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ABSTRACT 

 

Full waveform (FW) and photon counting LiDAR (PCL) data have garnered 

greater attention due to increasing data availability, a wealth of information they contain 

and promising prospects for large scale vegetation mapping. However, many factors such 

as complex processing steps and scarce non-proprietary tools preclude extensive and 

practical uses of these data for vegetation characterization. Therefore, the overall goal of 

this study is to develop algorithms to process FW and PCL data and to explore their 

potential in real-world applications.  

Study I explored classical waveform decomposition methods such as the Gaussian 

decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized 

Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of 

the deconvolution and decomposition method, and the three approaches generated 

satisfactory results, while the best performances varied when different criteria were used. 

Built upon Study I, Study II applied the Bayesian non-linear modeling concepts 

for waveform decomposition and quantified the propagation of error and uncertainty along 

the processing steps. The performance evaluation and uncertainty analysis at the 

parameter, derived point cloud and surface model levels showed that the Bayesian 

decomposition could enhance the credibility of decomposition results in a probabilistic 

sense to capture the true error of estimates and trace the uncertainty propagation along the 

processing steps.  

In study III, we exploited FW LiDAR data to classify tree species through 

integrating machine learning methods (the Random forests (RF) and Conditional inference 

forests (CF)) and Bayesian inference method. Results of classification accuracy 

highlighted that the Bayesian method was a superior alternative to machine learning 

methods, and rendered users with more confidence for interpreting and applying 

classification results to real-world tasks such as forest inventory. 

Study IV focused on developing a framework to derive terrain elevation and 

vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the 
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upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology 

developed in this study illustrates plausible ways of processing the data that are structurally 

similar to expected ICESat-2 data and holds the potential to be a benchmark for further method 

adjustment once genuine ICESat-2 are available. 
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INTRODUCTION 

1.1 General background  

Forest ecosystems are the primary reservoir of carbon and account for 80% of 

Earth’s total plant biomass (Kindermann et al., 2008). The structure of forests is crucial 

for estimating forest dynamics and determining light use and net primary productivity 

(Marvin et al., 2014). Acquiring knowledge about vegetation structure and forest biomass 

is conducive to designing effective plans for sustainable forest management and climate 

change mitigation (Allouis et al., 2013; Hollaus et al., 2009a).  

The development of advanced remote sensing techniques (e.g., Landsat, 

hyperspectral and radar) over the past decades has contributed significantly to the 

monitoring of vegetation structure and biomass dynamics. Especially with the emergence 

of Light Detection and Ranging (LiDAR), a three-dimensional (3D) remote sensing 

technology, we can now characterize vegetation compositions and structures in both 

horizontal and vertical dimensions.  

Previous studies have demonstrated that discrete-rerun (DR) LiDAR data can 

accurately estimate many key forest structure variables and predict tree species 

(Holmgren et al., 2008; Kim et al., 2009), forest biomass (Gleason and Im, 2012; Popescu 

et al., 2003; Zhao et al., 2009) and carbon stocks (García et al., 2010). For instance, 

various studies have elaborated how tree height, canopy height, crown width, average 

basal area, stem volume and leaf area can be retrieved or modeled from DR LiDAR data 

(Chen et al., 2007; Kraus and Pfeifer, 1998; Lefsky et al., 2002; Lefsky et al., 2005; Zhao 

and Popescu, 2009). The following section gives a brief review of waveform LiDAR 

processing, Bayesian inference, tree species identification using FW LiDAR data and 

photon counting LiDAR (PCL) data processing. 

  Full-waveform LiDAR processing 

The advent of FW LiDAR data demonstrates their remarkable abilities of 

accurately characterizing forest structures. Unlike DR LiDAR system that only record 
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several signals along the pulse line, the FW LiDAR system can record the entire echo 

scattered from illuminated objects with different temporal resolutions (such as 1/2/4 

nanosecond(s), ns) through digital sampling. Thus, the resulting datasets of FW are 

composed of pulses and waves instead of just 3D point clouds. This additional 

information gives users more control over the data interpretation and application (Chauve 

et al., 2007).  In general, large peaks (high reflected intensity) are interpreted to represent 

illuminated objects or surfaces along the pulse line.  

A complete procedure of a laser pulse propagating along the pulse line consists of 

three stages: (1) the laser is emitted from a laser sensor at the bottom of aircraft (Outgoing 

pulse); (2) it interacts with the trees, subshrub and ground; and (3) the receiver records 

the entire reflected energy along the pulse line.  

FW LiDAR data are first introduced as acquired by sensors known as large 

footprint profilers such as SLICER (Scanning LiDAR Imager of Canopies by Echo 

Recovery, 10 m footprint), LVIS (Laser Vegetation Imaging Sensor, 25 m footprint) and 

GLAS (the Geoscience Laser Altimeter System, 70 m footprint). All of them have been 

successfully applied to estimate various forest parameters such as canopy heights and 

vegetation studies worldwide (Blair et al., 1999; Drake et al., 2002; Harding and 

Carabajal, 2005). Recent advances of commercial LiDAR systems have promoted the 

availability of small footprint waveform from remote sensing industry providers. 

However, FW LiDAR cannot be directly used without post-processing of these waves 

through the aid of proprietary software. This limitation hinders the extensive applications 

of FW LiDAR vegetation characterization and mapping. Therefore, the development of 

dedicated methods or open source tools for FW LiDAR processing are urgently needed. 

Existing methods for FW LiDAR processing can be categorized into two types: 

the direct decomposition method and the deconvolution and decomposition method. Each 

method has been successfully applied for echo detection based on its own physical 

background. For direct decomposition, the Gaussian function is commonly used to 

decompose waveforms (Wagner et al., 2006) and further obtain waveform components 

for characterizing the objects along the pulse line. Nevertheless, the echoes reflected back 
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from the roof materials or surfaces are not always symmetric and that makes the Gaussian 

function no longer sufficient to fit the waveforms. The process of deconvolution can 

overcome this problem by reducing unwanted system contributions such as the effect 

coming from outgoing pulse, and recovering the true distribution of the illuminated 

surfaces. Various studies have elaborated the application of different deconvolution 

algorithms such as B-spline, Richardson-Lucy (RL), Non-negative Least Squares (NNLS) 

and Wiener Filter (WF) (Cawse-Nicholson et al., 2014; McGlinchy et al., 2014; 

Neuenschwander, 2008; Roncat et al., 2010; Rowe, 2013; Wu et al., 2011) to recover the 

true cross-sectional profile of an illuminated object. 

 Bayesian statistics and uncertainty  

The methods mentioned above are based on the deterministic models that can only 

generate adequate fitting models, however, the uncertainty of estimations cannot be 

characterized in a probabilistic sense. In addition, the function for waveform 

decomposition is non-linear and often suffers from non-uniqueness problems (several 

models may fit the observations or different combinations of parameters can fit the data 

with the same model). Mallet et al. (Mallet and Bretar, 2009) have demonstrated that there 

are four functions including generalized Gaussian, Weibull, Nakagami and Burr functions 

can be alternatives for the Gaussian function to fit FW LiDAR data. While the focus of 

my dissertation is on fitting waveforms, future research should investigate how to best 

incorporate alternative functions. 

The Bayesian method enables us to resolve these concerns through obtaining 

estimates of parameters in terms of probability function in model space. Bayesian 

inference provides a way of conducting statistical inference by means of Bayes’ rule that 

gives users a rational means of updating prior beliefs in light of the information contained 

in the data.  

Bayes’ rules can be expressed as: 

𝑝(𝜃|𝐷) =  
𝑝(𝐷,𝜃)

𝑚(𝐷)
=  

𝑝(𝐷|𝜃)𝑝(𝜃)

∫ 𝑝(𝐷|𝜃̃)𝑝(𝜃̃)𝑑𝜃̃
                                             (I-1) 

where D is the observed data, 𝑝(𝜃) is the prior belief about the parameters, 𝑝(𝐷|𝜃) is the 

distribution of D conditional on 𝜃 being the true value of the unknown parameter vector 
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or the likelihood function. 𝜃̃ is the set of all possible values for 𝜃 in its parameter space, 

𝑝(𝜃|𝐷) is the posterior distribution.  

More generally, Eq. (I-2) can be written as: 

𝑝(𝜃|𝐷) ~ 𝑝(𝐷|𝜃)𝑝(𝜃)                                          (I-2) 

Since ∫ 𝑝(𝐷|𝜃̃)𝑝(𝜃̃) 𝑑𝜃̃ is a constant for a given parameter space, Eq. (I-2) clearly 

shows us that the posterior distribution of parameters θ is proportional to the prior 

distribution of parameters times the likelihood function (Hoff, 2009). 

To obtain a more comprehensive overview of frequentist statistics and Bayesian 

statistics, we summarized the main differences in Table I-1. 

 

Table I-1. Comparisons of frequentist statistics and Bayesian statistics 

 Frequentist statistics Bayesian statistics 

Data A repeatable sample Observed from realized 

sample (fixed) 

Underlying 

Parameters 

Fixed but unknown; no priors Unknown and described 

probabilistically; require priors 

(random variate) 

Interpretation of 

parameters 

Coverage of "true" parameter in the 

long run; parameter is a single 

value; confidence interval 

(continuous) 

Researchers’ belief about 

given values of parameter are true; 

parameter is a distribution; 

credible interval (can be non-

continuous) 

Uncertainty How parameter estimates vary 

from one to the next in repeated 

sampling from the same population 

How much prior opinions 

about parameters change in light 

of the observed data 

*above comparisons are summarized from 

https://en.wikipedia.org/wiki/Frequentist_inference and https://www.quora.com/What-

is-the-difference-between-Bayesian-and-frequentist-statisticians 

 

The Bayesian method has been successfully applied in numerous domains such as 

electroencephalogram separation (Roonizi and Sassi, 2016), geophysical inversion (Oh 

and Kwon, 2001; Sen and Stoffa, 1996) and seismic waves inversion (Gouveia and Scales, 

1998; Hong and Sen, 2009). However, few studies have applied the Bayesian method to 

processing FW LiDAR data. Furthermore, the uncertainty of processing steps also cannot 

be captured using the deterministic methods such as the direct decomposition, the Gold 

https://en.wikipedia.org/wiki/Frequentist_inference
https://www.quora.com/What-is-the-difference-between-Bayesian-and-frequentist-statisticians
https://www.quora.com/What-is-the-difference-between-Bayesian-and-frequentist-statisticians
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and RL deconvolution and decomposition methods. Therefore, we propose to apply the 

Bayesian concept to decompose FW LiDAR data in this study. Details of this method can 

be found in Chapter 3.  

MCMC introduction 

Markov chain Monte Carlo (MCMC) (Gelfand and Smith, 1990) is a crucial 

technique for the rapid expansion of the Bayesian method. There are cases that some 

parameters’ posterior distributions are difficult or impossible to sample when the non-

conjugate prior (the posterior distributions p(θ|x) are not in the same family as the prior 

probability distribution p(θ)) is used or the integration of parameters is conducted over a 

high dimensional parameter space (Hoff, 2009). In such conditions, the MCMC method 

can be helpful by approximating the true posterior distribution using the joint distribution 

𝑝(𝐷|𝜃)𝑝(𝜃) instead of directly sampling from the integration of posterior distribution for 

parameters of interest 𝑝(𝜃|𝐷). There are several commonly used MCMC methods such 

as Gibbs sampling, Metropolis algorithm, and Metropolis-Hastings (MH) algorithm.  

Gibbs sampling 

Among the common MCMC methods, the Gibbs sampling is the simplest version 

of the MCMC method, while it requires the full conditional distribution of each parameter 

that can be sampled exactly. Suppose that f (θ1, θ2, …, θp) is the joint density of all 

parameters, the full conditionals for each parameter are 

f (θ1| θ2, …, θp), f (θ2| θ1, …, θp), … , f (θp| θ1, …, θp-1). 

Denote the ith sample by θ(i) = (θi1, θi2, …, θip). Assuming we have arrived at θ(s), the 

Gibbs sampling for generating θ(s+1) from f is as follows:  

(1) 1st sample, draw a value θ(s+1)1 from f (θ (s+1)1 | θs2 , …, θsp). 

(2) 2nd sample, draw a value θ(s+1)2 from f (θ (s+1)2 | θ(s+1)1 , θs3, …, θsp).   … 

(3) jth sample, draw a vale θ(s+1)j from f (θ (s+1)j | θ(s+1)1 , …, θ(s+1)(j-1), θs(j+1), … , θsp).    

(4) Repeat above step until we reach pth sample. And our θ(s+1) = (θ(s+1)1, θ(s+1)2, … , 

θ(s+1)p). 

 

https://en.wikipedia.org/wiki/Posterior_probability
https://en.wikipedia.org/wiki/Prior_probability_distribution
https://en.wikipedia.org/wiki/Prior_probability_distribution
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Metropolis algorithm and MH algorithm 

The Metropolis algorithm differs from the Gibbs sampling in that it introduces a 

proposal distribution J that can reject some proposed moves. The MH algorithm is a more 

general form of the Metropolis algorithm. Both Gibbs sampling and Metropolis algorithm 

are special cases of the MH algorithm. It proceeds in following ways: 

(1) Generate θ* from J (.|θ (s)) 

(2) Compute the acceptance ratio   r = p (𝜃∗|y) / p (𝜃(𝑠)|y) = 
𝑓(𝜃∗)

𝑓(𝜃𝑠)
 for the Metropolis 

algorithm with J is symmetric in the sense that J(x|y) = J(y|x). When it comes to 

the MH algorithm,  

r = 
𝑓(𝜃∗)

𝑓(𝜃𝑠)
×

𝐽(𝜃(𝑠)|𝜃∗)

𝐽(𝜃∗|𝜃(𝑠))
                                                (I-3) 

(3) Generate a value u from the U (0,1) distribution. If u < r, set θ(s+1) = θ*. Otherwise 

set  θ(s+1) = θ(s) 

The intuition behind the Metropolis algorithm is drawing a proposed value θ* nearby 

the current value θ(s) using proposal distribution J (Hoff, 2009). We want to know if θ* 

should be selected as a sample by calculating r = p (𝜃∗|y) / p (𝜃(𝑠)|y). If r >1 which indicate 

that θ* is more probable than 𝜃(𝑠), and then we should include θ* in the samples.  

MCMC diagnostic 

The mixing of parameters is an important criterion to assess the performance of 

MCMC method that could characterize the speed of chain moves around the parameter 

space (Hoff, 2009). Good mixing is indicated by the Markov chain dispersing around the 

population median that makes samples more likely to be independent. The faster the 

dependence decays in successive iterations, the quicker the MCMC method converges. 

Poor mixing can happen in the above three algorithms, but the generated values can stay 

stuck at the same value for many consecutive iterations only using the Gibbs sampling. 

The above MCMC methods are based on the random walk process. Recently, a 

non-random walk MCMC, Hamiltonian Monte Carlo (HMC), is introduced by adopting 
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physical system dynamics instead of a probability distribution to propose further states in 

the Markov chain (Neal, 2011).  

 Full-waveform LiDAR data for tree species classification 

Over the past decade, the utility of LiDAR data for identifying the tree species has 

become a popular topic with increasing availability of LiDAR data and development of 

processing methods. DR LiDAR data alone (Holmgren and Persson, 2004; Vaughn et al., 

2012) or in conjunction with ancillary data such as multispectral imagery (Heinzel et al., 

2008; Holmgren et al., 2008; Ke et al., 2010; Leckie et al., 2003), and hyperspectral 

imagery (Jones et al., 2010; Zhang and Qiu, 2012) have proved their potential for tree 

species identification by using variables such as percentile heights and spectral features 

extracted from these data.   

The automatic individual tree segmentation is the general preprocessing step of 

tree species discrimination. The accuracy of segmentation is crucial for the subsequent 

tree species classification and other tree structural attributes such as crown width, tree 

height, basal area (Chen et al., 2007; Koch et al., 2006; Li et al., 2012; Popescu and 

Wynne, 2004). Most of tree segmentation studies are based on the LiDAR-derived canopy 

height model (CHM) using different algorithms such as the local maximum filtering 

algorithm (Popescu et al., 2002), watershed algorithms (Chen et al., 2006) and pouring 

algorithm with empirical geometric shape of trees (Koch et al., 2006), and some segment 

tree crowns directly from the point cloud (Li et al., 2012; Morsdorf et al., 2003; Wang et 

al., 2008). The accuracy of tree species identification is influenced by many factors, such 

as forest types and point density (Vauhkonen et al., 2011), while the extraction method 

has been shown to be the main factor for precise individual tree crown delineation 

(Kaartinen et al., 2012).  

Likewise, the individual tree segmentation step is also pivotal to the tree crown 

delineation using FW LiDAR data. Currently, most studies using FW LiDAR data 

(Reitberger et al., 2008; Reitberger et al., 2009; Yao et al., 2012) also use the CHM 

derived from different algorithms as mentioned above to automatically segment trees. 

Specific examples of emerging FW LiDAR data for tree species identification mainly use 
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variables extracted from the waveform decomposition, such as echo width, amplitude, 

backscatter cross section or intensity (Hollaus et al., 2009a; Reitberger et al., 2008; 

Vaughn et al., 2012; Yao et al., 2012; Yu et al., 2014). The main advantage of the 

decomposition method is that the general view of shape for each waveform can be 

obtained by deriving the echo width, peak location and amplitude. Compared to DR 

LiDAR data, this extra information can be applied for tree species classification (Hollaus 

et al., 2009a; Reitberger et al., 2008). However, the rich information contained in the 

waveforms may automatically decrease during this step.  

Several studies have explored the variables directly from the raw FW LiDAR data, 

named FW metrics, to investigate their potential for tree species identification using linear 

discriminant analysis (Heinzel and Koch, 2011), neural network, support vector machine 

(SVM) (Vaughn et al., 2012), maximum-likelihood method (Yao et al., 2012) or Random 

Forests (Cao et al., 2016; Yu et al., 2014). What these methods share is that they are 

mostly based on the deterministic model and uncertainty of these input variables are not 

taken into account. Therefore, we propose to integrate Bayesian inference with FW 

metrics to check whether a stochastic model can improve the accuracy of tree species 

identification and quantify the uncertainty of the estimation. A detailed description of the 

basic Bayesian concept is provided in Section 1.1.2. 

 Photon counting LiDAR 

Over the past decades, PCL data have been successfully applied for ranging in 

various domains such as measuring surface elevation, roughness and slope of an ice sheet 

or sea ice in the cryosphere (Dabney et al., 2010). In contrast to analog LiDAR, the PCL 

is unique in that it requires low energy expenditure to transmit a power laser pulse and 

uses a highly sensitive detector which can capture any returned photon from the reflected 

signal or an event triggered by solar background within the detector. These advantages 

enable PCL systems suitable to generate dense along-track sampling (Zhang and Kerekes, 

2014) and ultimately result in large spatial coverage (Wulder et al., 2012).  

Unlike the Ice, Cloud and land Elevation Satellite (ICESat) using an analog, full 

waveform system, the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) 
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mission, with launch date in September 2018, will employ a PCL sensor to detect spatial 

variability of ice surface, monitoring ice dynamics (Herzfeld et al., 2014) and measuring 

vegetation canopy height over large areas. Compared to the ICESat, the ICESat-2 will 

generate overlapping footprints on the Earth surface with a diameter of 14 m, spaced at 

0.7 m along the track, which is denser than the illuminated spots (footprints) of 70 m in 

diameter, spaced at 170 m intervals of the Geoscience Laser Altimeter System (GLAS) 

aboard the ICESat.  

To clearly articulate the measurement process of different LiDAR systems, Figure 

I-1 demonstrates an example of three different laser detector modalities including FW, 

DR, and PCL for measuring vegetation. The main difference of full waveform and DR 

LiDAR systems lies in the recording logic, for example, full waveform systems can 

digitize and store the waveform samples along the pulse line while DR systems only 

record samples with their corresponding amplitude of reflected signal energy exceed a 

certain threshold, and thus it is insensitive to noise impact (Neuenschwander and 

Magruder, 2016). In contrast, PCL systems can capture any detected event including 

signal and noise within the footprint along the vertical distribution. Through accumulating 

a number of shots (>100) of a PCL sensor, a probability distribution of vertical locations 

of shots similar to waveform profile is generated as shown in Figure I-1. This histogram 

also highlights where the photons are actually reflected from and implies uncertainty and 

error of height measurement with PCL systems due to that the vertical sampling of one 

shot can occur in any high probability regions with one to three photons. However, this 

overview of the PCL’s measurement process provides solid support for measuring height 

with dense sampling as expected from the ICESat-2 mission. The shapes or recorded 

observations of these LiDAR systems are influenced by the transmitted pulse, scattering 

surfaces, the interaction of pulse with atmosphere and the characteristics of the signal path 

in the receiver (Hovi, 2015).  

A critical task for the ecosystem community is to identify the ground and canopy 

surface from these photons to meet the science objective of determining global canopy 



 

10 

  

heights hinges upon the ability to detect both the canopy surface and the underlying 

topography (Neuenschwander and Magruder, 2016). 

Generally, there are two major steps to derive terrain and canopy height from PCL 

data: 1) noise filtering of raw signals, and 2) canopy and terrain classification of possible 

signals. The performance of noise filtering, on which canopy and terrain classifications 

depend on, may be of greater significance. Regarding the noise filtering, a detailed 

discussion of these methods is provided in Chapter V.  

 

 
 

Figure I-1.Illustrations of different measurement processes of various LiDAR systems for 

vegetation detection (from (Neuenschwander and Magruder, 2016)). 

 

1.2 Rationales  

Largely available small footprint FW LiDAR data have gained the attention of 

researchers in forestry recently since a more transparent view of measurement process 

can be achieved. Owing to the fact that FW LiDAR data typically cannot be directly used 

like DR LiDAR data and scarce FW LiDAR data processing tools or algorithms are 

available for researchers to apply them to real-world tasks, developing open-source tools 

or novel algorithms is urgently needed. In addition, there is no justification for using the 
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Gaussian function to waveform decomposition from the model perspective and the 

uncertainty of waveform decomposition process also cannot be characterized. The 

Bayesian method can resolve these concerns and give us a thorough understanding of FW 

LiDAR processing. To validate the effectiveness of FW LiDAR data, we proposed a new 

way to discriminate tree species by integrating waveform metrics with machine learning 

methods such as the Random forest (RF) and Conditional inference forests (CF), and the 

Bayesian method. The upcoming ICESat-2 mission will provide a significant benefit to 

society through a variety of real-world applications such as the monitoring of the 

dynamics of sea ice, forest structural mapping, biomass estimation and improved 

estimation of Global Digital Terrain Models (GDTM). To pre-validate scientific 

objectives of the ICESat-2 mission for ecosystem community, we explored two test-bed 

sensor data, both of which are similar to the data expected from genuine ICESat-2 data to 

identify possible challenges of data processing for measuring canopy height and generate 

a basic methodological framework for processing ICESat-2 data.  

1.3 Research objectives 

The overall goal of this work is to develop algorithms for processing small footprint 

FW LiDAR and PCL data and investigate the potential application of FW LiDAR data by 

integrating FW metrics with advanced statistical methods for classifying tree species.  

Specific research objectives are formulated as follows: 

(1) exploring classical waveform decomposition methods and introducing 

optimized Gold deconvolution to process FW LiDAR data in various topography and 

vegetation conditions (Chapter II). 

(2) applying the Bayesian concept for waveform decomposition and quantifying the 

propagation of error and uncertainty along the processing steps (Chapter III). 

(3) integrating waveform metrics with machine learning (the Random Forests and 

Conditional inference Forests) and Bayesian methods to discriminate tree species using 

FW LiDAR data alone (Chapter IV). 

   (4) developing a methodological framework to derive terrain elevation and 

vegetation canopy height from test-bed sensor data which share similar characteristics of 
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the expected data from the ICESat-2 mission and further pre-validate the capacity of the 

mission to meet its science objectives for the ecosystem community (Chapter V). 
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GOLD – A NOVEL DECONVOLUTION ALGORITHM WITH 

OPTIMIZATION FOR WAVEFORM LIDAR PROCESSING* 

     

     Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-

return LiDAR data in accurately characterizing vegetation structure. However, we lack a 

comprehensive understanding of waveform data processing approaches under different 

topography and vegetation conditions. The objective of this paper is to highlight a novel 

deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with 

optimal deconvolution parameters. Further, we present a comparative study of waveform 

processing methods to provide insight into selecting an approach for a given combination 

of vegetation and terrain characteristics. We employed two waveform processing 

methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, 

we utilized two deconvolution algorithms - the Richardson-Lucy (RL) algorithm and the 

Gold algorithm. The comprehensive and quantitative comparisons were conducted in 

terms of the number of detected echoes, position accuracy, the bias of the end products 

(such as digital terrain model (DTM) and canopy height model (CHM)) from the 

corresponding reference data, along with parameter uncertainty for these end products 

obtained from different methods. This study was conducted at three study sites that 

include diverse ecological regions, vegetation and elevation gradients. Results demonstrate 

that two deconvolution algorithms are sensitive to the pre-processing steps of input data. 

The deconvolution and decomposition method is more capable of detecting hidden echoes 

with a lower false echo detection rate, especially for the Gold algorithm.  

Compared to the reference data, all approaches generate satisfactory accuracy 

assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for 

CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs).  

*Reprinted with permission from "Gold–A novel deconvolution algorithm with optimization for waveform 

LiDAR processing." by Zhou, Tan, Sorin C. Popescu, Keith Krause, Ryan D. Sheridan, and Eric Putman. 

ISPRS Journal of Photogrammetry and Remote Sensing 129 (2017): 131-150. Copyright 2017 by Elsevier. 
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More specifically, the Gold algorithm is superior to others with smaller root mean square 

error (RMSE) (<1.01 m), while the direct decomposition approach works better in terms 

of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty 

analysis demonstrates that the Gold algorithm outperforms other approaches in dense 

vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse 

vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs 

more on areas with high slope and high vegetation. This study provides an alternative and 

innovative approach for waveform processing that will benefit high fidelity processing of 

waveform LiDAR data to characterize vegetation structures. 

Key words: Waveform LiDAR, Deconvolution, Gold, Richardson–Lucy (RL), 

Decomposition, Parameter uncertainty 

2.1 Introduction 

Full-waveform airborne laser scanners (ALS) are increasingly available to remote 

sensing data providers. The data acquired by such systems is widely applicable to 

vegetated ecosystem assessment and monitoring (Gwenzi and Lefsky, 2014; Hollaus et 

al., 2009b; Lefsky, 2010; McGlinchy et al., 2014). Waveform airborne laser scanning is 

an active form of remote sensing technique that could provide additional geometric and 

physical information of the scattering substance along the path. It also gives users more 

control of data interpretation (Chauve et al., 2007) compared with the conventional 

discrete-return Light Detection And Ranging (LiDAR) technique. The physical principle 

of the waveform LiDAR system is similar to the conventional LiDAR system, but 

waveform LiDAR system can record the entire echo scattered from illuminated objects 

with different temporal resolutions (such as 1/2/4 nanosecond(s) (ns)) through digital 

sampling.  

The waveforms not only include responses from ground level, but also comprise 

multiple-scattering responses of illuminated surfaces along the laser line which give more 

information of objects through waveform shapes, widths, intensities and skewness. These 

characteristics of waveform LiDAR make its processing more difficult than discrete-



 

15 

  

return LiDAR processing which only needs to combine the time between the emitted 

signal and received signal, the speed of light and geolocation information (like GPS, 

platform altitude of scanner). Through extracting and decoding these characteristics, the 

physical attributes of vegetation like canopy height (Gao et al., 2015; Gwenzi and Lefsky, 

2014), target cross section (Roncat et al., 2011), stem volume (Reitberger et al., 2009), 

and above ground biomass of forest (Boudreau et al., 2008) can be modeled. Thus, gaining 

knowledge of the forest from waveform LiDAR data is a pivotal step toward efficiently 

and comprehensively understanding forest roles such as biomass change and carbon cycle 

under climate change.  

Generally, the waveform processing method can be categorized into two types: one 

is the direct decomposition method and another is the deconvolution and decomposition 

method. Each method has been successfully applied for echo detection based on its own 

physical background. For direct decomposition, the emitted pulse is generally assumed to 

be Gaussian shape, as well as the scatterers’ differential backscatter cross section (Wagner 

et al., 2006). The return waveform is obtained through the convolution of the Gaussian 

shape emitted pulse and the Gaussian substance scattering function (Wagner et al., 2006). 

Therefore, the Gaussian decomposition is the most frequently used approach to process 

the received signals (Mallet and Bretar, 2009). Many studies have been carried out on 

Gaussian decomposition to perform processing and analysis of different types of 

waveform LiDAR data such as LVIS (Laser Vegetation Imaging Sensor) data (Zhuang 

and Mountrakis, 2014), ICESat (Ice Cloud and land Elevation Satellite) data (Gwenzi and 

Lefsky, 2014; Harding, 2005; Keller, 2007; Lefsky et al., 2005), airborne data (Chauve et 

al., 2007; Hancock et al., 2017; Wagner et al., 2006; Wu et al., 2011). These researches 

have demonstrated that the Gaussian model is sufficient for processing waveform LiDAR 

data to characterize the vegetation structure, no matter whether its footprint is large or 

small. Fitting the waveform with the Gaussian function can provide peak amplitude, the 

width of each Gaussian component and peak location information. The peak amplitude 

can be used as a criterion to filter the points from below ground (Rowe, 2013) and it also 

provides us information about surface of objects along the pulse. The echo width has been 
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employed as tool to characterize the crown depth, crown variability, and topographic 

relief (Harding, 2005; Keller, 2007). The range or elevation of a specific reflecting surface 

can be calculated using the peak location provided through Gaussian decomposition 

(Hofton et al., 2000). Furthermore, these pieces of information combined can be utilized 

to estimate woody cover and biomass, classify tree species (Reitberger et al., 2008) and 

map land-cover etc. (Wang and Glennie, 2015).  

The commonly used approaches to fit a sum of Gaussian functions are the Non-

linear Least Square (NLS) method with Levenberg-Marquardt (LM) optimization 

algorithm (Hofton et al., 2000), the maximum likelihood methods (Persson et al., 2005) 

with the Expectation Maximization (EM) algorithm, and the Progressive Waveform 

Decomposition (PWD) method (Zhu et al., 2011). The limitations of the first two methods 

are the lack of prior knowledge about waveforms and the difficulties of identifying 

initialization of waveform parameters, such as the number of peaks, peak amplitude and 

width. Mallet et.al (2009) employed a stochastic method to reconstruct the waveform 

LiDAR by decomposing each echo with suitable functions like the generalized Gaussian 

function, Weibull function, Nakagami function and Burr function. These methods are 

robust and have shown good potential for applications in waveform processes and 

analysis (Chauve et al., 2007; Fieber et al., 2015; Reitberger et al., 2008). Whereas the 

pulse detection method such as the Average Square Difference Function (ASDF) (Zhu et 

al., 2011) may omit the important waveform parameters, the PWD method may lead to 

false echo detection due to the ringing effect.  

Based on the standard LiDAR equations and real world constraints (Carlsson et al., 

2001), the power of the received pulse can also be expressed as the sum of echoes from 

N targets with system and environment contributions (Mallet and Bretar, 2009). The 

direct decomposition method does not take into account the detector and system’s 

contributions to the waveform, which results in the loss of illuminated surface 

information. To reduce unwanted system contribution and recover the true distribution of 

the illuminated surface, the second approach, the deconvolution and decomposition, is 

proposed. Several published studies have successfully applied different deconvolution 
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algorithms such as B-spline, Richardson-Lucy (RL), Non-negative Least Squares 

(NNLS), Wiener Filter (WF) (Cawse-Nicholson et al., 2014; McGlinchy et al., 2014; 

Neuenschwander, 2008; Roncat et al., 2011; Wu et al., 2011), sparsity-constrained 

regularization approach (Azadbakht et al., 2016) and Bayesian inference method 

(Jalobeanu and Gonçalves, 2014) to recover the true cross-sectional profile of an 

illuminated object. 

Though the widely used deconvolution algorithms in the waveform LiDAR are RL 

(Lucy, 1974), NNLS and WF (Jutzi and Stilla, 2006), the studies of Nordin (2006) and 

Wu et al. (2011) have demonstrated that the RL algorithm is superior to other algorithms 

for the estimation of tree biomass and detection of unobservable peaks. The detailed 

information of the above three algorithms can be found in Wu’s study (2011). However, 

each algorithm has its own advantages and limitations when applied to the deconvolution. 

