79 0.79 0.79
lu 0.59 0.62 0.59 0.62 0.59 0.61 0.79 0.61 0.63 0.72 0.81 0.72 0.72 0.71
mg 0.89 0.96 0.96 0.93 0.96 0.96 0.98 0.96 0.98 0.98 0.98 0.94 0.98 0.98

Average 0.75 0.78 0.77 0.76 0.81 0.81 0.85 0.82 0.83 0.85 0.87 0.84 0.85 0.84

Table 5.6: Correlations between the predicted configurations and the best one by application and by
average for different training sizes.

Figure 5.9 shows the best actual, the best predicted and the base rating for the six files that were tested
on the autotuner under the previous settings.

Figure 5.9: Performance comparison for 9 features, 0.5%, 1%, 2% and 5 % known ratings, without
feedback.

We observe that the predicted ratings are close to the actual ones and that profiling over smaller
percentages provide satisfactory tuning configurations, instead of the higher more time consuming
percentages. The 0.5% seems to be a good choice for the partial profiling. It accounts for only 14 tuning
configurations and requires approximately only 14 minutes. Lastly, it is apparent the improvement
from the base rating, which can reach up to 112% (sradv2) and at least 2.6% (cfd). In particular, the
Table 5.7 shows the exact ratings, where the percentage changes can be calculated.

91

Ratings

Predicted

Application Actual Base 0.5% 1% 2% 5%

sradv2 4.497278 2.069584 4.416150 4.401062 4.401062 4.469881
cfd 4.579562 4.449481 4.570718 4.100565 4.527340 4.242349
streamcluster 4.012238 2.461628 3.923021 3.638051 3.933886 3.954854
nn 6.373608 4.996673 6.271984 6.271984 6.146772 6.146772
lu 6.785066 4.658377 6.123672 6.181696 6.182525 6.135312
mg 3.896091 2.143704 3.626442 3.628947 3.628947 3.628947

Table 5.7: Predicted ratings for 9 features, 5% and 10% known ratings, without feedback along with
the actual and the base ratings.

It would be interesting to see also the tuning configurations to which these ratings correspond, and
try to extract the attributes that benefit each application. Table 5.8 presents the best configurations,
both actual and predicted, meticulously. We notice that our predictions agree with the actual ratings
in many fields, affinity, threading, optimization level. Thereafter we get some small variations. For
example, for streamcluster the best configuration use loop unroll whereas the predicted configurations
do not. Similarly, for mg the best configuration use the L1 as cache eviction level for the streaming
stores while the predicted configurations do not use any cache. Despite those small notes, the result
satisfies our aim.

To continue our evaluation of the autotuner, we will change our learning base in order to observe how
the model behaves and the consequences of such an action to the predictions. The test set will remain
the same. Towards that goal the two dimensional projection 4.5 from Section 4.2.2 would assist us.
We see that the test applications belong to two neighborhoods. Applications nn, lu belong to the group
lavaMD, hotspot3D, backprop, bt, sradv1, pre_euler and applications sradv2, cfd, streamcluster and
mg belong to the group ft, lud. So a first notion would be to get rid of the applications outside those
groups, referring to cg, myocyte, hotspot, kmeans, heartwall, sp, resulting in a learning base consist-
ing of lavaMD, hotspot3D, backprop, bt, sradv1, pre_euler, ft, lud. This learning base is referred as
”learning base 2”.

Figure 5.10 shows the RMSE that is produced under the new learning base. We notice that after 6
features the RMSE converges and the values are satisfying while for particular applications, such as
nn, streamcluster, it is even lower. Again there is not any obvious benefit from the feedback. This
result was expected as we kept the full neighborhoods as before, yet some alterations can be noted,
such as lu, cfd, which could possibly be ascribed to the fact that we omitted some relations between the
applications by looking only to the 2D projection. The number of features reduced to 6 as we removed
some ”irrelevant” applications that would provide their own features.

If we further reduce the learning base to the set bt, sradv1, ft, lud which are the closest neighbors to the
testing applications in the 2D projection, we get a slight worse RMSE comparing to the previous. This
learning base is referred as ”learning base 3”. Figure 5.11 shows that. We note also that after 4 features
the RMSE is stable. That happens because the learning base is far too small and the applications too
similar, in order for the model to extract a big enough latent factor space. Therefore, even though we
are able to predict ratings for the testing applications with a mediocre RMSE, we are missing important
information and the learning base could be characterized deficient. Again we may have omitted other
related applications to the ones in the test set as we are based only on the 2D factor space.

