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Abstract

Modern aircraft engines need to meet ever more stringent requirements that greatly
increase the complexity of design, which strives for enhanced performance, reduced
operating costs, emissions and noise simultaneously. The drive for performance leads
to the development of thin, lightweight, highly loaded fan and compressor blades which
are increasingly more prone to incur high, sustained vibratory stresses and aeroelastic
problems such as flutter.
The current practice employs preliminary design tools for flutter that are often based
on empiricism or simplified analytical models, requiring extensive use of computational
fluid dynamics to verify aeroelastic stability. As the industry moves to new designs,
fast and accurate prediction tools are needed. In this thesis, data-driven techniques
are employed to model the aeroelastic response of compressor blades.
Machine learning has been applied to a plethora of engineering problems, with particular
success in the field of turbulence modelling. However, conventional, black-box data-
driven methods based on simple input parameters require large databases and are
unable to generalise. In this work a combination of machine learning techniques and
reduced order models is proposed to address both limitations at the same time. Previous
knowledge of flutter is introduced in the physics guided framework by formulating
relevant, steady state input features, and by injecting results from low-fidelity analytical
models.
The models are tested on several unseen cascades and it is found that training on
even a single geometry yields accurate results. The models developed here allow
flutter prediction of fan and compressor flutter stability based on the steady state
flow only without a need for any CPU intensive unsteady simulations. Hence, one can
predict flutter stability of a given blade for different mechanical properties (mode shape,
frequency) at near zero additional cost once the mean flow is known. Moreover, for fan
flutter, the model developed here can be integrated with available analytical models of
intake to analyse the consequences of intake properties, such as length and acoustic
liners location, on the stability of fan blades. The EU goal of climate-neutrality by 2050
requires novel design concepts in aviation which is unachievable without complimentary
novel prediction and design tools. The research presented in this thesis will allow one
to explore the design space for flutter stability based on steady flow only, and hence
offers such an alternative. To the best of the author’s knowledge, no previous research
is available on modelling of compressor stall flutter with data-driven techniques.
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Chapter 1

Introduction

This chapter provides the fundamental concepts to understand turbomachinery flutter,
along with building the vocabulary required for the literature, methods and results
presented in this thesis. The basics of aeroelasticity are discussed, with a focus on the
important characteristics in a turbomachinery context and a classification of compressor
specific aeroelastic instabilities. An overview of the methods to predict flutter is offered,
with the intent of both reviewing the state-of-the-art and providing clear reasoning as
to why a data-driven approach to modelling has been proposed. Finally, the work’s
objective and outline are given.

1.1 The Compressor Map

Axial flow compressors and fans are crucial components of aircraft engines. Modern
compressors must reliably operate over a wide range of conditions, in order to accom-
modate every stage of the aircraft flight envelope. At takeoff, the aircraft requires
maximum thrust which is achieved by pushing the shaft to its maximum rotation speed,
allowing a greater mass of air through the engine and ultimately increasing the loading
on the blades. At cruise, the compressor operates at design, or nominal, conditions and
maximum efficiency. During the landing phase, the wheel speed is reduced to decrease
the speed of the aircraft and allow descent.

The operating condition of the machine is conventionally represented on a compres-
sor map, such as the one in Fig. (1.1), which shows the delivered pressure ratio as a
function of mass flow rate. A speedline is a line of constant wheel speed, expressed as
percentage of nominal speed. The working line is the line along which the compressor
operates in steady conditions. This is not always the case as, during transient manoeu-
vres such as acceleration or deceleration of the compressor, the operating conditions
deviate from this line (Rolls-Royce, 2015, Chapter 1.5). The safe and reliable operation
of the engine is limited by the surge and choke lines.
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Figure 1.1 Illustration of an axial compressor map. Adapted from Bontemps (2020)

When reducing mass flow rate at constant speed, the angle of attack on the blades
increases, increasing the work input which in turn delivers higher pressure ratio, but, at
the same time, higher incidence could lead to flow separation, reducing efficiency and
pressure ratio. The balance between these effects make it so that a peak pressure ratio
exists for every speedline. If the mass flow is reduced further the blades can oscillate
between being stalled and unstalled, and longitudinal oscillations of the flow occur; this
process is known as surge. In severe cases, when the flow can no longer be compressed
to the required outlet pressure, surge can cause a complete flow reversal which causes
violent axial vibrations which damage the shaft and compromise the whole engine.

On the other hand, increasing the mass flow rate at constant speed reduces the
angle of attack onto the blades, increasing the axial velocity of the flow through the
compressor. The bladed passage acts as a convergent-divergent nozzle, thus the mass
flow can increase until, eventually, when the Mach number at the throat reaches unity,
a shock wave spanning the whole passage appears, the mass flow rate can no longer be
increased by reducing the outlet pressure and the flow is said to be choked.

Assuming a subsonic relative inlet Mach number, with transonic flow conditions
over the blade, the flow topology encountered as the compressor throttles along a
speedline, from choke up to near stall, is schematically illustated in Fig. (1.2). At
high mass flow rate, the incidence is negative and from the throat section onwards
the Mach number is greater than one until a shock wave covering the whole passage
appears. As the mass flow is reduced, the incidence is close to zero, the shock wave
moves upstream and the supersonic region is limited to a small pocket near the leading
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edge. Finally, nearing the stall condition, the incidence is high and the shock wave
moves very close to the leading edge. All three configurations, depending on incidence
and shock strength, can display a degree of flow separation on the aft section of the
airfoil. These flow features play an important role in the interaction between fluid and
vibrating blade.

(a) Choked condition (b) Nominal condition (c) Near stall condition

Figure 1.2 Transonic flow topologies as mass flow rate decreases along a speedline. Shock
wave ( ) and sonic line ( ) delimit the pocket of supersonic flow in the passage. Illustration
adapted from Rendu (2016).

1.2 Aeroelasticity

The study of interactions between the inertial, elastic, and aerodynamic forces acting
on a body in a fluid stream is the subject matter of aeroelasticity. The combinations of
these forces give rise to different sub-fields of study that are conventionally positioned
on the Collar (1946) triangle shown in Fig. (1.3). Mechanical vibration is the discipline
concerned with studying the interaction between inertial and the restoring forces arising
from the elasticity of materials; stability and control are affected by the interaction of
aerodynamic forces with a rigid body, and static aeroelasticity describes the interaction
of aerodynamic and elastic forces. The interplay between all three forces is the subject
of dynamic aeroelasticity. Static and dynamic aeroelasticity are the disciplines of
particular interest in turbomachinery.

1.2.1 Static Aeroelasticity

Static aeroelasticity in turbomachinery is concerned with studying the effect of aerody-
namic and centrifugal loads on the elastic deformation of the blade, when both can be
assumed to be invariant in time. In fact, if the flow through the machine is completely
steady, the blade will deform under these loads until a new equilibrium is established,
which means that during operation, the blades will have a different shape compared
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Figure 1.3 Collar (1946) Triangle of forces

to the original design. Although static deformation does not usually pose a stability
problem in the context of turbomachinery, the resulting untwist and change in passage
shape can change the steady performance of the machine and ultimately alter the surge
and flutter margin. This is, of course, assuming that the blades do not incur into static
divergence, i.e. the blades break under these static loads.

1.2.2 Dynamic Aeroelasticity

Dynamic aeroelasticity studies the unsteady interaction between the vibrating blade
and the time varying aerodynamic forces acting on it. The concern of the aeroelastician
is to ultimately evaluate the energy exchange that takes place between blade and fluid
flow, in order to assess the aeroleastic stability of the system. If the fluid extracts
energy from the structure, the vibration amplitude will decay with time and the blade
is said to be stable. On the other hand, a blade is unstable if the fluid imparts work
to the structure, since the vibration amplitude will increase until the blade breaks.
The blade can also reach a dynamic equilibrium and exhibit a limit cycle oscillation
with constant amplitude. Although this last scenario is not characterised by an abrupt
failure, it is equally undesirable as fatigue can and will eventually cause the blade to
break. As a matter of fact, this is how the vast majority of blades fail, they reach high
cycle fatigue and crack. It is customary to separate dynamic aeroelastic phenomena
into two categories: vibrations induced by an external forcing, further differentiated in
forced response and non synchronous vibrations, and self-excited vibrations, i.e. flutter.

Forced response vibrations are characterised by an external forcing whose periodicity
is a multiple of some base frequency, normally the engine angular frequency, and whose
source is found at a different spatial location from the vibrating blade. The wakes
coming from an upstream blade row are a source of forced response vibration, as
they induce velocity and pressure fluctuations that ultimately result into a periodic
forcing due to the relative motion of the blade rows. Intake distortions and downstream
potential effects are also sources of forced response.
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Non synchronous vibrations (NSV) are also driven by a forcing coming from the
flow, but unlike forced response, the frequency of unsteadiness is characteristic of an
aerodynamic instability that takes place at the same spatial location of the blade row,
e.g. vortex shedding due to stalling of the blade themselves can be a source of NSV.
This means that NSV is not characterised by forcing that is a multiple of the blade
row angular frequency. NSV are an important topic in turbomachinery aeroelasticity,
but are rather difficult to predict accurately even with CFD. Efforts have been made
recently to rigorously model their behaviour (Stapelfeldt and Brandstetter, 2020).

Flutter is a self-excited, self-sustained aeroelastic instability and as such it requires
no external forcing. The unsteady aerodynamic loading is neither convected from
upstream nor generated by downstream potential disturbances, but it is produced in
the immediate vicinity of the blade by its own vibration.

The discussed aeroelastic instabilities can be represented on a Campbell (1924)
diagram shown in Fig. (1.4). The diagram shows the rotor shaft speed on the horizontal
axis and frequency on the vertical axis. The horizontal lines represent the blade natural
vibration frequency, while the family of lines starting from the origin represent engine
orders (EO), i.e. excitations whose frequency is a harmonic of the shaft speed. One
can see that forced response takes place where EO and mode frequency coincide, while
flutter and NSV are not associated to any specific EO.

Figure 1.4 Illustration of a Campbell diagram

In the following section, we examine a number of properties of importance in the
study of turbomachinery flutter and that will start hinting at the multidisciplinary
nature of the problem.
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1.2.3 Properties of interest in turbomachinery

Blade mode shape

As any mechanical system, turbomachinery blades are characterised by natural fre-
quencies and mode shapes of vibration. These are referred to as in-vacuo vibration
characteristics as they are obtained in absence of a surrounding medium, such as air.
In operation, the unsteady aerodynamic forces resulting from the blade oscillation
can be significant enough to alter the vibration characteristics of the structure. The
aeroelastic system, i.e. the coupled unsteady flow and vibrating blade, can therefore
vibrate with modes and frequencies that are different from the ones obtained in-vacuo.
The separation in modeshape and frequency between the coupled aeroelastic system
and the structure in-vacuo depends on the magnitude of aerodynamic forces, the
amplitude of vibration and the ratio of blade’s mass to the mass of surrounding fluid,
simply referred to as mass ratio. For example, wings are hollow, lightweight and highly
flexible structures that typically exhibit coalescence bending-torsion flutter, because
the two modes are close in frequency and the stiffness added by the aerodynamic forces
is enough to make them coalesce into a unique coupled mode. On the other hand,
turbomachinery flutter predominantly occurs in a single mode and frequency, quite
close to the in-vacuo vibration characteristics of the blade (Srinivasan, 1997).

Fig. (1.5) shows the variation of mode frequency due to aerodynamic loads for a
wing and a turbomachinery blade, with coalescnce flutter taking place at the crossing
of two mode lines.

Figure 1.5 Variation of mode frequency due to aerodynamic loads for: (a) a wing; (b) a
turbomachinery blade. The crossing of two lines denotes coalescence flutter. Adapted from
Rendu (2016).

Nevertheless, coalescence flutter has also been observed in unducted fans (Ducharme,
1987), low mass ratio, low solidity fans (Clark et al., 2012), and turbines (Corral et al.,
2009).
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Vibration of bladed disk assemblies

The blades in a turbomachinery row are in close proximity to one another, allowing
them to interact with each other. The blades’ behaviour is said to be coupled and
the nature of this interaction can be mechanical in nature, with the extent of the
mechanical coupling depending on the disk and on the presence of support structures
such as shrouds. For example, highly rigid disks with removable locking mechanism
do not affect the blades which vibrate in their own mode, whereas flexible disks, or
disks with blades cast directly inside (blisk), exhibit strong interaction and have well
defined assembly modes (Srinivasan, 1997). The rest of this discussion is focused on
rigid disks only, as these are most common in the vast majority of compressor and fan
flutter studies. The aerodynamic coupling occurs because the unsteadiness caused by
the blade’s vibration affects the flow field around its neighbours.

If mechanical and aerodynamic nonuniformities are negligible, the vibration of the
assembly can be easily described as a summation of orthogonal modes defined by the
number of nodal diameters, ND. This parameter formally refers to the number of
diameters where the vibration amplitude is null, separating lobes with positive and
negative displacement at a given instant in time. An illustration with different nodal
diameters is shown in Fig. (1.6). During operation, the vibratory pattern can be a
standing wave, always the case of ND = 0, or a travelling wave, forward if it travels in
the direction of the rotor speed, backward in the opposite case.

+

−

(a) ND = 1

+−

+ −

(b) ND = 2

+

−
+

−
+

−

(c) ND = 3

Figure 1.6 Blade-disk assembly vibration pattern with different nodal diameters.

In a travelling wave mode, the blades oscillate identically except for a constant
phase shift between neighbours. This phase shift is defined as the interblade phase
angle, IBPA or σ, and it represents one of the most important aeroleastic parameters
in turbomachinery. The interblade phase angle can only take a finite number of values
due to the cyclic symmetry of the problem and it is defined as

σ =
2πm

Nb

(1.1)
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where Nb is the number of blades and m = ND is the equivalent circumferential order.

Reduced frequency

An important parameter for the study of fluid-structure interaction is the ratio between
the characteristic time of the flow and the characteristic time of the vibration. The
definition of reduced frequency for a turbomachinery blade is

k =
ωc

U
(1.2)

where ω is the vibration angular frequency, c is the blade chord and U the relative
inlet flow velocity. Eq. (1.2) expresses the reduced frequency as ratio of time taken
for a fluid particle to flow past one chord length to the time taken for the blade to
complete one vibration cycle. The value of k is highly influential in aeroelasticity and
three main category of problems can be identified:

- quasi-steady aerodynamics (k ≪ 1) : the flow responds immediately to distur-
bances caused by the vibration

- unsteady aerodynamics (k ≈ 1) : the flow and vibration are strongly coupled

- highly unsteady aerodynamics (k ≫ 1) : the flow can be considered constant
during a vibration cycle

Aeroacoustics in annular ducts

Aeroacoustics concerns the study of sound generation and propagation within a com-
pressible flow, most often with the intent of understanding and reducing the noise
signature of lifting devices.

In turbomachinery, wave propagation takes place within an annular duct rather than
a free field. The presence of solid walls gives boundary conditions that constrain the
characteristics of pressure fluctuations in the flow field. Therefore only certain modes
are allowed. These are identified by the pair (m,n), representing the circumferential
and radial order, respectively. Fig. (1.7) shows examples of such pressure fluctuation
modes at given axial location and time instant. Moreover, for a given frequency, only
certain modes can travel undisturbed. Modes that propagate without attenuation are
said to be cut-on, while modes whose amplitude decays exponentially with distance
are said to be cut-off. The frequency at which waves change from cut-on to cut-off
and viceversa is aptly named cut-off frequency (Tyler and Sofrin, 1962). The cut-off
frequency depends on the Mach number and flow angles of the base flow, thus, as the
blades in a turbomachinery row change the flow field, we will have different cut-off
frequencies and propagation angles upstream and downstream of the blades.
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(a) (m,n) = (3, 1) (b) (m,n) = (5, 2) (c) (m,n) = (7, 3)

Figure 1.7 Pressure fields in annular duct for different circumferential-radial order

In a flutter context, several researchers have shown the importance of characterising
acoustic propagation conditions. Atassi et al. (1995) have shown that the amplitude of
upstream running waves increases greatly in the vicinity of shocks, in a phenomenon
named acoustic blockage. Vahdati and Cumpsty (2015) performed a three-dimensional
CFD analysis of a state-of-the-art fan blade, and observed that flutter occurs in the
frequency and nodal diameter range where the generated acoustic waves are cut-on
upstream and cut-off downstream. Zhao et al. (2017) developed a model to calculate
the change in aerodynamic damping due to pressure waves reflected at the intake of
a fan, which may contribute positively or negatively to aeroelastic stability. There is
therefore a strong link between aeroacoustics and aeroelasticity.

Operating point sensitivity

Flutter can occur in different locations of the compressor operating map. This allows
to categorise flutter into several classes, pictured in Fig. (1.8):

- choke flutter occurs when the incidence of the incoming flow is reduced and a
shock wave spanning the entire passage is formed

- stall flutter, the most common type and the object of this thesis, occurs when
flow separates from the blade, or when viscous effects are important, and can be
further categorised into subsonic, transonic and supersonic, depending on flow
velocity

Classical flutter has not been listed since it is not associated with any particular
operating point. It occurs when the flow is subsonic and remains attached to the blade,
thus it is dominated by inviscid effects, which drive the phase lag between aerodynamic
forces and airfoil velocity. The phase lag can be caused by acoustic and vortical waves,
and by the interaction with neighbouring blades.
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Figure 1.8 Typical flutter regions on a compressor map. Adapted from Bontemps (2020)

1.3 Flutter

The types of compressor flutter listed previously will now be discussed further to
identify the main flow features driving each one.

1.3.1 Choke Flutter

Choke flutter occurs when the flow in the passage is transonic and the oscillation of a
shock wave extending from suction to pressure side interacts with the blade movement.
The accurate numerical prediction of this phenomenon is difficult as it involves large
shock oscillations that can induce non-linear effects. Nevertheless, the triggering
mechanism was studied by Rendu et al. (2020) using linearised CFD methods. They
found that choke flutter is triggered by a combination of viscous effects, namely flow
separation after the shock, and inviscid effects, that is the amplification of upstream
running acoustic waves generated at the trailing edge and amplified at the shock front.
This mechanism is analogous to the acoustic blockage described by Atassi et al. (1995).
It is a less common type of flutter in civil fans and compressors, which receives less
attention as compared to other types.

1.3.2 Stall Flutter

Stall flutter occurs at part-speed regime, when airfoils operate at an incidence higher
than nominal (Dowell, 2015); it is normally associated with high steady loading and
low reduced frequency, for blades vibration in the first flap (1F), sometimes referred to
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as flapwise bending (also simply bending), or torsion (1T) mode (Srinivasan, 1997),
in forward travelling assembly modes, with positive low nodal diameters from 1 to 6
(Vahdati et al., 2001). Vahdati et al. (2011) state there are two types of mechanisms
that drive stall flutter: flow driven and acoustic driven.

For the flow driven mechanism, the inception of stall itself is not a necessary
condition, though the flow separation, and its interaction with the suction side shock
wave, is a key component for this type of instability. On the other hand, the acoustic
driven mechanism is driven by the interaction of blade vibration with an upstream
running wave caused by the blade vibration itself and the reflected wave from the intake.
These conclusions are confirmed by a number of previous and subsequent studies.

Isomura and Giles (1998) carried out a numerical study of a transonic fan and
concluded that the source of the instability is the shock wave/boundary layer interaction
(SBLI) which primes the shock to oscillate, destabilising the blade. Vahdati et al.
(2001) also performed a numerical study on a different fan blade, finding that actually
the shock wave has a stabilising effect, while the opposite is true of the flow separation.
It is therefore clear that these flow features can both exacerbate and eradicate flutter,
depending on geometry, flow field, modeshape and frequency. Vahdati et al. (2011)
carried out a numerical campaign to investigate the mechanism of wide-chord fan
flutter. They found that SBLI only is not sufficient to explain the loss of stability
near stall, and that this event is driven by acoustic waves propagating upstream being
reflected at the intake highlight. They name this loss of stability “flutter bite”. Vahdati
and Cumpsty (2015) performed a numerical analysis of a state-of-the-art fan blade,
and concluded that flow separation, followed by radial migration of flow along the span
towards the casing, decreases aerodynamic damping. They found that aerodynamic
damping reduces as the twist component in the first flap mode increases, similar to
what Panovsky and Kielb (1999) concluded for turbines. Finally, they state that flutter
occurs in the frequency and nodal diameter range where the generated acoustic waves
are cut-on upstream and cut-off downstream.

Building on this knowledge, Stapelfeldt and Vahdati (2019) presented two strategies
to improve the flutter margin of an unstable fan blade. The first addresses the flow
driven mechanism by restaggering sections of the blade, so that the radial pressure
distribution is altered and the flow separation, with consequent radial flow migration,
is mitigated. The second strategy involves bleeding a small amount of fluid at different
chord locations, in order to attenuate the upstream running pressure wave from trailing
edge to leading edge, thus addressing the acoustic driven mechanism. Finally, Rendu
et al. (2019) presented a radial decomposition method of the blade vibration to identify
the flutter source of a fan blade. They show that the fan blade is rendered unstable
due to the highly destabilising contribution of the tip section of the blade, where the
separation is most severe. By dividing the blade into radial panels and vibrating them
individually, they found that the instability though is not caused by the tip itself, but
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rather is the vibration of lower panels that induces a destabilising unsteady pressure
on the tip.

Bontemps (2020) compiled a list of references studying stall flutter events, reported
here in Table (1.1), from which transpires that stall flutter events are most common
when:

- the wheel speed is in the range for which the flow is transonic and away from the
design point

- the reduced frequency is between 0.5 and 1.0

- the critical modeshape is the first flap (1F)

- the nodal diameter is small and positive

The work of this thesis is based on these observations.

Table 1.1 Conditions of stall flutter appearance in literature (in part from Bontemps (2020))

Reference Speed k Nb Mode ND

Isomura and Giles (1998) 79%Ω 0.88 22 1F 2
Srivastava et al. (2003) 90%Ω - 22 1F 2
Sanders et al. (2004) (1) 70%Ω 0.72 22 1F 2
Sanders et al. (2004) (2) 85%Ω 0.68 22 1F 2
Vahdati et al. (2011) 78%Ω - 20 1F 2
Aotsuka and Murooka (2014) 80%Ω - 18 1F 2
Vahdati and Cumpsty (2015) 89%Ω 0.54 20 1F 1− 2− 3
Stapelfeldt and Vahdati (2018) (1) Mtip = 0.86− 0.98 0.54 20 1F 2− 3
Stapelfeldt and Vahdati (2018) (2) Mtip = 0.80− 0.94 0.66 18 1F 2
Rendu et al. (2019) Mtip = 0.86− 0.98 0.7 20 1F 2
Jia et al. (2021) 80%Ω - 18 1F 2− 3

1.4 Prediction Methods for Flutter

This section aims at presenting a brief overview of the prediction methods employed
to characterise the unsteady flow field in turbomachinery, and the consequent fluid-
structure interaction that might lead to flutter instability. The methods are organised
in increasing order of complexity, from semi-analytical to the numerical solution of
the full 3D Navier-Stokes equations, and can be roughly divided into classical and
integrated methods. The summary presented here is based on the exhaustive reviews
by Marshall and Imregun (1996) and Casoni and Benini (2021).
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Uncoupled methods approach the aeroelastic problem without taking into account
the impact of flow on structural vibration. These methods typically involve first
determining the free vibration of blades to obtain their modeshape, followed by
calculating unsteady aerodynamic loading caused by the imposed modeshape (with
any amplitude), and subsequently determining blade flutter stability. This way, the
complex non-linear interaction between fluid and structure is broken down into two
simpler, independent linear systems that can be analyzed separately with reduced
complexity. These normally assume small perturbations about a steady state, subsonic
or supersonic, inviscid, irrotational flow. Whitehead (1960) developed a model to
calculate the unsteady forces induced on an infinite, two-dimensional cascade of
vibrating flat plates. The flow was assumed to be inviscid and incompressible, and
never predicted flutter for plunge (bending) mode, due to the lack of steady loading.
This argument was later proved by Whitehead (1962), who extended his previous
method to include deflection and thus loading. The strong correlation between steady
loading and blade stability is also shown by Akai and Atassi (1980), using results
obtained from an incompressible flow model for cascades of thick and cambered airfoils
developed by Atassi and Akai (1980). Compressibility effects were considered by
Whitehead (1972) and Smith (1972) to develop a model for, again, a cascade of flat
plates in subsonic flow; while Adamczyk (1978) developed an unsteady, compressible
actuator disk theory for supersonic flow where the effects of shocks and steady loading
were included by means of empirical correlations. An extension to the model proposed
by Whitehead (1972) has been formulated by Barbarossa et al. (2016), who were able
to account for flow deflection by modelling the curvature of airfoils with zero thickness.
The latest analytical model to be developed is that of Corral and Vega (2017), which is
able to quantify the effect of modeshape and aerodynamic loading on flutter stability,
in the low reduced frequency limit, although it does require the mean flow field to be
computed with CFD.

Integrated methods for computation typically involve coupling the motion of blades
with the flow, using either a fully integrated or a partially integrated approach. The
partially integrated method involves separate computations of fluid and structural
equations, with information exchanged at every time step at the interface between the
solid and fluid domains. The treatment of the structural problem has great impact
on the accuracy and computational cost of partially integrated methods. Taking into
account the non-linearity of the structure, e.g. including friction (Corral and Gallardo,
2014), allows the investigation of limit cycle oscillations. The structural motion at
time step t is obtained by projecting the aerodynamic loads calculated at t− 1 onto
the solid surface. Consequently the motion of the structure is used to update the flow
field, thus advancing the solution. The staggered nature of such algorithms makes it so
that fluid and structure can be computed by separate solvers and only an interface is
needed to pass the solutions from one to the other (Srivastava et al., 1991; Yamamoto
and August, 1992). As the computational expense of such an approach can become
high, a simplified approach usually relies on the assumption of a linear structure,
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resorting to a modal representation of the aeroelastic equations. This approach casts
the system of equations into a set of modal coordinates, represented by the natural
modes (eigenmodes) of the structure, which are obtained by solving the undamped
free vibration problem. Therefore, this approach assumes that the fluid perturbation
has negligible effect on the natural vibration of the blade. This method has been
successfully applied to a number of turbomachinery cases (Debrabandere et al., 2012;
Sayma et al., 2000), and it is among the most popular approaches in aeroelasticity (see
references in Table 1.1).

The fully integrated approach solves fluid and structural equations simultaneously at
the same time step, by treating the fluid-structure system as one continuum dynamics
problem (Bendiksen, 1991). These methods can achieve high accuracy, but they are
not commonly employed in turbomachinery applications due to high computational
cost.

The advance in computing power led to methods based on the numerical discretisa-
tion of flow governing equations using different techniques such as finite-differences,
finite-elements or finite-volumes. The governing equations’ complexity grew with
the computing capabilities, starting from potential flow (Whitehead, 1990), through
Euler equations which neglect viscosity (Hall and Lorence, 1993), to three-dimensional,
unsteady, Reynolds-averaged Navier-Stokes (URANS) equations (Corral et al., 2004;
Sayma et al., 2000). (scale resolving methods are still rare in turbomachinery flutter
and are therefore ignored in this summary). Currently, fluid-structure interaction
problems are usually tackled by solving the structural equations with a finite-elements
method, while the flow equations are approached with either time or frequency domain
methods, depending on whether the two solvers are uncoupled or coupled with one
of the approaches discussed previously. Time domain methods involve marching the
solution in time with suitable temporal resolution, depending on the frequency of
interest. Such methods can accurately model non-linear phenomena, such as limit
cycle oscillations, and complex interactions between blade rows; however the large
computational demands of such analyses led to the development of frequency domain, or
time-linearised, solvers. Similarly to classical methods, time-linearised models operate
under the assumption that the flow field can be decomposed in a mean steady state
flow and an unsteady perturbation which is small in amplitude and harmonic (Clark
and Hall, 1999; Giles, 1992; Petrie-Repar, 2006). This assumption does not allow
time-linearised solvers to predict limit cycle oscillations, though the ability to predict
asymptotic stability is often sufficient for design.

The inability of time-linearised methods to capture flow phenomena that occur
at frequencies other than the specified base, led to the development of non-linear
harmonic methods (Hall et al., 2002; Ning and He, 1998; Yao and Marques, 2017). The
flow equations are, again, time-linearised and cast into the frequency domain, though
multiple frequencies can be specified. The equations pertaining to each harmonic
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are solved iteratively and simultaneously due to coupling terms, so that phenomena
occurring at different frequencies can interact. Both the computational cost and the
solution accuracy increase greatly with the number of included harmonics.

1.5 Machine Learning in Fluid Mechanics

The unprecedented quantity of fluid flow data available today, alongside the quick
development and democratisation of machine learning (ML) algorithms thanks to
projects such as TENSORFLOW (Abadi et al., 2015), has allowed researchers to seek
data-driven solutions to a plethora of fluid mechanics problems. The field has moved
forward with a staggering pace and with enough successes to grant the compilation
of several review articles in just a few years, by Xiao and Cinnella (2019), Duraisamy
et al. (2019), Brunton et al. (2020), Michelassi and Ling (2021), Willard et al. (2022)
and Hammond et al. (2022). In this section, we discuss only a small number of these
studies, with particular focus on how previous physical knowledge has been introduced
in each.

Turbulence modelling has proven to be a particularly fertile ground for ML. RANS
simulations exhibit deficiencies in predicting complicated flow features, such as the
ones that may be found in state-of-the-art compressors, e.g. tip leakage vortex, when
compared to higher fidelity, scale resolving methods. Researchers have been trying to
bridge this gap by leveraging various ML techniques. Dow and Wang (2012) and Wu
et al. (2016) used Bayesian calibration to reduce model-form uncertainties in RANS
simulations, by leveraging high fidelity data. However, these methods lack the ability to
predict flows with different geometries from the calibration flow, as the input features
were based in physical space.

Tracey et al. (2013) started introducing physical knowledge by training their model
on mean flow features to develop a multiplier of the production term for existing
turbulence models. They used high fidelity data to train their model and it showed
good generalisation capabilities for different flows around airfoils (Singh et al., 2017).
The importance of meaningful input features for generalisation was also shown by Ling
and Templeton (2015), who employed a number of rotationally invariant inputs to
developed classifiers of high uncertainty regions in RANS computations. Ling et al.
(2016) corroborated the importance of introducing previous knowledge in their models.
They employed a deep neural network architecture to model the Reynolds stress tensor,
with the introduction of a layer that preserves Galilean invariance of the predicted
tensor, thus embedding physical knowledge into the architecture itself.

A particularly successful example of physically consistent machine learning is
the physics informed neural network (PINN) concept, developed by Raissi et al.
(2019). PINNs are used as a surrogate model of the Navier-Stokes equations, with the
conservation laws and boundary conditions being introduced directly as loss terms
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inside the cost function. Since their introduction, PINNs have been used widely on
several problems. Another example of combining neural networks with physics is the
physics guided machine learning (PGML) of Pawar et al. (2021). The PGML framework
in this case refers to a fully connected neural network where, at some hidden layer,
results from a reduced order model (ROM) of the process are injected, thus augmenting
the knowledge of the algorithm and “guiding” it to a physically consistent formulation.
The researchers successfully applied it to the prediction of lift coefficient on 4 and 5
digits NACA airfoils. Effectively, the PGML applies a complex correction to the results
of a simplified model. This idea is not, in itself, new: Motta et al. (2015) developed
polynomial corrections to the Theodorsen function, based on observations of numerical
experiments, to introduce the effect of thickness when computing unsteady lift and
moment of pitching airfoils.

