1,029 research outputs found

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications

    Get PDF
    Full waveform (FW) and photon counting LiDAR (PCL) data have garnered greater attention due to increasing data availability, a wealth of information they contain and promising prospects for large scale vegetation mapping. However, many factors such as complex processing steps and scarce non-proprietary tools preclude extensive and practical uses of these data for vegetation characterization. Therefore, the overall goal of this study is to develop algorithms to process FW and PCL data and to explore their potential in real-world applications. Study I explored classical waveform decomposition methods such as the Gaussian decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of the deconvolution and decomposition method, and the three approaches generated satisfactory results, while the best performances varied when different criteria were used. Built upon Study I, Study II applied the Bayesian non-linear modeling concepts for waveform decomposition and quantified the propagation of error and uncertainty along the processing steps. The performance evaluation and uncertainty analysis at the parameter, derived point cloud and surface model levels showed that the Bayesian decomposition could enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and trace the uncertainty propagation along the processing steps. In study III, we exploited FW LiDAR data to classify tree species through integrating machine learning methods (the Random forests (RF) and Conditional inference forests (CF)) and Bayesian inference method. Results of classification accuracy highlighted that the Bayesian method was a superior alternative to machine learning methods, and rendered users with more confidence for interpreting and applying classification results to real-world tasks such as forest inventory. Study IV focused on developing a framework to derive terrain elevation and vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available

    A Signal processing approach for preprocessing and 3d analysis of airborne small-footprint full waveform lidar data

    Get PDF
    The extraction of structural object metrics from a next generation remote sensing modality, namely waveform light detection and ranging (LiDAR), has garnered increasing interest from the remote sensing research community. However, a number of challenges need to be addressed before structural or 3D vegetation modeling can be accomplished. These include proper processing of complex, often off-nadir waveform signals, extraction of relevant waveform parameters that relate to vegetation structure, and from a quantitative modeling perspective, 3D rendering of a vegetation object from LiDAR waveforms. Three corresponding, broad research objectives therefore were addressed in this dissertation. Firstly, the raw incoming LiDAR waveform typically exhibits a stretched, misaligned, and relatively distorted character. A robust signal preprocessing chain for LiDAR waveform calibration, which includes noise reduction, deconvolution, waveform registration, and angular rectification is presented. This preprocessing chain was validated using both simulated waveform data of high fidelity 3D vegetation models, which were derived via the Digital Imaging and Remote Sensing Image Generation (DIRSIG) modeling environment and real small-footprint waveform LiDAR data, collected by the Carnegie Airborne Observatory (CAO) in a savanna region of South Africa. Results showed that the preprocessing approach significantly increased our ability to recover the temporal signal resolution, and resulted in improved waveform-based vegetation biomass estimation. Secondly, a model for savanna vegetation biomass was derived using the resultant processed waveform data and by decoding the waveform in terms of feature metrics for woody and herbaceous biomass estimation. The results confirmed that small-footprint waveform LiDAR data have significant potential in the case of this application. Finally, a 3D image clustering-based waveform LiDAR inversion model was developed for 1st order (principal branch level) 3D tree reconstruction in both leaf-off and leaf-on conditions. These outputs not only contribute to the visualization of complex tree structures, but also benefit efforts related to the quantification of vegetation structure for natural resource applications from waveform LiDAR data

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Characterizing the Impacts of the Invasive Hemlock Woolly Adelgid on the Forest Structure of New England

    Get PDF
    Climate change is raising winter temperatures in the Northeastern United States, both expanding the range of an invasive pest, the hemlock woolly adelgid (HWA; Adelges tsugae), and threatening the survival of its host species, eastern hemlock (Tsuga canadensis). As a foundation species, hemlock trees underlie a distinct network of ecological, biogeochemical, and structural systems that will likely disappear as the HWA infestation spreads northward. Remote sensing can offer new perspectives on this regional transition, recording the progressive loss of an ecological foundation species and the transition of evergreen hemlock forest to mixed deciduous forest over the course of the infestation. Lidar remote sensing, unlike other remote sensing tools, has the potential to penetrate dense hemlock canopies and record HWA’s distinct impacts on lower canopy structure. Working with a series of lidar data from the Harvard Forest experimental site, these studies identify the unique signals of HWA impacts on vertical canopy structure and use them to predict forest condition. Methods for detecting the initial impacts of HWA are explored and a workflow for monitoring changes in forest structure at the regional scale is outlined. Finally, by applying terrestrial, airborne, and spaceborne lidar data to characterize the structural variation and dynamics of a disturbed forest ecosystem, this research illustrates the potential of lidar as a tool for forest management and ecological research

    Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data

    Get PDF
    Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return LIght Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10° 26′ N, 83° 59′ W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r2 = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r2 = 0.51) and tree density (p-value = 0.002, r2 = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r2 = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties

    Radiometric Calibration of the Finnish Geospatial Research Institute Hyperspectral LiDAR

    Get PDF
    The algorithmic processing of multiwavelength sampled radiance data recorded by multispectral and hyperspectral LiDAR-instruments improves upon the accuracy of reflectance retrieval and target material characterization capabilities of the instrument. A simulation script was written to study different algorithmic waveform reconstruction procedures for intensity calibration of the Finnish Geodetic Research Institute hyperspectral LiDAR, considering environment of operation, processing speed, and digitization frequency. A Gaussian parametrization, a polynomial least squares, a cubic spline, and a Levenberg-Marquardt algorithm were analyzed in terms of acquiring waveform peak amplitude, spatio-temporal peak location, FWHM, and area parameters from the samples of an approximately 1 ns FWHM Gaussian pulse. The results show that the cubic spline algorithm is best suited for implementation with FGI-HSL, as it provides an error of 0.2575±0.1910.2575 \pm 0.191\% in waveform peak amplitude retrieval at a sampling frequency of 4 GHz, and real-time processing capabilities at a pulse repetition frequency of 2 MHz. Based on the insight of this study, suggestions are given for algorithm choice depending on the spatio-temporal shape of the full-waveform and the required accuracy of waveform parameter retrieval as function of sampling frequency

    Advances in measuring forest structure by terrestrial laser scanning with the Dual Wavelength ECHIDNA® LIDAR (DWEL)

    Get PDF
    Leaves in forests assimilate carbon from the atmosphere and woody components store the net production of that assimilation. Separate structure measurements of leaves and woody components advance the monitoring and modeling of forest ecosystem functions. This dissertation provides a method to determine, for the first time, the 3-D spatial arrangement and the amount of leafy and woody materials separately in a forest by classification of lidar returns from a new, innovative, lidar scanner, the Dual-Wavelength Echidna® Lidar (DWEL). The DWEL uses two lasers pulsing simultaneously and coaxially at near-infrared (1064 nm) and shortwave-infrared (1548 nm) wavelengths to locate scattering targets in 3-D space, associated with their reflectance at the two wavelengths. The instrument produces 3-D bispectral "clouds" of scattering points that reveal new details of forest structure and open doors to three-dimensional mapping of biophysical and biochemical properties of forests. The three parts of this dissertation concern calibration of bispectral lidar returns; retrieval of height profiles of leafy and woody materials within a forest canopy; and virtual reconstruction of forest trees from multiple scans to estimate their aboveground woody biomass. The test area was a midlatitude forest stand within the Harvard Forest, Petersham, Massachusetts, scanned at five locations in a 1-ha site in leaf-off and leaf-on conditions in 2014. The model for radiometric calibration assigned accurate values of spectral apparent reflectance, a range-independent and instrument-independent property, to scattering points derived from the scans. The classification of leafy and woody points, using both spectral and spatial context information, achieved an overall accuracy of 79±1% and 75±2% for leaf-off and leaf-on scans, respectively. Between-scan variation in leaf profiles was larger than wood profiles in leaf-off seasons but relatively similar to wood profiles in leaf-on seasons, reflecting the changing spatial heterogeneity within the stand over seasons. A 3-D structure-fitting algorithm estimated wood volume by modeling stems and branches from point clouds of five individual trees with cylinders. The algorithm showed the least variance for leaf-off, woody-points-only data, validating the value of separating leafy and woody points to the direct biomass estimates through the structure modeling of individual trees

    FULL-WAVEFORM AND DISCRETE-RETURN LIDAR IN SALT MARSH ENVIRONMENTS: AN ASSESSMENT OF BIOPHYSICAL PARAMETERS, VERTICAL UNCERTATINTY, AND NONPARAMETRIC DEM CORRECTION

    Get PDF
    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS - Multivariate Adaptive Regression, CART - Classification and Regression Trees, TreeNet, Random Forests, and GPSM - Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r \u3e 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives
    • …
    corecore