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Abstract
The algorithmic processing of multiwavelength sampled radiance data recorded by
multispectral and hyperspectral LiDAR-instruments improves upon the accuracy
of reflectance retrieval and target material characterization capabilities of the in-
strument. A simulation script was written to study different algorithmic waveform
reconstruction procedures for intensity calibration of the Finnish Geodetic Research
Institute hyperspectral LiDAR, considering environment of operation, processing
speed, and digitization frequency. A Gaussian parametrization, a polynomial least
squares, a cubic spline, and a Levenberg-Marquardt algorithm were analyzed in terms
of acquiring waveform peak amplitude, spatio-temporal peak location, FWHM, and
area parameters from the samples of an approximately 1 ns FWHM Gaussian pulse.
The results show that the cubic spline algorithm is best suited for implementation
with FGI-HSL, as it provides an error of 0.2575±0.191% in waveform peak amplitude
retrieval at a sampling frequency of 4 GHz, and real-time processing capabilities at a
pulse repetition frequency of 2 MHz. Based on the insight of this study, suggestions
are given for algorithm choice depending on the spatio-temporal shape of the full-
waveform and the required accuracy of waveform parameter retrieval as function of
sampling frequency.
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Symbols and abbreviations

Symbols
AI area illuminated by laser beam [m2]
AR effective system aperture [m2]
At effective target area [m2]
am peak amplitude
CCalib calibration constant
C coefficient in polynomial equation
D laser aperture diameter
DS target diameter [m]
fBRDF bidirectional reflectance ditribution function
fs sampling frequency [Hz]
J Jacobian matrix
k damping term
L radiance [W m-2 sr-1]
M matrix
M number of sampling grids
m mean
N number of generated pulses
Pa backscatter echo amplitude
RSTD relative standard deviation
R = dΦr

dΦrid
reflectance factor [dimensionless]

r range [m]
Ŝ amplitude of Gaussian system waveform
SI power density illuminated by laser beam
s2 standard deviation
t time [s]
tpeak location of waveform peak in time
u fitted value
v absolute difference between generated and true value
w generated value
x position on x-axis
y position on y-axis
β laser beamwidth
λ wavelength [m]
ρ = dΦr

dΦi
reflectance [dimensionless]

Φ radiant flux [W]
φ beam azimuth angle
θ beam elevation angle
ϑ error parameter used in LM algortihm
σE differential scattering cross section [m-2 sr-1]
σS backscatter cross section [m-2 sr-1]
σ standard deviation of a Gaussian pulse
ξ backscatter coefficient
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Sub- and superscripts
atm atmospheric
e error
i incident
id ideal
R reflected
s scattered
m sampling grid number
l generated pulse number
p, e percentual error

Operators
f() function
f ′() first order derivative of function f()
f ′′() second order derivative of function f()∫

integral∑
i sum over index i

T matrix transpose



9

Abbreviations
A/D analog to digital
APD avalanche photo-diode
BRDF bidirectional reflectance distribution function
CCRF conical-conical reflectance factor
CS cubic spline
DN digital number
DSM digital surface model
FGI Finnish Geospatial Research Institute
FWHM full width at half maximum
GP Gaussian parametrization
HCRF hemisperical-conical reflectance factor
HS hyperspectral
HSL hyperspectral LiDAR
LM Levenberg-Marquardt
LSM least squares method
LiDAR light detection and ranging
MS multispectral
MSCL multispectral Canopy LiDAR
MSL multispectral LiDAR
MWCL multi-wavelength canopy LiDAR
OBC on-board computer
PG point group
PLSQ polynomial least squares
PRF pulse repetition frequency
SC supercontinuum
TOF time-of-flight
TLS terrestrial laser scanner



1 Introduction
Terrestrial laser scanning (TLS) has found numerous applications since its birth in
the 1960s in fields such as land surveying, urban planning, land cover classification,
and in various population, health and safety monitoring situations (Lim et al. 2003,
Du et al. 2016, Gao et al. 2015, Park et al. 2007). Throughout the mid-1980s the
development of TLS-technology continued and became industrially feasible (Park
et al. 2007). Within the past decade multispectral (MS) and hyperspectral (HS) TLS
instruments capable of material characterization, through measurement of multiple
spectral components of the backscatter waveform (also commonly called the echo),
have emerged (Kaasalainen et al. 2008, Jutzi et al. 2003, Wagner et al. 2006,
Hakala et al. 2012, Woodhouse et al. 2001). The technology has since received
attention from the mining industry and space research community, as it can be
used to separate various minerals and map the surrounding area simultaneously
in dangerous situations. To further enhance the characterization capabilities of
HS-TLS instruments, further research concerning instrument calibration and data
post-processing is called for (Wagner et al. 2006).

1.1 Multi- and hyperspectral terrestrial LiDAR
Light Detection and Ranging (LiDAR) is an active remote sensing technique, in
which the same instrument emits a coherent laser pulse, and measures the backscatter
radiance of the emitted pulse (Li et al. 2001). The technique involves recording the
time-of-flight (TOF) of the emitted pulse from the instrument to the object causing
the scattering and back to the instrument. The distance between the instrument and
the target object is called the range and it is calculated from the TOF. The position
of the target object is recorded based on the direction a pulse is emitted in. The
final product of a terrestrial LiDAR instrument is a point cloud constructed from
the range, position, and radiance data (x, y, z, R) (Hakala et al. 2012).

Multispectral LiDAR (MSL) and Hyperspectral LiDAR (HSL) instruments im-
prove upon conventional LiDAR instrumentation by separating the incident light
into spectral components. An array of photo-detectors in conjunction with a high
speed digitizer are used to sample the response of each detector in the array (Hakala
et al. 2012, Li et al. 2001). The sampled values partially represent the waveform of
the scattered pulse at different wavelengths. Algorithms and fitting procedures are
applied to the sampled data to reconstruct the full-waveform of the scattered pulse
(Jutzi et al. 2003). Reconstruction of the full-waveform allows for parameters such
as the peak amplitude and full-width at half maximum (FWHM) of the echo pulse
to be estimated.

The calibration of spectral radiance (more commonly referred to as radiance) L
[W m-2 sr-1] is a requirement for any optical remote sensing instrument used for
quantitative analysis of spectral properties of the target (Schaepman-Strub et al.
2006). The optical properties of the target are distinguished and characterized by
relating the spectral radiance measured to the target object through a dimensionless
quantity called the reflectance factor R. Schaepman-Strub et al. 2006 define the
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reflectance factor as ”the radiant flux Φ reflected by a surface to that reflected into the
same reflected-beam geometry and wavelength range by an ideal and diffuse standard
surface, irradiated under the same conditions”. In practice the reflectance factor
is calculated as the ratio of the peak amplitude of the fitted waveform (scattered
from the target surface) and the peak amplitude of the pulse that is reflected from a
calibration target, (which has close to Lambertian and diffuse scattering properties)
(Wagner et al. 2006, Kaasalainen et al. 2008, Hakala et al. 2012). The final
point cloud product of a hyper- or multispectral LiDAR instrument contains three-
dimensional position information and the spectral response of the target (x, y, z, R(λ))
(Hakala et al. 2012).

Calibration is implemented in order to correct the data recorded by a TLS
instrument. The fitted waveform values are usually normalized and the reduction
of incident power relative to target area and beam divergence is corrected for as a
function of range (Wagner et al. 2008, Jutzi et al. 2003). System induced noise and
other electronic effects that alter the radiance measurement are also accounted for
(Li et al. 2001). Finally, post processing is performed on computer workstations or
on an on-board computer (OBC) of a mobile instrument. Post processing includes
rendering of the map from the acquired data, discarding erroneous data and using
algorithms for material and target classification (Puttonen et al. 2015).

1.2 Motivation
Research concerning TLS has moved strongly toward material characterization
through the use of hyper- and multispectral data in the last decade (Gaulton et al.
2013, Kaasalainen et al. 2008, Du et al. 2016). Work has also been conducted to
define rigorous calibration methods for performing full waveform analysis using TLS
(Wagner et al. 2006, Kaasalainen et al. 2005, Kaasalainen et al. 2016). Nonetheless,
robust, real time recognition between different materials in the environment using
the backscatter radiance has not been demonstrated using the HSL, calling for
systematic calibration methods needed to fulfill the requirements for robust target
characterization when considering DSM and intensity data integration (Li et al. 2001,
Kaasalainen et al. 2008, Hakala et al. 2012, Wagner 2010).

According to the knowledge of the author, analysis concerning the effect of
sampling frequency on the accuracy of full-waveform retrieval using multi or hyper-
spectral TLS instrumentation has not been conducted. While different waveform
fitting methods and algorithms have been used and suggested (Hofton et al. 2000,
Jutzi et al. 2003), the relative accuracy between fitting methods in determining
various waveform characteristics has not been discussed. To aid in the creation of
more rigorous calibration standards of HSL and MSL instrumentation and to find
the most suitable waveform analysis procedure for the Finnish Geospatial Institute
hyperspectral LiDAR instrument, this thesis answers the following research questions
through the use of a simulation script assessing the performance of different waveform
fitting methods and algorithms at sampling frequencies between 1 GHz and 5 GHz.

• Which of the tested algorithms is best suited for reconstructing a narrow FWHM
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Gaussian laser pulse considering the parameters of interest and the speed of
the process?

• How much does the accuracy of waveform retrieval improve for a single peak
pulse due to increased sampling frequency when using different algorithms?

A simulation based approach was chosen, since it allows a direct comparison
between a computer generated laser pulse and the algorithmically fitted pulse. Such
a comparison cannot be made with measurement data since the original waveform
of the emitted pulse and the echo cannot be known beforehand. The reconstructed
waveform provided by the algorithms is used to calculate the peak amplitude, the
spatio-temporal location of the peak, the FWHM and the area enveloped by the
waveform. The processing time needed to complete the fit is also analyzed. The
preciseness, efficiency, and suitability of the algorithms are compared at different
sampling frequencies in order to find the best suited methodology for waveform
parameter retrieval. The possibility of individual erroneous measurement results and
their removal is discussed.
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2 Literature review

2.1 Terrestrial LiDAR
Terrestrial LiDAR technology enables the extraction of both geographical and environ-
mental information from a non-destructive interaction between light and matter. This
information can be extracted through analysis of the waveform shapes of both the
transmitted and the reflected laser pulses. TLS is a so-called active-scanning approach
(Dassot et al. 2011), defined by the TLS-system reacting to part of the radiance it
initially produced, allowing it to function independent of external illumination.

TLS instruments usually emit radiation in the form of laser pulses, while some
instruments use a continuous source. Only pulsed laser TLS instruments are discussed
in this thesis as the current method for retrieving target reflactance is based on
measuring the peak amplitude of the pulse reflected from the target. Pulsed laser
TLS instruments transmit a Gaussian pulse, while the shape of the reflected pulse
depends on the three-dimensional structure of the target and the diameter of the
footprint produced by the laser beam (Wagner et al. 2006). In the case of an extended
target, (or in other words when the target area is larger than the beam footprint),
the return waveform largely maintains the shape of the emitted pulse (Hofton et al.
2000). The return waveform shape does not resemble that of the emitted pulse
when the footprint is larger than the target. For example, when a laser beam with a
footprint diameter of 5 cm is incident upon a small leaf. In this case, part of the
beam will continue to travel until it encounters another target, while part of the
beam will be scattered by the leaf. The temporal offset between scattering events is
observed as multiple peaks in the echo waveform as shown by Jutzi et al. 2006 and
depicted in figure 1.

2.2 Discrete return TLS
Terrestrial LiDAR instrumentation can be divided into discrete-return and full-
waveform instruments. A discrete return TLS instrument responds to a threshold
defined increase in incident radiance upon a single photo-detector and records the TOF.
Discrete-return TLS- instruments, which respond to multiple echoes within a single
waveform are capable of distinguishing up to five separate scattering events (Dassot et
al. 2011). Discrete-return TLS instruments enable the study of structural properties
of the environment in the vicinity of the scanner based on the TOF measurement.
For example Beinert et al. 2006 show that canopy structure parameters such as above
ground biomass, tree diameter, and tree height can be retrieved using discrete-return
angular orientation and range information of commercial TLS instruments combined
with suitable object classification algorithms.