Concerning the learning base as an fundamental factor of our autotuner, we need to choose a set of
applications with a lot of diversity, which the model will be able to use and reckon a complete latent
factor space where the majority of the application will be able to map efficiently. For that reason,

92

Tu
ni
ng

C
on
fig
ur
at
io
ns

op
t

pr
ef
et
ch

ss
to
re
s

ca
ch
e
ev
ic
t

un
ro
ll

hu
ge

pa
ge
s

af
fin
ity

co
re
s

th
re
ad
sp

er
co
re

sr
ad
v2

A
ct
ua
l

3
4

al
w
ay
s

3
✓

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
0.
5%

3
2

al
w
ay
s

1
-

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
1%

3
2

al
w
ay
s

1
-

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
2%

3
2

al
w
ay
s

1
-

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
5%

2
2

al
w
ay
s

3
-

-
ba
la
nc
ed

19
4

cf
d

A
ct
ua
l

2
2

al
w
ay
s

3
✓

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
0.
5%

2
3

al
w
ay
s

2
✓

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
1%

2
2

al
w
ay
s

3
✓

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
2%

2
4

al
w
ay
s

3
✓

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
5%

2
4

al
w
ay
s

3
✓

-
sc
at
te
r

19
4

st
re
am

cl
us
te
r

A
ct
ua
l

2
4

al
w
ay
s

0
✓

-
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
0.
5%

2
2

al
w
ay
s

0
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
1%

2
4

ne
ve
r

-
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
2%

2
2

al
w
ay
s

1
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
5%

2
4

al
w
ay
s

1
-

✓
ba
la
nc
ed

19
4

nn A
ct
ua
l

3
4

al
w
ay
s

2
✓

-
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
0.
5%

2
3

al
w
ay
s

3
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
1%

2
3

al
w
ay
s

3
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
2%

2
3

al
w
ay
s

2
-

✓
ba
la
nc
ed

19
4

Pr
ed
ic
te
d
5%

2
3

al
w
ay
s

2
-

✓
ba
la
nc
ed

19
4

lu A
ct
ua
l

2
3

al
w
ay
s

0
✓

-
ba
la
nc
ed

19
3

Pr
ed
ic
te
d
0.
5%

2
2

al
w
ay
s

0
-

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
1%

2
2

ne
ve
r

-
✓

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
2%

2
2

al
w
ay
s

2
-

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
5%

2
3

al
w
ay
s

2
✓

-
sc
at
te
r

19
4

m
g

A
ct
ua
l

2
3

al
w
ay
s

1
-

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
0.
5%

2
2

al
w
ay
s

0
-

✓
sc
at
te
r

19
4

Pr
ed
ic
te
d
1%

2
2

al
w
ay
s

0
-

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
2%

2
2

al
w
ay
s

0
-

-
sc
at
te
r

19
4

Pr
ed
ic
te
d
5%

2
2

al
w
ay
s

0
-

-
sc
at
te
r

19
4

T
ab
le
5.
8:

B
es
tc
on
fig
ur
at
io
ns

bo
th
ac
tu
al
an
d
pr
ed
ic
te
d.

93

Figure 5.10: RMSE for different number of features, with or without feedback based upon the learn-
ing base 2.

between the three we created the most formal is the initial one. It proves to have more variance than
the rests.

For the particular rating formula and chosen learning base, the autotuner works best with a latent factor
of dimension 9. The training size is satisfying at 0.5% of known configurations. The feedback is not
essential however as the autotuner suggests more and more configurations the extra information could
be handy.

Now we will examine the learning base which was composed by the Pearson’s similarity function. It
consists of the applications: nn, kmeans, hotspot3D, cfd, streamcluster, lud, hotspot, sradv1, sradv2,
pre_euler, cg, bt, mg and ft. A total of 14 applications. Ratings are predicted for the applications
backprop, myocyte, lavaMD, heartwall, sp, lu. We use 10% of the ratings as known values for the
incoming applications. Figure 5.12 shows the RMSE for each application with respect to number of
features and with and without feedback.

We observe that early on, from 6 features, every application’s RMSE is steady. Every application
but myocyte has a RMSE below 0.5. That may not necessarily mean a bad outcome for myocyte. We
will evaluate it in the comparison between the actual and predicted best configurations. The fact that
we need only 6 features to characterize the test files can be justified by their neighborhood. Most of
the applications in the test set have strong correlations between them and they are similar to only 4
application in the learning base, nn, hotspot3D, sradv1 and bt. Hence, it is a very focused test set and
the rest applications should affect predictions by a small degree.

By varying the training size in the Figure 5.13, the predicted configurations can be compared with the

94

Figure 5.11: RMSE for different number of features, with or without feedback based upon the learn-
ing base 3.

best actual one.

From the very small training size of 0.1% the rating achieved is slightly over 93.0% and for every
higher size it gets better and better reaching 96.0%. That is a very good performance and on the
contrarywith the previous test set that was based on the 2D projection, these values show themaximum
performance that can be obtained, based on a robust and correlated test set. So, even if we use the 0.1%
of the tuning configurations for the partial profiling we get very promptly a decent suggestion. Note
that the 0.1% requires approximately 3 minutes of profiling.

