574 research outputs found

    14th International Conference on Turbochargers and Turbocharging

    Get PDF
    14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms

    Experimental analysis of a novel Savonius based spline geometry with flexible blades for VAWT

    Get PDF
    Design, manufacture and tests in wind tunnel of a Savonius wind rotor with flexible bladesopenEmbargo temporaneo per motivi di priorità nella ricerca previo accordo con terze part

    Experimental and Theoretical Analyses of Adiabatic Two-phase Flows in Horizontal Feed Pipes

    Get PDF
    The majority of technical separation processes for fluid mixtures utilize the principle of rectification. If a two-phase mixture is fed into the column, possibly undesirable flow morphologies or severe droplet carry-over may occur, which detrimentally affect separation efficiency and equipment integrity. Currently, the two-phase flow behavior in feed pipes is hardly predicable and mostly based on empirical or heuristic methods, which do not properly account for a broad range of possible fluid properties and plant dimensions. As a consequence, costly safety margins are applied. Feed pipes to separation columns are often characterized by horizontal inlet nozzles, small length-to-diameter ratios and complex routing, involving elbows or bends. The pipe lengths are too short to enable the two-phase flow to fully develop, which thus, enters the column with unknown flow morphology. Since developing flows have rarely been studied, today’s engineering practice relies on existing predictive methods for fully developed two-phase flows. Graphical methods can hardly represent gradual transitions between flow regimes. Analytical models provide only simplified flow representations of the two-phase flow that have not yet been qualified for developing pipe flow. In this work, a comprehensive experimental database of horizontal water-air flows in two test sections with nominal pipe diameters of D = 50 mm and D = 200 mm and feed pipe lengths in the range 10 < L/D < 75 was established. This way, the data cover developing pipe flows with entrance lengths typical for two-phase feeds of separation columns and more developed flows that are comparable with the extensively studied reference system water-air. A particular focus was put on the effect of pipe bends on the flow morphology up- and downstream. The flow morphology was captured using imaging wire-mesh sensors. A 4D fuzzy algorithm was applied to objectively identify the flow two-phase morphologies. Based on their fuzzy representation, the flow morphologies were classified and a novel 2D visualization technique is proposed to discuss the flow development along the feed pipes. Undesired flow morphologies (intermittent flow and entrainment) during the operation of two-phase feeds are hardly predictable by conventional design tools. The inception of intermittent flows was analyzed using the experimental data. Consequently, the inception criteria based on the required liquid levels for fully developed intermittent flows were adapted for short entrance lengths. The characteristic dynamics of flow morphologies that are known to cause the onset of entrainment were analyzed. Based on wave frequencies, a predictive criterion for the susceptibility of wavy flows for the onset of entrainment is introduced and applied to straight feed pipes and horizontal 90° bends. Among the dozens available, 66 reduced-order models for the prediction of the void fraction were tested for straight feed pipes and horizontal 90° pipe bends. Thereof, the ones most suitable for variable operating conditions and pipe geometries were identified and adapted. Complementary 3D simulations were performed to verify the applicability of numerical codes (VoF, AIAD) for flows with free interfaces. The flow morphologies were successfully reproduced at macroscopic scale, however, the simulation results rank behind reduced-order models considering their quantitative predicting capabilities.:Abstract II Kurzfassung IV Acknowledgement VI Nomenclature VIII Table of Contents XIII 1 Introduction 1 1.1 Thermal separation in view of the 21st century 1 1.2 Engineering and design of