For example, the RL and NNLS can lead to more accurate results at the expense of taking 

a longer time to complete the iterative process; WF may require less implementation time 

but results in less accurate solution. Additionally, developing open source tools for the 

waveform processing is also a pressing need for the extensive applications of waveform 

LiDAR data with different format. Hancock et al. (2008) proposed the Gold’s method to 

process the large-footprint waveform GLAS (Geoscience Laser Altimeter System), 

however, the information contained in the large-footprint and small-footprint data is 

different (Mallet and Bretar, 2009). Large footprint data, e.g., up to 65m, have the 

waveform returned from multiple tree crowns and is affected by topography, especially 

on high slope terrain, therefore such data have a significantly different shape compared 

to small footprint waveform data that samples a small portion of tree crowns intersected 

by the laser beam, possibly not reaching the ground under dense vegetation. Thus, the 

Gold’s method has not been proven in prior studies that it is suitable for small-footprint 

waveform LiDAR processing. Additionally, at the time of developing our study, we could 

not identify any publication that has conducted the parameter optimization of waveform 

deconvolution for vegetation applications. Results of waveform deconvolution depend 

significantly on the choice of parameters used with deconvolution functions.  
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To enrich the existing waveform processing methods and enhance the performance 

of the deconvolution, the optimized Gold algorithm described in Section 2.3.1 is proposed 

to reconstruct the differential backscatter cross section from the waveform LiDAR 

collected by the National Ecological Observatory Network (NEON). Meanwhile, there is 

a lack of quantitative and comprehensive comparisons of waveform LiDAR processing 

methods. The overall goal of this research is to propose a novel deconvolution approach 

to process waveform data and contribute to a better understanding of advantages and 

limitations of different small-footprint waveform LiDAR processing approaches. Specific 

objectives are to: (1) introduce a novel deconvolution algorithm, the Gold algorithm, 

which is a non-negative iterative solution toward generating more accurate and 

representative ground elevation and canopy height; (2) develop an optimization 

methodology for finding appropriate deconvolution parameters; (3) explore advantages 

and limitations of various waveform processing techniques to derive topography and 

canopy height information; (4) perform comprehensive comparisons of results with 

different approaches and assess each approach’s accuracy and parameter uncertainty. 

Our hypothesis is that better results are expected with the new algorithm in terms 

of the echo detection, accuracy assessment and parameters uncertainty analysis. The 

innovative aspects of this study consist of: (1) extending the current small-footprint 

waveform processing methods by adapting the Gold algorithm to process the SF 

waveform LiDAR data and then investigating their performance in different topography 

and vegetation conditions, (2) introducing an optimization process of determining the 

deconvolution parameters and (3) implementing processing steps within an open source 

software or tools such as R (2013) and LAStools (Isenburg, 2012). 

2.2 Methodology 

 Study sites 

This study was conducted using the data from three NEON terrestrial sites: (1) the 

Harvard Forest (HF), north-central Massachusetts; (2) the San Joaquin Experimental 

Range (SJER), north of Fresno, California and; (3) the Ordway-Swisher Biological 

Station (OSBS), near Melrose of Putnam County, Florida (Figure II-1). We hypothesize 
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that the performance of approaches will be affected by factors such as topography and 

elevation gradients. These study sites were selected to test the robustness of different 

approaches for processing waveform LiDAR data. They were extended over diverse 

ecological regions, climate and elevation gradients with different number of flight lines.  

The HF is a core wild-land site and statistically represents unmanaged wildlife 

conditions across the NEON’s 30-year history (Kampe, 2010). One flight line of the 

cropped waveform sample area is chosen. The data covers about 60m × 60m with the 

center located at 731156.6 Easting, 4712671.4 Northing, and UTM Zone 18N (Figure 

II-1A). This site primarily consists of dense mixed hardwood trees with dominant species 

being white pine (Pinus strobus) and red oak (Quercus rubra) in the center 20m × 20m 

area. The landscape is characterized by flat terrain with an elevation difference of 

approximately 5m.  

The second site, the SJER, is located in the foothills of Sierra Nevada Mountains, 

about 32km north of Fresno, California. The cropped waveform sample is about 6.25 ha 

(250m × 250m) with the center at 256840.0 Easting, 4110820.0 Northing, and UTM Zone 

11N (Figure II-1B). The elevation ranges from 380 to 425m dominated by sparse blue 

oak (Quercus douglasii), interior live oaks (Quercus wislizeni) and digger pine (Pinus 

sabiniana). The topography is complex with coarse, large hills and valleys. 

The OSBS is located near Melrose of Putnam County, Florida with an elevation 

range from 21 to 48m. The cropped area is covered by four flight lines and it is about 60 

ha (1172m × 534m) with the center at 402507.6 Easting, 3282045.1 Northing, and UTM 

Zone 17N (Figure II-1C).  It is composed of homogenous forest dominated by Longleaf 

Pines (Pinus palustris Mill.) and Loblolly (Pinus taeda), areas of mixed patches of 

vegetation structure and heterogonous land cover types, including water body, wetland, 

open ground and road. These make the OSBS site well suited for comparing and testing 

performance of different processing waveform LiDAR processing over a range of simple 

to complex vegetation communities. 
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Figure II-1. Locations of three study sites in Massachusetts (one flight line), California 

(two flight lines) and Florida (four flight lines) with discrete-return LiDAR points. 

 

 LiDAR data 

2.2.2.1 Waveform LiDAR Data  

The three waveform LiDAR datasets were acquired with an Optech Gemini 

instrument at a nominal range of 1000 m (the aircraft flew at 1000 m above ground level). 

It achieved a nominal density of 3.82 points per square meter with a 0.8m diameter spot 

and a spot spacing of about 0.524 m in the across-track direction and 0.5m in the along-

track direction. Both datasets were collected during the leaf-on condition on August 8, 
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2012 for the HF site, June 13, 2013 for the SJER site, and May 7 and May 19, 2014 for 

the OSBS site. All data were distributed by the NEON data center 

(http://www.neonscience.org/content/airborne-data). The detailed technical data 

specifications are shown in Table II-1. 

There was one flight line with 13,902 waveforms included in the HF sample area. 

For the SJER site, two flight lines were available with 167,019 waveforms for flight line 

03 and 91,648 waveforms for flight line 12. For the OSBS site, four flight lines were 

available for our study region as shown in Figure II-1C. The number of waveforms for 

four flight lines is 660,995, 859,919, 597,455 and 1,371,186, respectively. Each 

waveform was segmented into 500 time bins with 1 ns temporal spacing. 

The waveforms stored the digital number (DN) of return pulses, which can be 

assumed to be the amplitude of the waveform. Simultaneously, NEON provided 

geolocation information and corresponding outgoing pulses that consist of 100 time bins 

with a temporal resolution of 1 ns. The geolocation data comprised Easting, Northing, 

height, dx (m), dy (m), dz (m), and first return bin location. And dx, dy, and dz were the 

pulse direction vector that can be used to calculate the accurate geolocation of any other 

time bins in a given waveform without registration and rectification. All data were zero 

padded. NEON also provided us with a prototype system impulse which was a return 

pulse of single laser shot from a hard ground target with a mirror angle close to nadir and 

corresponding outgoing waveform (Figure II-2). This can help us remove the outgoing 

pulse and system response effect and perform a deconvolution on the waveform. 

2.2.2.2 Reference data 

To validate the performance of methods and end products of the waveform LiDAR, 

the discrete-return LiDAR data and the Digital Terrain Models (DTMs) and Canopy 

Height Models (CHMs) provided by NEON were used as the reference data. According 

to the NEON’s discrete-return LiDAR Algorithm Theoretical Basis Document (ATBD), 

the maximum horizontal accuracy of discrete-return LiDAR is about 0.4m, with 

maximum LiDAR vertical accuracy 0.36m, respectively (Keith and Tristan, 2015). 

Discrete-return LiDAR data will be used as reference in the Number of echoes section 
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test whether more points were extracted from the waveform LiDAR data. Additionally, 

we compared the waveform-based end products such as DTMs and CHMs with 

corresponding reference data provided by the NEON to conduct the accuracy assessment 

of our approaches.  

 

 
Figure II-2. A subset of the system response impulse, a sample of outgoing pulse and 

corresponding raw waveform recorded by NEON’s full waveform LiDAR system. 

 

Table II-1. Main technical specifications of the NEON waveform data. 

 

Study Sites Technical specifications 

Operating altitude ~1000 m 

Wavelength  1064 nm 

Pulse repetition frequency 100 kHz 

Scan frequency 50 Hz 

Beam divergence 0.8 mrad 

Scan angle range ±18.5° 

Spot spacing 0.524 m(across-track), 0.5 m(along-track) 

Footprint size 3.83 points/m2 (0.8m) 

Digitizer  1 ns (12 bit A/D , baseline signal is 200) 

Outgoing pulse width ~ 14 ns 

Flying direction HF: East, heading 90 degree 

SJER & OSBS: Northing to South or South to North, heading 

180 or 0 degree 



23 

Waveform processing 

Waveform processing involves a series of steps, including noise detection, 

smoothing, radiometric calibration (Briese et al., 2008), deconvolution and 

decomposition, etc. Many studies have been conducted to interpret the waveform data 

and used it to estimate vegetation structure and function, such as canopy height and 

above-ground biomass (Chauve et al., 2007; Gwenzi and Lefsky, 2014; Roncat et al., 

2011; Wagner et al., 2006). The major steps in the waveform processing used by these 

studies are signal deconvolution and decomposition. The deconvolution is an algorithm-

based process that is used to reverse the effect of convolution on the recorded signals, and 

the decomposition is a process which can provide estimates of the location and properties 

of objects along the pulse (Wagner et al., 2006). In this study, we employed two distinct 

methods to process the waveform data. The first method was direct decomposition (I), 

which only applied the Gaussian decomposition to the waveform data. The second 

method was the deconvolution and decomposition method. For the second method, we 

utilized both new and classical deconvolution algorithms, the Gold and RL algorithms, to 

explore the advantages and limitations of deconvolution algorithms. The results from the 

above deconvolution were then subjected to Gaussian decomposition and we refer to them 

as the Gold approach (II) and RL approach (III) in this study. The RL algorithm was 

selected as a reference deconvolution algorithm because it is a superior widely used 

deconvolution algorithm (Harsdorf and Reuter, 2000; Nordin, 2006; Wu et al., 2011). 

Before performing analysis, we converted all delivered waveform data into ASCII format 

and then pre-processed them with steps, such as de-noising and mean filtering.  

2.2.3.1 Parameter optimization for deconvolution 

The returning pulses of the waveform were the product of interaction among 

outgoing pulses, atmospheric scattering, system noise and reflecting surfaces (Briese et 

al., 2008). For the NEON waveform LiDAR data, the backscatter responses can be 

expressed as the convolution of the outgoing pulse, impulse response (atmospheric 
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scattering, system noise, etc.) and effective target cross section (Eq.(II-13)). The 

deconvolution approach can remove the effect of the outgoing pulse and system impulse 

response and then improve the separability (Neuenschwander, 2008) of close peaks and 

reveal the true distribution of the scattering substances ( 𝛿𝑖(𝑡) ) along the optical path 

(Cawse-Nicholson et al., 2014; Wagner et al., 2006; Wu et al., 2011).  

𝑃𝑟(𝑡) = ∑
𝐷2

4𝜋𝛾2𝑅𝑖
4

𝑛
𝑖=1 𝑃𝑡(𝑡) ∗ 𝜏(𝑡) ∗ 𝛿𝑖(𝑡)                             (II-1) 

where 𝑃𝑟(𝑡) is the received laser power, 𝑃𝑡(𝑡) is the outgoing pulse, τ(t) is the 

receiver impulse function, D is the aperture diameter of the receiver optics, λ is the 

wavelength, R is the range from the LiDAR system to the target,  𝛿𝑖(𝑡) is effective target 

cross section and n is the number of targets detected along the pulse line.  

The deconvolution is sensitive to the pre-processing of input data and the choice of 

parameters for deconvolution. For our optimization of processing parameters, we 

randomly selected 2000 waveforms of each dataset and processed this subset in two 

different ways with all other parameters as constant: one method is to keep all input data 

(the outgoing pulses, impulse response and return pulses) as raw values as supplied by 

the data provider; another method is to normalize the input data by subtracting the 

minimum non-zero value of each dataset. Through comparing the peaks’ location of 

deconvolved waveforms with raw waveforms, we determined which method was 

employed in the subsequent analysis.  

The parameters of the deconvolution function used in this study include boost, 

iterations and repetitions. The experiment demonstrated that boost was not as sensitive as 

the other two parameters and its recommended range was 1 to 2. Detailed information of 

these parameters can refer to the R package Peaks (Morhac, 2012). In our case, 1.5 was 

selected as a constant in the subsequent analysis. The number of iterations and repetitions 

in estimated impulse response and deconvolution algorithm are critical to the performance 

of the deconvolution and decomposition method. As such, our second step was to 

optimize these parameters for deconvolution. This step could be highly subjective and 

case-dependent for different datasets. To avoid subjectivity and a trial-and-error 

approach, we developed a general rule to find the reasonable range of these parameters. 



 

25 

  

The total number of echoes generated from these 2000 waveforms and the percentage of 

matched waveforms were selected as criteria to narrow down the parameter ranges. The 

matched waveforms were defined as the deconvolved waveform with the similar peak 

locations (the difference within 3 ns) compared to the peak locations of raw waveforms 

after using the mean filter. 

The preliminary experiment was conducted on about 2300 combinations of these 

parameters, and then we selected the potential parameter combinations based on the 

criteria above. In our case, we eventually narrowed down the estimate impulse response’s 

iteration and repetition to 15-30 and 2-4, respectively. For the iteration and repetition in 

the deconvolution algorithms, the range for them was 30-55 and 3-5, respectively.  

In this study, the Gold algorithm (Morhac et al., 1997) and RL algorithm were 

employed to deconvolve the raw waveform data, and then we compared these two 

algorithms in terms of detection of peaks, false detection rate, accuracy assessment, and 

parameter uncertainty analysis. The following two sections provide the principles of these 

two algorithms.  

Richardson–Lucy (RL) algorithm 

The RL algorithm was developed from the Bayesian’s theorem which could 

reconstruct noisy images by taking into account statistical fluctuations in the signal (Fish 

et al., 1995). It was originally developed for recovering the image by searching iteratively 

for solutions to deconvolution problems. The basic idea is to calculate the most likely 

value ft(x) given the observed d(x) and the known point-spread function g(x). One 

waveform LiDAR profile can be seen as an image with the dimension 1 × N and tth 

iteration solution written as follows in terms of convolution (Fish et al., 1995): 

𝑓𝑡+1(𝑥) = 𝑓𝑡(𝑥) ∙ (
𝑑(𝑥)

𝑓𝑡(𝑥)∗𝑔(𝑥)
∗ 𝑔(−𝑥))                                              (II-2) 

where * is the convolution operation, d(x) is the observed value at location x, ft(x)  is the 

most likely value at location x and g(x) is the known point spread function, f(x) can be 

solved by iterating Eq. (II-2) until convergence. 
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Gold algorithm  

The Gold algorithm is a non-oscillating and stable deconvolution method that can 

give us non-negative solutions (Morháč et al., 2003). This vital property is suitable for 

the waveform processing, since it is unreasonable and senseless if negative solutions 

appear. The Gold algorithm has been successfully applied to deconvolve the γ-ray spectra 

(Morhac et al., 1997) and nuclear data (Morháč et al., 2003). For discrete values, it 

searched iteratively to solve the deconvolution problem using Eq. (II-3): 

y(i) = ∑ h(i − k)x(k)            n−1
k=0 i = 0, 1, 2, … , m             (II-3) 

where x, y are input and output vector, h(i) is the impulse response or outgoing impulse 

function, n is the number of samples of vector h, i is ith sample point and x(k) represent 

the kth waveform’s differential backscatter cross-section. Here, the convolution system is 

one dimension. After a matrix transformation, the Gold algorithm can be expressed as Eq. 

(II-4) (Morhac et al., 1997): 

x(k)(i) =
x(k−1)(i)

∑ h(i−j)x(k−1)(j)n
j=1

x(k−1)(i)                               (II-4) 

For both algorithm applications, the impulse response and outgoing pulses must be 

known first.  The NEON waveform LiDAR data provided each waveform with the 

corresponding outgoing pulse. In this study, three major steps were utilized to obtain the 

effective target cross section (𝛿𝑖(𝑡)): (1) the system response was used to deconvolve the 

corresponding outgoing waveform for each dataset to derive the estimated impulse 

response. (2) using the return waveform to deconvolve the outgoing pulse to get the 

immediate waveform. (3) the immediate waveform was employed to deconvolve the 

estimated impulse response to reveal the effective target cross section. After 

deconvolution, the results from the above were also decomposed using a mixture of 

Gaussian function. The major steps were the same as described in section 2.3.2. 

2.2.3.2 Gaussian decomposition 

Since the outgoing laser pulse of the NEON data is nearly Gaussian in shape, as 

shown in Figure II-2, the returned waveform can be fitted by a mixture of Gaussian 

function (Wagner et al., 2006). The Gaussian components characterize the different 

targets when the laser beam interacts with objects along the path like vegetation and 
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ground (Harding, 2005). The analytical expression of the Gaussian function (f(x)) can be 

written as: 

𝑓(𝑥) = ∑ 𝐴𝑖
𝑛
𝑖=1 exp (−

(𝑥−𝑢𝑖)2

2𝛿𝑖
2 )                                    (II-5) 

where n is number of Gaussian components, 𝐴𝑖 is the amplitude of peak at ith waveform 

component, 𝛿𝑖  is the standard deviation of ith waveform component, and 𝑢𝑖 is the time 

location of peak at ith waveform component.  

In this study, a mean filter was first performed on each individual waveform to 

remove the noise and then we normalized these waveforms through subtracting the 

minimum value of each waveform. The return pulses were fitted with a mixture of 

Gaussian functions using a NLS method and optimized using the LM algorithm, which 

was implemented in the R package minpack.lm (Elzhov et al., 2013). Detailed steps can 

refer to the study of Chauve et al. (2007).  The difficult part of using NLS to fit the 

Gaussian function was to determine the initial values of parameters. For the direct 

decomposition, we estimated the number of Gaussian components (n) by finding the 

number of peaks of raw waveform data and then used amplitude threshold to delete the 

“fake” peak(s). The initial amplitude (𝐴𝑖) was assumed to be 2/3 of the corresponding 

peak value, initial echo width (𝛿𝑖) of each component was estimated as the half-widths of 

consecutive peaks and initial peak locations (𝑢𝑖) were derived from corresponding raw 

waveforms’ peak locations. For the deconvolution and decomposition, the initial n, 𝑢𝑖 

and 𝐴𝑖 were derived from corresponding deconvolved waveform with the same step as 

the direct decomposition. However, the initial 𝛿𝑖 for each deconvolved waveform was 

estimated as half of the difference between peak location and the closest time bin with 

negative lagged difference.  

2.2.3.3 Geolocation Extraction 

Through deconvolving the waveforms and fitting echoes to a mixture of Gaussian 

function with the LM algorithm, the time of peak positions, intensity and width were 

obtained. The 3D point cloud was generated based on the time of peak positions, the 

location of the first time bin of the return pulse and position change of pulse per 

nanosecond (dx, dy, dz). 
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For the direct decomposition method, the leading edge position of each waveform 

was used to calculate the geolocation of any time bin in a return waveform by 

incorporating the full width at half maximum (FWHM). The waveform is fitted with 

Gaussian function, so FWHM can be obtained through the standard deviation (σ). 

Therefore, the leading edge position can be calculated by the Eq. (II-6) and (II-7). 

𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2 𝜎                                        (II-6) 

𝑡𝑙 = 𝑡𝑝 − 0.5 ∗ FWHM                                         (II-7) 

where 𝑡𝑙 is the leading edge position for each echo, 𝑡𝑝 is the time of peak position for 

each echo and 𝜎 is the standard deviation of individually fitted function. 𝑡𝑝 and 𝜎 can be 

obtained from Gaussian decomposition. Then the new geolocation of any time bin for 

given waveform can be calculated by the Eq. (II-8). 

𝑋 = (𝑡𝑙 −  𝑡𝑟) ∗ 𝑑𝑥 + 𝑋𝑟 

                              𝑌 = (𝑡𝑙 −  𝑡𝑟) ∗ 𝑑𝑦 + 𝑌𝑟                                           (II-8) 

𝑍 = (𝑡𝑙 −  𝑡𝑟) ∗ 𝑑𝑧 + 𝑍𝑟 

where X, Y, Z is the new geolocation of peak, 𝑡𝑟 is the first return reference bin location, 

dx, dy, dz are the position change for every ns, 𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 are the Easting, Northing and 

height of the first return. 𝑡𝑟 , dx, dy, dz, 𝑋𝑟, 𝑌𝑟 , 𝑍𝑟 are provided by the NEON geolocation 

dataset. 

The new geolocation was determined by using the time of peak location (𝑡𝑝) for the 

deconvolution and decomposition method, since the deconvolution can reveal the real 

geometry of objects. The NEON datasets provided us another geolocation dataset for 

deconvolution and decomposition method. The new geolocation is computed as: 

  𝑋 = [(𝑡𝑝 −  𝑡𝑟) − (𝑡𝑜𝑝 −  𝑡𝑜𝑟)] ∗ 𝑑𝑥 + 𝑋𝑟 

                   𝑌 = [(𝑡𝑝 −  𝑡𝑟) − (𝑡𝑜𝑝 −  𝑡𝑜𝑟)] ∗ 𝑑𝑦 + 𝑌𝑟                            (II-9) 

  𝑍 = [(𝑡𝑝 − 𝑡𝑟) − (𝑡𝑜𝑝 −  𝑡𝑜𝑟)] ∗ 𝑑𝑧 + 𝑍𝑟 

where 𝑡𝑜𝑝 is the time of peak location for the each outgoing pulse and 𝑡𝑜𝑟 is the time of 

corresponding reference bin location for the outgoing pulse. Both can be found in the 

NEON geolocation datasets. 

2.2.3.4 Digital models extraction 

The original point cloud derived from the decomposition step had some noisy 

points, since some raw waveforms were not exactly Gaussian shape. We filtered these 
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points based on the intensity and height, which was achieved through the 

LAStools(Isenburg, 2012) . 

Digital terrain models (DTMs) and canopy height models (CHMs) were generated 

from these filtered 3D point cloud for each method using the LAStools (Isenburg, 2012). 

DTMs and CHMs were chosen mainly because sets of vegetation metrics were derived 

from CHMs, and any error of DTMs would propagate to affect the accuracy of CHMs. To 

derive a DTM from waveform LiDAR data, the point cloud has to be classified into 

ground and non-ground points. Generally, the intensity and width of the last echoes can 

be used as criteria to remove the non-ground laser points. The intensity of the echoes can 

provide additional information about the reflectance properties of an object, such as 

judging whether the echoes came from below ground response (Chhatkuli et al., 2012). 

The echo width not only gives information on the range distribution of individual object 

that produce a single echo, but it also can assist to decide whether a pulse was reflected 

from solid ground or vegetation (Doneus et al., 2008; Ioannides et al., 2006). In this study, 

we employed the intensity and width of echoes to filter the non-ground points or noise. 

After exploring different thresholds of width and intensity of echoes, a width threshold of 

20 was applied to remove noise or wrongly fitted echoes, and 1/10 of the corresponding 

maximum intensity of each waveform was selected as a threshold to remove the below 

ground response. These thresholds may not be universally valid, as they may vary by 

regions and types of data. Finally, the filtered points were imported into the LAStools to 

generate a refined DTM. To further evaluate the performance of the methods, the CHM 

was generated from the non-ground points based on the steps described by Khosravipour 

(2014). 

 Algorithms’ performance comparisons 

2.2.4.1 Accuracy assessment 

The discrete-return LiDAR data and its derived end products can be regarded as the 

ground truth data due to that they can potentially achieve better accuracy than direct field 

measurement (Chen, 2007). In this study, the discrete-return LiDAR data were adopted 

as reference data to verify whether more points can be extracted from the waveform 
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LiDAR data. Additionally, we employed the reference DEMs and CHMs provided by the 

NEON to conduct accuracy assessment of our results generated from waveform LiDAR 

data from both visual and statistical perspectives. The SJER site was selected to show the 

visual comparison results for its complex topography. The results of the statistical 

comparisons were measured by mean difference, standard deviation (SD), root mean 

square error (RMSE) and percentage of spatial difference within 0.5, 1, 2 and >2m of 

each study site. 

2.2.4.2 Parameter uncertainty 

The predictive parameter error estimates not only enable us to objectively quantify 

the expected quality of the results from available data but also allow us to estimate the 

rigorous error propagation through to the end products. Through the approaches we 

employed in this study, the standard error (se) of peak location for each estimated echo 

was obtained. Parameter uncertainty was represented by the 95% confidence interval 

(95% CI) of peak location. For each echo, the estimated peak location’s confidence 

bounds were calculated using Eq. (II-10) and Eq. (II-11): 

𝑡𝑙𝑙 = 𝑡𝑙 − 1.96 ∗ 𝑠𝑒                                              (II-10) 

𝑡𝑙𝑢 = 𝑡𝑙 + 1.96 ∗ 𝑠𝑒                                             (II-11) 

The above equations were for the direct decomposition approach, while 𝑡𝑙 became 

𝑡𝑝 for the Gold approach and RL approach. The above biased peak locations (𝑡𝑙𝑙, 𝑡𝑙𝑢) 

would form two datasets for each approach: the 95% lower confidence level dataset 

(Lower dataset) and 95% upper confidence level dataset (Upper dataset). Once six DTMs 

and six CHMs for these three approaches were generated using these uncertainty datasets, 

we compared them with the DTMs and CHMs derived from the original decomposition 

to get the biases and quantitatively assess the approaches’ robustness. The parameter 

uncertainty for each method was calculated as follows: 

𝐿𝑈 = 𝐸𝐺𝐸𝐿 − 𝐸𝐺𝐸                                               (II-12) 

𝑈𝑈 = 𝐸𝐺𝐸𝑈 − 𝐸𝐺𝐸                                             (II-13) 

where EGE was the estimated ground elevation generated from dataset of peak locations, 

EGEL was the estimated ground elevation generated from Lower dataset of peaks 

locations, EGEU was the estimated ground elevation generated from Upper dataset of peak 
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locations, LU was the lower uncertainty and UU was the upper uncertainty. The 

uncertainty of maximum CHM was calculated in the same way. The visual comparisons 

of parameter uncertainty were also conducted using the site which had the largest 

uncertainty based on the statistical results. 

In order to quantify the effect of factors such as slope and vegetation height on the 

parameter uncertainty, the uncertainty was divided into three levels: high (> 2.00m and < 

-2.00m), medium (-2.00 to -0.51m and 0.51 to 2.00m) and low (-0.5 to 0.5m). The slope 

and vegetation height for each corresponding level were also extracted. The Upper dataset 

and Lower dataset of SJER site were combined for each approach. The Analysis of 

variance (ANOVA) was used to analyze the effect of factors like slope and vegetation on 

uncertainty levels, and identify which region may be more likely to have higher 

uncertainty. Box plots were chosen to visualize the uncertainty’s statistical results. An 

overview of the whole waveform processing and comparisons procedure is given in 

Figure II-3. 
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Figure II-3. Flowchart for waveform LiDAR data processing and comparisons 

 

2.3 Results and discussion 

 Deconvolution parameters optimization 

Since deconvolution was sensitive to the input data, we first explored different pre-

processing steps of the input data. The three sample results of deconvolution by the RL 

and Gold algorithms were plotted in Figure II-4, with different pre-processing steps 

against corresponding original waveforms after noise deletion. 
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Figure II-4. Three samples of original waveforms (a, b and c) versus deconvolved 

waveforms by the RL algorithm and Gold algorithm with different pre-processing steps: 

Deconvolved waveform with adjusted data where the input data (the outgoing pulse, 

impulse response and return pulse) of deconvolution were normalized by subtracting 

minimum non-zero values; Deconvolved waveform with raw data where the input data 

(the outgoing pulse, impulse response and return pulse) of deconvolution were raw pulse 

values, excluding the zero padded values. The blank section in the original waveform of 

Figure II-4(c) resulted from unrecorded values in the raw data. 

 

Figure II-4 shows that the peaks of the waveforms with deconvolution were much 

easier identified and that the shape of waveform components was closer to the Gaussian 

distribution. This verified our assumption that the waveform can be simulated by a 

mixture of the Gaussian components after removing the system impulse’s contribution. 

Also, the intensity of the waveforms was much higher and the width of the waveform was 

narrower than the raw waveform, which could be conducive to precisely revealing the 

geometry of objects along the pulse.  

It was evident that input data with different preprocessing steps could impact the 

deconvolution results. Compared with the original waveform, the results using the raw 

data were more likely to detect a wrong peak (green circle) as shown in Figure II-4(b). 
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Therefore, we adopted adjusted data to do the subsequent steps in this study, which was 

consistent with the same pre-processing steps described by Wu (2011). However, when 

using the adjusted data, we observed a downward shift in the time bin axis for both 

deconvolution algorithms. This was also found in the study of Cawse-Nicholson et al. 

(2014). The main reason may be that the system impulse was not acquired under the ideal 

condition, which led to the inaccurate deconvolved impulse response. However, this kind 

of inaccuracy of the deconvolution could be improved by obtaining more accurate system 

impulse. 

In Figure II-4, the original waveform had noise in both edges that made the direct 

decomposition very difficult when we had no knowledge about the number of the 

reflecting objects along the pulse line. But, after removing the system response, the 

number and position of the peaks were evident. As shown in Figure II-4(b) and (c), the 

local peaks could also be clearly distinguished after deconvolution for more complicated 

waveforms. However, it should be noted that the deconvolution cannot break down pulses 

from surfaces that are too close which could result in one larger pulse as shown in the 

Figure II-4(b). This kind of peaks overlaying could be solved by increasing the number 

of iterations and repetitions in the deconvolution algorithm, but this may cause additional 

minor peaks that are adjacent to the major local peak as described in the study of Wu et 

al. (2011). Therefore, to set up the optimal number of iteration was critical to the detection 

of peaks. In this study, exploratory analysis helped us narrow down the range of 

parameters and final optimal combinations of iteration and repetition were (30, 4), (35, 

5), and (40, 5) for the HF, SJER and OSBS sites, respectively.  

 Number of echoes 

To provide a more comprehensive comparison, the quantitative results for the three 

study sites are shown in Table II-2 and Table II-3, respectively. For the deconvolution 

and decomposition method, the performance of the Gold algorithm was better than the 

RL algorithm from the perspective of the number of echoes detected. Additionally, the 

Gold algorithm mostly detected higher number of echoes with lower false detection rate. 

For instance, more waveforms were decomposed into three, four or five echoes for 
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individual waveform using the Gold algorithm than the RL algorithm for all study sites. 

This indicated that the Gold algorithm had a higher potential to detect the hidden peaks 

than the RL algorithm for complex waveforms. The direct decomposition’s performance 

was similar to the RL algorithm in terms of the number of echoes detected. The direct 

decomposition was more capable of detecting a higher number of echoes than the RL 

algorithm for those study sites when we compared the number of waveforms with 

different echoes. However, the likelihood of detecting the false echoes was increased with 

the direct decomposition method compared with the deconvolution and decomposition 

method (Table II-2 and Table II-3). 

 

Table II-2. Number of echoes estimated by direct decomposition method and 

deconvolution and decomposition method with different input data for HF site 

 

   Methods 

 

 
Number of 

echoes 

 

Direct 

decomposition 

Adjusted data Raw data 

Deconvolution +Decomposition Deconvolution +Decomposition 

RL 
algorithm(NA)a 

Gold 
algorithm(NA)a 

Gold 
algorithm(0)b 

RL 
algorithm(NA)a 

Gold 
algorithm(NA)a 

Number of waveforms 

1 5,533 6,057 4,261 3,160 8,438 7,454 
2 4,313 3,088 2,783 2,990 3,164 4,024 

3 2,398 3,493 5,049 5,626 1,336 1,438 

4 685 322 765 1,088 150 169 
5 133 116 221 214 4 7 

6 23 13 13 14 0 0 

7 7 3 0 0 0 0 
False echoes 2,508 (10.05%) 370 (1.50%) 207 (0.71%) 296 56 102 

Total echoes 24,945 24,679 29,217 31,524 19,394 20,527 

Effective 
echoes 

22,437 
24,309 29,010 31,228 19,348 20,425 

a is the intensity with an original value of 0 assigned to NA after deconvolution 

b is the intensity of each pulse maintained as 0 after deconvolution 

 

Interestingly, the false echoes rate of the SJER site was lower than the HF and 

OSBS sites for all approaches (Table II-2 and Table II-3). Comparing the three sites’ 

decomposition results with their corresponding discrete-return LiDAR data demonstrated 

that the false echo detection rate of the SJER site was highest. The possible reason is that 

the SJER site was comprised of dense vegetation that could result in weak returns and 

overlapping echoes of the reflected waveforms, and potentially higher false echo 

detection rate was expected (Chauve et al., 2009). Another interesting finding was that 
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the deconvolution and decomposition method can reduce the false echoes rate 

significantly as shown in the Table 2 and Table 3.  

Table II-3. Number of echoes estimated by direct decomposition method and 

deconvolution and decomposition approach with different input data for SJER and OBOS 

sites. 