So, if we specifically examine each application’s predicted configurations for the training sizes 0.1%,
0.2% and 5% with feedback we get Figure 5.14. The ratings of predictions from the two smaller
training sizes begin from 90.0% and escalate to 99.8% of the best rating. Generally, the predictions
are always over 90% of performance. The 5% on the contrary performs a bit better as its lowest rating
is at 94% and its highest 99.0%. It has a smaller range yet not important when we think of the time
required to achieve it, which is 50 times greater than the 0.1%.

Based on the previous results, we expect that the predicted configurations have high correlation coef-
ficients with the best configuration. That argument is true as it can be seen in the Table 5.9.

The coefficients are over 0.80 which means a strong similarity, and that also proves the fact that the
test set was very focused along some specific applications.

Overall, the coefficient matrix calculated by the Pearson’s correlation provides a strong learning base

95

Figure 5.12: RMSE for different number of features, with or without feedback based upon the learn-
ing base by Pearson’s similarity.

Figure 5.13: Predicted configurations ratings normalized to the best one with respect to training size.

96

Training Sizes

0.1% 0.2% 5%

nfb fb nfb fb nfb fb

min 0.70 0.64 0.67 0.71 0.72 0.72
max 0.98 0.98 0.98 0.82 0.92 0.93
average 0.85 0.80 0.83 0.78 0.84 0.84

Table 5.9: Minimum, maximum and average correlations of the 0.1%, 0.2% and 5% predicted con-
figurations with the best one.

and consequently very accurate predictions as the model is able to use effectively every application.

Figure 5.14: Performance comparison for 6 features, 0.1%, 0.2% and 5% known ratings, without
feedback.

5.2 Comparison with the Brute Force Search

In order to show the efficiency of our autotuner we need to compare him with the brute force search
over this large exploration space. Two variables are taken into account, time needed and performance
achieved relative to the best of the tuning configurations. We use the rating 1 and the applications we
used in that evaluation hotspot3D, lavaMD, myocyte, ft, sp and lu for the comparison.We examine two
training sizes, 0.2% and 1% with and without feedback. The time required is calculated as the average
execution time of each application over the whole tuning space multiplied by 4, which is the times
needed to take every performance counter required and following multiplied by the size of the tuning

97

configurations’ subset for the autotuner and by the whole tuning space, i.e. 2880 configurations, for
the brute force.

Figure 5.15 shows how the autotuner without feedback performs along with the brute force search and
Figure 5.16 shows the same but the autotuner uses feedback.

The mapping of the applications is: 1. hotspot3D, 2. lavaMD, 3. myocyte, 4. ft, 5. sp and 6. lu.

Figure 5.15: Performance vs Time, autotuner without feedback, 0.1% and 2% training sizes

We observe that with 0.2% training size for every prediction we need less than 8 minutes while we
achieve 82% to 98% performance relative to the best one. For the 1% training size we need maximum
40 minutes (5 times more configurations) to reduce the range of the performance achieved between
89% and 99%. The brute force search is prohibitively slow. Particularly, it requires 500 to 3800 min-
utes for each application in order to improve the performance by 22% to amere 1%. Thus, it is apparent
that a 62.5 fold increase in time does not compensate for a 22% improvement in performance.

For the versionwith feedback, the times required for the predictions are the same as before however the
performances have less variations and are more focused around 90%. Specifically, the 0.2% training
size reaches performances of 99%with 94.5% on average and the 1% further reduces its range between
92% and 99% with an average of 96.5%. More than before, the performances from the predictions in
less than 8 minutes and even those in less than 40 minutes, value more than the best ones that need
8.5 to 63 hours.

98

Figure 5.16: Performance vs Time, autotuner with feedback, 0.1% and 2% training sizes

5.3 Energy Aware and Unaware Predictions

In this section we compare the tuning configuration predictions from the energy aware rating 1 with
the ones from non aware rui3 = MFlops

sec (Normalized to the base). The test files are the same in both
versions and we evaluate also the power savings.

By executing the autotuner with rating 5.3 for the test applications hotspot3D, lavaMD, myocyte, ft,
sp and lu we get the following tuning configurations along with the relative ratings, Table 5.11. We
use 10% of the total tuning configurations as the training size. We notice that the power consumption
of the coprocessor agree with the ratings, e.g. energy aware configurations consume less power than
the non aware. The major variations in power seem to happen proportionally to the physical cores and
hardware threads activated on the card. The power range depending on the physical cores:

19 : 100-125 Watts

38 : 140-165 Watts

57 : 135-200 Watts

The performance reported is MFlops
sec normalized. If we calculate the percentage change of the energy

aware configurations from the non aware we get the following results, Table 5.10. We see that from
the predicted configurations we have on average 7.49% power savings for only 0.8% raw performance
degradation. That result is important as it demonstrates also energy efficiency of the coprocessor and

99

Power Performance

hotspot3D -16.30% -6.91%
lavaMD -15.76% -8.70%
myocyte 0.95% 1.40%
ft 0% 0.01%
sp -6.32% 8.62%
lu -7.50% 0.80%

Average -7.49% -0.80%

Table 5.10: Percentage change of raw performance between energy aware and unaware predictions.

shows also that an energy aware approach has more advantages and is limited in deteriorating raw
performance.