Discrete-return instruments are in some cases used to estimate the intensity of
the scattered signal, and thus enable target classification if the materials within the
scanning environment are known. For example, Eitel et al. 2011 employ a pulsed
green laser to estimate foliar nitrogen concentration. However, the fact that only one
intensity value is recorded based on a predefined threshold for each waveform pulse
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Figure 1: The different types of retrieval methods used in TLS.

makes the retrieval of the waveform peak inaccurate compared to a full-waveform
detection approach.

2.3 Full-waveform TLS
TLS instruments capable of full-waveform reconstruction use large dynamic range
high speed A/D converters to sample the echo (Gaulton et al. 2010). A suitable
equation or algorithm is used to fit a line through the sampled points. Various fitting
algorithms have been proposed and tested. Hofton et al. 2000 employ a fitting
approach in which the recorded multi-peak waveform is decomposed into individual
Gaussian components, each representing a single echo. A Gaussian equation is
then used to reconstruct the waveform for each echo separately. However, the
characteristics of individual echos depend on the complexity of the target, and may
differ significantly from one another (Mallet et al. 2009), making simple Gaussian
characterization ill-founded. To overcome this problem Chauve et al. 2009 propose
the use of modified Gaussian equations. Least squares fitting method (LSM), such
as the Levenberg-Marquard method, are often used to retrieve the full-waveform
from the sample data (Parrish et al. 2011, Reitberger et al. 2006, Jutzi et al.
2006). LSM refine the parameters of the equation chosen to represent the waveform
through multiple iterations, until a predefined number of iterations is completed or a
predefined error margin is reached.

In order to uncover the full-waveform from the digitized samples, the reciprocal
of the sampling frequency has to be small compared to the temporal width of
the recorded waveform. For instance, digitizing a waveform with a full-width at
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half-maximum (FWHM) of 1 ns with a digitization rate fs = 1 GHz will provide
approximately three samples from the waveform. While this might be enough to
reconstruct a simple Gaussian waveform as shown by Zhu et al. 2017, more complex
waveforms such as shown in figure 1 (c.) cannot be characterized properly if the
digitization rate is too small.

Compared to discrete return retrieval, the full-waveform approach enables more
accurate intensity and target reflectance measurement. The peak of the recorded
waveform (commonly used to represent the peak intensity of the echo) can be detected
when using a full-waveform approach, while the measured echo signal strength in
discrete return devices is limited by the thresholding measurement approach. Peak
intensity detection has enabled time series and spatial distribution analysis of chemical
and pigment content in vegetation and man-made objects (Zhu et al. 2017). Full-
waveform TLS instruments also enable the study of rigorous intensity calibration
methods. For example, Krooks et al. 2013, and Kaasalainen et al. 2016 show through
accurate intensity retrieval that the reflectance measured by the TLS instrument
decreases as a function of decreasing incidence angle between the beam and the
target, resulting in better means to describe the quality of the point cloud.

2.4 Multispectral LiDAR
Multispectral LiDAR instruments utilize either multiple lasers tuned to specific
wavelengths (Gaulton et al. 2013), lasers configured for synchronous emission
at different wavelengths (Gaulton et al. 2010), or supercontinuum generation of
broadband (white light) laser pulses (Hakala et al. 2012). Supercontinuum generation
is achieved through frequency mixing of high peak power narrow-band laser pulses
within a non-linear photonic-crystal (optical) fiber (PCF) (Dudley et al. 2006).
Broadband light is produced as a result of multiple nonlinear dispersion effects
occurring in the PCF given that the input power of the laser is high enough.

The spectral bandwidth of a single return provided by a supercontinuum source
is much larger than that achieved by multiple lasers or synchronous emission. Si-
multaneous measurement of the target spectral is limited only by the number of
available sensors. A spectrograph is used to separate the different wavelength (λ)
components from the scattered broadband pulse (Hakala et al. 2012), from which
they are coupled via optical fibers to an array of photosensitive detectors, each
responding to a different λ-component. Other methods for wavelength separation
such as the use of a grating or spectral filters have been implemented by Wallace
et al. 2014 and Wei et al. 2012 respectively.

Multi- and hyperspectral TLS instruments employ full-waveform processing to
ensure accurate radiance retrieval for each wavelength component. Sensitive and
mechanically stable optics are required as the recorded radiance changes as a function
of the phase angle, (which is the angle between the incident beam upon the target
and the backscatter direction toward the instrument) (Kaasalainen et al. 2016).

A list of hyper- and multispectral instruments is presented in table 1, along with
the main technical specifications.

The non-commercial laboratory based multi- and hyperspectral TLS instrument
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Figure 2: A narrow broadband laser pulse propagates through the PCF to a rotatable
mirror configuration, from which it is directed toward the target. The backscatter radiance
is focused using a concave mirror and directed to the spectrograph input. The spectrograph
separates the broadband pulse into wavelength components. Individual avalanche photo-
diodes, electron multipliers, or CCDs respond to the radiance of different wavelength
components of the scattered pulse. The response of each detector is sampled using high
speed digitizers and stored for processing, or passed on to an OBC. Finally, effects due to
noise or the atmosphere are removed and the peak amplitude of backscatter waveform is
retrieved using a full-waveform approach.

Table 1: Terrestrial Hyper- and Multi-Spectral Instruments developed to date

Instrument Pulse Width
(ns) fs (GHz) N-channels Wavelength

(nm) PRF fp (kHz)

SALCA 1 1 Dual 1040, 1550 5

DWEL 5.1 2 Dual 1064, 1548 2 (20)

FGI-HSL 1 1 8-16 400-2500 5

MSCL (1) 4.75 5 1 531, 550, 690,
780 20 × 10−3

MSCL (2) 0.05 0.001 4 531, 570,
670,780 200

MWCL N/A N/A 4 556, 670,
700,780 0.8

Wuhan-Uni 1-2 N/A 32 538-910 20-40

prototypes presented in table 1 have been developed by individual research groups.
All of the instruments differ from each other in hardware design. Field measurements
showing differences in acquired intensity at different wavelengths have been completed
with each instrument listed in 1. The operating wavelengths of all instruments
(excluding the FGI-HSL), presented in table 1 are chosen specifically for retrieval of
biochemical vegetation- or forest structural properties (Wei et al. 2012, Wallace et al.
2014, Woodhouse et al. 2001, Gaulton et al. 2010, Douglas et al. 2012). Artificial
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material recognition in a forest environment is demonstrated by Hakala et al. 2012,
(using the FGI-HSL instrument), through simultaneously incorporating intensity and
point cloud descriptions of numerous targets over multiple measurements.
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2.5 Reflectance measurement and intensity calibration
Reflectance measurement can be described as the process of converting photo-sensitive
sensor data into physical parameters. Reflectance itself is a dimensionless quantity
defined as the ratio of incident flux density (irradiance) to the portion of the exitent
flux density (exitance) incident upon the sensor aperture (Schaepman-Strub et al.
2006). Contrary to traditional remote sensing calibration, in which sensor functions
are internally monitored, current TLS instrumentation relies on calibration using
external reference targets to account for system response as a whole (Wagner 2010).

Multi- and hyperspectral instruments require calibration of individual wavelength
responses at each measurement channel to determine arbitrary properties from the
backscatter waveform (Wallace et al. 2014). Calibration targets with different
reflectances (defined as the ratio of the scattered and incident power spectral densities
at the target (Nicodemus 1965)) are used to calibrate the system spectral response.
A calibration target is used to ensure that all the channels produce reflectance
values corresponding to those given by the manufacturer of the target. Employing
calibration targets allows for a straightforward relation to be established between the
system response and the known spectral response of the calibration target (Pfeifer
et al. 2007, Krooks et al. 2013, Kaasalainen et al. 2008).

Intensity calibration can be described as an iterative process in which both
mechanical system parameters and post processing software are calibrated for the
system output to describe the backscatter properties of the target. The system
response is composed of the optical response, the spectral power response of detectors,
and system noise caused by electronics (Li et al. 2001). Wavelength-specific correction
factors are implemented in the post processing software for each channel depending
on the detector response. A monochromator can be used to extract the fundamental
wavelength component of interest from a white laser pulse to calibrate for the
detector response (Hakala et al. 2012). The amplification of the small voltage
response supplied by a photo-detector is also to be accounted for. An empirical
function for the amplifier response can be constructed as shown by Kaasalainen et al.
2008, to correct for nonlinearities.

In order to determine the reflectance of an arbitrary target the detector response
of both the transmitted pulse (often called the trigger) and backscatter waveform
are required by definition. However to make the measured reflectance meaningful it
has to be related to some known reflectance. This is accomplished through the use
of a dimensionless quantity called the reflectance factor. In practice the reflectance
factor for an arbitrary target is computed as the ratio of peak amplitude of the echo
and the peak amplitude of an echo measured from a calibration target (with close to
Lambertian and diffuse scattering properties) (Kaasalainen et al. 2008).

The accuracy of the radiance measurement is not only influenced by the spectral
response of the sensors, but also by the optical response of each individual component
in the optical configuration (Kaasalainen et al. 2008). The optical configuration of a
typical TLS instrument consists of a beam splitter or beam sampler and mirrors used
to direct both the trigger and the backscatter beam to the spectrograph through
separate paths. Optical components pertaining a constant large bandwidth spectral
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response would be optimal for MS- and HS-TLS instruments. However, in reality the
spectral response of optics is a function of wavelength. The wavelength dependencies
are taken into account through the introduction of correction factors in the post
processing software. High reflectivity mirrors with special coatings are used to
minimize propagation losses within the instrument. In order to mitigate systematic
error,w the mirrors are arranged to deliver maximum available radiance to the
spectrograph.

The spectral response of the beam splitter is also wavelength dependent. Wavelength-
specific correction factors can be implemented in the post-processing software. How-
ever, a beam splitter, as the name implies, reflects a fraction of the incident radiance
and transmits the remaining fraction of the radiance toward the target. Hence, the
wavelength-dependent power between the transmitted and the reflected beams has
to be taken into account before performing the reflectance calculation.

Supercontinuum sources, like all laser sources, exhibit small variations in transmit
power. These variations can be mitigated by normalizing the waveforms with the
intensity of the transmitted pulse (Hakala et al. 2012). To characterize the target
reflectance, Hakala et al. 2012 normalize the backscatter radiance with waveform
peak radiance values collected at various distances using a 99% reflectivity calibration
target. Individual backscatter radiance values are normalized using calibration data
collected from different target ranges. The measured radiance data are normalized
with the radiance values collected from echoes that correspond to the same measured
range.

2.5.1 Backscatter cross section

The radiance measurement performed with a TLS instrument depends on numerous
physical factors of the target, which can be characterized using a term called the
backscatter cross section. The backscatter cross section characterizes the electromag-
netic interaction that occurs at the target when it is illuminated by the incident
laser beam. A part of the radiation incident on the target will be absorbed, and the
rest will be scattered as dictated by the theory of radiative transfer (Wagner et al.
2006). The scattered radiant flux density in the direction of the sensor aperture is
not only dependent on range, but also on the beam spread angle and the morphology,
composition and angular orientation of the target relative to the incident beam
direction. The beam geometry of the incident and scattered radiance is described
through the solid angles of the transmitted beam Ωi and the scattered beam Ωs

observed at the instrument aperture. Assuming an ideal Lambertian surface diffuse
with scattering properties, the scattering situation is depicted in figure 3

The total scattered radiance can be viewed as the integral over each individual
infinitesimal scattering target area elements dAt. The ratio of incident to scat-
tered power from an effective target area At is mathematically described through a
dimensionless quantity called the biconical reflectance ρ(Ωi, Ωs).