Regarding aeroelasticity, early efforts in reduced order modelling were based on
some form of decomposition of the unsteady flow into a series of orthogonal modes.
Willcox (1999) employed a proper orthogonal decomposition technique to develop a
reduced aerodynamic model for a transonic rotor in plunging motion, while Florea
et al. (1998) performed an eigenmode decomposition of the linearised equations of
unsteady flow through a cascade of vibrating airfoils. More recently, the interest of
data-driven aeroelasticity modelling seems to have moved towards isolated airfoils,
in particular towards the computation of limit cycle oscillations (LCO). Zhang et al.
(2012) computed the LCO of NACA6410 airfoil in pitching employing a radial basis
function neural network with good degree of success; Zhang et al. (2016) later improved
their results by having the machine learnt model trained on a few proper orthogonal
modes rather than the full flow field. Zahn and Breitsamter (2022) employed a long
short-term memory (LSTM) recurrent neural network (RNN) to predict excitation
amplitudes on a buffeting NACA0012 airfoil vibrating in both pitch and plunge modes.
Opgenoord et al. (2018) developed a model for transonic flow around a two-dimensional
airfoil, and used a dynamic mode decomposition technique (DMD) to calibrate the
coefficients of their model from CFD data. The drawback of their approach though is
the need for calibration every time a new airfoil is to be analysed. All the previous
studies have developed computationally efficient reduced order models that are useful
for aeroelastic control, but all share a major fallacy: they are valid only for the training
geometry.

To the best of the author’s knowledge, no research is available on modelling of
compressor stall flutter with data-driven techniques (with the exception of Gambitta
et al. (2022), who use an autoencoder to model the geometrical variability of a
compressor rotor due to manufacturing, though still employ unsteady CFD to calculate
aerodynamic damping).
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1.6 Motivation and Research Objectives

The development of fan and compressor blades can be approximately categorised in
three stages:

- an early design phase in which preliminary aeroelastic considerations are made
via analytical, semi-analytical methods and empirical models based on knowledge
obtained from previous designs

- a core design phase aimed at maximising efficiency and aerodynamic stabil-
ity. Flutter behaviour is assessed with semi-analytical models and correlations,
starting from the data obtained with steady RANS, which are necessary to
evaluate performance. Simplified computational models, such as time-linearised
RANS (LRANS), can be employed to analyse operating conditions and vibration
characteristic of interest

- a detailed analysis is conducted with expensive computational methods in order
to understand flow phenomena, assess interactions between blade rows and obtain
more accurate flutter predictions for selected critical operating conditions, such
as near the stall boundary

Fig. (1.9) is an illustration of prediction accuracy as a function of computational
cost of aeroelasticity models, showing the subdivision of methods used for each design
phase. Although purely schematic, we can see that as the accuracy is increased,
the computational cost grows by orders of magnitude. Therefore, a gap in available
methodologies and a need for fast and accurate design tools can be identified.

Analytical and computational methods for the prediction of compressor stall flutter
have reached maturity, and development of new efficient techniques seems to have come
to a halt. Machine learning offers a large set of tools to explore and model complicated
phenomena with a large number of parameters involved, and it has proved successful
in turbulence modelling, bridging the gap between closure models and high fidelity
methods in a number of applications.

This research aims to introduce a predictive, reusable data-driven model for the
computation of aerodynamic damping of compressors, with similar accuracy to a RANS
based model, at the cost of only steady state computations, in order to obtain more
accurate predictions in earlier stages of the design cycle.

The main contribution of this work is the development of a physics guided machine
learning model for the prediction of aerodynamic damping of compressors. It is
reiterated that, to the best of the author’s knowledge, no previous research is available
on modelling of compressor stall flutter with data-driven techniques.
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Figure 1.9 Illustration of accuracy as a function of computational cost of methods employed
to assess compressor aeroleastic stability during design stages.

1.7 Thesis Outline

Training a physics guided machine learning model requires the following ingredients:

1. Appropriate input parameters fed into the input layer

2. High-fidelity data fed into the output layer

3. Low-fidelity physical data fed into the input and/or intermediate layers

Hence to address these needs and achieve the objectives, the thesis is structured as
follows:

- Chapter (2) provides a detailed account of the RANS flow solver algorithms,
the assumptions and methods employed to evaluate aeroelastic stability. The
main test case of this work is introduced, and a comparison of solutions obtained
from different solvers, at canonical operating conditions, is offered. The machine
learning methods used are also introduced.

- As a first attempt at modelling aeroelastic stability in compressors with machine
learning, Chapter (3) presents the development of a purely data-driven neural
network model trained to predict aeroelastic stability of the compressor cascade
introduced in the previous Chapter. The generation of computational databases
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is discussed, along with a possible blade redesign application based on simple
input parameters.

- Chapter (4) reviews, on the other hand, a purely theory based model for predicting
the response of unloaded blades in a cascade. The assumptions of the theory
are reported, along with the main equations. The current implementation is
compared against previous ones and the shortcomings of this model in predicting
the response of loaded cascades are discussed and shown via comparison with
CFD data.

- Chapter (5) builds on the work and knowledge acquired from Chapters (3)
and (4), introducing a physics guided neural network model that is able to
generalise and predict aeroelastic stability of unseen geometries with good degree
of accuracy. The inputs, outputs and training of the method are discussed and
the model is thoroughly tested on a large number of cascades. An explanation
of the predictions is offered with model agnostic techniques aimed at opening
the proverbial “black-box” of data-driven methods. This chapter constitutes the
main contribution of this thesis.

- Chapter (6) focuses on describing the uncertainty of aeroelastic predictions due to
the sensitivity of unsteady flow to complex features such as shock waves and flow
separation. A method to predict the uncertainty in the computational database
obtained in Chapter (3) is devised. The results are consequently verified via
Monte Carlo analysis and, finally, a possible application is offered.

- Chapter (7) gathers the major findings of the thesis, proposes ideas for future
work and presents a discussion regarding data availability and feasibility of such
an approach in an industrial setting.





Chapter 2

Methodology

2.1 Introduction

This chapter provides a brief introduction to the computational fluid dynamics and
machine learning methods the thesis relies upon. The flow and structural models are
discussed alongside the employed strategy to assess aeroelastic stability. In addition,
the basic notions of the employed machine learning techniques are presented.

2.2 CFD Solver

The CFD solver utilised throughout this work is LUFT (Petrie-Repar, 2006), and it is
specifically designed for turbomachinery applications. The code comprises of a steady
aerodynamic solver, an unsteady linearised solver and the aeroelastic equations are
approached using the modal form representation. The components of the solver will
now be discussed in detail.

2.2.1 Navier-Stokes Equations

The three-dimensional, unsteady, compressible, Favre-averaged Navier-Stokes are the
governing equations of the RANS turbomachinery solver. The equations are cast in
terms of absolute velocity, but solved in a relative reference frame rotating with the
blades about an axis with angular velocity ω. The arising system of equations can
be written in integral conservative form, for a control volume V with boundary Γ, in
Cartesian coordinates x = (x, y, z), as

d

dt

∫︂

V
UdV +

∮︂

∂V

(︃
F − 1

Re
G

)︃
· n dΓ =

∫︂

V
SdV (2.1)

where n is the outward unit vector of the control volume boundary Γ; U , F , G and S
denote the solution vector of conservative variables, inviscid and viscous flux vectors
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and source terms vector, respectively, and can be written as:
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0
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0
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In Eq. (2.2), δij represents the Kronecker delta function; u, ω are the vectors of
absolute and angular velocity. The vector v represents the velocity in the relative
frame

v = u− ω × x− dx

dt
(2.3)

where the last term of Eq. (2.3) is the velocity of the boundary Γ. ρ, p, T and e denote
density, pressure, temperature and internal energy, respectively; τij and kth are the
viscous stress tensor and the effective thermal conductivity.

The working fluid is assumed to be a perfect gas, thus providing an equation of state
f(ρ, p, T ) = 0 for the thermodynamic variables

p = ρRT = ρ(γ − 1)

(︃
e− |u|2

2

)︃
(2.4)

and specific gas constant
R = cp − cv = cv(γ − 1) (2.5)

where cp and cv represent the specific heat capacities and γ = cp
cv

is the specific heat
ratio.

The viscous stress tensor τij follows the eddy viscosity concept and the Boussinesq
assumption, which considers the turbulent stresses to be linearly correlated to the
strain rate tensor. The laminar viscosity µl follows Sutherland’s law and the ther-
mal conductivity kth is assumed to be linearly correlated with viscosity. The above
assumptions result in the following set of equations

τij = µ

(︃
∂ui
∂xj

+
∂uj
∂xi

)︃
+ λδij (∇ · u)

µ = µl + µt

kth =
γ

γ − 1

(︃
µl

Prl
+

µt

Prt

)︃ (2.6)

where the value of λ = −2
3
µ is given by Stokes’ relation, the laminar and turbulent

Prandtl number, Prl and Prt, are equal to 0.7 and 0.9 respectively. Finally, the
turbulent eddy viscosity µt is determined by the one-equation Spalart and Allmaras
(1994) turbulence model, with no wall functions.
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The flow solver uses a cell-centered finite volume scheme to solve the compressible
RANS equations, on an unstructured computational grid, composed exclusively of
hexahedral elements. The fluxes are calculated by means of an upwind AUSMDV
scheme (Wada and Liou, 1997). The flow state at the interfaces is reconstructed
using a MUSCL interpolation coupled with the van Albada limiter (van Albada et al.,
1982). The spatial accuracy is, therefore, second-order throughout the domain, except
near sharp gradient regions such as shock waves, where the accuracy reverts back to
first-order. A least squared multidimensional interpolation method is used to calculate
the flow gradients required for the viscous fluxes. For steady flows, a predictor-corrector
scheme is used to march the solution to convergence; local time stepping with residual
smoothing is also applied, and a preconditioned GMRES method is used to solve the
linear system arising at every iteration.

The discretised flow equations for the i-th cell, on a time-varying computational
grid, read

d

dt
(ViUi) +

∑︂

j

HjΓj = SiVi (2.7)

where j runs over the cell faces Γj , Hj denotes the numerical flux, viscous and inviscid,
for the j-th face, estimated from left and right states by means of MUSCL approach
and AUSMDV scheme, Vi is the volume of the i-th cell, and Si is the mean source
term. By declaring a residual function

Ri = Si − V−1
i

∑︂

j

HjΓj (2.8)

Eq. (2.7) can be written in the general form

d

dt
(ViUi) = ViRi (2.9)

Finally, one must note that Ri depends on the flow variables U , grid coordinates x
and, given Eq. (2.3), on the grid velocity ẋ

R = R (U ,x, ẋ) (2.10)

2.2.2 Time-Linearised Navier-Stokes Equations

The linearisation of the governing equations leverages the assumption that both
the displacements and solution can be decomposed in a time independent, steady
contribution and a time dependent, small perturbation

x(t) = x̄+ δx(x̄, t)

V(x, t) = V̄(x̄) + δV(x̄, t)
U(x, t) = Ū(x̄) + δU(x̄, t)

(2.11)
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with Ū being the steady state solution, which yields

R
(︁
Ū , x̄,0

)︁
= 0 (2.12)

The residual R can now be approximated by its first-order Taylor expansion about the
steady state solution

R (U ,x, ẋ) ≈ R
(︁
Ū , x̄,0

)︁
+
∂R

∂U

⃓⃓
⃓⃓
(Ū ,x̄,0)

δU +
∂R

∂x

⃓⃓
⃓⃓
(Ū ,x̄,0)

δx+
∂R

∂ẋ

⃓⃓
⃓⃓
(Ū ,x̄,0)

δẋ (2.13)

Plugging Eq. (2.13) into Eq. (2.9), neglecting second-order terms such as δVδU , the
linearised unsteady equations read

d

dt
δU +

Ū

V̄
d

dt
δV =

∂R

∂U

⃓⃓
⃓⃓
(Ū ,x̄,0)

δU +
∂R

∂x

⃓⃓
⃓⃓
(Ū ,x̄,0)

δx+
∂R

∂ẋ

⃓⃓
⃓⃓
(Ū ,x̄,0)

δẋ (2.14)

Finally, the blade motion is imposed as a single harmonic, thus the computational
grid deformation and the unsteady perturbation are also harmonic with fixed angular
frequency ω

δx(x̄, t) = ℜ
{︁
ˆ︁xejωt

}︁

δV(x̄, t) = ℜ
{︂
ˆ︁Vejωt

}︂

δU(x̄, t) = ℜ
{︂
ˆ︁Uejωt

}︂ (2.15)

Plugging Eq. (2.15) into Eq. (2.14), one obtains
(︃
jωI − ∂R

∂U

)︃
ˆ︁U =

∂R

∂x
ˆ︁x+

∂R

∂ẋ
jωˆ︁x− jω

Ū

V̄
ˆ︁V (2.16)

The right hand side of the linearised equation is now independent of the unkonwn
ˆ︁U and can be seen as a source term. It can be evaluated by calculating the change
in residual from the steady state due to the grid perturbation with amplitude ˆ︁x and
velocity jωˆ︁x. The Jacobian ∂R/∂U is calculated by numerically differentiating fluxes
at the cell interfaces, by means of finite difference, and summing over a small number
of neighbouring cells

∂Ri

∂Uk

= δik
∂Si

∂Uk

− V−1
i

∑︂

j

∂Hj

∂Uk

Γj (2.17)

Eq. (2.16) is a complex linear system of the form A ˆ︁U = b which is solved, with
appropriate boundary conditions, by means of a preconditioned GMRES method.
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2.2.3 Boundary Conditions

Boundary conditions need to be correctly formulated in order to solve the system of
partial differential equations arising for the Navier-Stokes equations. Four main sets of
conditions can be identified: solid walls, inviscid and viscous, periodicity and far-field
boundaries treatment. Moreover, a concise discussion regarding the calculation of grid
displacements is presented.

Inviscid Wall

This boundary condition imposes flow tangency at the wall, requiring that there is no
flow through the surface. This is attained by vanishing the velocity component normal
to the moving wall

{u− ω × x− ẋ} · n = 0 (2.18)

The linearisation of the above results in tangency conditions for the mean flow and the
perturbation

{ū− ω × x̄} · n̄ = 0

{ˆ︁u− ω × ˆ︁x− jωˆ︁x} · n̄+ {ū− ω × x̄} · ˆ︁n = 0
(2.19)

Note that ω and ω are, respectively, the shaft’s angular velocity vector and the angular
frequency of the harmonic perturbation.

Viscous Wall

Referred to also as no-slip, this boundary condition states that, on the wall, the fluid
velocity relative to the moving wall itself is zero

u− ω × x− ẋ = 0 (2.20)

The linearisation yields
ū− ω × x̄ = 0

ˆ︁u− ω × ˆ︁x− jωˆ︁x = 0
(2.21)

Periodicity

In absence of aperiodic upstream disturbances, e.g. inlet flow distortion, the mean
flow in a turbomachinery row can be modelled as a single blade-to-blade passage
with periodic boundaries. The boundary condition can be written in cylindrical and
Cartesian coordinates, respectively, as

Ū

(︃
x, r, θ +

2π

B

)︃
= Ū (x, r, θ)

Ū (x, y + P, z) = Ū (x, y, z)

(2.22)
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where B is the number of blades in a full annulus row and P is the linear pitch for a 2D
cascade. For the time-linearised equations, the periodic boundary condition needs to
be modified. Particularly in the context of flutter, blades may oscillate with a constant
phase shift with respect to their neighbours, that is with an interblade phase angle σ.
The boundary condition for a 2D cascade now reads

ˆ︁U (x, y + P, z) = ˆ︁U (x, y, z) ejσ (2.23)

An analogous expression can be written in cylindrical coordinates.

Far-field boundaries

Unlike isolated airfoils, the far-field boundaries in turbomachinery applications are
usually less than one chord away from the blade. The close proximity of the boundaries
may lead to non-physical, spurious inward reflections of the outward propagating
waves, which can significantly affect the solution. To mitigate this effect, appropriate
non-reflecting boundary conditions need to be applied at inlet and outlet boundaries.
In this work, the 2D non-reflecting boundary conditions presented by Giles (1990)
are applied. The boundary conditions are based on the characteristics of the Euler
equations and are exact for unsteady computations with a single frequency, which is
the case for the time-linearised solver. As for the steady-state boundary treatment,
the following averaged physical quantities are specified:

• Inlet: stagnation temperature and pressure, flow angles

• Outlet: static pressure

and subsequently, the same unsteady boundary conditions are applied, in the limiting
case of zero frequency.

Grid Displacement

The grid motion vector ˆ︁x is an input to the linearised solver. Conventionally, a
mass-normalised modeshape of the blade is obtained from a finite-element solver and
interpolated from the FE to the CFD mesh to obtain the displacement of nodes
on the blade. Periodic and far-field boundaries are set to be static, therefore with
zero displacement. Now, with the previous constraints in place, the grid motion is
determined by solving the Laplace equation. In this thesis, the modeshapes are not
calculated but imposed as a rigid body motion.

2.2.4 Aeroelastic Equations

This section introduces the main concepts and formulations necessary to perform
aeroelastic analyses of a turbomachinery blade row. The description of the aeroelastic
problem requires a structural dynamic model, a kinematic description of blade motion
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and a useful aerodynamic model for the fluid forces, that is, a model that can be
accomodated by the current CFD capabilities. The following equations have been
treated and manipulated by several authors according to the problem at hand, and
detailed accounts, among many, are provided by Crawley (1987) and Försching (1994).

The most general linear equation of motion that describes a flexible structure, such
as a bladed disk, under aerodynamic loads reads

Mẍ(t) +Dẋ(t) +Kx(t) = F A(x, t) (2.24)

where M , D, K are mass, damping and stiffness matrices, while F A is a generic vector
of forces resulting from aerodynamic loads. In turbomachinery applications, a number
of simplifications can be made. Under the assumption of small vibration amplitude, the
forces on the right-hand side of Eq. (2.24) can be expressed as the linear combination
of two separate contributions, one Fm that is motion dependent, the other F d coming
from external sources. As this thesis focuses on self-induced vibration, the term F d is
set to zero for the rest of this discussion. It is further assumed that the disk is infinitely
stiff, resulting in mechanically uncoupled blades. Finally, the mechanical damping of
the blades is assumed to be null, so that the equation of motion for the i-th blade of a
turbomachinery row reads

Miẍi(t) +Kixi(t) = Fm
i (x, t) (2.25)

The equation of motion can be cast into modal or generalised coordinates q, by
representing the structural response of the blade as a linear combination of modes Φ

xi(t) =
n∑︂

p=1

Φi,p · qi,p(t) (2.26)

The modes are obtained from the free vibration problem, assuming a harmonic solution
x(t) = Φejωt, where (ωp,Φp) are the p-th eigenfrequency and eigenvector satisfying

(︁
Ki − ω2

i,pMi

)︁
Φi,p = 0 (2.27)

In the case of a blade section, simple modes such as pitching and plunging can be
simply imposed as rigid body modes. Regardless, the modes are assumed to be mass
normalised so that, after applying the change of coordinates, the system of aeroelastic
equations of motion reads

V T
i,nMiVi,n⏞ ⏟⏟ ⏞

I

q̈i,n + V T
i,nKiVi,n⏞ ⏟⏟ ⏞

Ω2
i,n

qi,n = V T
i,nFi⏞ ⏟⏟ ⏞
fi,n

(2.28)
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with V being the matrix of eigenvectors for each blade, Vi = [Φi,1, ...,Φi,n], I is
the identity matrix, Ω2

i,n = diag(ω2
i,n) is a diagonal matrix containing the squares

of natural frequencies for each blade and mode, and fi,n the vector of modal forces.
The orthogonality of eigenmodes diagonalises the system of Eq. (2.28), so that each
equation is decoupled and the modal response for an assembly of N blades vibrating
with a given mode can be written as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈0(t)
...

q̈i(t)
...

q̈N−1(t)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎣

ω2
0 0 . . . . . . 0

0
. . . ...

... ω2
i

...
... . . . 0
0 . . . . . . 0 ω2

N−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q0(t)
...

qi(t)
...

qN−1(t)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f0(t)
...

fi(t)
...

fN−1(t)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.29)

Note that, although the modes of each blade are orthogonal and decoupled, Eq. (2.29)
states that the blades in the assembly are coupled due to the aerodynamic forcing.
As a matter of fact, as shown by Crawley (1987), the force on any given blade i does
not only depend on the motion of the blade itself, but also on the effect due to the
vibration of the neighbouring airfoils; such an effect is very generally described by Eq.
(2.30), where f depends on flow conditions, frequency and geometry. The effect of time
history of blades’ motion is condensed in the variable Λ.

fi = f0(qi, q̇i, q̈i,Λi)

+ f+1(qi+1, q̇i+1, q̈i+1,Λi+1)

+ f−1(qi−1, q̇i−1, q̈i−1,Λi−1)

+ . . .

(2.30)

In general, the form of aerodynamic forces above is difficult to find. Instead, it is
sufficient to find operators for simple harmonic motion, since such an analysis is still able
to retrieve the stability boundary of the modes. Moreover, the derivation of unsteady
aerodynamic forces is particularly convenient in travelling wave coordinates, when the
cascade vibrates with a fixed interblade phase angle between airfoils. The kinematic
relationship between travelling wave coordinates and individual blade coordinates is

qi(t) = ℜ
{︄

N−1∑︂

k=0

q̄σn
ej(ωt+kσn)

}︄
(2.31)

where q̄σn
is the amplitude of the travelling wave of interblade phase angle σn = 2πn

N
.

Eq. (2.31) can be conveniently rewritten in matrix form as

qi(t) = ˆ︁Eq̄σne
jωt = q̄ie

jωt (2.32)
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where q̄i is the amplitude of the individual blade harmonic motion and ˆ︁E represents
the coefficients of a discrete Fourier transform in complex matricial form

ˆ︁E =

⎡
⎢⎢⎢⎢⎢⎣

E0,0 . . . E0,i . . . E0,N−1
...

...
Ei,0 . . . Ei,i . . . Ei,N−1
...

...
EN−1,0 . . . EN−1,i . . . EN−1,N−1

⎤
⎥⎥⎥⎥⎥⎦

Ek,l ≡ ej
2πkl
N ; E−1

k,l ≡
1

N
e−j 2πkl

N

(2.33)

Similarly to the kinematic relationship of Eq. (2.32), the aerodynamic force on the i-th
blade can be written as the force induced by the superposition of all travelling waves

fi(t) = ˆ︁E
[︂
diag

(︂
ˆ︁ℓσn

)︂]︂
q̄σne

jωt

= ˆ︁E
[︂
diag

(︂
ˆ︁ℓσn

)︂]︂
ˆ︁E−1

⏞ ⏟⏟ ⏞
ˆ︁L

qi (2.34)

where ˆ︁ℓσn(ω) is the complex force coefficient due to σn and ˆ︁L(ω) is the aerodynamic
influence coefficient (AIC) matrix. Due to the cyclic symmetry of the cascade, the
matrix ˆ︁L is circulant, thus it contains only N independent terms

ˆ︁L =

⎡
⎢⎢⎣

L0 LN−1 . . . L1

L1 L0 LN−1 . . .
. . . L1 L0 LN−1

LN−1 . . . L1 L0

⎤
⎥⎥⎦ (2.35)

The matrix ˆ︁L gives insight into the unsteady aerodynamic interactions in the cascade
because it allows to quantify the effect induced by the vibration of one airfoil on another.
The term on row a and column b denotes the force induced on blade a by the vibration
of airfoil b, so that, for example, the diagonal term quantifies the force induced on the
blade by its own motion. As for the transformation of coordinates, from individual
blade to travelling wave, the force coefficients are also related by a complex Fourier
transform as shown in Eq. (2.34). This allows to devise experimental or computational
methods where only one blade in the cascade oscillates with a prescribed motion, while
the others are at rest. The unsteady aerodynamic loads can be measured and the
solution can be translated into travelling wave.
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Finally, the equations of motion in individual blade and travelling wave coordinates
become, respectively

q̈i(t) +
[︂
diag

(︁
ω2
i

)︁
− ˆ︁L

]︂
qi(t) = 0 (2.36)

q̈σn(t) +
[︂
diag

(︁
ω2
σn

)︁
− diag

(︂
ˆ︁ℓσn

)︂]︂
qσn(t) = 0 (2.37)

Both formulations have their merit. The individual blade formulation is a powerful tool
to investigate the physics of the aeroelastic problem, by probing the AIC matrix, and
it also represents the correct model for more complex configurations where mistuning
is present in the system. Travelling waves are the natural modes of the cascade,
as the system of equations is diagonal, which allows to calculate each aeroelastic
eigenvalue separately. This is the formulation implemented in the time-linearised solver
to calculate unsteady aerodynamic loads for a tuned system and it will be our preferred
formulation.

2.3 Aeroelastic Stability

Let
qσn(t) = q̄σne

jsσn t (2.38)

be the solution to Eq. (2.37). By plugging in and assuming a tuned rotor with a single
structural vibration frequency ωσ, the equation of motion now reads

[︂
ω2
σI − diag

(︂
s2σn

+ ˆ︁ℓσn

)︂]︂
q̄σn = 0 (2.39)

The system is diagonal and every travelling wave can be treated separately so that the
n-th aeroelastic eigenvalue is

sσn = ±
√︂
ω2
σ − ˆ︁ℓσn (2.40)

which is a complex number that can be rewritten as

sσn = ℜ{sσn}+ jℑ{sσn} = ωn + jδn (2.41)

Considering the wave-like solution of Eq. (2.38), ωn represents the aeroelastic angular
frequency of the travelling wave with interblade phase angle σn, while δn denotes the
corresponding decay rate of the damped vibration. As only positive frequencies are
physically significant, the solution sσn with positive real component is retained. The
relation between natural frequency ω0, damping δ and damped angular frequency ω of
a vibrating system is known from the general solution of the damped single degree of
freedom oscillator (Meirovitch, 2001)

ω2
0 = δ2 + ω2 (2.42)
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So that the aerodynamic damping ratio can be found as

ξn =
δn
ωσ

=
ℑ{sσn}√︂

ℜ{sσn}2 + ℑ{sσn}2
(2.43)

The above can be simplified by considering that usually ωn ≫ δn, yielding

ξn ≈ ℑ{sσn}
ℜ {sσn}

(2.44)

with ℜ{sσn} > 0 as it corresponds to a vibration frequency. The motion is finally
determined by

qσn(t) = ℜ
{︂
q̄σne

−ξnωσtej
√

1−ξ2nωσt
}︂

(2.45)

Assuming |ξn| < 1, Fig. (2.1) illustrates the time history of displacement: the blade
is stable and the amplitude decays when the aerodynamic damping ratio is positive,
while the blade is unstable and therefore flutters when the aerodynamic damping ratio
is negative. From Eq. (2.45) one can see that the aeroelastic angular frequency is

t

q/
q̄

(a) Stable behaviour with ξ > 0

t

q/
q̄

(b) Unstable behaviour with ξ < 0

Figure 2.1 Schematic displacement history depending on the sign of aerodynamic damping
ratio

ω = ωσ

√︁
1− ξ2 (2.46)

which means that when the aerodynamic damping ratio is ξ ≪ 1 (corresponding to high
mass ratio, see Vega (2016)), the aeroelastic frequency is nearly equal to the natural
frequency of the blade, ω ≈ ωσ. This allows to simplify the problem further, because
now modeshape, amplitude, frequency and interblade phase angle are all constant,
therefore the stability of the system can be evaluated by calculating the work exerted
by the fluid on the structure over one vibration cycle. The aerodynamic work per cycle
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is expressed as

W =

∫︂

T

∫︂

S

p(x, t) · ẋ(t) · ndSdt

=

∫︂

T

∫︂

S

q̇(t)ΦTp(x, t) · ndSdt

=

∫︂ 2π
ω

0

ℜ
{︁
jωq̄ejωt

}︁
ℜ
{︂
ˆ︁fejωt

}︂
dt

= πq̄ℑ
{︂
ˆ︁f
}︂

(2.47)

where p denotes the unsteady pressure, ẋ the airfoil velocity and S its surface. The
result means that the aerodynamic work is proportional to the imaginary part of the
modal force, therefore to the component which is out-of-phase with the motion. It is
convenient to normalise the aerodynamic work to obtain the aerodynamic damping
coefficient that will be used throughout this thesis

ζ = − W
π b q̄2 (p0 − p1)

(2.48)

where b is a length, blade span in this case, and (p0 − p1) is the difference between
inlet total and static pressure. The aerodynamic damping coefficient is thus positive
for stable motion. The implications of this scaling choice are important for the rest of
the work and are discussed in Section (7.2).

2.4 Cut-off conditions in a two-dimensional cascade

As mentioned in Chapter (1), acoustic perturbations inside a duct can either propagate
without attenuation or decay exponentially as they travel. These waves are said to
be cut-on and cut-off, respectively. The frequency at which this change in regime
takes place is named cut-off frequency. Throughout this thesis, we will encounter this
concept often enough that a discussion regarding the system of waves in a duct is in
order. This section reports the main necessary steps to compute wavenumbers in a
two-dimensional duct, following the detailed analysis of Giles (1990).

Upstream and downstream refer to the location with respect to the blade row, e.g.
upstream cut-off frequency refers to waves which originate upstream of the blade. The
direction of travel of the waves is denoted by positive and negative x direction, which in
our case correspond to waves that run towards downstream and upstream, irrespective
of where they are originated.
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The two-dimensional Euler equations which describe an unsteady, inviscid, com-
pressible flow in Cartesian coordinates can be expressed as

∂

∂t

⎛
⎜⎜⎝

ρ
ρu
ρv
ρE

⎞
⎟⎟⎠+

∂

∂x

⎛
⎜⎜⎝

ρu
ρu2 + p
ρuv

ρEu+ pu

⎞
⎟⎟⎠+

∂

∂y

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
ρEv + pv

⎞
⎟⎟⎠ = 0 (2.49)

where ρ is the density, u and v are velocity components and E is the total internal
energy per unit mass. The system of equations is closed with the equation of state for
the pressure p (Eq. 2.4). Plugging Eq. (2.4) into Eq. (2.49) and rearranging for the
primitive variables one obtains

∂

∂t

⎛
⎜⎜⎝

ρ
u
v
p

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u

⎞
⎟⎟⎠

∂

∂x

⎛
⎜⎜⎝

ρ
u
v
p

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v

⎞
⎟⎟⎠

∂

∂y

⎛
⎜⎜⎝

ρ
u
v
p

⎞
⎟⎟⎠ = 0 (2.50)

The equations can be linearised as in Section (2.2.2), by considering small perturbations
from a uniform, steady flow, and neglect all but the first order linear terms. The
resulting linear equation reads

∂U

∂t
+A

∂U

∂x
+B

∂U

∂y
= 0 (2.51)

with U being the vector of perturbation variables

U =

⎛
⎜⎜⎝

ˆ︁ρ
ˆ︁u
ˆ︁v
ˆ︁p

⎞
⎟⎟⎠ (2.52)

while A and B are constant matrices of uniform, steady variables

A =

⎛
⎜⎜⎝

u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v

⎞
⎟⎟⎠ (2.53)

Considering a wave-like solution of the form

U(x, y, t) = uej(kxx+kyy−ωt) (2.54)
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and plugging into Eq. (2.51), one obtains a generalised eigenvalue problem

(−ωI + kxA+ kyB)u = 0 (2.55)

For the above generalised eigenvalue problem, the possible eigenvalues must satisfy

det (−ωI + kxA+ kyB) = 0 (2.56)

After deriving and rearranging, one obtains a dispersion relation which relates the
angular frequency ω with the axial and transverse wavenumbers kx and ky

(kxu+ kyv − ω)2
(︁
(kxu+ kyv − ω)2 − a2(k2x + k2y)

)︁
= 0 (2.57)

where a =
√︁
γp/ρ is the mean flow speed of sound. The polynomial equation has 4

roots.