100

Tu
ni
ng

C
on
fig
ur
at
io
ns

op
t

pr
ef
et
ch

ss
to
re
s

ca
ch
e
ev
ic
t

un
ro
ll

hu
ge

pa
ge
s

af
fin
ity

co
re
s

th
re
ad
s/
co
re

Po
w
er

Pe
rf
or
m
an
ce

ho
ts
po
t3
D

A
ct
ua
lE

ne
rg
y

2
0

al
w
ay
s

2
✓

✓
sc
at
te
r

19
2

11
3.
0
W

11
1.
00

A
ct
ua
l

2
0

al
w
ay
s

3
✓

✓
sc
at
te
r

19
2

11
3.
0
W

11
1.
47

Pr
ed
ic
te
d
10
%
En
er
gy

3
0

al
w
ay
s

3
-

✓
ba
la
nc
ed

19
3

11
3.
0
W

10
1.
37

Pr
ed
ic
te
d
10
%

2
0

al
w
ay
s

3
✓

-
sc
at
te
r

57
2

13
5.
0
W

10
8.
89

la
va
M
D

A
ct
ua
lE

ne
rg
y

3
4

al
w
ay
s

2
✓

-
ba
la
nc
ed

38
2

15
0.
0
W

90
.9
0

A
ct
ua
l

2
4

al
w
ay
s

1
✓

-
ba
la
nc
ed

57
4

18
5.
0
W

11
1.
11

Pr
ed
ic
te
d
10
%
En
er
gy

2
2

al
w
ay
s

0
✓

✓
ba
la
nc
ed

38
4

15
5.
0
W

91
.0
1

Pr
ed
ic
te
d
10
%

2
4

al
w
ay
s

0
✓

✓
sc
at
te
r

57
4

18
4.
0
W

99
.6
8

m
yo
cy
te

A
ct
ua
lE

ne
rg
y

3
2

ne
ve
r

-
-

✓
ba
la
nc
ed

19
4

10
4.
0
W

11
9.
37

A
ct
ua
l

2
0

ne
ve
r

-
✓

-
ba
la
nc
ed

19
4

10
9.
0
W

12
0.
24

Pr
ed
ic
te
d
10
%
En
er
gy

3
0

al
w
ay
s

0
-

-
ba
la
nc
ed

19
3

10
6.
0
W

11
8.
12

Pr
ed
ic
te
d
10
%

3
0

al
w
ay
s

1
-

✓
ba
la
nc
ed

19
4

10
5.
0
W

11
6.
50

ft A
ct
ua
lE

ne
rg
y

2
2

al
w
ay
s

0
-

-
sc
at
te
r

57
2

19
9.
0
W

13
6.
44

A
ct
ua
l

3
3

al
w
ay
s

0
✓

-
sc
at
te
r

57
2

20
3.
0
W

13
7.
46

Pr
ed
ic
te
d
10
%
En
er
gy

2
4

al
w
ay
s

0
-

-
sc
at
te
r

57
2

20
0.
0
W

13
5.
88

Pr
ed
ic
te
d
10
%

2
2

al
w
ay
s

0
✓

✓
sc
at
te
r

57
2

20
0.
0
W

13
5.
90

sp A
ct
ua
lE

ne
rg
y

2
2

al
w
ay
s

1
✓

-
ba
la
nc
ed

38
2

16
1.
0
W

11
0.
23

A
ct
ua
l

2
4

al
w
ay
s

3
✓

✓
sc
at
te
r

57
2

17
7.
0
W

11
3.
95

Pr
ed
ic
te
d
10
%
En
er
gy

2
3

al
w
ay
s

1
✓

-
ba
la
nc
ed

38
2

16
3.
0
W

10
8.
77

Pr
ed
ic
te
d
10
%

3
3

ne
ve
r

-
✓

-
sc
at
te
r

57
2

17
4.
0
W

10
0.
14

lu A
ct
ua
lE

ne
rg
y

2
2

ne
ve
r

-
✓

✓
ba
la
nc
ed

38
2

14
6.
0
W

10
8.
69

A
ct
ua
l

2
2

al
w
ay
s

0
✓

-
sc
at
te
r

57
2

16
2.
0
W

11
1.
18

Pr
ed
ic
te
d
10
%
En
er
gy

2
3

al
w
ay
s

1
✓

-
ba
la
nc
ed

38
2

14
8.
0
W

10
8.
12

Pr
ed
ic
te
d
10
%

3
4

al
w
ay
s

0
✓

✓
sc
at
te
r

57
2

16
0.
0
W

10
7.
26

T
ab
le
5.
11
:
B
es
tc
on
fig
ur
at
io
ns

bo
th
ac
tu
al
an
d
pr
ed
ic
te
d
fo
re
ne
rg
y
aw

ar
e
an
d
no
n-
aw

ar
e
ra
tin
gs
.