 

Methods 

 

Number 

of echoes 

SJER Adjusted data 

Direct decomposition Deconvolution + Decomposition 

RL algorithm Gold algorithm 

Number of waveforms 

1 197,304 204,129 174,060 

2 41,184 33,047 55,748 

3 14,304 16,197 19,243 
4 4,392 4,614 6,862 

5 1,166 620 1,993 

6 267 59 551 
7 42 1 171 

8 7 0 32 

9 1 0 6 
10 0 0 0 

11 0 0 1 
12 0 0 0 

False echoes 17,913 (5.15%) 378 (0.11%) 1,223 (0.32%) 

Total echoes 34,7943 340,731 385,522 
Effective echoes 330,030 340,731 384,299 

OSBS Adjusted data 

Direct decomposition Deconvolution + Decomposition 

RL algorithm Gold algorithm 

Number of waveforms 

2,528,608 2,908,389 2,310,732 

710,240 327,386 350,303 

202,117 46,246 245,509 
41,085 4,490 134,299 

6,537 306 67,185 

866 18 19,544 
81 2 4,976 

10 0 1,861 

0 0 632 
0 0 160 

0 0 28 

0 0 3 
563,974 (11.85%) 14,709 (0.40%) 66,226 (1.38%) 

4,758,307 3,736,220 4,861,828 

4,194,333 3,721,511 4,795,602 

 

Hence, based on the visual inspection and quantitative comparisons of different 

methods, we concluded that the deconvolution and decomposition method outperformed 

the direct decomposition method. The Gold algorithm was superior to the RL algorithm 

based on the number of echoes and false echo detection rate. We also found that pre-
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processing of data significantly affected the echo detections; assigning zero-padded 

values of the return pulse to NA and utilizing the adjusted input data (the outgoing pulse, 

system response pulse and return pulse) could achieve better and more accurate results. 

 Position of echoes  

 

 

Figure II-5. Comparisons of the decomposition results with the direct decomposition 

approach, RL approach and Gold approach for three sample pulses (a, b, c). The solid 

black line is the original waveform. The colored dash lines are Gaussian components after 

decomposition. 

 

To further demonstrate the performance of different approaches, we also explored 

the position of echoes. Figure II-5 shows that the three sample waveforms were 

decomposed by the three approaches: direct decomposition approach, RL approach and 

Gold approach. Here, the direct decomposition approach detected a higher number of 

echoes for each pulse than the other two deconvolution approaches, as shown in Figure 

II-5(a), (b) and (c) with 7, 6 and 3 Gaussian components, respectively. However, a closer 

examination revealed that the direct decomposition was likely to detect some 

unreasonable echoes. For example, the red Gaussian component in the direct 
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decomposition of Figure II-5(b) is almost overlaid with the green component; the yellow 

component looks like a supplement to the other echoes and neither agrees well with the 

reality. Furthermore, the blue component in the direct decomposition of the Figure II-5(c) 

is higher than the original waveform. These may explain why there was higher false echo 

detection rate for direct decomposition as shown in Table II-2 and Table II-3. 

It was evident that deconvolved waveforms performed better on decomposition 

with explicit Gaussian components in terms of visual comparisons. The performances of 

the RL and Gold approaches were similar in our example and almost had the same peak 

positions and shape, but the Gold approach worked better when the original waveform 

was composed of many peaks with noise. As shown in Figure II-5, the Gold approach 

could detect more echoes for the same pulse and may reconstruct more accurate cross 

sections of vegetation and terrain. The RL approach was less capable of detecting the last 

echoes that may represent the ground when we interpreted the waveform LiDAR data. 

However, it was worthy to note that the Gold approach may cause the ringing effect as 

shown in the second Gaussian component (green part) of the deconvolution by the Gold 

algorithm (Figure II-5(a)). This kind of minor peak around the major local peaks may be 

caused by a wavelike artifact that resulted from the sum of remaining low-frequency 

components after the loss of high-frequency components (Wu et al., 2011). 
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 Point clouds 

 

 

Figure II-6. Comparison of point clouds generated from discrete-return LiDAR data and 

waveform LiDAR data with different processing methods. (1) Point cloud derived from 

discrete-return LiDAR data. (2) Point cloud generated by geo-referencing every time bin 

of waveforms. (3) Point cloud derived from direct decomposition method. (4) Point cloud 

derived from Gold deconvolution and decomposition method (the Gold approach). (5) 

Point cloud derived from RL deconvolution and decomposition method (the RL 

approach). 

 

After geo-referencing, the point clouds generated from full waveform LiDAR data 

using different methods with number of points (n) are shown in Figure II-5. As the figure 

shows, the point clouds derived from waveform LiDAR data (Figure II-6(3), (4), (5)) are 

denser than discrete-return LiDAR data (Figure II-6(1)), while they contained some noisy 

points in some vegetation parts. The point cloud generated by geo-referencing every time 

bin (Figure II-6(2)) could show a good shape of tree canopy with very high density points, 

but it was noisy with “false ground” and “false canopy height”. The point cloud generated 

from the direct decomposition (Figure II-6(3)) was comparable to that used the 
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deconvolution and decomposition (Figure II-6(4) & (5)) results. However, the number of 

points generated from these methods of the same study extent revealed that the Gold 

approach is larger than the RL approach and the direct decomposition approach. Overall, 

these results provide important insights into the selection of waveform processing 

methods, as some of these approaches may provide more information on the three-

dimensional vegetation structure. 

 Accuracy assessment 

Qualitative and quantitative accuracy assessments for the derived end products 

(DEM and CHM) were conducted in terms of visual and statistical comparisons. The 

results from SJER were used as an example to demonstrate the visual comparison results. 

 

 

 

Figure II-7. The comparisons of the impulse response used for deconvolution provided 

by the NEON datasets 
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2.3.5.1 Digital Terrain Model 

Figure II-8 shows that the DTMs generated from waveform LiDAR data with 

different approaches in the SJER study site almost have identical elevation distribution in 

comparison to the reference DTM. The range of the DTM derived from waveform LiDAR 

was also consistent with the reference DTM. However, a lower elevation range was 

observed for all approaches with the direct decomposition approach ranging from 381.9 

to 424.2m, Gold approach from 381.3 to 423.2m and RL approach from 381.3 to 423.0m. 

It should be noted that there were some blank regions on the edges of DTMs, which may 

be due to no waveform or no information extracted from the sparse waveforms in those 

regions.  

 

 

Figure II-8. Comparisons of (1) Reference DTM to waveform-based DTM generated from 

(2) the direct decomposition, (3) the Gold deconvolution and (4) the RL deconvolution 

approaches for the SJER site. 
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To further validate the performance of DTM results generated from different 

approaches, the statistical results for the DTMs are shown in Table II-4. It was noticeable 

that for all study sites, DTMs derived from waveform LiDAR were lower than the 

reference DTM from the perspective of range, and the direct decomposition approach 

outperformed the other two approaches generally. More precisely, the direct 

decomposition and gold approaches had similar performances for the HF study area in 

terms of root mean square error (RMSE) and mean difference (MD). Unlike the results of 

the HF site, the SJER and OSBS sites’ direct decomposition approach outperformed the 

Gold and RL approaches. Especially for the SJER site, larger variances and RMSEs 

(Table II-4) were reported that probably resulted from the downward shift of detected 

peaks after we utilized the shifted estimated impulse response to deconvolve the 

waveforms. As shown in Figure II-7, the estimated impulse response of the SJER site 

(red) is shifted downward compared with the estimated impulse response of the HF site. 

Additionally, there is an extra peak at the end of the SJER site’s impulse response which 

is an artifact, since the impulse response was reflected from flat ground that should have 

one peak. The deconvolution is sensitive to the input data such as impulse response and 

any shift of impulse response will propagate to the position accuracy of the detected peaks 

(Cawse-Nicholson et al., 2014). On the contrary, the impulse response for HF was more 

reasonable with only one significant peak. These may explain why the HF site’s DTMs 

derived from the Gold approach and the RL approach were better than for the SJER site 

with the same approaches. However, through obtaining more accurate impulse response, 

the accuracy of the SJER DTM could be improved. Assuredly, the topography of the 

study areas, resolution of the DTM, and ground points’ classification method may also 

contribute to larger variance of the results. 

The percentage of the spatial elevation difference between DTMs derived from 

waveform LiDAR and reference data for the three study sites was also analyzed as shown 

in Table II-4. Almost all elevation differences (>94%) were within 0.5m when we used 

the direct decomposition approach for the SJER and OSBS study sites. The performance 
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of direct decomposition, Gold and RL approaches significantly varied on the SJER and 

OSBS sites when only the elevation difference within 0.5 (PW0.5) or 1m (PW1) was 

considered. However, the elevation difference within 2m (PW2) for this site was almost 

the same for these three approaches. As we explained above, the estimated impulse 

response may be the main reason for the lower performance of this site. For the 

deconvolution and decomposition method, the Gold approach had a better performance 

than the RL approach with a higher percentage of spatial difference located in the ranges 

from -0.5 to 0.5m and -1 to 1m for all study sites.  

 

Table II-4. Summary statistics of DTMs (1m resolution) generated from the three 

approaches (Direct decomposition, Gold algorithm and RL algorithm) for the HF, SJER 

and OSBS sites 
Approache

s Range (m) 

SD 

(m) 

MD 

(m) 

RMSE 

(m) 

PW0.5 

(%) 

PW1 

(%) 

PW2 

(%) 

PW3 

(%) 

HF         

Reference  313.5 - 318.0        

Discrete  

313.9 – 

318.1 0.18 -0.28 0.24     

Direct  313.7 - 317.9 0.23 -0.35 0.42 75.36 99.91 100 100 

Gold  313.6 - 317.7 0.25 -0.35 0.31 68.82 97.68 100 100 

RL  313.9 - 318.3 0.70 -0.21 0.70 60.43 80.45 93.40 100 

SJER         

Reference  

381.5 – 

424.0        

Discrete 382.1 - 424.5 0.15 -0.12 0.15     

Direct  381.9 - 424.2 0.25 -0.24 0.26 93.87 99.70 100 100 

Gold  381.3 - 423.2 0.30 -1.04 1.15 3.53 25.65 99.20 100 

RL 381.3 - 423.0 0.31 -1.16 1.26 2.23 18.80 99.50 100 

OSBS         

Reference 21.0 - 46.9        

Discrete  21.7 - 47.6 0.12 -0.08 0.15     

Direct 21.0 - 47.4 0.31 0.35 0.36 94.10 99.78 100 100 

Gold 20.6 - 47.0 0.40 -0.14 0.42 60.56 94.56 99.88 100 

RL 20.5 - 46.6 0.35 -0.54 0.62 49.68 92.47 99.94 100 

Reference: Reference DTM; Discrete: Discrete-return LiDAR derived DTM; Direct: 

Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard 

deviation; MD: Mean elevation difference between DTM derived from waveform LiDAR 

and reference data; PW0.5: the percentage of difference within 0.5m (-0.5 - 0.5); PW1: 



 

44 

  

the percentage of difference within 1m (-1 - 1); PW2: the percentage of difference within 

1m (-2 - 2); PW3: the percentage of difference beyond 2m (> 2.0 and < -2.0). 

 

2.3.5.2 Canopy Height Model 

 

Figure II-9. Comparisons of (1) Reference CHM to waveform-based CHM generated 

from (2) the direct decomposition approach, (3) the Gold approach (4) and the RL 

approach for the SJER site. 

 

Figure II-9 displays the CHMs generated from the direct decomposition, Gold and 

RL approaches for the SJER site. All approaches yielded similar results to our reference 

data in terms of the range and spatial distribution. It was worthwhile to note that the values 

in some regions of the reference data were zero (dark red), while the canopy height of the 

same region derived from waveform data was slightly higher as shown with ellipse shape. 
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As noted from the regions marked by the circle, the Gold and RL approaches’ results give 

more detail information about low vegetation than the direct decomposition approach.  

These differences may demonstrate that the waveform LiDAR data was more 

capable of detecting the low vegetation than the discrete-return LiDAR data, and the 

deconvolution and decomposition method had higher potential to detect low vegetation. 

The findings may provide insights into detecting understory layers below the forest 

canopy or grassland vegetation by using waveform LiDAR data. The range shift was not 

observed for CHMs using the Gold and RL approaches as noted for the DTMs, because 

the CHM was obtained by subtracting the DTM from the digital surface model (DSM) 

and the time shift was offset after subtraction.  

In addition to the visual comparisons, the quantitative comparisons between 

waveform-based CHMs with different approaches and reference CHM data are shown in 

Table II-5. The Gold approach had the best performance with smallest standard deviation 

and RMSE for all sites. The result of the RL approach at the OSBS site had the smallest 

height difference but larger RMSE than direct decomposition approach, which may be 

primarily caused by the wider range of the height difference. However, it was still 

comparable to the result of direct decomposition approach. These observations may 

further indicate that the three approaches were reliable to extract the vegetation structure 

from the waveform LiDAR data and the Gold approach outperformed the other two 

approaches.  

Analysis of percentage of the region’s difference between maximum CHM derived 

from waveform LiDAR and the reference data further confirmed this conclusion (Table 

II-5). From the perspective of the percentage of height difference within 2m, about 96% 

of regions in HF site and 90% of region in other two sites, the performance of these three 

approaches were satisfactory. The majority of height differences larger than 2m occurred 

at the boundary of trees and ground. The reason behind this was that the small change of 

peak (t) not only lead to the slight change of height (z), but also resulted in the 

synchronized change of XY locations, as implied in the Eq. (II-8) and (II-9). When 
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compared with the reference data, the boundary of trees and ground most likely yielded 

larger height differences due to this kind of XY location shift. 

However, the performance of the three approaches varied at different sites in terms 

of the height difference within 0.5 and 1m. The Gold approach worked best at the HF and 

SJER sites, while it did not work as well as the direct decomposition in the OSBS site.   

Globally, the CHMs generated from the waveform LiDAR data using the three 

approaches were satisfactory compared to the reference data for these three study sites. 

The Gold approach worked slightly better with smaller standard deviation and RMSE for 

all sites. However, the direct decomposition approach outperformed the Gold approach 

with higher percentage of area located in the given spatial difference range, especially 

when the spatial difference range was within 0.5 and 1m at OSBS site. This may be 

because the HF study area was flatter than SJER study area and potentially proved that 

Gold approach could work well in regions with different topography. 
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Table II-5. Summary of comparison of CHMs (resolution 1m) generated from the three 

approaches (Direct decomposition, Gold approach and RL approach) for the HF, SJER 

and OSBS sites. 

 

Approaches Range (m) SD (m)  MD (m) RMSE (m) 

PW0.5 

(%) 

PW1 

(%) 

PW2 

(%) 

PW3 

(%) 

HF         

Reference  9.10 - 23.06        

Discrete 9.19 – 23.06 0.42 0.25 0.51     

Direct  9.19 - 23.40 0.70 0.65 0.95 50.61 80.95 96.39 100 

Gold  10.83 - 22.91 0.45 0.38 0.72 65.53 88.28 98.37 100 

RL  9.95 - 23.67 0.98 0.28 1.02 42.45 69.31 95.28 100 

SJER         

Reference 0.00 - 24.56        

Discrete 0.00 – 24.49 0.32 0.15 0.35     

Direct  0.00 - 24.68 1.40 0.50 1.65 60.87 75.08 88.03 100 

Gold  0.00 - 25.12 1.28 -0.12 1.06 72.65 81.82 89.62 100 

RL 0.00 - 24.57 1.39 0.35 1.51 34.56 80.34 88.89 100 

OSBS         

Reference 0.00 - 27.35        

Discrete 0.00 – 27.77 0.28 0.11 0.31     

Direct 0.00 - 27.58 1.67 0.75 1.40 68.25 83.48 92.56 100 

Gold 0.00 - 27.81 1.54 0.30 1.62 48.59 79.68 88.25 100 

RL 0.00 - 28.50 1.93 0.13 1.87 38.25 68.37 86.87 100 

Reference: Reference CHM; Discrete: Discrete-return LiDAR derived CHM; Direct: 

Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard 

deviation; MD: Mean height difference between CHM derived from waveform LiDAR 

and reference data; PW0.5: the percentage of difference within 0.5m (-0.5 - 0.5); PW1: 

the percentage of difference within 1m (-1.0 – 1.0); PW2: the percentage of difference 

within 1m (-2.0 – 2.0); PW3: the percentage of difference beyond 2m (> 2.0 and < -2.0). 

 

 Parameter uncertainty 

2.3.6.1 Digital Terrain Model 

Figure II 10 shows that the DTMs’ spatial uncertainty of the SJER site for the three 

approaches mostly ranges from -1m to 1m, and the DTMs derived from the Lower 

datasets are smoother than the Upper datasets. More specially, the direct decomposition 

approach had the smallest variation of spatial uncertainty with more than 86% of the 

prediction error within 0.50m for the Lower dataset, and 89% of the prediction error was 
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located in the range from 0.00 to 0.49m for the Upper dataset. The RL approach yielded 

similar result as the Gold approach when using the Lower dataset and most of the 

uncertainty ranged from 0.51 to 1.00m. The spatial uncertainty using the Upper dataset 

with the RL approach had less variation compared to the Gold approach that was 

consistent with the standard deviation in Table II 6. It was worth noting that the spatial 

distribution of uncertainty derived from the Lower dataset was not consistent with that of 

the Upper dataset. This may be mainly attributed to the fact that the NEON data could 

provide x, y, z change per nanosecond for each waveform which can result in the 

synchronized change of points’ x, y, z when the peak location with 95% uncertainty level 

was considered. In addition, the interpolation and the smoothing process may also lead to 

this kind of inconsistency. 

 

 

Figure II-10. The spatial uncertainty of the DTM caused by the parameter uncertainty in 

the SJER site using the direct decomposition approach (left), Gold approach (middle) and 

RL (right) approach, respectively. The above was the result from the corresponding 

Lower dataset and the bottom was the result from the corresponding Upper dataset.  
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Table II-6. Global statistics summarizing validation errors caused by parameter 

uncertainty for DTMs. 

 

Approaches Dataset  Range (m) SD (m) MU (m) MinU (m) MaxU (m) RMSE (m) 

HF          

Direct low 313.89 - 318.15 0.15 0.23 -0.06 0.76 0.32 

 up 313.69 - 317.50 0.18 -0.24 -0.79 0.60 0.32 

Gold low 313.40 - 318.00 0.07 0.04 -0.21 0.28 0.08 

 up 313.31 - 317.97 0.09 -0.03 -0.49 0.21 0.09 

RL low 313.74 - 317.48 0.39 -0.15 -2.12 0.88 0.42 

 up 313.35 - 316.2 0.52 -0.78 -3.05 0.22 0.94 

SJER          

Direct low 382.09 - 424.05 0.12 0.05 -1.24 1.53 0.21 

 up 381.69 - 424.11 0.18 -0.10 -2.51 1.29 0.13 

Gold low 381.39 - 423.11 0.17 0.03 -1.61 1.43 0.17 

 up 380.78 - 423.15 0.36 -0.04 -2.59 2.53 0.36 

RL low 381.39 - 423.11 0.14 0.03 -2.21 2.59 0.14 

 up 381.35 - 422.92 0.26 -0.10 -3.77 1.89 0.28 

OSBS        

Direct low 21.88 - 47.10 0.16 0.08 -1.57 2.48 0.18 

 up 20.96 - 47.02 0.26 -0.13 -2.27  1.42 0.29 

Gold low 20.94 - 45.46 0.11 0.01 -1.59 1.38 0.11 

 up 20.99 - 45.61 0.18 0.02 -1.88 1.51 0.18 

RL low 20.48 - 46.67 0.10 0.01 -1.84 1.78 0.10 

 up 20.99 - 46.63 0.11 0.00 -2.54 1.74 0.11 

Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: 

standard deviation; MU: Mean uncertainty caused by parameters between DTM derived 

from uncertainty dataset and DTM derived from peak location dataset; MinU: Minimum 

change caused by parameter uncertainty; MaxU: Maximum change caused by parameter 

uncertainty; low: Lower dataset; up: Upper dataset.  

 

Global statistics for the DTMs’ parameter uncertainty is presented in Table II-6. 

For all study sites, all approaches’ absolute mean spatial uncertainties were below 0.25m, 

except for the Upper dataset using the RL approach, indicating that biases caused by 

parameter uncertainty were relative low. The RMSE ranged from 0.08 to 0.36m, which 

was almost consistent with the standard deviation. From the statistics in Table II-6, there 

is no obvious difference among these three approaches in terms of the RMSE and SD. 
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However, the Gold approach outperformed the other two approaches when the MU was 

taken into account.  

The RL approach had larger minimum error and maximum error in the HF site that 

resulted in larger RMSE and mean absolute errors at the HF site. The RL approach’s 

performance enhanced substantially when it came to the SJER and OSBS sites with 

smaller RMSE. For instance, the RL approach’s RMSE for the Lower and Upper dataset 

were 0.14 and 0.28m at the SJER site, when compared to 0.42 and 0.94m at the HF site. 

The only one flight line may contribute to higher SD and RMSE at the HF site since there 

was no overlap in the study region with less dense raw waveform data. It was surprising 

to find that the Upper datasets for all approaches have larger range and RMSE than the 

corresponding Lower datasets. It may be attributed to the fact that most of the Upper 

dataset’s points were lower than reference DTM, which had a more weight on the effect 

of the DTM generation than using the Lower dataset. 

The direct decomposition method worked well and consistently in these three sites, 

but the deconvolution and decomposition method (either the Gold or RL approach) was 

more likely to generate smaller RMSE than the direct decomposition approach. 

To further identify areas where DTM surfaces of low quality with high uncertainty, 

and compare the performances of approaches under different conditions, the slope and 

the vegetation height were taken into account as important predictors for the categories 

of uncertainty. Here, the HF and SJER sites were selected as examples to demonstrate the 

effect of the slope and vegetation height. 

The ANOVA analysis showed that vegetation height and slope had a significant 

effect on the uncertainty levels of DTMs for the three approaches at the HF site, with all 

p-values smaller than 0.05 (Figure II-11 and Figure II-12). The green line (median) 

increased with uncertainty levels for the three approaches, which demonstrated that larger 

slope and higher vegetation height were more likely to cause high uncertainty of DTM. 

For the SJER site, the uncertainty levels vs. slope showed that all approaches’ p-values 

were zero except the Gold approach’s p-value was 0.917. This indicated that the slope 

had no effect on the uncertainty levels and the Gold approach may be robust when dealing 
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with complex topography. The average slope and slope distribution of the three 

uncertainty levels for the other two approaches were similar to each other, even the 

ANOVA analysis showed that slope was a significant factor for determining the 

uncertainty levels. This may potentially imply that slope could influence the uncertainty 

levels, but its cause-effect relationship is not so strong. Unlike slope, the vegetation 

height’s effect on the uncertainty levels was more significant with regard to mean, median 

and interquartile range (IQR) as shown in  

Figure II-13 and Figure II-14. Additionally, the higher the vegetation height, the 

more likely for this area to have higher uncertainty level. It was worthy to note that the 

median was not consistent with the mean for the corresponding uncertainty level. Most 

of the low and medium uncertainty occurred on the ground with mean and median being 

zero for low uncertainty levels (Figure II-14).  

 

Figure II-11. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Slope for the HF site 
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Figure II-12. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Vegetation Height for the HF site 

 

 

Figure II-13. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Slope for the SJER site 
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Figure II-14. Box-plot of DTMs and CHMs’ Uncertainty levels vs Vegetation Height for the SJER site 

*Green lines indicated median of dataset, the height of the box portion was given by the IQR of the dataset 

and the ends of the whiskers meant 1.5 IQR of lower quantile and 1.5 IQR of upper quantile. Blue points 

were the mean of the corresponding variable. 

 

In summary, the analysis identified that high prediction uncertainty of DTM was 

more likely to occur at larger slope and higher vegetation for all approaches in flat 

topography with dense vegetation. The vegetation height’s effect on the DTM’s 

uncertainty levels was more significant than slope when it came to the complex 

topography. The ground was more prone to lower spatial uncertainty level which may 

result from that waveforms in the ground region were simpler than in the slope and 

vegetation regions.  
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2.3.6.2 Canopy Height Model 

 

 

Figure II-15. The spatial uncertainty of CHM caused by the parameter uncertainty in HF 

region using the direct decomposition approach (left), Gold approach (middle) and RL 

(right) approach, respectively. The above was the result from the Lower dataset and the 

bottom was the result from the Upper dataset.  
 

Visual comparisons of the maximum CHM of the HF site for the three approaches 

are shown in Figure II-15. With regard to different datasets for the three approaches, the 

spatial distribution of uncertainty was similar, but not identical. The Gold approach had 

the smallest variance with similar spatial distribution using the two different datasets. The 

RL approach had the largest variance, which was coincident with the global statistic of 

Table II-7. Somewhat surprisingly, the largest uncertainty level (dark red or dark blue) 

for the RL approach was more likely to occur at the edges of the HF site rather than at the 

boundary of trees and ground (Figure II-15). After a closer examination, we found that 



 

55 

  

the large uncertainty level was located in dense vegetation areas, which may further imply 

that the Gold approach was less suitable for dense vegetation regions. 

The quantitative assessment of the CHMs’ parameter uncertainty (Table II-7) 

yielded similar results to those of DTMs. The absolute mean spatial difference for all 

approaches ranged from 0.00 to 0.27m, which was smaller than the DTMs’ result derived 

from the corresponding datasets. It was not surprising to see that the minimum uncertainty 

and maximum uncertainty for each dataset of CHMs were larger than corresponding 

DTMs’ results, since DTMs were much flatter than CHMs and relatively lower 

uncertainty was expected. In addition, the CHM was generated with additional steps 

compared with DTM that may bring more error into the CHM products. Most of these 

large uncertainties occurred at the boundary of trees and ground, and a small shift of XY 

location from parameter uncertainty would result in a large difference of canopy height. 

The Gold approach had the smallest RMSE for CHMs in the HF and OSBS sites, 

but it had the largest RMSE for the SJER site. By contrast, the RL approach yielded the 

opposite results with the smallest RMSE at the SJER site, and the largest RMSE and mean 

error for the HF site. These trends were consistent with the DTMs’ results. It confirmed 

the previous conclusion that the Gold approach may be more suitable in flat terrain areas 

and RL approach tended to perform better in complex topography conditions. The direct 

decomposition method performed well in both study areas, but not as good as the 

deconvolution and decomposition method (either the Gold or RL approach) that may 

further indicate the advantages of the deconvolution. Assuredly, the relationship between 

vegetation, and topographic conditions and deconvolution results is complex, the 

simulated waveform data with different topographic and vegetation conditions will be the 

ideal datasets to further test the approaches and provide insights into selecting approaches 

under different conditions of topography and vegetation.  
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Table II-7. Global statistics summarizing validation errors caused by parameter 

uncertainty for CHMs (unit: m). 

 

Approaches Dataset Range SD MU MinU MaxU RMSE 

HF         

Direct low 11.44 - 24.13 0.46 -0.07 -2.85 4.82 0.47 

 up 11.76 - 23.38 0.38 0.13 -1.74 2.33 0.40 

Gold low 10.71 - 22.75 0.18 -0.04 -2.34 0.92 0.19 

 up 10.84 - 23.16 0.19 0.01 -1.64 1.71 0.20 

RL low 9.90 - 22.86 0.88 -0.27 -2.73 2.66 0.92 

 up 10.19 - 23.71 0.95 0.25 -3.77 2.56 0.98 

SJER         

Direct low 0.00 - 24.85 0.43 0.06 -6.32 11.00 0.44 

 up 0.00 - 24.70 0.40 0.01 -6.42 8.87 0.39 

Gold low 0.00 - 24.70 0.51 0.15 -7.06 10.22 0.53 

 up 0.00 - 24.24 0.49 0.04 -8.86 9.26 0.49 

RL low 0.00 - 24.78 0.33 0.00 -9.44 8.70 0.33 

 up 0.00 - 24.63 0.35 0.09 -6.19 5.50 0.37 

OSBS        

Direct low 0.00 – 27.36 0.61 0.00 -17.2 17.05 0.61 

 up 0.00 - 27.73 0.69 0.07 -14.56 17.70 0.69 

Gold low 0.00 - 28.61 0.01 0.00 0.00 2.71 0.01 

 up 0.00  - 28.59 0.58 -0.03 -13.71 16.22 0.57 

RL low 0.00 - 28.37 0.48 0.03 -18.18 19.20 0.49 

 up 0.00 - 28.12 0.46 -0.01 -17.20 17.12 0.46 

Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard deviation; 

MU: Mean uncertainty caused by parameters between DTM derived from uncertainty dataset and DTM 

derived from peak location dataset; MinU: Minimum change caused by parameter uncertainty; MaxU: 

Maximum change caused by parameter uncertainty; low: Lower dataset; up: Upper dataset. 

 

The ANOVA analysis of CHMs at the HF site (Figure II-11) demonstrated that the 

median, mean and IQR of slope were similar for different CHMs’ uncertainty levels using 

the direct decomposition approach. This result indicated that the slope had no effect on 

the CHMs’ uncertainty levels for the direct decomposition approach in terms of the 

statistical perspective. However, this factor’s effect on the uncertainty levels was 

significant (p < 0.050) for the Gold and RL approaches. Likewise, the vegetation height 

also had an impact on the uncertainty levels using the Gold and RL approaches, but not 
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for the direct decomposition approach at the HF site as shown in Figure 12. Generally, 

higher uncertainty level was more likely to occur at the higher slope and vegetation height 

for the Gold and RL approaches. 

For the SJER site, the analysis showed that the uncertainty levels of CHMs were 

influenced by the vegetation height for all approaches (p = 0.000), and there was a large 

difference between mean and median of vegetation height for different uncertainty levels 

(Figure II-14Figure II-14. Box-plot of DTMs and CHMs’ Uncertainty levels vs Vegetation Height for 

the SJER site). Most of the uncertainty was more likely to occur at the lower vegetation and 

ground, especially for the Gold approach. The analysis of the slope (Figure II-13) showed 

that the Gold approach’s uncertainty levels were robust to slope changes (p = 0.094). The 

p-values of the other two approaches’ were zero, which indicated that the uncertainty of 

CHM was likely to be affected by slope changes. However, these two approaches’ 

median, mean and IQR were similar for different uncertainty levels which may imply that 

the slope did not play as an important role as vegetation height in determining uncertainty 

levels. 

In summary, the analysis identified that higher uncertainty of CHM was prone to 

occur at higher vegetation for all approaches in the complex topography with less dense 

vegetation areas. For the flat topography, there was no obvious pattern for the Gold and 

RL approaches for different uncertainty levels. The direct decomposition approach 

outperformed other two approaches and was robust to the change of slope and vegetation 

height under such topography condition.  

2.4 Conclusions 

This study proposes a new waveform LiDAR deconvolution algorithm called the 

Gold algorithm as a preprocessing step, and comprehensively compares different methods 

of processing the waveform LiDAR data at three different ecological sites from both 

visual and quantitative perspectives. 

Our work has demonstrated the advantage of the deconvolution and decomposition 

method with more echoes of waveforms detected and less false echoes generated, 

especially when the Gold approach is used. Furthermore, the accuracy assessment of the 



 

58 

  

end products (DTMs and CHMs) shows that the three approaches can generate 

satisfactory results, while the best performances vary when different criteria are used: the 

Gold approach has better performance with smaller RMSE, and the direct decomposition 

approach outperforms others in terms of the percentage of spatial difference within 0.5 

and 1m. According to the parameter uncertainty of end products, the factors like the 

vegetation height and slope both have an effect on the robustness of approaches, while 

the slope becomes a less significant factor when it comes to the spatial uncertainty of 

CHMs. Specifically, the Gold approach tends to have better performance in the dense 

vegetation region and the RL approach works better in the sparse vegetation region. 

Therefore, the important contributions of this study lie in successfully introducing a novel 

deconvolution algorithm, the Gold algorithm, for waveform LiDAR processing, and 

providing a comprehensive comparison and a quantifiable basis selection of different 

waveform LiDAR processing methods for different topography and vegetation 

conditions. Potential future studies could use the proposed method to process waveform 

LiDAR data and extract semantical information, such as individual tree crown mapping, 

understory tree detection, and to estimate forest structure and biophysical parameters. In 

addition, future investigations could benefit from expanding the availability of new 

waveform LiDAR datasets to cover varied vegetation conditions in multiple ecosystem 

types and complex topography, urban areas, rangelands and grasslands. 
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BAYESIAN DECOMPOSITION OF FULL WAVEFORM LIDAR DATA WITH 

UNCERTAINTY ANALYSIS* 

 

A thorough understanding of full waveform (FW) LiDAR data processing and 

associated uncertainty is critical to vegetation applications such as retrieving forest 

structure variables and estimating forest biomass. This paper applies the Bayesian non-

linear modelling concept to process small-footprint FW LiDAR data (the Bayesian 

decomposition) collected at a study site of the National Ecological Observatory Network 

(NEON) to investigate its potential for waveform decomposition and uncertainty 

estimation. Specifically, several possible models suitable for fitting waveforms were 

assessed within the Bayesian framework, and the Gaussian model was selected to perform 

the Bayesian decomposition. Subsequently, we conducted performance evaluation and 

uncertainty analysis at the parameter, derived point cloud and surface model levels. 