The first two roots are identical and satisfy

kxu+ kyv − ω = 0 (2.58)

In applications the eigenvalue of most interest is often the axial wavenumber kx, since
this is the main direction of acoustic energy transfer, thus the above equation can be
expressed as

kx,1,2 =
ω − kyv

u
(2.59)

Giles (1990) shows that the above roots correspond to vorticity and entropy waves
that, assuming ω is real, are fully convected by the mean flow, thus run in the positive
x direction, i.e. downstream, with group velocity

vg =
∂ω

∂kx
= u > 0 (2.60)

The other two eigenvalues satisfy

(kxu+ kyv − ω)2 − a2(k2x + k2y) = 0 (2.61)

thus obtaining

kx,3 =
(ω − kyv)(−u+ aS)

c2 − u2

kx,4 =
(ω − kyv)(−u− aS)

c2 − u2

(2.62)

where

S =

√︄
1− k2y(a

2 − u2)

(ω − kyv)2
(2.63)
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If ω is real and S2 is real and positive, we can obtain the group velocity as

∂kx,3
∂ω

=
−u+ a/S

c2 − u2
⇒ ∂ω

∂kx,3
=

c2 − u2

−u+ a/S
= vg,3

∂kx,4
∂ω

=
−u− a/S

c2 − u2
⇒ ∂ω

∂kx,4
=

c2 − u2

−u− a/S
= vg,4

(2.64)

For subsonic flow 0 < u < c, then 0 < S < 1, we can show that

∂ω

∂kx,3
> 0

∂ω

∂kx,4
< 0

(2.65)

therefore the axial wavenumbers kx,3 and kx,4 represent acoustic waves running in the
positive and negative x direction respectively.

If the square root function S is complex, then one of the two roots for kx has
positive imaginary part and the other has negative imaginary part. To be consistent
with the results when S2 is real and positive, kx,3 is defined to be the root with positive
imaginary component ℑ{kx,3} > 0, and kx,4 with negative imaginary component
ℑ{kx,4} < 0. Assuming real angular frequency, with complex axial wavenumber,
kx = ℜ{kx}+ jℑ{kx}, the solution to Eq. (2.51) becomes

U(x, y, t) = ue−ℑ{kx}xej(ℜ{kx}x+kyy−ωt) (2.66)

corresponding to a wave decaying in the positive x direction for kx,3, i.e. downstream
decaying acoustic wave. Similarly, kx,4 corresponds to a wave decaying in the negative
x direction, i.e. upstream decaying acoustic wave. Thus Eq. (2.66) represents
an evanescent or cut-off wave that travels with decaying amplitude in the positive
(ℑ{kx} > 0) or negative (ℑ{kx} < 0) x direction. If ℑ{kx} = 0 we obtain a cut-on
wave, that propagates with constant amplitude. The cut-off condition is given by

S = 0 ⇒ (ω − kyv)
2 − k2y(a

2 − u2) = 0 (2.67)

The frequency satisfying the above equation is called the cut-off frequency ωc

ωc = ky

(︂
v ±

√
a2 − u2

)︂
= kya

(︂
My ±

√︁
1−M2

x

)︂
(2.68)

where Mx and My are the free-stream axial and transverse Mach numbers.
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In the context of a vibrating turbomachinery cascade, the transverse wavenumber
ky is fixed by the interblade phase angle σ due to periodicity

ky =
σ + 2πm

P
(2.69)

with P being the pitch of the cascade. As the blades impart flow deflection, we will
have different flow angles and Mach numbers upstream and downstream of the blade,
thus two different cut-off frequencies on either side of the blades. Fig. (2.2) shows the
upstream and downstream cut-off frequencies, in terms of reduced frequency k, against
interblade phase angle σ, for a compressor with flow conditions given in Table (2.1).

Table 2.1 Freestream flow quantities for a compressor test case

Mx My a [m/s]

Upstream 0.4 0.575 331
Downstream 0.35 0.3 340
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Figure 2.2 Cut-off reduced frequency against interblade phase angle

If the cascade operates exactly at the cut-off frequency, the generated acoustic
waves have no axial component and travel solely in the transverse direction. This
phenomenon is called acoustic resonance and it is usually associated with a spike in
aerodynamic damping value.

2.5 Standard Configuration 10

The main test case used in this work is the Standard Configuration 10 (SC10), a
two-dimensional compressor cascade. The airfoil profile is obtained by applying the
thickness distribution of a modified NACA5506 airfoil on a circular-arc camber line
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(Frannson and Verdon, 1991). The thickness, T , and camber, Z, distributions are given
by Eq. (2.70)

T (p) = 0.06 · (2.969√p− 1.26p− 3.516p2 + 2.843p3 − 1.036p4)

Z(p) = −2.475 +
√︁
r2 − (p− 0.5)2

(2.70)

where 0 ≤ p ≤ 1 and the camber radius is r = 2.525. The upper and lower surface of
the airfoil are given by Eq. (2.71)

x(p) = p∓ 1

2
T (p) sin(ϕ)

y(p) = Z(p)± 1

2
T (p) cos(ϕ)

(2.71)

where
ϕ = tan−1

(︃
dZ

dp

)︃
(2.72)

The stagger angle of the cascade ξ = 45◦, the chord is fixed at c = 0.1 m, while the
solidity, or chord to pitch ratio, is s = 1.0. In this study, the total inlet pressure
and temperature are fixed at 101.3 kPa and 300 K respectively and, at design point,
the cascade operates with inlet Mach number M1 = 0.7 and inflow angle α1 = 55◦.
Throughout the rest of the thesis, we will refer to incidence of flow onto the blade
as β1: positive values indicate incidence higher than nominal, therefore moving the
cascade closer to stall. In the case of SC10, the incidence is defined as β1 = α1 − 55◦.

The grid used for both steady and unsteady computations has been obtained
through a convergence study and it consists of 42, 268 nodes with a y+ < 1 at the
blade surface. The grid is quasi-2D, with only a single layer along the third dimension.
The boundaries are located 1.5 chord lengths away from leading and trailing edge. The
computational grid, with a close-up around the leading edge of the airfoil, is shown in
Fig. (2.3).

2.5.1 Comparison with time-accurate solver

The Standard Configuration 10 is, originally, an inviscid test case with no experimental
data available. Hall and Crawley (1989) and Montgomery and Verdon (1997) thoroughly
characterised this test case employing linearised Euler solvers. Ayer and Verdon (1996)
and Höhn (2000) performed viscous, time-accurate computations and compared to
inviscid solutions. They observed discrepancies in the computed unsteady pressures
solely near shock waves.

The aforementioned studies, although still valid, have been performed over two
decades to date, in a time where CFD and turbulence modelling techniques have
evolved quickly. For this reason, before tackling the generation of the databases needed
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Figure 2.3 Standard Configuration 10 mesh

to develop ML models, we assess the discrepancies between the current time-linearised
solver, LUFT, and the commercial time-accurate code, ANSYS CFX 20.1, in predicting
the unsteady aerodynamic response for the SC10 test case.

The computations in ANSYS CFX have been performed at Tsinghua University. The
author would like to acknowledge Chuanxiang Yan and Baotong Wang for providing
the data used in this section.
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Flow conditions

Two steady-state flow conditions have been defined for this test case: a nominal,
subsonic condition and a transonic, off-design one. For each flow condition, two
modeshapes are specified: a plunging motion orthogonal to the chord line, and a
pitching motion about a point at mid-chord. Furthermore, each mode is computed at
two different reduced frequencies. The aeroelastic parameters for the computations are
given in Table (2.2).

Table 2.2 SC10 Aeroelastic parameters

Steady parameters Subsonic Transonic

Inlet Mach Number M1 0.7 0.8
Inlet Inflow Angle α1 55◦ 58◦

Incidence β1 0◦ 3◦

Unsteady parameters Plunge Pitch

Reduced Frequency k 0.5, 1.0 0.5, 1.0
Amplitude q̄ 0.01c 1◦

Pitching axis chordwise coordinates (xc, yc) − (0.5c, 0.0)

Numerical Setup

The numerical simulations in LUFT have been setup following the methodology outlined
in Section (2.2). The aerolastic stability is assessed by calculating the aerodynamic
damping coefficient as in Eq. (2.48).

ANSYS CFX employs an element-based finite volume approach with unstructured
mesh elements to model the RANS equations. A second-order accurate central scheme is
employed to discretise the diffusion term, while the advection term is discretised with a
high resolution upwind scheme coupled with the limiter of Barth and Jespersen (1989).
A second-order accurate backward Euler method is employed for time integration
and the arising linear system is solved through an Incomplete Lower Upper (ILU)
factorization method, which is accelerated by an algebraic multigrid preconditioner.
The steady-state solution is marched to convergence with a pseudo-time stepping
technique. The governing equation are solved in combination with the k-ω shear stress
transport (SST) turbulence model (Menter et al., 2003). Further details about the solver
may be found in the user guide (ANSYS, Inc., 2021). The inlet boundary conditions
are stagnation temperature and pressure, flow angles. The outlet boundary condition is
static pressure. The aerodynamic damping is obtained with an aerodynamic influence
coefficients approach. The time resolution is set to 200 time steps per vibration cycle
and one-dimensional non-reflecting boundary conditions are applied. To avoid spurious
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reflections from the farfield boundaries, the mesh in CFX is extended and coarsened at
both inlet and outlet.

The cascade in CFX is composed of 5 blades. The central blade vibrates and the
unsteady pressure is recorded on all blades. It is then Fourier transformed to obtain the
AIC matrix (ˆ︁L) which can be converted into the travelling wave mode force coefficient
matrix (diag

(︂
ˆ︁ℓσ
)︂
) (see Eq. (2.34)), allowing to calculate the aeroelastic eigenvalues

starting from Eq. (2.39).

The steady and unsteady blade loading are shown in terms of pressure coefficients

Cp =
p− p1
p0 − p1

˜︂Cp =
ˆ︁p

(p0 − p1)q̄

(2.73)

where p0 and p1 are total and static pressure at the inlet, q̄ is the modal amplitude
and ˆ︁p the unsteady pressure. As only the imaginary component of unsteady pressure
exerts work for simple modes (see Eq. (2.47)), we will only show ℑ{˜︂Cp}.

Subsonic Flow

The steady pressure coefficient is shown in Fig. (2.4). There is excellent agreement
between the two codes. The aerodynamic damping coefficient for plunging motion
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Figure 2.4 Steady steady pressure coefficient in subsonic flow

at two reduced frequencies is shown in Fig. (2.5). The overall agreement is good for
both cases, and the discrepancies are due to the fundamental difference in modelling
linear cascades between the two codes. The time-linearised code models an infinite
cascade and apply exact non reflecting boundary conditions, because it assumes the
fundamental frequency of the flow is known a priori. This allows the code to model any
interblade phase angle with a single blade passage and avoid spurious reflections from
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the farfield boundaries. On the other hand, the time-accurate code can only model a
finite number of airfoils in the cascade and thus calculate a finite number of influence
coefficients. Obviously a large number of blade passages can be modelled, though these
need to be included in the computational grid, thus increasing computational cost,
which is the reason why we use only 5. As the travelling wave mode force coefficient
matrix is obtained as a Fourier transform of the AIC matrix, by having more blades
we will have more Fourier coefficients and thus will be able to model the discontinuity
caused by the acoustic resonance more accurately (see Nipkau (2011, Chapter 5)). The
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Figure 2.5 Aerodynamic damping coefficient against interblade phase angle for plunging
motion in subsonic flow: (a) k = 0.5, (b) k = 1.0

unsteady pressure coefficient for plunging motion, with k = 0.5 and interblade phase
angles σ = 0◦ and σ = 90◦, is reported in Fig. (2.6). There is good agreement between
the computations, with CFX underpredicting the unsteady loading ever so slightly at
zero IBPA.

Analogous results are shown for a pitching motion about mid-chord in Fig. (2.7)
and Fig. (2.8). The vaguely sinusoidal trend of aerodynamic damping predicted by CFX
is also predicted by LUFT, if not for the discontinuities caused by acoustic resonance.
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Figure 2.6 Imaginary part of the unsteady pressure coefficient for plunging motion at
subsonic flow conditions, with reduced frequency k = 0.5: (a) σ = 0◦, (b) σ = 90◦
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Figure 2.7 Aerodynamic damping coefficient against interblade phase angle for pitching
motion in subsonic flow: (a) k = 0.5, (b) k = 1.0
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Figure 2.8 Imaginary part of the unsteady pressure coefficient for pitching motion at subsonic
flow conditions, with reduced frequency k = 0.5: (a) σ = 0◦, (b) σ = 90◦
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One would expect that by adding more blades, the time-accurate results move
closer to the time-linearised ones. This statement is confirmed by the results in Fig.
(2.9), which show aerodynamic damping as a function of interblade phase angle for the
pitching mode with k = 0.5, as computed by LUFT, and by CFX with an increasing
number of blades, Nb. In particular, one can see that both solvers now predict the
same minimum damping value, at σ ≈ 40◦.
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Figure 2.9 Aerodynamic damping coefficient against interblade phase angle for pitching
motion in subsonic flow. Comparison of time-accurate computations with increasing number
of blade Nb

Transonic Flow

The steady pressure coefficient is shown in Fig. (2.10). There is satisfactory agreement
between the two codes, with only a very slight difference near the shock wave.
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Figure 2.10 Steady steady pressure coefficient in transonic flow
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The aerodynamic damping coefficient for plunging motion at two reduced frequencies
is shown in Fig. (2.11). The overall agreement is good for both cases. Once again,
the effect of the non-reflecting boundary conditions is influential, especially at low
interblade phase angles, with k = 1.0, where the waves are cut-on.
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Figure 2.11 Aerodynamic damping coefficient against interblade phase angle for plunging
motion in transonic flow: (a) k = 0.5, (b) k = 1.0

The unsteady pressure coefficient for plunging motion, with k = 0.5 and interblade
phase angles σ = 0◦ and σ = 90◦, is shown in Fig. (2.12). At zero interblade phase
angle, CFX predicts a lower unsteady loading (less area contained in the curve). There
is good agreement at the shock wave, though LUFT predicts a larger unsteady pressure
drop right after the shock. On the other hand, for σ = 90◦, the solvers agree very well
for most of the blade surface, showing some discrepancies before the shock wave.
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Figure 2.12 Imaginary part of the unsteady pressure coefficient for plunging motion at
transonic flow conditions, with reduced frequency k = 0.5: (a) σ = 0◦, (b) σ = 90◦

Fig. (2.13) illustrates aerodynamic damping as a function of interblade phase angle
for the pitching mode with k = 0.5 in transonic flow. Similarly to the subsonic flow
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case, the agreement between the solvers improves by increasing the number of blades
modelled in the time-accurate code.
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Figure 2.13 Aerodynamic damping coefficient against interblade phase angle for pitching
motion in transonic flow. Comparison of time-accurate computations with increasing number
of blade Nb

Summary

The previous results have shown good agreement between time-accurate and time-
linearised code for the two-dimensional SC10 test case. The main discrepancies come
from the inability of the time-accurate code to model acoustic resonance with a limited
number of blades in the domain, and from the inaccuracies in non-reflecting boundary
conditions.

By modelling more blade passages in the domain, the agreement between solvers is
improved though the computational cost associated to the time-accurate simulations
grows large. In particular, we notice that the minimum aerodynamic damping is
captured by both solver and that, as the number of blades increases, the time-accurate
solver approaches the results from the time-linearised solver, confirming its ability
model the response the aeroelastic response of the 2D cascade, in both subsonic and
transonic flow. The overall behaviour of aerodynamic damping is compliant between
the two codes. For this particular problem, i.e. modelling of a 2D infinite cascade, the
time-linearised approach is superior to the time-accurate one.

Nevertheless, our goal is to obtain a ML model that mimics the results of the CFD
code. In a pure machine learning sense, whether the code is time-accurate or not
is irrelevant, as long as its predictions are consistent. Having shown that LUFT can
predict the unsteady flow to a good degree of accuracy for our test case, we can move
onto generating aerodynamic damping databases with it.
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2.6 Machine Learning Techniques

2.6.1 Fully Connected Neural Network

The fully connected neural network (FCNN), or multi-layer perceptron (MLP), is a
fundamental algorithm in machine learning and it is possibly the most widely used
regression model in the field. The building block of the FCNN is the “artificial neuron”,
shown in Fig. (2.14), an operator that applies a nonlinear function to the linear
combination of its inputs. Assuming we have an input vector x ∈ Rn, the output of
the neuron reads

y = g (w · x+ b) (2.74)

Figure 2.14 Illustration of a neuron. Adapted from Chen (2022)

where g(·) is the nonlinear function, w is a vector of weights with the same dimensions
of x and b is called the bias and it is usually equals to unity. The nonlinear function
is often called activation. Fig. (2.15) shows four of the most commonly employed
activations: (a) the sigmoid, (b) the hyperbolic tangent (tanh), (c) the rectified linear
unit (ReLU), (d) the swish function. An FCNN is composed of multiple layers of
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Figure 2.15 Common activation units: (a) sigmoid, (b) hyperbolic tangent (tanh), (c)
rectified linear unit (ReLU) and (d) swish. Adapted from Chen (2022)

such neurons, each one connected to all the other neurons in the previous and in the
following layer, as shown in Fig. (2.16). The input, hidden and output layers store
input variables, intermediate outputs and quantity of interest, respectively.
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Figure 2.16 Illustration of a fully connected neural network. Adapted from He et al. (2020).

The inputs are usually normalised in a number of ways (min-max, standard scaling)
depending on the activation function and are subsequently propagated forward through
the network. The values at layer (l + 1) are therefore obtained from the previous layer
as

a(l+1) = g(z(l+1)) = g(w(l+1) · a(l) + b(l+1)) (2.75)

where the symbols are the same as in Eq. (2.74), expect for w and b which are now a
matrix and a vector of dimension (h(l+1) × h(l)) and (h(l+1) × 1) respectively, with h
being the number of neurons at a given layer. Once the ouput layer is reached, the
values are denormalised back to their original range, which is dependent on the training
dataset.

The training of the FCNN relies on the concept of backpropagation. The FCNN
solves an optimisation problem by iteratively updating the weights w that connect
the neurons. These are initialised randomly and are updated by minimising the cost
function J :

J(w, b) =
1

2m

m∑︂

i=1

∥qi − ˆ︁qi∥2 +
λ

2m

L+1∑︂

l=1

(w(l))2 (2.76)

where ∥ · ∥ indicates the L2-norm, m is the number of training samples, q, ˆ︁q are
the quantity of interest and the prediction from the FCNN respectively, and λ is a
regularisation factor that penalises large weights norm, thus avoiding overfitting. The
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gradient of the cost function is calculated as:

∂J

∂w(l)
=

1

m

m∑︂

i=1

∆(l) · (a(l−1))T +
λ

m
w(l)

∂J

∂b(l)
=

1

m

m∑︂

i=1

∆(l)

(2.77)

where:

∆(l) =

{︄
(a(l) − ˆ︁a(l)) · g′(z(l)), l = L+ 1

(w(l+1))T∆(l+1) · g′(z(l)), 1 ≤ l ≤ L
(2.78)

The choice of normalisation of input and outputs, activation function and optimiser
used will be explained in the relevant Chapters (3, 5)

2.6.2 Random Forest

Random Forest (RF) (Breiman, 2001) is a supervised, ensemble learning algorithm
employed in both classification and regression problems. RF is an ensemble of decision
trees, which recursively split the data at each node of the tree until either a stop
criterion is met, e.g. maximum tree depth, or all data points are sorted into leaf
nodes. The splitting algorithm optimises a measure of accuracy depending on the
task. In regression problems, decision trees minimise the mean squared error and
make predictions by traversing the tree to find the corresponding leaf and taking the
weighted mean of its values. RF works by randomly selecting a subset of features
for each tree, thus preventing overfitting. A more detailed description is given in the
relevant Chapter (6).

2.6.3 Model Explainability

Machine learning models, especially those based on complex algorithms and deep
learning techniques, constitute a proverbial “black-box” and are usually difficult to
understand. The interpretability of a model can be improved by either intrinsic or
post-hoc methods (Molnar, 2022).

Intrinsic methods aim at improving interpretability by limiting the complexity of
a machine learning model, under the assumption that simplicity of the model and
ability to understand its output go hand in hand. By design, this assumption does not
necessarily hold for a neural network, as even simple architectures provide results that
can be hard to interpret.

On the other hand, reducing the number of input features is usually beneficial
to model interpretation. A feature selection study would require a considerable
computational cost when using a neural network, therefore the number of features in



2.6 Machine Learning Techniques 49

this work has been restricted based on physical considerations. Nevertheless, a small
input feature space does not directly equate with interpretability, thus other methods
are needed.

The post-hoc methodology refers to explanation techniques that are applied to
existing models, rather than being incorporated into the development process. These
methods can be model agnostic, such as a perturbation analysis, or model specific,
such as the extraction of gradients from a neural network.

The model-agnostic explanation method named Shapley additive explanations
(SHAP) (Lundberg and Lee, 2017) is used to explain the trained neural network model
in this work. SHAP is based on Shapley values (Shapley, 1953), a method from coalition
game theory, which states that a model prediction can be explained by framing the
problem as the fair distribution of payouts to players of a game. In this work, the game
is the prediction of the machine learnt model; the players are the input features; the
payouts are the contributions of each input feature to the predicted y. SHAP aims at
explaining the prediction of a data point, a so called instance x, by calculating each
feature’s contribution to the overall prediction as a linear model, as shown below in
Eq. (2.79)

y = g (x) = ϕ0 +
M−1∑︂

j=0

ϕj (x) (2.79)

where g is the model, M is the number of features or maximum coalition size, ϕj is the
attribution for feature j and is referred to as the SHAP value, and ϕ0 = E(g(x)) is the
expected value of the model prediction over a specified range of input features.

The calculation of the SHAP value ϕj for feature j considers the attribution from
xj itself plus the combinations between xj and the remaining features

ϕj(g,x) =
∑︂

S⊆M\{xj}

|S|!(|M| − |S| − 1)!

|M|! [gx(S ∪ {xj})− gx(S)]

gx(S) = E(g(xk)|S)
(2.80)

Eq. (2.80) shows the sum over all possible subsets S of input features, excluding
feature value j; | · | denotes the number of elements in a set, e.g., |M| = M ; |S|!
and (|M| − |S| − 1)! are the permutations number of feature values appearing before
and after j, respectively; [gx(S ∪ {xj})− gx(S)] is the marginal contribution of {xj}
when added to the subset S and E(g(xk)|S) is the conditional expectation of the
model prediction, given the subset S. For neural network architectures, the method is
implemented in the SHAP1 library in PYTHON.

The SHAP value ϕj provides global and local sensitivities for the model. The global
significance of each input feature is ranked by the mean SHAP value |ϕj|.

1https://github.com/slundberg/shap

https://github.com/slundberg/shap
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2.7 Summary

In this Chapter, the computational methods and machine learning algorithms necessary
to build a data-driven model have been discussed.

The training data will be obtained from a time-linearised flow solver, and the
figures of merit, aerodynamic damping and/or unsteady forces, are computed under the
assumption that the blades vibrate in a prescribed modeshape, which is not influenced
by the aerodynamic loads, and with a constant phase shift between them. This is
commonly known as energy method (Carta, 1967). This choice of computational
methods is advantageous because: 1) it can produce results much quicker than time-
accurate methods and 2) it is able to capture asymptotic stability, which is sufficient
for the design stage this work is targeting.

The main test case of this work has been introduced. The choice of a two-dimensional
geometry preserves most of the driving physics of flutter apart from two effects: three-
dimensional flow profiles, and consequent radial migration, and presence of radial
acoustic modes in the duct. Although relevant, these are not considered essential at
this stage, allowing us to develop the data-driven modelling framework incrementally,
starting from a simplified problem.

The machine learning algorithms employed in this thesis have been presented.
These have been chosen for their ease of use and the relatively low computational cost
associated with their training (only small neural networks will be considered).



Chapter 3

Neural Network Model

The contents of this chapter have been published in Rauseo et al. (2021).

3.1 Introduction

This chapter presents the first effort in predicting aerodynamic damping for a vibrating
compressor cascade using machine learning techniques. As such, no attempt at general-
isation will be made yet, and this study will simply serve as an experiment to evaluate
the feasibility of the data-driven approach we are seeking. Tackling the interpolation
problem first will give us an estimate of the database sizes needed to have a model that
can compute aerodynamic damping to an acceptable degree of accuracy, providing the
necessary stepping stone needed to build more complicated models.

3.2 Training Geometry

The test case is the Standard Configuration 10, illustrated in Section (2.5).

3.3 Input Features

The input features chosen for this purely data-driven model are quite simple, as their
only purpose is to clearly define a point in the sample space. Thus, five independent
quantities are selected: inlet Mach number, M1 and incidence angle, β1, define the
steady operating conditions, while reduced frequency k, interblade phase angle, σ and
modeshape define the unsteady boundary conditions.

β1 is imposed as boundary condition, M1 is varied by changing the pressure ratio
across the cascade, k is imposed in the unsteady solver which, in turn, calculates the
correct structural frequency using the steady state inlet flow velocity as reference. σ is
specified in degrees and imposed as phase lag at the passage interfaces in the unsteady
solver. The modeshape requires a concise discussion.
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When it comes to stall flutter, we are mainly interested in the first flap-wise bending
mode 1F (see Table 1.1). A flap mode is a combination of a pure plunging motion,
orthogonal to the chord line, and a pure pitching motion about an axis. In the case of a
fan blade it is convenient to define the pitching axis at mid-chord, and the corresponding
pitching mode is referred to as torsion (1T). Vahdati and Cumpsty (2015) showed that
the amount of pitching in a flap mode is highly influential for stability and define a
parameter named α to control the pitch-to-plunge ratio:

α = 2
∥XLE∥ − ∥XTE∥
∥XLE∥+ ∥XTE∥

(3.1)

where XLE, XTE are signed leading and trailing edge displacements, respectively and
∥ · ∥ indicates the L2-norm. In this work, the pitch-to-plunge ratio is controlled by
keeping a fixed leading edge displacement, while changing the parameter Xt, defined
as a slight modification of α :

Xt =
∥XLE +XTE∥
∥XLE −XTE∥

(3.2)

The limiting cases are pure torsion with Xt = 0 and pure plunge with Xt → ∞
(XLE → XTE); all other cases, i.e., Xt ∈ (0,∞), are referred to as flap mode. The
case of Xt < 0 is ignored as it is not relevant for fan and compressor flutter. The effect
of increasing Xt is, essentially, to move the pitching axis further downstream from the
blade, e.g. Xt = 2 locates the pitching axis half a chord away from the trailing edge;
therefore, decreasing the pitching component of the modeshape. Fig. (3.1) shows a
schematic illustration of the effect of increasing Xt.

Xt = 0 Xt = 1 Xt = 20

Figure 3.1 Schematic illustration of modeshape at different Xt.

The choice of defining a new parameter to control the modeshape, as opposed to
Vahdati and Cumpsty (2015), is due to the fact that the parameter α does not behave
monotonically with the location of the pitching axis, presenting a cusp when the axis
is located at the trailing edge, i.e. x/c = 1. Although this is perfectly fine for analysis,
such a behaviour is ill-suited for an input parameter to an ML model, as two different
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modeshapes can exhibit same values of α. On the other hand, Xt simply scales linearly
with the picthing axis location. Fig. (3.2) shows the behaviour of the two parameters
as a function of the chordwise pitching axis location.
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Figure 3.2 Illustration of the difference between parameters that control the plunge-pitch
ratio of a flap mode as a function of the chordwise location of pitching axis: (a) α as defined
by Vahdati and Cumpsty (2015); (b) Xt defined in this work

3.4 Databases of Aerodynamic Damping

Having selected the input parameters, the next step is to decide the intervals in which
these parameters will vary. The range for inlet Mach number is chosen to be symmetric
about the nominal value of 0.7, to study both subsonic flow, where no shock appears,
and transonic flow conditions, where a shock is present on the suction side. M1, thus,
changes between 0.5, anything lower is discarded as excessively low speed, and 0.9, so
that the shock stays on the suction side and does not move too far upstream. The
incidence of incoming flow onto the blade is varied between 0◦ and 6◦, which is the
largest value before inception of stall for all the Mach numbers studied in this work.
This choice of intervals for the steady state variables is, once again, based on the
literature shown in Table (1.1).

The interblade phase angle σ ranges from −180◦ to 180◦; the extremes are the
same point, although no special treatment has been specified for them in the training
phase of the surrogate model. In practice, the combination of reduced frequency and
modeshape is not arbitrary: the same blade will be characterised by very different
reduced frequencies whether it is vibrating in a pure torsion or in a flap mode. Moreover,
this combination also depends on the machine being considered: the flap mode of a
fan blade will have a lower reduced frequency (Rendu, 2016; Stapelfeldt and Vahdati,
2018) compared to an embedded compressor blade (Zhao et al., 2016). Nevertheless, to
cover the whole spectrum of combinations, modeshape and frequency in this study are
assumed to be independent from each other during training of the surrogate model and,
therefore, take large intervals. Table (3.1) summarises the space of input variables.
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Table 3.1 Intervals of design parameters.

Parameter Min Max

Inlet Mach Number M1 0.5 0.9
Incidence β1 0◦ +6◦

Reduced Frequency k 0.4 1.5
Plunge-pitch ratio Xt 0.0 4.0
Interblade Phase Angle σ −180◦ 180◦

The Latin Hypercube sampling method (McKay et al., 1979) is applied to generate
five independent databases of input parameters within the range in Table (3.1): this
approach ensures a uniform distribution of samples in the space of interest and that
arbitrary samples from different databases are mutually independent. The databases
have size 128, 256, 512, 1024, 2048, and are referred to as db1 to db5. Each input
sample corresponds to a set of computations, steady and unsteady, of the time-linearised
solver outlined in Chapter (2). The quantity of interest (QoI) of the computations will
be the aerodynamic damping paramter ζ.

3.5 Surrogate Model

The fully connected neural network (FCNN) is used as a surrogate model of the CFD
solver. The FCNN is composed of multiple layers of nonlinear activation units called
neurons. The input, hidden and output layers store input variables, intermediate
outputs and quantity of interest, respectively. The vector of input variables x and
quantity of interest q are defined below

x = [M1, β1, k,Xt, σ]

q = ζ
(3.3)

The rest of this section introduces the training strategy employed.