101

Chapter 6

Discussion

6.1 General Assessment

Our autotuner proves to be effective in various environments. While varying the learning base, the
rating formula and the training size. However, caution should be exercised when tuning the stochastic
gradient descent’s parameters, i.e. learning rates and regulators, so that the model avoids overfitting
the training data and at the same time converges to satisfactory values. The predicted configurations
surpass the base performance and exhibit fine tuning for each application specifically. That is a very
important feature as for a developer to fine tune an application is a very toilsome task. He needs to
run performance analysis on each version of the application he makes in order to find critical sections
and modify them accordingly. He achieves higher performance gradually and not instantly.

In addition, the autotuner is relative fast once he is online. The offline part is the most time consuming
but the advantage is that it needs to happen only once. If the learning base consists of 14 applications,
with an average execution time on the coprocessor of 15 seconds, then for 2,880 tuning configura-
tions and 4 executions each we get a sum of 2,419,200 seconds or 672 hours. Thereafter, for each
new incoming application we need a partial profiling over the 0.1%-1% of the total tuning config-
urations. That step needs 4-40 minutes maximum and the autotuner returns in less than 30 seconds
the predicted best configuration. Depending on the performance levels we aim for, the training size
varies and consequently the time needed in the online stage. Yet, always we exceed the 90% of the
best performance. Besides the best configuration someone may ask the predicted rating/performance
for a particular tuning configuration which is also provided by the model.

Lastly, if we use feedback we expect to get improved predictions as the model further learns from the
incoming applications. In our experiments, we did not notice a major improvement because the test
size was small and the effect of the feedback was not propagated. However, it is a valid argument a
should be taken as plausible.

Table 6.1 shows the average percentage levels of the predicted configurations that were tested in our
experiments.

To comparewith other tuning tools, the autotuner presentsmany advantages. Firstly, themanual guide-
lines are not able to provide assistance for particular applications, instead they suggest general modifi-
cations and execution environments for the majority of the applications. Certainly, they do not guide to
the best tuning configuration. Secondly, the autotuner is able to respond for the best configuration over
a very large space of tuning exploration in a timely fashion outperforming iterative searching tools.
Even though the iterative searching tools guarantee the best configuration, our autotuner constantly
reports a configuration achieving more than the 90% performance of the best one, a very important
realization.

As a tool our autotuner was built to tune applications that run natively on the Intel Xeon Phi Copro-
cessor. However, the platform is not a restriction and by modifying the execution and the profiling for

103

Training size Best Rating Base Rating

0.1% 90.06% 131.42%
0.2% 93.39% 136.28%
0.5% 95.06% 138.71%
1% 94.53% 137.94%
2% 95.43% 139.25%
5% 95.47% 139.31%
10% 95.85% 139.87%

Table 6.1: Average percentages of the predicted configurations from the best and base ratings.

a different architecture the autotuner can easily be adapted and work efficiently.

6.2 Future Work

The current Autotuner can be expanded in various directions. Firstly, it can be extended by evaluat-
ing also concurrent execution on the Intel Xeon Phi Coprocessor. That means to be able and measure
the interference between the executing applications and assign them to exclusive sets of cores, under
performance and power restrictions. Furthermore, the host, the Intel Xeon Processor, can also be ”re-
cruited” and change the approach of application execution. The main running environment changes
to the processor and the coprocessor is used for offloading computing intensive parts of the code. So,
the Autotuner has to monitor the execution both on the processor and on the coprocessor as well as
explore the tuning configurations of the processor and exploit his architecture. Then the Autotuner
can acquire a generic profile by supporting different architectures and modes of execution, extending
also to GPUs and other multicore processors.

The employment of machine learning into the automatic tuning is very propitious approach and we
proved that we can achieve great results.

104

Bibliography

[1] Automatically tuned linear algebra software, atlas project. http://math-atlas.

sourceforge.net/. online; accessed 29-April-2016.

[2] Events for intel xeon phi coprocessor (code name: Knights corner). https://software.intel.
com/en-us/node/589941. online, accessed 10-May-2016.

[3] gprof(1) Linux user’s manual.

[4] Intel many integrated core architecture. https://software.intel.com/mic-developer. on-
line; accessed 28-April-2016.