rectification plants 2 1.3 Outline of the thesis 4 2 State of the art 5 2.1 Two-phase feeds in thermal separation 5 2.1.1 Feed condition as adjustable parameter 5 2.1.2 Thermohydraulic optimization 8 2.1.3 Hydrodynamic conditioning 9 2.2 Hydrodynamics of two-phase feeds 11 2.2.1 Flow morphologies in feed pipes 11 2.2.2 Droplet entrainment 14 2.2.3 Flow regime maps 17 2.2.4 Consequences for two-phase feeds 19 2.3 Modelling of two-phase feeds 23 2.3.1 Basic definitions 23 2.3.2 Fundamentals of the two-fluid model 25 2.3.3 The interfacial level gradient 29 2.3.4 Analytical models 32 2.3.5 CFD simulations for commercial feed pipes 34 2.4 Objectives of this thesis 36 3 Experimental method and algorithms for flow characterization 37 3.1 Experimental setups 37 3.2 Wire-mesh sensors 40 3.3 Experimental procedure 42 3.4 Data processing 44 3.4.1 Fuzzy flow morphology classification 45 3.4.2 Power spectral density 48 3.5 Measurement uncertainty 49 4 Flow morphologies in different feed pipe geometries 53 4.1 Developing two-phase flow in straight pipes 53 4.2 Effect of pipe curvatures on the flow morphology 55 4.3 Morphology recovery 57 4.4 Conclusions 60 5 Prediction of undesirable flow morphologies in feed pipes 61 5.1 Initiation of intermittent flows 61 5.2 Onset of droplet entrainment 62 5.2.1 Vulnerable flow morphologies 62 5.2.2 Derivation of a criterion for onset of entrainment 64 5.2.3 Adjustment of the criterion for the investigated pipe geometries 67 5.3 Conclusions 70 6 Reduced-order modelling of two-phase feeds 71 6.1 Prediction of void fraction 71 6.2 Liquid levels 75 6.3 Conclusions 78 7 CFD modelling of two-phase feeds 79 7.1 Simulation setup 79 7.2 Multiphase models 82 7.3 Comparison with experimental data 83 7.3.1 Straight pipes 83 7.3.2 Horizontal 90° bends 85 7.4 Conclusions 88 8 Summary and recommendations for future work 89 8.1 Summary 89 8.2 Recommendations for future work 91 References 94 List of figures 113 List of tables 118 Appendix i Scientific publications and contributions xxxiii Eidesstattliche Erklärung xxxviiDie meisten technischen Verfahren zur Trennung von Flüssigkeitsgemischen beruhen auf dem Prinzip der Rektifikation. Wird ein Zweiphasengemisch in die Trennkolonne eingespeist, können unerwünschte Strömungsmorphologien oder ausgeprägte Tröpfchenverschleppung auftreten, welche sich nachteilig auf die Trennleistung und die Integrität einzelner Anlagenkomponenten auswirken. Derzeit lässt sich das Verhalten solcher Zweiphasenströmungen in Einspeiseleitungen kaum vorhersagen und basiert meist auf empirischen oder heuristischen Methoden, die ein breites Spektrum möglicher Stoffeigenschaften und Anlagendimensionen nicht angemessen berücksichtigen. Infolgedessen müssen kostspielige Sicherheitszuschläge angewendet werden. Einspeiseleitungen von Trennkolonnen sind häufig durch horizontale Eintrittsstutzen, ein geringes Länge-zu-Durchmesser-Verhältnis und eine komplexe Leitungsführung mit Bögen und anderen Normteilen gekennzeichnet. Typische Rohrlängen sind zu kurz, um eine vollständig entwickelte Zweiphasenströmung auszubilden, welche daher mit unbekannter Strömungs-morphologie in die Trennkolonne eintritt. Da derartige Strömungen jedoch bisher nur selten untersucht wurden, verlässt man sich gegenwärtig in der technischen Praxis auf bestehende Vorhersagemethoden für voll entwickelte Zweiphasenströmungen. Grafische Methoden können jedoch die allmählichen Übergänge zwischen Strömungsformen kaum darstellen. Analytische Modelle liefern nur vereinfachte Näherungswerte der Zweiphasenströmung, die noch nicht für sich entwickelnde Rohrströmung qualifiziert wird. In dieser Arbeit wurde eine umfangreiche experimentelle Datenbasis horizontaler Wasser-Luft-Strömungen in zwei Versuchsstrecken mit Rohrinnendurchmessern von D = 50 mm und D = 200 mm und Einlauflängen im Bereich 10 < L/D < 75 erstellt. Auf diese Weise decken die Daten sowohl sich entwickelnde Rohrströmungen mit typischen Einlauflängen für Einspeiseleitungen ab, als auch weiter (in axialer Richtung) entwickelte Strömungen, die mit dem umfangreich untersuchten Referenzsystem Wasser-Luft vergleichbar sind. Die Auswirkung von Rohrbögen auf die Strömungsmorphologie stromauf- und stromabwärts