3.5.1 Forward Propagation

The input variables are normalised by their maximum and minimum and then rescaled
in the range {−1, 1}:

a
(0)
i = 2

xi −min(xi)

max(xi)−min(xi)
− 1 (3.4)

where xi is the vector of input variable i, with dimension m, where m is the number of
samples. The outputs at intermediate layers are propagated as below:

a(l+1) = g(z(l+1)) = g(w(l+1)a(l) + b(l+1)) (3.5)
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where w is the weights matrix, b is the bias vector and g(·) is the activation function,
all already discussed in Chapter (2). The function g(x) = A ·tanh(Hx) with A = 1.7159
and H = 2

3
is a scaled hyperbolic tangent as proposed by Lecun (1989). The results at

the output layer (L+ 1) are then denormalised to yield the quantity of interest:

ˆ︁q = (max(q)−min(q)) · a
(L+1) + A

2A
+min(q) (3.6)

The min-max normalisation of the aerodynamic damping is symmetric with respect to
zero so that ˆ︁q/|ˆ︁q| = ζ/|ζ|, i.e., negative ˆ︁q (output of FCNN) corresponds to negative
aerodynamic damping. Lastly, the accuracy of FCNN predictions is measured by the
relative error on the test database:

ϵ =
1

m

m∑︂

j=1

|qj − ˆ︁qj|
max(q)−min(q)

(3.7)

3.5.2 Backpropagation

The mean squared error cost function J (see Eq. (2.76)) is used at the core of the
optimisation problem. The weights are updated through iterations, by minimising
J(w, b). The optimiser employed to perform this task is BFGS (Fletcher, 1987). The
gradient of the cost function is shown in Eq. (2.77).

3.5.3 Hyperparameters Tuning

The weights determined in the optimisation process are influenced by multiple parame-
ters, the hyperparameters, namely number of layers L and number of neurons per layer
NL, training database size and regularisation factor λ.

First, a training database independence study is carried out, using 5 different
combinations of databases summarised in Table (3.2). The training/test split is kept
constant at 80/20 for all the combinations. The gradient-based optimisation can lead to
local minima of the cost function, therefore, 16 networks with different initial conditions
and randomly reshuffled datasets are trained in parallel. A baseline FCNN with L = 2,
NL = 12 and λ = 10−4 will be used for this study.

The mean difference between test and training error (ϵte, ϵtr) is shown in Fig. (3.3a).
The error bars show ±1 standard deviation from the mean value. As the training
database size increases, the difference between the test and training errors reduces
to nearly zero, and thus, the accuracy of the FCNN becomes independent of the
training database size. Moreover, the error bar size also converges to zero when all
the datasets are used, indicating independence from initial conditions. The rest of
the hyperparameters study is carried out using all data, with the training/test split
discussed above. For completeness, the value of test and training errors separately is
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Table 3.2 Data for training database independence study

Data Total Size Training Data Test Data Trained FCNNs

db1 ∪ db2 384 80% 20% 16
db2 ∪ db3 768 80% 20% 16
db3 ∪ db4 1536 80% 20% 16
db4 ∪ db5 3072 80% 20% 16

All dbs 3968 80% 20% 16

shown in Fig. (3.3b). Both errors converge, albeit to a value of ϵ ≈ 2%, which will be
improved upon by tuning the hyperparameters.
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Figure 3.3 Training database independence study: (a) Difference between test and training
error; (b) Test and training errors

As for finding the hyperparameters, a full factorial or grid search approach is
followed. The grid search exhaustively considers all parameter combinations, from the
variability specified in Table (3.3). In total, 1485 combinations are tested.

Table 3.3 Hyperparameters range

Min Max Samples

L 1 15 15
NL 2 12 11
log10(λ) −6 2 9

Total 1485

Fig. (3.4a) shows the test percentage error against the logarithm of the regularisation
parameter λ, for different numbers of hidden layers L, each containing NL = 12 neurons.
We can see that, a large value of λ applies too much regularisation and causes the
FCNN to learn poorly. The error quickly diminishes with a decrease in λ and stays
nearly constant with λ ≤ 10−2. Fig. (3.4b) shows the test percentage error against
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the number of layers, for different NL, with λ ≤ 10−4. The plot shows that increasing
the number of layers is beneficial until an asymptote is reached, e.g. with NL = 12,
the error stops decreasing at L ≈ 9. It is also shown that, increasing the number of
neurons is beneficial in the investigate range, apart for NL = 4.
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Figure 3.4 Test percentage error as a function of: (a) regularisation parameter λ, (b)
number of hidden layers L

The effect of increasing number of neurons and hidden layers can be represented by
a single variable, that is the number of connections or weights W

W = (I + 1)×NL + (NL + 1)×NL × (L− 1) + (NL + 1)×O (3.8)

where I and O are input and output dimensions, respectively. Fig. (3.5) depicts the
error as a function of W . Each scatter point represents the results from a grid search
sample, while the solid line is a polynomial least square fit of the data. The plot shows
that, irrespective of how the number of connections is changed, the prediction error
plateaus at ϵ ≈ 1% for W ≥ 103.
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Figure 3.5 Test percentage error as a function of W , number of connections in the FCNN

This is true for the current case because, once the network becomes deep enough,
there is little change in performance with an increasing number of layers or neurons.
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Normally, the variable W is employed by keeping one of the parameters fixed (see
for example Belkin et al. (2019)). The FCNN employed in the rest of this work is,
therefore, characterised by the following hyperparameters: NL = 12, L = 10, λ = 10−4.

Fig. (3.6a) shows normalised aerodynamic damping from CFD and FCNN: good
agreement is achieved between the two methods, with only minor differences especially
for values far from zero damping.

It is also interesting to setup an equivalent classification problem, i.e. rather than
evaluating the capability of the FCNN to predict damping directly, we investigate
whether the machine learnt model is able to predict instability, irrespective of the
precise value. In order to do so, a confusion matrix is built in Fig. (3.6b). The four
quadrants show, starting from top right and going anti-clockwise: true positive samples
(stable in CFD and FCNN), false positives (unstable in CFD and stable in FCNN),
true negatives (unstable in CFD and FCNN) and false negatives (stable in CFD and
unstable in FCNN). The quadrants are coloured according to the number of samples
in that group, and the classification accuracy for each group is also reported.

By examining the bottom row of the matrix, we see that the FCNN classifies the
samples correctly for the large part, with circa 92% of the samples the FCNN predicts
to be unstable being actually unstable, while the remaining 8% are misclassified. The
top row shows a similar results, with circa 98% of the samples the FCNN predicts to
be stable being actually stable, while the remaining 2% are misclassified. This number
of false positives, although small, is of most interest and should be reduced as much as
possible.
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Figure 3.6 Evaluation of FCNN predictive capabilities
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3.6 Comparison with CFD

The following results show a comparison between FCNN and CFD predictions. Four
cases are setup to demonstrate the capability of the FCNN: 4 out of 5 input variables
are fixed while the remaining one is swept. The CFD computations employed in this
comparison do not explicitly coincide with any training sample, they will therefore
represent a further, and final, test to evaluate the machine learnt surrogate model. The
combination of parameters for the four comparisons are reported in Table (3.4). These
conditions still constitute an interpolation within the training range. The results in
Fig. (3.7) show good agreement between FCNN and CFD, quantified by the relative
percentage error in Table (3.4).

Table 3.4 Input parameters for FCNN sweep test. Relative percentage error of FCNN
predictions is computed against CFD data.

M1 β1 k Xt σ ϵ %

Case 1 0.8 Sweep 0.5 3.0 20◦ 4.5
Case 2 0.55 +5◦ Sweep 1.5 20◦ 4.1
Case 3 0.7 +6◦ 0.7 Sweep 0◦ 2.3
Case 4 0.55 +5◦ 0.5 1.0 Sweep 1.8

Fig. (3.7a) shows that for a blade vibrating in flap mode, in transonic flow,
aerodynamic damping decreases with increasing flow incidence. The flow conditions
for this case are very similar to what a fan blade section would experience as it moves
up a constant speed characteristic. This behaviour has been already reported in the
literature (Vahdati and Cumpsty, 2015). The FCNN is able to follow the trend of
the CFD closely, and to predict the flutter boundary within 0.2◦, confirming that its
predictions can be trusted for engineering-relevant cases.

Fig. (3.7b) shows a reduced frequency sweep; at these flow conditions and with
the given interblade phase angle, the upstream and downstream cut-off frequencies are
0.230 and 0.408, respectively. As the frequency of vibration is increased, the unsteady
pressure fields upstream and downstream of the blade change from cut-on to cut-off.
The frequencies at which this change takes place are the cut-off frequencies and their
crossing is associated with a strong change in aerodynamic damping. The crossing
in Fig. (3.7b) takes place at k = 0.408 and is visible by the drop in aerodynamic
damping. The behaviour of aerodamping with frequency is not monotonic. If we
consider aerodynamic damping as a function of σ, it is known from Corral and Vega
(2016) that an increase in frequency results in an increase in mean damping value
and in a shift of the damping curves; therefore, since we are plotting damping against
frequency at fixed IBPA, the combination of both effects results into the behaviour
shown in Fig. (3.7b). The surrogate model captures the overall trend as well as the
crossing of the zero damping line.
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Fig. (3.7c) shows a sweep of Xt; as the modeshape approaches a pure plunge
(increasing Xt), the aerodynamic damping increases, in agreement with the literature.
The minimum damping, which is negative in this case, is attained at Xt = 1, which
corresponds to a mode with pitching axis at the trailing edge. The FCNN is, again,
able to follow the CFD closely (see Table 3.4).

The peak in aerodynamic damping due to acoustic resonance in Fig. (3.7d) is well
predicted, both in location (σ ≈ 40◦) and magnitude, and so is the overall shape of the
curve. The negative damping, thus flutter, is predicted correctly as well.
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Figure 3.7 Comparison of FCNN ( ) and CFD ( ) aerodamping predictions for the
conditions listed in Table (3.4). (a) Case 1: Incidence sweep; (b) Case 2: Reduced Frequency
sweep; (c) Case 3: Plunge-pitch ratio sweep; (d) Case 4: Interblade Phase Angle sweep

The results discussed above show that the FCNN is able to correctly predict
aerodynamic damping across a range of flow conditions and structural parameters.
Moreover, the surrogate model captures the zero damping crossing point (flutter
boundary). In the next section, an example of how the method can be used in a design
environment is given.

3.7 Application to Blade Redesign

In this section, the application of the surrogate model to a hypothetical engineering
problem is addressed. During the early design stage of a turbomachinery blade, the
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surrogate model can be used to produce aerodynamic damping predictions of numerous
design samples at low cost. Ideally, expensive numerical simulations should only be
needed at certain critical operating points (such as design point) and regions where
negative aerodynamic damping is predicted by the surrogate model. In the case where
flutter is predicted for an aerodynamically optimised blade, even at the cost of reducing
aerodynamic performance, the design parameters need to be adjusted to increase
damping and regain stability. Under the assumption that a mechanical solution (e.g.,
introduction of under-platform dampers) is either not convenient or not possible at all
(e.g., the blade is part of a blisk), the most viable solution is to increase aerodynamic
damping. Traditional wisdom suggests that, for example, increasing reduced frequency
is beneficial for aeroelastic stability. However, this generalisation has been shown to
achieve mixed results in real applications (see Fig. (3.7b)). Therefore, there is a need
for tools which can provide guidelines for blade re-design or optimisation to improve
aerodynamic damping.

The surrogate model S is a nonlinear function which given an input x ∈ Rd outputs
ˆ︁q ∈ Rm; the Jacobian of the outputs with respect to input is:

Jij(x) =
∂Si(x)

∂xj
= ∇Si(x) (3.9)

The value of ∇Si(x) will give a measure of how sensitive the output i is to the input j in
the vicinity of x. In order to have a comparison between the inputs and across different
locations of the sample space, the gradient is normalised by its magnitude |∇Si(x)|,
yielding the normalised gradient. By extracting this quantity, we can investigate the
local sensitivity of aerodynamic damping to the input design parameters, thus having
a clear guide as to what actions can be taken to affect stability.

Take a blade behaving like Fig. (3.7d) as test case. The flow field of such a case, in
terms of Mach number contour and isentropic Mach number on the blade, is shown in
Fig. (3.8).
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Figure 3.8 Mean flow field of application test case: (a) Mach Number contour; (b) Isentropic
Mach Number on the blade
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Two intervals of σ are predicted to flutter: 0◦ to 30◦ and 60◦ to 140◦. The objective
is to adjust the design parameters so that instability can be avoided. In order to
achieve this goal, one can compute the normalised gradients (Eq. (3.9)), and use them
as a guide for deciding the best action to take in order to increase damping in an
unstable configuration.

The normalised gradients at σ = 20◦ and σ = 120◦ are shown in Fig. (3.9). The bar
height, value of normalised gradient, is a measure of aerodynamic damping sensitivity,
while the sign on top gives the type of correlation between input and output, i.e., a
(+) sign indicates that an increase in input variable results in greater aerodynamic
damping. The most important parameter in both cases of Fig. (3.9) is β1 which is
negatively correlated with damping. M1 is important for σ = 20◦ but exerts negligible
influence at σ = 120◦. The influence of k diminishes from σ = 120◦ to σ = 20◦, and,
most importantly, the nature of its correlation with aerodynamic damping is opposite
between the two cases; i.e., an increment in k is beneficial at σ = 120◦ but detrimental
at σ = 20◦. Finally, Xt shows the same behaviour as k.
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Figure 3.9 Normalised gradients for Case 4 at σ = 20◦ and σ = 120◦.

The previous considerations lead to the conclusion that, varying only one parameter,
the most effective action one can take (for both IBPAs) is to reduce the incidence of
incoming flow onto the blade (e.g., restaggering the blade). The change in aerodynamic
damping due to variation in incidence angle and reduced frequency is shown in Fig.
(3.10). The predictions are results from the surrogate model. As expected, a reduction
in incidence angle is beneficial for both IBPAs (see Fig. (3.10a)).

In particular, a decrease of 0.3◦ is sufficient to stabilise σ = 120◦, whereas a reduction
of 1.8◦ is necessary to stabilise σ = 20◦. Fig. (3.10b) confirms the contradicting
behaviour of aerodynamic damping with respect to reduced frequency for the two cases:
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an increase in k leads to a more stable blade at σ = 120◦, but aggravates the instability
at σ = 20◦ in the vicinity of the design point. The method also provides an “exchange
rate” between different parameters so that the designer can make the best choice for
improving flutter margin. For example, in Fig. (3.10) for σ = 120◦, a decrease of
0.3◦ in incidence is equivalent to an increase of, roughly, 0.06 in reduced frequency for
eradicating flutter.
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Figure 3.10 Change in aerodynamic damping at σ = 20◦ and σ = 120◦.

In summary, the surrogate model predicts that a decrease of 1.8◦ in flow incidence
should stabilise the blade at both σ = 20◦ and σ = 120◦. To verify this claim, a
“restaggered” case is setup, where the inflow angle is kept constant and the incidence is
reduced by restaggering the blade by 1.8◦. The other parameters are kept constant. The
aerodynamic damping predicted by the CFD is shown in Fig. (3.11). As anticipated
by the surrogate model, σ = 120◦ becomes highly stable while the point at σ = 20◦

sits just above the zero damping line.
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Figure 3.11 CFD prediction of damping for original ( ) and restaggered ( ) blade
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At this point, one can see that flutter is still predicted for two interblade phase
angles σ = 0◦ and σ = 10◦. Therefore the process is repeated to stabilise these
conditions. The gradients are shown in Fig. (3.12). We see that inlet Mach number
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Figure 3.12 Normalised gradients after restaggering, at σ = 0◦ and σ = 10◦.

is negatively correlated with damping at σ = 10◦, but exerts no effect at σ = 0◦;
the change in modeshape is irrelevant for this condition and a reduction in torsion
component, i.e. increase in Xt produces essentially no effect at both interblade phase
angles. Again, there is strong correlation with both the incidence of incoming flow and
reduced frequency.
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Figure 3.13 Change in aerodynamic damping for restaggered blade at σ = 0◦ and σ = 10◦.

It can be seen from Fig. (3.13), that a large change in flow incidence, |∆β1| = 2.4◦

is still not sufficient to stabilise the point at σ = 10◦ and even if it did, it is important
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to remember that for small amount of restaggering, no great effect is exerted on the
behaviour of the cascade, but with large changes, not only the aerodynamics of the
passage would be altered significantly, but also the duct acoustics, as the metal and
flow angles are now different. The resulting cascade would depart significantly from
the original geometry, thus breaking the assumptions for the validity of the model. Fig.
(3.13b) thus shows that the only viable route to stabilise both IBPAs is an increase in
reduced frequency.

The resulting cascade is modelled in CFD, and the aerodynamic damping coefficient
in shown in Fig. (3.14). Again, the CFD confirms with the predictions from the FCNN
and the whole IBPA range is now stable.
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Figure 3.14 CFD prediction of damping for original ( ) and final ( ) blade

3.8 Summary

A first attempt at modelling aerodynamic damping in a compressor cascade with an
FCNN has been made.

The surrogate model has been trained on results from a linearised aeroelastic solver
and its validity has been tested through evaluation of relative errors. The training data
concern flap modes, with different interblade phase angles, across a range of reduced
frequencies, and flow conditions. The trained FCNN shows good prediction accuracy
for aerodynamic damping when compared with CFD. To explore additional potential
engineering applications of the surrogate model, it is shown that the sensitivity analysis,
i.e. extraction of FCNN gradients, can be used as a guide to take appropriate measures
to stabilise unstable operating points, thus provinding an application for this simple
model. Although promising, the results in this Chapter are obtained with a simple
artificial neural network that has no knowledge of the flow physics in turbomachinery.
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This characteristic limits the validity of the model to the geometry used in the training
phase.

In the next Chapter, we will examine the landscape of analytical reduced order
models for the aeroelastic response of turbomachinery, in order to start building a
data-driven model with integrated physical knowledge that can generalise to unseen
geometries.



Chapter 4

Analytical Methods for the Aeroelastic
Response of Cascades

4.1 Introduction

The model introduced in the previous chapter has no knowledge of the physical
phenomenon it makes predictions for. The chosen input features were not particularly
meaningful and merely served to define a point in the design space. For example, we
could have employed mass flow rate and pressure ratio, rather than incidence and inlet
Mach number, to define a steady operating condition without harming the performance
of the FCNN. This kind of agnostic learning is a necessary stepping stone to build
more complicated models, but the resulting machine learnt models are not useful when
it comes to generalisation. These models are capable of very accurate predictions for a
very limited amount of test cases.

On the other end of the spectrum, we find analytical and semi-analytical models.
They are solely based on theory and physical understanding, and while they are
applicable to a wide variety of test cases, they often involve stringent assumptions that
limit the accuracy of their predictions. Having previously shown a solely data-driven
approach, we now examine a number of theories in decreasing order of complexity
(compared to solving the linearised Navier-Stokes equations), and investigate the
capabilities of the most widely used reduced order model for the aeroelastic response
of turbomachinery cascades.

The Euler equations model most of the important features for compressor flutter
and give quite accurate results for well behaved flows. However, the computational
methods required to solve the set of equations set them apart from analytical and
semi-analytical methods.

Atassi and Akai (1980) developed a model to calculate unsteady forces and moments
on the blade, that accounts fully for the geometry of the airfoil and cascade. The
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model is, though, only valid for incompressible flow, and the results in the original
paper contain mistakes according to Whitehead (1987, p. 3.18). Moreover, there are
no validation studies and the model just seems to have been shelved by the wider
community.

The only truly widespread reduced order model for the aeroelastic response of
turbomachinery cascades is the linearised subsonic, inviscid theory developed by
Whitehead (1972), later implemented in the code LINSUB. The derivation of the theory
is quite lengthy, therefore only a brief summary of the main assumptions and equations
of the model is given here, though a full account can be found in Whitehead (1987,
Chapter 3).

It will be shown in Chapter (5) that reduced order models can be employed to
enhance the prediction capabilities of data-driven models. Considering our target
accuracy and application, LINSUB constitutes an appropriate candidate due to its
computational efficiency and capability of taking into account important factors for
flutter, such as the cascade geometry and compressibility.

4.2 Linearised Subsonic Unsteady Flow in Cascades

The method implemented in LINSUB is based on a theory for linearised, subsonic,
unsteady flow through an infinite cascade of two-dimensional flat plates. The cascade,
pictured in Fig. (4.1), is defined by a chord length c, stagger angle χ, blade spacing
s, inlet Mach number M , inlet flow velocity U∞, and operates at zero incidence. The
general assumptions are listed below:

• The flow is subsonic, irrotational and isentropic.

• The fluid is inviscid and the Kutta-Joukowski condition at the trailing edges of
the blades is satisfied.

• The cascade is two-dimensional, therefore bending modes are represented by a
translation orthogonal to the chord, while torsional or pitching modes by a rigid
body rotation about a known axis. The axis is assumed to be located at the
leading edge. Motion parallel to the chord line is neglected.

• The blades are not stalled, thus the flow always follows the airfoil surface.

• The blades are flat plates, so that camber and thickness effects are neglected.

• The mean incidence is zero, so that there is no steady blade loading and the flow
passes through the cascade undeflected.

• The amplitude of perturbations from the uniform mean flow are assumed to
be small, therefore the governing equations are linearised and the principle of
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superposition can be applied to the solutions obtained. It also follows that the
wakes of the blades, which are vortex sheets whose strength varies sinusoidally
with distance from the trailing edge, can be taken to be straight.

• All events occurring on the blades are identical, except for a constant phase shift
σ between each blade and its neighbours.

• All time varying events are harmonic with angular frequency ω

Figure 4.1 Illustration of the infinite cascade of flat plates modelled in LINSUB

The assumptions allow to model the blades and their wakes as vortex sheets that
induce an axial velocity jump across the airfoil surface. The total vorticity, γt, on the
blade is expressed as

γt = JuK = γ + ϵ (4.1)

where JuK indicates the jump in axial flow velocity and γ, ϵ are bound and free vorticity.
A relationship between bound and free vorticity is found

dϵ

dx
+
jω

U∞
(γ + ϵ) = 0 (4.2)

The linearised axial momentum equation for points just below and above the blades
can be subtracted to obtain an expression for the pressure jump and manipulated by
using Eq. (4.1) and Eq. (4.2)
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∂

∂x
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)︃
JuKejωt
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+ U∞

dϵ
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)︃
ejωt

= U∞
dγ

dx
ejωt

(4.3)
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Integrating and noting that both the pressure jump and bound vorticity are zero off
the blade, the expression for the pressure jump is

Jp(x)K = −ρ̄U∞γ(x) (4.4)

The blades will experience a lift force F and moment mz, acting anti-clockwise at the
leading edge

F = −ρ̄U∞

∫︂ c

0

γ(x)dx

mz = −ρ̄U∞

∫︂ c

0

γ(x)x dx

(4.5)

From Eq. (4.5), we see that in order to find the unsteady loads, an expression for
γ is needed. The vorticity induces an upwash velocity on the blade. The induced
velocity at any point on the airfoil is a function of both the bound and shed vorticity,
whose contribution can be condensed through a kernel function. The expression for
the upwash reads

vy(x
′) =

1

c

∫︂ c

0

K

(︃
x′ − x

c

)︃
γ(x) dx (4.6)

In order to find γ(x), we need expressions for the kernel and the upwash.

Whitehead (1960) found an analytical expression for the kernel function in incom-
pressible flow, replacing the cascade by a row of bound vortices with strength

Γm = Γ0e
jmσ (4.7)

The corresponding solution in subsonic compressible flow involves an infinite series
that cannot be summed analytically and that shows bad convergence when evaluated
numerically. The approach used is therefore to build the solution for the row of vortices
as a superposition of waves that satisfy the linearised momentum and continuity
equations. Three waves are superimposed to obtain a solution: two acousic waves,
upstream and downstream travelling, and one vorticity wave convected downstream by
the mean flow. The method is described in Smith (1972) and it ultimately leads to a
kernel function that can be used in Eq. (4.6).

The blades are assumed to vibrate in plunge h and pitch θ, thus inducing an upwash

vy(x
′) = ḣ+ θ (U∞ + jωx′) (4.8)

The expression in Eq. (4.8) ignores the contribution of incoming acoustic and vortical
disturbances, which are also implemented in LINSUB, but that are not relevant for
flutter of the isolated blade row we are trying to model.

The solution is now sought numerically, by placing Np discrete vortices and control
points along the airfoil length, respectively placed at x and x′ according to a cosine
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spacing law

x =
1

2
c (1− cos(ψ)) ; ψ =

πl

Np

; l = 0, 1, . . . Np − 1

x′ =
1

2
c (1− cos(ϕ)) ; ϕ =

π(2r + 1)

2Np

; r = 0, 1, . . . Np − 1

(4.9)

Note that the trailing edge is omitted as it requires zero vorticity to satisfy the Kutta
condition. Plugging Eq. (4.9) into Eq. (4.6) and Eq. (4.5) we obtain

vy(ϕ) =
1

2

∫︂ π

0

K

(︃
1

2
(cosψ − cosϕ)

)︃
γ(ψ) sinψdψ (4.10)

and
F = −1

2
ρ̄U∞c

∫︂ π

0

γ(ψ) sinψdψ

mz = −1

4
ρ̄U∞c

2

∫︂ π

0

γ(ψ) sinψ(1− cosψ)dψ

(4.11)

The integral in Eq. (4.10) may be evaluated by trapezoidal rule. The result expressed
in matrix form reads

U = KΓ (4.12)

where U is the upwash matrix of dimension (Np × 2), due to plunge and pitch motion,
whose entries are

U =
[︁
1 (1 + jkx′/c)

]︁
(4.13)

K is the kernel matrix (Np ×Np) whose elements are given by K (1/2(cosψ − cosϕ)).
Γ is the bound vorticity matrix of dimension (Np × 2). For each motion, there is a
vorticity solution and hence a column of discrete vortices given by

Γ =
[︁
(π/2Np)(γ/U∞) sinψ

]︁
(4.14)

with the exception of the first row which is multiplied by 1/2. Similarly, the integrals
in Eq. (4.11) can be written as

C = XΓ (4.15)

with
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X =
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−1 −1

2
(1− cosψ)

]︃
(4.16)
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Finally, plugging Eq. (4.12) into Eq. (4.15), we obtain an expression for the unsteady
aerodynamic load coefficients

C = XK−1U

=

[︄
C ḣ

L Cθ
L

C ḣ
M Cθ

M

]︄
(4.17)

Plunge and pitch displacements, and the resulting lift and moment, are calculated
with reference to the leading edge of the blade. The moment is assumed to be positive
when pitch down, i.e. anti-clockwise, and the lift coefficient is normalised by the blade
plunge velocity, whereas modal aeroelastic models normalise by displacement. The
output from LINSUB can be converted into a more convenient form for a generic pitch
axis x, with pitch-up positive rotation, and lift normalised by displacement using the
relation in Eq. (4.18) found in Donini (2012). Note that the multiplication by jk of
the plunge induced terms normalises the lift by displacement, rather than velocity,
while multiplying by −1 renders the moments positive pitch-up.

H = 2
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L

C ḣ
M Cθ

M

]︄ [︃
jk 0
0 1

]︃ [︃
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]︃

= 2
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x 1
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jkC ḣ

L −Cθ
L

−jkC ḣ
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M

]︄[︃
1 x
0 1

]︃ (4.18)

The original definition of the matrix C can now be modified into a more convenient
form, used throughout the rest of the thesis

C =

[︃
Ch

L Cα
L

Ch
M Cα

M

]︃
=

[︄
jkC ḣ

L −Cθ
L

−jkC ḣ
M Cθ

M

]︄
(4.19)

The modal forces can be converted into aerodynamic work by multiplying with modal
velocity and integrating over one vibration cycle. The expressions for aerodynamic
work coefficients are given by Frannson and Verdon (1991) and for pure plunge and
pitch modes they read

Ch
w = πh̄

2ℑ
{︁
Ch

L

}︁

Cα
w = πᾱ2ℑ{Cα

M}
(4.20)

The aerodynamic work can be expressed in normalised form as aerodynamic damping
parameter ζ

ζh = − Ch
w

πh̄
2 = −ℑ

{︁
Ch

L

}︁

ζα = − Cα
w

πᾱ2
= −ℑ{Cα

M}
(4.21)

The stability of simple modes can be thus assessed by inspecting only the imaginary
part of the unsteady force coefficients.
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4.3 Verification of Implementation

Although the code for LINSUB can be found, in full, in Whitehead (1987, Chapter 3),
the original implementation in FORTRAN has been translated into PYTHON to ease
the interface between machine learning and reduced order model, thus granting a
verification of the code implemented. The results from the current implementation
are compared against the one in Donini (2012). The test cases are two Standard
Configuration compressor cascades (Frannson and Verdon, 1991), namely SC1 and SC5.
The aeroelastic parameters are compiled in Table (4.1), while the results are shown in
Fig. (4.2).

Table 4.1 Aeroelastic parameters for LINSUB validation. Results shown in Fig. (4.2).

(a) (b)

Test Case SC1 SC5
Mach Number M 0.18 0.5
Stagger χ 55◦ 59.3◦

Pitch to chord ratio s/c 0.75 0.95
Pitching axis x 0.5 0.5
Reduced Frequency k 0.244 Sweep
Interblade Phase Angle σ Sweep 180◦

The results overlap perfectly, thus the implementation of the code is correct. More-
over, we can see that torsional flutter is predicted by LINSUB, even when disregarding
steady blade loading. This is not true for pure plunging motion, as Whitehead (1962)
showed that finite flow deflection needs to be taken into account to predict flutter.

−180 −90 0 90 180

σ [deg]

0

1

ζ

(a)
0.0 0.5 1.0 1.5 2.0

k

0.0

0.5

1.0

ζ

(b)

Figure 4.2 Comparison of LINSUB predictions for test cases shown in Table (4.1). Black
solid line ( ) shows results of the current implementation, the circle marker (⃝) are results
from the implementation in Donini (2012).
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4.4 Comparison against CFD

The results from LINSUB are now compared to aerodynamic damping values obtained
with CFD. The numerical setup of the solver and methodology employed to compute
aerodynamic damping have been discussed in Chapter (2).

4.4.1 Unloaded Cascade

The test case employed in this comparison is a fictitious cascade made up of unloaded
blades, that is NACA0006 profiles. The computational grid is obtained by morphing
the original SC10 mesh (Section 2.5) with a radial basis function technique (Kedward
et al., 2017). The aeroelastic parameters are shown in Table (4.2), while the results
are shown in Fig. (4.3).

Table 4.2 Aeroelastic parameters for CFD comparison. Results shown in Fig. (4.3).

(a) (b)

Test Case NACA0006 NACA0006
Mach Number M 0.423 0.423
Stagger χ 45◦ 45◦

Pitch to chord ratio s/c 1.0 1.0
Modeshape Plunging Pitching about midchord
Reduced Frequency k 0.87 0.87
Interblade Phase Angle σ Sweep Sweep

The predictions from LINSUB agree well with the CFD. The discrepancies are
attributable to the fact that, first, the blade modelled in CFD has, albeit small, non-
zero thickness that differentiates it from a flat plate and, second, the loading on the
blade modelled in CFD is not exactly zero.
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Figure 4.3 Comparison of LINSUB predictions ( ) and CFD ( ) for NACA0006 test
case shown in Table (4.2): (a) Plunging mode; (b) Pitching about mid-chord.
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4.4.2 Loaded Cascade

The test case employed in this comparison is the Standard Configuration 10. The
aeroelastic parameters are shown in Table (4.3); the results are shown in Fig. (4.4).