[5] Intel©optimized linpack benchmark for linux* os. https://software.intel.com/en-us/

node/528615. online, accessed 18-May-2016.

[6] Intel©xeon phi™coprocessor linpack* and stream* performance. http://www.intel.com/

content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-linpack-stream.html.
online, accessed 18-May-2016.

[7] Library libhugetlb. https://github.com/libhugetlbfs/libhugetlbfs. online, accessed
31-May-2016.

[8] Linpack benchmark. http://www.netlib.org/benchmark/hpl/. online, accessed 17-May-
2016.

[9] Optimized sparse kernel interface library. http://bebop.cs.berkeley.edu/oski/. online;
accessed 29-April-2016.

[10] Optimizing memory bandwidth on stream triad. https://software.intel.com/en-us/

articles/optimizing-memory-bandwidth-on-stream-triad. online, accessed 18-May-
2016.

[11] Paradyn performance measurement tool. http://www.paradyn.org/. online; accessed 29-
April-2016.

[12] Readex. runtime exploitation of application dynamism for energy-efficient exascale computing.
http://www.readex.eu/. online; accessed 4-May-2016.

[13] Scalasca tool. http://www.scalasca.org/. online; accessed 29-April-2016.

[14] Stream benchmark. http://www.cs.virginia.edu/stream/. online, accessed 17-May-2016.

[15] Top500 list. http://top500.org/. online; accessed 28-April-2016.

[16] User and reference guide for the intel® c++ compiler 14.0. https://software.intel.com/
en-us/compiler_14.0_ug_c.

[17] Vampir tool. https://www.vampir.eu/. online; accessed 28-April-2016.

105

http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/
https://software.intel.com/en-us/node/589941
https://software.intel.com/en-us/node/589941
https://software.intel.com/mic-developer
https://software.intel.com/en-us/node/528615
https://software.intel.com/en-us/node/528615
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-linpack-stream.html
http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-linpack-stream.html
https://github.com/libhugetlbfs/libhugetlbfs
http://www.netlib.org/benchmark/hpl/
http://bebop.cs.berkeley.edu/oski/
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-on-stream-triad
http://www.paradyn.org/
http://www.readex.eu/
http://www.scalasca.org/
http://www.cs.virginia.edu/stream/
http://top500.org/
https://software.intel.com/en-us/compiler_14.0_ug_c
https://software.intel.com/en-us/compiler_14.0_ug_c
https://www.vampir.eu/

[18] X-tune. autotuning for exascale: Self-tuning software to manage heterogeneity. http://ctop.
cs.utah.edu/x-tune/. online; accessed 4-May-2016.

[19] Slowdown. The Economist, 418(8980):69–70, March 2016.

[20] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The fenics project
version 1.5. Archive of Numerical Software, 3(100), 2015.

[21] Cédric Andreolli, Philippe Thierry, Leonardo Borges, Gregg Skinner, and Chuck Yount. Chapter
23 - characterization and optimization methodology applied to stencil computations. In James
Reinders and Jim Jeffers, editors, High Performance Parallelism Pearls: Multicore and Many-
core Programming Approaches, volume 1, pages 377 – 396. Morgan Kaufmann, Boston, MA,
USA, 2015.

[22] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman
Amarasinghe. Petabricks: A language and compiler for algorithmic choice. SIGPLAN Not.,
44(6):38–49, June 2009.

[23] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The nas parallel benchmarks—summary and preliminary results. In Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pages
158–165, New York, NY, USA, 1991. ACM.

[24] Siegfried Benkner, Franz Franchetti, Hans Michael Gerndt, and Jeffrey K. Hollingsworth. Auto-
matic Application Tuning for HPC Architectures (Dagstuhl Seminar 13401). Dagstuhl Reports,
3(9):214–244, 2014.

[25] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive auto-tuning with boosted
regression trees. In Innovative Parallel Computing (InPar), 2012, pages 1–9, May 2012.

[26] Shirley Browne, Christine Deane, George Ho, and Phil Mucci. Papi: Performance application
programming interface. http://icl.cs.utk.edu/papi/index.html. online; accessed 28-
April-2016.

[27] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier
Temam. Rapidly selecting good compiler optimizations using performance counters. In Pro-
ceedings of the International Symposium on Code Generation and Optimization, CGO ’07, pages
185–197, Washington, DC, USA, 2007. IEEE Computer Society.

[28] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-Ha Lee, and
Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of
the 2009 IEEE International Symposium on Workload Characterization (IISWC), IISWC ’09,
pages 44–54, Washington, DC, USA, 2009. IEEE Computer Society.

[29] Chun Chen, Jacqueline Chame, and Mary W. Hall. CHiLL: A framework for composing high-
level loop transformations. Technical Report 08-897, University of Southern California, Jun
2008.