ρ(Ωi, Ωs) = Ps(θs, φs; Ωs)
Pi(θi, φi; Ωi)

(1)
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Figure 3: The incident light is reflected from differential area dAt, and its flux density
within a cone Ωi is characterized as function of the incidence angles θi and φi. The scattered
radiant flux density is characterized using the same geometrical approach as for the incident
radiation.

To characterize the electromagnetic (EM) interaction occurring between the
beam and the target, EM scattering theory begins by defining a quantity called
the differential scattering cross-section σE (Jackson 1998). The EM interaction is
described through the electric field vectors Ei and Es of the incident and scattered EM-
waves in the directions (θi, φi) and (θs, φi) respectively. The resulting σE will always
be different for different targets, provided that the incident electric field maintains
constant polarization and magnitude. Hence, σE can be used to characterize the
target.

σE(θi, φi; θs, φs) = lim
r→∞

4πr2 |Es(θs, φs)|2

|Ei(θi, φi)|2
(2)

However, the differential scattering cross section cannot be measured directly, as
it is defined using infinitesimal quantities. The measurement depends on the sensor
aperture area AR. In practice an average scattering cross section is detected, which
is the average of all the infinitesimal quantities over the solid angle Ωs. The average
scattering cross section is commonly referred to as the backscatter cross section σS

with dimensions area per solid angle (m2 sr-1) (Wagner 2010).
A relation can be established between the incident and scattered power and the



21

backscatter cross section through the relation (Leader 1978)

Pr

Pi

= AR |Es|2

AI |Ei|2
(3)

where AI is the area illuminated by incident radiation and is usually referred
to as the footprint. By combining equations 1 and 3 and expressing the receiver
aperture area in terms of the scattering solid angle (Ωs = AR/r2 ) the backscatter
cross section can be written in terms of the reflectance (Wagner 2010).

σS = 4πPR

ΩsPI

AI = 4π

Ωs

ρ(Ωi, Ωs)AI (4)

2.5.2 LiDAR equation

The LiDAR equation relates the measured radiant flux density (often called the
optical intensity or just intensity), defined as the optical power per unit area, to
the physical environment by taking into account the geometry of the measurement
situation, backscatter cross section (Wagner et al. 2006) and the properties of the
laser beam. The received power can be expressed in terms of σs by rearranging
equation 4.

PR = PIΩs

4πAI

σS (5)

The size of the footprint area element depends on the beam spread angle β and
the range r (Wagner 2010).

AI = πr2β2

4 (6)

The footprint area is proportional to the square of the range and thus targets far
from the instruments may have a smaller surface area than the footprint. Assuming
an extended target, the footprint area and the target area are equal (At = AI).
Furthermore the incident power at the target will be equal to the transmitted power
from the TLS instrument (PT = PI). The scattering solid can also be expressed in
terms of the aperture of the detector.

Ωs = πD2
r

4r2 (7)

By inserting equations 6 and 7 into equation 5 the received power can be expressed
only in terms of the transmitted power and the measurement geometry.

PR = PT D2
r

4πr4β2 σ (8)
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2.5.3 Calibration equation

Wagner et al. 2008 suggest the use of a backscatter coefficient ξ, which is the cross-
section σ normalized relative to the footprint area. Due to the footprint area AI

being dependent on the direction of the incident beam compared to the surface
normal, it is subject to change as function of cos(θi). The definition presented in
equation 9 allows for comparison between backscatter measurements of extended
targets irrespective of sensor type or instrument.

ξ = σ

AIcos(θi)
(9)

The backscatter coefficient is used in radar to relate the target to the system
response due to the target usually being larger in size than the footprint (Woodhouse
et al. 2001). However, the backscatter coefficient cannot be used for straightforward
comparison if the footprint falls on multiple scatteres. This is the case in forest
environments where multiple echoes are detected for one transmitted pulse (Mallet
et al. 2009, Woodhouse et al. 2001). In the case the footprint falls on an extended
target, the reflected waveform will exhibit only one peak as discussed by Persson
et al. 2005, and ξ can be a more convenient parameter to use (Wagner et al. 2006).

Inserting equations 6 and 9 into equation 8 allows for the LiDAR equation to be
expressed in terms of backscatter coefficient.

PR = PT D2
r

16r2 ηsysηatmξ (10)

Parameters ηsys and ηatm account for power loss due to system sensitivity and
atmospheric propagation respectively (Wagner et al. 2008). Assuming that the
scattered radiance (scattered from infinitesimal scattering area elements dAt) can be
described through a Gaussian function with a standard deviation si and that the
echo waveform is also Gaussian, with an amplitude Ŝ and standard deviation ss, the
system waveform amplitude Pa can be described with a function resulting from the
convolution of the two Gaussian functions.

Pa = D2
r Ŝss

16r2
√

s2
ss

2
i

ηsysηatmξ (11)

The full derivation for equation 11 is given by Wagner et al. 2006. To relate
the backscatter coefficient ξ to the pulse amplitude and to construct a calibration
equation, equation 11 is solved for ξ and the constant terms are separated from the
variables.

ξ = Ccalib

r2
i Pa

√
s2

s + s2
i

Ŝηatm

(12)

2.5.4 Reflctance factor

The reflectance factor is a dimensionless quantity (closely related to the backscatter
cross section), through which the measured reflectance is related to the radiance
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reflected from ideal Lambertian surface under isotropic and diffuse illumination
conditions. The reflectance factor hence provides a means to describe and normalize
every radiance measurement relative to a known radiance. An abridged derivation of
the reflectance factor is given in this section based on the original work of Nicodemus
1965.

Nicodemus 1965 constructed and defined a purely physical and unified approach
to characterize the reaction between an incident beam of light and reflecting sur-
face through a function termed as the bidirectional reflectance distribution function
(BRDF). The definition has since been used to mathematically characterize vari-
ous scattering geometries reflectance factors (Schaepman-Strub et al. 2006). The
derivation of the reflectance factor begins from the definition of the BRDF in which
the incident and scattered radiant fluxes are characterized through solid angles.
The BRDF is then finally related to the biconical reflectance factor (or conical-
conical reflectance factor CCRF), which characterizes most terrestrial remote sensing
geometries (Schaepman-Strub et al. 2006).

The BRDF describes the target reflectance as a function of irradiance incidence
angles θi and φi (between the plane of the target and the plane of the incident
radiation) and the angles of scattered radiation θs and φs (between the plane of the
target and that of the radiance). The beam geometries relative to an ideal target are
depicted in figure 3 and the function itself is mathematically described by equation
16.

For isotropic, uniform, and monochromatic illumination the incident radiant flux
dΦi is expressed in terms of the incident radiance Li, the differential area element
within the footprint dAt, and the solid angle dΩs containing the observed radiant
flux density.

dΦi = Licos(θi)dΩdAt = dEidAt (13)

dEi in equation 13 expresses an infinitesimal part of the incident radiance
upon the differential area element dAt. The reflected radiance Ls can thus be
expressed as the collection of all the dEi elements and a proportionality factor
F (θi, φi, xi, yi; θs, φs, xs, ys) which describes the target response to incident radiance.
The points (xi, yi) and (xs, ys) denote the locations of the differential area elements on
which the incident radiance falls and from which it is reflected respectively. Nicode-
mus et al. 1977 make two assumptions about the proportionality factor; (1) that
the radiant flux incident at (xi, yi) affects the exitance at (xs, ys) through some
interaction between matter and radiation, and (2) that this interaction is a function
of the distance between points (xi, yi) and (xs, ys) . The exitance at the location
(xs, ys) as a contribution of all the incident radiance from the direction (θi, φi) is
expressed with the integral equation:

dLr(θi, φi; θs, φs, xs, ys) = dEi

∫
At

F (θi, φi, xi, yi; θs, φs, xs, ys)dAt (14)

Assuming isotropic and uniform target properties along with uniform and dif-
fuse radiance upon the target, both assumption (1) and (2), made about the EM-
interaction within the target and the distance between the (xi, yi) and (xs, ys) can
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be ignored due to symmetry when integrating over the proportionality factor F .
Equation 14 simplifies to

dLr = dEi

∫
At

F (θi, φi; θs, φs)dAt (15)

The integral term on the RHS of equation 15 describes the response of an isotropic
and uniform target to the incident radiation as function of incidence and exitance
angles and is called the bidirectional reflectance distribution function.

fBRDF = dLr(θi, φi; θs, φs)
dEi(θi, φi)

(16)

The BRDF can not be measured due to it being derived using infinitesimal
quantities. However, the reflected radiant flux density Φs is a measurable quantity,
which can be expressed in terms of the BRDF and the integral over all the irradiance
components as explained above.

dΦs = dAt

∫
Ωs

∫
Ωi

fBRDF (θi, φi; θs, φs)Li(θi, φi)cos(θi)dΩiΩs

=
∫

Ωs

fBRDF ΦiΩs

(17)

The ratio of the incident and reflected flux densities (dΦs/dΦi) define the biconbical
reflectance ρBCR(Ωi, Ωs) given in equation 18. By inserting equation 18 into equation
4 the backscatter coefficient can be expressed in terms of the BRDF (Wagner 2010).

ρBCR(Ωi, Ωs) = 1
Ωi

∫
Ωs

∫
Ωi

fBRDF (θi, φi; θs, φs)dΩidΩs (18)

The biconical reflectance factor (CCRF) denoted by R(Ωs, Ωs,id) is defined as the
ratio of the radiant flux reflected from the surface described by a biconical refelctance
distribution function f and the radiant flux reflected from an ideal surface with
fBRDF = 1/π within the same beam geometry under isotropic and diffuse illumination
(Schaepman-Strub et al. 2006).

RCCRF = Φs

Φr,id

=
∫

Ωs

∫
Ωi

f(θi, φi; θs, φs)Li(θi, φi)dΩidΩs

(1/π)
∫

Ωs

∫
Ωi

Li(θi, φi)dΩiΩs

= π

ΩiΩs

∫
Ωs

∫
Ωi

fBRDF (θi, φi; θs, φs)dΩidΩs

(19)

Hence, the CCRF gives a good approximation of target surface characteristics
when the measured radiance is normalized with the post-processed sensor response
data collected from a smooth, high reflectance calibration target, with close to ideal
reflectance properties (Hakala et al. 2012).
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3 Materials

3.1 FGI-hyperspectral LiDAR instrument
The main components of the hyperspectral TLS (FGI-HSL) instrument developed
at the Finnish Geospatial Research Institute are presented in the block diagram
of figure 2. The instrument is calibrated using an external Spectralon reflectance
target. A supercontinuum (SC) laser source and PCF manufactured by LEUKOS
are used to excite a narrow, approximately FWHM=1 ns, broadband pulse with an
average power of 200 mW and a spectral range between 500 nm-1900 nm. The pulse
repetition frequency (PRF) of SC-source is tunable between 5 kHz and 30 kHz. A
refracting collimator is attached to the transmitting end of the PCF from which the
beam is transmitted to beam sampler, which reflects 10% of the incident spectral
power to trigger the TOF measurement. The beam sampler is characterized by
stable spectral response characteristics, a large bandwidth, and selective polarization
properties. Furthermore, the beam sampler is manufactured with an optical coating
canceling out internal reflections. The optical configuration is illustrated in figure 4.

Figure 4: The beam sampler divides the laser beam into a trigger component and trans-
mitted component. The trigger beam is directed to the spectrograph input by two mirrors
and passes through a hole drilled in the off-axis parabolic mirror. The transmitted beam
travels to the target. The echo is focused by an off-axis parabolic mirror to the spectrograph
input, after which it is separated into its spectral components.