Table 4.3 Aeroelastic parameters for CFD comparison. Results shown in Fig. (4.4).

(a) (b) (c) (d)

Test Case SC10 SC10 SC10 SC10
Mach Number M 0.7 0.7 0.8 0.8
Inflow Angle α1 55◦ 55◦ 58◦ 58◦

Incidence β1 0◦ 0◦ 3◦ 3◦

Stagger χ 45◦ 45◦ 45◦ 45◦

Pitch to chord ratio s/c 1.0 1.0 1.0 1.0
Modeshape Plunging Pitching† Plunging Pitching†

Reduced Frequency k 0.5 0.5 0.5 0.5
Interblade Phase Angle σ Sweep Sweep Sweep Sweep

†Pitching axis is located at midchord
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Figure 4.4 Comparison of LINSUB predictions ( ) and CFD ( ) for SC10 test case
shown in Table (4.3). First and second row are subsonic and transonic flow. First and second
column are plunge and pitch modes. Pitching axis is at midchord.
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The blades in this case are loaded (see Fig. (2.4) for subsonic flow and Fig. (2.10) for
transonic flow), therefore, as expected, the predictions from LINSUB do not agree well
with the results from CFD, though the overall shape with IBPA is well approximated.
The upstream cut-off frequencies, denoted by the peaks in aerodynamic damping, are
also well captured.

4.5 Summary

The predictive capabilities of the analytical model discussed in this Chapter are limited
to unloaded blades, which is rarely the case in reality. The prediction accuracy degrades
dramatically for loaded blades especially at transonic conditions. Therefore, we cannot
rely solely on these models in practice. However, LINSUB captures relevant trends
and it is able to model important features such as cascade geometry, compressibility
effects and modeshape. Therefore, in the following Chapter, an attempt at combining
the merits of LINSUB with a machine learning technique is made, in order to build a
prediction model that is able to generalise to unseen conditions and geometries.



Chapter 5

Physics Guided Neural Network Model

5.1 Introduction

The model presented in Chapter (3) proved to be useful in a redesign context and
provides a good stepping stone for a data-driven solution for compressor flutter. The
fallacy of the simple FCNN though is clear: the model is not reusable, as it can
predict aerodynamic damping for the training geometry only. The difficulties with
extrapolation from the training space are well known in machine learning and efforts
have been made to address these limitations with varying degrees of success. All the
paradigms are based on introducing physical or domain knowledge into the process,
and a brief summary of such approaches is in order to justify the choices made in this
work. A more exhaustive review of machine learning studies in fluid mechanics is given
in Chapter (1).

Raissi et al. (2019) introduced the physics informed neural network (PINN) concept
and applied it to solve a number of problems, including two dimensional shedding
around a cylinder. The PINN framework includes the differential form of the governing
equations, and relative boundary conditions, as loss terms inside the cost function
so that predictions are consistent with the underlying physical problem, allowing the
model to extrapolate to unseen conditions. However, even in their state-of-the-art
form, PINNs have only been applied to relatively simple fluid flow problems (Jin et al.,
2021; Oldenburg et al., 2022) and, more importantly, are still geometry dependent, i.e.
a model trained on one geometry cannot be used on another.

Physical understanding can be incorporated through domain knowledge as well.
Manepalli et al. (2019) built a model to predict snow accumulation on mountains and
have incorporated certain domain knowledge via additional penalty terms into the cost
function, which penalise the model for predicting snow accumulation on water surfaces.
Daw et al. (2020) used an LSTM to predict lake water density and, as density can only
increase with depth, they constrained their model to only predict monotonic, increasing
trends. Frey Marioni et al. (2021) seeked to improve the modelling of the eddy viscosity
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term in the Boussinesq assumption, using neural networks trained on DNS data, with
the ultimate goal of improving flow field predictions in a turbomachinery cooling flow.
Rather than directly training on the complicated flow, they approximated it with
a serpentine passage and employed hierarchical agglomerative clustering to classify
and divide flow regions. They showed improved results by training only on regions
without flow separation. Frey Marioni et al. (2022) built on their work to model wakes
in an LPT cascade. Once again they showed that dividing the domain into simpler
subdomains and employing clustering improves the predictive capabilities of their ML
models.

Particularly in turbulence modelling, physical knowledge is incorporated in the
formulation of meaningful input features. Ling and Templeton (2015) developed a
number of classifiers to identify regions of high uncertainty in RANS computations,
and ensured that the models had good generalisation properties by providing several
features that are rotationally invariant and based on physical intuition. Their set of
features has since been adopted by other researchers (He et al., 2022; Wang et al.,
2017).

Finally, Pawar et al. (2021) introduced the concept of physics guided machine
learning (PGML) and applied it to the prediction of lift coefficient on 4 and 5 digits
NACA airfoils. The PGML framework in this case refers to a fully connected neural
network where, at some hidden layer, results from a reduced order model (ROM) of
the process are injected, thus augmenting the knowledge of the algorithm and “guiding”
it to a physically consistent formulation. The same framework has been applied to
modelling of dynamical systems with good degree of success (Robinson et al., 2022),
and both studies show good generalisation properties. This framework is appealing as
it is computationally inexpensive, easily implemented, builds incrementally on previous,
physically sound knowledge and acts as a regulariser, avoiding excessive overfitting
even in a small-data regime.

Considering the discussion above, we seek to build a machine learnt model using
the PGML framework with meaningful input and output features, based on physical
understanding of stall flutter. Each component of the PGML model developed in this
work will now be discussed.

5.2 Machine Learning Algorithm

The algorithm chosen as backbone of the PGML model is, again, a fully connected
neural network. The choice of an FCNN is motivated by the encouraging results of
Chapter (3) and, mainly, because its layered structure allows full control over the
location at which the low-fidelity results are injected. A schematic representation of
the FCNN is given in Fig. (5.1).
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A number of hyperparameters need to be specified now to build the model, such as
number of hidden layers, number of neurons per hidden layer, regularisation coefficient,
bias value, number of iterations, minibatch and step size, activation function and
location of low-fidelity results injection. In this case, a full factorial exploration is
unfeasible to say the least, therefore the standard practice of random search is employed.
A set number of FCNNs will be trained with hyperparameters chosen randomly within
pre-established ranges; the loss metrics are evaluated and the best models are then
selected for a posteriori assessment.

In this work, we aim for small, simple FCNN architectures in order to reduce the
computational cost associated to training, thus allowing a large number of hyperparam-
eters to be tested in parallel, even on conventional CPUs. The optimisation algorithm
is Adam (Kingma and Ba, 2014), and the cost function is the standard mean squared
error (MSE). The model is implemented in PYTHON with the TENSORFLOW (Abadi
et al., 2015) library.

Figure 5.1 A schematic representation of a PGML network with two hidden layers and
one-dimensional output.

5.3 Reduced Order Model

The reduced order model we are seeking must:

• be efficient, thus adding minimum computational effort

• take into account some, if not all, geometrical features of the cascade
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• model compressibility effects, due to the Mach number range of interest for stall
flutter

• be validated

Unlike the machine learning algorithm, there are not many reduced order models for
the aeroelastic response of turbomachinery cascade. The most viable option, fitting
our requirements, is the semi-analytical model LINSUB, discussed in Chapter (4).

5.4 Output Formulation

LINSUB calculates a matrix of unsteady load coefficients induced by simple rigid body
modes, plunging normal to the chord and pitching about the leading edge. The same
coefficients can be calculated using CFD. Two computations are necessary to calculate
the unsteady pressures induced by each mode, which are consequently integrated along
the blade to find forces and moments. Eq. (5.1) shows the definition of the coefficients.
The superscript refers to the mode causing the unsteady loads, while the subscript
refers to the modal force, thus, L for lift when projecting the loads onto the plunge
mode and M for moment, which is the modal force for a pure pitch.

Ch
L =

1

S(p0 − p1)h̄

∫︂

S

ˆ︁phn ·ΦhdS

Cα
L = − 1

S(p0 − p1)h̄

∫︂

S

ˆ︁pαn ·ΦhdS

Ch
M = − 1

cS(p0 − p1)ᾱ

∫︂

S

(︁
r × ˆ︁phn

)︁
·ΦαdS

Cα
M =

1

cS(p0 − p1)ᾱ

∫︂

S

(r × ˆ︁pαn) ·ΦαdS

C =

[︃
Ch

L Cα
L

Ch
M Cα

M

]︃

(5.1)

S is the blade surface area, c its chord, (p0 − p1) is the difference between inlet total
and static pressure equals to the dynamic head, Φ is the modeshape and h̄, ᾱ the
modal amplitudes, n is the blade surface unit vector, ˆ︁p the complex unsteady pressure
and, finally, r is the position vector from the pitching axis to the blade.

The interest of this work lies in stall flutter which, mostly, affects blades vibrating
in first flap mode. A flap mode is a rotation about a generic axis x, therefore, we
can use Eq. (4.18)1 to convert the matrix C into the new reference frame centered
at x. Finally, the obtained unsteady moment coefficient can be translated into an

1As the lift coefficient calculated from CFD is already normalised by displacement, the term jk in
the equation is dropped



5.5 Input Formulation 81

aerodynamic damping coefficient ζ using Eq. (4.21), resulting in

ζ = −ℑ{Cα
M}+

(︁
ℑ
{︁
Ch

M

}︁
+ ℑ{Cα

L}
)︁
x−ℑ

{︁
Ch

L

}︁
x2 = ζαM + ζhM + ζαL + ζhL (5.2)

where, again, the superscript refers to the mode causing the unsteady loads, while the
subscript refers to the induced force.

The quantity of interest (QoI) of the PGML model will therefore be the matrix C,
from which plunge, pitch and any flap mode stability can be evaluated.

5.5 Input Formulation

The purpose of the proposed model is to predict unsteady force coefficients for different
geometries.

The most basic avenue to achieve this goal requires an expansion of the training
database through the inclusion of several different geometries, so that the surrogate
model can then interpolate to produce predictions on cases that fall within the training
space. This approach is appealing as, once the surrogate model is trained, it bypasses
the CFD solver completely and only boundary conditions and geometry are needed to
obtain the set of unsteady forces. Unfortunately, this approach is also unfeasible as the
number of training samples needed would be extremely large, moreover, even if one
were to simulate a large number of cases, the definition of these geometries would most
likely need to be parametrised through an autoencoder, which is a task with pitfalls in
itself (Gambitta et al., 2022; Yonekura et al., 2022). Therefore, the approach followed
in this work relies on a different strategy.

In order to predict unsteady forces on the blade, the surrogate model needs in-
formation about the geometry and flow variables. If the geometry is to be explicitly
passed as an input, clearly several cascades need to be used to build a training set.
On the other hand, the flow features, and their relationship, form a set of dependent
variables which is defined by the boundary conditions and geometry themselves. It is
thus argued that, rather than passing the geometry explicitly, the PGML model can
build a functional mapping for the QoI from a set of unsteady boundary conditions and
steady state features, which already encode the geometry in their mutual dependence.
Effectively, the steady CFD solver acts as an encoder to translate the geometry into
an input the PGML can work with, thus the input to the model will be steady state
flow quantities, rather than the blade geometry directly. This approach is somewhat
similar to that of Ling and Templeton (2015). The drawback of this solution is that a
run of steady state solver is needed to calculate the input features at prediction time.
This is deemed an acceptable price to pay, as the aerodynamic damping for different
modeshapes, frequencies and interblade phase angles, can be calculated at no extra
cost. A diagram of the PGML framework is depicted in Fig (5.2).
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Figure 5.2 Diagram representing the proposed PGML framework

The careful choice of input features is crucial to develop a model that can generalise.
The features must not only be relevant for stall flutter, but must also carry information
about the domain, without harming the learning process: too many input features will
introduce information that might be irrelevant and add dimensions to the data; on the
other hand, if the number of inputs is too low, the model will not be able to capture a
change in geometry or flow conditions and will thus be unable to generalise.

5.5.1 Steady State Features

A number of constraints are established to reduce the space of possible features, which
would otherwise grow too large. The features must be continuous and relevant for both
subsonic and transonic flow, thus no binary variables, e.g. shock/no shock or pressure
jump at shock front. They must also be relevant for both attached and separated
flow, which denies the inclusion of quantities such as size of separation. Finally, these
features must be either non-dimensional or rescaled by a relevant quantity. The last
point will be explained more carefully as we list them.

It is stressed that the absence of quantities relating “directly” to the presence of
shocks and separation does not imply that these flow features are unimportant, but
simply that their effect can be represented by other flow features. The following features
have been chosen based on physical intuition.
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Inlet Mach number

The inlet Mach number is one of the most important non-dimensional groups in
turbomachinery and it is also an input to LINSUB.

Chordwise center of pressure

The steady pressure distribution on the blade is important to determine stability,
thus a parameter to capture loading is needed. Force and moment coefficients give a
good indication of loading, but vary widely between geometries and cannot be used
for generalisation unless normalised by some reference value which is hard to define.
The same applies to pressure ratio, pressure rise and flow coefficients, and similar
parameters. Wong (1997) and Kiss (2021) both showed strong correlation between
aerodynamic damping and location of chordwise center of pressure xcp. The center of
pressure carries a lot of information regarding the state of the pressure field around the
blade and for a typical compressor section, unless the flow is severely stalled or choked,
it is bounded between 0 and 1, corresponding to leading and trailing edge respectively.

Blockage near trailing edge

Blockage is the reduction in flow area caused by local velocity deficit which is a result
of the displacement thickness associated with boundary layers. It is a crucial variable
for compressor design and a great indicator of either increasing incidence onto the
blades or flow separation due to a strong shock wave. The blockage definition used
in this work is adapted from Khalid et al. (1999) and is briefly discussed here. First,
the authors define a main flow direction to select a velocity component, um, to use in
blockage definition. As we are interested in the blockage due to the boundary layers
in the bladed passage, the main flow direction is the one aligned with the stagger
angle ξ. Second, they identify the edge of the velocity deficit region by recognising
that near solid walls, the gradients are stronger than in the core flow. The edge is
defined as the region where the magnitude of the gradient ∇⃗ρum, normalised by inlet
density, inlet axial velocity and blade chord, is equals to a target value. The target
is set to 3 as in the original paper, since “ the defect area over which the blockage
integration is performed is relatively insensitive to the precise value selected (e.g., 2,
3, or 4) as the edge criterion.”. (Khalid et al. (1999), also see Fig. 5.3). As our test
case is two-dimensional, the expression for blockage area becomes a blockage width δ
defined as

δ =

∫︂ (︃
1− ρum

ρeUe

)︃
· dl (5.3)

where dl refers to integration along a line normal to the blade surface, while ρe and
Ue are the values of density and velocity at the blockage edge. The blockage can only
grow on the blade, therefore it is calculated near the trailing edge where it reaches its
maximum, both for suction and pressure side, because the relationship between the
two changes depending on the operating conditions. In subsonic flow, the blockage
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Figure 5.3 Example of blockage region definition using velocity gradient with a close-up
around the trailing edge.

on suction and pressure side are, respectively, directly and inversely proportional to
incidence; in transonic flow this is not necessarily the case as, even with low incidence,
the shock wave forming on the suction side will grow the blockage while the pressure
side is effectively unchanged (assuming the flow is not choked). This feature is bounded
by the passage width but, at the same time, the boundary layer growth is also a
function of the chord length. Moreover, in the limiting case of null mass flow rate,
there should not be any blockage at all. It is found that the best approach to account
for these observations is to rescale the blockage size by the solidity s, i.e. chord to
pitch ratio.

Wake Momentum Thickness

A further indicator of the state of boundary layers and losses of the cascade is the wake
momentum thickness. This quantity, similar to blockage, is proportional to incidence
and inlet Mach number. Moreover, it correlates to the diffusion factor umax/u (Lieblein
and Roudebush, 1956), which gives an indication of fluid velocities on the suction side,
but unlike the diffusion factor, the same considerations put forth regarding blockage
size can be applied here, therefore this feature can also be rescaled by the solidity. The
definition of momentum thickness used here is found in Dixon and Hall (2013)

Θ =

∫︂
u

U

(︂
1− u

U

)︂
dy (5.4)

where U and u are velocity outside and inside the wake region respectively, and dy
indicates integration in the pitchwise direction.
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Stagnation Pressure Loss Coefficient

Losses in cascades are commonly expressed in terms of stagnation loss coefficient.

ω̄ =
p01 − p02
p01 − p1

(5.5)

where 1 and 2 indicate inlet and outlet. This quantity is easy to calculate and correlates
well with other loss parameters.

5.5.2 Unsteady Features

The unsteady features are the interblade phase angle σ and the blade reduced frequency
k. Arguably, these quantities could be better represented by their ratio with cut-off
frequencies (see Section (2.4)), but for any given combination of frequency and interblade
phase angle, there are multiple cut-off conditions. It is thus unclear which one would
be the most appropriate to choose for normalisation and for this reason, the values of
σ and k are used directly. The periodicity with interblade phase angle is enforced by
simply duplicating training samples on either side of the ±180◦ range.

Finally, one would argue that a feature able to capture the change in passage shape
is missing. Although this is true, we can make two considerations. First, the change in
passage shape is partially modelled in LINSUB. Second, and more importantly, this
effect becomes highly relevant for torsional modes at high interblade phase angle, which
is a condition that very rarely exhibits stall flutter. Table (5.1) summarises the input
features used in this work.

Table 5.1 Input features to PGML model

Feature Description Normalised by

M1 Inlet Mach Number
xcp Chordwise center of pressure c
δSS Blockage at trailing edge on suction surface s
δPS Blockage at trailing edge on pressure surface s
Θ Wake Momentum Thickness s
ω̄ Stagnation Pressure Loss Coefficient
σ Interblade Phase Angle
k Reduced Frequency
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5.6 Effect of change in geometry on steady and un-
steady aerodynamics

In this section we investigate the behaviour of the unsteady aerodynamic coefficients
due variations in airfoil and cascade geometry.

The different cascades presented here are a departure from the nominal geometry
introduced in Chapter (2), and are obtained by varying one parameter at a time. The
solidity s = c/P is changed by varying the pitch of the cascade, the stagger angle ξ is
varied at 5◦ intervals, while thickness, T , and camber, Z, of the airfoil are varied by
multiplying their definitions (see Eq. 2.70) by a constant. The necessary computational
grids are obtained by morphing the original SC10 mesh (Section 2.5) with a radial
basis function technique (Kedward et al., 2017), to ensure they all share the same
characteristics, such as preserving orthogonality of the grid edges.

The steady state effects, as a results of geometry change, can be easily explained
from first principles and such analyses can be readily found in textbooks (Cumpsty,
2004; Dixon and Hall, 2013). These will be discussed briefly before moving on to the
more relevant unsteady behaviour. The results are presented in terms of coefficients of
the matrix C, and in terms of each coefficient’s contribution to aerodynamic damping
for a specific mode of interest, each shown in Eq. (5.2). This representation is at times
more insightful as it allows to identify which components are beneficial or detrimental
to the overall stability of a mode. Eq. (5.2) shows that for flap modes, i.e. x ≥ 1,
the contribution of plunge induced lift to stability quickly becomes dominant, so it is
extremely important that this component is well predicted by the PGML model.

Finally, for the sake of brevity, the unsteady results shown concern only one
transonic condition, M1 = 0.85, at a representative reduced frequency, k = 0.5. A
more exhaustive set of results is presented in Section (5.7.1) and Appendix (B).

5.6.1 Definition of zero incidence

The location of the stagnation point on the airfoil is of great importance and its
precise position depends on several factors, but the main ones are mean inlet flow
angle, thickness in the leading edge region, solidity and camber (Cumpsty, 2004,
Chapter 4). The topology of the flow in the passage changes drastically, especially
at high Mach number, depending on whether the stagnation point moves onto the
pressure or suction surface. Thus, to have a comparison between different geometries,
a consistent definition of the operating conditions is needed.

In this work, the results are grouped by inlet Mach number and incidence, therefore
a nominal or “zero” incidence condition must be specified for each speed. Among the
several definitions available (see Cumpsty (2004, Chapter 4, p. 162)), the one chosen
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here was given by Emery et al. (1958), who chose the zero incidence condition to be
the inlet flow angle which renders a smooth distribution of pressure around the leading
edge, i.e. there is no suction peak present on the pressure surface.

(a)

s = 1.25

= 0.83

Fixed Inflow Angle Zero Incidence

−0.5

0.0

0.5

1.0

C
p

(b)

α1 = 55◦ α1 = 52◦

0.0 0.2 0.4 0.6 0.8 1.0

Streamwise Coordinate

−0.5

0.0

0.5

1.0

C
p

(c)

α1 = 53◦ α1 = 53◦

Figure 5.4 Location of stagnation points around leading edge (a) and associated pressure
distribution (b), (c) on an airfoil for different solidity and inflow angles, with a fixed inlet
Mach number M1 = 0.7.. The dashed line ( ) is the chord line, starting at the leading edge
of the blade.

As an example, Fig. (5.4) shows the effect of change in solidity on the location
of the stagnation point and consequent pressure distribution along the blade, with
constant inlet Mach number. Fig. (5.4a) depicts the leading edge area of a blade: the
four coloured dots are the stagnation points for two cascades, with solidity s = 1.25
and s = 0.83, at two flow conditions, namely fixed inlet flow angle α1 = 53◦ and zero
incidence. The dashed line represent the chord line, starting at the leading edge of
the blade. Fig. (5.4b) and Fig. (5.4c) show the steady pressure coefficient around the
blade for each of the cases. At fixed inlet flow angle α1 = 53◦, an increase in solidity,
i.e. a reduction in pitch, moves the stagnation point towards the suction side (see blue
and red dot), enough that a suction peak develops on the pressure side (see blue and
red lines). This situation is equivalent to a reduction in inlet flow angle at constant
Mach number, thus an increase in mass flow rate which results in moving the operating
point towards choke.

As this work focuses on stall flutter, we want to avoid choked flow, therefore, as
the solidity is increased, the design or zero incidence inflow angle increases as well. In
this case, the inflow angle necessary to attain zero incidence increases from α1 = 52◦

(s = 0.83, gray line) to α1 = 55◦ (s = 1.25, black line). A similar behaviour takes place
with changes in camber, thickness and stagger angle.
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5.6.2 Change in solidity

The solidity is defined as the ratio of chord over pitch s = c/P and it is a highly
influential parameter for both performance and aeroelastic stability of a compressor.
Fig. (5.5) shows the trend of relevant steady quantities with change in solidity at
different inlet Mach numbers and fixed incidence.

The increase in delivered pressure ratio, Π, at constant Mach number is due to the
reduction of the bladed passage width, which in turn increases the flow deflection and
reduces the mass flow rate. Ultimately, the limiting case would be characterised by the
flow following the blade profile perfectly, but with mass flow rate approaching zero.

The vanishing mass flow rate also explains the reduction in lift and drag as the
forces are the result of conservation of momentum.

The total pressure loss exhibits a strong positive correlation with inlet Mach number
and incidence, and decreases ever so slightly with solidity.
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Figure 5.5 Change in steady performance with solidity: (a) Pressure ratio against solidity at
different inlet Mach number at constant incidence β1 = 5◦ ; (b) Total pressure loss coefficient
against inlet Mach number at different solidity, constant incidence β1 = 5◦ ; (c) Lift against
drag coefficients at different solidity and fixed M1 = 0.85.

Fig (5.6) shows the imaginary components of the matrix C against interblade phase
angle at two different solidity values.

The magnitude of the unsteady moment and lift induced by either mode is compa-
rable at low σ, but the latter grows much larger as σ increases for both values of s. The
change in solidity exerts moderate influence on the coefficients at low σ, while its effect
is significant as the interblade phase angle grows large. This behaviour is displayed
more clearly in Fig. (5.7a) and Fig. (5.7b), which show the unsteady coefficients
against solidity, at a fixed steady flow condition and reduced frequency, with σ = 20◦

and σ = 150◦ respectively.
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This large change is due to the fact that as the solidity increases, at high σ, for the
examined flow condition, the unsteady pressure fields upstream and downstream of the
cascade change from cut-on to cut-off. There are two ways in which changing solidity
affects cut-off frequencies. First, as we vary solidity by changing the pitch of the
cascade, we see from Eq. (2.69) that the transverse wavenumber changes, thus altering
the cut-off frequency. Moreover, the downstream flow angles and Mach number will be
different with different solidity due to a change in flow deflection. The crossing of a
cut-off frequency is usually associated with a sudden change in unsteady loads, which
also explains the non-monotonic behaviour of the coefficients. Therefore, the value of
IBPA itself is not the main driver, but rather the fact that, at this particular condition,
the pressure perturbation caused by the acoustic waves near the cut-off frequency is of
comparable order to the perturbation associated to vorticity waves (Vega and Corral,
2013). As a matter of fact, after s ≥ 1.2, we can see that the coefficients’ modulus
decreases monotonically with solidity. Being influenced by the cut-off frequencies, this
trend is obviously dependent on flow angles, freestream Mach numbers and frequency,
as well as interblade phase angle.
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Figure 5.6 Imaginary component of unsteady force coefficients against interblade phase
angle, with fixed inlet Mach number M1 = 0.85, incidence β1 = 3◦ and reduced frequency
k = 0.5, at different solidity: (a) s = 0.833 ; (b) s = 1.25

As the values of the matrix C cannot be directly read as an indication of stability,
Fig. (5.8) portrays the aerodynamic damping contributions obtained with Eq. (5.2),
with increasing incidence, for a pitching axis one chord downstream of trailing edge,
representative of a flap mode, at two different solidity values, with transonic flow. It
is shown that an increase in inflow angle at constant Mach number reduces the total
damping, irrespective of solidity, but that the magnitude of the decrease is more severe
at lower solidity. This behaviour is readily explained by Fig. (5.5c), which shows
that cascades with lower solidity tend to stall more easily as the incidence onto the
blades is increased, thus producing a larger separation that in turn produces more
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destabilising work. The pitch induced lift contributes negatively at all flow conditions,
while the opposite is true for the plunge induced lift. The contributions attributable to
the induced moments are small and mostly cancel each other out, a behaviour already
presented by Vahdati and Cumpsty (2015).
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Figure 5.7 Imaginary component of unsteady force coefficients against solidity, with fixed
inlet Mach number M1 = 0.85, incidence β1 = 3◦ and reduced frequency k = 0.5, at different
interblade phase angle: (a) σ = 20◦ ; (b) σ = 150◦
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Figure 5.8 Aerodynamic damping contributions for a flap mode at x = 2 as a function
of incidence, with fixed inlet Mach number M1 = 0.85, interblade phase angle σ = 20◦, and
reduced frequency k = 0.5, at different solidity: (a) s = 0.833 ; (b) s = 1.25

Finally, Fig. (5.9) shows aerodynamic damping against solidity for a flap mode in
transonic flow and high incidence, at low frequency and interblade phase angle. All
cascades exhibit flutter for this condition, even though the change in solidity is quite
large.
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Figure 5.9 Aerodynamic damping contributions for a flap mode at x = 2, with fixed inlet
Mach number M1 = 0.85, incidence β1 = 5◦, interblade phase angle σ = 20◦, and reduced
frequency k = 0.5, against solidity

5.6.3 Change in stagger

Similarly to solidity, the stagger angle ξ is also a highly relevant parameter for cascade
design, both in terms of steady and unsteady flow.

Fig. (5.10) shows that the delivered static pressure ratio increases with stagger
angle. As the stagger angle is increased, the throat area of the nozzle formed by
the bladed passage becomes smaller (Fig. 5.11), thus, to keep a constant inlet Mach
number for a stator, the pressure drop must be lower, which in turn gives a higher
back pressure while keeping a constant inlet total pressure and ultimately results into
a higher pressure ratio.

30 40 50

ξ [deg]

1.1

1.2

1.3

Π

(a)

M1 = 0.60

M1 = 0.70

M1 = 0.85

0.6 0.7 0.8 0.9
M1

0.05

0.10

ω̄

(b)

ξ = 30◦

ξ = 40◦

ξ = 50◦

0.075 0.100 0.125
CD

0.65

0.70

0.75

C
L

(c)

ξ = 30◦

ξ = 40◦

ξ = 50◦

Figure 5.10 Change in steady performance with stagger angle at constant incidence β1 = 5◦

: (a) Pressure ratio against stagger angle at different inlet Mach number; (b) Total pressure
loss coefficient against inlet Mach number at different stagger angles; (c) Lift against drag
coefficients at different stagger angles and fixed M1 = 0.85.

As the stagger angle increases for a constant inlet Mach number, the mass flow
decreases, and so does the axial velocity component, meaning that the lift coefficient
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(a) ξ = 30◦ (b) ξ = 50◦

Figure 5.11 Change in throat area with stagger angle

must increase. At the same time, the flow deflection reduces as the covered passage
length decreases, thus reducing the drag coefficient. The limiting case of zero covered
passage results in near zero flow deflection which, at constant incidence, produces a
larger separation on the suction side and less recovery of total pressure.

This fact is confirmed by the total pressure loss which is more severe for higher
stagger angles.

The change in stagger angle produces a similar behaviour to the one observed
previously due to changes in solidity. Fig. (5.12) displays the coefficients of C against
interblade phase angle at two different stagger angles, which, again, shows that the
magnitude of unsteady lift induced by both modes grows larger than the moment
components at high σ. Fig. (5.13) shows the effect of stagger angle at two different
values of interblade phase angle. Same as for solidity, the change in coefficients at low
σ is much smaller than at high σ, where the variation is large enough for the pitch
induced coefficients to change sign as the stagger angle is increased.
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Figure 5.12 Imaginary component of unsteady force coefficients against interblade phase
angle, with fixed inlet Mach number M1 = 0.85, incidence β1 = 3◦ and reduced frequency
k = 0.5, at different stagger angles: (a) ξ = 30◦ ; (b) ξ = 50◦
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Fig. (5.14) shows aerodynamic damping against incidence, at two different stagger
angles. The larger angle of attack exerts the same effect on both geometries, and,
as cascades with larger stagger angle tend to stall earlier, the drop in aerodynamic
damping is steeper for the case with ξ = 50◦. The same considerations as the previous
case can be drawn regarding the individual damping contributions.
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Figure 5.13 Imaginary component of unsteady force coefficients against stagger angle, with
fixed inlet Mach number M1 = 0.85, incidence β1 = 3◦ and reduced frequency k = 0.5, at
different interblade phase angle: (a) σ = 20◦ ; (b) σ = 120◦
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Figure 5.14 Aerodynamic damping contributions for a flap mode at x = 2 as a function
of incidence, with fixed inlet Mach number M1 = 0.85, interblade phase angle σ = 20◦, and
reduced frequency k = 0.5, at different stagger angles: (a) ξ = 30◦ ; (b) ξ = 50◦

The plot in Fig. (5.15) shows flutter for all investigated cases at the given flow
condition, with aerodynamic damping decreasing with stagger angle. This behaviour
is, again, attributable to the reduction in stall margin of the cascade due to the higher
stagger.
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Figure 5.15 Aerodynamic damping contributions for a flap mode at x = 2, with fixed inlet
Mach number M1 = 0.85, incidence β1 = 5◦, interblade phase angle σ = 20◦, and reduced
frequency k = 0.5, against stagger angle

5.6.4 Change in camber

The blade camber is particularly important for performance design as it is closely
related to the stall margin of the cascade, which, clearly, will also have an impact on
aeroelastic stability.