[30] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In Proceed-
ings of the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11,
pages 676–687, Washington, DC, USA, 2011. IEEE Computer Society.

106

http://ctop.cs.utah.edu/x-tune/
http://ctop.cs.utah.edu/x-tune/
http://icl.cs.utk.edu/papi/index.html

[31] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore archi-
tectures. In 2008 SC - International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12, Nov 2008.

[32] Christina Delimitrou and Christos Kozyrakis. QoS-Aware Scheduling in Heterogeneous Data-
centers with Paragon. In ACM Transactions on Computer Systems (TOCS), 2013.

[33] Jianbin Fang, Henk Sips, Lilun Zhang, Chuanfu Xu, Yonggang Che, and Ana Lucia Varbanescu.
Test-driving intel xeon phi (best paper award). In Proceedings of the 5th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE’14), March 2014.

[34] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[35] Simon Funk. Netflix update: Try this at home. http://sifter.org/~simon/journal/

20061211.html, December 2006. online; accessed 28-April-2016.

[36] Karl Fürlinger. Encyclopedia of Parallel Computing, chapter OpenMP Profiling with OmpP,
pages 1371–1379. Springer US, Boston, MA, 2011.

[37] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin,
Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christopher K. I. Williams, and
Michael O’Boyle. Milepost gcc: Machine learning enabled self-tuning compiler. International
journal of parallel programming, 39(3):296–327, 6 2011.

[38] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. A case for machine
learning to optimize multicore performance. In Proceedings of the First USENIX Conference on
Hot Topics in Parallelism, HotPar’09, pages 1–1, Berkeley, CA, USA, 2009. USENIX Associ-
ation.

[39] Michael Gerndt, Eduardo César, and Siegfried Benkner, editors. Automatic Tuning of HPC
Applications, The Periscope Tuning Framework. Shaker Verlag, April 2015.

[40] Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle, Stelios Ma-
magkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky Catthoor, Frederik Van-
deputte, and Koen De Bosschere. System-scenario-based design of dynamic embedded systems.
ACM Trans. Des. Autom. Electron. Syst., 14(1):3:1–3:45, January 2009.

[41] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatic selection of compiler
options using non-parametric inferential statistics. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’05, pages 123–132,
Washington, DC, USA, 2005. IEEE Computer Society.

[42] WimHeirman, Trevor E. Carlson, Kenzo Van Craeynest, IbrahimHur, Aamer Jaleel, and Lieven
Eeckhout. Automatic smt threading for openmp applications on the intel xeon phi co-processor.
In Proceedings of the 4th International Workshop on Runtime and Operating Systems for Super-
computers, ROSS ’14, pages 7:1–7:7, New York, NY, USA, 2014. ACM.

[43] Intel. Intel® vtune™amplifier. https://software.intel.com/en-us/

intel-vtune-amplifier-xe. online; accessed 28-April-2016.

[44] Intel. Intel Xeon Phi Coprocessor System Software Developers
Guide, March 2014. https://software.intel.com/en-us/articles/

intel-xeon-phi-coprocessor-system-software-developers-guide.

107

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide

[45] Intel. Intel Xeon Phi Coprocessor x100 Product Family, Datasheet, April
2015. http://www.intel.com/content/www/us/en/processors/xeon/

xeon-phi-coprocessor-datasheet.html.

[46] Jim Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance Programming.
Morgan Kaufmann Publishers Inc., Boston, MA, USA, 2013.

[47] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for par-
allel multicore stencil computations. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–12, April 2010.

[48] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[49] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature generation for machine
learning–based optimising compilation. volume 11, pages 14:1–14:32, New York, NY, USA,
Feb 2014. ACM.

[50] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets. Cam-
bridge university Press, 2014.

[51] C. K. Luk, R. Newton, W. Hasenplaugh, M. Hampton, and G. Lowney. A synergetic approach
to throughput computing on x86-based multicore desktops. IEEE Software, 28(1):39–50, Jan
2011.

[52] Renato Miceli, Gilles Civario, Anna Sikora, Eduardo César, Michael Gerndt, Houssam Haitof,
Carmen Navarrete, Siegfried Benkner, Martin Sandrieser, Laurent Morin, and François Bodin.
Applied Parallel and Scientific Computing: 11th International Conference, PARA 2012,
Helsinki, Finland, June 10-13, 2012, Revised Selected Papers, chapter AutoTune: A Plugin-
Driven Approach to the Automatic Tuning of Parallel Applications, pages 328–342. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[53] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque. Mate: Monitoring, analysis and tun-
ing environment for parallel/distributed applications. Concurrency and Computation: Practice
and Experience, 19(11):1517–1531, 2007.