Results of the model reasonableness show that the Gaussian model is superior to 

alternative models with respect to uncertainty, physical meaning and processing 

efficiency. After converting waveforms to discrete points, the model comparisons 

demonstrate that the Bayesian decomposition can be utilized for FW LiDAR data 

processing, and its results are comparable to the direct decomposition (DD), Gold and RL 

(Richardson–Lucy) approaches in terms of the root mean squared error (RMSE < 0.93 m) 

of the point distances between the waveform-based point cloud and the reference point 

cloud. Additionally, more points can be extracted from FW LiDAR data with these 

methods than discrete-return LiDAR data, especially at the mid-story of vegetation based 

on the results of height bins, percentile heights and canopy LiDAR density at the 

individual tree level. Moreover, uncertainty estimates from the Bayesian method enhance 

the credibility of decomposition results in a probabilistic sense to capture the true error of 

estimates and trace the uncertainty propagation along the processing steps. For example,  

*Reprinted with permission from "Bayesian decomposition of full waveform LiDAR data with uncertainty 

analysis." by Zhou, Tan, and Sorin C. Popescu. Remote Sensing of Environment 200 (2017): 43-62. 

Copyright 2017 by Elsevier. 
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results of the surface model yield larger RMSE values (1.38 m vs. 0.65 m) with a wider 

credible interval than quantile point clouds with a more compact distribution. In contrast 

to commonly used deterministic approaches, the Bayesian decomposition method can 

produce an ensemble of reasonable parameter estimates with probability through Markov 

Chain Monte Carlo (MCMC) sampling from the posterior distribution of model 

parameters. These parameter estimates and corresponding derived products can be 

queried to provide meaningful interpretation of results and associated uncertainty. Both 

the flat priors and empirical priors can achieve good performance of the decomposition 

while the empirical priors tend to significantly speed up the model convergence. The 

Bayesian approach also renders an important insight into the uncertainty of the model 

performance evaluation using field data by generating reasonable prediction intervals to 

reduce inherent errors of field measurements.  

Keywords: Waveform LiDAR, Bayesian inference, Decomposition, Uncertainty 

analysis, Tree canopy height, Model reasonableness 

3.1 Introduction 

Light Detection and Ranging (LiDAR) has been adopted as a valuable survey tool 

reducing the need for field measurement to accurately characterize vegetation structure 

for the past decades (Hancock et al., 2015; Popescu et al., 2003; Wulder et al., 2012; Zhao 

et al., 2009). Especially, the advent of the full waveform (FW) LiDAR system, which is 

capable of recording entire reflected energy along the pulse line, has enabled this 

advantage to become more conspicuous (Cawse-Nicholson et al., 2014; Wagner et al., 

2006; Wulder et al., 2012). The FW LiDAR data primarily consists of two parts: a pulse 

part that keeps geo-reference locations derived from range measurement between the laser 

sensor and the reference location, and a wave part which fully stores digitized return 

energy starting from the reference location till the end of digitized samples. Within a 

forest environment, FW LiDAR energy could penetrate dense canopies through small 

gaps in the canopy and achieve a full time-versus-intensity profile. Consequently, more 

detailed vertical information of vegetation structure can be revealed through these data.  
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Generally, FW LiDAR data can be classified as large- (~50 m or larger), medium- 

(~10 - 30 m) or small-footprint waveform (< 1 m) based on their transmitted laser size 

(Wang and Weng, 2013). Some of the first FW sensors known as large footprint profilers 

included SLICER (Scanning LiDAR Imager of Canopies by Echo Recovery, 10 m 

footprint), LVIS (Laser Vegetation Imaging Sensor, 25 m footprint) and GLAS (the 

Geoscience Laser Altimeter System, 70 m footprint). All of them have been successfully 

applied to estimate various forest parameters and vegetation studies worldwide (Blair et 

al., 1999; Drake et al., 2002; Harding and Carabajal, 2005). 

Recent advances of commercial LiDAR systems have promoted the availability of 

small-footprint FW LiDAR data from remote sensing industry providers. However, 

extensive applications of such systems to characterize forest structure and biomass are 

limited (Wulder et al., 2012). There are three main reasons behind this: (1) there is no 

standard format of FW LiDAR data, (2) large data volume required for storing the 

information, which leads to difficulties of data distribution and processing, (3) high cost 

of data acquisition, with added cost compared to discrete-return (DR) LiDAR data that 

hinders their adoption for many potential applications (Pirotti, 2011). In addition, while 

there are many software packages and applications available for processing DR LiDAR 

data, only few software developments are currently available for processing FW LiDAR. 

Therefore, the development of robust and dedicated methods and non-proprietary 

software for processing small-footprint FW LiDAR data are urgently needed. 

Existing methods for FW LiDAR processing can be mainly categorized into two 

types: the decomposition method and the combined deconvolution and decomposition 

method. The most commonly used approach for the decomposition method is the direct 

decomposition (DD) which models the waveform with a mixture of Gaussian functions. 

Typical approaches such as Non-linear least-squares (NLS) (Hofton et al., 2000) or 

maximum likelihood estimation using the Expectation-Maximization (EM) algorithm 

(Persson et al., 2005) have been developed for fitting the waveform to extract 3D points 

and related parameters. However, these approaches are sensitive to the initialization of 

unknown parameters. Another popular method for recovering the true cross section of 
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objects along the pulse line is the combined deconvolution and decomposition method. 

Multiple deconvolution algorithms, such as the Gold, Richardson-Lucy (RL), Non-

negative least squares (NNLS), and Wiener Filter (WF) (Cawse-Nicholson et al., 2014; 

McGlinchy et al., 2014; Neuenschwander, 2008; Roncat et al., 2010; Rowe, 2013; Wu et 

al., 2011; Zhou et al., 2017) have been successfully introduced for reconstructing the 

differential backscatter cross section. One practical issue of these methods is that they are 

pertinent to the choice of proper parameter combinations for the deconvolution, which 

typically requires parameter optimization before data processing (Zhou et al., 2017). 

Although these methods have been proven to be able to generate sufficient fitting models, 

we cannot characterize the uncertainty with these models. They are calculated based on 

the deterministic models, which only seek a point value for the parameter of interest 

(Edwards et al., 2003). Without uncertainty analysis, the models are less informative or 

even useless when they are applied to the real-world problems (Zhao et al., 2011).  

In the domain of LiDAR applications, the observations or data are inherently 

subject to various errors such as system setting, system calibration, and range 

measurement errors (Griewank and Walther, 2008). Additionally, the LiDAR vendors 

often do not clearly state what errors are considered when the data are provided. Thus, 

uncertainty of “truth” is ubiquitous and inherently present in the realities of LiDAR data 

modeling. Some studies associated with uncertainty mainly focus on the DR LiDAR data 

applications (Chauve et al., 2009; Chen et al., 2015; Frazer et al., 2011), while few 

published studies have explored FW LiDAR data’s uncertainty for vegetation 

characterization. Furthermore, the models used here are based on the non-linear functions 

that generally suffer from problem of non-uniqueness (Sen and Stoffa, 1996), which can 

generate different parameter combinations given the same observational data and model, 

or several models can fit observational data at the expense of violating the physical 

meaning and theoretical assumption of the “real” model. These problems are more evident 

for the sophisticated models with multiple peak components in the waveform 

decomposition. Thus, estimating model uncertainty is imperative for an in-depth 

understanding of information derived from data and the estimation accuracy. This kind of 
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uncertainty analysis has been inadequately addressed in many preceding studies due to 

the great diversity of remote sensing-based information retrieval procedures (Zhao et al., 

2011) and the absence of efficient and universal methods to capture the uncertainty of 

data modeling.  

One strategy to overcome these problems is to adopt a Bayesian paradigm of 

statistical inference by considering the model parameters to be realizations of random 

variables. Within a Bayesian framework, we combined prior information about unknown 

parameters with observed data using the Bayes’ rule. Using a Markov Chain Monte Carlo 

(MCMC) (Gelfand and Smith, 1990) algorithm, we were able to sample from the posterior 

distribution of the unknown model parameters of interest. Through the posterior 

distribution, uncertainty bounds on the resulting model parameters and model 

reasonableness can be measured. This approach generally takes more time to reach a 

solution, but the non-uniqueness of the model parameter estimates can be avoided by 

describing these parameters in terms of probability density functions (PDFs) in the model 

space (Hong and Sen, 2009; Sen and Stoffa, 1996). Additionally, computational advances 

and the introduction of the more efficient Hamiltonian Monte Carlo (HMC) algorithm 

(Neal, 2011) have contributed enormously to the growing interest in applying Bayesian 

approaches to remote sensing data processing. 

Recently, Bayesian analytical approaches have been applied to diverse domains 

related to waveform data as an alternative to traditional deterministic techniques. For 

example, Qin et al. (2016) analyzed ground-penetrating radar (GPR) data to detect the 

defect of underground structure using a Bayesian inversion method. Roonizi et al. (2016) 

elaborated how the electrocardiogram (ECG) waveform separation was conducted in a 

Bayesian framework to evaluate cardiac health status. In the geophysical field, the 

Bayesian approach was used for marine seismic waveform data to characterize subsurface 

reflectivity (Ray et al., 2013). For LiDAR applications, Bayesian methods are mainly 

used in a spatial modeling context to predict and map forest variables (Finley et al., 2013) 

or image construction (Hernandez-Marin et al., 2008).  However, employing Bayesian 
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approaches to decompose FW LiDAR data for vegetation studies is rarely reported in the 

current literature. 

Therefore, the overall goal of this paper is to explore a Bayesian statistical method 

with the HMC algorithm to process small-footprint FW LiDAR data and quantify the 

uncertainty from data and models. More specifically, we attempt to (1) evaluate the 

reasonableness of models suitable for FW LiDAR data within a Bayesian framework; (2) 

develop a robust and dedicated Bayesian decomposition method to process FW LiDAR 

data for vegetation, and implement thorough comparisons with other FW LiDAR data 

processing methods; and (3) obtain reliable estimates of error and uncertainty in different 

steps (the parameter estimates, point cloud and surface models) using the Bayesian 

decomposition method. The motivation for the first objective is to check the validity of 

previous studies’ underlying assumptions that the Gaussian model is sufficient for FW 

LiDAR data decomposition (Mallet and Bretar, 2009; Pirotti, 2011; Wagner et al., 2006), 

and to further reduce the uncertainty caused by the theoretical model error. The innovative 

aspects of this study consist of (1) integrating the nonlinear Bayesian concept with 

waveform data to provide a novel decomposition method for small-footprint FW LiDAR 

data; and (2) generating a consistent, transparent knowledge learning framework to 

quantify the uncertainty emerging from data and trace the uncertainty propagation along 

the processing steps. In this study, we did not intend to use the Bayesian decomposition 

as a proof of concept, but instead we applied this approach to processing millions of 

waveforms in our study sites to provide insights into model justification and derive a 

benchmark for the uncertainty quantification of FW LiDAR data. 

3.2 Materials and methods 

 Study site and data  

3.2.1.1 Study site 

The study site is located at the San Joaquin Experimental Range (SJER), which is 

in the foothills of Sierra Nevada Mountains, about 32 km north of Fresno, California. Two 

study regions were investigated as shown in Figure III-1. One waveform sample region 

(SJER1) is about 6.25 ha (250 m × 250 m) with the center at 256,840.0 Easting, 
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4,110,820.0 Northing, and UTM Zone 11N. The SJER1 is composed of vegetation 

dominated by blue oak (Quercus douglasii), interior live oaks (Quercus wislizeni) and 

digger pine (Pinus sabiniana) with scattered shrubs and a nearly continuous cover of 

herbaceous plants. This study region was used mainly to develop the proposed model of 

the present paper and to compare its performance with existing approaches such as the 

DD, Gold and RL. Another study region (SJER2) covers approximately 136 ha with the 

center at 255,977.6 Easting, 4,110,780.2 Northing, and UTM Zone 11N, which primarily 

aims to demonstrate that the proposed model can be applied to a relatively large area, 

instead of a small concept-area. This region consists of mixed patches of vegetation 

structure and heterogeneous land cover types, including grassland, forest, water body, 

open ground and road.  

 

 

Figure III-1. Map of the San Joaquin Experimental Range (SJER) with location of study 

regions in California (left panel) and discrete-return LiDAR point image with terrain and 

vegetation height (right panel) 
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3.2.1.2 LiDAR data 

The LiDAR data were collected through the National Ecological Observatory 

Network (NEON) Airborne Observation Platform (Kampe, 2010) which carried sensors 

such as a hyperspectral imaging spectrometer, a FW LiDAR sensor and a DR LiDAR 

sensor flying at about 1,000 m above ground level. This design can achieve sub-meter to 

meter scale ground resolution of study sites. Detailed technical specifications of data can 

be found in the study of Zhou et al. (2017).  

In this study, two regions were chosen as displayed in Figure III-1. The SJER1 

region had 258,667 waveforms with two flight lines, while the SJER2 region had 

20,040,883 waveforms with four flight lines. The original waveform is composed of 500 

time bins with 1 ns temporal resolution. Each time bin stores the digital number (DN) or 

intensity of corresponding backscattered pulse. The time bins with non-recorded values 

are assigned as zero (zero-padded) to keep the length of the waveforms constant. For 

geolocation of corresponding waveform, 16 basic geolocation information attributes 

associated with waveforms are provided. Among them, the dx, dy, and dz are the pulse 

direction vector that can measure position change per nanosecond. In the subsequent 

analysis, eight items were used for calculating the geolocation of desired time bin after 

decomposition. The eight items are the Easting of first return x0 (m), the Northing of first 

return y0 (m), the height of first return z0(m), dx (m), dy (m), dz (m), the outgoing pulse 

reference bin location (leading edge 50% point of the outgoing pulse), and first return 

reference bin location (leading edge 50% point of the first return).  

The DR LiDAR data for corresponding study regions were also collected with the 

maximum horizontal accuracy of 0.4 m and maximum vertical accuracy of 0.36 m based 

on the NEON’S LiDAR Algorithm Theoretical Basis Document (ATBD) (Keith and 

Tristan, 2015). 

3.2.1.3 Field data 

As part of the NEON’s data collection efforts, extensive annual ground measurements of 

vegetation structure were conducted by the NEON Airborne Observation Platform and 
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the Terrestrial Instrument System (TIS) programs. The plot design followed the protocol 

of the NEON Terrestrial Observation System, and each plot is restricted to a 20 ×20 m 

region. The plot locations have been established by NEON’s Field Sentinel Unit for long-

term plant, insect and soil measurements. There were six field plots with 151 individual 

trees collected during June 2013, which were available for these two study regions. One 

field plot including 16 trees was located in the SJER1 study region and the other five 

field plots with a total of 135 individual trees were located in the SJER2 study region. 

The key vegetation structure variables for each tree were measured such as the location 

(Easting, Northing), the maximum height, and the tree species. 

Bayesian decomposition 

3.2.2.1 Theoretical background 

In a Bayesian statistical framework, deterministic models are specified via 

mathematical equations, e.g., linear or nonlinear functions, and unknown model 

parameters are treated stochastically with various probability distributions.  

Based on Bayes’ rule, the unknown parameters of a statistical model can be written as: 

𝑝(𝜽|𝒚) ∝  𝑝(𝒚|𝜽)𝑝(𝜽)                                    (III-1) 

where y is a vector of observed data which has a probability distribution depending 

on an unknown vector of parameters denoted as 𝑝(𝒚|𝜽), which is also known as the 

likelihood function. The prior distribution of model parameter vector 𝜽 is a probability 

distribution that represents the experimenter's beliefs about unknown parameters prior to 

observing the data and was denoted as 𝑝(𝜽) (Hoff, 2009). 𝑝(𝜽|𝒚) is the posterior 

distribution of the unknown vector of parameters.  

Eq. (III-1) is fundamental to understanding that the posterior distribution of 

unknown parameters is proportional to the prior belief about unknown model parameters, 

𝑝(𝜽), and the probability distribution of observed data given 𝜽 (𝑝(𝒚|𝜽)). In this way, the 
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posterior distribution expresses the experimenter's updated beliefs about 𝜽 in light of the 

observed data y.  

The main controversy in the Bayesian approach lies in the preparation of prior 

information which is subjective (Ulrych et al., 2001). Three legitimate arguments for this 

subjectivity are: (1) it is natural that one’s conclusion is affected by one’s prior opinions, 

(2) the priors have little effect on the posterior when a large amount of data are available, 

and (3) the non-informative priors can be used to express ignorance about the unknown 

parameters which can be assumed to be objective (Hoff, 2009). Generally, there are two 

kinds of prior distributions frequently used. One is the non-informative priors that are 

commonly used when nothing is known about the value of parameters. Another is the 

informative priors or the empirical priors, which can be obtained from the previous 

evidence or empirical data.  

Based on the previous study (Wagner et al., 2006), an individual waveform can be 

modelled with a mixture of Gaussian distributions. Therefore, it is natural to assign the 

distribution of the waveform as 𝑝(𝒚|𝜽) with a mixture of Gaussian distributions, which 

can be also interpreted as the likelihood of model. The shape of the waveform is 

determined by the parameters of the Gaussian distribution that can be easily obtained as 

the prior distribution of parameters through the peak identification algorithm (Zhou et al., 

2017). The core of this algorithm is to identify the peaks by comparing the three adjacent 

intensities of the waveform and then selecting peak(s) when the corresponding peak 

intensity is higher than one-fifth of maximum intensity of the given waveform. 

Meanwhile, the number of peaks for the waveform is also obtained through this process. 

Once we formulated the prior distribution of the parameters and the likelihood 

function, the concept of Eq. (III-2) can be used to derive the posterior distribution of 

model parameters through MCMC simulation (Gelfand and Smith, 1990). MCMC is a 

crucial technique for the rapid expansion of the Bayesian inference in science. There are 

cases that some parameters’ posterior distributions are difficult or impossible to sample 

when the non-conjugate priors are used or the integration of parameters is conducted over 

a high dimensional parameter space (Hoff, 2009). In such conditions, the MCMC method 
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can be helpful by approximating the true posterior distribution using the joint distribution 

𝑝(𝒚|𝜽)𝑝(𝜽) instead of directly sampling from the integration of posterior distribution for 

parameters of interest 𝑝(𝜽|𝒚).  

3.2.2.2 Waveform decomposition application 

 

 

 

Figure III-2. (a) Illustration of ideal Gaussian distribution waveform (IGW, black dash) 

vs. real waveform (RW, purple) and smoothed waveform (SW, red). The number (1, 2, 3 

and 4) represent the individual Gaussian components. (b). Empirical priors derived from 

the SW through peak identification algorithm. 

 

In a Bayesian context, the nonlinear model can be formulated in the following form 

𝑦𝑖 = 𝑓(𝑥𝑖, 𝜽) ∗ 𝜖𝑖                                             (III-2) 

where 𝑦𝑖 is the observed data, 𝑓(𝑥𝑖, 𝜽) is a nonlinear function with parameters 𝜽 and 

predictor 𝑥𝑖, 𝜖𝑖 is an independent error with log𝜖𝑖 ~ 𝑁(0, 𝜏2), 𝜏 is the standard deviation 

of log𝜖𝑖, and 𝑥𝑖 is the ith time bin of the waveform. Each waveform is reconstructed in 

terms of the main model part (𝑓(𝑥𝑖, 𝜽)) with a set of parametric functions and the error 

part. For the main model part, the coherence between proposed configurations and the 

real waveforms is measured. The multiplicative error is used here mainly because FW 

LiDAR data are typically restricted to be nonnegative (Gelman et al., 2015), and the 

multiplicative format is also convenient to formulate distribution for the error part. These 

formulations are consistent with the real FW LiDAR data as demonstrated in Figure 
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III-2(a). There is a difference between the ideal Gaussian waveform (IGW) 𝑓(𝑥𝑖, 𝜽) 

(black dash line) and the raw waveform (RW) 𝑓(𝑥𝑖, 𝜽) ∗ 𝜖𝑖 (purple line) that corresponds 

to error part (𝜖𝑖 − 1)* 𝑓(𝑥𝑖, 𝜽). The ideal Gaussian waveform is derived from Eq. (III-3) 

by summing four Gaussian components (j = 1, 2, 3 and 4) as shown in Figure III-2 with 

dash lines with different colors.  

𝑓(𝒙, 𝜽) = ∑ 𝐴𝑗
𝑛
𝑗=1 exp (−

(𝒙−𝑢𝑗)
2

2𝛿𝑗
2 )                                        (III-3) 

where n is the number of the Gaussian components, 𝐴𝑗, 𝛿𝑗 and 𝑢𝑗  are the amplitude of the 

peak, the standard deviation and the time location of the peak for jth waveform component, 

respectively. Eq. (III-3) gives rise to total 3*n parameters associated with the number of 

Gaussian components. 𝐴𝑗 , 𝑢𝑗 and 𝛿𝑗 are restricted to nonnegative values.  

To reduce the impact of detected “false” peaks of the raw waveform resulted from 

noise, especially at the beginning and tail of the waveform, a mean filter was conducted 

prior to subsequent processing. We called the waveform after filtering as the smoothed 

waveform (SW) (red line) that would be employed for subsequent analysis. A visual 

inspection showed that the smoothed waveform was nearly overlapping with the ideal 

Gaussian distribution waveform (Figure III-2 (a)) which may justify the use of the 

Gaussian model for fitting FW LiDAR data. We explored more details of model choices 

in the Section 2.4 to quantitatively test whether this assumption was valid. The number 

of Gaussian components, n, for each waveform varies depending on the number of peaks 

detected along the pulse line. The unknown parameters 𝜽 

include 𝐴1, 𝑢1, 𝛿1, . . . , 𝐴𝑛, 𝑢𝑛, 𝛿𝑛.  

After log transformation of the Eq. (III-2), the log-likelihood of 𝑦𝑖 can be written 

as: 

𝑙𝑜𝑔𝜀𝑖  = 𝑙𝑜𝑔𝑦𝑖 − 𝑙𝑜𝑔 𝑓(𝑥𝑖, 𝜽)                                         (III-4) 

𝑝 (𝑙𝑜𝑔𝑦𝑖| 𝜽, 𝜏) = 𝑁(𝑙𝑜𝑔 𝑓(𝑥𝑖 , 𝜽) , 𝜏2) =  
1

√2𝜋𝝉𝟐
exp (−

(𝑙𝑜𝑔𝒚𝒊−log 𝑓(𝑥𝑖,𝜽))2

2𝜏2 )         (III-5) 

To compare the influence of prior information on the model performance, the non-

informative priors and the empirical priors derived from the raw waveforms were 

assigned to the model. Here, the non-informative priors indicated that assigning equal 
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probabilities to all possible values of parameter space, named it the flat priors in 

subsequent analysis.  

Based on the statistical summary of raw FW LiDAR data, we narrowed down the 

reasonable range of these parameters to [10, 150], [15, 100] and [4, 15] as the parameter 

space of 𝐴𝑗 , 𝑢𝑗  and 𝛿𝑗, respectively. Hence, a uniform distribution (U) was assigned to 

each parameter to express the ignorance of the effect of parameters’ prior distribution on 

the outcomes, and the prior distribution for each parameter 

followed 𝐴𝑗~ 𝑈(10, 150), 𝑢𝑗~𝑈(15,100) and 𝛿𝑗~𝑈(4,15). Another option for 

specifying the priors were to use the empirical priors that were derived from the 

corresponding SWs through peak identification algorithm (Zhou et al., 2017). This 

algorithm is mainly to estimate the number of Gaussian components n and approximated 

peak locations. According to Figure III-2(b), the time bin for the peak of one waveform 

component mj (m1, m2, m3 and m4) was associated with the location of the peak that 

corresponds to 𝑢𝑗 . The corresponding intensity Ij (I1, I2, I3 and I4) at the peak was related 

to 𝐴𝑗 in Eq. (III-4). 𝛿𝑗 was much more difficult to interpret, therefore we used a third of 

the difference between consecutive peaks (𝑠j/3) to roughly represent prior information of 

𝛿𝑗. To sum up, we specified the prior distribution of 𝐴𝑗 , 𝑢𝑗  𝑎𝑛𝑑 𝛿𝑗 to follow the normal 

distribution (N) with 𝐴𝑗~ 𝑁(𝐼𝑗, 102), 𝑢𝑗~ 𝑁(𝑚𝑗 , 52), 𝛿𝑗~𝑁(𝑠𝑗 3⁄ , 32) and 𝜏~𝑁(0, 0.52).  

A log posterior distribution of the model was obtained through all prior information 

about parameters of interest and the data distribution p (y| x, 𝜽, 𝜏). For the flat priors, the 

posterior distribution was the likelihood of data (Eq. (III-6)). For the empirical priors, the 

posterior distribution of model was expressed in Eq (III-7): 

𝑝(𝜽, 𝜏|𝒚) ∝  p (𝐲| 𝜽, 𝜏) 𝑝(𝜽) 𝑝(𝜏)         

∝ ∏
1

𝝉

𝑚
𝑖=1 exp (−

1

𝟐𝜏2
(𝑙𝑜𝑔𝑦𝑖 − 𝑙𝑜𝑔𝑓(𝑥𝑖, 𝜽))2)* 𝑝(𝜽)𝑝(𝜏)    

Flat priors:         ∝ 
1

𝜏𝑚 exp (−
1

2𝜏2
∑ (𝑙𝑜𝑔𝑦𝑖 − 𝑙𝑜𝑔𝑓(𝑥𝑖, 𝜽))2𝑚

𝑖=1 )                 (III-6) 

Empirical priors:  

∝
1

𝜏𝑚
exp (−

1

2𝜏2
∑ (𝑙𝑜𝑔𝑦

𝑖
− 𝑙𝑜𝑔𝑓(𝑥𝑖, 𝜽))2𝑚

𝑖=1 ) ∏ 𝑝
1

(𝐴𝑗)
𝑛
𝑗=1 𝑝

2
(𝑢𝑗) 𝑝

3
(𝛿𝑗) 𝑝(𝜏)                 (III-7) 

𝑝1(𝐴𝑗)~ 𝑁(𝐼𝑗 , 102); 𝑝2(𝑢𝑗)~ 𝑁(𝑚𝑗,5
2); 𝑝3(𝛿𝑗)~𝑁(𝑠𝑗/3, 32); 𝑝(𝜏)~𝑁(0, 0.52) 



 

72 

  

It is reminded that m is the number of observations for each waveform and n is the 

number of Gaussian components of the corresponding waveform.  

 Model implementation 

Our aim was to decompose the waveform data using the above models to perform 

inference about quantities of the unknown parameters of interest. The model was 

implemented in R using the brms packages (Buerkner, 2016) which can fit generalized 

non-linear mixed models using Stan by performing the Bayesian inference and the 

optimization for the user-specified model (Gelman et al., 2015). Stan is a C++ program 

to perform Bayesian inference which is composed of four main blocks: variable 

declarations, parameter statements, transformed parameters and model blocks. Detailed 

descriptions of model structure and procedures are given in Appendix. 

Model dialogistic. We measured the model’s convergence using the potential scale 

reduction factor, named Rhat (𝑅̂), which is a statistical criterion to test how well the 

Markov Chains are mixing, or moving around the parameter space. 𝑅̂ close to one 

indicates convergence, while high 𝑅̂ value implies that we should run a longer chain to 

improve convergence to the stationary distribution. The effective sample size was also 

generated to represent the equivalent number of independent iterations of the chain. It is 

a criterion for the estimation efficiency. Generally, the higher the effective sample size, 

the more reliable estimates can be achieved (Gelman et al., 2014).  

Model inference. The total samples may have divergent values before the chain 

reaches a stationary state, therefore the model inference was conducted on the posterior 

samples after dropping burn-in samples. Generally, through these posterior samples, the 

distribution of parameters (𝜽) and summary measures, such as mean, mode, standard 

deviation and percentiles for each parameter can be derived. The main advantage of 

simulating from posterior samples is that we can generate as many values as we wish and 

thereby minimize errors in approximating quantities of interest. For each parameter, these 

draws could be used to approximate credible interval (CI) as shown in Figure III-3(b).  
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 Model reasonableness 

The Gaussian function has been mostly used to decompose the waveform LiDAR 

data, under the implicit assumption that the Gaussian model is capable of reconstructing 

detected objects based on waveform shapes. However, few studies have quantitatively or 

statistically justified the reasonableness of this assumption. 

According to the previous study (Mallet et al., 2009), several models that could be 

used to fit waveform LiDAR data. In this study, we employed three representative models 

to explore the reasonableness of models in a Bayesian context: the Weibull model, the 

Adaptive Gaussian model and the Gaussian model. The Gaussian model is most 

frequently used model for waveform decomposition. The Adaptive Gaussian distribution 

has the form as Eq. (III-8) which can minimize the residual of the model by introducing 

another variable which is also known as rate parameter (𝜆).  

𝑓𝐴𝐺(𝒙, 𝜽) = ∑ 𝐴𝑖
𝑛
𝑖=1 exp (−

(𝒙−𝑢𝑖)𝜆

2𝛿𝑖
𝟐 )                                          (III-8) 

In this study, the rate parameter 𝜆, as a stochastic variable, was assigned to follow 

normal distribution N~ (2, 0.25), because the rate parameter in the Gaussian model is 2 

and the Adaptive Gaussian model’s rate parameter should be close to this value.  

The Weibull model was introduced since it enables us to simulate either symmetric 

or asymmetric peaks with four unknown parameters. This model has been successfully 

applied for Synthetic Aperture Radar (SAR) image processing (Tison et al., 2004). The 

Nakagami and Bur functions (Mallet et al., 2009) are also capable of simulating the 

waveform shape with four parameters as the Weibull function. These three functions 

share the same feature that all can simulate asymmetric and symmetric waveforms with 

the same number of parameters. Here, the Weibull function was selected to represent this 

class of potential models for the waveform decomposition. The Weibull distribution 

function used here can be written as:  

𝑓𝑊(𝒙, 𝜽) = ∑ 𝐴𝑖
𝑛
𝑖=1

k

𝛿𝑖
(

𝑥−𝑢𝑖

𝛿𝑖
)

𝑘−1

exp (− (
𝑥−𝑢𝑖

𝛿𝑖
)

𝑘

)                            (III-9) 

where 𝐴𝑖 is the amplitude, k ( >0) is the shape parameter that controls the behavior or the 

shape of the distribution, and 𝛿𝑖 ( >0) is the scale parameter that controls the spread of the 

distribution. The shape parameter can capture the asymmetry or skewness of the 
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waveforms that overcomes the disadvantage of the Gaussian function, which is only 

suitable for symmetric distributions. 𝑢𝑖 is a location parameter in the Weibull model. 

However, this parameter is not useful in waveform interpretation and subsequent 

geolocation transformation, since it does not have any physical meaning in our case.  

The predictive accuracy of models is generally measured with the deviance 

information criterion (DIC) for the Bayesian model selections. In the present study, a 

more relevant criterion, the Watanabe-Akaike information criterion (WAIC), was adopted 

to provide a basis for model assessment and model selection (Vehtari et al., 2016). WAIC 

is a fully Bayesian criterion that uses posterior distribution of existing simulation draws 

rather than a point estimate to approximate leave-one cross validation for estimating 

pointwise out-of-sample prediction accuracy.  

One hundred forty waveforms with a different number of waveform components 

that represented different levels of model complexity were randomly selected as samples 

to check the model reasonableness of waveform decomposition. Each waveform was 

fitted with the above three models (𝑓(𝒙, 𝜽), 𝑓𝐴𝐺(𝒙, 𝜽), 𝑎𝑛𝑑 𝑓𝑊(𝒙, 𝜽)) and WAIC, 

uncertainty bounds and residual standard error of model (SE) were reported. The model 

choice would be based on these criteria, physical meaning of corresponding parameters 

and processing efficiency.  

 Model efficiency 

There are several commonly used MCMC methods such as Gibbs sampling, 

Metropolis algorithm, and Metropolis-Hastings (MH) algorithm. In this study, the 

MCMC simulation was achieved using the Hamilton Monte Carlo (HMC) algorithm to 

enhance the model efficiency.  

The HMC is a relatively new MCMC algorithm that applies the concept of 

Hamiltonian dynamics to Metropolis update for simulating a Markov chain (Neal, 2011). 

The No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) was used to implement 

the sampling procedures of HMC and more details can be found in Appendix.  

In addition, the effect of different priors on the efficiency of the model was also 

explored using the same sample waveforms as used in Section 2.4. Each waveform was 
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decomposed twice using the flat priors and empirical priors with the Gaussian model. The 

computation time for each model was recorded and the average time for given number of 

waveform components was reported. In this step, the number of iterations and burn-in 

had been assumed to be adequate to derive the accurate approximation of parameters no 

matter which prior was used. According to Table III-5, the empirical priors converge 

faster. As a result, we used the empirical priors to process all other waveforms.  