wurde gezielt untersucht. Die Strömungsmorphologie wurde mit bildgebenden Gittersensoren erfasst. Ein 4D-Fuzzy-Algorithmus wurde zur objektiven Identifizierung der Strömungsmorphologien eingesetzt. Auf Grundlage dieser Fuzzy-Darstellung der Strömung wurden die Strömungsmorphologien klassifiziert, und es wurde eine neuartige 2D-Visualisierungstechnik entworfen, mit der die Strömungsentwicklung entlang der Einspeiseleitungen diskutiert wurde. Unerwünschte Strömungsmorphologien (intermittierende Strömung und Tropfenmitriss) während des Betriebs zweiphasiger Einspeisungen sind mit herkömmlichen Auslegungswerkzeugen kaum vorherzusagen. Das Einsetzen intermittierender Strömungen wurde auf Grundlage der experimentellen Daten analysiert. Daraufhin wurden existierende Kriterien, basierend auf den notwendigen Mindestfüllständen, für das Einsetzen intermittierender Strömungen in Abhängigkeit von den untersuchten Einlauflängen angepasst. Die charakteristische Dynamik von Strömungsmorphologien, die Tropfenmittriss hervorrufen, wurde analysiert. Voraussagemethoden zur Vorhersage der Anfälligkeit welliger Strömungen für das Auftreten von Tropfenmitriss wurden auf der Grundlage von Wellenfrequenzen entwickelt und für gerade Einspeiserohre und horizontale 90°-Bögen angewandt. Von den zahlreichen verfügbaren Modellen zur Vorhersage des Gasanteils wurden 66 Modelle reduzierter Ordnung für gerade Einspeiseleitungen und horizontale 90°-Rohrbögen getestet. Davon wurden die für variable Betriebsbedingungen und Rohrgeometrien am besten geeigneten Modelle ermittelt und angepasst. Komplementäre 3D-Simulationen wurden durchgeführt, um die Anwendbarkeit numerischer Codes (VoF, AIAD) für Strömungen mit freien Grenzflächen zu bestätigen. Die Strömungsmorphologien wurden im makroskopischen Maßstab erfolgreich reproduziert, die Simulationsergebnisse bleiben jedoch hinsichtlich ihrer quantitativen Vorhersagekraft hinter den Modellen reduzierter Ordnung zurück.:Abstract II Kurzfassung IV Acknowledgement VI Nomenclature VIII Table of Contents XIII 1 Introduction 1 1.1 Thermal separation in view of the 21st century 1 1.2 Engineering and design of rectification plants 2 1.3 Outline of the thesis 4 2 State of the art 5 2.1 Two-phase feeds in thermal separation 5 2.1.1 Feed condition as adjustable parameter 5 2.1.2 Thermohydraulic optimization 8 2.1.3 Hydrodynamic conditioning 9 2.2 Hydrodynamics of two-phase feeds 11 2.2.1 Flow morphologies in feed pipes 11 2.2.2 Droplet entrainment 14 2.2.3 Flow regime maps 17 2.2.4 Consequences for two-phase feeds 19 2.3 Modelling of two-phase feeds 23 2.3.1 Basic definitions 23 2.3.2 Fundamentals of the two-fluid model 25 2.3.3 The interfacial level gradient 29 2.3.4 Analytical models 32 2.3.5 CFD simulations for commercial feed pipes 34 2.4 Objectives of this thesis 36 3 Experimental method and algorithms for flow characterization 37 3.1 Experimental setups 37 3.2 Wire-mesh sensors 40 3.3 Experimental procedure 42 3.4 Data processing 44 3.4.1 Fuzzy flow morphology classification 45 3.4.2 Power spectral density 48 3.5 Measurement uncertainty 49 4 Flow morphologies in different feed pipe geometries 53 4.1 Developing two-phase flow in straight pipes 53 4.2 Effect of pipe curvatures on the flow morphology 55 4.3 Morphology recovery 57 4.4 Conclusions 60 5 Prediction of undesirable flow morphologies in feed pipes 61 5.1 Initiation of intermittent flows 61 5.2 Onset of droplet entrainment 62 5.2.1 Vulnerable flow morphologies 62 5.2.2 Derivation of a criterion for onset of entrainment 64 5.2.3 Adjustment of the criterion for the investigated pipe geometries 67 5.3 Conclusions 70 6 Reduced-order modelling of two-phase feeds 71 6.1 Prediction of void fraction 71 6.2 Liquid levels 75 6.3 Conclusions 78 7 CFD modelling of two-phase feeds 79 7.1 Simulation setup 79 7.2 Multiphase models 82 7.3 Comparison with experimental data 83 7.3.1 Straight pipes 83 7.3.2 Horizontal 90° bends 85 7.4 Conclusions 88 8 Summary and recommendations for future work 89 8.1 Summary 89 8.2 Recommendations for future work 91 References 94 List of figures 113 List of tables 118 Appendix i Scientific publications and contributions xxxiii Eidesstattliche Erklärung xxxvi

    CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges

    Get PDF
    Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes

    Data-driven modelling of compressor stall flutter

    Get PDF
    Modern aircraft engines need to meet ever more stringent requirements that greatly increase the complexity of design, which strives for enhanced performance, reduced operating costs, emissions and noise simultaneously. The drive for performance leads to the development of thin, lightweight, highly loaded fan and compressor blades which are increasingly more prone to incur high, sustained vibratory stresses and aeroelastic problems such as flutter. The current practice employs preliminary design tools for flutter that are often based on empiricism or simplified analytical models, requiring extensive use of computational fluid dynamics to verify aeroelastic stability. As the industry moves to new designs, fast and accurate prediction tools are needed. In this thesis, data-driven techniques are employed to model the aeroelastic response of compressor blades. Machine learning has been applied to a plethora of engineering problems, with particular success in the field of turbulence modelling. However, conventional, black-box data- driven methods based on simple input parameters require large databases and are unable to generalise. In this work a combination of machine learning techniques and reduced order models is proposed to address both limitations at the same time. Previous knowledge of flutter is introduced in the physics guided framework by formulating relevant, steady state input features, and by injecting results from low-fidelity analytical models. The models are tested on several unseen cascades and it is found that training on even a single geometry yields accurate results. The models developed here allow flutter prediction of fan and compressor flutter stability based on the steady state flow only without a need for any CPU intensive unsteady simulations. Hence, one can predict flutter stability of a given blade for different mechanical properties (mode shape, frequency) at near zero additional cost once the mean flow is known. Moreover, for fan flutter, the model developed here can be integrated with available analytical models of intake to analyse the consequences of intake properties, such as length and acoustic liners location, on the stability of fan blades. The EU goal of climate-neutrality by 2050 requires novel design concepts in aviation which is unachievable without complimentary novel prediction and design tools. The research presented in this thesis will allow one to explore the design space for flutter stability based on steady flow only, and hence offers such an alternative. To the best of the author’s knowledge, no previous research is available on modelling of compressor stall flutter with data-driven techniques.Open Acces

    Numerical Prediction of Automotive Underhood Airflows using an Uncalibrated Fan Body Force Model

    Get PDF
    Underhood vehicle airflow simulations are an important part of the overall vehicle thermal management process, especially in the preliminary stages of the vehicle development program when performing experimental work on cooling system prototypes can prove to be expensive, time-consuming, or simply impossible due to the absence of any physical vehicle prototypes. Accurate prediction of the automotive fan performance, which forms a critical component of the cooling module, is a prerequisite for the optimum sizing and design of heat exchangers, and the rest of the under-hood installations. The coupled and complex nature of the under-hood flow environment necessitates consideration of the entire front-end cooling module, and preferably the entire vehicle, in a single simulation to judge the fan performance. Direct modelling of the rotating fan blades in a full vehicle simulation can yield unacceptably long run times, hence the norm is to use simplified numerical models which can capture the general fan behaviour at a reduced cost. Industrial practice is to calibrate these fan models with experimental or high-fidelity simulated fan performance data, which slows down the design process and is expensive. This work solves this problem by using an uncalibrated body force fan modelling approach, which only requires fan geometry information and no a-priori fan performance data. The approach has previously shown promising results for aircraft engine fan applications, however it’s suitability for automotive fan applications is tested for the first time. The model performs with a comparable accuracy as the current state-of-the-art calibrated fan modelling techniques. It predicts the radiator airflow rate to within 8% of the experimentally-measured value at idle. At high vehicle speed, the accuracy improves to 1%. Success in this project facilitates a low-cost, reliable and rapid aerothermal analysis tool for designing vehicle cooling systems

    Desenvolvimento de uma ferramenta computacional de código aberto para projecto de hélices no âmbito do projecto MAAT