[54] Futoshi Mori, Masaharu Matsumoto, and Takashi Furumura. High Performance Computing
for Computational Science – VECPAR 2014: 11th International Conference, Eugene, OR, USA,
June 30 – July 3, 2014, Revised Selected Papers, chapter Performance Optimization of the 3D
FDM Simulation of Seismic Wave Propagation on the Intel Xeon Phi Coprocessor Using the
ppOpen-APPL/FDM Library, pages 66–76. Springer International Publishing, Cham, 2015.

[55] Yoonju Lee Nelson, B. Bansal, M. Hall, Aiichiro Nakano, and K. Lerman. Model-guided per-
formance tuning of parameter values: A case study with molecular dynamics visualization. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1–8, April 2008.

[56] Markus Püschel, Franz Franchetti, and Yevgen Voronenko. Encyclopedia of Parallel Comput-
ing, chapter Spiral. Springer US, Boston, MA, 2011.

[57] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: adaptive control of distributed
applications. In High Performance Distributed Computing, 1998. Proceedings. The Seventh
International Symposium on, pages 172–179, Jul 1998.

[58] A. Sclocco, H. E. Bal, J. Hessels, J. v. Leeuwen, and R. V. v. Nieuwpoort. Auto-tuning dedis-
persion for many-core accelerators. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 952–961, May 2014.

108

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html

[59] Wai Teng Tang, Ruizhe Zhao, Mian Lu, Yun Liang, Huynh Phung Huynh, Xibai Li, and Rick
Siow Mong Goh. Optimizing and auto-tuning scale-free sparse matrix-vector multiplication on
intel xeon phi. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 136–145, Washington, DC, USA, 2015. IEEE
Computer Society.

[60] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable auto-tuning frame-
work for compiler optimization. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–12, May 2009.

[61] A. Tiwari and J. K. Hollingsworth. Online adaptive code generation and tuning. In Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 879–892, May
2011.

[62] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented tool suite for
x86 multicore environments. In Proceedings of PSTI2010, the First International Workshop on
Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010.

[63] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August. Com-
piler optimization-space exploration. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’03, pages
204–215, Washington, DC, USA, 2003. IEEE Computer Society.

[64] Samuel Williams, Dhiraj D. Kalamkar, Amik Singh, Anand M. Deshpande, Brian Van Straalen,
Mikhail Smelyanskiy, Ann Almgren, Pradeep Dubey, John Shalf, and Leonid Oliker. Optimiza-
tion of geometric multigrid for emerging multi- and manycore processors. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 96:1–96:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[65] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual per-
formance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

[66] Samuel WebbWilliams. Auto-tuning Performance on Multicore Computers. PhD thesis, Berke-
ley, CA, USA, 2008. AAI3353349.

[67] Claude J. Wright. Chapter 14 - power analysis on the intel xeon phi coprocessor. In James
Reinders and Jim Jeffers, editors, High Performance Parallelism Pearls: Multicore and Many-
core Programming Approaches, volume 1, pages 239 – 253. Morgan Kaufmann, Boston, MA,
USA, 2015.

109

Appendix

6.3 Source Code

The source code of the Autotuner tool that was developed for the purpose of this diploma thesis can
be found at https://github.com/LefterisChris/thesis-NTUA. The code is licensed under the
GPLv3 licence and can be modified and redistributed under these terms.

Copyright ©2016, Eleftherios - Iordanis Christoforidis.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see http://www.gnu.org/licenses/.

111

https://github.com/LefterisChris/thesis-NTUA
http://www.gnu.org/licenses/

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη
	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution
	Thesis Structure

	Related Work
	Performance Analysis
	Gprof
	OmpP
	Vampir
	PAPI
	Intel® VTune™Amplifier
	Likwid
	Paradyn
	SCALASCA
	Periscope

	Performance Autotuning
	Self-Tuning libraries
	Compiler optimizations search
	Application parameters search
	Compiler optimizations & Application parameters search

	Autotuners tested on Intel Xeon Phi
	How our work is different from the bibliography?

	Experimental Testbed & Environment
	Intel Xeon Phi
	Architecture
	Performance Monitoring Units
	Power Management

	Roofline Model
	Model's Background
	The Roofline of our Testbed

	Tuning Parameters
	Compiler's Flags
	Huge Pages
	OpenMP Thread Affinity Control

	Applications Used
	Rodinia Benchmarks Suite
	NAS Parallel Benchmarks

	Characterization of the Tuning Space

	The Autotuner: Background & Implementation
	Collaborative Filtering
	The Latent Factor Model
	Stochastic Gradient Descent

	Offline Stage
	Structure
	The Composition of the Learning Base

	Online Stage

	Experimental Results
	Accuracy of Predictions
	Rating: MFlops/sec per Watt
	Rating: IPC per Watt

	Comparison with the Brute Force Search
	Energy Aware and Unaware Predictions

	Discussion
	General Assessment
	Future Work

	Bibliography
	Appendix
	Source Code