 Geolocation transformation 

The Bayesian decomposition can provide estimated quantiles (𝑢𝑖𝑗, from 1% to 99% 

of posterior samples including mode estimate 𝑢𝑖50) for possible target time bin locations 

(𝑢𝑖), corresponding standard error, effective sample size and 𝑅̂ of 𝐴𝑖 , 𝑢𝑖 , 𝜎𝑖 for each 

waveform. The 3D point clouds were generated by combing the original georeferenced 

data such as x0, y0, z0, dx, dy and dz provided by the NEON datasets with the estimated 

time bin (𝑢𝑖, 𝑢𝑖1…𝑢𝑖99). The leading edge position for each detected peak was used to 

compute the geolocation of desired time bin by incorporating the full width at half 

maximum (FWHM).The detailed calculation processes are given in (Zhou et al., 2017). 

 Performance evaluation 

Both the DD and Bayesian decomposition methods can be classified as the 

decomposition method instead of the combined deconvolution and decomposition method 

in terms of processing steps. However, the DD method is different from the Bayesian 

decomposition method which belongs to the probabilistic approach, but the DD, Gold and 

RL methods are the deterministic approach which only has one estimate for a parameter 

or possible target position. Bayesian decomposition method here generates the 

distributions for the parameters, from which multiple possible estimates for the parameter 

values could be obtained e.g., using the quantiles. In our case, we generated 99 possible 

quantile estimates for the parameter 𝑢𝑖 with probability as shown in Figure III-3(b), which 

resulted in 99 possible point clouds after geolocation transformation. To compare the 

performances of the Bayesian decomposition method with deterministic methods, the 
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point cloud with highest probability using the mode estimate (𝑢𝑖50) for geolocation 

transformation was selected to conduct the performance evaluation.  

The Bayesian decomposition cannot converge for the extremely irregular or noisy 

waveforms, which results in some noisy points after geolocation transformation. With the 

aid of LAStools (Isenburg, 2012), the noisy points were deleted before conducting the 

method comparisons of the point cloud. In this study, the point cloud obtained using mode 

estimates (𝑢𝑖50) with Bayesian decomposition method was compared with the DD, Gold 

and RL approaches from the previous study (Zhou et al., 2017) at two different levels: 

point cloud and individual tree’s metrics such as the number of points at various height 

bins, percentile heights and canopy point density.   

Point cloud comparisons. Point clouds are the primary result of waveform 

decomposition and their accuracy significantly influences the quality of their derived 

products such as percentile heights and Digital Terrain Models (DTMs). Thus, we 

computed the Hausdorff distances (Mémoli and Sapiro, 2004) between the waveform-

based point cloud derived from different methods and the DR LiDAR point cloud. This 

comparison was named C2C in subsequent analysis. The thrust for the Bayesian 

decomposition method is to avoid the error brought by interpolation and variability of 

area based products such as DTM caused by various grid cell sizes. In addition, the point 

cloud comparison is a natural and direct way to evaluate the surface representation 

without adding any intermediate step (Mémoli and Sapiro, 2004).  

The principle of the Hausdorff distance is that for each point of a compared cloud, 

the nearest neighbor method is used to search the nearest point in the reference cloud (the 

DR point cloud) and then compute their Euclidean distance. This process was 

implemented in the CloudCompare software (Girardeau-Montaut, 2015). Meanwhile, all 

points’ X, Y, Z differences were also generated for the Bayesian decomposition, DD, 

Gold and RL approaches. 

Individual tree metrics comparisons. In addition to the comparisons for the grand 

picture such as point clouds, the comparisons at the individual tree level were also 

explored to present a more comprehensive comparison of methods’ performances. 
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Individual tree dimension’s LiDAR metrics such as percentile heights, median height and 

crown density are crucial for characterizing canopy structure and estimating biomass 

(Falkowski et al., 2009; Popescu, 2007; Zhao et al., 2011). We randomly selected 121 

trees from the SJER to compare their total number of points, the number of non-ground 

points (the elevation larger than reference DTM), the non-ground canopy point density, 

the percentile heights and median height using the Bayesian decomposition method with 

corresponding DR LiDAR data results. Additionally, the results of individual tree level 

from the DD, Gold and RL approaches were also incorporated into comparisons that had 

been done in the previous study. 

Due to fewer points at lower heights corresponding to the understory, the height bin 

width was 2 m when the tree height was below 4 m, and it became 1 m when the tree 

height was larger than 4 m. The total number of points and corresponding ratio of points 

in each height bin were summarized. To further compare the performance of different 

waveform processing methods, the normalized percentile heights (subtracting the 

minimum elevation for each tree boundary) were calculated. Given the point cloud of one 

tree, ten height metrics including 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 100th 

(maximum height) percentile heights were extracted to demonstrate the vertical structure 

of vegetation based on the height of LiDAR points. These metrics not only help to predict 

biomass, but also can quantitatively measure the waveform LiDAR data’s penetration 

advantage.  

The canopy point density for individual trees was also analyzed for different 

approaches since it was beneficial to map tree stem and crown (Lee and Lucas, 2007). 

We randomly selected 21 trees from 121 trees to show detailed results of the comparisons. 

Here, the canopy point density was represented by the number of above ground points per 

square meter.  

Field data calibration. What the above comparisons share is that DR LiDAR data 

were adopted as reference data that had been successfully applied in many studies 

(Allouis et al., 2013; Chen, 2007; Zhou et al., 2017) for its high accuracy of measuring 

height. In this study, we not only compared the point cloud and individual trees’ metrics 
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derived from FW LiDAR data to corresponding DR LiDAR (reference) provided by the 

NEON, but also used the field-measured tree height to evaluate results. To facilitate 

comparisons of different methods’ performances, the average bias, standard deviation and 

Root Mean Squared Error (RMSE) of their differences were computed. According to 151 

field-measured trees’ locations, the values from waveform-based Canopy Height Models 

(CHMs) using 𝑢𝑖50 were extracted. To make our extracted values more representative, we 

generated a 1m buffer for each location and then averaged the values fell in each buffer.  

 Uncertainty analysis 

3.2.8.1 Uncertainty propagation 

The essential feature of the Bayesian approach is the explicit quantification of 

uncertainty introduced by incorporating multiple levels of randomness or various sources 

of errors. Through estimating the predictive parameter uncertainty, rigorous error 

propagation along the processing steps can be quantified. In this study, there were 

different sources of uncertainty originating from data themselves and along the processing 

steps, which would accumulate and propagate to the final products. Most of the previous 

studies are based on the deterministic models or approaches that only seek a single value 

and ignore the noise or error inherent in the data and approaches. To this end, we 

conducted a comprehensive uncertainty analysis to quantify the uncertainty of results at 

different steps including parameter estimates, point cloud generation and surface model 

generation (Figure III-3). 

Through the probability distribution of inference using the Bayesian approach, the 

summary measures of unknown parameters such as mode, percentiles and standard 

deviation are obtained instead of a single estimate. Unlike the deterministic method, the 

Bayesian credible region is characterized by the 95% highest posterior density (HPD) 

region rather than 95% confidence interval. The main difference is that the HPD region 

can be discontinuous when the parameter’s posterior density is multimodal or asymmetric 

(Hoff, 2009), while the confidence interval region is always continuous. At this stage, the 

Gaussian model had been chosen to fit the waveforms that gave us suitable physical 

interpretation and accurate estimation of parameters. The posterior density of the 
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individual parameter was generally used to obtain their CIs.  The fitting functions used 

here followed the normal distribution which was symmetric. Thus, we directly used the 

empirical quantiles of the posterior samples to approximate the uncertainty of the peak 

locations (blue dash) as displayed in Figure III-3(a). The value of peak location was 

regarded as a realization of MCMC process. The distribution of possible peak locations 

with probability from the posterior samples after Bayesian decomposition was shown in 

Figure III-3(b). The estimated quantile peak locations 𝑢𝑖𝑗 starting from 1% to 99% of 

posterior samples were chosen to conduct geolocation transformation to derive possible 

points located along the blue arrow (Figure III-3(c)). We used the mode estimate 𝑢𝑖50 of 

possible peak locations to generate the point cloud as the background in Figure III-3(c), 

and several points with different length of arrows were selected as examples to 

demonstrate the uncertainty of the corresponding point when we used their quantile 

estimates (𝑢𝑖1 … 𝑢𝑖99). However, quantifying uncertainty of these individual points 

separately was not useful to some extent, since most of the subsequent studies were 

conducted on products derived from these points instead of individual points, such as the 

point clouds (Figure III-3(d)), DTM and CHM (Figure III-3(e)). The 𝑢𝑖𝑗 quantile point 

cloud was composed of the points derived from the geolocation transformation using 𝑢𝑖𝑗 

for all waveforms located in the region. Figure III-3(d) demonstrates the 𝑢𝑖1and 𝑢𝑖99 point 

clouds to demonstrate the possible maximum uncertainty of point cloud products in a 

sample region. Due to the relatively small differences among 99 point clouds, we showed 

only two point clouds. As mentioned earlier, the Hausdorff distance was employed to 

calculate the distance of these waveform-based 𝑢𝑖𝑗  quantile point clouds and the DR 

LiDAR point cloud. For each 𝑢𝑖𝑗 point cloud, the average bias (mean), standard deviation 

and RMSE of X, Y, Z and point distances were derived. The uncertainty of point cloud 

distances was characterized by the distribution of average bias and RMSEs derived from 

these quantile point clouds. A similar method was also conducted on the waveform-based 

surface models such as DTM and CHM. More specifically, the DTM for each quantile 

point cloud were generated through the lasground and las2dem implemented in LAStools 

after deleting noisy points. Regarding the CHM, we followed the steps described by 
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Khosravipour (2014) and implemented these steps in LAStools to obtain the 99 quantile 

CHMs. To further quantify the performance of these methods, we compared the 

waveform-based DTMs and CHMs from quantile point clouds with corresponding 

reference data and computed the evaluation criteria such as the average bias and RMSE. 

The graphical and statistical methods were employed to analyze the comparison results 

and their corresponding uncertainties. 

 

 

 

Figure III-3. Illustration of uncertainty propagation from data to the parameter estimates, 

point, point cloud and surface model such as CHM using Bayesian decomposition 

method. (a) The uncertainty of peak location (parameter uncertainty) using Bayesian 

method to fit the waveform. SW (black) represents the original waveform after 

smoothing, WW (red dash) represents the waveform using the mode estimates of 

Bayesian method, and the gray shadow represents the possible solutions for fitting the 

waveform. (b) The 99 quantile estimates of the possible peak locations from the 𝑢𝑖 

posterior distribution. (c) The point uncertainty propagated from the parameter 

uncertainty through geolocation transformation at a sample region with the background 

of 𝑢𝑖50 point cloud. (d) Possible point clouds generated from 1% quantile estimate and 

99% quantile estimated peak locations as examples. (e) Possible surface models such as 
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Canopy Height Models (CHMs) generated from 𝑢𝑖1  quantile point cloud and 𝑢𝑖99 

quantile point cloud as examples. 

 

3.2.8.2 Uncertainty of accuracy assessment with field data 

A limited number of field observations and imprecise field-measured data 

significantly affect the calibration results and accuracy assessment (Yao et al., 2012). 

Both require us to conduct uncertainty analysis of field data to enhance the credibility of 

calibration. However, the uncertainty of field data is difficult or impossible to quantify 

since data providers do not clearly state which error sources were considered. In this 

study, we assumed the field data were “true”, and the uncertainty of estimated tree height 

using the Bayesian decomposition method was analyzed. Specifically, 1 m buffers 

generated from field-measured individual tree locations (X and Y) were first used to 

extract possible tree points from the 𝑢𝑖50 point cloud. For each buffer, the Z values of the 

points above 95th percentile height were selected as the possible tree height and these 

points were employed to identify the waveform(s) that fell in the tree region. The 

uncertainty of these individual trees’ height was quantified through the 95% CI of peak 

locations from selected waveform(s) after the Bayesian decomposition. Moreover, we 

calculated the uncertainty of RMSE for the estimated tree height based on the nearest 

possible value and farthest possible value from each tree’s 95% CI to the field-measured 

data. An overview of the proposed methodology was generated to summarize the major 

steps implemented in this paper as shown in Figure III-4. 
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Figure III-4. Flowchart for the Bayesian decomposition of waveform LiDAR data with 

uncertainty analysis 
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3.3 Results  

 Model reasonableness  

 

 

Figure III-5. Examples of Bayesian decomposition of FW LiDAR data using three models 

(the Weibull, Adaptive Gaussian and Gaussian models) and their corresponding 

uncertainties (gray shadow). Black solid line represents the smoothed waveform (SW) 

using a mean filter, red dash line represents the modeled waveform (MW), and other color 

dash lines represent modelled waveform components. WAIC is the Watanabe-Akaike 

information criterion and SE is the residual standard error of the model. 

 

We modeled 140 sample waveforms with different complexities (the number of 

components) using the Weibull, Adaptive Gaussian and Gaussian models within the 

Bayesian framework, and three representative examples of decomposition results 

including waveform components (colored dash lines), uncertainty (gray shadow), the 
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corresponding WAIC and SE of model are demonstrated in Figure III-5. As expected, all 

models worked well with a relatively small difference when we visually inspected the SW 

and MW. There was no noticeable loss of the fitting accuracy using these three models 

when the waveform was relatively simple. 

However, the Weibull function model became less fitted and yielded a wider gray 

shadow with larger uncertainty when the waveform had higher number of Gaussian 

components. The statistics summary of the models further confirmed this inspection, as 

the Weibull model always achieved the largest WAIC and SE given the same waveform. 

Moreover, most of the waveforms in the study site were close to symmetric distributions, 

which diminishes the advantage of the Weibull model that is capable of modeling the 

asymmetric waveforms. Among these three models, the smallest WAIC was achieved 

using the Adaptive Gaussian model to fit complex waveforms with more than one peak. 

However, this model might face the problem of overfitting, since the rate parameter (𝜆) 

of the Adaptive Gaussian model for each waveform was adjusted mainly for minimizing 

residuals of the fitted model. Consequently, the noise contained in the data might be 

considered as the main model part (𝑓(𝒙𝒊, 𝜽)) instead of the error part. The experiment of 

sample waveforms showed that 68 out of 95 waveforms with one component could 

generate the smallest WAIC using the Gaussian model. Additionally, over 75% of all 

waveforms in the SJER study site were considered to be one component according to the 

inspection of the waveform components (n). These gave us more confidence to utilize the 

Gaussian model instead of the Adaptive Gaussian model to perform waveform 

decomposition in terms of model accuracy and uncertainty. 

In addition, the physical interpretation of the parameters was also limited when we 

applied the Weibull model or Adaptive Gaussian model. For the four-parameter Weibull 

model, the estimates can’t be employed as a location like Gaussian model’s peak location 

to calculate the geolocation of the extracted points. It was meaningless or difficult to 

interpret the rate parameter of the Adaptive Gaussian model from the decomposition 

perspective and geolocation transformation. Furthermore, the experiment of these 

waveforms showed that the Weibull and Adaptive Gaussian models took more time to 
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find optimized parameters and reach convergence for an additional parameter. Therefore, 

we concluded that the Gaussian distribution model was the most suitable model for FW 

LiDAR data decomposition based on the accuracy, uncertainty, physical meaning and 

processing efficiency. 

 Performance evaluation 

3.3.2.1 Point cloud comparisons 

 

 

(a)                                                                                    (b) 

Figure III-6(a). The canopy height model (CHM) generated from Bayesian approach 

(Left). (b). The spatial distribution of the distance between waveform-based point clouds 

using Bayesian decomposition method and the DR point clouds (C2C) at SJER1 region 

(Right). 

 

The C2C validation of the SJER1 study region was executed as displayed in Figure 

III-6(b). To associate the C2C distances across the study site with the vegetation 

distribution, the CHM derived from the Bayesian decomposition method (Figure III-6(a)) 

was plotted against the C2C distances’ spatial distribution pattern. It was worthy to note 

that larger C2C absolute distances (>0.5 m) were more likely to occur at the vegetation 

part with higher CHM values. The ground region was the most accurate portion with 

relative small distance when we compared waveform-based point cloud to the 

corresponding DR LiDAR point cloud.  
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Figure III-7. Probability distribution of the C2C point distances (sky blue), horizontal (X, 

Y) and vertical (Z) distances (gray) using mode dataset with the Bayesian decomposition 

method at the SJER site. MD: Mean distances between waveform-based point clouds and 

DR point clouds. SD: Standard deviation. RMSE: Root mean square error. 

 

Figure III-7 depicts the distribution of point cloud distances, horizontal (X, Y) and 

vertical (Z) distances between the waveform-based point cloud using the mode dataset 

with the Bayesian decomposition method, and the DR point cloud. When examining these 

three 1D distances (gray), it was evident that the horizontal (X and Y) and vertical (Z) 

distances’ distributions were symmetric around 0 m with almost the same distribution. 

However, a closer examination revealed that compared with the horizontal distances, the 

vertical distances were greater, but not markedly greater, with larger SD and RMSE. 

These three 1D distance’s distribution together contributed to the point distances’ 

distribution (3D) with the mean point distances and their corresponding RMSE were 0.51 

m and 0.67 m, respectively. As expected, the absolute MDs and RMSEs of X, Y, Z 

coordinates’ C2C distances were all smaller than point distances. 
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To further illustrate, more detailed C2C point cloud comparisons between 

waveform-based point clouds using four methods (the Bayesian decomposition, DD, 

Gold and RL) and reference point cloud were summarized in Table III-1. All methods 

generated satisfactory point clouds with acceptable mean point distances (< 0.84 m) and 

RMSEs of point distances (< 0.93 m) compared to the DR point cloud. Upon closer 

examination of results with different methods, the DD method outperformed the other 

three methods with the smallest average point distances, X, Y, Z distances, and 

corresponding RMSEs. Especially for the horizontal distances (X and Y), there was a tiny 

difference of the four methods in terms of the MD and RMSE. However, a relatively 

larger difference of the methods’ MD and RMSE occurred at the vertical direction (Z) 

that consequently leads to the same pattern of four methods’ point distances.  

 

Table III-1. Summary statistics of the distances between waveform-based point clouds 

with the four methods (Bayesian decomposition (Bayesian), DD, Gold and RL) and the 

reference point cloud at the SJER site. 

 

Items Methods MD SD RMSE MAX MIN 

Point distances(m) 

 

Bayesian 0.51 0.44 0.67 5.07 0.00 

DD 0.48 0.37 0.61 3.98 0.01 

Gold 0.78 0.36 0.86 4.74 0.00 

RL 0.84 0.40 0.93 4.57 0.01 

X distances(m) 

 

Bayesian 0.02 0.34 0.34 3.74 -3.73 

DD -0.01 0.30 0.30 2.45 -3.60 

Gold 0.00 0.36 0.36 3.64 -3.68 

RL 0.00 0.39 0.39 3.47 -3.44 

Y distances(m) 

 

Bayesian -0.02 0.35 0.35 3.69 -3.81 

DD 0.02 0.29 0.29 2.59 -3.00 

Gold 0.05 0.34 0.35 3.23 -3.59 

RL 0.05 0.38 0.38 3.71 -3.46 

Z distances(m) 

 

Bayesian -0.09 0.46 0.46 4.37 -4.62 

DD -0.17 0.42 0.45 3.24 -3.07 

Gold -0.48 0.51 0.70 3.98 -4.61 

RL -0.47 0.59 0.75 3.56 -4.23 

*MD: the mean point distances between waveform-based point clouds and DR point clouds. SD: the 

standard deviation of distances. RMSE: the root mean square error of distances. MAX: the maximum of 

distances. MIN: the minimum of distances.  
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3.3.2.2 Individual trees’ metrics 

 

 

 

 

Figure III-8. Two representative examples (Top: Tree1, Bottom: Tree2) of individual 

trees’ height bin vs. absolute point frequency and normalized frequency using DR LiDAR 

data and FW LiDAR data with the four waveform processing methods including the 

Bayesian decomposition, DD, Gold and RL approaches. Discrete represents results from 

DR LiDAR data. DD, Gold, RL and Bayesian represent results from the DD, Gold 

approach, RL approach and Bayesian decomposition method, respectively. 

 

This section provided a comparison and evaluation of the FW LiDAR processing 

methods at the individual tree level. To demonstrate the robustness of approaches and 

reduce the selection bias, 121 randomly selected trees’ height bins, percentile heights and 

canopy point densities were generated (see examples in Figure III-8 and Table III-2). 
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There were two patterns observed with respect to the point density of individual trees. 

Thus, two representative trees derived from waveform-based point clouds using the 

Bayesian decomposition, DD, Gold and RL approaches were chosen to demonstrate these 

patterns: one tree with higher point density (Tree1), and another tree with lower point 

density (Tree2) were compared to the DR LiDAR data. Overall, about 91% of all selected 

waveform-based tree point clouds had more dense point clouds than their corresponding 

DR LiDAR data. As shown in Table III-2, 16 out 21 trees’ waveform-based point 

densities were higher than the corresponding region’s DR LiDAR data, which followed 

the pattern of the Tree 1. Figure III-8 shows the absolute and normalized point frequency 

in each height bin of FW LiDAR data using four approaches and DR LiDAR data. As 

expected, more points were extracted from FW LiDAR data with these four approaches 

when examining the Tree 1’s middle height bins from 6 to 22 m. The Gold and Bayesian 

decomposition methods outperformed other methods from the perspective of the number 

of points extracted from the mid-story of the tree. 

This trend was not so obvious for the Tree 2, where higher point frequency in most 

of the height bins was observed using DR LiDAR data rather than FW LiDAR data, 

especially the absolute point frequency. While the normalized point frequency 

demonstrated advantages of FW LiDAR data for characterizing the mid-story of the tree, 

but the evidence was not as strong as for the Tree 1.  The common feature of all trees 

shares was that DR LiDAR can detect more points in the lower part of their height or on 

the ground than FW LiDAR. This might be attributed to the fact that the tree had a dense 

canopy and the transmitted energy rarely reached the ground. 
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Figure III-9. The individual trees’ percentile heights (Left: Tree 1; Right: Tree 2) using 

DR LiDAR data (Discrete), and waveform LiDAR data with the DD, Gold, RL and 

Bayesian decomposition (Bayesian) methods. 

 

The percentile heights’ results for these two examples demonstrated similar trend 

as height bin results (Figure III-9). For Tree1, the significant differences among different 

processing methods occurred around the median percentile, especially for the Bayesian 

decomposition and DD methods. Surprisingly, the four approaches and DR LiDAR data’s 

percentile heights reached an agreement after 80th percentile height. This may indirectly 

imply that more points were extracted from the waveforms at the mid-story of tree height.  

To reduce the ground points’ effect on the comparisons, the trees’ non-ground part 

was used to compare different methods’ performances. We used 21 representative trees 

from the SJER1 to demonstrate comparison results. According to Table III-2, only 5 out 

of 21 trees’ DR LiDAR data results (with bold) yielded higher canopy point density than 

waveform LiDAR data using these four methods. Additionally, the DR LiDAR results 

detected more ground points than waveform-based results as shown in Table III-2. There 

was no evident trend for the other three methods, however, the canopy point density 

results of all methods indicated that waveform LiDAR data can provide more non-ground 

points than DR LiDAR data. A closer examination of five individual trees with fewer 

points than corresponding DR LiDAR data shows that three of them (the Tree 2, Tree 12 

and Tree 20) are located in the regions with fewer flight lines overlaid which may mainly 

contribute to the reduction of points detected.   
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Table III-2. Summary of the total number of points/ number of non-ground points/ non-

ground canopy point density for 21 individual trees using DR LiDAR data (Discrete), and 

waveform LiDAR data with the DD, Gold, RL and Bayesian decomposition (Bayesian) 

methods. 

 

Tree index Discrete DD Gold RL Bayesian 

Tree1 1465/867/7.3 1554/1114/15.0 1607/980/13.2 1429/831/12.7 2008/1593/21.3 

Tree2 2534/1337/10.8 1616/947/7.4 1761/1014/8.0 1490/838/6.6 1982/1367/10.7 

Tree3 827/353/7.0 858/448/18.1 879/425/19.1 833/419/15.9 1035/569/28.7 

Tree4 887/327/7.1 898/432/15.7 1053/399/18.0 903/439/16.5 102/499/19.3 

Tree5 3029/1216/16.7 1128/610/13.2 1190/569/13.1 1085/546/10.7 1326/744/15.0 

Tree6 3873/1211/11.2 2306/1059/9.8 2315/1079/10.0 2257/1046/9.7 2312/1202/11.2 

Tree7 2186/678/6.6 1880/880/8.6 1877/737/7.2 1859/862/8.5 1816/872/8.6 

Tree8 1698/999/7.2 2256/1335/9.7 2385/1243/9.0 2422/1448/10.5 2559/1681/12.2 

Tree9 543/295/7.5 659/445/11.5 669/432/11.0 652/430/10.6 671/448/11.3 

Tree10 552/316/7.2 405/283/6.4 558/322/7.3 569/358/8.1 563/387/8.8 

Tree11 499/193/8.1 444/184/7.8 521/239/10.1 509/268/11.3 500/243/10.2 

Tree12 1945/649/17.7 893/445/12.1 946/386/10.5 885/398/10.9 897/412/11.2 

Tree13 773/331/7.9 834/454/10.8 883/433/10.3 876/500/11.9 832/465/11.1 

Tree14 1278/718/7.2 1484/951/9.5 1563/964/9.7 1553/953/9.5 1609/1101/11.0 

Tree15 1275/647/7.4 1748/988/11.2 1910/1161/13.2 1853/1090/12.4 1988/1467/16.7 

Tree16 1788/1071/6.5 2098/1407/9.0 2439/1596/10.2 2428/1512/9.7 2624/2086/13.4 

Tree17 708/329/7.4 625/315/7.1 813/327/7.4 765/393/8.8 749/377/8.5 

Tree18 770/303/7.1 691/309/7.3 747/297/7.0 753/356/8.4 746/356/8.4 

Tree19 1847/902/7.2 2437/1696/13.6 2687/1678/13.5 2737/1700/13.6 3027/2423/19.5 

Tree20 1116/575/11.4 758/531/10.5 829/525/10.4 824/531/10.5 811/548/10.9 

Tree21 1660/805/6.8 2004/1182/9.9 2041/1104/9.3 2042/1100/9.2 2267/1589/13.4 

 

3.3.2.3 Field data calibration 

The accuracy of the maximum height derived from DR-based and waveform-based 

CHMs were assessed by comparing the field-measured data at the SJER1 study region.  

Overall, there was no significant difference among four waveform processing methods 

with regard to the average bias, standard deviation and RMSE. All of these methods 

generated comparable and acceptable results compared with the field-measured data. 

Specifically, the comparison between DR LiDAR data and the measured data produced 

the smallest RMSE with 1.11 m, and the DD method consistently yielded the least 
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accurate results with the largest average bias and RMSE. The superior waveform 

processing method varied with different statistics criteria used: the RL method was 

superior with the smallest RMSE (1.35 m), and the Gold method outperformed others 

with the smallest average bias. 

 

Table III-3. Summary of the comparisons between the field-measured tree height and 

maximum tree height derived from the CHMs using DR LiDAR data, and FW LiDAR 

data with the DD, Gold, RL and Bayesian decomposition (Bayesian) methods. 

 

Study 

site 

Statistics criteria Discrete 

(m) 

DD 

(m) 

Gold 

(m) 

RL 

(m) 

Bayesian 

(m) 

SJER Average -0.24 0.73 -0.15 -0.32 -0.26 

 Standard 

deviation 

1.11 1.64 1.52 1.36 1.48 

 RMSE 1.11 1.75 1.49 1.35 1.50 

 

 Uncertainty analysis 

3.3.3.1 Individual parameter uncertainty 

Figure III 10 shows an example of the trace plot for three parameters’ sampling 

processes and the marginal posterior distribution of the parameters (A, u, δ) using the flat 

priors and empirical priors. From the trace plot (Left), we can see an obvious difference 

at the beginning of the parameter sampling and the flat priors (sky blue) takes more steps 

to reach the stable status, especially for A and δ. Given the same number of iterations, the 

distributions of the parameters were nearly symmetric following the normal distribution 

with the empirical priors (gray), while the results of the flat priors (sky blue) were not 

symmetric which implied the posterior sampling of the parameters did not reach the 

stationary stage. The Model efficiency experiment using different parameters’ prior 

distribution showed that the performance of the flat priors can reach the same level as the 

empirical priors with more burn-in steps and total iterations. 
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Figure III-10. An example of parameter estimates derived from the Gaussian model 

within the Bayesian framework using the flat priors and empirical priors with the same 

number of iterations. Left: The trace plot of model parameters A, u, 𝛿 using the flat priors 
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and the empirical priors. Right: The probability density distribution of estimated 

parameters A, u, 𝛿 using the flat priors and the empirical priors. 

 

Table III-4. Average processing time for a single waveform with different number of 

peaks. 

 

Number of components 

per waveform 

Number of 

waveforms 

Average time (flat 

priors, seconds) 

Average time (empirical 

priors, seconds) 

1 95 2.43 1.91 

2 21 12.40 10.49 

3 10 67.38 45.36 

4 6 235.60 114.70 

5 4 364.65 162.00 

6 2 462.60 267.00 

7 2 511.20 276.90 

 

From Table III-4, a general trend has emerged that more time is taken to process 

the waveform with a larger number of components no matter which priors were used. 

Interestingly, there was an abrupt rise of time cost when the waveform’s number of 

components became four. The comparison between the flat priors and the empirical priors 

demonstrated that there was little difference of time cost when the waveform was 

relatively simple with one or two waveform component(s). However, the computation 

time using the empirical priors was much shorter than when using the flat priors for 

complex waveforms. This reduction of time could make a substantial difference when 

millions of waveforms need to process and the efficiency of using the empirical priors 

will become more evident. Without the consideration of the computation cost and time, 

the impact of different priors on the parameter estimates and the performance of the 

Bayesian models was negligible.  
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3.3.3.2 Point cloud uncertainty 

 

 

Figure III-11. Uncertainty of average distance (Mean) and corresponding RMSE between 

reference point cloud dataset and waveform-based LiDAR quantile point cloud datasets 

using the Bayesian decomposition method at the SJER site 

 

The PDFs of descriptive statistics (Mean and RMSE) for point distances (sky blue), 

X, Y and Z distances (gray) through comparing the waveform-based LiDAR quantile 

point cloud datasets with the DR dataset are displayed in Figure III-11.  

The uncertainty of average bias and corresponding RMSE for point distances were 

larger than the other three individual coordinates’ descriptive statistics when examining 

the mode and range of corresponding distribution. For example, the mode of average 

distances of the X, Y and Z centered around -0.02, 0.02 and -0.08 m, respectively. The 

counterpart of point distances was much larger which centered around 0.51 m with more 

flat distribution. The RMSE demonstrated a similar pattern that the distribution of point 

distances was less compact than other three coordinates’ distribution with a larger mode. 

Interestingly, there was no significant difference between the distribution of X distances 
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and Y distances, while the distributions of Z distances varied with the X and Y distances 

with larger absolute mode and uncertainty. 

3.3.3.3 Surface model uncertainty 

 

 

 

Figure III-12. Uncertainty of the average difference and RMSE between waveform-based 

surface models (the DTM and CHM) and reference surface models using Bayesian 

decomposition method at the SJER site. CI: Credible interval. 

 

The uncertainty of surface models derived from these quantile point clouds using 

the Bayesian decomposition method is demonstrated in Figure III-12. The distribution of 

the CHM’s mean bias and RMSE (dark gray) tended to be wider than DTM counterparts. 

For instance, the estimated RMSE for the CHM was 1.38 m and 95% CI ranged from 1.31 

to 1.61 m, both of which were larger than the RMSE of the DTM. The distribution of the 

average difference for DTM was likewise smaller than CHM’s average difference from 

the perspective of 95% CI. Therefore, it was evident that the uncertainty of DTM was 

smaller than the uncertainty of CHM in terms of their corresponding distribution of the 

average bias and RMSE.  
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Compared to the point clouds’ uncertainty (Figure III-11), the surface models 

yielded larger uncertainty with wider CIs, which could represent the propagation of true 

estimation error along the processing steps. Using the RMSE of CHM as an example, it 

demonstrated a larger median and more flat pattern distribution than point clouds’ RMSE 

(Figure III-11). 

3.3.3.4 Uncertainty of accuracy assessment with field data 

 

 

Figure III-13. Uncertainty of the individual trees’ height as obtained from the Bayesian 

decomposition method vs. field-measured tree height at the SJER study site. The left 

panel refers to all individual trees’ 95% credible interval (sky blue), and the right to the 

distribution of two possible estimated tree heights with 95% credible interval (blue). 

 

Estimated tree height’s uncertainty yielded from the Bayesian decomposition 

method at individual tree level against the field-measured data is displayed in Figure 

III-13. It was observed that data points (blue circle) of estimated tree height (ETH) versus 

field-measured tree height mostly followed tightly around Y=X line that indicated the 

Bayesian decomposition method can accurately capture the height of these individual 

trees. In addition, almost all trees’ 95% CIs of ETH (145 out 151 individual trees), as 

indicated by the horizontal error bar (sky blue), were intercepted by Y=X line. The 

uncertainty of ETH’s RMSE confirmed good agreement with the field-measured height 

that resulted in the uncertainty of RMSE ranges from 0.69 to 2.05 m. To avoid the 

proliferation of figures, two individual trees (Tree 1621 and Tree1647, orange) were used 

as examples to further demonstrate final results of tree height estimation using the 
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Bayesian decomposition method as shown in the right panel of Figure III-13. This figure 

provided more than just one value of ETH that generally obtained from the deterministic 

methods, and yielded more informative estimates of tree height with probability for the 

individual tree. 