The beam exiting the instrument is directed through a hole drilled in the direction
of the optical center line of an off-axis parabolic mirror. The same parabolic mirror
is used as the primary focusing optic for the incident radiance at the collection
aperture of the instrument. The focused beam is directed to a Specim ImSpectro
V10 spectrogrph, which is equipped with a 50 µm slit, and has a spectral range
between 400 nm and 1000 nm. The spectrally separated radiance components are
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detected and converted to analog voltages with an avalanche photo-diode (APD)
array composed of 16 individual sensors. The APDs (manufactured by First Sensor)
have a nonlinear and wide spectral response bandwidth between 450 nm and 1050
nm. Calibration of the spectral response of the APDs is performed with the Oriel,
Cornerstone 74125 monochromator. The analog voltage output of each sensor is
separately digitized with a dynamic range of 14 bits and 1 GHz sampling frequency.
To further enhance the full-waveform retrieval capability of the instrument, A/D
converters with a digitization rate between 1 GHz and 5 GHz are being considered
based on the trade-off between waveform accuracy and processing speed discussed in
section 5.

Two motorized rotators with an accuracy of ±0.0115◦ are used to control the
three dimensional scanning geometry of the instrument. The commands dictating
rotator movement, and thus the azimuth and elevation of the transmitted beam, are
stored and associated with each time stamped return waveform.

3.2 Sampling problem
Only a few different algorithmic waveform fitting approaches conserning TLS full-
waveform data processing and calibration for obtaining the full-waveform information
from the digitized radiance input data have been utilized and proposed (Persson
et al. 2005, Hofton et al. 2000, Wagner et al. 2006, Jutzi et al. 2003, Shen et al.
2017, Chauve et al. 2009). Furthermore, these approaches have not been discussed
in the context of hyperspectral TLS instrumentation and calibration in literature. A
collection of these methods is presented in the following sections along with some
unanswered questions concerning HSL calibration and the accuracy of waveform
retrieval.

The waveform of the scattered pulse is usually assumed to be Gaussian or to
consist of multiple superimposed Gaussian components (Hofton et al. 2000, Wagner
et al. 2006). A method utilizing a purely Gaussian waveform model in conjunction
with the Levenberg-Marquardt algorithm is suggested by Hofton et al. 2000. Jutzi
et al. 2003 also assume a Gaussian waveform but use a Gauss-Newton method to find
the Gaussian parameters that best fit the sampled data, while Persson et al. 2005 use
an expectation maximization algorithm to accomplish the same. However, in reality
the temporal shape of the waveform is not always best represented by a Gaussian
equation as shown by Zhu et al. 2017. To overcome the fitting problem presented by
non-Gaussian waveforms, Chauve et al. 2009 suggest the use of modified Gaussian
equations. Finally, Shen et al. 2017 suggest an algorithm based on B-Splines, making
no preliminary assumptions about the waveform shape.

Information regarding the use of fitting methods for HSL- and MSL-instruments
when considering accuracy of intensity retrieval has not been discussed in-depth. Only
Puttonen et al. 2015, Woodhouse et al. 2001, Du et al. 2016, and Wallace et al. 2014
provide information about the fitting methods used for waveform parameter retrieval
when considering the instruments presented in table 1. Furthermore, the accuracy
of fitting methods employed by existing HSL- and MSL -instruments (presented in
table 1) have only been discussed in the context of spectral characteristic separation
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capabilities and not absolute accuracy. While the waveform reconstruction algorithms
listed above have been shown to provide reflectance estimates that are accurate
enough for the characterization of vegetation parameters at well defined wavelengths
with a relatively large spectral separation between the measured components (Zhu
et al. 2017, Du et al. 2016, Puttonen et al. 2015), the accuracy of individual
measurements provided by the fitting methods have not been discussed. When
moving toward hyperspectral remote sensing, where the spectral difference between
measured wavelength components becomes smaller, and the final goal is to perform
material recognition of multiple targets with less distinct absorption spectra than for
example biological objects such leafs have, the accuracy of individual measurements
becomes increasingly important.

The relation between the digitization rate and the accuracy of waveform parameter
retrieval has received little attention in literature. This presents a problem concerning
the need for increased physical data storage capabilities of HS-TLS instrumentation
as more data needs to be stored as the sampling frequency is increased and as
more detection channels are added. Most research groups have utilized digitization
frequencies that provide ample sampled data to describe the waveform but have
not reported the optimization between waveform accuracy, processing speed and
data storage needs for HS-TLS instrumentation. The amount of radiant flux data
gathered can be optimized, while maintaining high intensity detection accuracy, by
studying the relation between the A/D conversion frequency and the accuracy of
the fitting algorithms. As contemporary literature does not report absolute accuracy
of parameter retrieval algorithms it is hard to make conclusions about which full-
waveform algorithms are appropriate for analyzing specific waveforms. In the next
section we present the methods used to find a suitable fitting algorithm and digitizing
frequency for the FGI-HSL instrument.

Finally, the waveform peak amplitude representing the radiance has been used in
all research as parameter to categorize between different material groups. Waveform
parameters such as the pulse FWHM and the spatio-temporal area enveloped by
the pulse have not been considered as distinguishing characteristics for material
recognition application, based on the literature considered in this thesis.
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4 Methods
Altogether four different fitting methods and algorithms are presented and their
accuracy in retrieving four different parameters characterizing a Gaussian return
waveform are analyzed as a function of sampling frequency. The parameters are the
peak amplitude am, the FWHM of the Gaussian pulse, the area enveloped by the
waveform A, and the spatio-temporal location of the waveform peak tpeak. These
parameters are also presented in figure 6. The algorithms tested for consist of, a nth

order polynomial least-squares (PSLQ) algorithm, a cubic spline (CS) fitting method,
a Gaussian waveform parametrization (GP) method, and a Levenberg-Marquardt
(LM) algorithm.

The algorithms analyzed were chosen based on previously used fitting methods
for TLS full-waveform retrieval that have provided sub-centimeter range accuracy, or
have shown to provide high enough accuracy in peak amplitude retrieval to enable
material characterization through full-waveform reconstruction. When choosing the
algorithms to be tested, consideration was given to the computational requirements
and mathematical complexity of the algorithms. Complex algorithms involving
support vector machines or expectation maximization (as presented by Du et al. 2016
and Persson et al. 2005 respectively) demand larger processing times, and thus are
not discussed. This is due to the trade-off between accuracy of parameter retrieval
and processing speed being of interest when considering the FGI-HSL instrument.

Both the MSCL (1) (Woodhouse et al. 2001) and the FGI-HSL-instrument
(Puttonen et al. 2015) (presented in table 1) employ a Gaussian parameterization
algorithm for retrieving the full-waveform and performing material characterization.
The GP algorithm is considered due to its mathematical simplicity and straight forwad
Gaussian parameter retrieval capability. The choice for testing the LM algorithm is
based on its wide use in determining range with sub-centimeter accuracy by using
the peak amplitude of the echo waveform (Hofton et al. 2000). The processing time
required by LM algorithm depends on the accuracy of input parameters given as
initial guesses for a waveform parametrization equation.

The choice for the CS algorithm is supported by the work of Shen et al. 2017.
WhileShen et al. 2017 do not discuss waveform parameter retrieval capabilities of the
B-spline fitting method (which is a cubic spline algorithm) in terms of material char-
acterization, the group shows that the waveform shape can be retrieved by comparing
the B-spline method to the well established Gaussian parametrization method, thus
making the spline method fitting accuracy worth investigating. Furthermore, a spline
method has not been used so far in conjunction with MSL or HSL instrumentation.
The CS algorithm does not involve iteration for finding the parameters of interest
(unlike the LM algorithm), making it appealing when considering real-time processing
capabilities.

The PLSQ method was chosen on the basis that it is a widely used fitting
approach and does not involve iteration in finding the parameters of interest. The
PLSQ algorithm does not employ an iterative approach for finding the waveform
parameters, making it appealing when considering real-time processing capabilities.
The algorithms used are presented along with the script in the following sections.
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Further information regarding the algorithms is given by Seber et al. 2003, Papoulis
1984, Levenberg 1944, and Marquardt 1963.

4.1 Algorithms
4.1.1 Cubic spline algorithm

A cubic spline (CS) is a piecewise polynomial function, consisting of n − 1 cubic
polynomial equations fi where n is the number of data points fitted. Each polynomial
fi represents a piece of the spline between two consecutive data points at xi and
xi + 1.

fi(x) = C3(x − xi)3 + C2(x − xi)2 + C1(x − xi) + C0, (20)

where xi denotes the ith sampled data point and x represents a value between xi

and xi + 1. To produce the spline, the polynomials are linked to each other at the
sampled data points. In order for the spline to be smooth, each polynomial piece fi

and their first and second order derivatives f ′
i and f ′′

i between xi−1 and xi have to be
continuous. Continuity must also occur at points where the piecewise polynomials are
joined so that fi(xi) = fi+1(xi), f ′

i(xi) = f ′
i+1(xi) and f ′′

i (xi) = f ′′
i+1(xi). Furthermore,

the following relations between the piecewise polynomials and their derivatives have
to hold. (Seber et al. 2003)

fi(xi) = Ci0 (21a)
fi(xi+1) = Ci3(xi+1 − xi)3 + Ci2(xi+1 − xi)2 + Ci1(xi+1 − xi) + Ci0 (21b)

f ′
i(xi) = Ci1 (22a)

f ′
i(xi+1) = 3Ci3(xi+1 − xi)2 + 2Ci2(xi+1 − xi) + Ci1 (22b)

f ′′
i (xi) = 2Ci2 (23a)

f ′′
i (xi+1) = 6Ci3(xi+1 − xi) + Ci2 (23b)

The coefficients C can be solved so that they are represented only by the data
points xi and the first order derivatives using equation 21 and equation 22. The
first order derivatives are evaluated in terms of the continuity constraints and the
constraints given by equation 23. This in turn produces m − 2 equations for all the
m unknown first order derivatives of each piecewise polynomial. In order to solve all
the unknowns, boundary conditions are applied for the first and last points of the
spline by setting f ′′

0 = f ′′
n−1, where n is the number of data points used to form the

spline. (Seber et al. 2003)

4.1.2 Polynomial least squares algorithm

The polynomial least squares algorithm solves the coefficients of a mth order polyno-
mial equation that best describes the waveform to be fitted.

y = c0 + c1x
1
1 + c2x

2
2 + ... + cmxm

n =
m∑

j=0
cjx

j
i (24)
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The least-squares algorithm minimizes the sum of differences between the observed
y values and the polynomial by finding the coefficients cj in the following equation

F (c0, c1, ..., cn) =
n∑

i=1

⎛⎝yi −
m∑

j=0
cjx

j
i

⎞⎠2

(25)

in which i represents the data point number from altogether n data points and j
denotes the order. The derivative of F in equation 25 is computed with respect to
each j = 1, 2...m separately and set to zero as shown in equation 26.

n∑
i=1

xj
i

(
yi −

m∑
k=0

ckxk
i

)
= 0 (26)

The degree with respect to which the derivative is being calculated is represented
by j and k ranges from 0 to m. This creates n+1 linear equations for each coefficient.
The coefficients can then be solved from the linear equations through applying matrix
algebra. (Young 2014)

4.1.3 Gaussian parametrization algorithm

The parametrization method solves for the parameters A, µ and σ of the Gaussian
equation through using three sampled values and their spatio-temporal locations,
presented by the points (x1, y1; x2, y2; x3, y3) as shown in figure 5. The parametrization
method presented here is a slightly modified version of the method used by Puttonen
et al. 2015 for full-waveform retrieval.

g(t) = Ae
−(t−µ)2

2σ2 (27)

The points are chosen so that one is the sampled peak value and the two others
are sampled values at equal temporal distances from both sides of peak value. To
solve analytically for the parameters no more than three points are required. From
now on, these three points will be referred to as a point group (PG). The equations
used to solve for the parameters are constructed by solving equation 27 separately
for each parameter.