    Get PDF
    This thesis presents the development of a new propeller design and analysis software capable of adequately predicting the low Reynolds number performance. JBLADE software was developed from QBLADE and XFLR5 and it uses an improved version of Blade Element Momentum (BEM) theory that embeds a new model for the three-dimensional flow equilibrium. The software allows the introduction of the blade geometry as an arbitrary number of sections characterized by their radial position, chord, twist, length, airfoil and associated complete 360º angle of attack range airfoil polar. The code provides a 3D graphical view of the blade, helping the user to detect inconsistencies. JBLADE also allows a direct visualization of simulation results through a graphical user interface making the software accessible and easy to understand. In addition, the coupling between different JBLADE modules avoids time consuming operations of importing/exporting data, decreasing possible mistakes created by the user. The software is developed as an open-source tool for the simulation of propellers and it has the capability of estimating the performance of a given propeller geometry in design and off-design operating conditions. The current development work was focused in the design of airship propellers. The software was validated against different propeller types proving that it can be used to design and optimize propellers for distinct applications. The derivation and validation of the new 3D flow equilibrium formulation are presented. This 3D flow equilibrium model accounts for the possible radial movement of the flow across the propeller disk, improving the performance prediction of the software. The development of a new method for the prediction of the airfoil drag coefficient at a 90 degrees angle of attack for a better post-stall modelling is also presented. Different post-stall methods available in the literature, originally developed for wind turbine industry, were extended for propeller analysis and implemented in JBLADE. The preliminary analysis of the results shows that the propeller performance prediction can be improved using these implemented post-stall methods. An inverse design methodology, based on minimum induced losses was implemented in JBLADE software in order to obtain optimized geometries for a given operating point. In addition a structural sub-module was also integrated in the software allowing the estimation of blade weight as well as tip displacement and twist angle changes due to the thrust generation and airfoil pitching moments. To validate the performance estimation of JBLADE software, the propellers from NACA Technical Report 530 and NACA Technical Report 594 were simulated and the results were checked against the experimental data and against those of other available codes. The inverse design and structural sub-module were also validated against other numerical results. To verify the reliability of XFOIL, the XFOIL Code, the Shear Stress Transport k-ω turbulence model and a refurbished version of k-kl-ω transition model were used to estimate the airfoil aerodynamic performance. It has been shown that the XFOIL code gives the closest prediction when compared with experimental data, providing that it is suitable to be used in JBLADE Software as airfoil’s performance estimation tool. Two different propellers to use on the MAAT high altitude cruiser airship were designed and analysed. In addition, the design procedure and the optimization steps of the new propellers to use at such high altitudes are also presented. The propellers designed with JBLADE are then analysed and the results are compared with conventional CFD results since there is no experimental data for these particular geometries. Two different approaches were used to obtain the final geometries of the propellers, since, instead of using the traditional lift coefficient prescription along the blade, the airfoil’s best L3/2/D and best L/D were used to produce different geometries. It was shown that this new first design approach allows the minimization of the chord along the blade, while the thrust and propulsive efficiency are maximized. A new test rig was developed and used to adequately develop and validate numerical design tools for the low Reynolds numbers propellers. The development of an experimental setup for wind tunnel propeller testing is described and the measurements with the new test rig were validated against reference data. Additionally, performance data for propellers that are not characterized in the existing literature were obtained. An APC 10”x7” SF replica propeller was built and tested, providing complementary data for JBLADE validation. The CAD design process as well as moulds and propeller manufacture are also described. The results show good agreement between JBLADE and experimental performance measurements. Thus it was concluded that JBLADE can be used to design and calculate the performance of the MAAT project high altitude cruiser airship propellers.Nesta tese é apresentado o desenvolvimento de um novo código para projeto e análise de hélices, capaz de prever adequadamente o desempenho a baixos números de Reynolds. O JBLADE foi desenvolvido partindo dos códigos QBLADE e XFLR5 e utiliza uma versão aperfeiçoada da teria do elemento da pá que contém um novo modelo que considera o equilíbrio tridimensional do escoamento. O código permite que a pá seja introduza como um número