3.4 Discussion  

 Model reasonableness 

Several potential models such as the Generalized Gaussian, Burr and Weibull 

models have been proposed to fit the airborne LiDAR waveforms (Mallet et al., 2009), 

while most of them are unrealistic models which may violate theoretical considerations 

or misinterpret their real-world’s physical meanings. Thus, the choice of model is crucial 

for the subsequent FW LiDAR data processing and outcome interpretation. 

The results of model reasonableness in the present study justify that the Gaussian 

model is more suitable for reconstructing the waveform LiDAR signals in terms of 

efficiency, physical interpretation and uncertainty. Three representative models suitable 

for FW LiDAR data processing including the Weibull, Adaptive Gaussian, and Gaussian 

models were explored. In our case, the Adaptive Gaussian model better fitted waveforms 

compared to the Gaussian model. However, the Adaptive Gaussian model is prone to 

overfit the model and incorrectly considers data noise as real waveform signals by 

adjusting the rate parameter to pursue the smallest residual of model fitting. The Weibull 

model is more difficult to constrain than the other two models with larger CIs or 

uncertainty. Moreover, there is no explicit way to explain the physical meaning of the 

corresponding parameters. Hence, the Gaussian model is a suitable trade-off between 

accuracy and meaningful solution to extract useful information form FW LiDAR data.  

Simultaneously, the quantification of uncertainty using these models demonstrates 

the attractive features of the Bayesian method and allows us to interpret results in a more 

natural way with posterior distribution of estimates. Moreover, we can explicitly trace the 

uncertainty inherent in any inference and monitor the uncertainty propagation through the 

use of quantiles for different parameters, quantile datasets and models (Figure III-3).  
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 Performance evaluation 

Point cloud. The calibration and comparison conducted on the point clouds 

eliminate the reliance on the underlying surface derived from local parametric estimates. 

Additionally, we compare every point of the waveform-based point cloud with the 

corresponding reference point cloud instead of mainly comparing a subset of the total 

points in the specified grid cells when the area based method (DTM or CHM) is used. 

This can avoid the error introduced by interpolation and poor choice of gridding size, and 

ultimately make the comparisons become more convincing and comprehensive. The C2C 

results show the Bayesian decomposition method is applicable for extracting information 

from FW LiDAR data to characterize the vegetation structures. The contribution made by 

the Z direction to the point distances is much larger than the X and Y directions. A 

reasonable explanation for the difference is that pulse direction vector of the Z direction 

(~ -0.15 m/ns) is much larger than the X and Y directions (~ -0.02 and -0.01 m/ns). As a 

consequence, the relative change in the Z direction is much higher than in the X and Y 

directions given the same change of time. This may also suggest that FW LiDAR data’s 

horizontal precision is higher than the vertical precision. The uncertainty of the point 

cloud (Figure III-11) further substantiates this finding with larger average distance and 

RMSE in the Z direction. 

Overall, the C2C method’s results support that the four waveform processing 

methods can generate relatively satisfactory results with all methods’ RMSE values being 

less than 0.93 m (Table III-1). However, a closer examination of the point clouds 

comparison results reveal that the decomposition method (the DD and Bayesian 

decomposition) may generate more accurate point clouds than the combined 

deconvolution and decomposition method (the Gold and RL) in terms of the descriptive 

statistics such as the MD and RMSE. Specifically, the DD method is prone to outperform 

other three methods with slightly smaller average distance and corresponding RMSE. 

This conclusion backs up the results using the area based method of Zhou’s study (2017) 

that the DD method potentially yield more accurate DTMs and CHMs than the Gold and 

RL methods. 



 

100 

  

Individual tree metric. The C2C comparison yields a general view about the 

waveform processing methods on a large scale. Examining metrics derived from different 

methods at the individual tree level further reveal advantages and disadvantages of these 

methods. Most of the individual trees derived from waveform LiDAR data can obtain 

more points - by as many as 80% of trees (16/21) at the SJER1 study region - compared 

with the corresponding DR LiDAR data. Two illustrative examples of individual tree’s 

point distribution at different height bins, percentile heights and canopy point density 

depict a similar trend that FW LiDAR data are capable of extracting more points at the 

mid-story of the vegetation. Surprisingly, by comparing the DR LiDAR data results, FW 

processing based methods are less likely to detect ground points that maybe the 

disadvantage of using FW LiDAR data.  

Field data calibration. Various factors could affect the field calibration results, 

such as the number of sample plots, the accuracy of measured instruments and the mis-

registration error between LiDAR data and field plots (Zhao et al., 2011). Although field 

calibration is necessary for LiDAR applications, caution should be exercised when using 

calibration results, given the survey error was inherently unavoidable and ubiquitous. 

Table III-3 demonstrates that DR LiDAR data (RMSE<= 1.1 m) can be an alternative for 

field-measured data when they are not available. This conclusion is also consistent with 

the previous studies’ claims that DR LiDAR data can accurately measure the tree height 

(Chen, 2007). In addition, the uncertainty of ETH (Figure III-13) is generated to indicate 

the true magnitude of estimation error and enhance the credibility of field calibration 

results by reducing the error introduced by the field measurements. For the Bayesian 

decomposition method, the calibration results are not just represented by one RMSE value 

like the DD, Gold and RL methods yielded (Table III-3), but all possible RMSE values 

with probability are provided. This situation renders an intuitive and reasonable way to 

address the real-world model calibration problem. 

 Uncertainty analysis 

Quantification of uncertainty is one of the notable advantages for adopting the 

Bayesian method. The uncertainty is retained throughout all processing steps including 
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parameter estimates, geolocation transformation and surface model generation, a full 

disclosure of uncertainty of these processing steps is crucial for the result interpretation 

and the potential applications. In the present study, a thorough uncertainty quantification 

method is conducted on parameters, quantile point clouds and surface models (DTMs and 

CHMs) to ensure the quality of the results. The Bayesian approach gives us all possible 

estimates with probability for unknown parameters (Figure III-3) instead of just providing 

a single value within a frequentist framework. This enables the researchers to view where 

the most probable locations of the waveforms to represent the illuminated object along 

the pulse line. Furthermore, the probability distribution of the estimates also essentially 

precludes non-uniqueness problem, which is common in the waveform decomposition. 

Actually, this problem has been faced by the users who employed advanced statistical 

models to tackle inversion problems in various fields (Gouveia and Scales, 1998; Oh and 

Kwon, 2001).   

The Bayesian method has been subjected to criticism for its subjectivity by 

introducing prior information. In the present study, the results of using different priors 

showed that this subjectivity can be overcome by using the flat priors (non-informative 

priors). The nearly identical performance as empirical priors can be achieved at the 

expense of more computation cost and time using the flat priors, which agrees well with 

Ellison’s conclusion (Ellison, 2004). While this conclusion is not consistent with 

Denham’s study (Denham et al., 2009), using the empirical priors tends to increase the 

precision of the parameters. There are factors that contribute to this inconsistency, such 

as data noise, setting of non-informative prior and the main model used in the simulation. 

However, all results demonstrate that the Bayesian approach is capable of data analysis 

such as parameters extraction from waveforms with reasonable accuracies. To reach the 

same performance of the empirical priors, the computation time using the flat priors is 

markedly longer (Table III-4). This indirectly reflects that the empirical priors are capable 

of reducing the complexities of Bayesian decomposition method with accurate outputs. 

The Bayesian decomposition method may appear to require more computation cost 

than the other three methods, however, it can overcome the parameter initialization 
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problem of the DD method, and avoids the step of parameters optimization for 

deconvolution when the combined deconvolution and decomposition method is used. 

Results of this study demonstrate the potential and advantages of using the Bayesian 

approach to characterize uncertainty of parameter estimates. Moreover, it allows 

researchers to trace the propagated error and uncertainty explicitly through PDFs of 

corresponding evaluation criteria from parameters to points, point clouds and surface 

models (Fig 3). Assuredly, the unsuccessful Bayesian decomposition may occur when the 

waveform is extremely noisy or irregular. Assigning the number of Gaussian components 

(n) as a random variable is expected to be one potential solution which could be one aspect 

of further research.  

The uncertainty results for the quantile point cloud datasets are represented by a 

probability distribution, which can characterize the variability, extent of average distance 

and RMSE in a probabilistic sense to assess the performance of the Bayesian method. As 

expected, the horizontal precision of FW LiDAR data is better than their vertical precision 

and the main uncertainty of the point clouds come from the vertical direction. 

The surface model’s uncertainty results reveal that the DTM has smaller variance 

and uncertainty than the CHM, which yields a larger average bias and a wider range of 

the RMSE (Figure III-12). Various factors can degrade the accuracy of the DTM, such as 

sampling size, point density, terrain conditions and processing methods (Vincent et al., 

2012). To some extent, the quality of the DTM significantly affected the CHM quality. 

Consequently, larger error or uncertainty of CHM accrued might mainly due to the fact 

that CHM was generated by subtracting DTM from Digital surface model (DSM) and an 

additional error was likely to be introduced with this step. This kind of uncertainty 

propagation was also observed through comparing the average bias and corresponding 

RMSE of the point clouds (Figure III-11) with the surface models (Figure III-12). More 

specifically, the point clouds’ RMSE varied from 0.62 to 0.71 m, while the uncertainty of 

the RMSE for the waveform-based DTM and CHM were 0.62 - 0.80 m and 1.31 - 1.61 

m, respectively. It is evident that the error and uncertainty are increasing along the 

processing steps and an additional processing step brings more error and uncertainty. The 
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uncertainty analysis captures the fact the error introduced into the estimation steps and 

provide more informative information which consequently gives us more confidence to 

interpret and apply results to real-world problems such as tree species identification. 

Actually, most of the remote sensing applications such as variable extraction and 

biomass estimation using various sources of remote sensing data are inadequately 

addressed or overlooked the uncertainty analysis of their results (McRoberts et al., 2010; 

Zhao et al., 2011). The Bayesian concept or approach can be transplanted to these 

applications to quantify the estimate of error or uncertainty by employing statistical 

inference of posterior distribution for the subjects of interest. At the current stage, the 

Bayesian approach appears complicated which requires users to have knowledge about 

the concepts and procedures, and needs extensive computation time (De Lannoy et al., 

2014) for MCMC sampling. These aspects have hindered the broad applications of 

Bayesian approaches, however, the advances in computation and development of 

generalized tool such as BUGS, JAGS and Stan will likely contribute to the popularity of 

Bayesian models in the foreseeable further. 

3.5 Conclusion 

This paper has incorporated the Bayesian concept with waveform decomposition to 

develop an innovative method to extract information from FW LiDAR data and conduct 

a thorough uncertainty analysis along the processing steps. Built upon the deterministic 

method for waveform decomposition of Zhou et al. (2017), a more comprehensive 

exploration of the extant methods and the proposed Bayesian method are conducted at the 

point, point cloud and surface model levels.  

The Bayesian method contributes to the waveform decomposition in several ways. 

As demonstrated, the solutions of decomposition using the Bayesian method are 

represented by a probability distribution over parameter estimates instead of producing a 

single value for each parameter using the deterministic approach. Additionally, it permits 

the users to interpret the results in a probabilistic sense that is stable enough to provide a 

feasible solution to the decomposition problem. Moreover, the adoption of Bayesian 

analytics generates a systematic and transparent knowledge learning framework to 
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estimate uncertainty emerging from parameters, points, the point cloud and the surface 

model via the use of quantiles of the probability distribution. Meanwhile, the uncertainty 

propagation can be explicitly traced and observed from data to the parameter estimate, 

the point, the point cloud and the surface model (Figure III-3). We also explored the non-

uniqueness problems of waveform decomposition within Bayesian framework to reduce 

the theoretical error from the model itself and justify the reasonableness of using the 

Gaussian model for FW LiDAR data decomposition in terms of uncertainty, physical 

meaning and processing efficiency. The superior method of FW LiDAR data processing 

varies from the perspective of different criteria and waveform-derived products. Results 

of point cloud comparisons demonstrate that the Bayesian decomposition method can 

achieve comparable accuracy as the DD, Gold and RL methods. Results from the 

individual tree level highlight that FW LiDAR data can characterize more detail of the 

mid-story of vegetation with more dense points. The combined deconvolution and 

decomposition method (the Gold and RL approaches) outperforms the decomposition 

method (DD and Bayesian decomposition) in terms of the surface model’s results. In 

addition, field data for calibration results using the Bayesian method provide a reasonable 

way to reduce the effect of field measurement error on the model calibration. Further, the 

Bayesian method is expected to become more efficient and user-friendly with the aid of 

computational advances and convenient implementation tools. In addition, more research 

efforts are still needed to apply FW LiDAR data for vegetation studies, such as tree 

species identification and biomass estimation over extensive regions. 

3.6 Appendix  

 Model implementation & model structures 

The models were built on the Stan inference engine. It consists of four blocks: 

variables declarations, parameter statements, transformed parameters and model blocks 

The data block is functional as input data declaration; the parameters block is to introduce 

all unknown parameters of interest; the transformed parameters block is mainly for the 

conversion of data and parameters to the readable way, and the model block is to compute 

the log posterior density. Stan first translated a model into C++ and then compiled the 
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code for each waveform. Different waveforms may have a different number of Gaussian 

components, which generates a different posterior distribution and model for each 

waveform. The challenge is that the model always changes based on the number of 

Gaussian components which requires users to compile a new model for each waveform. 

Meanwhile, a new dynamic link library (DLL) was generated to store the model. This 

would exceed the maximum number of DLLs can be loaded on a computer after the model 

fitting a certain amount of waveforms. In order to solve this problem, the update function 

of brms was used to avoid recompilation issues. This function requires the structure of 

the input model or the posterior distribution should be exactly the same format. Therefore, 

we grouped the waveforms with the same number of peaks, and then employed the update 

function for fitting these waveforms. This strategy could save the compilation time and 

make the processing much more efficient. In addition, the parallel computing is also 

automatically implemented in brms package by specifying the number of clusters and 

chain. In this analysis, we assigned them both as 2. All of these components in brms 

package make HMC converge much faster to a target distribution. 

 Model convergence 

The model convergence is measured with 𝑅̂ and is computed as follows: 

𝑉𝑎𝑟̂(𝜃) = (1 −
1

𝑙
) 𝑊 +

1

𝑙
𝐵                                          (III-10) 

𝑅̂ = √
𝑉𝑎𝑟̂(𝜃)

𝑊
                                                        (III-11) 

where W is the mean variances of stationary distribution for each chain, B is the variance 

of stationary distribution at the between-chain level, l is the number of draws in each 

chain, and 𝑉𝑎𝑟̂(𝜃) is the variance of the stationary distribution as a weighted average of 

W and B. Here, the chain of 𝑅̂ was the split chain that discarded the burn-in iterations. 

 Model efficiency 

Recently, the inference engine Stan (Gelman et al., 2015) has been introduced to 

implement HMC sampling. Stan employs a reverse mode automatic differentiation rather 

than a numerical differentiation to compute the gradient (Griewank and Walther, 2008). 
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Furthermore, the No-U-Turn Sampler (NUTS), a variant of HMC, was used to 

automatically tune two parameters in the leapfrog method. Specifically, the step length L 

is achieved by means of a recursive algorithm with doubling procedure devised by Neal 

(Neal, 2003) for slice sampling, and step size 𝜖 via an adaptation of dual averaging 

algorithm of Nesterov (Nesterov, 2009). 

These enable NUTS to run more efficiently than other MCMC algorithms and to 

become desirable for those who have little experience of tuning HMC without user 

intervention. Figure III-14 displays the relationship between the log posterior of the model 

(x-axis) and acceptance rate (y-axis) using NUTS samplers to demonstrate the efficiency 

of HMC or NUTS. Our experiment demonstrates that the sampling acceptance rate of 

NUTS is much higher (around 85 - 95%) than the desired acceptance rate of Metropolis 

algorithm which generally ranges from 23% to 50% (Roberts et al., 1997) (Figure III-14). 

The exploration of these waveforms also demonstrated that assigning the proper 

number of and total iterations of MCMC was critical to the model efficiency. The above 

sample waveforms were also used to explore optimized combinations of the number of 

burn-in samples and total iterations.  To balance the processing time and accuracy, the 

optimization of these parameters was conducted. 𝑅̂ < 1.1 was employed to judge the 

number of total iterations and samples were enough to obtain the acceptable results. The 

summary of these parameter combinations after optimization was shown in Table III-5. 

The number of chains used in this analysis was 2. To save the computation time and 

reduce the autocorrelation of draws in MCMC simulations, we saved every third iteration 

of each chain by thinning posterior samples.  
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Figure III-14.  An example of histogram for log posterior and final Metropolis acceptance 

rate, and distribution of log posterior vs. Metropolis acceptance rate using HMC algorithm 
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Table III-5. The final parameters of MCMC simulation for different waveform 

components 

Number of component per 

waveform 

Number of total 

iterations 

Number of burn-

in 

1 9,000 2,000 

2 10,000 2,500 

3 12,000 3,000 

4 15,000 4,000 

5 18,000 5,000 

6 20,000 6,000 

7 22,000 7,000 

>8 25,000 8,000 
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BAYESIAN AND MACHINE LEARNING METHODS FOR TREE SPECIES 

CLASSIFICATION WITH WAVEFORM LIDAR DATA 

 

A plethora of information contained in full-waveform (FW) LiDAR data offers 

prospects for characterizing vegetation structures. This study aims to investigate the 

capacity of FW LiDAR data alone for tree species identification through the integration 

of waveform metrics with machine learning methods and Bayesian inference. 

Specifically, we first conducted automatic tree segmentation based on the waveform-

based canopy height model (CHM) using the local maximal (LM), watershed algorithms 

and the combination of the LM and watershed algorithms. Subsequently, the Random 

forests (RF) and Conditional inference forests (CF) models were employed to identify 

important individual tree-level waveform metrics derived from the waveform-based point 

cloud, raw waveforms and composite waveforms. Further, we discriminated tree and 

shrub species by the RF, CF and Bayesian methods using identified important waveform 

metrics. Results of the tree segmentation demonstrate that the combination of the LM and 

watershed algorithms outperforms other algorithms for delineating individual tree 

crowns. The accuracy of delineated tree crowns greatly affects the waveform metrics’ 

effectiveness for feature selection. The CF model overcomes waveform metrics selection 

bias caused by the RF model which violates the implicit null hypothesis and favors 

correlated metrics, and enhances the accuracy of subsequent classification. We also found 

that composite waveforms are more informative than raw waveforms and waveform-

based point cloud for characterizing tree species in our study area. Both machine learning 

methods (the RF and CF) and the Bayesian method generate satisfactory overall accuracy 

(72.7% for the RF, 73.8% for the CF and 84.4% for the Bayesian method), and the 

Bayesian method slightly outperforms the other two methods. However, these methods 

suffer from low individual classification accuracy for the blue oak, which is prone to 

being misclassified as interior live oak due to similar characteristics of the blue oak and 
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interior live oak and insufficient accuracy of field data. Uncertainty estimates from the 

Bayesian method compensate this downside by providing classification results in a 

probabilistic sense and rendering users with more confidence in interpreting and applying 

classification results to real-world tasks such as forest inventory. Overall, this study 

highlights the recommendation of the CF method for feature selection and implies that 

the Bayesian method can be a superior alternative to machining learning methods.  

4.1 Introduction 

Successful tree species classification with remote sensing data is of considerable 

value to forest inventory and ecosystem management (Schlerf et al., 2005; Treitz and 

Howarth, 2000). Over the past decade, the emergence of Light Detection and Ranging 

(LiDAR) techniques has facilitated the development of tree species identification in forest 

ecosystems (Heinzel and Koch, 2011; Holmgren and Persson, 2004). Especially with 

advances of waveform digitization in the commercial LiDAR systems, this state-of-the-

art technology renders promising potential for reconstructing the structure of objects such 

as trees (Hollaus et al., 2009b; Reitberger et al., 2009). Full waveform (FW) LiDAR data 

enable users to “see” the whole recording process instead of a black box as discrete-return 

(DR) LiDAR data which internally interpret the pulse by the system itself (Reitberger et 

al., 2008; Zhang et al., 2015). Additional information such as geometric and reflection 

characteristics along the pulse line can also be obtained through recording the whole 

pulses. Moreover, different tree species generally have different shapes of tree crowns 

and internal structures (Heinzel and Koch, 2011), which gives rise to a different number 

of waveform components (peaks) and intensities. Such advantages unarguably suggest 

that FW LiDAR data are theoretically well-suited to classify tree species from the tree 

morphology perspective, which, on the other hand, connotes the pressing needs of 

developing methods to extract useful FW information and applying them to vegetation 

studies.  

For the past decade, most attention has been paid to applying DR LiDAR data and 

optical images to discriminate tree species. Previous studies have demonstrated that DR 

LiDAR data alone (Holmgren and Persson, 2004; Vaughn et al., 2012) or in conjunction 
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with ancillary data such as multispectral imagery (Heinzel et al., 2008; Holmgren et al., 

2008; Ke et al., 2010; Leckie et al., 2003), and hyperspectral imagery (Jones et al., 2010; 

Zhang and Qiu, 2012) can classify tree species by using variables such as percentile 

heights and spectral features extracted from these data. Segmentation of individual tree 

crowns is the general preprocessing step of tree species identification. The accuracy of 

segmentation is crucial for precisely extracting other tree structural attributes such as 

crown width, tree height, basal area and subsequent tree species classification (Chen et 

al., 2007; Koch et al., 2006; Li et al., 2012; Popescu and Wynne, 2004). Most of these 

segmentations are based on the LiDAR-derived Canopy Height Model (CHM) using 

different algorithms such as the LM filtering algorithm (Popescu et al., 2002), watershed 

algorithms (Chen et al., 2006) and pouring algorithm with empirical geometric shape of 

trees (Koch et al., 2006). Other studies segment tree crowns directly from the point cloud 

(Li et al., 2012; Morsdorf et al., 2003; Wang et al., 2008). The accuracy of tree crown 

segmentation is influenced by many factors such as forest types and point density 

(Vauhkonen et al., 2011), while the tree segmentation method has been proven to be the 

primary factor in determining the accuracy of individual tree crown extraction (Kaartinen 

et al., 2012).  

The segmentation step is also pivotal to delineate individual tree crowns using FW 

LiDAR data, but this procedure falls outside the scope of this research, and thus, no 

detailed discussion of tree segmentation algorithms is provided. Briefly, the CHM derived 

from DR LiDAR or FW LiDAR data is mainly employed to conduct individual tree crown 

segmentation for FW LiDAR related studies (Reitberger et al., 2008; Reitberger et al., 

2009; Yao et al., 2012). Specific examples of emerging FW LiDAR data for tree species 

identification mainly use variables extracted from the waveform decomposition, such as 

echo width, amplitude, backscatter cross section, inner point density and the number of 

peaks per waveforms (Hollaus et al., 2009a; Reitberger et al., 2008; Vaughn et al., 2012; 

Yao et al., 2012; Yu et al., 2014). The main advantage of the decomposition method is 

that the general view of shape for each waveform can be obtained by deriving additional 

information such as the echo width and amplitude which provides promising prospects 
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for their application in tree species classification (Hollaus et al., 2009a; Reitberger et al., 

2008). However, the rich information contained in the waveforms may automatically be 

lost by just using metrics from the decomposition. Several studies have explored the 

variables directly from FW LiDAR data instead of the corresponding point cloud, named 

FW metrics, to investigate their potential for tree species discrimination. The FW LiDAR 

metrics are firstly utilized in the large footprint FW LiDAR data to characterize the 

vegetation structures and land covers (Drake et al., 2002; Harding, 2005; Hermosilla et 

al., 2014a), and these metrics have been transplanted to small footprint FW LiDAR data 

for forest studies such as estimating forest structure parameters (Hermosilla et al., 2014b) 

and identifying tree species (Cao et al., 2016; Yu et al., 2014) in recent years. Few studies 

have, however, investigated the waveform metrics derived from composite waveforms 

(Hermosilla et al., 2014b) which contained absolute vertical information of intensities and 

overcome the possible negative effects caused by the off-nadir angle of flight. 

Regarding the tree species classification with FW LiDAR data, the common 

challenges are high dimensional variables with sparse field data, known as “small n large 

p” problem, and inherent correlations among variables further require users to conduct 

feature selection to obtain useful variables before the classification. Traditional ways to 

maintain parsimonious metrics and avoid multicollinearity are achieved with statistical 

measures such as variance inflation factor and Akaike information criterion. However, 

the high dimensionalities resulting from preserving as much information as possible in 

the raw data and model-specific assumptions preclude their potentials for precisely 

determining useful metrics for subsequent classification. Advanced statistical models and 

algorithms with increasing computational resources have enabled researchers to construct 

complex and high-structured models that are previously considered intractable to tackle 

these problems. For example, machine learning (ML) techniques have been proven to be 

a valuable tool capable of solving these problems in various domains through capturing 

the implicit and complex relationship between variables and the subject of interest (Zhao 

et al., 2011), especially for the Random forests (RF) method which has gained popularity 

in measuring variable importance in various scientific fields (Belgiu and Drăguţ, 2016; 

https://en.wikipedia.org/wiki/Variance_inflation_factor
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Cao et al., 2016; Strobl et al., 2007). However, feature selection results are misleading 

when the potential variables vary in scale or number of categories (Strobl et al., 2007), 

and correlated predictors are preferred to obtain more importance because the scheme of 

the RF’s permutation importance is constructed (Strobl et al., 2009a). 

In the tree species classification domain, several ML techniques such as linear 

discriminant analysis (Heinzel and Koch, 2011), artificial neural network, support vector 

machine (SVM) (Vaughn et al., 2012), and random forest (RF) (Cao et al., 2016; Yu et 

al., 2014) have been employed to demonstrate their advantages over classical methods in 

tree species identification with a large suite of FW metrics. The limited number of 

available field sample data as training data is another concern for applying these methods 

to achieve high accuracy results (Acevedo et al., 2009). Generally, the training data 

obtained through field measurements in LiDAR remote sensing are scarce, which require 

users to meticulously construct the model or classifier by making the best use of available 

data. Furthermore, these machine learning methods are mainly based on the deterministic 

concept that can’t capture the inherent errors and uncertainty of classification in a 

probabilistic sense and may further degrade the methods’ predictive accuracy.  

Recent developments in Markov Chain Monte Carlo (MCMC) and advances in 

computation have contributed to the emergence of the Bayesian approach as an effective 

tool to meet these challenges. Through the Bayesian approach, the belief of the subject of 

interest is updated with new information and prior knowledge of model parameters, which 

renders an intuitive way to interpret the results and errors with probability distribution. 

Even for the sparse training data, useful posteriors and model results are still achievable 

with some reasonably informed priors for model parameters. Consequently, the Bayesian 

method is capable of capturing uncertainties related to parameters and models which 

further enhances the credibility of model prediction. In LiDAR remote sensing, Bayesian 

methods have been employed to decompose waveform LiDAR (Zhou and Popescu, 2017) 

and predict forest variables and biomass (Babcock et al., 2016; Finley et al., 2013; 

Patenaude et al., 2008), yet the capacity of Bayesian methods for tree species 

classification using FW LiDAR data is rarely exploited.  
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The overall goal of this study is to integrate advanced statistical methods such as 

the RF, Conditional inference forest (CF), and Bayesian inference with FW metrics to 

conduct tree species identification using FW LiDAR data alone. In particular, three 

specific objectives are formulated: (1) to explore tree segmentation using a waveform-

based CHM with the combination of the LM and watershed algorithms; (2) to investigate 

significant metrics derived from waveform-based point cloud, composite waveforms and 

raw waveforms using traditional RF and CF methods, and (3) to introduce the Bayesian 

method to perform tree species classification and compare it to the RF and CF methods, 

and further quantify the uncertainty of classification with the Bayesian method. Two main 

innovative aspects emerge from this study: (1) introducing the CF model to conduct FW 

metrics selection to cope with “small n large p” problem and conquer the inherent bias of 

the RF model, and (2) integrating Bayesian inference with FW metrics to classify tree 

species with uncertainty using FW LiDAR data alone. The framework and methods 

developed in the present study can be easily transferred to vegetation characterization and 

biomass mapping.    

4.2 Materials and Methods  

 Study site 

Our study site is an ecosystem research experimental area, named the San Joaquin 

Experimental Range (SJER, UTM Zone 11N, Easting 257,600, Northing 4,109,300), 

which is situated at the foothills of Sierra Nevada Mountains, about 32 km north of 

Fresno, California (Figure IV-1). Within in the SJER, the vegetation is mainly composed 

of interior live oak (Quercus wislizeni), blue oak (Quercus douglasii), gray pine (Pinus 

sabiniana) and scattered shrubs with a nearly continuous cover of herbaceous plants. The 

whole area is characterized by the complex topography including coarse, large hills and 

valleys with elevation ranging from 210 to 521 m above sea level with a mean elevation 

of 366 m.  
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Figure IV-1. An overview of study area with filed-measured plots in the San Joaquin 

Experimental Range (SJER). 

 

 Data 

4.2.2.1 LiDAR data 

FW LiDAR data of the study site were acquired during leaf-on season in June 2013 

with an Optech Gemini instrument flying at approximately 1,000 m above the ground 

level. The flight campaign was conducted by the National Ecological Observatory 

Network (NEON) Airborne Observation Platform, which provided FW LiDAR data with 

a 0.8 m diameter footprint, and a spacing of about 0.524 m in the across-track direction 

and 0.5 m in the along-track direction. Compared to DR LiDAR data, the reported range 

and vertical accuracies of FW LiDAR are 0.06 - 0.28 m and 0.15 m, respectively. The 
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entire study area was covered by two perpendicular direction flight lines, with 12 and 19 

flight lines in an east-west direction and north-south direction, respectively. Major 

technical specifications of the flight campaign have been reported in in the study of Zhou 

et al. (2017). 

In this study, two pieces of waveform related information were used: a return pulse 

with 500 time bins and corresponding reference geolocations. The temporal resolution of 

the return pulse is 1 ns and the zero-padding is applied to non-recorded values of the 

return pulse to keep the length of waveforms constant. For the reference geolocation of 

the corresponding waveform, 8 basic geolocation information attributes associated with 

the waveform were obtained. Specifically, the attributes consist of the Easting of first 

return x0 (m), the Northing of first return y0 (m), the height of first return z0 (m), the pulse 

direction vectors (dx (m), dy (m) and dz (m)), the outgoing pulse reference bin location 

(leading edge 50% point of the outgoing pulse), and first return reference bin location 

(leading edge 50% point of the first return). 

4.2.2.2 Reference data 

Field-measured data were collected across 17 plots in the study site during June 

2013. An overview of the plots is displayed in Figure IV-1 with blue points. The locations 

of the plots were established by the NEON’s Field Sentinel Unit for measuring long-term 

plant, insect and soil related properties. According to the protocol of the NEON Terrestrial 

Observation System, the size of the plot is a square region with 20 ×20 m. A various 

number of trees were measured in each plot, and in total 181 trees and shrubs were 

observed. Several key vegetation structure variables were recorded and only locations 

(Eating and Northing) and tree species were used in this study.  

 Methods 

The first step of automated tree species classification using LiDAR data is to 

segment individual tree crowns. While exploring the capability of FW LiDAR data to 

segment trees is an important research area, it is beyond the scope of this study. For the 

completeness of the research, we briefly described the process of the tree segmentation in 

Section 4.2.3.2. Previous studies have demonstrated that descriptive metrics can be 
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extracted from the point cloud through waveform decomposition (Heinzel and Koch, 

2011; Yao et al., 2012), raw waveforms (Allouis et al., 2013) and composite waveforms 

(Cao et al., 2016). However, it is unclear which source of metrics is more useful for 

characterizing vegetation such as tree species discrimination. Therefore, we extracted 

variables from these three sources and conducted a feature selection process using RF and 

CF methods. Subsequently, the Bayesian, RF and CF methods were adopted to investigate 

the capability of FW LiDAR data alone on tree species identification using selected 

metrics from the feature selection step.  

4.2.3.1 Waveform decomposition 

As part of the preprocessing step of tree segmentation and metrics extraction, we 

first applied the Gaussian decomposition (Eq. IV-1) for waveforms to obtain a point cloud 

as described in our previous study (Zhou et al., 2017). The present study will not go into 

details of how the point cloud is obtained, while major steps of the procedure are the 

preprocessing of waveforms, the fitting waveform with a mixture of Gaussian functions, 

and geolocation transformation. Once we obtained the point cloud, we employed 

LAStools (Isenburg, 2012) to classify ground points with lasground and then generated a 

CHM with 1 m resolution using the remaining non-ground points. Simultaneously, the 

echo width (𝑢𝑖) and amplitude (𝐴𝑖) of each waveform were derived for subsequent metrics 

extraction from the point cloud. 