µ = 1
2

x2
1(ln(y3) − ln(y2)) + x2

2(ln(y1) − ln(y3)) + x2
3(ln(y2) − ln(y1))

x1(ln(y3) − ln(y2)) + x2(ln(y1) − ln(y3)) + x3(ln(y2) − ln(y1))
(28)

σ =

√(x1 − µ)2 − (x1 − µ)2

2(ln(y1) − ln(y2))
(29)

A = y2e
(x2−µ)2

2σ2 (30)

Once the parameters have been solved, they are inserted in equation (27) and
g(t) is calculated using a sufficiently small ∆t to represent the Gaussian smoothly.
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The script performs altogether three parametrization procedures for each pulse
using three different point groups when possible. Different point groups, all containing
the sampled peak value, are formed in order to investigate the effect the location
of the samples relative to the waveform peak have on the accuracy of the fit. The
first point group includes two points which lie closest to the sampled peak value.
The second point group contains two points approximately at half the maximum
amplitude of the waveform. Finally, the third point group contains two points close
to the base of the pulse as depicted in figure 5.

Figure 5: The three different point groups (PG) composed of sampled data points. The
green data point is included in each point group.

4.1.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is based on the work by Levenberg 1944
and Marquardt 1963. The algorithm takes an iterative approach to minimizing the
differences of the squares between a given function f(g) and a vector of measured
data points d. In f(g), g is a vector holding initial guesses for the parameters of
the given function. In the scope of this research the parameters used for the initial
guesses are ag, µg, and σg of the Gaussian equation. The initial guess for ag is
provided by the sample with the highest value, while the guess for µg is given by
the position of ag in time. Finally the guess for σg is generated through an iterative
approach in which two samples on both sides of the maximum value as close as
possible to ag/2 are found. An approximate FWHM is calculated by subtracting the
spatio-temporal position of these values, and σg is calculated using

FWHM = 2
√

2ln2σg (31)

A Taylor series is used to linearly approximate f(g).

f(g + δg) ≈ f(g) + Jδg (32)
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In equation 32 J is the Jacobian matrix of f(g) and δg a vector holding factors
that apply small increments or decrements to terms in g during the iteration. The
condition for the minimization, where d represents a vector containing the sampled
values and ϑ represents the error between sampled value and the guess function, is
given by

|d − f(g) − Jδg| = |ϑ − Jδg| (33)

The minimum difference condition is met when JT (Jδg − ϑ) = 0. The equation
can then be rearranged to the form:

JT Jδg = JT ϑ, (34)

and solved for δg. Equation 34 is modified in the implementation of LM algorithm
so that the term JT J, which represents an approximation of the second order partial
derivatives, is written as a single matrix M with the addition of a damping term k
for the diagonal elements of JT J.

Mδg = JT ϑ (35)

The algorithm begins by changing the initial guess and checking whether the
error ϑ has decreased or increased. In the case an increase is observed, k is increased
and the equation 35 is solved in an iterative manner until a value for δg is found
that decreases the error. If the error, on the other hand, is decreased, the term δg is
accepted, and the process of solving equation 35 is repeated until a predefined error
threshold is reached or a predefined number of iterations is completed.

4.2 Script
The script evaluates the accuracy of the algorithmic fitting methods described above
in finding the parameters of interest described. The script compares generated
(Gaussian) waveforms to fitted waveforms produced by fitting data points sampled
from the generated waveforms. Figure 6 shows a flow diagram of the three main
stages of the fitting procedure and the nomenclature used for describing the process
as a whole.

g(t) = Age
−(t−µg)2

2σ2
g (36)

In order to construct the generated pulses, a Gaussian function presented in
equation 36 is used. The variables Ag, µg and σg are changed randomly within
predefined intervals as each generated pulse is constructed. The intervals chosen are
based on measured data observed during calibration test measurements. The Gaussian
parameters are changed randomly in order to simulate sensor response at different
wavelengths and to simulate fluctuations of the laser output power. Furthermore,
Gaussian noise is added to each generated waveform to simulate system noise. The
choice of Gaussian noise as the noise model is supported by noise measurements
made during calibration tests for the FGI-HSL.
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Figure 6: The three main stages of the script are described by a.) the generation of a
Gaussian waveform, b.) the sampling of the generated waveform using different kernels
to create sampled waveforms, and c.) the fitting of the sampled waveforms to produce
the final fitted waveforms. The parameters of interest used for assessing the accuracy of
the fit are shown in c.), where am is the maximum amplitude of the fitted pulse, A is
the area enveloped by the pulse, FWHM is the full width at half maximum, and ta is the
spatio-temporal location of maximum amplitude.

A single generated pulse consists of 24000 points within a 300 ns interval. The
pulse itself has a FWHM of approximately 1 ns. All the data points representing
a generated pulse are saved in an array and used later to compute errors for the
parameters of interest. Once a pulse is generated, it is sampled by a user defined
number of different grids or kernels at a user defined sampling (or digitization)
frequency of 1 GHz, 2 GHz, 3 GHz, 4 GHz, or 5 GHz. This allows the sampled
points to be retrieved from different spatio-temporal locations of the pulse. This
distinction is important, since in reality different returns are not sampled at identical
locations of the temporal waveform due to the varying flight time and waveform
characteristics.

After a generated pulse is sampled, the sample data is stored into a temporary
matrix. The algorithms are then called one by one to produce the final fitted pulses
from the sampled data. Each algorithm performs the fit on the same set of samples,
so that a valid comparison can be made between the accuracy of different algorithms.
Before the fitting begins, a threshold is set that dictates which sampled points will
be taken into account in the fit. The thresholding operation works by choosing
sampled points with an amplitude value higher than the noise floor level. This type of
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procedure ensures, that only points within the actual pulse are used when performing
the fit. Furthermore, the fitting procedure is sped up as the points outside the
waveform of interest are not included in the fit.

After a fitted pulse is created (for each sampling grids at specified sampling
frequency), its data is stored in an array. Before finding the parameters of interest
from the fitted data, the contribution of the simulated system noise is removed.
The system noise is estimated from the sampled points which do not represent the
waveform itself. This fitted pulse is then used to find the peak amplitude, spatio-
temporal location of the peak, area enveloped by the waveform, and FWHM. This
process is repeated for all the fitted pulses.

To perform a statistical error assessment for the parameters of interest, altogether
100 pulses are generated. These pulses are then sampled using five sampling grids,
constituting a set of 500 pulses for each different sampling frequency. Finally all
the pulses are fitted. This process is then repeated 100 times. This constitutes a
set of 50 000 fitted pulses for each algorithm at each sampling frequency. The error
calculation is done via finding the difference between a value of interest (such as the
peak amplitude) and the corresponding generated ”true” value. The mean error and
the standard deviation of the difference between the true and fitted values is then
calculated separately for each algorithm. The whole script can be found via the link
provided in the bibliography (Ilinca 2018).

4.3 Area and FWHM
The full width at half maximum (FWHM) of the fitted pulse for PLSQ and CS
algorithms are calculated through an iterative approach. The values closest to half
the maximum on both sides of am (depicted in figure 6) are searched for. Once the
values are found, their locations in time are determined and subtracted from each
other. In the case of the Gaussian Parametrization algorithm equation 37 is used to
relate the σ to the FWHM.

FWHM = 2
√

2ln2σ (37)

Two different methods are employed for calculating the area under the waveform.
The first approach relies on the trapezoidal rule for computing the approximation
of a definite integral. The trapezoidal integration method involves the summation
of the areas of consecutive trapezoids as described by equation 38. The parameters
y and x express the location of the points on the y- and x-axes respectively, and i
denotes point number on the waveform. The individual regions are summed up to
retrieve an approximation the total area under the pulse.

Apulse =
∑

i

1
2(yi+1 − yi)(xi+1 − xi) (38)

The second method is presented in equation 39, where the maximum amplitude is
multiplied by

√
2πσ which is a solution for the Gaussian integral as given by Papoulis

1984.

A =
√

2πσam (39)
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This method is justified as the generated pulse is Gaussian. Furthermore multi-
peak waveforms can be analyzed as sum of Gaussian functions as discussed by Hofton
et al. 2000 and Wagner et al. 2006.

4.4 Error calculation
The error analysis takes into account the mean error and standard deviation of the
parameters of interest retrieved from the fitted pulse. To make the explanation of
the error analysis clear, we refer to the parameters of interest retrieved from the
fitted pulse as fitted values ulm and the respective parameters of the generated pulse
as true values wl. The subscript l = 1, 2, ..., N denotes the pulse number of the
generated pulse which is sampled, and from which the fitted pulse is constructed,
and N the total number of generated pulses. The subscript m = 1, 2, ..., M denotes
the sampling grid number out of M = 5 sampling grids.

The error (for each parameter of interest produced by each different algorithm)
is calculated as the absolute difference between a fitted value and a corresponding
true value vlm = |wl − ulm|. The mean of all individual differences is then computed
(corresponding to a single algorithm) to express the mean error me. A percentual
mean error mp,err is also calculated which expresses the mean percentual difference
between the parameters of interest (retrieved from the fitted waveforms) and the true
values (retrieved from the generated waveforms). The computation for the percentual
mean error is expressed by equation 40. The percentual mean error (provided by
each different algorithm at each different sampling frequency) is calculated separately
for each parameter of interest.

mp,err =

N∑
l=1

M∑
m=1

(
|wl−ulm|+wl

wl
− 1

)
N × M

(40)

The standard deviation is calculated by subtracting the differences vlm from the
mean error me for all the pulses analyzed

s2 =

√ N∑
l=1

M∑
m=1

(me − vlm)2

N × M − 1 (41)

Finally the relative standard deviation (RSTD) is given by equation 42.

RSTD = me

s2 (42)

Both the PLSQ and CS algorithms use the same number of discrete data points
for reconstructing a smooth waveform from the sampled values. This allows a fair
comparison to be made for the time it takes for both algorithms to complete the
waveform reconstruction and parameter retrieval processes. In the case of the LM
and PG-algorithms reconstruction of the waveform is not necessary for retrieval of the
parameters of interest, as they can be directly solved from the Gaussian parameters.
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5 Results

5.1 Fitted waveform peak amplitude retrieval
The accuracy of peak amplitude retrieval directly from the sampled waveform depends
strongly on whether the sampled peak values happen to fall close to the peak of
the generated waveform. Figures 7a-7d contrast the accuracy of fitted waveform
peak amplitudes am retrieved at 1 GHz and 5 GHz sampling frequencies between
the CS algorithm and those retrieved directly from the sampled data. The method
of retrieving the peak amplitude directly from the sampled waveform exhibits the
largest mean error as can be seen from table 2. However, the mean error of the
sampled waveform peak value remains within a range of approximately 1% of the
generated waveform peak amplitude value at fs =5 GHz. Furthermore, the sampled
waveform mean error at 5 GHz is smaller than the mean error produced at fs ≤ 2
GHz by all other fitting methods. However, the RSTD for the sampled waveform
mean error is approximately 130% at all analyzed sampling frequencies indicating a
large mean error distribution.

In the case of the CS algorithm most of the retrieved peak values are underesti-
mated relative to the generated peak amplitude as shown in figure 7b at a 1 GHz
sampling frequency. This also holds true for the PLSQ algorithm. However, the
retrieved values become evenly distributed on both sides of the generated values as the
sampling frequency increases indicating that the accuracy of peak amplitude retrieval
does not depend strongly on the spatio-temporal position of the samples on the pulse.
This is seen from figure 7d in which the red line represents the generated true values
and the colored dots represent the retrieved peak values using the CS algorithm. The
same behavior is also exhibited by all the retrieved maxima when looking at the error
distributions of the other algorithms. The Levenberg-Marquard algorithm produces
the smallest mean error at fs = 1 GHz , due to multiple completed iterations and
good initial guesses for the model waveform parameters.

The LM algorithm produces the smallest percentual mean error for the peak
amplitude at a 5 GHz sampling frequency. Compared to the CS algorithm, (which
provides the second best accuracy out of the fitting methods tested), the mean error
from the LM algorithm differs by only 0.09%. However, all the fitting methods
provide a mean error of less than 0.5% from the true amplitude at fs ≥ 3 GHz. The
PLSQ and GP algorithms show mean errors with only a difference of 0.002% to the
CS algorithm at fs = 5 GHz. This indicates that the effect the chosen algorithm
has on the accuracy of the peak amplitude diminishes as the sampling frequency is
increased.