As camber increases, the delivered pressure ratio is higher while the stall margin is
reduced. The forces on the airfoil as well as the flow deflection increase as, intuitively,
a more arched profile provides a larger re-direction of momentum. The total pressure
losses also increase as, at given inlet Mach number and incidence, the flow separates
more easily and therefore induces more losses. The results are gathered in Fig. (5.16).
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Figure 5.16 Change in steady performance with camber at constant incidence β1 = 5◦ :
(a) Pressure ratio against camber at different inlet Mach number; (b) Total pressure loss
coefficient against inlet Mach number at different camber; (c) Lift against drag coefficients at
different camber and fixed M1 = 0.85.

The behaviour of the unsteady coefficients, at low and high interblade phase angle,
for different camber values is analogous to the one presented previously and it is
omitted for brevity.
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A more interesting trend can be seen in Fig. (5.17) and Fig. (5.18). Unlike the
cascade parameters, solidity and stagger angles, changing the airfoil camber exerts a
considerable influence on aerodynamic damping for the mode of interest, in particular,
one can see that a reduction in camber has a beneficial effect across all inflow angles
investigated. This is, again, related to the fact that a less cambered airfoil has more
margin between choked flow and stall and is thus able to operate at a higher incidence
without flow separation.
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Figure 5.17 Aerodynamic damping contributions for a flap mode at x = 2 as a function
of incidence, with fixed inlet Mach number M1 = 0.85, interblade phase angle σ = 20◦, and
reduced frequency k = 0.5, at different camber : (a) Z/ZSC10 = 0.8 ; (b) Z/ZSC10 = 1.2
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Figure 5.18 Aerodynamic damping contributions for a flap mode at x = 2, with fixed inlet
Mach number M1 = 0.85, incidence β1 = 5◦, interblade phase angle σ = 20◦, and reduced
frequency k = 0.5, against camber

A word of caution: this conclusion is not universal. If the airfoil were to be made
completely uncambered or if the thickness were not fixed, then the topology of the flow
at high angle of attack might change in favour of a leading edge separation, which is a
case complicated enough to require a separate investigation.
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5.6.5 Change in thickness

The results in Fig. (5.19) show a slight drop in pressure ratio and lift coefficient, while
the drag coefficient increases as thicker airfoils tend to be more prone to flow separation.
The total pressure loss increases as well.
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Figure 5.19 Change in steady performance with thickness at constant incidence β1 = 5◦ :
(a) Pressure ratio against thickness at different inlet Mach number; (b) Total pressure loss
coefficient against inlet Mach number at different thickness; (c) Lift against drag coefficients
at different thickness and fixed M1 = 0.85.

Fig. (5.20) shows a slowly decreasing trend of aerodynamic damping with thickness;
three of the four contributions are largely constant across the investigated range, with
the exception of that due to pitch induced lift. There is a small drop at T/TSC10 = 1.1,
due to a slight departure from the desired inlet conditions, i.e. M1 and β1 are not
exactly the same values as for the rest of the curve.
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Figure 5.20 Aerodynamic damping contributions for a flap mode at x = 2, with fixed inlet
Mach number M1 = 0.85, incidence β1 = 5◦, interblade phase angle σ = 20◦, and reduced
frequency k = 0.5, against thickness

A number of conclusions can be drawn from the results presented in this Section.
The magnitude of the matrix C exhibits a wide variation with interblade phase angle
σ, with the lift components being usually larger than the induced moments. The
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investigated flow conditions are characterised by acoustic resonance at large IBPA,
therefore all modifications to the geometry exert a considerable influence on the
coefficients, whereas near zero interblade phase angle, where the acoustic waves are
always cut-on, variation in solidity and stagger angle can only be appreciated (when
compared to the order of magnitude across all IBPAs) if a significant change in steady
loading and stall margin occurs. A change in camber heavily affects both quantities
and is thus comparable to a change in incidence or inlet mach number. The thickness
of the airfoil does not seem to produce a distinguishable trend in aerodynamic damping
if the inlet conditions are kept constant.

The contribution to aerodynamic damping for a representative flap mode, due to
the moments induced by both plunge and pitch, is negligible and the two appear to
mostly cancel each other out and an increase in incidence, i.e. reduction of mass flow,
consistently worsens stability irrespective of the cascade and airfoil geometry.

5.7 Model Selection

The surrogate model employed in the PGML framework is an FCNN. As mentioned
in Section (5.2), to create a model that is capable of predicting the QoIs, a number
of hyperparameters need to be tuned. The process of selecting the best setting is
composed of several stages.

First, the goal of this process is to have four PGML networks, each predicting one
of the quantities of interest, i.e. the components of the unsteady force matrix C. This
is to alleviate the burden of each machine learnt model and produce better results.
Also, this is justified as mathematically these four coefficient values are decoupled.

Second, the learning dataset is composed only of the five SC10 databases introduced
in Chapter (3), while the large dataset of geometry variations is held out as a validation
set (more details regarding the number of computations are given in Appendix C).
This means that no knowledge of change in geometry is introduced in the learning
process, neither explicitly, i.e. using the data for training, nor implicitly, i.e. by finding
the hyperparameters that best fit the validation set. The choice of such an approach is
the true test of our hypothesis and of the quality of the input features.

Third, as per standard machine learning practice, a cross validation procedure is
needed to find the hyperparameters. In this work, the common K-fold cross validation
is used: the learning dataset is randomly partitioned in to K groups called folds, the
PGML is trained on K − 1 folds and the left out fold is used as test data. The number
of folds is fixed at K = 5, and as the gradient descent algorithm can fall into local
optima depending on weights initialisation and data partition, the computations are
repeated 16 times for each network. The output is averaged to generate a prediction,
and the parameter setting yielding the best error metric is used to train the final
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Figure 5.21 Illustration of the PGML model selection and evaluation. (a) Flowchart of
the full process. (b) Illustration of the 5-fold cross validation approach for finding the model
hyperparameters, with training ( ) and test ( ) data.

PGML model, using all of the learning dataset. The error, or rather, the performance
metric used here is the coefficient of determination R2

R2(q, ˆ︁q ) = 1−
∑︁m−1

i=0 (qi − ˆ︁qi)2∑︁m−1
i=0 (qi − q̄)2

(5.6)

where q, q̄, ˆ︁q are the QoI, its mean across samples and surrogate model prediction
respectively, and m is the number of samples. In this case, “best” means the greatest R2

value. The maximum attainable value of the coefficient is R2 = 1, which corresponds to
a perfect model and null prediction error over all samples. Other error or performance
metrics can be utilised with no change to the outcome.

Finally, as the space of possible settings is too large to be explored with a full
factorial, the cross validation is run using a sample of 1024 hyperparameter combinations
generated at random, by drawing from uniform distributions within the ranges specified
in Appendix (A). The flowchart of the model selection process is illustrated in Fig.
(5.21). The cross-validation R2 for the four QoIs are given in Table (5.2), while the
corresponding hyperparemeter settings are listed in Appendix (A).

Table 5.2 Cross validation R2 values

Ch
L Ch

M Cα
L Cα

M

R2 0.952 0.95 0.945 0.947

The training history of two of the PGML models are presented in Fig. (5.22), where
the mean value of the cost function J across folds is plotted against the training epochs
for both training and test sets. In the training process, the loss value drops over two
orders of magnitude, converging near 5000 epochs. Fig. (5.23a) shows the R2 values
for the four QoIs. The performance on the training set exhibits negligible variation
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Figure 5.22 Training history of PGML for: (a) Plunge induced lift coefficient Ch
L ; (b)
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across the QoIs, while the PGML framework improves the prediction capabilities of
the simple FCNN ever so slightly; on the other hand, the PGML performance on the
validation set varies noticeably, ranging from a maximum of R2 ≈ 0.92 when predicting
the plunge lift coefficient, to a minimum of R2 ≈ 0.75 associated to the predictions of
pitch moment coefficient. Furthermore, PGML performs consistently better than the
FCNN, while LINSUB predicts poorly across all samples. The error distribution of
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Figure 5.23 Performance of PGML, FCNN and LINSUB: (a) R2 values on training ( )
and validation ( ) sets; (b) normalised distribution of PGML relative error on validation
set

PGML on the validation set can be visualised as a probability density function (PDF).
The relative error ϵ is defined as

ϵ(q, ˆ︁q ) = |q − ˆ︁q |
q̄

(5.7)

Fig. (5.23b) reports the relative error distribution for each quantity of interest. For
most of the validation samples, the relative errors are within 7.5%. Comparing across
the QoIs, the PGML shows a generally higher accuracy in predicting plunge induced
coefficients over their pitch induced counterparts, and also PGML is able to better
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predict unsteady lift over unsteady moments. This result is reassuring for our purposes
because, as mentioned earlier, Eq. (5.2) shows that for flap modes, i.e. x ≥ 1, the
contribution of plunge induced lift to stability is dominant. These observations are
in agreement with the presented R2 values. The loss in prediction accuracy for pitch
induced coefficients was anticipated in Section (5.5.2), and it is attributable to the
absence of input features pertaining to the change in passage shape. As this effect is
particularly relevant in pitch dominated modes, the predictions of the PGML model,
although enhanced by LINSUB, result in greater errors, especially at high σ. The
interblade phase angle argument is easily confirmed by plotting the QoI values from
CFD against the prediction from PGML. Fig. (5.24) illustrates such a plot for all QoIs.
The contour is coloured according to the absolute value of interblade phase angle and it
clearly shows that, while the model performs really well at low interblade phase angles,
as |σ| is increased, the agreement between CFD and PGML degrades. The absence
of a relevant feature for the prediction of pitch induced coefficient is shown in panels
(b) and (c). For several samples, the PGML model predicts nearly the same value
although the coefficient computed by CFD varies considerably.

Although imperfect, the presented model fits its intended purpose: stall flutter
occurs largely in the regimes where PGML performs well, i.e. flap modes, which are
mostly plunge dominated, and at low interblade phase angles.

Figure 5.24 Scatter plot of normalised QoI form validation set. The CFD and PGML
predictions are on horizontal and vertical axis respectively. QoIs reported on each panel.
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5.7.1 Comparison against CFD and explanation of results

In this section, the selected machine learnt models will be examined more in depth and
compared against the validation set results obtained with CFD. The validation set is
composed of all the computations performed on the cascades obtained by varying the
SC10 parameters one at a time. It is reiterated that, on the other hand, the training
set is constituted of only SC10 computations, therefore all of the following results
constitute an extrapolation in terms of geometry.

The plots in Fig. (5.25) show the behaviour of plunge induced lift and pitch induced
moment with increasing solidity. The steady state conditions, M1 = 0.85, β1 = 3◦, are
the same for all panels. The interblade phase angle is also kept constant at σ = 20◦.
From left to right, the reduced frequency is respectively k = 0.5, k = 0.7, k = 1.0.
At low interblade phase angle, as the reduced frequency is increased, the CFD and
LINSUB results shift towards more negative coefficient values, corresponding to an
increasingly stable configuration. This behaviour is replicated by both PGML and
FCNN.
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Figure 5.25 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against solidity. The steady state conditions are constant at M1 = 0.85
and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5, k = 0.7,
k = 1.0, respectively, while the interblade phase angle is constant at σ = 20◦.
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The FCNN produces results that are generally close to CFD and it is able to
reproduce the behaviour with increasing solidity at low frequencies, although the
agreement seems to degrade both as the frequency is increased and as the cascade
operates at a solidity increasingly further from s = 1.0. This is a foreseeable consequence
of extrapolating further from the training set, i.e. a cascade with solidity s = 1.0.

On the other hand, the PGML model follows closely the FCNN at lower frequencies,
but its predictions are visibly rectified by LINSUB at higher k, to the point that, in
panels (c) and (f), the PGML predictions become parallel to those by LINSUB and
overlap with the CFD almost perfectly, while the FCNN predicts a nearly constant
behaviour. Furthermore, the slope of CFD and LINSUB predictions are nearly identical
throughout the frequency range and are only offset by a value.

The explanation to the similar behaviour of the computational models can be
sought by investigating the unsteady loading along the blade profiles at different
solidity values. As an example, the investigated conditions are those of panel (f) in Fig.
(5.25). The loading on the flat plate, modelled in LINSUB, due to pitching motion is
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Figure 5.26 Blade profiles due to pitching motion calculated from LINSUB: (a) Unsteady
pressure jump, real ( ) and imaginary ( ) components; (b) Local aerodynamic work.

presented in Fig. (5.26): panel (a) shows the pressure jump across the flat plate, while
panel (b) portrays the local aerodynamic work (negative means stable). Both the
real and imaginary component of unsteady pressure are shown, though, as explained
in Chapter (2), only the latter contributes to the aerodynamic work for these simple
modeshapes. Therefore, we will refer to the imaginary component of unsteady pressure
jump calculated by LINSUB as loading. The case with greater solidity is characterised
by an increased loading in the fore section of the airfoil and a reduced loading in the
aft section. The latter part of the airfoil contributes to the majority of the work done,
due to the pitching motion taking place at the leading edge. As the phase of unsteady
forcing is largely unchanged, a reduced loading results in less stabilising work done,
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therefore yielding a more unstable configuration, i.e. moment coefficient moves towards
positive values.

Analogous results are extracted from CFD computations and presented in Fig.
(5.27). The pressure and suction side of the blade correspond to the negative and
positive abscissa, respectively, with zero being the location of the leading edge. The
steady state loading is illustrated in panel (a) in terms on isentropic Mach number:
the pressure side is unchanged, while the suction peak, and the consequent shock wave,
on the suction side moves closer to the leading edge in the higher solidity case, which
is a direct consequence of a reduction in the blade passage area.

The unsteady pressure coefficient and local aerodynamic work are shown in panels
(b) and (c): again, the pressure side profile shows no noticeable change and all of the
difference comes from the contribution of the suction side.

The presence of a shock wave usually grabs most of the attention due to the strong
spike in pressure amplitude and aerodynamic work at the suction peak; although
this flow feature clearly contributes to the overall stability, we notice that after the
shock the cascade with greater solidity is characterised by lower unsteady pressure and
generates less stabilising aerodynamic work.

This behaviour mimics that predicted by LINSUB, which explains why the two
methods show similar moment coefficient results. This is true for the investigated
range, at low interblade phase angles; it would be unwise and quite possibly wrong to
assume this relationship holds for solidity values far greater than the ones shown here.
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Figure 5.27 Blade profiles due to pitching motion calculated from CFD: (a) Steady isentropic
Mach number; (b) Unsteady pressure coefficient, real ( ) and imaginary ( ) components;
(c) Local aerodynamic work.

Having explained the results from the computational models, we now move onto
investigating the behaviour of the machine learnt models, by calculating the importance
of each feature for predictions on a specific subset of the data. The subsets in question
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are panels (d) and (f) of Fig. (5.25), which share the same steady state solution, but
are characterised by different frequencies. The feature importance measure is the mean
SHAP value

Ii =
1

n

n∑︂

j=1

|ϕ(j)
i | (5.8)

where the index i refers to a specific feature and n is the number of samples in the
subset. To have a fairer comparison across different conditions, the feature importance
Ii will be normalised by the magnitude of the vector of all features, so that it can only
take values between 0 and 1. A value of Ii = 1 means that, for the set of data under
examination, only feature i contributes to the prediction of the machine learnt model,
while the rest of the features are unimportant. The opposite is true when Ii = 0. The
normalised feature importance values are visualised in Fig. (5.28). The number of
features shown in the plot does not include the full features set listed in Table (5.1) as
inlet Mach number, frequency and interblade phase angle are kept constant.
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Figure 5.28 Normalised feature importance for a dataset with changing solidity, σ = 20◦:
(a) FCNN; (b) PGML.

The results for FCNN show that the model relies mostly on blockage size δ (con-
tributions of pressure and suction side have been summed) and wake thickness Θ to
generate a prediction; the location of centre of pressure xcp follows while the stagnation
pressure loss ω̄ exerts negligible influence. The change in shock location and strength is
inversely correlated to the solidity, i.e. lower solidity causes the shock to move forward
on the blade and creates a larger pressure drop (see Fig. (5.27a)), which in turn causes
the boundary layer to separate more severely and ultimately increases blockage and
wake thickness. The change in blade loading is then accompanied by the movement of
the centre of pressure and by only a slight drop in ω̄ at this flow speed as shown in
Fig. (5.5b).

The PGML results clearly show the role of LINSUB as the leading feature the
model relies on to perform a prediction. The ranking of the steady state features
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remains the same as for the FCNN, but they become less relevant, especially with
increasing frequency.

We now investigate a case with larger interblade phase angle. The plots in Fig.
(5.29) show the behaviour of plunge induced lift and pitch induced moment with
increasing solidity. The steady state conditions, M1 = 0.85, β1 = 3◦, are the same
for all panels. The interblade phase angle is kept constant at σ = 150◦. From left to
right, the reduced frequency is respectively k = 0.5, k = 0.7, k = 1.0. Unlike the low
interblade phase angle case, the results from CFD and LINSUB are not simply offset
by a factor, but behave rather differently with solidity.
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Figure 5.29 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against solidity. The steady state conditions are constant at M1 = 0.85
and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5, k = 0.7,
k = 1.0, respectively, while the interblade phase angle is constant at σ = 150◦.

With k = 0.5 (panels (a), (d)), the upstream pressure field changes from cut-on to
cut-off at s ≈ 0.95, causing a spike in aerodynamic forcing, followed by a dip. After
reaching a minimum, the trend is inverted and the coefficient value moves closer to
zero. This non-monotonic trend is not well predicted by LINSUB, because it does not
take into account the inflow angle and flow turning, hence predicting cut-off frequency
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at a different solidity value. PGML and FCNN approximate the shape of the CFD
curve, though with some discrepancy on the predicted value.

As the frequency increases, PGML and FCNN predictions improve and nearly
overlap with CFD. LINSUB produces results that move closer to CFD, but ultimately
predicts a different trend with solidity. Again, we can investigate the unsteady loading
and feature importance to explain the predictions of the computational and machine
learnt models, respectively. The investigated conditions are those of panel (f) in Fig.
(5.29).

The unsteady loading on the flat plate due to the pitching motion is portrayed in
Fig. (5.30). The distribution of pressure jump along the chord (panel (a)) changes
visibly with solidity. First, moving from lower to higher solidity, causes the flat plate
to be more loaded from quarter chord onward; second, while the real unsteady pressure
component remains positive along the chord length, the imaginary part is greater than
zero for s = 0.83 and x/c ≥ 0.25, whilst it stays negative for s = 1.33 and x/c ≤ 0.85.

The larger amplitude translates in a larger peak of work done, while the change
in imaginary pressure sign indicates a change in pressure phase with respect to blade
motion and thus a different sign of aerodynamic work. Fig. (5.30b) shows the
aerodynamic work: the cascade with s = 0.83 produces mostly stabilising work, while
the opposite is true of the case with s = 1.33, ultimately explaining why LINSUB
predicts an unstable configuration at higher solidity.
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Figure 5.30 Blade profiles due to pitching motion calculated from LINSUB: (a) Unsteady
pressure jump, real ( ) and imaginary ( ) components; (b) Local aerodynamic work.

The unsteady loading extracted from CFD is shown in Fig. (5.31). The steady
state loading is shown in Fig. (5.27a) and is thus omitted here. Again, the difference
between the two cascades comes from the unsteady pressure on the suction side: the
increase in solidity produces a much larger unsteady pressure amplitude at the shock,
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which in turn yields a larger peak in destabilising aerodynamic work. This destabilising
effect is counteracted by the work done after the shock, which has a stabilising effect.
All considered, the cascade becomes more stable as the solidity increases. Unlike the
low interblade phase angle case, here the blade loading does not simply offsets the
predictions from LINSUB and CFD, but produces a different behaviour altogether.
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Figure 5.31 Blade profiles due to pitching motion calculated from CFD: (a) Unsteady
pressure coefficient, real ( ) and imaginary ( ) components; (b) Local aerodynamic work.

The normalised feature importance is calculated on subsets composed of the data
in panels (d) and (f) of Fig. (5.29), which share the same steady state solution, but
are characterised by different frequencies. The results are shown in Fig. (5.32).
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Figure 5.32 Normalised feature importance for a dataset with changing solidity, σ = 150◦:
(a) FCNN; (b) PGML.

The feature importance calculated by the FCNN is similar to that of the low
interblade phase angle and does not offer any particularly new insight.
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The feature importance of the PGML shows again that, at high reduced frequency,
the results from LINSUB constitute the most significant feature. In contrast, the
PGML seems to rely much less on LINSUB to produce predictions at k = 0.5 this is
due to the large discrepancy in predictions between CFD and LINSUB for cases with
high σ and low k, where loading and blade shape can have a large effect on the resulting
aerodynamic coefficients. This behaviour displayed by the PGML is not limited to
solidity variations and it does not seem influenced by the crossing of a cut-off condition:
the feature importance is similar when varying the stagger angle, far from the cut-off
condition (see Appendix B).

Finally, a comparison of results obtained with a sweep in camber is shown in Fig.
(5.33). The steady and unsteady conditions are the same as the ones shown previously.
Once again, the PGML is able to correctly predict the QoIs value across a range of
conditions. We can appreciate only a small difference between the results from FCNN
and PGML, and that is because the latter has learnt that LINSUB does not provide
any significant guidance as the camber, and thus the loading, changes.
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Figure 5.33 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against camber. The steady state conditions are constant at M1 = 0.85
and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5, k = 0.7,
k = 1.0, respectively, while the interblade phase angle is constant at σ = 20◦.
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The feature importance in Fig. (5.34) shows this. Once again the features pertaining
to blockage and flow separation are deemed the most important to make a prediction.
Both models also rely on the stagnation pressure loss: as the camber increases, the
cascade delivers a greater pressure ratio, but does so less efficiently and therefore the
stagnation pressure loss increases. The investigated range of camber is not large enough
to significantly move the centre of pressure, thus it is deemed unimportant to perform
predictions on this subset. The input from LINSUB does not help capturing the change
in camber, this makes intuitive sense as LINSUB is a flat plate model, though we can
see that its effect is constant throughout the range, “pulling” the PGML predictions
towards more negative values compared to the FCNN.
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Figure 5.34 Normalised feature importance for a dataset with changing camber: (a) FCNN;
(b) PGML.

It is important to point out that the presented local feature importance values are
calculated relative to a background subset of data. For all the examples shown, we
have purposefully swept one geometric variable, while keeping all the other parameters
constant so that we could explain how the machine learnt model “understood” that a
change in geometry was taking place. The following conclusions can be drawn:

• the PGML relies largely on the physics guidance to produce predictions when
a change of solidity or stagger angle is taking place, as their effect is modelled
in LINSUB; on the other hand, the FCNN has to capture these effects solely
through the steady state features provided, hence producing poorer results;

• the extent to which PGML relies on LINSUB depends on the combination of
interblade phase angle and reduced frequency;

• the physics input has little contribution when a change in airfoil shape is taking
place, as this effect is not modelled in LINSUB; nevertheless, it still provides
useful guidance by rectifying the predictions, e.g. in Fig. (5.33f) we can see the
PGML output being “corrected” towards more negative values.
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5.8 Increasing training database size

The results shown so far are promising, confirming the claim that the PGML framework,
through the combination of carefully selected input features and a reduced order model,
can improve the generalisation capabilities of a flutter machine learnt model. The
method so far has relied on a single cascade geometry for training while the large
database of parametric variations has only been employed as a validation set. This
approach underlined the power of the proposed methodology, however it does seem
unlikely that such a course of action would take place in a real design setting. In other
words, we can use a small subset of the validation database to improve the PGML
model. Four new geometries are added to the training database, one per parameter:

• a case with solidity s = 0.8

• a case with stagger ξ = 40◦

• a case with camber Z/ZSC10 = 0.8

• a case with thickness T/TSC10 = 1.1

Only cases with |σ| ≤ 45◦ are added to the training. Also, rather than simply adding
all of the data points from the selected geometries at once, we retrain the model several
times by adding a fraction of the data each time. The hyperparameters are kept
constant from the previous study. The coefficient of determination as a function of
the increment in the training database size is shown in Fig. (5.35). We can see that
adding more data exerts only a slight effect on the PGML model, while the FCNN
performance is visibly improved, especially concerning plunge lift and moment. The
results concerning the PGML model are a further confirmation of its generalisation
capabilities. On the other hand, the fact that the coefficient of determination for the
pitch induced forces settles around R2 ≈ 0.75, even though more data points are added
to the training, confirms that an input feature regarding the change in passage shape
is indeed required to model this mode at high interblade phase angle.
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Figure 5.35 R2 values for PGML ( ) and FCNN ( ) as a function of the increment in
the training database size.
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5.9 Fan Blade test case

The PGML model has so far been tested on cascades obtained as departure from the
training geometry, by changing one parameter at a time. Now, one would like to test
the model on a new geometry, characterised by a completely different airfoil profile
which is more representative of a section of a real compressor blade.

The compressor profile is a fictitious airfoil, representative of an 80% span section
of a fan blade, with chord c = 0.1 m, solidity s = 1.25 and stagger angle ξ = 35◦. The
airfoil geometry is pictured in Fig. (5.36).
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Figure 5.36 Blade profile of a fictitious fan blade section

5.9.1 Steady State

This section describes the main features of the steady state flow around the new test
geometry. Three operating conditions are briefly examined: a subsonic, zero incidence,
reference state; a transonic, positive incidence off-design condition; a transonic, negative
incidence off-design condition.

Reference State

The cascade is assumed to have a subsonic design point. This reference state is
characterised by an inlet Mach number M1 = 0.7 and an inflow angle α1 = 43◦,
corresponding to the zero incidence condition, β1 = 0◦, defined in Section (5.6.1). The
steady state solution is shown in Fig. (5.37). The contour plot shows that the flow is
attached along the full length of the profile with a very thin wake. The isentropic Mach
number profile, panel (b), shows a large peak near the leading edge, but is otherwise
smooth. The peak in isentropic Mach number is due to the small radius and thickness
in the leading edge area, which leads to a strong suction even at near zero incidence.

Transonic flow, positive incidence

The transonic, off-design, operating condition described in this section is characterised
by an inlet Mach number M1 = 0.9 and inflow angle α1 = 51◦, corresponding to an
incidence β1 = 8◦. The steady state results, Fig. (5.38), show again the suction peak
near the leading edge, followed by a strong shock wave at around quarter chord. From
the contour plot, we notice only a mild flow separation despite the strong shock wave:
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Figure 5.37 Steady state solution at design point, M1 = 0.7, α1 = 43◦

this is an indication of the airfoil being lightly loaded, which in turn means that the
adverse pressure gradient is not very strong. The speedline of such an airfoil on a
compressor map will appear rather flat.
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Figure 5.38 Steady state solution near stall, M1 = 0.9, α1 = 51◦.

Transonic flow, negative incidence

The transonic, off-design, operating condition described in this section is characterised
by an inlet Mach number M1 = 0.9 and inflow angle α1 = 41◦, corresponding to an
incidence β1 = −2◦. The mass flow rate is higher than nominal and the flow Mach
number is greater than unity after the throat section. A shock wave covering the whole
blade passage appears and impinges on suction and pressure side at three quarters chord
and quarter chord respectively. The flow on the suction side consequently separates,
while it stays attached on the pressure side. Again, the flow Mach number contour
and isentropic Mach number around the blade are shown in Fig. (5.39)
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Figure 5.39 Steady state solution near choke, M1 = 0.9, α1 = 41◦.

5.9.2 Unsteady results and comparison with PGML

This section focuses on comparing the aerodynamic damping obtained from computation
with the predictions of the PGML model. The results concern a number of operating
conditions, frequencies and two relevant modeshapes from an engineering standpoint:
a torsion about the center of the blade, and a flap mode about an axis one chord away
from the trailing edge. These modeshapes correspond to a non-dimensional pitching
axis distance x = 0.5 and x = 2, as defined in Section (4.2). We will refer to these
modes simply as torsion and flap, show in Fig. (5.40). The contributions of each
fundamental mode to the total aerodynamic damping are expressed in Eq. (5.2).

(a) Torsion (b) Flap

Figure 5.40 Illustration of the torsion and flap modes used in this study.

Design Point

The aerodynamic damping results against interblade phase angle from CFD and PGML
are shown in Fig. (5.43). First and second column show plunge and pitch contributions,
third column plots the total damping. The PGML prediction is the mean of 16
different networks with different initialisation, therefore a standard deviation can also
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be calculated. This is shown as the shaded area around the total damping. First and
second row are torsion mode results with k = 0.5 and k = 1.0, while third and fourth
row are flap mode results. The PGML shows excellent agreement with CFD across the
full IBPA range and for both investigated frequencies, particularly for the flap mode.
The plunge and pitch damping components to the torsion mode are well approximated
and have comparable contributions to the total. The flap mode is dominated by the
plunge lift contribution, while the pitch components are nearly zero and opposite in
sign, thus cancelling each other out. These are also well captured by the machine
learnt model. The PGML standard deviation grows slightly larger towards high σ,
though the CFD line is always contained within the shaded area. Fig. (5.41) plots the
steady blade loading, for the same inlet conditions, on the training geometry (SC10)
and the current fan blade, showing a very different distribution and underlining the
discrepancy between the two geometries.
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Figure 5.41 Isentropic Mach Number profile with M1 = 0.7, β1 = 0◦ of training ( ) and
current test ( ) geometry

Transonic flow, positive incidence

The aerodynamic damping results against interblade phase angle from CFD and
PGML are shown in Fig. (5.44). This condition is more complicated than the design
point: the incidence is high and the inlet Mach number is out of the training range.
Nevertheless, the PGML shows, overall, very good agreement with CFD. The torsion
mode is well captured at low frequency throughout most of the interblade phase angle
range, with the exception of σ > 135◦, while at high frequency the PGML captures
the minimum damping, but predicts flutter for a larger σ range than CFD. The flap
mode aerodynamic damping is also well approximated, with excellent agreement in the
region of interest for stall flutter, i.e. low frequency, low σ. Similarly to above, Fig.
(5.42) plots the steady blade loading, for the same inlet conditions, on the training
geometry (SC10) and the current fan blade.
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Figure 5.42 Isentropic Mach Number profile with M1 = 0.9, β1 = 8◦ of training ( ) and
current test ( ) geometry

Transonic flow, negative incidence

The results from CFD and PGML are shown in Fig. (5.45). The PGML fails to predict
aerodynamic damping at this operating condition. This is to be expected, because the
nature of energy exchange between fluid and structure in choked flow is fundamentally
different from that of either classical or stalled flutter (Atassi et al., 1995; Rendu,
2016). The PGML has not been trained to predict such a flow configuration and the
results clearly show it, though potential improvement, if needed, could be attained by
introducing new samples to the training.