𝑓(𝑥) = ∑ 𝐴𝑖
𝑛
𝑖=1 exp (−

(𝑥−𝑢𝑖)2

2𝛿𝑖
2 )                                          (IV-1) 

where n is the number of Gaussian components, 𝐴𝑖 is the amplitude of peak at ith 

waveform component, 𝛿𝑖  is the standard deviation of ith waveform component, and 𝑢𝑖 is 

the time location of the peak at ith waveform component.  

4.2.3.2 Tree segmentation 

We first explored two commonly used algorithms including the variable window 

filter (Popescu and Wynne, 2004) and watershed algorithms (Chen et al., 2006) to 

segment tree crowns using the CHM derived from the waveform decomposition. The 

variable window filter was implemented in the TreeVaw package to identify the tree tops 

using local maximal (LM) algorithm and then to measure crown width (Popescu et al., 
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2003) as shown in Figure IV-2(a). However, individual tree crown geometry was not well 

delineated since the shape of tree crowns is not always circular in the real-world. To 

reduce the bias caused by the tree crown segments that could significantly affect the 

accuracy of extracted metrics, the watershed algorithm was employed to detect individual 

trees (Figure IV-2(b)). The geometries of individual tree segments are more representative 

of shapes of real individual tree crowns while over-segmentation (green circles) is 

obviously observed with the watershed algorithm (Figure IV-2 (b)) as compared to tree 

tops identified by the TreeVaw. Thus, we integrated the LM algorithm with a 

continuously varying filter, as implemented in TreeVaw, with the marker-controlled 

segmentation algorithm (Chen et al., 2006) which is a variant of the watershed algorithm 

to conduct individual tree detection to overcome the problems suffering from the above 

two methods. According to experiments, some detected tree tops were close which 

resulted in over-segmentation in tree crown delineation. Thus, we combined detected tree 

tops within 5.7 m to obtain final tree tops. The whole process was implemented in R with 

the aid of the ForestTools package (Plowright, 2017). The marker-controlled 

segmentation algorithm delineated tree crowns based on the tree tops we identified in the 

above steps. The relationship between tree height and crown width, and the threshold of 

combing tree tops were determined with some sampling data collected from the point 

cloud and then refined with a trial-and-error method. In this section, we focused on 

describing the process conceptually and thus presented with less details of algorithmic 

developments, which can be found in the study of Beucher and Meyer (1992). Key 

parameters used for identifying tree tops were summarized in Table IV-1. To evaluate the 

accuracy of tree segmentation, we generated a 2 m buffer around the position of each 

delineated tree top and compared these buffers to the field-measured data. Once one field-

measured data was present in the buffer, we assumed the tree was correctly detected, 

otherwise, it would be treated as “false detected tree”. If more than one detected tree were 

presented in the reference tree buffer, it will be assumed as over-segmentation tree. The 

nearest detected tree was kept for subsequent feature extraction and tree species 

classification in over-segmentation condition. 
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Figure IV-2. An example of tree segmentation with three approaches including the 

TreeVaw, watershed and LM + watershed algorithms. 

 

Table IV-1. Key parameters used in the tree segmentation approaches. 

Approaches Function  Minimum height (m) tolerance extent 

TreeVaw 0.804x + 3.67 4 NA NA 

Watershed  NA 3.5 1 2 

LM + watershed 0.1 x + 2.15 2.5 NA NA 

*x is the relative height (m); Minimum height: a value below this threshold will not be 

a crown; tolerance: The minimum height of the object in the units of image intensity 

between its highest point (seed) and the point where it contacts another object (checked 

for every contact pixel). If the height is smaller than the tolerance, the object will be 

combined with one of its neighbors, which is the highest: extent: Radius of the 

neighborhood in pixels for the detection of neighboring objects.  

 

4.2.3.3 Feature extraction 

To preserve a plethora of original information from FW LiDAR data and improve 

the use efficiency of FW LiDAR data in statistical models, we retrieved waveform metrics 

from three sources: the point cloud, raw waveforms and composite waveforms which are 

converted from raw waveforms through waveform voxelization.  

Regarding the metrics from the point cloud, we conducted waveform 

decomposition of these selected waveforms and then summarized the average, standard 

deviation and maximum of the amplitude, echo width and peak time bins for each tree 



 

120 

  

crown segments. Additionally, the first peak and last peaks’ average amplitude and echo 

width were also generated. 

For raw waveforms, we first selected waveforms that fell into the delineated tree 

crowns and filtered out waveforms with one peak to reduce the bias of tree crown 

segments and to ensure waveforms selected were from vegetation. Within each tree 

crown, we averaged the metrics extracted from individual waveforms which have been 

proven to be successfully applied for characterizing vegetation such as height of median 

energy (HOME), roughness of outermost canopy (ROUGH), number of peaks (NP), 

return waveform energy (E) (Hermosilla et al., 2014a), waveform distance (WD), median 

energy height  ratio (MEHR), front slope angle (FS) (Cao et al., 2016), height of 50% 

total waveform energy (HOHE), and half energy height ratio (HEHR). The average and 

standard deviation of these metrics were ultimately obtained as the model inputs. In 

addition, accumulative waveforms (AWF) based on the time bin and absolute height were 

generated as shown in Figure IV-3(c). The integral of these two AWFs, the integral of 

vegetation (VegI, 3 m above ground), the integral of ground (GI) and the ratio between 

the integral of vegetation and the additive integral of vegetation and ground parts (RvegT) 

(Allouis et al., 2013) were also investigated. 

Previous studies have demonstrated that off-nadir angle of flights indirectly alters 

the absolute vertical distribution of reflected intensities and results in the stretchiness or 

tilt of waveforms (Hermosilla et al., 2014b). To reduce its possible impact on the 

characterization of internal structures of vegetation using FW LiDAR data, an approach 

similar to that of Hermosilla et al. (2014b) was adopted to convert raw waveforms to 

composite waveforms with the voxel resolution of 0.8×0.8×0.15 m. The reason for using 

this resolution was that the footprint of FW LiDAR is approximately 0.8 m and the 

vertical resolution of raw waveform is 0.15 m.  Likewise, we applied the same procedures 

of retrieving metrics from raw waveforms to extract variables from composite waveforms. 

The main variables extracted from waveform and point cloud are summarized in Table 

IV-2 and a detailed description of all metrics from the three sources is demonstrated in 

Table IV-6.  
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Table IV-2. Description of main varibales extracted from waveform and point cloud. 

 

Acronym (metrics) Description 

WD (waveform distance) The distance from the waveform beginning to 

waveform ending. 

WGD (waveform distance from ground) The distance from the waveform beginning to 

assumed ground location. 

HOHE (height of median energy) The distance from waveform centroid to the 

assumed ground location. 

MEHR (median energy height  ratio) HOHE/WGD 

ROUGH (roughness of outermost 

canopy) 

The distance from the waveform beginning to 

the first peak. 

HOHE (height of half total energy) The distance from half energy location to 

waveform ending. 

HEHR (half energy height ratio) HOHE/WD 

FS (front slope angle) The angle from waveform beginning to the first 

peak which is assumed to be canopy returns. 

E (total return energy) The total energy contained in the waveform 

from waveform beginning to ending. 

VegI (integral of the vegetation part) The integral of vegetation part which is 3 m 

above the assumed ground location. 

GI (integral of the ground part) The integral of ground part which is 3 m from 

the assumed ground location. 

RvegT (the ratio between the integral of 

vegetation and the additive integral of 

vegetation and ground parts) 

VegI / (VegI + GI) 

 



 

122 

  

 

 

Figure IV-3. An example of waveform signals falling into the boundary of the gray pine, 

interior live oak and blue oak. (a) 3D visualization of three different tree species. (b) 

Vertical distribution of waveform signals along height. Blue, yellow and black lines are 

95% confidence interval (CI) of intensity, median intensity and mean of intensity along 

the height, respectively. (c) Accumulative waveforms (AWF) along the time bin (red line) 

and height (black line). (d) An example of waveform metrics such as the waveform 

distance (WD), height of half energy (HOHE), the height of waveform beginning to the 

ground (WGD), crown integral (VegI), ground integral (GI) derived from raw AWF along 

the height (black). 
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4.2.3.4 Feature selection 

Generally, dimension reduction techniques such as principal component analysis 

with statistical analysis are adopted to deal with a large number of variables. However, 

the effect of individual variables cannot be directly identified due to original variables are 

projected into a reduced set of components after an orthogonal transformation (Strobl et 

al., 2009b). Recently, a growing number of studies have highlighted the effectiveness of 

the RF algorithm to reduce the dimension of input variables for subsequent classification 

(Cao et al., 2016; Yu et al., 2014). RF (Breiman, 2001) is one of several popular ensemble 

learning methods based on the principle of recursive partitioning which could overcome 

the instability of individual classification trees induced by subtle changes of training 

samples. Originally, the variable importance is measured by merely counting the 

occurrence of each variable in all individual trees. As time evolves, the average splitting 

improvement of each variable in all individual trees is employed to assess the variable 

importance such as the Gini importance (Strobl et al., 2009a). More intuitive variable 

importance measure in the RF is the permutation accuracy importance which is calculated 

as the mean difference in prediction accuracy before and after permuting variable Xj over 

all trees. This measure has been shown to be a reliable criterion for quantifying the 

variable importance of uncorrelated predictors. However, the traditional permutation 

accuracy importance is prone to bring about potential bias for variable selection when 

predictors vary in scales or the number of categories (Strobl et al., 2009a). Additionally, 

the RF is likely to divide the importance amongst the correlated predictors. Consequently, 

none of these predictors may be significant for the model. In practice, the permutation 

results of the RF approach reflect independence of Xj from both Y and the remaining 

predictor variables Z (X1,… Xj-1, Xj+1,…, Xp) instead of only the importance of  Xj in 

predicting the response Y. Thus, we introduced a variant of permutation importance of 

the RF algorithm, conditional importance, to mitigate possible bias and avoid the impact 

of correlated variables for the feature selection in this study. 

In contrast to the permutation importance in the RF, the conditional importance is 

achieved through unbiased classification tree generated with subsampling without 
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replacement method instead of the bootstrap sampling method. Additionally, the 

hypothesis of conditional importance measure is that Xj and Y are independent given the 

correlation structure between Xj and Z inherent in the data set. Within the framework of 

the conditional permutation, Xj is permuted only in a discretized permutation grid rather 

than the whole dataset. The grid is determined by the partitions derived from the model 

fitting or cut points of empirical correlations between Xj and Z (Strobl et al., 2009a). In 

the implementation, variables Z whose correlation with Xj meets the condition 1- p-value 

>0.2 are used for conditioning. For each grid, the out of bag (OOB) error prediction 

accuracy is measured in one tree after permuting the values of Xj. Similar to the 

permutation importance, the conditional importance of Xj is the average prediction n 

accuracy of all classification trees.  

In the present study, we employed both permutation importance and conditional 

importance to conduct the feature selection from 115 FW metrics. Prior to calculating the 

relative importance of variables, we excluded variables with importance (directly from 

the RF and CF methods) less than zero. The rationale behind this is that the importance 

of irrelevant variables varies randomly around zero (Strobl et al., 2009b). To minimize 

the overfitting of model and make it more generalized, we selected 9 candidate variables 

whose relative importance are larger than 1.5 with different characteristics as the input 

for subsequent Bayesian classification. 

4.2.3.5 Tree species classification 

To comprehensively explore the capability of FW LiDAR data on the tree species 

discrimination, three methods including the RF, CF and Bayesian inference were 

proposed to examine the usefulness of metrics and compare methods’ prediction 

performances.  

Random forests and Conditional inference forests  

Not only can the RF measure the importance of variables, but it is also widely used 

for classification and regression. Briefly, the bootstrap method is adopted to resample part 

of the original dataset as training data to generate n classification or regression trees. For 

each tree, m variables out of p variables (total) were selected randomly to conduct 
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classification or regression. When a new data X is present, we aggregate predictions of 

the n trees’ results using the new data. Suppose that the ensemble of trees is {𝑇𝑖}1
𝑛, for 

regression, p(X) = 
1

𝑛
∑ 𝑇𝑖(𝑿)𝑛

1 ; for classification, p(X) = majority votes {𝑇𝑖(𝑿)}1
𝑛. Within 

every tree, the OOB error is calculated using the remaining data from the original data as 

the OOB dataset.  

Compared to the RF classifier, two main differences for the CF classifier are 

resampling method and permutation scheme as we have described in the Section 2.3.4. 

The thrust for employing the CF method was to reduce the bias during variable selection 

in the RF method and provide a thorough understanding of the variable selection in a 

stringent statistical framework. 

In this study, we set the number of trees to 10,000 for both methods and aimed to 

compare their performances with the same setting. Nine metrics were chosen for the final 

classification and other irrelevant variables were discarded. Through the experiment, 

incorporating more variables did not decrease the OOB error. 

Bayesian inference 

The motivation for introducing the Bayesian method in this study is to better 

understand the uncertainty of the classification and provide a new insight into the 

multinomial regression on tree species identification using FW LiDAR data. There are 

various models to conduct regression analysis for the multinomial data, such as the 

multinomial logit model, random utility model and multinomial probit model (Frühwirth-

Schnatter and Frühwirth, 2016). Here, we employed the softmax regression model 

(Kruschke, 2014) to formulate the tree species prediction model to represent the 

categorical distribution. 

We assume that Y follows a multinomial distribution with sample size n and 

parameter vector p. yi is one of 𝑠 unordered categories, labeled by 𝑘 = {1, ⋯ , 𝑠}. When 

the s is 2, the softmax model is reduced to the logistic regression model. 

Generally, category 1 is adopted as a baseline category and we are interested in the model 

probability that belongs to categories from 1 to s. Thus, yi takes value from 1 to 𝑠 
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according to the covariate information. For outcome k, the underlying linear propensity 

is denoted as: 

𝜆𝑘 = 𝑥𝑖𝛽𝑘                                                           (IV-2) 

The softmax model can be formulated as follows: 

P(𝑦𝑖 = 𝑘|𝛽1, ⋯ , 𝛽𝑠) =
exp (𝑥𝑖𝛽𝑘)

∑ exp (𝑥𝑖𝛽𝑚)𝑠
𝑚=1

                                    (IV-3) 

where 𝛽1, ⋯ , 𝛽𝑠 are category specific unknown regression coefficients and 𝑥𝑖 is a row 

vector with covariates (1× d) which are not category specific and includes 1 for the 

intercept.  

Subsequently, the Bayesian approach was pursued and a priori was assigned for all 

regression coefficients. There are two options to specify priors, the non-informative priors 

and empirical priors. The non-informative priors indicate that assigning equal 

probabilities to all possible values of parameter space which can reduce the effect of prior 

information on the posterior distribution of unknown parameters. For the empirical priors, 

a normal distribution N (b0, S0) or Dirichlet distributions can be assigned to these 

regression parameters. According to the Bayes’ rule, the posterior distribution of 𝛽 can 

be written as: 

P(𝛽1, ⋯ , 𝛽𝑠|𝑦) 𝑝(𝛽1) ⋯ 𝑝(𝛽𝑠) ∏
[exp (𝑥𝑖𝛽𝑘)]𝑦𝑖

∑ exp (𝑥𝑖𝛽𝑚)𝑠
𝑚=1

𝑛
𝑖=1                                  (IV-4) 

In our case, we have three tree species and one shrub (gray pine, interior live oak 

and blue oak), and either one can be a category response (y). In total, we used 127 

delineated trees with field data as training data for the Bayesian model and each tree was 

characterized 9 variables that has been acknowledged as significant predictors by the CF 

and RF methods.   

For the RF and CF methods, the OOB prediction accuracy with training data and 

confusion matrix derived from testing data were employed to quantify the prediction 

accuracy of tree species discrimination. Prior to deriving the Bayesian model inference, 

the model convergence was verified with the potential reduction factor, named Rhat (𝑅̂), 

which is a criterion to measure how well the Markov Chains are mixing and moving 

around the parameter space. Generally, 𝑅̂ is expected to be close to 1; otherwise, a longer 

chain or more reasonable prior is necessary to be run to ensure that the chain reaches the 
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stationary state. As opposed to results of the RF and CF methods, the Bayesian methods 

could generate probability distributions belonging to four tree species for each delineated 

segments and the tree species of an individual tree segment was determined with the 

largest probability among these four estimated probabilities. Once the model was built, 

the left data (54 trees) as testing data were used to assess the accuracy of the tree species 

discrimination. An overview of the major steps for tree species classification using FW 

LiDAR data is demonstrated in Fig. 4. 

 

 

 

Figure IV-4. Flowchart for the tree species classification using waveform LiDAR data. 

CHM: Canopy Height Model. RF: Random forests. CF: Conditional inference forests. 

 

4.3 Results 

 Tree segmentation 

Three approaches including the TreeVaw (LM), watershed segmentation and LM + 

watershed segmentation were employed to conduct the tree segmentation in the SJER 

study site (Figure IV-2). The major difference of segmentation results between the 
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TreeVaw and the other two approaches was the shapes of individually delineated tree 

crowns. It was worthy to note that some identified tree tops with the TreeVaw had no 

delineated tree crowns in the border of the example region. The detected tree positions of 

these three approaches were indistinguishable while the watershed approach was prone 

to over segment individual tree crowns (blue circles).   

To further illustrate segmentation results over the whole region, a quantitative 

evaluation of these approaches is presented in Table IV-3. Results of the tree 

segmentation demonstrated that the watershed approach outperformed other two 

approaches at tree detection, while its corresponding over-segmentation rate was the 

highest among these methods. In contrast, result of the TreeVaw showed the lowest over-

segmentation rate with the highest false detection rate. These results, of course, were not 

surprising at all: it was natural to expect the higher accuracy of tree detection when more 

trees were delineated with a higher probability of over-segmentation. Through the LM + 

watershed approach, the bias caused by the over-segmentation can be reduced with lower 

over segmentation rate and decent tree detection rate (~ 90%).  Thus, the segmentation 

results from the LM + watershed approach were adopted to conduct subsequent feature 

extraction. 

 

Table IV-3. Results of different tree segmentation methods 

Approaches Tree detection 

rate (%) 

False detection 

rate (%) 

Over-segmentation 

rate (%) 

TreeVaw 82.87 17.13 6.07 

Watershed  92.82 7.18 15.58 

LM + watershed 90.06 9.94 8.84 

 

 Feature extraction & selection 

To visually display the pattern between tree species and waveform metrics from 

various sources, we generated waveform signatures for three representative trees (Figure 

IV-3). It is evident that the terrain and tree crown shapes are significantly different from 
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these three tree species for the waveform-based point cloud after the Gaussian 

decomposition (Figure IV-3(a)). As shown in Figure IV-3(b), the intensity distributions 

along the height for every individual waveform within an individual tree boundary are 

demonstrated. A common intensity distribution pattern for these three tree species 

emerged from Figure IV-3(b) showing that more energy was concentrated in the upper 

part and bottom part of three tree species. The 95% confidence intervals, median and 

mean of intensity were plotted against the height to display an overview of the intensity 

distribution of waveforms for different tree species. To present summary statistics of all 

waveforms within one tree segment, the AWF along the time bin (red line) and height 

(black line) for each tree species are generated as shown in Figure IV-3(c). As expected, 

the length of the time bin based AWF was shorter than the height based AWF. The length 

difference of these two AWFs was strongly correlated with the slope of the terrain where 

the tree located. 

An interesting observation that emerged from the AWF comparison was that there 

was a subtle difference between interior live oak and blue oak while the latter had more 

energy distributed at the bottom part. However, their difference, with respect to the gray 

pine was evident in terms of the number of peaks and energy distribution along the height. 

These differences render a prospect for tree species classification with these waveform 

metrics. Thus, we demonstrated several waveform metrics extracted from the AWF along 

the height as an example in Figure IV-3(d). It was evident that the WD, VegI, FS and 

RVegT varied across different tree species from the visualization perspective. 

To quantitatively identify influential waveform metrics for the tree species 

classification, the waveform metrics ranking and selection were conducted through the 

RF and CF methods. Figure IV-4 depicts the comparison of variable importance using the 

CF and RF methods with 10,000 random forest trees. For illustration purposes, we 

presented the largest 17 variables identified by the CF method with their relative 

importance and corresponding importance derived from the RF method to exhibit the 

comparison of variable importance results. Compared to the CF method, variables’ 

importance of RF method was likely to be evenly distributed and difficult to recognize 
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significant variables, which undoubtedly mitigate the capacity of the RF method for 

measuring variables’ importance. It was observed that the WDs and HOHE extracted 

from different sources were more significant than other variables for both approaches. 

Additionally, the WGD, RVegT, FS, VegI and NP were also highlighted as important 

variables for classifying tree species. In terms of sources of variables, composite 

waveforms were more representative than other sources. Interestingly, more variables 

derived from the AWF were found to be significant predictors than the average of 

variables from individual waveforms within one segment for the tree species 

discrimination.  

 

 

 

Figure IV-5. Comparison of variable importance using Conditional inference forests (CF) 

and Random forests (RF) methods. 

 

To mitigate the overfitting caused by highly correlated variables and avoid the 

replication of the same variables from different sources, WDat, WDcw-sd, TIcw-sd, 

HOHEacwh, WGDacwh, RVegTacwh, Eat-sd, VegIrw-sd and NPcw-sd were used for subsequent 

Bayesian inference for the tree species classification. Here, the subscript represents the 

variables’ source and statistical features (mean, max and standard deviation). For 
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example, WDat denotes the WD from AWF of one tree segment along the time bins; 

WDcw-sd denotes that standard deviation of WDs derived from individual composite 

waveforms of one tree segment; WDrw-sd denotes that standard deviation of WDs derived 

from individual raw waveforms (rw) of one tree segment. Detailed descriptions of these 

variables can be found in Table IV-6.   

 Classification results 

 

 

Figure IV-6. Examples of tree species classification using the RF and Bayesian methods 

with testing data. 

 

Figure IV-6 exemplifies the classification results using the RF and Bayesian 

methods with five individual trees in a subset region. The CF method generated almost 

the same result as the RF method for these five trees, thus CF estimates were not plotted. 

In Figure IV-6(a), the clusters with different colors represent delineated individual tree 

segments with the LM + watershed method. The other five subplots were the five field 

measured trees with corresponding classification results using the RF (dots) and Bayesian 
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methods with probability distributions for possible tree species (blue triangles represents 

the mode of the probability). Compared to the field-measured data, Figure IV-6(b), (c) 

and (f) were correctly classified as gray pine, interior live oak and shrub, respectively, 

using both the RF and Bayesian methods. With the RF method, four estimated 

probabilities belonging to possible corresponding four tree species for an individual tree 

were generated and this tree is classified as gray pine with the largest probability (Figure 

IV-6(b)). As opposed to the RF method, the Bayesian method generated four probability 

distributions for these four tree species and the tree species of this tree was determined by 

comparing these probability distributions. For example, it is evident that trees are 

classified as gray pine and shrub with a compact probability distribution and high mode 

probability (> 0.92) in Fig 6(b) & (f), respectively, both of which are higher than 

corresponding probabilities obtained from the RF method. The RF method is also possible 

to correctly identify tree species with a higher probability than the Bayesian method as 

shown in Figure IV-6(c). In Figure IV-6(c), the tree is correctly identified as interior live 

oak for the RF method with a high probability, while the tree could be classified as blue 

oak or interior live oak in terms of probability distributions with the Bayesian method. 

Nevertheless, the tree is more probable to belong to interior live oak with a slightly higher 

probability when comparing the modes of probability distributions for both candidate tree 

species. Figure IV-6(d) illustrates that a tree is correctly classified as interior live oak 

using the Bayesian method according to its stretched probability distribution, but it is 

misclassified as blue oak with the RF method. It is also possible that the discrimination 

power of both methods fails when they are confronted with complex tree segments or 

wrong segmented tree crowns, such as in Figure IV-6(e). 

To achieve a full comparison of classification performances, we summarized the 

classification results with the three methods in a confusion matrix. The prediction 

accuracy of the RF and CF methods can be measured with the training data (OOB error) 

and testing data, therefore we separated the results into Table IV-4 and Table IV-5. 

Overall, the most distinguishable species were the gray pine and shrub with a decent 

classification accuracy, both of which were differentiated from the other two tree species. 
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The least accurate tree species was the blue oak since it was easy to be misidentified as 

the interior live oak when taking the second column of tables into account. There was a 

subtle difference in the classification accuracy for the RF and CF methods in terms of the 

overall accuracy using the testing data, while the RF outperformed the CF from the 

perceptive of OOB error using the training data. A comparison of different methods using 

the testing data showed that the Bayesian method was superior to other two methods with 

higher overall accuracy and Kappa coefficient. 

 

Table IV-4. Confusion matrix for vegetation classification using RF and CF methods with 

training data (OOB error). 

 

        Observed  

 

Predicted  Gray Pine (%) Blue Oak (%) 

Interior Live Oak 

(%) Shrub (%) 

RF     

Gray Pine 94.59 5.00 6.67 0.00 

Blue Oak 0.00 45.00 10.00 6.25 

Interior Live Oak 5.41 40.00 80.00 6.25 

shrub 0.00 10.00 3.34 87.50 

Overall accuracy 79.61  Kappa 71.62 

CF     

Gray Pine 93.75 0.00 20.00 0.00 

Blue Oak 0.00 20.00 0.00 0.00 

Interior Live Oak 6.25 80.00 66.67 0.00 

shrub 0.00 0.00 13.33 100.00 

Overall accuracy 68.18  Kappa 53.61 

 

Furthermore, uncertainty of classification accuracy is also generated in a 

probabilistic sense with the Bayesian method rather than one estimate as shown in Figure 

IV-7. According to Figure IV-7, the 95% credible interval for the overall classification 

accuracy is approximately [0.52, 0.87]. Without doubt, this result is more informative 

than the counterpart such as the results from the RF and CF methods with only one 

estimate of classification accuracy. 
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Table IV-5. Confusion matrix for vegetation classification using RF and CF methods with 

test data. 

 

        Observed  

 

Predicted  Gray Pine (%) Blue Oak (%) 

Interior Live Oak 

(%) Shrub (%) 

RF     

Gray Pine 93.75 0.00 13.33 0.00 

Blue Oak 6.25 50.00 13.33 0.00 

Interior Live Oak 0.00 50.00 60.01 0.00 

shrub 0.00 0.00 13.33 100.00 

Overall accuracy 72.73  Kappa 61.15 

CF     

Gray Pine 94.59 5.00 10.00 0.00 

Blue Oak 0.00 10.00 3.33 0.00 

Interior Live Oak 5.41 80.00 83.34 12.50 

shrub 0.00 5.00 3.33 87.50 

Overall accuracy 73.79  Kappa 62.92 

Bayesian     

Gray Pine 88.90 0.00 8.33 0.00 

Blue Oak 5.55 27.27 8.33 10.00 

Interior Live Oak 5.55 72.73 83.34 20.00 

shrub 0.00 0.00 0.00 70.00 

Overall accuracy 84.38  Kappa 77.56 

 

 

Figure IV-7. Uncertainty of classification accuracy using the Bayesian method. 
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4.4 Discussion 

 Tree segmentation 

There are two major steps for the tree segmentation: the tree top detection and tree 

crown delineation. Based on experimental results, watershed algorithm alone is prone to 

face the over-segmentation problem at the tree top detection step. By contrast, the method 

implemented in the TreeVaw is more likely to give an unreasonable delineation of tree 

crowns. With the combination of the LM and watershed algorithm, these two flaws can 

be mitigated and consequently improve the accuracy of the tree crown delineation. The 

performance of the tree crown segmentation, on which subsequent accurate extraction of 

waveform metrics depends on, may be of greater significance. One salient reason is that 

our waveform metrics are derived from delineated individual tree crowns and inaccurate 

delineated tree crowns undoubtedly result in false waveform metrics and less precise tree 

species classification. 

 Individual trees’ waveform signatures  

It is evident that structures of the three tree species are different through visually 

comparing point clouds after the Gaussian decomposition (Figure IV-3(a)). Additionally, 

the vertical intensity distribution along the height for waveforms within one segment 

highlights the ground and canopy parts with concentrated energy distribution. These two 

intercepted surfaces with backscattering render significant insights into the tree height 

measurement and tree species characterization. In addition, higher amplitudes and 

intensities are prone to occur for the blue oak and interior live oak compared to the gray 

pine, while the gray pine has a larger number of echoes with longer pulse line (Figure 

IV-3(c)). What these trees share is that the first echo corresponding to the canopy part has 

a greater amplitude than those of subsequent echoes. A possible explanation for this 

maybe that transmission losses are occurring along the pulse penetrating the tree canopy: 

the deeper the pulse transmits, the less the energy is left. The internal structure of the blue 

oak (Figure IV-3(a)) is sparsely branched which may contribute to the more energy 

reaching the ground part and its second amplitude is almost the same as the first 
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amplitude. In addition, the comparisons of the AWF along the time bin and height bin can 

inform whether the topography of the tree’s location is a slope or not, because the AWF 

along the time bin did not take the height information into account with the same starting 

bin and thus will make the length of its AWF shorter than the AWF along the height bin 

when a slope is present.  

 Waveform metrics and feature selection 

This study expands on previous work in exploring waveform metrics for vegetation 

characterization using FW LiDAR data. We examine waveform metrics from three 

sources and conduct rank comparisons among these variables to identify which source of 

waveform metrics is more preferred for characterizing tree species. The raw waveform 

with the off-nadir angle could potentially provide more detailed structural information of 

vegetation, while it is possible to alter the vertical distribution of energy distribution and 

give rise to false information of representative objects along the height. Contrarily, 

composite waveforms overcome this problem by reassigning intensity into the absolute 

height bins. Results demonstrate that waveform metrics from composite waveforms are 

more informative than raw waveforms and point clouds. This may suggest that more 

attention should be paid to composite waveforms when the absolute vertical related 

information is used. Another important finding about variable importance is that the AWF 

for each individual tree segment contains enough information for characterizing features 

of different tree species. Therefore, the metrics derived from the AWF can be considered 

as a proxy for further vegetation characterization or biomass mapping without averaging 

extracted information from the individual waveforms within a segment. 

The RF variable importance measures have been adopted as a sensible means for 

variable selection in many remote sensing applications (Cao et al., 2016; Chen et al., 

2014; Karlson et al., 2015). Built upon the RF method, we introduced an alternative 

method, the CF, to explore their usefulness in variable selection. From a statistical 

perspective, both methods are capable of dealing with high dimensional datasets and 

solving “small n large p” problem with similar results (Figure IV-5). However, a closer 

examination of the variable importance suggests that the RF method is prone to be biased 
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for measuring the variable importance since the permutation process implemented in the 

RF method favors correlated predictor variables (Freeman et al., 2016) and divides 

importance among these predictors. Consequently, an evenly distributed importance for 

many variables are generated as shown in Figure IV-5. The main reason behind this is 

that the implicit assumption of independence between the variable (Xj) and remaining 

variables (Z) is commonly violated, and that degrades the capacity of the RF method for 

recognizing important variables (Strobl et al., 2009b). As expected, the CF method 

produces more reasonable variable ranking results and clearly distinguishes variables’ 

importance by using the subsampling without replacement strategies and a conditional 

inference framework. 

With regard to individual variables, the WD, TI, HOHE, WGD, RVegT, FS and 

ROUGH are identified as significant factors for tree species classification using both the 

RF and CF methods in this study. In accordance with previous studies (Allouis et al., 

2013; Cao et al., 2016), the WD, HOHE and WGD have a stronger capacity for 

characterizing different tree species, which are related to the height or crown height of 

individual trees. Essentially, these results are also consistent with the height 

characteristics of these tree species, with significant differences in the tree heights among 

these tree species and shrub. More specifically, within our research area, the height of 

gray pine is generally the highest and the shrub has the lowest height. As demonstrated in 

Figure IV-3(d), the integral of the waveform (TI) and the integral ratio between vegetation 

part and the whole waveform (RvegT) vary among different tree species, and a higher 

percentage of the vegetation integral is expected in the gray pine since more energy is 

retained in the vegetation part with longer pulse lines and less energy reaches the ground.  

It is worthy to note that variability of outcome for the variable selection process 

may exist using the RF and CF methods since the variables’ importance is derived from 

a random permutation of predictor vectors (Strobl et al., 2009b). However, variables or 

the method proposed in this study may potentially serve as a practical guideline to identify 

significant metrics and infer characteristics of interest (e.g., volume, biomass, carbon) 

using FW LiDAR data. 
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 Tree species classification and uncertainty 

This study exemplifies the use of advanced statistical methods (the RF, CF and 

Bayesian) to explore a wealth of information contained in FW LiDAR data for 

discriminating tree species. In practice, various sources of randomness in the RF and CF 

could contribute to the discrepancy or instability of prediction accuracy: (1) subsampling 

process which randomly draws sub-data samples from the whole dataset, and (2) an 

individual tree building process which randomly draws part of variables from all variables 

(Strobl et al., 2009b). To obtain a reliable accuracy assessment, we set ntrees of 10,000 

and mtry of 9 in both models. Table IV-4 and Table IV-5 demonstrate results with setting 

the same random seed at the beginning of running to ensure the replication of results. The 

results of OOB error using the training data demonstrate that the prediction accuracy of 

the RF method is higher than the CF method. However, the CF method slightly 

outperforms the RF method when employing the testing data to evaluate the prediction 

accuracy. Both methods can generate acceptable results with a decent accuracy. It appears 

that the RF is superior to the CF method when we combined results from Table IV-4 and 

Table IV-5, while it is still arbitrary to judge the performances of these two methods only 

relying on the accuracy assessment using the result of a study area.  