Figure 8 depicts the results presented in tables 2 and 3. As the sampling frequency
increases, both the mean error and the standard deviation of the mean error decrease
for all fitting methods presented. Considering the CS and PLSQ algorithms, the mean
error exhibits a sharp rise of approximately 15% as sampling frequency decreases
from 2 GHz to 1 GHz. This jump can be directly attributed to the decreasing
number of sampled points available for solving the polynomial equations used by
the CS and PLSQ algorithms. The rise in mean error between the aforementioned
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(a) (b)

(c) (d)

Figure 7: The Maximum amplitude am values retrieved using the CS algorithm from 100
individual wave forms are presented in figures (b.) and (d.). Maximum amplitude values
retrieved from the sampled waveform are presented in figures (a.) and (c.). The different
color dots represent peak values acquired using different sampling grids (or kernels). The
red line represents the maximum amplitudes of the generated waveform without additional
noise. The blue line represents maximum amplitude values of the generated waveform
with additional Gaussian noise. The noise is removed from the sampled values before the
algorithm produces the fit.

sampling frequencies is not as abrupt for the LM and GP methods, since they rely
on parametrized equations to reconstruct the waveform. The mean errors resulting
from the LM algorithm rise sharply as the sampling frequency decreases below 3
GHz, and become larger than the mean errors retrieved using the CS algorithm at
fs = 2 GHz. However, the LM algorithm still provides the smallest mean error and
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Table 2: The mean errors and standard deviations of the peak amplitude parameter
computed from the fitted waveforms, through application of the different fitting algorithms
and methods.

fs 5 GHz 4 GHz 3 GHz 2 GHz 1 GHz
Sampled Waveform

merror (%) 0.8907 1.3394 2.3200 5.0236 17.3624

s2 6.9023 10.5555 18.4418 39.9748 135.3423

RSTD (%) 129.1607 131.3376 132.5118 132.8266 130.123
Cubic Spline (CS)

merror (%) 0.2504 0.2573 0.3563 1.7315 16.2436

s2 1.1221 1.1486 1.5601 8.1157 81.6132

RSTD (%) 75.618 74.4210 73.0154 78.3128 84.1292
Least Squares Polynomial (PLSQ)

merror (%) 0.2526 0.2510 0.3248 2.2642 17.1658

s2 1.1486 1.1254 14.4642 12.9023 86.8956

RSTD (%) 75.8148 74.7513 75.1597 95.2685 84.7178
Levenberg-Marquardt (LM)

merror (%) 0.1659 0.1850 0.2470 2.2518 5.3718

s2 0.6275 0.9541 2.8406 20.7822 23.2638

RSTD (%) 57.7449 85.3791 188.1104 154.5274 72.4776

Table 3: Peak amplitude mean errors calculated by comparing the generated waveform
and fitted waveform for the Gaussian Parametrization method.

sf PG merror (%) s2 RSTD (%)

5GHz
1 0.2545 1.1561 75.7551

2 0.2705 1.1226 75.5506

3 0.3122 1.4898 79.5589

4GHz
1 0.2551 1.1439 74.7472

2 0.2784 1.2588 75.3960

3 1.1405 18.6544 269.5448

3GHz 1 0.2600 1.1768 75.4660

2 0.2812 1.2820 76.0332

2GHz 1 0.2801 1.2581 75.4759

2 0.6401 5.5443 124.0723

1GHz 1 3.4600 21.2871 102.7154

RSTD at higher sampling frequencies. Considering the GP method, the smallest
mean error occurs when the point-grid holding sampled values closest to the peak
(PG 1) is used.

Considering all the fitting methods, only a minor decrease of approximately 0.1%
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Figure 8: Peak amplitude mean errors and their maximum deviation indicated by the
error bars. The symbol SW references the sampled waveform

is observed in the mean error when the sampling frequency is increased from 3 GHz to
5 GHz as can be seen from figure 8. The standard deviation of the PLSQ algorithm
increases sharply at the fs = 3 GHz indicating a decrease in the peak amplitude
retrieval accuracy compared to the retrieval accuracy at fs = 4 GHz and fs = 5
GHz. Finally, it is important to note that the mean error values presented in the
tables 2 and 3 are subject to slight variation between ±0.02. This is observed from
running the simulation for 50k pulses multiple times. However, results only from one
simulation are shown due to the large number of pulses analyzed.
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5.2 Peak position retrieval
The retrieval of peak amplitude positions, (defined as the spatio-temporal location of
the fitted-waveform peak amplitude value), is conducted through finding the location
of the maximum amplitude value in time. The GP method shows the smallest mean
error and relative standard deviation in finding the peak position out of all the tested
algorithms.

(a) (b)

Figure 9: The fitted peak values and their locations as a result of the GP method. (a) No
noise removal has been implemented and both the noise-induced and the original generated
pulses are shown. In (b) the noise is removed. While fits 1 and 2 (produced using PG 1
and PG 2) provide an accurate reconstruction of the waveform, fit 3 (PG3) provides an
erroneous fit due to the magnitude and location of the sampled points being distorted by
noise.

The smallest mean errors are achieved when two out the three samples used in
the GP method have a value approximately at half of the maximum amplitude (as
presented in figure 5 by PG 2). Figure 9 further depicts the difference between the
peak amplitude locations retrieved using different point groups of the same pulse
by comparing them with the generated waveform peak amplitude position- and the
noise-induced peak amplitude positions. The mean position error produced by the
GP method remains relatively small and comparable to the mean errors produced by
the PLSQ and CS algorithms when using PG 1 at fs = 5 GHz and fs = 4 GHz. All
in all, the GP method gives the smallest merror of 0.0015% for the position retrieved
from the fitted waveform. However, it is very sensiteve to small changes in the
spatio-temporal location and the amplitude of the samples.

The PLSQ algorithm provides a smaller mean error than the CS algorithm for
sampling frequencies between 2 GHz and 4 GHz, but maintains a larger standard
deviation. All the fitting methods produce a mean error in the order of 10−3ns for
fs ≥ 3 GHz, except the LM algorithm. The relatively large mean error produced by
the LM algorithm is due to the possibility of the algorithm finding multiple values
which satisfy the Gaussian objective function. The mean error of the LM algorithm
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Table 4: Mean error and standard deviation of the spatio-temporal waveform peak position.
The mean errors are calculated from true peak positions of the generated pulse and the
peak amplitudes retrieved from the fitted waveforms.

fs 5 GHz 4 GHz 3 GHz 2 GHz 1 GHz
Sampled Waveform

merror (ns) 0.0498 0.0625 0.0837 0.1254 0.2496

s2 0.0576 0.0722 0.0963 0.1442 0.2872

RSTD (%) 115.7411 115.4504 115.1733 115.0413 115.1435
Cubic Spline

merror (ns) 0.0044 0.0038 0.0069 0.0196 0.1852

s2 0.0034 0.0029 0.0051 0.0108 0.1234

RSTD (%) 78.2008 76.1462 73.4775 55.3481 66.7396
Least Squares Polynomial

merror (ns) 0.0044 0.0033 0.0046 0.0167 0.2188

s2 0.0078 0.0077 0.0032 0.0128 0.1517

RSTD (%) 142.1744 77.1895 70.0444 76.2752 69.5291
Levenberg-Marquardt

merror (ns) 0.0236 0.0353 0.0691 0.1429 0.5740

s2 0.0236 0.0349 0.0683 0.1419 0.8782

RSTD (%) 99.7984 88.7433 86.6601 90.0019 135.3785

(at fs = 5 GHz) is approximately 10 times larger compared to the mean errors
achieved using the other algorithms at the same sampling frequency. However, the
mean error retrieved using the LM algorithm (at fs = 5 GHz) is approximately 2%
of the pulse FWHM, and still provides sub-centimeter accuracy for range retrieval.
Figure 10 presenting peak position accuracy of the PLSQ algorithm, shows that the
spatio-temporal location of the samples on the waveform has a a minute effect on
the accuracy of peak position (tpeak) retrieval. This same statement holds true for
all of the tested algorithms in the scope of this analysis.

Noise is the largest contributing factor to the accurate acquisition of the fitted
waveform peak position, especially at higher sampling frequencies, where multiple
samples close to peak are collected. This is due to the generated waveform being
deformed as a whole due to minor oscillations superimposed by noise. Due to the
nature of the CS and PLSQ algorithms, this can lead to slightly erroneous polynomial
equations. Hence, the spatio temporal location of the peak value becomes altered.
This effect is a probable reason for the smaller mean error observed at fs = 4 GHz,
than that observed at fs = 5 GHz when comparing the results of the PLSQ algorithm.

Estimating the peak position at fs = 5 GHz shows the smallest mean error,
with an order of 10−3ns. This constitutes an error in the range measurement of 8.3
mm which is 41 times smaller than the possible range attainable from the sampled
waveform.
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Table 5: Gaussian parametrization peak position mean errors and standard deviation.
The results are organized by point group (PG) and sampling frequency. An illustration of
the sampled points organized in the point groups is given in figure 5.

sf PG merror (%) s2 RSTD (%)

5GHz
1 0.0028 0.0023 81.158

2 0.0016 0.0012 75.4140

3 0.0047 0.0038 81.205

4GHz
1 0.0023 0.0018 80.1265

2 0.0021 0.0016 76.0079

3 0.0208 0.0258 123.5744

3GHz 1 0.0018 0.0014 79.5694

2 0.0017 0.0013 75.8165

2GHz 1 0.0015 0.0012 77.0572

2 0.0057 0.0051 89.498

1GHz 1 0.0068 0.0033 48.0279

(a) (b)

Figure 10: (a) Spatio-temporal peak value locations retrieved from all 5 sampling-groups
(SG) with respect to the generated values (represented by the blue line) using the PLSQ
algorithm at 3 GHz . A close-up of figure (a) is presented in figure (b). The points depict
peak position location found for each fitted pulse, while the blue line depicts the peak
positions of the generated pulse. The peak values attained from different sampling grids are
depicted by different color points. All of the retrieved peak position values corresponding
to same waveform fall on the same location, indicating that the sampling grid has no
meaningful effect on the accuracy of the position retrieval when the sample spacing is one
third of the pulse FWHM. The same pattern is repeated for all the algorithms analyzed.
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5.3 FWHM retrieval
All the algorithms produce a mean error of less than 0.01 ns at tested sampling
frequencies above 3 GHz as shown in tables 6 and 7. The RSTD values for CS
and PLSQ methods are large compared to the mean error. Above fs = 3 GHz
the maximum error is approximately 0.1 ns, but at fs ≤ 3 GHz the error becomes
comparable to the 1 ns FWHM of the pulse.

The LM algorithm provides the smallest mean error and RSTD values, with an
error that is 4 times smaller than that for the PLSQ algorithm and two thirds of that
produced by CS algorithm at fs = 5 GHz. The RSTD values in table 6 show that
the LM algorithm maintains an accuracy of 0.0024±6.8×10−4 ns, at fs = 5 GHz,
for an approximately 1 ns FWHM pulse. The relative standard deviation changes
by less than 20%, while the mean error remains at less than one hundredth of a
nanosecond until fs = 3 GHz .

In the case of the PLSQ algorithm the fs = 1 GHz results are disregarded. This
is due to the order of the polynomial equation decreasing to one due to too few data
points. This means a linear fit is produced for a nonlinear pulse, yielding erroneous
results.