arbitrário de secções, caracterizadas pela sua posição radial, corda, ângulo de incidência, comprimento, perfil e ainda pela polar 360º associada ao perfil. O código permite uma visualização gráfica em 3D da pá, ajudando o utilizador a detetar possíveis inconsistências. O JBLADE também permite uma visualização direta dos resultados das simulações através de um interface gráfico, tornado o código acessível e de fácil compreensão. Além disso, a interligação entre os diferentes módulos do JBLADE evita operações demoradas de importação e exportação de dados, diminuindo assim possíveis erros criados pelo utilizador. O código foi desenvolvido como um código aberto, para a simulação de hélices, e que tem a capacidade de estimar o desempenho de uma determinada geometria de hélice nas condições de operação do seu ponto de projeto e fora do seu ponto de projeto. O trabalho de desenvolvimento aqui apresentado foi focado no projeto de hélices para dirigíveis de grande altitude no âmbito do projeto MAAT (Multibody Advanced Airship for Transportation). O software foi validado para diferentes tipos de hélice, provando que pode ser utilizado para projetar e otimizar hélices para diferentes finalidades. São apresentadas a derivação e validação do novo modelo de equilíbrio tridimensional do escoamento. Este modelo de equilíbrio 3D tem em conta o possível movimento radial do escoamento ao longo do disco da hélice, melhorando as estimativas de desempenho do software. O desenvolvimento de um novo método para a estimativa do coeficiente de arrasto dos perfis a 90º, permitindo uma melhor modelação do desempenho pós-perda é também apresentado. Diferentes modelos de pós perda presentes na literatura e originalmente desenvolvidos para a indústria das turbinas eólicas foram implementados no JBLADE e a sua aplicação a hélices para melhorar a estimativa do desempenho foi analisada. Os resultados preliminares mostraram que a estimativa de desempenho das hélices pode ser melhorada, utilizando estes modelos de pós-perda. Uma metodologia de projeto inverso, baseada no mínimo das perdas induzidas foi implementado no JBLADE, de modo a ser possível obter hélices com geometrias otimizadas para um dado ponto de projeto. Além disto, um módulo de cálculo estrutural foi também implementado, permitindo estimar o peso das pás, a deformação das mesmas, quer em termos de flexão, quer em termos de torção, devido à tração gerada pela própria hélice e aos momentos do perfil. Para validar as estimativas de desempenho do JBLADE foram utilizadas hélices originalmente apresentadas nos relatórios técnicos NACA, nomeadamente no relatório técnico 594 e 530. Estas hélices foram simuladas no JBLADE e os resultados foram comparados com os dados experimentais e com as estimativas de desempenho obtidas através de outros códigos numéricos. O módulo de projeto inverso e o módulo estrutural foram também validados, através da comparação com outros resultados numéricos. De modo a verificar a fiabilidade do código XFOIL usado no JBLADE para previsão das características dos perfis das pás, o modelo de turbulência k-ω Shear Stress Transport e uma versão reformulada do modelo de transição k-kl-ω foram utilizados em simulações RANS para comparação dos resultados do desempenho aerodinâmico de perfis. Os resultados mostraram que o código XFOIL dá uma estimativa de desempenho mais próxima dos dados obtidos experimentalmente do que os modelos RANS CFD, provando que pode ser utilizado no JBLADE como ferramenta de estimava de desempenho aerodinâmico dos perfis. Em vez da tradicional prescrição do coeficiente de sustentação ao longo da pá para melhor L/D, foi utilizado os pontos de melhor L3/2/D para o projeto de uma hélice para o dirigível cruzador do projeto MAAT. Os procedimentos de otimização empregados ao longo do processo de projeto destas hélices para utilização em grandes altitudes são também descritos. As hélices projetadas com o JBLADE foram analisadas e os resultados obtidos foram comparados com simulações convencionais de dinâmica de fluidos computacional, uma vez que não existem dados experimentais para estas geometrias em particular. Foram utilizadas duas aproximações diferentes de modo a obter duas geometrias finais. Foi mostrado que esta nova abordagem de projeto de hélices leva à minimização da corda necessária ao longo da pá, enquanto a tração e a eficiência da hélice são maximizadas. Foi desenvolvida uma nova instalação experimental para ensaio e caracterização de hélices de baixo número de Reynolds no âmbito do projeto MAAT, que foi posteriormente utilizada para desenvolver e validar ferramentas numéricas para projeto destas hélices. Além da descrição do desenvolvimento da instalação experimental, é também apresentada a validação da mesma, através da comparação das medições de diferentes hélices com dados experimentais presentes na literatura, obtidos em diferentes instalações de referência. Foi construída e testada uma réplica da hélice APC 10”x7” SF, fornecendo dados adicionais para a validação do JBLADE. É ainda apresentado o processo de desenho da réplica no software CAD e de construção dos moldes e do protótipo da hélice. Os resultados mostraram uma boa concordância entre as estimativas do JBLADE e as medições experimentais. Assim, conclui-se que o JBLADE pode ser utilizado para projetar e estimar o desempenho das hélices que poderão ser utilizadas pelo dirigível cruzador do MAAT bem como em outras aplicações
    corecore