Low interblade phase angle, low frequency

So far, we have assessed the capability of the PGML model to predict the behaviour of
aerodynamic damping with geometry, interblade phase angle and frequency change
with fixed steady conditions. It is also important to verify that the model is able of
providing reliable predictions at different steady state conditions. The results from
CFD and PGML are shown in Fig. (5.46). First and second row are torsion and flap
mode results with fixed inlet Mach number M1 = 0.9, and show a sweep in inlet flow
angle, i.e. incidence. Third and fourth row are torsion and flap mode results with a
fixed inlet flow angle α1 = 51◦, and portray a sweep in inlet Mach number. The results
shown are for σ = 20◦ and k = 0.5, a very familiar condition at this point.

The downward trend with increasing incidence is well predicted for both modes, even
at high incidence, well beyond the training range set for SC10, which is 0◦ ≤ β1 ≤ 6◦.
The flap mode damping is under-predicted by a small amount, though the true CFD
value is contained in the uncertainty band; the torsion mode damping is captured
almost perfectly. In both cases, the agreement degrades at low incidence: this is due to
the fact that, for this case, the null incidence value is defined using the inlet angle of
the design condition, which in turn means that, for the inlet Mach number examined
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here, at values of β1 ≤ 1◦ the cascade is in fact operating near choke. In other words
the true “zero incidence” point here would be β1 = 2◦.

Similarly to above, the overall behaviour with Mach number is well approximated
by the PGML with only small differences that are contained within the one standard
deviation range.



5.9 Fan Blade test case 117

−180−90 0 90 180

σ [deg]

0

1

ζ

(a)

−180−90 0 90 180

σ [deg](b)

−180−90 0 90 180

σ [deg](c)

ζhL ζhM ζαL ζαM ΣζΦ
i

−180−90 0 90 180

σ [deg]

0

2

ζ

(d)

−180−90 0 90 180

σ [deg](e)

−180−90 0 90 180

σ [deg](f)

−180−90 0 90 180

σ [deg]

0

10

ζ

(g)

−180−90 0 90 180

σ [deg](h)

−180−90 0 90 180

σ [deg](i)

−180−90 0 90 180

σ [deg]

0

20

ζ

(j)

−180−90 0 90 180

σ [deg](k)

−180−90 0 90 180

σ [deg](l)

Figure 5.43 Aerodynamic damping predictions from CFD ( ) and PGML ( ) at design
point, M1 = 0.7, α1 = 43◦. First and second column show plunge and pitch contributions,
third column plots the total damping. The shaded area is one standard deviation obtained from
the different PGML predictions. First and second row are torsion mode results with k = 0.5
and k = 1.0. Third and fourth row are flap mode results.
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Figure 5.44 Aerodynamic damping predictions from CFD ( ) and PGML ( ) with
M1 = 0.9, α1 = 51◦. First and second column show plunge and pitch contributions, third
column plots the total damping. The shaded area is one standard deviation obtained from the
different PGML predictions. First and second row are torsion mode results with k = 0.5 and
k = 1.0. Third and fourth row are flap mode results.
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Figure 5.45 Aerodynamic damping predictions from CFD ( ) and PGML ( ) with
M1 = 0.9, α1 = 41◦. First and second column show plunge and pitch contributions, third
column plots the total damping. The shaded area is one standard deviation obtained from the
different PGML predictions. First and second row are torsion mode results with k = 0.5 and
k = 1.0. Third and fourth row are flap mode results.
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Figure 5.46 Aerodynamic damping predictions from CFD ( ) and PGML ( ) with
σ = 20◦, k = 0.5. First and second column show plunge and pitch contributions, third column
plots the total damping. The shaded area is one standard deviation obtained from the different
PGML predictions. First and second row are torsion and flap mode results with M1 = 0.9.
Third and fourth row are torsion and flap mode results with α1 = 51◦.
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Stability maps with design parameters : modeshape and reduced frequency

Two important design parameters for compressor blades are obviously reduced frequency
and modeshape. Once the aerodynamic flow has been calculated, the PGML can quickly
evaluate aerodynamic damping for a large number of frequency-mode pairs, in order to
provide stability maps to designers.

An example of such stability maps is shown in Fig. (5.47). Each row of the figure
corresponds to a different inlet Mach number, respectively M1 = 0.6, 0.7, 0.8, 0.9, with
a fixed inlet angle of α = 51◦ to ensure that each condition exhibits flutter and an
interblade phase angle σ = 0◦. The choice of zero σ is due to the fact that, in a design
environment, this condition would be the simplest and the first assembly mode to be
simulated and examined. The columns of the figure show results from CFD, PGML and
also from the simple FCNN. The horizontal axis of each panel is the non-dimensional
axis distance x, where x = 0 corresponds to a torsion about the leading edge, x = 1
about the trailing edge. The vertical axis is the reduced frequency. The black solid
line is the zero damping line, while the dashed line represents the zero damping line
obtained with ±1 standard deviation from the mean PGML predictions.

First of all, we can see that the trend of aerodynamic damping with x is consistent
for all Mach numbers shown. A pure pitching about the leading edge is highly stable
throughout the reduced frequency range; at x = 0.5, that is a torsion mode, the
aerodynamic damping starts to quickly decrease and reaches a minimum at x ≈ 1. As
the pitching axis moves away from the blade, the aerodynamic damping increases again
and the cascade regains stability at x ≈ 2. This behaviour had already been shown in
Chapter (3) and in the literature provided. It is interesting to see that, at subsonic
conditions (first and second rows of Fig. (5.47)), the zero damping line, or stability
boundary, engulfs a large area, even at high reduced frequency. On the other hand,
the transonic cases exhibit a much smaller region of instability.

Moving onto the comparison with the machine learnt models, we notice that the
FCNN is able to approximate the CFD trends, but largely overpredicts the aerodynamic
damping value, hence is not able to provide a flutter boundary for most of the flow
conditions. The PGML follows the CFD trends closely, especially at lower Mach
numbers, while it undepredicts aerodynamic damping at M1 = 0.9. From panel (k), we
can see that the PGML predicts flutter for a larger range of reduced frequencies than
CFD, thus reducing the available design space. Nevertheless, the values predicted by
both CFD and PGML are quite close to zero and the region of largest discrepancy, i.e.
0.5 ≤ x ≤ 1 and 0.75 ≤ k ≤ 1, is hardly of interest since flap modes are characterised
by a pitching axis that is normally downstream of the trailing edge.

We can further investigate stability as a function of frequency and modeshape by
“slicing” the maps. Fig. (5.48) shows results at constant steady conditions M1 = 0.9,
α1 = 51◦, and interblade phase angle σ = 0◦. First and second row are sweeps of
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frequency for torsion and flap mode respectively, third and fourth row show a sweep of
pitching axis for k = 0.5 and k = 1.0. The PGML predicts the trend with frequency
correctly, while the aerodynamic damping is offset by a small value, which is roughly
constant throughout the investigated range. It is interesting to notice that, as the
frequency increases, the damping contribution of the cross terms, plunge induced
moment and pitch induced lift, become more negative, while the higher damping is
attributable to the increase of, mainly, the plunge induced lift component. Regarding
the modeshape sweep, again the trend is well captured with CFD and PGML predictions
nearly overlapping.
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Figure 5.47 Aerodynamic damping maps with modeshape and reduced frequency. Rows one
to four show results for inlet Mach numbers M1 = 0.6, 0.7, 0.8, 0.9, respectively. The three
colums are results from CFD, PGML and FCNN. The inlet flow angle and interblade phase
angle are fixed at α = 51◦ and σ = 0◦. The solid line ( ) shows the zero damping line, while
the dashed line ( ) marks the zero damping line obtained with ±1 standard deviation from
the mean PGML predictions.
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Figure 5.48 Aerodynamic damping predictions from CFD ( ) and PGML ( ) with
σ = 0◦, M1 = 0.9, α1 = 51◦. First and second column show plunge and pitch contributions,
third column plots the total damping. The shaded area is one standard deviation obtained from
the different PGML predictions. First and second row are torsion and flap mode results as a
function of reduced frequency k. Third and fourth row are results as a function of pitching
axis x for k = 0.5 and k = 1.0, respectively.
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Flutter boundary on a compressor map

Although the test cascade is stationary, a compressor map equivalent to that of a rotor
can be found. The constant wheel speed lines are substituted by lines of constant
inlet mach number M1 which are obtained iteratively: a value of back pressure is first
imposed as outlet boundary condition, the steady-state flow is calculated and, after
extracting the inlet thermodynamic quantities, the outlet pressure is adjusted and
the process is repeated until convergence to a target M1 is obtained. Each point on
a fictitious speed line represents a 1◦ increment in flow incidence. As the blades do
not impart any work on the fluid, the mass flow is plotted against static pressure ratio
rather than total pressure ratio. Fig. (5.49) shows such a compressor map; the axes are
normalised by the reference mass flow and pressure ratio values calculated at nominal
conditions, i.e. M1 = 0.7 , α1 = 43◦. The flutter boundary for a flap mode with x = 2
is obtained with the following approach: for each point on a speed line, unsteady
computations are run at a fixed interblade phase angle and frequency; if aerodynamic
damping changes sign from one point to the next, the flutter boundary is placed there.
The process is repeated for all interblade phase angle and frequencies and the boundary
is placed at the minimum pressure ratio where the crossing occurs. In this case, the
interblade phase angle at the flutter boundary is in the range 0◦ ≤ σ ≤ 20◦, while the
frequency is k = 0.5. This task is performed independently for CFD and PGML. We
can see that there is good agreement and, although the PGML overpredicts the location
of the flutter boundary, the true CFD value is contained within 1 standard deviation
of the PGML prediction. We reiterate that the standard deviation in question comes
from the fact that the PGML predictions are the mean of the output from 16 networks
trained independently; therefore the shaded area in Fig. (5.49) gives an indication of
the uncertainty of the PGML predicted value.
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Figure 5.49 Compressor map with flutter boundary calculated from CFD and PGML. The
shaded area corresponds to the flutter boundary within 1 standard deviation from the mean
PGML prediction.
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5.10 Summary

In this Chapter, a physics guided neural network model has been presented.

The model leverages the PGML framework which is comprised of a fully connected
neural network in which predictions of the QoIs from a reduced order model (ROM)
are injected at some hidden layer. The ROM employed in this work is LINSUB, a semi-
analytical method which models the aeroelastic response of a cascade of unloaded blades,
accounting for important parameters such as cascade geometry and flow compressibility.
The required data for model training was generated using CFD. The input features
to the PGML are steady state quantities that are relevant for stall flutter and carry
information regarding the cascade and blade geometry as well as blade loading. The
unsteady input features are interblade phase angle and reduced frequency. The QoIs
are four unsteady quantities, two lift and two moment coefficients, induced by two
basic modeshapes: a plunge orthogonal to the chord line, and a pitch about the leading
edge. In this way, the QoIs can be combined to predict aerodynamic damping for any
flapwise bending modeshape. The current implementation of the PGML thus requires
a steady CFD computation at prediction time to obtain the input features. Such an
approach allows us to train the model on a reduced number of training samples as
there is no need to pass the geometry directly as an input feature, which would require
an unfeasible number of computations to build the training database.

The PGML is first trained with SC10 data only. The hyperpameters are tuned with
a random search approach and the best model is selected with a 5-fold cross validation
which, again, only employs SC10 data. Consequently, the model is tested on a large
database of cascades and it is found that the PGML can predict the QoIs with good
degree of accuracy, especially in the low interblade phase angle region, which is of
most interest for stall flutter. It is also found that the prediction accuracy for plunge
induced coefficients is higher than the pitch induced ones, due to the lack of an input
feature pertaining to change in passage shape.

The model is enhanced by adding a small number of samples from four different
cascades and it is then tested on a geometry resembling a fan blade section. The results
show very good agreement in both subsonic and transonic flow. The PGML is also
able to closely resemble the flutter boundary of the test blade computed with CFD.



Chapter 6

Uncertainty of Aerodynamic Damping
Predictions

The contents of this chapter have been in part published in Rauseo et al. (2022).

6.1 Introduction

The model presented in Chapter (5) proved that a combination of theory based reduced
order models and meaningful inputs is a possible solution to obtain a machine learning
model with generalisation capabilities. The model was able to reproduce the results from
CFD with good degree of accuracy across a range of unseen geometries and operating
conditions. The PGML model is built on the assumption that the computational data
used for training is fully deterministic, however, although the calculations are in fact
deterministic in nature, CFD can be affected by several sources of error and uncertainty.
The study of uncertainty in CFD and its quantification is an active field of research.
There can be several sources of uncertainty in CFD and the short summary presented
here is based on a small section of the volume by Montomoli (2019).

Uncertainties in initial and boundary conditions can lead to significant errors in
the predicted flow behaviour. For instance, imposing inaccurate velocity and pressure
profiles at the boundaries can impact the simulation results. Unsteady aeroelastic
computations in non-linear, time-accurate solvers are prone to reflection of pressure
waves from the boundaries that can significantly alter the flow field (Zhao et al., 2016).
The solution to this problem needs a strict oversight, and requires an extension of
the computational domain with the mesh being progressively coarsened in order to
numerically dissipate the waves before they reach the boundaries. This procedure is
costly and, in itself, prone to errors due to discretisation of the domain. It may also cause
unintentional spurious reflections from within the domain. The numerical modelling
used in CFD is also a source of uncertainty. The accuracy of the numerical method,
spatial and temporal discretisations, solver convergence, and, notably, turbulence
modelling are all sources that contribute to the uncertainty of computational results.
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The simplifications and assumptions of a computational model can introduce errors in
the model, which can propagate and also increase uncertainty. Finally, manufacturing
tolerances and in-service degradation to components can alter a blade profile enough
to render its behaviour considerably different from that predicted with CFD, which
normally only accounts for predictions on the nominal shape.

In the context of flutter, all these sources of uncertainty produce differences in
mean flow aerodynamics, which can lead to significant discrepancies in aerodynamic
damping in the presence of shocks and separation, due to the large unsteady pressures
these flow features induce. Several examples of such sensitivity to the mean flow field
can be found in literature.

Shibata and Kaji (1998) performed a linearised Euler analysis to study the influence
of shock structures on the flutter boundary of a transonic rotor tip section. The
authors increased the pressure ratio across the rotor, following a constant wheel speed
line, and found that, as the shock is expelled from the covered passage, the cascade
reaches a peak in instability at a certain pressure ratio and that aerodynamic work is
extremely sensitive to the level of back pressure. Shibata and Kaji (1998) also argue
that this sensitivity to pressure ratio contributes to the steep flutter boundary observed
experimentally on the same rotor in a study by Adamczyk et al. (1982).

Isomura and Giles (1998) performed a viscous unsteady CFD analysis on a transonic
fan and found the same effect of back pressure on the global aerodynamic work per
cycle, i.e. the work does not change monotonically with pressure ratio. They found
that, near the stall boundary, a change of less than 2% in computed pressure ratio
can cause the rotor to become unstable. They found that the difference in aeroelastic
stability with pressure ratio is caused by large oscillations of unsteady pressure at
the shock foot. All the previous observations have been confirmed, according to the
authors, by an experimental study.

Jutur and Govardhan (2019) carried out an experimental campaign to measure
aeroelastic stability in a started and unstarted linear cascade. Their results show
that as the cascade approaches the unstarted regime, i.e. the shock is expelled from
the covered passage, the blades experience a sudden drop in lift and the unsteady
aerodynamic work increases sharply.

Finally, an example of discrepancies between different solvers was shown by the
European project FUTURE (Flutter-Free Turbomachinery Blades, Fransson (2013)), in
which tests and numerical computations were carried out on a 1.5-stage compressor by
several partners, both from industry and academia. Fransson (2013) (Fig. 26) reports
the experimental aerodynamic damping ratio against nodal diameter and compares
it to numerical predictions at the same operating condition: it can be seen that the
order of magnitude and trends of damping are similar, but that the difference between
numerical predictions is considerable.
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It thus seems clear that, due to complexity of the task, methods for computing
aerodynamic damping should not only make predictions, but also provide an estimate of
the uncertainty associated with the predictions. In this Chapter, we begin investigating
the uncertainty present in our database of aerodynamic damping computations. The
sensitivity to small changes in mean flow field is discussed with an example similar to
the literature provided; a simple machine learning technique is employed to estimate
the uncertainty of a prediction, which is consequently validated with a Monte Carlo
simulation; finally, a possible application is provided.

6.2 Test Case

The test case is once again the Standard Configuration 10, shown in Section (2.5). A
compressor map, similar to that shown in Fig. (5.49), is reported in Fig. (6.1). The
axes are normalised by the reference mass flow and pressure ratio values calculated at
nominal conditions, i.e. M1 = 0.7, β1 = 0◦. We reiterate that, for SC10, the incidence
is defined as β1 = α1 − 55◦, with α1 being the inflow angle. Stall line and flutter
boundary are also visible; the latter was calculated with reduced frequency k = 0.5, and
a rigid body rotation about an axis 1 chord downstream of the trailing edge as mode
shape, representative of a flapwise bending mode as discussed in previous chapters.
Moreover, this combination of modeshape and frequency has been chosen so that the
cascade flutters before stall, enabling us to study aerodynamic damping uncertainty in
both stable and unstable conditions. The stall line indicates mass flow and pressure
ratio at which the cascade can no longer deliver the intended M1. For this case, the
flutter boundary occurs in the range σ ∈ (5◦, 10◦), typical for this mode. As will be
shown in the later sections, aerodynamic damping predictions come with uncertainty
and, consequently, the CFD computed flutter boundary should be treated carefully in
practice.
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Figure 6.1 Standard Configuration 10 compressor map with stall and flutter boundaries
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6.3 Sensitivity of Aerodynamic Damping in Transonic
Flow

The literature provided in Section (6.1) shows how small uncertainties in the computed
or measured pressure ratio can propagate and result in large differences in aerodynamic
damping. This phenomenon is investigated in this section by performing a numerical
study similar to the experimental work of Jutur and Govardhan (2019). The static
pressure ratio across the cascade is increased at a constant mass flow rate of ṁ/ṁref =
0.9 until the stall boundary is reached. For every steady operating condition, the
aerodynamic damping is computed using the familiar combination of low interblade
phase angle and frequency σ = 20◦, k = 0.5, with a flap modeshape.

The results from the computations are shown in terms of steady lift coefficient
CL and aerodynamic damping ζ in Fig. (6.2), which illustrates the CFD operating
points that are closest to the target mass flow as black dots, while the solid line is a
spline fit through those points; moreover four operating conditions are highlighted for
further comparison later. From the results we can see that, as the static pressure ratio
increases, the lift and aerodynamic damping coefficient vary almost linearly with it,
respectively increasing and decreasing, until Π/Πref ≈ 1.10 where the lift coefficient
plateaus and subsequently drops, corresponding to the blades approaching stall, and
the consequent aerodynamic damping experiences a very sharp drop.

It is interesting to notice that, although Jutur and Govardhan (2019) treat the
problem of supersonic cascade unstart, the resulting trends are very similar to the
ones presented here, where the cascade is always unstarted, and approaches stall with
subsonic inlet Mach number. This indicates that the simultaneous increase in pressure
ratio and reduction of lift force corresponds to a sudden, large increase in aerodynamic
work, and that this mechanism is driven by the stalling of the cascade, irrespective of
whether stall is due to supersonic unstart or an increase in angle of attack in transonic
flow.

For a more in-depth discussion, we now investigate some of the flow features that
cause this behaviour. On Fig. (6.2a), four points are selected, each corresponding
to an increasingly higher pressure ratio: points A and B are located just before the
peak in lift coefficient, whereas points C and D are located right after. From Fig.
(6.2b) one can see that the first pair, (A,B), is in the pressure ratio range where the
slope of aerodynamic damping is shallow, whereas the latter pair (C,D) is found in
the region of steep decrease. Fig. (6.3) shows the blade loading for the four selected
operating conditions. Steady blade loading is expressed in terms of isentropic Mach
number, unsteady loading is given by both real and imaginary components of pressure
coefficient (though only the latter contributes to aerodynamic work), and the local
aerodynamic work on the blade w is also shown, with w > 0 being unstable. In Fig.
(6.3a), the isentropic Mach number distribution for these points is shown. The blade
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Figure 6.2 (a) Lift and (b) aerodynamic damping coefficients computed with constant
ṁ/ṁref = 0.9, σ = 20◦. The solid line ( ) is a spline fit of the CFD points (black dots)

loading profiles are extremely similar within each pair: (A,B) show a small region of
sonic flow (see M > 1.0) near the leading edge on the suction side, which causes a
weak shock, that is readily diffused by the mean flow; (C,D) are well into transonic
regime and show a strong normal shock at about 20% chord on the suction side. The
shock induces flow separation, which is visible in the contour plot of Mach number
shown in Fig. (6.4).

The imaginary unsteady pressure coefficients are compared in Fig. (6.3b). Again
(A,B) show a similar behaviour with high unsteady pressure localised near the leading
edge; on the other hand, (C,D) almost perfectly overlap before the shock, while the
unsteady pressure induced at the shock foot nearly doubles going from C to D. Also,
after the shock, where the flow separates, the unsteady pressures of points C and D
do not coincide. Finally, Fig. (6.3d) depicts the local aerodynamic work around the
blade, which shows that the shock wave and consequent flow separation, occurring for
operating points C and D, have a destabilising effect. The magnitude of aerodynamic
work exchanged at operating point D is much larger than point C, explaining the sharp
drop in global damping.
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Figure 6.4 Steady Mach Number contours computed at points B,C,D, from left to right

The steady state loading did not shed any light on the cause of the sharp change
in aerodynamic damping with pressure ratio. The matter is further investigated by
examining the blockage size, δ, on the suction side of the blade, since this is where
both shock wave and flow separation occur. In Fig. (6.5a), which shows blockage size
near trailing edge as a function of pressure ratio, one can see that, going from C to
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Figure 6.5 (a) blockage size near trailing edge on suction side as a function of pressure ratio
with constant ṁ/ṁref = 0.9; (b) blockage size on suction side as a function of streamwise
coordinate.

D, there is a steep increase in endwall blockage, indicating rapid growth of the shock
induced separation size. The slope of the curve is nearly vertical at point D, suggesting
that separation is very sensitive at this flow condition. Fig. (6.5b) shows the blockage
size as a function of the streamwise coordinate for the four operating conditions. The
profiles for the pair (A,B) overlap; the same is true for (C,D) until the shock (located
at x/c ≈ 0.2) is reached. After the shock wave, the separation occurring at operating
point D is more severe than point C and the endwall blockage grows larger.

These results have shown that, when shock induced separation is present, computa-
tions at marginally different operating conditions can produce significantly different
aerodynamic damping predictions. In practice, one can see that changes in numeri-
cal methods, turbulence modelling, grid spacing, boundary condition types or small
perturbations to target mass flow and pressure ratio can all produce such mean flow
differences. This implies that there is a need to account for uncertainty in flutter
predictions.

6.4 Uncertainty Quantification Method

In line with the theme of this thesis, we once again seek a solely data-driven solution to
find a measure of uncertainty for the aerodynamic damping predictions in our dataset.
As for Chapter (3), we tackle the simpler problem of interpolation, i.e. modelling of the
training geometry only, and emphasise that the main objective in this Chapter is not
to build a general prediction model, but to investigate, show and quantify uncertainty
of computed aerodynamic damping.

Among the plethora of methods available, random forests (Breiman, 2001) are a
very popular supervised algorithm due to their ability of achieving high accuracy with
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limited hyper-parameters tuning. Random forests (RF) are an ensemble of decision
trees. A decision tree creates a mapping between input and output through a series of
“if-then” statements: starting from a root, the algorithm builds a hierarchy of nodes at
which data is split in a binary fashion, until a final, leaf node is reached. In regression
problems, decision trees perform optimal splits by minimising the mean squared error
and, for a given test data point, a prediction is output by walking through the tree
to identify the corresponding leaf and taking the weighted mean of the values in that
node. To overcome the problem of overfitting the data, a random forest employs a
large number of trees, each trained on a random subset of the input variables, and its
prediction on a new data point is the averaged response of all trees. The uncertainty
quantification method employed in this study is the Quantile Regression Forest (QRF)
introduced by Meinshausen (2006). It builds on the original random forest concept
and it allows to enhance predictions with prediction intervals.

Let {(Xi, Yi) : i = 1, .., n} be n independent observations; the random forest algo-
rithm grows a number of trees to infer a relationship between the variable X and the
response Y . Let T (θ) be a tree corresponding to the random vector θ which determines
the subset of features used by the tree. Every leaf node ℓ = 1, ..., L in T (θ) may contain
some of the observations (Xi, Yi). As mentioned above, when a new data point x is
dropped down a tree it will end up in a leaf node; suppose the leaf which contains x is
denoted by ℓ(x, T ), then, the weight wi(x, T ) of each observation will be a constant
if Xi belongs to the node and zero otherwise. The weights sum up to one so the
expression is given by

wi(x, T ) =
1{Xi∈ℓ(x,T )}

#{j : Xj ∈ ℓ(x, T )} (6.1)

Assuming the random forest is composed of B trees, the weight of each observation
will be the average over the trees

wi(x) =
1

B

B∑︂

b=1

wi(x, Tb) (6.2)

Finally, the conditional mean E(Y |X = x) of the response Y given x is given by

ˆ︁µ(x) =
n∑︂

i=1

wi(x)Yi (6.3)

Meinshausen (2006) argues that the weighted observations can provide not only a good
approximation of the expected value of Y , but also of its full conditional distribution
F (y|X = x). As F is unknown, we can approximate it with an empirical distribution
function

Fn(x) =
1

n

n∑︂

i=1

1{Xi≤x} (6.4)
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where 1{Xi≤x} is an indicator random variable, taking value 1 when the condition is
true and 0 otherwise. So, as E(Y |X = x) is approximated by the weighted mean
over observations of Y , E(1{Y≤y}|X = x) is estimated by the weighted mean over the
observations of the empirical distribution function

ˆ︁F (y|X = x) =
n∑︂

i=1

wi(x)1{Yi≤y} (6.5)

From ˆ︁F (y|X = x) in Eq. (6.5), one can obtain estimates of conditional quantiles for a
given significance level α and form a prediction interval (PI)

I(x) =
[︂
Q{α

2
}(x), Q{1−α

2
}(x)

]︂
(6.6)

The current definition of prediction interval is closely related to that of confidence
interval (CI): for a given significance level α ∈ (0, 1), a (1− α)-confidence interval is
an interval (a, b) such that, if we were to draw infinitely many samples and compute
new CIs, then the true value of a statistic, e.g. the mean, would be contained in
100 · (1− α)% of the intervals. This means that CIs are defined for distributions of
statistics.

On the other hand, the prediction interval is computed directly from the distribution
of samples and it is thus unrelated to any particular statistic. As such, in this context
(1− α)-prediction intervals for aerodynamic damping predictions are intervals (a, b)
around multiple predictions which contain the true value of damping, i.e. the value
computed from CFD, 100 ·(1−α)% of prediction instances. This difference is important
and will be pointed out again in the following sections.

Regardless, a larger prediction interval will indicate more uncertainty around a
given prediction. The figure of merit in this study will be the commonly used 95%
prediction interval, i.e. α = 0.05, which in normal theory correspond to a range of
∼ ±2 standard deviations around the mean.

The prediction intervals are constructed by calculating the weighted quantiles from
the conditional empirical cumulative distribution function ˆ︁F (y|X = x) (CDF). The
procedure works as follows and it is clarified with a simple example. Suppose a test
data point x is dropped down the random forest and is stored in a leaf node ℓ for each
tree; the leaf nodes will each contain a subset of the observations (Xi, Yi) with a weight
wi. The subset of dimension m can be ordered to form a strictly increasing sample
Y1 < Y2 · · · < Ym with weights w1, w2, . . . , wm. Let sj =

∑︁j
i=1wi, be the sum of the

first j weights and sm =
∑︁m

i=1wi = 1, be the sum of all weights, then, for a quantile q,
one can find j such that sj < q < sj+1 and find an estimate Q by linear interpolation

Q = Yj + (Yj+1 − Yj)
q − sj
sj+1 − sj

(6.7)
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Fig. (6.6) shows a schematic empirical distribution function with horizontal lines
denoting the values q = 0.975 and q = 0.025. The estimate for the values of Q will be
the interpolation of the two values directly above and below the horizontal line.
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Figure 6.6 An illustrative empirical distribution function with quantiles q = 0.975 and
q = 0.025

6.4.1 Training Data

The five databases of aerodynamic damping of SC10 (Chapter 3) will constitute the
training data, though we limit the scope of this work to a range of interblade phase
angle σ ∈ (0◦, 45◦), a single reduced frequency k = 0.5 and one modeshape, the familiar
rigid body rotation about an axis 1 chord length downstream of the trailing edge of
the blade, which mimics a typical 1F mode. The response variable Y the model will
predict is aerodynamic damping.

Random forests can provide a measure of feature importance without resorting
to any other method. Therefore we provide the algorithm with three independent
features and eight derived quantities based on steady flow, listed in Table (6.1), with
the intention of letting the algorithm itself select the most appropriate ones.

6.4.2 Hyperparameter tuning and feature selection

The choice of hyperparameters is a fundamental step in nearly every machine learning
algorithm. These parameters are not trainable and need to be selected by the user.
The predictive performance of the random forest is measured with the coefficient of
determination R2 defined in Eq. (5.6), where R2 = 1 indicates a perfect fit to the data.
The K-fold cross validation procedure outlined in Section (5.7) is employed to provide
a fair performance measure. We fix K = 5, and the trees in the random forest are
allowed to grow indefinitely as long as a minimum of 10 data points is used to perform
a node split; this leaves us with only one hyperparameter to be investigated, i.e. the
number of trees B.
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Table 6.1 Set of input features

Feature Type

M1 Inlet Mach Number Independent
β1 Incidence Angle Independent
σ Interblade Phase Angle Independent

CL Lift Coefficient Derived
CD Drag Coefficient Derived
Π Static Pressure Ratio Derived
ṁ Mass Flow Rate Derived
δSS Blockage at trailing edge on suction surface Derived
δPS Blockage at trailing edge on pressure surface Derived
σ∗
U Upstream Cut-off Ratio† Derived
σ∗
D Downstream Cut-off Ratio† Derived

†To avoid division by zero at σ = 0◦, the reciprocal is used

Furthermore, as mentioned above, some features in the dataset are redundant, i.e.
they do not necessarily add new information as, for example, an operating condition
for a fixed geometry can be defined by either mass flow rate and pressure ratio or
lift and drag coefficient. This redundancy increases the computational cost and it is
not guaranteed to improve the performance of the algorithm, therefore, a backward
elimination is performed. Backward elimination is an iterative process where the least
important features are dropped one at a time: starting from the full set, the random
forest is trained, tested and the feature deemed least important is dropped. The process
is repeated until only one feature is left in the dataset. Feature importance is measured
by permutation importance (Breiman, 2001).

Fig. (6.7) shows the results of backward elimination for six random forests with
B = 2, 5, 10, 50, 100, 200, starting from a maximum of P = 11 features. First, one
notices that the markers overlap almost perfectly, with B = 2, 5 ever so slightly lower
than the rest; this robustness of predictive performance to the number of trees has been
observed in previous studies (Heyse et al., 2021; Scillitoe et al., 2021). By robustness,
we mean that performance do not change significantly with number of trees. Second,
many of the features can be removed without affecting the predictive accuracy, which
settles at a value of R2 ≈ 0.95; significant loss in performance occurs when P < 3.
This result is reassuring: only 3 features are needed to completely define a point in our
sampling space, decreasing the value of P to less than 3 removes relevant information.