Table 6: Mean errors, standard deviation and RSTD between the FWHM of the generated
waveform and the FWHM of the fitted waveform.

fs 5 GHz 4 GHz 3 GHz 2 GHz 1 GHz
Cubic Spline

merror (ns) 0.0032 0.0035 0.0052 0.0319 0.4937

s2 0.0040 0.0044 0.0063 0.0387 0.5543

RSTD (%) 125.371 124.646 121.3410 121.5133 112.2830
Least Squares Polynomial

merror (ns) 0.0096 0.0037 0.0051 0.0508 N/A

s2 0.0690 0.0034 0.0064 0.0704 N/A

RSTD (%) 718.486 125.970 125.553 138.8271 N/A
Levenberg-Marquardt

merror (ns) 0.0024 0.0022 0.0030 0.0182 0.1474

s2 0.0012 0.0014 0.0024 0.0143 0.0967

RSTD (%) 57.7449 59.1508 76.2929 79.5319 65.7239

For sampling frequencies below 3 GHz the mean error rises sharply compared to
the mean errors achieved using fs ≥ 3 GHz for all fitting methods except for the GP
method. The mean error of the FWHM produced by the CS method at fs = 1 GHz
is approximately as large as half the FWHM of the generated pulse, (with a RSTD
that is larger than the mean error). The LM algorithm can also exhibit mean errors
larger than 20% of the pulse width at fs = 1 GHz, which is due to the initial guess
for the σg parameter becoming worse as the sampling frequency becomes smaller.
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The GP method shows small mean errors for all sampling frequencies as long as
PG2 is utilized. The noise induced amplitude variation of sampled points is relatively
more pronounced close to the peak value than at mid-amplitudes of the waveform.
It is also worth noting that at fs = 1 GHz the RSTD of the GP method doubles
compared to fs = 2 GHz. At a sampling frequency of 3 GHz the mean error of the
FWHM for an individual pulse can be over one tenth of a nanosecond. Since the
generated pulses under analysis have an FWHM of approximately 1 ns, the error for
sampling frequencies below 3 GHz is considered to be large.

Table 7: Gaussian Parametrization FWHM Errors

sf PG merror (ns) s2 RSTD (%)

5GHz
1 0.0186 0.0147 79.041

2 0.0033 0.0025 75.237

3 0.0054 0.0043 78.812

4GHz
1 0.0121 0.0096 79.058

2 0.0034 0.0026 76.100

3 0.0186 0.0234 125.902

3GHz 1 0.0074 0.0058 78.1935

2 0.0034 0.0026 76.7180

2GHz 1 0.0044 0.0034 87.1479

2 0.0082 0.0082 100.1216

1 GHz 1 0.0620 0.0459 204.6408
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5.4 Area retrieval
The results presented for the CS and PLSQ algorithms in table 8 have been calculated
using the Gaussian integral equation, given in equation 39. Utilization of the Gaussian
integral provides smaller mean errors for the area enveloped by the waveform compared
to using the trapezoidal rule (when calculating over 200 discrete points). However
the trapezoidal method improves significantly when using the CS algorithm at 5
GHz, when 1000 points were used to reconstruct the fitted waveform. In this case
the mean error is only 0.2243%, with an RSTD of 124%. Comparing the results
between the trapezoidal and Gaussian area retrieval methods for the CS algorithm
shows that minor errors in recovering the Gaussian parameters lead to large errors
when determining the area enveloped by the pulse. However, the trapezoidal method
(when integrating over a reconstructed waveform consisting of 1000 points) does not
produce a smaller mean error than the Gaussian integral method at fs = 5 GHz
in the case of the PLSQ algorithm. This indicates that PLSQ algorithm better
represents the waveform shape as a whole.

Table 8: Mean errors and standard deviations between areas enveloped by the generated
waveform and the ones retrieved using the different algorithms. The areas are computed
with the Gaussian integral equation.

fs 5 wGHz 4 GHz 3 GHz 2 GHz 1 GHz
Cubic Spline

merror (%) 3.3514 3.4102 3.5088 4.7158 25.0202

s2 22.7560 22.9001 23.7929 32.0699 171.1779

RSTD (%) 100.3373 100.2701 100.3727 101.2122 102.3882
Least Squares Polynomial

merror (%) 0.8273 0.3942 0.4491 2.5700 N/A

s2 44.4134 3.4328 3.6725 23.2592 N/A

RSTD (%) 732.4650 125.6240 121.4668 137.2880 N/A
Levenberg-Marquardt

merror (%) 0.1659 0.1873 0.2243 0.8882 13.1700

s2 0.8046 0.7139 0.9392 4.3298 69.7804

RSTD (%) 80.7553 56.3911 61.9640 72.9676 77.6586

The area mean error resulting from the application of the PLSQ algorithm (and
the trapezoidal rule) is smaller for the 4 GHz than the 5 GHz sampling frequency as
shown in table 9. This indicates that over-fitting may occur due to the large order of
the polynomial equation at 5 GHz. The difference in mean error produced by the CS
algorithm, between fs = 5 GHz and fs = 4 GHz is 0.0236% and the RSTDs differ
only be 0.0267 % , showing that increasing the sampling frequency above 4 GHz
(when using the CS algorithm), only makes a minute difference in accuracy.

Using the Gaussian integral equation in conjunction with the GP method proves
to be the most accurate method for waveform area retrieval at sampling frequencies
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Table 9: Mean errors and standard deviations between generated waveform areas and the
areas retrieved using the different algorithms computed with trapezoidal rule.

fs 5 GHz 4 GHz 3 GHz 2 GHz 1 GHz
Cubic Spline

merror (%) 0.2243 0.2478 0.2848 0.6586 25.0202

s2 1.8896 2.0921 23.7929 5.2072 171.1779

RSTD (%) 124.7271 124.9943 124.7971 119.7393 102.3882
Least Squares Polynomial

merror (%) 1.3051 1.2259 0.9697 5.4197 N/A

s2 12.1596 9.1337 3.6725 37.3826 N/A

RSTD (%) 135.8520 111.1196 119.9568 102.1060 N/A

Table 10: Mean errors and standard deviations between generated waveform areas and
the areas retrieved using the GP method and computed using the integral of the Gaussian
equation.

sf PG merror (%) s2 RSTD (%)

5GHz
1 1.5545 12.928 80.0271

2 0.2862 3.512 76.0720

3 0.5107 4.811 76.3355

4GHz
1 0.9740 5.3031 79.7834

2 0.3243 1.6429 75.1620

3 1.3339 9.9429 112.8711

3GHz 1 0.5433 2.9388 79.3186

2 0.2933 1.5316 75.8142

2GHz 1 0.3135 1.6544 77.8695

2 0.4732 2.5377 79.7617

1 GHz 1 6.3242 6.1557 14.4099

below 3 GHz. This is most probably due to the generated waveform being a perfect
Gaussian, and the integral used to evaluate the area being the Gaussian integral. At
fs = 4 GHz (for the GP method) the decrease in mean error compared to fs = 5
GHz can be explained as a result of the points in point group 1 being located farther
in time from the peak value. The overall smallest mean error for the area covered by
the waveform is given by the LM algorithm at fs = 5 GHz. However, this due to
the parametrization equation used in conjunction with the LM algorithm being a
Gaussian equation.
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5.5 Computation efficiency
Table 11 presents the time taken by each algorithm to retrieve the parameters of
interest from one pulse. The values presented do not take into account the time used
to calculate the mean noise per channel, since the calculation can be completed using
the first few 1000 recorded pulses per channel. The same channel-wise mean noise
value can be subtracted from the acquired peak values without further processing.

The GP method is computationally the most efficient compared to the other
algorithms and methods due to its simplicity and no need for iterative processes, (as
it can retrieve the peak value using only three sampled data ‘points). The GP method
performs roughly 1000 times faster than the next fastest CS algorithm at fs = 4GHz.
The speed of parameter acquisition by the GP method is further enhanced by the
fact that removal of noise has to be completed for a considerably smaller amount of
data points. The CS algorithm preforms roughly 2.5 times faster than the PLSQ
algorithm, when not taking the noise removal time into account.

Table 11: Mean elapsed time for algorithms to retrieve the parameters of interest. 1000
intermediate data points are utilized to reconstruct the waveform using the CS and PLSQ
algorithms. The GP and LM algorithms are both able to compute the Gaussian parameters
from which the peak value can directly be accessed, and thus the time for reconstructing
the waveform is not calculated.

fs Cubic Spline Polynomial-LSM Gaussian
Parametrization Levenberg-Marquardt

5 GHz 7.6268 × 10−4 s 2.006 × 10−3 s 5.896 × 10−7 s 0.0223 s

4 GHz 5.6270 × 10−4s 1.523 × 10−3 s 6.206 × 10−7 s 0.0170 s

3 GHz 6.9343 × 10−4 s 1.814 × 10−3 s 6.637 × 10−7 s 0.0206 s

2 GHz 7.0926 × 10−4 s 1.712 × 10−3 s 6.502 × 10−7 s 0.0233 s

1 GHz 6.2065 × 10−4 s 1.248 × 10−3 s 1.142 × 10−6 s 0.0187 s

If the noise mean value is subtracted from the pulses directly after the CS fit is
complete, one instance is timed to take 7.74×10−4 s. However a more computationally
efficient way to retrieve the parameters of interest is to store multiple parameters in a
temporary array and subtract the mean error due to noise from all values at once using
matrix algebra. When this method was timed for 500 fitted waveforms, the elapsed
time was 1.1 × 10−3. For the CS and PLSQ algorithms the peak value acquisition
is faster than retrieving the FWHM due to the absence of iterations required to
determine FWHM from the reconstructed waveform. Even though the process of
computing the FWHM is more cumbersome for the PLSQ and CS algorithms, it holds
value in the calibration process since it allows the measurement of pulse widening as
a function of range. (Li et al. 2001)

The computation of the FWHM when using the PLSQ and CS algorithms requires
more processing power than the computation of the FWHM using the GP and LM
algorithms. This is due to the iterative approach required to find the points at the
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half-maximum location of the fitted waveform reconstructed by the CS and PLSQ
algorithms, as explained in section 4.3.

The retrieval of peak values is more efficient if multiple peaks are retrieved at once
from a large set of reconstructed waveforms stored in arrays, compared to retrieving
the peak values directly after the fit has been completed. When considering the
data of 500 fitted waveforms stored in a single array the retrieval of all maximum
values took 1.4 × 10−3s. By comparing the elapsed times between finding the peak
amplitudes from an array with waveform data stored from 500 waveforms, to finding
one peak at a time as each pulse was fitted, the procedure of finding the peak
values from the array was 6.87 times faster. Thus, if the parameters of interest are
retrieved separately from each measured waveform a large buffer for data storage
is of importance when post processing is performed on an OBC as the sampling
frequency is increased.
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6 Discussion
The difference in the magnitude of the mean errors decreases for all the tested
algorithms with increasing sampling frequency. Furthermore, all of the four fitting
procedures tested maintain the shape of the generated waveform accurately when
fs ≥ 3 GHz. Thus all the fitting methods presented can be utilized for parameter
retrieval, given that the scattered waveform shape is Gaussian. The CS and PLSQ
algorithms can be used more readily to fit non-Gaussian waveforms, compared to
the GP and LM algorithms. However, the accuracy of the CS and PLSQ methods
in such situations has not been tested, and reliable conclusions cannot be drawn
without further investigation. To answer the question on which of the fitting methods
is best suited for characterizing the reflectance, the question on which parameter
best describes the return waveform is considered first.

The FWHM parameter exhibits the smallest mean errors and standard deviations,
considering all sampling frequencies and fitting methods analyzed. The standard
deviation of the FWHM results can be large even at sampling frequencies above 3
GHz when using the CS and PLSQ algorithms. The LM algorithm on the other hand,
along with the GP method show RSTD values that are at least 45% smaller than those
produced by the CS and PLSQ algorithms. Due to this, the FWHM has the potential
of being the best parameter to characterize the laser pulse, before the reflectance
is calculated. However, in order to relate the FWHM to the measured radiance,
it has to be related to the peak amplitude. The formulation of such a relation is
only possible if prior information of the echo waveform is available. Furthermore,
computing the peak amplitude for the FWHM would have to be performed separately
for each return, increasing the demand for processing power and thus making the
FWHM a less appealing parameter for real-time reflectance retrieval.

While FWHM retrieval provides the smallest mean errors in terms of pulse
characterization, the mean errors provided by the algorithms through area retrieval
and peak amplitude retrieval are approximately the same. By comparing tables 2
and 9 for the CS algorithm at fs = 5 GHz the mean error of the peak amplitude is
smaller than that of the waveform area. However, at fs = 4 GHz and fs = 3 GHz the
waveform area provides a smaller mean error. The lower mean error of the waveform
area retrieval compared to the mean error of peak amplitude retrieval, (in this
particular case), can be explained through noise induced distortions of the sampled
values experienced by the fitted waveform as a function of sampling frequency. Such
distortion effects will be more distinct when inspecting individual points such as
the peak amplitude, compared to inspecting the waveform area (calculated as an
integral of multiple sampled points). This indicates that the accuracy of waveform
parameter retrieval is influenced more by the increasing amount of minor alterations
at individual sampled points as a consequence of noise and increasing sampling
frequency. This same distortion effect can be seen in the results provided in table
8 as decreasing standard deviation and RSTD of the mean errors provided by the
PLSQ and CS algorithms as the sampling frequency is decreased from 5 GHz to 3
GHz. The RSTD and standard deviation become larger again at fs = 1 GHz, as the
sampling frequency becomes large compared to the pulse-width.
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The RSTD of the peak amplitude parameter is generally smaller than the RSTD
of the waveform area. Even though the mean errors are in some cases smaller for the
waveform area retrieval, the peak amplitude parameter characterizes the measured
flux density more accurately. Furthermore, the relatively small mean errors for the
waveform area given by the Gaussian integral equation, are most probably due to
the fact that the generated pulse is Gaussian.

Based on the analysis above, the FWHM is the best parameter to characterize
a return waveform, given that the return waveform maintains the shape of the
emitted waveform. However, in terms of reflectance retrieval for TLS instruments the
peak amplitude parameter am is the most straightforward to retrieve and has mean
errors comparable to those produced by FWHM and area retrieval. Furthermore,
retrieval of the peak amplitude is applicable in situations in which the waveform
shape is distorted or exhibits multiple peaks, without having to separate the different
waveform components composing the so-called full-waveform. Next, the most suitable
algorithms for retrieving the peak amplitude parameter are discussed, while keeping
real-time processing in mind.

The LM algorithm provides the smallest mean errors and standard deviations for
all the parameters of interest except the position of the peak amplitude tpeak at fs = 5
GHz. However, the magnitude for the mean error in retrieval of the tpeak parameter
is only 2% of the pulse width, providing sub-centimeter accuracy for range. Thus,
the use of the LM algorithm is suggested when performing reflectance measurements
during the hardware calibration. These results give further grounds for the use of
the LM algorithm for full-waveform retrieval reported for instance by Hofton et al.
2000 and Jutzi et al. 2003.

As stated in section 4.1.3, the GP algorithm is based on the work done by
Puttonen et al. 2015. The research group shows that distinct characterization
capabilities between man-made compounds and organic materials is possible with
the GP method at a sampling frequency of 1 GHz. From this we can draw the
conclusion that both the CS and LM algorithms are suitably accurate for similar
material characterization tasks as those performed by Puttonen et al. 2015, since
they provide a mean error that is at least 13.62 times smaller at fs = 5 GHz and
9.7109 smaller at 3 GHz, than that of the GP method at fs = 1 GHz.

The GP method provides the smallest mean errors at fs ≤ 2 GHz for the retrieval
of the am parameter, with the caveat that the generated pulse is Gaussian. The
GP method in itself is not suitable for multi-peak waveform fitting, due to its strict
Gaussian formulation, unless it is combined with a non-linear least squares algorithm,
or some other iterative algorithm with the capability of refining the accuracy of
parameter retrieval. In situations, in which the return waveform can be characterized
as Gaussian, the GP method is suitable for waveform reconstruction, due to its
simplicity and relative accuracy compared to other fitting methods discussed.

Furthermore, at a sampling frequency of 2 GHz the GP algorithm achieves a mean
error that is only 0.03% larger than the mean error of the CS algorithm and 0.11%
larger than the mean error of the LM algorithm at fs = 5 GHz. In addition to the
minute percentual mean error difference between the algorithms, the GP algorithm
is approximately 3.8 × 104s than the LM algorithm and 1300 times faster than the
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CS method in performing parameter acquisition. At a 5 GHz sampling frequency the
GP method could work in real-time in conjunction with a TLS instrument having a
pulse repetition frequency up to 5 MHz, considering the hardware used in the timing
computation and taking into account retrieval of the peak amplitude parameter of
both the trigger and the echo waveform.

This implies that, out of the fitting methods tested, the GP method would
be best suited for both accurate and fast processing. However, the effective use
of the GP method requires that the reflected waveform has a Gaussian temporal
shape, which approximately occurs if the emitted pulse is Gaussian and the target is
extended compared to the beam footprint. This situation can be taken advantage of
in locations such as mines where the whole scanning area is covered by a relatively
flat surface compared to the footprint area. However, to ensure the suitability of the
GP algorithm, several on-site tests would have to be conducted, and the performance
of the GP algorithm would have to be compared with results from fitting algorithms
that take the possible non-Gaussian nature of the return waveform into account.

The mean errors of the peak amplitude parameter provided by the CS algorithm
at fs ≥ 3 GHz, when compared to the LM algorithm, differ at most by 0.11%. The
smallest difference between these mean errors is exhibited at fs = 5 GHz, and it is
0.085%. This shows that the result provided by the LM algorithm is only marginally
more accurate compared to the results provided by the CS algorithm. However,
the RSTD calculated by using the LM algorithm is considerably larger than that
retrieved through the CS algorithm at a 3 GHz sampling frequency. This leads to
the LM algorithm being less accurate for maximum amplitude retrieval at 3 GHz, as
it can produce an error as large as 0.7116% of the generated true maximum value,
while the CS maximum error is 0.5688%. For sampling frequencies of 4 GHz and 5
GHz the LM algorithm outperforms the CS algorithm, but both algorithms produce
a maximum error of less than 0.5%.

The smallest mean error produced by the CS algorithm is observed at a 5 GHz
sampling frequency. However, the difference in mean error (for am) between fs = 5
GHz and fs = 4 GHz is 0.007%. Thus, only a minute improvement in accuracy
is observed when transitioning to a higher sampling frequency. The difference
between the processing time required for peak amplitude retrieval is decreased by
approximately 20 ms when lowering the sampling frequency from 5 GHz to 4 GHz.

Considering that the mean error and the maximum error differences between
the CS and LM algorithms are small, and that the CS algorithm is approximately
30 times faster than the LM algorithm, the use of the CS method at a sampling
frequency of 4 GHz is suggested for a means of waveform processing and intensity
calibration. The CS method is also more accurate than the GP method at fs ≥ 4
GHz. While the GP method is faster, the CS algorithm can still function in real
time with a 2 kHz sampling frequency, taking into account the hardware used to
make the timing measurements, and that both the trigger and echo pulses are fitted.

Furthermore, the CS algorithm does not require parametrized equations to produce
an accurate fit, unlike both the GP and LM algorithms. This allows the use of the
CS method in a measurement settings where the return waveform is not Gaussian.
To further study the accuracy of the CS algorithm for non-Gaussian waveforms, the
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script (Ilinca 2018) given in the bibliography can be slightly modified.
The CS and GP method hold potential for use in real time material characterization

due to their small mean errors in retrieval of the waveform peak amplitude. While
the LM algorithm proves to be the most accurate fitting method for pulse parameter
retrieval, it requires a considerably larger amount of processing power to be able to
retrieve the parameters of interest in the same time period as the CS or GP methods.

Based on the analysis conducted, the sampling or digitization frequency can
be optimized relative to the laser pulse width. This, however, demands the use
of algorithmic waveform retrieval methods. Based on the methods and algorithms
tested, a sampling frequency that is four times larger than the reciprocal of the pulse
FWHM is enough to retrieve the peak value with an error of 0.2575 ± 0.191% of
the true peak amplitude of the pulse, while being able to provide real-time pulse
amplitude and target reflectance data at a pulse repetition frequency of 2 kHz.
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7 Conclusion
The applicability and accuracy of four different algorithms for laser pulse waveform
reconstruction and parameter retrieval were tested with the intention to find the
most suitable trade-off between intensity retrieval accuracy and processing speed
for the FGI-Hyperspectral LiDAR. It was shown that all of the waveform fitting
methods analyzed produced mean errors and standard deviations low enough in
terms of waveform peak amplitude retrieval, and that they can be implemented for
material characterization purposes. Furthermore, two algorithms, namely the cubic
spline- and Gaussian parametrization-algorithms, were found to provide real-time
waveform assessment capabilities due to their relative mathematical simplicity and
low processing power requirements.

The Gaussian parametrization method was found to be the most viable option
for real-time material characterization due to it being overwhelmingly the fastest
algorithm tested, as it could be theoretically utilized with pulse repetition frequencies
larger than 5 MHz. However, the applicability of the GP method relies on the
return waveform being Gaussian in shape, as the method utilizes the parameters
of the Gaussian equation to reconstruct the waveform. However, when scattering
of the emitted pulse occurs from an extended target, the echo waveform maintains
its original Gaussian shape and the GP method can be considered to be suitable.
Since the emitted pulses of hyperspectral lasers have been shown to be Gaussian,
the GP method is suitable in real-world environments such as mines, where the
target is relatively flat compared to the size of the laser footprint. However, to
absolutely determine the suitability of the GP method for such situations, on-site test
measurements and comparisons with well established waveform retrieval algorithms
such as the Levenberg-Marquardt algorithm would have to be conducted.

The cubic spline algorithm was found to provide the best trade-off between
intensity retrieval accuracy and the time required by the algorithm for full-waveform
parameter retrieval. The advantage the CS method has over the GP method is
that it can be utilized to characterize waveform shapes differing from the tested
Gaussian waveform. Hence the CS method allows research to be conducted in a larger
variety of environments, as for example forests and urban areas, where the scattered
waveform may exhibit multiple peaks or deformations compared to the trigger pulse.
Furthermore, the CS algorithm was shown to produce a smaller mean error and
standard deviation in the retrieval of waveform intensity compared to the GP method.
A sampling frequency of 4 GHz is suggested to be used with CS algorithm, since the
peak amplitude mean error is only 0.0069% larger than that attained with a 5GHz
sampling frequency. Furthermore the CS algorithm provides a RSTD value that is
1.06% smaller at sampling frequency of 4 GHz than at 5 GHz. The processing time
required for performing the CS fit is also improved by 2µs compared to the 5 GHz
sampling frequency. Taking all of the above into consideration, the CS algorithm is
suggested to be used for the FGI-HSL instrument.

Further research is needed for the absolute validation for the use of both the
CS and GP waveform retrieval methods. In terms of further simulations, the next
natural step would be to modify the script used for the analysis to account for
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multi-peak waveforms. Furthermore, field measurements for testing the validity
of the CS algorithm along with the material characterization capabilities of the
FGI-HSL instrument have been scheduled for the near future. A journal article is also
being written about the effect of sampling frequency on terrestrial LiDAR waveform
processing by the author in collaboration with other FGI researchers.

In conclusion, the results show that complicated, time-consuming, and iterative
fitting approaches (such as the LM algorithm) often used for material characteri-
zation provide only marginally more accurate results compared to mathematically
straightforward approaches such as the CS and GP methods. This implies that the
speed at which material characterization can be performed can be vastly increased
with the combined use of widely available high speed A/D converters and the GP or
CS algorithm. Furthermore, data storage management of collected pulse data can be
improved as the digitization speed can be determined based on the FWHM of the
trigger pulse. An increase in processing speed along with maintained accuracy could
potentially be efficiently used in the mining industry for finding ore in tunnels or sep-
arating ore from gangue in general. The improved speed in material characterization
capabilities could also be utilized by autonomous mining vehicles or drones providing
localized crop health information to farmers in real time reducing working hours and
expenses. Furthermore, the technology holds potential for retrieving data for remote
hazardous situation management, such as analyzing the extent of chemical spills.
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