The most interesting result of the backward elimination is not the number of features,
but rather which ones the algorithm selects: throughout all tests, the independent
variables (see Table 6.1) are discarded first, while CD, CL, blockage on suction side and
the cut-off ratios are deemed to be the most relevant. The choice of cut-off ratios over
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Figure 6.7 Cross validation R2 as a function of number of features.

interblade phase angle is easily explainable: they are a combination of steady mean flow
quantities, frequency and phase angle and, unlike σ alone, carry information regarding
flow velocity, angles and thermodynamic quantities, both upstream and downstream of
the blade. The suction side blockage near trailing edge, δSS, was shown to be relevant
in the previous sections, especially near the stall boundary. Regarding the choice of
CL and CD as most significant steady state features, a small discussion is in order.

Fig. (6.8a) and Fig. (6.8b) are kernel density estimate (KDE) plots that visualise
the distribution of aerodynamic damping observations in the dataset, against pairs of
steady state features: {CL, CD} and {ṁ,Π}, respectively. The data points in the plots
are categorised in two groups, corresponding to in positive and negative aerodynamic
damping. As previously explained, a random forest performs a series of splits on the
dataset in order to maximise the information gain at each step. One can see that, in Fig.
(6.8a), there is little overlap between positive and negative samples with CD ≥ 0.11,
therefore we expect the RF algorithm to leverage this clear separation when splitting
the data. On the other hand, in Fig. (6.8b) we can see that, throughout the whole
mass flow range, there is not such a simple binary split, therefore the random forest
has to perform several operations to fit a line that divides the data and obtain a similar
information gain. It is reiterated that, physically, both pairs of features convey the
same information regarding the flow field, but, for this case, lift and drag constitute a
more meaningful set of coordinates to work with.

The following feature set is employed for the remainder of the study:

x = [CL, CD, σ
∗
U , σ

∗
D, δSS] (6.8)

Lastly, we verify that the prediction intervals produced by the QRF are well
calibrated. By well calibrated we mean that they abide by their definition, i.e. (1− α)-
prediction intervals are well calibrated if 100 · (1− α)% of them contain the true value
of aerodynamic damping as computed by CFD.
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Figure 6.8 Kernel density estimation plots of aerodynamic damping coefficient databases as
a function of: (a) CL and CD; (b) ṁ and Π

The coverage fraction CF, i.e. the percentage of true values contained in the 95%
prediction intervals, as a function of number of trees B is shown in Fig. (6.9a). The
target CF = 0.95 is labelled in the plot. If prediction intervals obtain a CF larger than
the target, they are said to be under-confident, i.e. they are too large; if the obtained
CF is lower than the target, they are said to be over-confident. Fig. (6.9a) shows that
for low values of B the intervals are over-confident. The coverage fraction converges to
CF ≈ 97% with B > 50. This value of CF ≈ 97% indicates that the PIs are nearly
perfectly calibrated, but are slightly under-confident, i.e. their size could be smaller.
For the remainder of the Chapter, the number of trees is set to B = 100.
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Figure 6.9 (a) Coverage fraction convergence with number of trees; (b) QRF calibration
curve showing the coverage fraction as a function of confidence level

For completeness, we verify that the confidence intervals are well calibrated for all
significance levels. In Fig. (6.9b) the coverage fraction of the current method (QRF) is
compared to theory. The PIs from the current method are well calibrated, although
slightly under-confident, throughout the range of significance levels.
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6.5 Comparison of QRF with CFD

The following results show a comparison between CFD and QRF. The results from
QRF will consist of a point value, which is the expected value of aerodynamic damping
and will be referred to as prediction, and a 95% prediction interval, presented in the
form of an error bar.

The results in Fig. (6.10) show good agreement between CFD and machine learning
model, and this is to be expected since we are not trying to extrapolate outside of the
input parameters range. Furthermore, we see that the prediction intervals tend to get
larger as the pressure ratio increases and, finally, become very large as the cascade
approaches the stall boundary. This implies that the QRF predicts high uncertainty in
this region and that, according to the ML model, a CFD computation with slightly
different pressure ratio could predict an aerodynamic damping value anywhere within
the PI.
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Figure 6.10 Aerodynamic damping coefficient from CFD (markers with spline fit ) and
QRF (red dots with error bars) as a function of pressure ratio with constant ṁ/ṁref = 0.9,
σ = 20◦

A further comparison between QRF and CFD is shown in Fig. (6.11): a line of
constant inlet Mach number M1 = 0.825, at σ = 20◦, is pbtained by increasing the
incidence onto the blades and varying the pressure ratio. Following this line, the flow
separates from the blade and, as the mass flow decreases, so does aerodynamic damping
except for the last point on the curve at ṁ/ṁref ≈ 0.9, where the monotonic trend is
interrupted (see Vahdati et al. (2001) for a similar observation on a fan blade). The
machine learning model almost perfectly overlaps with the CFD results, and predicts,
similar to the previous test, larger prediction intervals as the mass flow decreases.

For completeness, an interblade phase angle sweep at constant M1 = 0.6 and
β1 = 6◦ is shown in Fig. (6.12). This condition has been chosen so that both upstream
and downstream cut-off frequencies are clearly visible; these are shown as vertical
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Figure 6.11 Aerodynamic damping coefficient from CFD ( ) and QRF ( with error
bars) as a function of mass flow rate with constant M1 = 0.825, σ = 20◦

lines on the plot. Again, there is very good agreement between QRF and CFD, but it
is interesting to see how the prediction intervals become larger in size as the cut-off
frequencies are approached. This trend is also driven by a form of sensitivity, but,
whereas the previous tests have shown the influence of shock induced separation, in this
case the strong response to changes in flow field is acoustic in nature. It has been shown,
in this thesis and in the literature provided so far, that the unsteady pressures inside a
blade passage change drastically as the pressure fields, upstream and downstream of
the blade, change from cut-on to cut-off, and, in turn, this behaviour leads to large
oscillations in the value of aerodynamic damping. The size of the prediction intervals
in Fig. (6.12) reflects this responsiveness of the unsteady flow field, which, in our
framework, is considered a type of uncertainty.
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Figure 6.12 Aerodynamic damping coefficient from CFD ( ) and QRF ( with error
bars) as a function of interblade phase angle with constant M1 = 0.6, β1 = 6◦. The vertical
lines represent downstream ( ) and upstream ( ) cut-off values, respectively.

The uncertainties shown by prediction intervals directly influence the aerodynamic
damping prediction accuracy, where a small perturbation in running conditions may
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lead to very different outcome, i.e., false positive or false negative in stability judgment.
In this context, small perturbations can be deviation from the target mass flow and
pressure ratio, uncertainties in boundary conditions (e.g. changes in temperature can
affect the cut-off frequencies), numerical model assumptions and turbulence modelling.
Therefore, for both experimentalist and computational analyst, it can be very dangerous
to rely on a singular deterministic value assumed to have 100% confidence.

6.6 Validation of Prediction Intervals

The comparison between CFD and QRF in Fig. (6.10) shows a steep decrease in
aerodynamic damping that is well approximated by the surrogate model. Near the
stall boundary, at high pressure ratio, the uncertainty predicted by QRF is high and it
is portrayed by the large prediction intervals. Now, one would like to verify that the
prediction bounds calculated by the surrogate model are actually representative of the
real uncertainty. In order to complete this task though, it is important to first explore
why the model outputs such intervals.

To gain understanding, three operating points are examined from Fig. (6.10),
with respectively increasing pressure ratio: P8 is a high subsonic flow condition with
Π/Πref = 1.07, low uncertainty and sits just above the zero damping line; P10 is
in transonic regime with Π/Πref = 1.103, it is located right before the change in
aerodynamic damping slope and also exhibits small uncertainty; P14 is located near
the stall boundary, in the region of large QRF uncertainty at Π/Πref = 1.114. The
sample constituted by the three points can be dropped down the random forest to
identify the leaf nodes they belong to; once a leaf node is found, we can extract the
observations (Xi, Yi) and the relative weights wi that form the empirical distribution,
as explained in the previous sections. In other words, we can find the training data
that the algorithm groups around the test point in order to make a prediction. The
subsets obtained by dropping down the sample points can now be visualised.

Fig. (6.13) shows scatter and KDE plots of the subsets built around the three
sample points; the index j refers to the test data point, while i refers to any observation
in the subset belonging to the point indexed by j. Fig. (6.13a) portrays the percentage
difference between the mass flow rate of the test data and the observations against
the percentage difference of the pressure ratios; it shows that to make a prediction
in subsonic flow (P8), the QRF model groups together points that exhibit a large
difference in both delivered pressure ratio and mass flow rate, but, at the same time,
Fig. (6.13b) shows the difference between the subset of observations ζi and the resulting
aerodynamic damping prediction ζj is nearly zero throughout the whole range. This
result shows that the variation of aerodynamic damping value at these low speed
conditions is minimal, even though the change in steady characteristics might be
significant. The trend is inverted as the investigated conditions go from subsonic to low
(P10) and high (P14) transonic regime: the neighbourhood of observations becomes
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tighter around the data point in terms of steady state variables, but the deviation
in terms of aerodynamic damping grows larger. At P14 for example, the subset of
observations is contained within a 2% change in pressure ratio, but the damping varies
widely from highly unstable to highly stable.
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Figure 6.13 Scatter plot and kernel density estimation of the training data subsets formed
by QRF around the three test points of interest. (a) Percentage difference in mass flow rate
against percentage difference in pressure ratio; (b) Difference in aerodynamic damping against
percentage difference in pressure ratio.

Fig. (6.14) clearly reinforces the observation just put forth. The empirical cumula-
tive distribution functions (CDF), ˆ︁Fζ , obtained for P8 and P10 are mostly centered
around zero, and intersect the horizontal lines representing the quantiles very close to
zero, which translates into small prediction intervals. On the other hand, the CDF for
P14 spans a large range of aerodynamic damping which, finally, explains why the QRF
predicts such high uncertainty for this test point.
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Figure 6.14 Empirical cumulative distribution function of the difference between subset
of observations ζi and the resulting aerodynamic damping prediction ζj at test point j. The
quantiles q = 0.975 and q = 0.025 form the 95% prediction intervals.
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After illustrating the process followed by the QRF to predict aerodynamic damping
and associated prediction intervals, a Monte Carlo (MC) analysis is performed to
verify the accuracy of the predicted uncertainty. The samples are obtained by varying
the back pressure, p2; they are drawn from a normal distribution centered about the
original value for each data point, p2j, and with a standard deviation of 0.33%, i.e.
p2 ∼ N

(︁
p2j, σ

2
N
)︁
, where σN = p2j · 3.33× 10−3. The choice of standard deviation is

so that circa 99% of the samples are within 1% of the original back pressure value, a
difference small enough to be often overlooked in academic and engineering practices
using CFD. The resulting mass flow rate and pressure ratio distributions for the three
points of interest, again expressed as percentage difference from the original value
indexed by j, are shown in Fig. (6.15). It can be seen that both distributions are
well within the bounds of the subsets built by the random forest, e.g. at P14 the
MC pressure ratio sample is contained within less than 1% change from the mean, as
opposed to the 2% show in Fig. (6.13a).
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Figure 6.15 Kernel density estimation of Monte Carlo analysis samples. (a) Distribution
of samples against percentage difference in pressure ratio; (b) Distribution of samples against
percentage difference in mass flow rate.

The aerodynamic damping distributions obtained through the MC analysis can now
be used to compute prediction intervals, which are compared to the ones calculated
by the QRF. Fig. (6.16a) shows how the Monte Carlo PIs grow in size as the cascade
approaches high pressure ratio values, and that the uncertainty portrayed by the QRF
is indeed representative of the loss of robustness affecting the unsteady CFD. The size
of the prediction intervals is, of course, dependent on the a priori sample distribution
chosen to perform the MC computations, but, as discussed previously, the variance of
the distribution was set to be very small so that every sample would fall extremely close
to the mean, well within an error range that is usually accepted in CFD computations.
In other words, if a CFD computation is set up to match a specific pressure ratio
and mass flow rate, the results show that even a small deviation from target values
can result into widely different predictions of aerodynamic damping. The mean value
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obtained from the Monte Carlo analysis agrees better with the QRF than the CFD;
this is to be expected as the mean prediction from the surrogate model comes from a
weighted mean of a subset of values that resembles the MC sample itself, whereas the
CFD point is obtained from a single computation. The confidence intervals for the
value of the calculated mean can be constructed through bootstrapping (Efron, 1979),
a sampling with replacement technique used to estimate the variation of statistics
that are themselves computed from a set of data. Fig. (6.16b) shows that the value
obtained for the mean of aerodynamic damping is extremely confident, as the CIs are
barely visible.
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Figure 6.16 Aerodynamic damping predictions from CFD, QRF and Monte Carlo analysis
against delivered pressure ratio, with confidence intervals. (a) The prediction intervals from
QRF ( ) and MC ( ) are obtained as quantiles of the distribution around a point; (b)
The confidence intervals from MC ( ) refer to the mean of the distribution and are obtained
by bootstrapping.

We can thus conclude that the prediction intervals portrayed by the QRF are not
due to machine learning errors, but are representative of the real uncertainty of CFD.

6.7 Conservative Flutter Margin

Having demonstrated the effectiveness of prediction intervals in evaluating aerodynamic
damping uncertainties, the proposed method is applied to determine the flutter stability
of the cascade.

In Fig. (6.17), a compressor map is shown with the flutter boundary computed
from CFD. The method employed to obtain this boundary has been discussed in the
previous sections and it is the conventional flutter boundary that engine designers use.
The equivalent flutter boundary obtained from the QRF prediction is also presented
for comparison, and it shows good agreement with CFD. Based on the calculated
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PIs, a more conservative flutter boundary can be drawn using the lower bound of
the prediction interval around the prediction. The corresponding flutter boundary
for 95% PI is also shown in Fig. (6.17); only the lower bound is used as we are after
a conservative estimate, which would increase our safety margin. It can be clearly
seen that the boundary moves to higher mass flows when uncertainty is taken into
consideration.
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Figure 6.17 Standard Configuration 10 compressor map with flutter boundaries computed
from CFD and QRF

To quantify the shift of flutter boundary, a flutter margin is estimated based on
an artificial working line corresponding to nominal incidence β1 = 0. For each line
of constant M1, it is possible to calculate a flutter margin FM, borrowing the surge
margin expression in Cumpsty (2004) (Chapter 9)

FM = 1− Πwl

Πf

· ṁf

ṁwl

⃓⃓
⃓⃓
M1

(6.9)

where the subscripts f and wl stand for flutter and working line respectively.

Table (6.2) shows the comparison of flutter margin obtained from CFD and the lower
bound of 95% prediction interval around the QRF prediction. On average a 10 ∼ 20%
difference is seen between the two estimates, which is non-negligible for compressor
design. Moreover, the current study focuses on a specific geometry and confined range
of flow and vibration parameters; the difference in flutter margin estimates can be much
larger for realistic fan and compressor with complex flows. The difference in flutter
margin represents inherent aerodynamic damping uncertainties which is conventionally
neglected in practice. Conventional engineering approach addresses this issue by taking
the deterministic value with unknown confidence and apply empirical safety factor to
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achieve a desired safety margin. It is envisaged that the proposed prediction interval
can be used as guidance for the decision of safety factor and hence aid more efficient
and reliable blade design.

Table 6.2 Flutter margin loss accounting for uncertainty

M1 FMCFD FMlower ∆FM

0.50 0.18254 0.15027 17.68%
0.60 0.17769 0.14776 16.85%
0.70 0.17338 0.15387 11.25%
0.80 0.14741 0.13708 7.01%
0.85 0.12179 0.10643 12.61%

6.8 Summary

In this Chapter, the uncertainty of aerodynamic damping predictions on a compressor
cascade has been shown.

The uncertainty is a direct consequence of the sensitivity of unsteady flow solutions
to the mean flow. It has been shown that aerodynamic damping predictions, in the
presence of shock waves and flow separation, are not robust near the stall boundary,
and can vary significantly even with negligible changes to the steady state solution. In
practice, this means that if a target operating point (i.e. mass flow rate and pressure
ratio pair) is to be matched for analysis, discrepancies that are often deemed acceptable
can produce a considerable difference in unsteady flow field. To overcome such issues,
aerodynamic damping models should be able to accompany their predictions with a
measure of uncertainty.

A machine learning based method to quantify uncertainty (QRF) in a database
of aerodynamic damping computations has been presented. The model has been
trained on predictions from a linearised aeroelastic solver, and it has been validated by
comparing its predictions to CFD for different flow regimes. The model has been cross
validated to find the best hyperparameters and it was shown to be able to accurately
interpolate within the range of parameters it has been trained on. The uncertainty of
aerodynamic damping has been quantified by enhancing the model predictions with
95% prediction intervals. It was found that the model is capable of portraying the
uncertainty due sensitivity of unsteady flow due to both shock induced separation, in
a high working line regime, and to changes in the acoustic nature of upstream and
downstream pressure fields. The confidence intervals produced by the QRF have been
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validated against a Monte Carlo analysis, which confirmed the results from the ML
model.

To underline the engineering usefulness of such an approach in determining aero-
dynamic damping, the ML model was then used to produce a conservative flutter
boundary on a compressor map, using the lower bound of prediction intervals, rather
than the single prediction from CFD only.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have applied data-driven techniques for the computations of aerody-
namic damping of turbomachinery. The efforts were specifically devoted towards stall
flutter of compressor blades and, being a first application of such approaches to this
topic, the analyses were limited to two-dimensional cascades.

After presenting the computational and machine learning methods, in Chapter
(2) the discrepancies between predictions of time-linearised and time-accurate solvers
were assessed for the main test case of this work. It is found that the main differences
come from the inaccuracies of non-reflecting boundary conditions in the time-accurate
solver, and from the limited number of blades modelled in the influence coefficient
computations. Adding blade passages increases the compliance between the two and,
in particular, there is excellent agreement in the minimum damping computed by both
codes.

Chapter (3) lays the groundwork for the data-driven model, offering a possible
application.

The work of Chapter (3) and a semi-analytical model reviewed in Chapter (4) are
combined through the PGML framework to build a physics guided neural network
model. It is found that the model is able to generalise to unseen geometries thanks
to the combination of: 1) meaningful input features based on integrated steady state
quantities which allow the model to detect a change in geometry and flow conditions;
2) manipulating hidden layers of the neural network by injecting results from the semi-
analytical model. It is also found that aerodynamic damping for plunge dominated
modes, such as the flapwise bending modes of interest for stall flutter, is computed to
a high degree of accuracy; on the other hand, pitch dominated modes predictions are
less accurate due to non negligible passage effects for which no input feature is devised.
A particularly important result is that even training on a single geometry yields very



150 Conclusions and Future Work

promising results, thus increasing the applicability of this approach in a small data
regime. The work of this Chapter fulfills the objective put forth at the beginning of
this manuscript, constituting the main contribution of this thesis.

Finally, Chapter (6) underlines the need of accounting for uncertainty in the steady
state flow computations when performing analyses aimed at computing aeroelastic
stability. It is found that the value of aerodynamic damping is extremely sensitive to
such uncertainty, especially near stall.

As with any other machine learning based solution, an inquiry about this work is
unmistakably led with a fair question: where do you find enough data? One might argue
that, unlike the turbulence modelling community which is gifted with large databases
originating from scale resolving computations and experiments, the turbomachinery
aeroelastician has to work in a data scarce environment. At the same time though, the
current practice of compressor aeroelastic design leverages an extensive and ubiquitous
application of CFD. Such an approach generates large volumes of data that often
provide no added value, beyond the intended purpose of assessing stability. Moreover,
even if a design is deemed unfit, the data obtained from computations can still be
useful. It is therefore argued here that the proposed approach of combining steady
state data and reduced order models through machine learning can be feasible in an
industrial setting, and it is worth pursuing further.

7.2 Comments on the role of the reduced order model

The results of Chapter (5) have amply shown that the PGML framework is able to
better predict aerodynamic damping when compared to a conventional FCNN. This is
true for a range of geometries and flow conditions, even though both the FCNN and
PGML have been trained on the same data. This set of data is of higher fidelity than
the one coming from LINSUB, which lacks the effects of loading and viscosity, and
should thus provide no added value. This leads us to a fundamental question that has
not been addressed so far: how can a low order model improve the predictions of an
ML model trained on high order data? What information is LINSUB providing that
our dataset is lacking?

The quantity of interest of PGML and FCNN models is the matrix of aerodynamic
coefficients C, defined in Eq. (5.1). A linear combination of these coefficients can yield
a measure of stability for any modeshape, i.e. plunge, pitch and flap, which ultimately
expresses a normalised aerodynamic work per cycle, as shown in Eq. (2.48). The
current choice of scaling makes sense for low reduced frequencies, k ≪ 1, because, citing
Corral and Vega (2016), it assumes that the characteristic unsteady pressure is due
solely to a quasi-steady motion, i.e. the characteristic unsteady pressure is proportional
to the dynamic head ˜︁pc1 ∼ ρv2 · q̄/c, thus ignoring the dependency of phasing between
unsteady pressure and airfoil displacement with the frequency. Corral and Vega (2016)
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also show that, for k ∼ 1, one must take into consideration the fact that unsteady
pressure is due to the velocity induced by the vibration, thus the characteristic pressure
scales as ˜︁pc2 ∼ ρv · ωq̄; therefore ˜︁pc2 = k · ˜︁pc1. This consideration leads to a more
appropriate scaling of the work per cycle

ζ = − W
π b q̄2 (p0 − p1) k

(7.1)

note the explicit dependency from reduced frequency k as opposed to the definition of
Eq. (2.48). This dependency from frequency is, ultimately, what LINSUB provides
and the reason why it can correct an ML model trained on high order data. The
choice of quantity of interest for this work, although quite common, was based on the
assumption that the work per cycle could be normalised by steady quantities only. This
assumption is incorrect in the frequency regime investigated here, therefore, while the
FCNN has no way of being corrected to make predictions outside of the training range,
the PGML model is corrected because LINSUB takes into account the unsteadiness
and provides information that was lost due to the incorrect normalisation of the work
per cycle.

7.3 Future Work

Improved Quantity of Interest

The first and foremost improvement to the quantity of interest has been discussed in
the previous Section. A further improvement could be dividing the aerodynamic work
per cycle, and thus damping, into two components: a mean value which depends on the
frequency and a first harmonic which depends on the steady flow field. An expression
for such a model is, again, given by Corral and Vega (2016)

ζ = ζ̄ k + ˜︁ζ sin(σ + ϕ(k)) (7.2)

where ζ̄ is the mean value, ˜︁ζ is the first harmonic coefficient and ϕ is a phase. In this
form, each quantity can be predicted by a separate ML model, which can be combined
with Eq. (7.2) yielding predictions for the whole IBPA range, rather than single point
values. This definition ignores higher order harmonics and acoustic resonances, which,
although important, can be overlooked in first approximation.

Improved Reduced Order Model

The PGML in this work is based on a semi-analytical model for unloaded blades in a
cascade. A simple improvement to the PGML can be attained by leveraging a more
accurate ROM which models the effects of blade loading. Possible candidates are the
models from Atassi and Akai (1980), Barbarossa et al. (2016), Corral and Vega (2017)
or fast computations such as linearised Euler. Also, as the PGML performs better than
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the ROM, the output of one PGML model could be used as ROM to train a better
model.

Introducing a measure of uncertainty

The considerations made about uncertainty in Chapter (6) are valid for the PGML
model as well. Therefore, rather than building the ML model with a deterministic
neural network, we can use probabilistic counterparts that can capture uncertainty by
training distributions of weights and activations, rather than single values (Blundell
et al., 2015; Chang, 2021).

Extension to three-dimensional flows

A simple solution to extending the PGML to three-dimensional flows is to compute the
overall aerodynamic damping as a sum of spanwise 2D sections. This process though
can be ill-conditioned as the final result is obtained as the algebraic sum of large
numbers whose accuracy is highly dependent on the number of sections (Casoni and
Benini, 2021). Moreover, the interaction between spanwise sections has been shown to
be important by Rendu et al. (2019), therefore the applicability of such an approach
would be limited. Two possible solutions are outlined below:

1. compute the overall aerodynamic damping as a sum of spanwise 2D sections and
apply a correction to account for the interaction between the different panels.
This solution would require a rigorous characterisation of the spanwise interaction
and quantification of discrepancies between the simple 2D stacking and a full
3D solution. For instance, the radial migration of flow plays an important role
in inducing destabilising work in fan blades, thus, as 2D sections do not allow
any out-of-plane velocity component, the effect of this flow feature must be
accounted for in the interaction model. It is difficult to say whether this solution
is viable without further investigation, however, at first glance it does appear to
be cumbersome

2. train the machine learnt model directly with results from 3D URANS computa-
tions. The input and output features will be radial profiles, rather than point
values, while simpler computational methods such as linearised Euler could be
used as reduced order model.
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Appendix A

PGML hyperparameters

Definitions

The batch size |B| is the number of samples employed to perform one training step.
The symbols N and U indicate normal and uniform distributions, respectively.
The Xavier initialisation (Glorot and Bengio, 2010) draws samples from either:

• a truncated normal distribution centered on zero with standard deviation σN =√︁
2/(Nin +Nout) where Nin is the number of input units in the weight tensor

and Nout is the number of output units in the weight tensor.

• a uniform distribution within [−a, a], where a =
√︁
6/(Nin +Nout)

The He initialisation (He et al., 2015) draws samples from either:

• a truncated normal distribution centered on zero with standard deviation σN =√︁
2/Nin

• a uniform distribution within [−a, a], where a =
√︁
6/Nin

The Standard scaler rescales the features to have zero mean and unit variance.
The He scaler rescales the features to have zero mean and standard deviation σN =√︁

2/Nfeatures.
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Table A.1 Hyperparameters optimisation range for PGML networks

Hyperparameter Choice

Activation g(z) Sigmoid, tanh, ReLU, Swish
Batch Size |B| 2x, x ∼ U(5, 10)
Epochs ∼ U(500, 10000)
Initialisation He, Xavier, Random
Hidden Layers L ∼ U(2, 15)
Learning Rate η ∼ U(1e-5, 1e-2)
Neurons per layer NL ∼ U(2, 15)
Physics Layer ∼ U(1, L− 1)
Regularisation log10(λ) ∼ U(−5, 0)
Scaler Standard, Min-Max, He

Table A.2 Hyperparameters of PGML networks

Hyperparameter Ch
L Ch

M Cα
L Cα

M

Activation g(z) ReLU ReLU Swish Swish
Batch Size |B| 512 256 256 96
Epochs 5000 4000 4000 5000
Initialisation He-N Xavier-U He-N Xavier-U
Hidden Layers L 5 5 6 5
Learning Rate η 0.003 0.006 0.002 0.004
Neurons per layer NL 9 6 8 8
Physics Layer 4 1 5 4
Regularisation log10(λ) −4 −4 −5 −5
Scaler Standard Standard Min-Max Standard



Appendix B

Further PGML results
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Figure B.1 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against stagger angle. The steady state conditions are constant at
M1 = 0.85 and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5,
k = 0.7, k = 1.0, respectively, while the interblade phase angle is constant at σ = 20◦.
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Figure B.2 Normalised feature importance for a dataset with varying stagger angle, σ = 20◦:
(a) FCNN; (b) PGML.
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Figure B.3 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against stagger angle. The steady state conditions are constant at
M1 = 0.85 and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5,
k = 0.7, k = 1.0, respectively, while the interblade phase angle is constant at σ = 150◦.
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Figure B.4 Normalised feature importance for a dataset with varying stagger angle, σ = 150◦:
(a) FCNN; (b) PGML.
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Figure B.5 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against airfoil thickness. The steady state conditions are constant at
M1 = 0.85 and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5,
k = 0.7, k = 1.0, respectively, while the interblade phase angle is constant at σ = 20◦.
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Figure B.6 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against airfoil thickness. The steady state conditions are constant at
M1 = 0.85 and β1 = 3◦. The panels, from left to right, are run with reduced frequency k = 0.5,
k = 0.7, k = 1.0, respectively, while the interblade phase angle is constant at σ = 150◦.
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Figure B.7 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against inlet Mach number. The incidence is constant at β1 = 3◦ and
reduced frequency k = 0.5. The panels, from left to right, are run with stagger angle ξ = 30◦,
ξ = 40◦, ξ = 50◦, respectively, while the interblade phase angle is constant at σ = 20◦.
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Figure B.8 Predictions of plunge lift and pitch moment coefficients from CFD, PGML,
FCNN and LINSUB against incidence. The inlet Mach number is constant at β1 = 0.85 and
reduced frequency k = 0.5. The panels, from left to right, are run with stagger angle ξ = 30◦,
ξ = 40◦, ξ = 50◦, respectively, while the interblade phase angle is constant at σ = 20◦.



Appendix C

Computational Cost

The machine used for all computations employs an Intel(R) Xeon(R) W-2145 CPU
with a 3.70GHz clock frequency, 8 cores and 16GB RAM.

The steady state solver uses a pseudo-time stepping technique to march the solution to
convergence. In this study, a steady CFD solution is considered converged if every point
in the domain has a density residual of order 10−9. On average, the equivalent CPU
time elapsed to obtain a converged solution for the cases in this thesis is 10, 000 seconds.
The unsteady solver uses a preconditioned GMRES scheme to find the solution to
the system arising from the linearisation of the URANS equations. In this study, an
unsteady CFD solution is considered converged if the residual is of order 10−9. On
average, the equivalent CPU time elapsed to obtain a converged solution is 60 seconds.
Two unsteady simulations are necessary to compute the four unsteady coefficients.

LINSUB calculates all four coefficients with a single computation. On average, the
equivalent CPU time elapsed is 0.6 seconds.

The computational cost associated with post-processing routines is ignored as: 1) it is
negligible compared to computations, 2) the routines have not been optimised.

The training set is composed of 5 databases of Standard Configuration 10 sets of
computations, for a total of 3968 data points. The time elapsed to compute the
databases amounts to approximately 11100 equivalent CPU hours, including one steady
state, two time-linearised and one LINSUB computations.

The validation set employed in Chapter (5) is composed of 25 different cascades, each
obtained by varying one parameter of the original Standard Configuration 10:

• 7 cases with different airfoil thickness

• 4 cases with different airfoil camber

• 5 cases with different stagger angle
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• 9 cases with different cascade solidity

For each cascade, a total of 35 steady state computations is run:

• 7 inlet flow angles

• 5 inlet Mach numbers

For each steady state flow, a total of 444 time-linearised computations is run:

• 2 modeshapes

• 6 reduced frequency values

• 37 interblade phase angles

Therefore, 388500 time-linearised computations are needed to compute the validation
set. The estimated CPU time for the CFD computations amounts to 8900 hours, while
for the PGML it amounts to 2460 hours. The reduction in computational time from
CFD to PGML is approximately 70%. If we account for the time elapsed for the
generation of the training data, the PGML requires an additional 50% in computational
time when compared to CFD. This is assuming that no data are available, which is
untrue for a real industrial setting.
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