The statistical basis of the analysis for these two methods is built upon the 

frequentist inference. As an alternative, we developed a method based on the Bayesian 

inference to conduct the tree species classification. As demonstrated in Figure IV-6, the 

Bayesian method not only provide one estimate or probability for possible tree species, 

also render users to interpret results in a probabilistic sense for each tree. This 

interpretation is more intuitive through updating beliefs of the tree species in response to 

new data, and further gives us more confidence in the prediction results with predictive 

uncertainty. These advantages are more evident in dealing with the sophisticated tree 

species classification than simple classification with one tree species’ probability 

outstands among the other possible tree species. For instance, the tree species in Figure 

IV-6(d) is misclassified with the RF and CF methods while it has been correctly identified 

using the Bayesian method with a flat distribution. These three methods consistently 
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perform well in simple classification examples such as in Figure IV-6(b) & (f). In 

addition, the frequentist inference is too rigid to cope with complicated real-world 

modeling. In this study, the difference of the probability for one tree belonging to the blue 

oak and interior live oak is relatively small due to their similar physical characteristics 

such as the round tree crown and similar tree height. For the RF and CF methods, only 

one probability estimate is obtained for each possible tree species and the predicted tree 

species is identified with the largest probability. Any variance or uncertainty in variable 

extraction and model building steps undoubtedly contributes to misleading classification 

conclusions, especially for discriminating the blue oak and interior live oak. With the aid 

of the Bayesian method, the overall accuracy may not be enhanced significantly, but it 

can make the inference become more realistic with quantifiable predictive uncertainty 

(Figure IV-7). Simultaneously, the confidence about conclusion and uncertainty levels of 

results can be illustrated with the probability density functions. For example, compared 

with results of Figure IV-6(d), a stronger belief of the trees belonging to the gray pine and 

shrub in Figure IV-6(b) & (f), respectively, is guaranteed due to their more compact 

distributions.  

The superior performance of the Bayesian method is further substantiated with a 

higher overall accuracy and Kappa coefficient than the other two methods. In essence, the 

RF and CF methods are more like “black-box” methods and they are developed in a less 

stringent statistical framework (Strobl et al., 2009b), both of which may lead to less 

predictive results than the Bayesian method. Assuredly, more studies and applications of 

these methods should be exploited to further compare their performances in various 

applications and provide a more thorough understanding of how these methods can be 

practically utilized for real-world problems and when the caution should be exercised for 

result interpretation. 

Surprisingly, these three methods all suffer from discriminating the blue oak from 

the interior live oak with relatively low accuracy. Various factors possibly contribute to 

the failure of methods including an inaccurate tree segmentation, an absence of the 

accurate field data and an insufficient number of waveform metrics. Specifically, our 
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waveform LiDAR data were acquired in leaf-on season and crowns of neighboring trees 

are more likely to be overlaid. The blue oak and interior live oak share similar shape of 

tree crown and heights which undeniably reduces the success rate of tree segmentation 

and brings more challenges for subsequent tree species classification. The study of Yao 

et al. (2012) also confirmed that the segmentation is more precise when the leaf-off season 

LiDAR data are used. It is anticipated that higher accuracy is obtained and more 

transparent vegetation structure is expected to be characterized by FW LiDAR data in 

leaf-off season. We envision a concomitant expansion of adopting advanced statistical 

methods such as the Bayesian method for tackling complicated relationships between 

characteristics of interest (e.g. height, biomass, carbon) and remotely-sensed predictors, 

and assisting result interpretation and decision making in real-world applications with 

advances of computational capacity and handy operational tools. 

4.5 Conclusions  

This study integrates an exhaustive set of waveform metrics from the waveform-

based point cloud, raw waveforms and composite waveforms with machine learning (the 

RF and CF) and Bayesian methods to discriminate tree species using FW LiDAR data 

alone. We combine the LM and watershed algorithms to derive more accurate individual 

tree segments, aiming to mitigate uncertainty and error brought into subsequent metrics 

extraction step. The machine learning methods such as the RF and CF demonstrate that 

they are powerful tools for coping with “small n large p” problems. Moreover, the CF 

method can overcome the possible bias of the RF method in measuring variable 

importance which violates the implicit null hypothesis and favors correlated waveform 

metrics. Results of the variable importance suggest that composite waveforms provide 

more informative metrics than other sources. Specifically, waveform metrics such as the 

WD, HOHE, WGD, RVegT, TI and ROUGH are highlighted as significant metrics to 

characterize tree species in our study. Tree species classification results show that the 

Bayesian method achieves higher overall accuracy and Kappa coefficient as compared to 

the RF and CF methods. Additionally, the prediction uncertainty of each tree is also 

generated with the Bayesian method which permits the users to interpret results in a 
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probabilistic sense without just relying on one estimated probability to construct decision 

rules to determine tree species. Furthermore, the uncertainty of accuracy for tree species 

classification provides a comprehensive overview of classification performance which 

can assist to determine whether the classification accuracy reaches a particular standard 

and further guarantee users with more confidence to apply results for real-world tasks 

such as forest inventory. Certainly, further testing of the methods or framework developed 

in this study is required and recommended for various forest or vegetation types. In 

addition, more efforts should be directed to exploit rich information contained in FW 

LiDAR for biomass and vegetation mapping. 
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4.6 Appendix 

Table IV-6. Summary of FW metrics from FW LiDAR data 

Waveform metrics Definition (within an individual tree segments) 

Individual raw waveforms 

Area The area of an individual tree crown segment 

NPrw-mean The average number of  detected peaks for raw waveforms  

NPrw-sd Standard deviation of NP 

MaxPrw Maximum of NP 

WDrw-mean The average distance from waveform beginning to waveform ending using 

raw waveform 

WDrw-sd Standard deviation of WDmean 

HOMErw-mean The average distance from height of median energy in waveforms to the 

ground 

HOMErw-sd Standard deviation of HOMEmean 

HTMRrw-mean The average ration between HOHE and WD 

HTMRrw-sd Standard deviation of HTMR 

HOHErw-mean The average distance from height of  half energy in waveforms to the 

ground 

HOHErw-sd Standard deviation of HOHE 

HTHRrw-mean The average ration between HOHE and WD 

HTHRrw-sd Standard deviation of HTHR 

FSrw-mean The average vertical angle from waveform beginning to the first peak 

FSrw-sd Standard deviation of FS 

ROUGHrw-mean The average distance form waveform beginning to the first peak 

ROUGHrw-sd Standard deviation of ROUGH 

TErw-mean The average total energy of raw waveforms 

MErw-mean The average energy of each raw waveform  

MaxIrw-mean Average maximum intensity of all raw waveforms 

TIrw-mean The average integral of energy along height from waveform beginning to 

the ground  

VegIrw-mean The average integral of energy along height from waveform beginning to 3-

m above ground  

RVegTrw-mean The average ratio between VegI and TI  

MaxIrw-sd Standard deviation of  maximum intensity 
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 Table IV-6 Continued  

TIrw-sd Standard deviation of the integral of energy along height from waveform 

beginning to the ground  

VegIrw-sd Standard deviation of the integral of energy along height from waveform 

beginning to 3-m above ground 

RVegTrw-sd Standard deviation of the ratio between VegI and TI for all waveforms in 

the individual tree crown segment 

Accumulative waveform along the time bin 

NPat The number of peaks in the time bin based accumulative waveform 

WDat The distance from waveform beginning to the ground in the time bin based 

accumulative waveform 

HOMEat The distance from height of median energy to ground in the time bin based 

accumulative waveform 

HOHEat The distance from height of half energy to ground in the time bin based 

accumulative waveform 

HTMRat The ration between HOMEat and WDat 

HTHRat The ration between HOHEat and WDat 

FSat The front slope angle of the time bin based accumulative waveform 

ROUGHat The average distance form waveform beginning to the first peak in the time 

bin based accumulative waveform 

Eat-mean The average energy of the time bin based accumulative waveform 

Eat-sd Standard deviation of energy of the time bin based accumulative waveform 

Accumulative waveform along the height 

NPah The number of peaks in the height based accumulative waveform 

WDah The distance from waveform beginning to the ground in the height based 

accumulative waveform 

HOMEah The distance from height of median energy to ground in the height based 

accumulative waveform 

HOHEah The distance from height of half energy to ground in the height based 

accumulative waveform 

HTMRah The ration between HOMEah and WDah 

HTHRah The ration between HOHEah and WDah 

FSah The front slope angle of the height based accumulative waveform 
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Table IV-6 Continued  

ROUGHah The average distance form waveform beginning to the first peak in the 

height based accumulative waveform 

Eah-mean The average energy of the height based accumulative waveform 

Eah-sd Standard deviation of energy of the height based accumulative waveform 

MaxIah Maximum intensity in height based accumulative waveform 

WDah The distance from waveform beginning to the ground in the height based 

accumulative waveform 

TIah The integral of energy along height from waveform beginning to the ground 

VegIah The integral of energy along height from waveform beginning to 3-m above 

ground 

RVegTah The ratio between VegIah and TIah 

Point cloud 

A1p-mean The average amplitude of detected first peak of all waveforms within an 

individual tree crown segments 

A1p-sd Standard deviation of the amplitude of detected first peak for all waveforms 

within an individual tree crown segments 

TB1p-mean The average time bin locations of detected first peak for all waveforms 

within an individual tree crown segments 

TB1p-sd Standard deviation of the time bin locations of detected first peak for all 

waveforms within an individual tree crown segments 

EW1p-mean The average echo width of detected first peak for all waveforms within an 

individual tree crown segments 

EW1p-sd Standard deviation of the echo width of detected first peak for all 

waveforms within an individual tree crown segments 

A2p-mean The average amplitude of detected second peak of all waveforms within an 

individual tree crown segments 

A2p-sd Standard deviation of the amplitude of detected second peak for all 

waveforms within an individual tree crown segments 

TB2p-mean The average time bin locations of detected second peak for all waveforms 

within an individual tree crown segments 

TB2p-sd Standard deviation of the time bin locations of detected second peak for all 

waveforms within an individual tree crown segments 
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Table IV-6 Continued  

EW2p-mean The average echo width of detected second peak for all waveforms within 

an individual tree crown segments 

EW2p-sd Standard deviation of the echo width of detected second peak for all 

waveforms within an individual tree crown segments 

Ap-mean The average amplitude of all detected peaks of waveforms within an 

individual tree crown segments 

TBp-mean The average time bin locations of all detected peaks for waveforms within 

an individual tree crown segments 

EWp-mean The average echo width of all detected peak for waveforms within an 

individual tree crown segments 

Ap-sd Standard deviation of amplitude for all detected peaks for waveforms within 

an individual tree crown segments 

TBp-sd Standard deviation of time bin locations of all detected peaks for 

waveforms within an individual tree crown segments 

EWp-sd Standard deviation of echo width of all detected peak for waveforms within 

an individual tree crown segments 

Individual composite waveforms 

NPcw-mean The average number of  detected peaks for these composite waveforms  

NPcw-sd Standard deviation of NP for the composite waveforms 

MaxPcw Maximum of NP for the composite waveforms 

WDcw-mean The average distance from waveform beginning to the ground for the 

composite waveforms 

WDcw-sd Standard deviation of WD for the composite waveforms 

HOMEcw-mean The average distance from height of median energy in waveforms to the 

ground for the composite waveforms 

HOMEcw-sd Standard deviation of HOME for the composite waveforms 

HTMRcw-mean The average ration between HOHE and WD for the composite waveforms 

HTMRcw-sd Standard deviation of HTMR for the composite waveforms 

HOHEcw-mean The average distance from height of  half energy in waveforms to the 

ground for the composite waveforms 

HOHEcw-sd Standard deviation of HOHE for the composite waveforms 

HTHRcw-mean The average ration between HOHE and WD for the composite waveforms 

HTHRcw-sd Standard deviation of HTHR for the composite waveforms 
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Table IV-6 Continued  

FScw-mean The average vertical angle from waveform beginning to the first peak for 

the composite waveforms 

FScw-sd Standard deviation of FS for the composite waveforms 

ROUGHcw-mean The average distance form waveform beginning to the first peak for the 

composite waveforms 

ROUGHcw-sd Standard deviation of ROUGH for the composite waveforms 

TEcw-mean The average total energy of composite waveforms 

MEcw-mean The average energy of each composite waveform  

Accumulative composite waveforms 

NPacwh The number of peaks in the height based accumulative composite waveform 

WDacwh The distance from waveform beginning to waveform ending in the height 

based accumulative composite waveform 

HOMEacwh The distance from height of median energy to ground in the height based 

accumulative composite waveform 

HOHEacwh The distance from height of half energy to ground in the time height based 

accumulative composite waveform 

HTMRacwh The ration between HOMEacwh and WDacwh 

HTHRacwh The ration between HOHEacwh and WDacwh 

FSacwh The front slope angle of the height based accumulative composite 

waveforms 

ROUGHacwh The average distance form waveform beginning to the first peak in height 

based accumulative composite waveform 

MEacwh The average energy of the height based accumulative composite waveforms 

MaxAacwh Maximum amplitude of the height accumulative composite waveforms 

WGDacwh The distance from waveform beginning to the ground in the height based 

accumulative composite waveform 

TIacwh The integral of energy along height using the accumulative composite 

waveform 

VegIacwh The integral of energy along height using the accumulative composite 

waveform 

RVegTacwh The ratio between VegIacwh and TIacwh using accumulative composite 

waveforms 

MaxIcw-mean Average maximum intensity of composite waveforms 
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Table IV-6 Continued  

TIcw-mean The average integral of energy along height from waveform beginning to 

the ground using composite waveforms 

VegIcw-mean The average integral of energy along height from waveform beginning to 3 

m above ground using composite waveforms 

GroIcw-mean The average integral of energy along height from 3 m above ground to 

ground using composite waveforms 

RVegTcw-mean The average ratio between VegI and TI using composite waveforms 

MaxIcw-sd Standard deviation of  maximum intensity using composite waveforms 

TIcw-sd Standard deviation of the integral of energy along height from waveform 

beginning to the ground using composite waveforms 

VegIcw-sd Standard deviation of the integral of energy along height from waveform 

beginning to 3 m above ground using composite waveforms 

GroIcw-sd Standard deviation of the integral of energy along height from 3 m above 

ground to ground using composite waveforms 

RVegTcw-sd Standard deviation of the ratio between VegI and TI using composite 

waveforms 
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PHOTON COUNTING LIDAR: AN ADAPTIVE GROUND AND CANOPY 

HEIGHT RETRIEVAL ALGORITHM FOR ICESAT-2 DATA 

 

The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will 

offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems 

over large areas using photon counting LiDAR data. In this paper, we aim to develop a 

methodology to derive terrain elevation and vegetation canopy height from test-bed 

sensor data and further pre-validate the capacity of the mission to meet its science 

objectives for the ecosystem community. We investigated a novel methodological 

framework with two essential steps for characterizing terrain and canopy height using 

Multiple Altimeter Beam Experimental LiDAR (MABEL) data and simulated ICESat-2 

data with various vegetation conditions. Our algorithm first implements a multi-level 

noise filtering approach to minimize noise photons and subsequently classifies the 

remaining photons into ground and top of canopy using an overlapping moving window 

method and cubic spline interpolation. Results of noise filtering show that the design of 

the multi-level filtering process is effective to identify background noise and preserve 

signal photons in the raw data. Moreover, calibration results using MABEL and simulated 

ICESat-2 data share similar trends with the retrieved terrain being more accurate than the 

retrieved canopy height, and the nighttime results being better than corresponding 

daytime results. Compared to the results of simulated ICESat-2 data, MABEL data 

achieve lower accuracy for ground and canopy heights in terms of root mean square error 

(RMSE), which may partly result from the inconsistency between MABEL and reference 

data. Specifically, simulated ICESat-2 data using 115 various nighttime and daytime 

scenarios, yield average RMSE values of 1.83 m and 2.80 m for estimated ground 

elevation, and 2.70 m and 3.59 m for estimated canopy height. Additionally, the accuracy 

assessment of percentile heights of simulated ICESat-2 data further substantiates the 

robustness of the methodology from different perspectives. The methodology developed 

in this study illustrates plausible ways of processing the data that are structurally similar 
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to expected ICESat-2 data and holds the potential to be a benchmark for further method 

adjustment once genuine ICESat-2 are available. 

Keywords: ICESat-2, Photon classification, Photon counting LiDAR, ATLAS, MABEL, 

Canopy height, Terrain elevation 

5.1 Introduction 

Various types of Light Detection and Ranging (LiDAR) data such as discrete-return 

(DR) and full waveform (FW) LiDAR data are increasingly used to characterize the 

earth’s topography, quantify vegetation structure and provide insightful solutions to 

natural resource inventory and carbon budget characterization (Allouis et al., 2013; 

Lefsky et al., 2005; Neigh et al., 2013; Popescu, 2007; Zhou et al., 2017; Zolkos et al., 

2013). However, the utility of small-footprint LiDAR data over large spatial scales to 

accurately monitor forest ecosystems remains largely impractical due to their high 

acquisition cost (Gwenzi et al., 2016; Swatantran et al., 2016) and the limited spatial 

coverage caused by low operation altitude and high requirements of pulse energy (McGill 

et al., 2013). The advent of emerging technologies, such as photon-counting LiDAR 

(PCL), has offered prospects for future spaceborne laser altimeters. In contrast to analog 

LiDAR, the PCL is unique in that it employs low energy expenditure, increased 

measurement sensitivity, high repetition rate and space operational altitude. These 

properties enable PCL to overcome the restriction of spacecraft prime power by 

generating dense along-track sampling (Zhang and Kerekes, 2014) and ultimately 

resulting in the large spatial coverage (Wulder et al., 2012).  

Due to these advantages of PCL systems, the Advanced Topographic Laser 

Altimeter System (ATLAS) sensor will be deployed on the upcoming Ice, Cloud and Land 

Elevation Satellite-2 (ICESat-2) (Markus et al., 2017). There are two notable features of 

ATLAS: (1) a multi-beam system that consists of six individual beams (split from a 

transmitted laser pulse by a diffractive optical element) with three pairs along the track 

designed to meet the science requirements of detecting the spatial variability of ice surface 

and monitoring ice dynamics (Herzfeld et al., 2014); for each pair, a weak and strong 

beam have an energy ratio of approximately 1:4 to compensate for varying surface 
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reflectance; and (2) the micro-pulse photon-counting technology that is capable of 

efficiently detecting photons reflected back from the earth surface. The ATLAS design 

allows for dense along-track sampling and large spatial coverage with low energy 

requirements at high flying altitude (Swatantran et al., 2016). For example, these 

configurations will generate overlapping footprints on the Earth surface with a diameter 

of 14 m, spaced at 0.7 m along track. By comparison, the Geoscience Laser Altimeter 

System (GLAS) aboard the Ice, Cloud and land Elevation Satellite (ICESat) illuminated 

spots (footprints) of 70 m in diameter, spaced at 170 m intervals. Compared to GLAS, the 

data to be provided by ATLAS consist of individual geo-located photons with profile 

configuration instead of waveforms (Markus et al., 2017). In addition, the ATLAS 

instrument will only operate at one single pulse (532 nm) with 10 kHz laser repetition 

rate. The dense sampling and extensive spatial coverage will be beneficial to large-scale 

applications such as sea level change monitoring, forest structural mapping and biomass 

estimation, improved estimation of Global Digital Terrain Models (GDTM), and reducing 

uncertainties associated with estimated forest biomass and carbon. Moreover, ICESat-2 

will facilitate the production of gridded global products after the three-year mission 

anticipated lifespan (Neuenschwander and Magruder, 2016) with the potential for 

increased synergy with other existing remote sensing images, such as Landsat, to further 

complement ongoing biomass and vegetation mapping efforts. 

Ambient noise is generated along the real signal photons since solar background 

photons can be simultaneously received by the detector. Consequently, an individual 

photon can be reflected back from targets within the footprint, but the exact corresponding 

origin location will be unknown (Gwenzi et al., 2016). Much of the noise can be avoided 

with the nighttime operation of the PCL system when there is less solar background noise. 

Furthermore, fewer signal photons are expected to reflect off from the vegetation than ice 

surfaces due to lower reflectance and higher aerosol densities over vegetated areas 

(Herzfeld et al., 2014).  

The test-bed sensors for the upcoming ICESat-2 mission such as the Slope Imaging 

Multi-Polarization Photon-Counting Lidar (SIMPL) (Dabney et al., 2010) and Multiple 
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Altimeter Beam Experimental Laser (MABEL) (Rosette et al., 2011) have been 

developed to inform scientists about the potential of future spaceborne laser altimeters to 

meet various science objectives. Recent studies have demonstrated promising prospects 

of utilizing these data to discriminate ice and water (Kwok et al., 2016), to retrieve 3-D 

vegetation structural attributes in a savanna ecosystem (Gwenzi et al., 2016), and to 

estimate vegetation cover and biomass in conjunction with Landsat 8 data in a dryland 

ecosystem (Glenn et al., 2016).  

A critical task for the ecosystem community is to identify the ground and canopy 

surface from these photons to meet science objective of determining global canopy 

heights which hinges upon the ability to detect both the canopy surface and the underlying 

topography (Neuenschwander and Magruder, 2016). Generally, there are two major steps 

to derive terrain and canopy height from PCL data: (1) noise filtering of raw photons, and 

(2) canopy and terrain classification of possible signal photons. The performance of noise 

filtering, on which canopy and terrain classifications depend on, may be of greater 

significance. A few methods have been developed for noise filtering, such as histogram-

based filtering algorithms (Gwenzi et al., 2016; Moussavi et al., 2014), the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) approach (Zhang and Kerekes, 

2015) and the Bayesian approach (Wang et al., 2016). Prior to these studies, Magruder et 

al. (2012) proposed three filtering techniques including canny edge detection, probability 

distribution and local angle mapping to process MABEL data. Tang et al. (2016) 

developed a voxel-based spatial filtering method to generate noise-free dataset using the 

data from the High-Resolution Quantum Lidar System. All of them have been proven 

effective to some extent while also suffering from some concerns. For example, the 

histogram-based and DBSCAN methods are prone to error over complex terrain and can 

potentially lose useful information for subsequent signal and noise photons classification 

(Tang et al., 2016; Wang et al., 2016). The voxel-based spatial filtering method is mainly 

oriented for the point cloud dataset with high signal-to-noise ratio (SNR), which may be 

not suitable for the profile data with low SNR of ICESat-2 data. In addition, these methods 

were mainly tested on a limited number of MABEL data with accuracy assessment 
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conducted with co-registered reference data (Gwenzi et al., 2016). Undoubtedly, an 

additional co-registration processes or adjustment will complicate the validation 

processes and performance evaluation. Furthermore, the efficiency of algorithms for 

retrieving the canopy height using PCL data over different forest types and noise levels 

have not been adequately explored.  

The overall goal of this paper is to develop a methodological framework to filter 

noise and retrieve the terrain and canopy height in various vegetation conditions and noise 

levels using PCL data such as MABEL and simulated ICESat-2 data, both of which share 

similar characteristics of the expected data from the ICESat-2 mission. The study is 

anticipated to advance understanding of ATLAS data, provide insights into the challenges 

to be expected from data processing and pre-validate the upcoming ICESat-2 mission. 

The innovative aspects of this study consist of (1) introducing an adaptive methodology 

to cluster the signal photons and refine parameters for ground and top of canopy 

interpolation over diverse vegetation conditions, and (2) building a framework to conduct 

noise filtering suitable for different possible data scenarios of the upcoming ICESat-2 

mission which could render a valuable basis for processing genuine ATLAS data. 

Ultimately, the methodology and results of this study may potentially allow a more rapid 

adoption of ICESat-2 data once available by a large scientific community, for a range of 

ecosystem studies through the probable incorporation of existing remote sensing data.  

5.2 Methods and materials 

 Study sites 

To prepare the automatic ground and TOC detection algorithms over vegetation 

areas for the ICESat-2 mission, two test-bed sensor data (MABEL and simulated ICESat-

2 data) with multiple vegetation conditions were investigated. For MABEL data, we used 

two data sets acquired on September 14, 2012, near Hinsdale and Chester in Vermont 

(VT), and one data set collected on September 21, 2012, near Jacksonville in North 

Carolina (NC), shown in Figure V-1. The vegetation in Vermont is mainly comprised of 

sugar maple (Acer saccharum), American beech (Fagus grandifolia) and hemlock (Tsuga 

canadensis), which belong to the eastern mixed forest type. In contrast, the study site near 
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Jacksonville is mostly deciduous forest covered with Black Willow (Salix nigra), 

Loblolly Pine (Pinus taeda) and Eastern Cottonwood (Populus deltoides).  

Simulated ICESat-2 data were generated from DR LiDAR or FW LiDAR data using 

the simulator provided by the ICESat-2’s NASA Science Definition Team (SDT). 118 

datasets with multiple ecosystem types and different acquisition times were investigated. 

We selected five representative study sites shown in Figure V-1 to demonstrate the 

performance of the methodology. More specifically, we selected the woodland savanna 

on the Freeman Ranch in Texas, the boreal forest in Fairbanks, Alaska, the temperate 

hardwood in the Bays Mountain of Tennessee, the tropical forest in the Mondah forest of 

Gabon and the temperate pine forest near Huntsville, Texas. These study sites were 

selected because they represent different forest and vegetation types that were anticipated 

to produce different SNR data from the ATLAS system. 

 

 

 

Figure V-1. Overview of representative study sites using MABEL (red) and simulated 

ICESat-2 data (green) with different ecosystem types.  
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 Data 

5.2.2.1 MABEL data 

In preparation for constructing and launching of NASA’s second spaceborne 

LiDAR system ICESat-2, NASA developed MABEL as a technology demonstrator for 

the ATLAS instrument.  MABEL is typically operated at 20 km altitude using a NASA 

ER-2 aircraft to simulate data collection conditions close to those expected for the 

ICESat-2 mission using both green (532 nm) and near infrared (NIR, 1064 nm) laser 

wavelengths, with a pulse repetition rate that can be varied between 5 and 25 kHz. Beam 

splitters are employed to generate a total of 8 near infrared beams and 16 green beams 

from a single laser (McGill et al., 2013). The geometry of MABEL’s beam configuration 

is designed to be reconfigurable to allow data collection and evaluation for multiple 

design cases. Data from the NIR channels were used in this vegetation study since they 

have higher reflectance and are resulting in higher SNR than the green wavelength 

(Gwenzi et al., 2016). Additionally, these returned NIR photons are more representative 

of the photons from the ATLAS instrument aboard ICESat-2 (Glenn et al., 2016). 

5.2.2.2 Simulated ICESat-2/ATLAS data 

The comparisons of the laser detector modalities for FW LiDAR and PCL systems 

demonstrate that the accumulated vertical distribution of the signal photons reflected back 

from the PCL is similar to the profile of FW LiDAR data (Neuenschwander and 

Magruder, 2016; Yin et al., 2016). Thus, the probability distribution of the detected signal 

photons along the vertical distribution can be represented by a normalized waveform (FW 

LiDAR) or pseudo-waveform (high-density DR LiDAR, >30 points/m2). Based on this 

principle, the ICESat-2 SDT developed a simulator to generate simulated PCL data from 

existing DR and FW LiDAR data with 14 m diameter footprint and 0.7 m along-track 

spacing, the same as the planned ICESat-2 measurement scenario.  

In reality, it is expected that 0 to 3 signal photons per transmitted laser pulse will 

be received by the ATLAS detector based on the ratio between the reflectance of highly 

reflective surfaces such as ice sheets and the canopy or terrain surface (Neuenschwander 

and Magruder, 2016). To ensure that the simulation is realistic, three design cases for 
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vegetation were developed to represent different vegetation conditions. Specifically, the 

mean number of signal photons in each space interval (0.7 m) expected by the ATLAS 

instrument is 1.0, 1.9 and 0.6 for the boreal forest, temperate forest and tropical forest, 

respectively. These design cases are consistent with the previous study’s conclusion that 

more humid atmospheres could reduce the number of received signal photons and 

observations of previous studies conducted in tropical forest regions (Herzfeld et al., 

2014). Furthermore, these settings could ensure that the model performance and accuracy 

are comparable to the science requirements of the ICESat-2 mission. There are four major 

steps to obtain simulated PCL data: (1) aggregating the frequency of discrete-returns 

along the elevation or intensities of small-footprint waveforms within each ICESat-2 

footprint into pseudo-waveform; (2) constructing a vector along the elevation or height; 

(3) randomly determining the number of photons (x) per outgoing pulse according to 

design cases which was developed by the ICESat-2 SDT; and (4) randomly sampling the 

height vector weighted by pseudo-waveform x times to generate x photon(s) in any given 

footprint. The detailed simulation steps, design cases for generating simulated PCL data 

and their accuracy compared to airborne LiDAR data are presented in Neuenschwander 

and Magruder (2016). After the first step of generating simulated PCL data, different 

levels of noise representing the impact of the solar background and atmosphere were 

added into these data to obtain simulated ICESat-2 data.  

The motivation for generating simulated ICESat-2 data is multifold. First, the 

simulated data from existing DR or FW data are automatically co-registered with 

reference data used as the basis of the simulation and no additional error will bring in the 

subsequent accuracy assessment. Second, noise levels for the simulated data can be 

adjusted flexibly to simulate effects of different solar elevation angles, atmospheric 

conditions and operation time (daytime and nighttime). This is unlike conditions during 

MABEL data collection which are typically static and only available for certain campaign 

dates (Gwenzi et al., 2016). Third, the data can simulate possible scenarios in different 

worldwide vegetation conditions and forest types that allow us to test the robustness of 

processing algorithms and fine-tune algorithm parameters in preparation for using 
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genuine ATLAS data once available. In this study, 115 scenarios were analyzed to explore 

the potential challenges of data processing and develop the algorithms to derive the 

ground and canopy height from the raw PCL data. Specifically, 13 representative 

scenarios within five study sites were selected to fully demonstrate the results. Among 

five study sites, three of them have two noise levels for daytime (Day low for the clear 

sky vs. Day high for high humid) and one level for the nighttime (Night). The remaining 

two study sites consisted of one daytime scenario and one nighttime scenario (Table V-1). 

The remaining 102 scenarios at 51 study locations with daytime and nighttime scenarios 

were also investigated.  

 

Table V-1. Overview of the representative scenarios for simulate ICESat-2 datasets. 

 

Vegetation types Locations  Noise level scenarios 

Woodland Savanna Freeman Ranch, Texas Day high, Day low, Night 

Boreal Forest Fairbanks, Alaska Day high, Night 

Temperate Hardwood Bays Mountain, Tennessee  Day high, Day low, Night 

Tropical Forest Mondah Forest, Gabon Day high, Day low, Night 

Temperate forest  Huntsville, Texas  Day high, Night 

 

5.2.2.3 Ancillary data and reference data 

The existing Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) GDEM (version 9) and the Global Canopy Height Map (GCHM) produced by 

Simard et al. (2011) were used as ancillary data in the noise filtering step to narrow down 

the possible signal photons. There are two types of reference data to evaluate the 

algorithms’ performances. The reference data for MABEL were DR LiDAR data and their 

corresponding products such as DEM and CHM from the 

Goddard's LiDAR, Hyperspectral & Thermal Imager (G-LiHT) system (Cook et al., 

2013) available for download from NASA’s G-LiHT website 

(https://gliht.gsfc.nasa.gov/). The reference data used in the present study were collected 

https://gliht.gsfc.nasa.gov/
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on August 2011 with a point density of 10.3/m2. For simulated ICESat-2 data, the signal 

photons generated from DR LiDAR data before adding noise serve as reference data, as 

well.  

 Methods 

The methodological framework for processing MABEL and simulated ICESat-2 

data is divided into two major sections: minimizing noise in raw PCL data (MABEL and 

simulated ICESat-2 data), and classifying the filtered PCL data as ground photons (GPs) 

and top of canopy photons (named canopy top photons in subsequent sections) to obtain 

the estimated ground and TOC surface. Prior to noise removal, the geolocation (latitude 

and longitude) were transformed to the along track distance (ATD) between the beginning 

location to the desired locations by calculating their great circle distances.  

5.2.3.1 Minimizing noise in raw PCL data  

In this step, we proposed a multi-level filtering approach to reduce noise from raw 

PCL data. The basic assumption of noise filtering was that signal photons were clustering 

around targets such as ground and canopy with higher density, and noise photons were 

more likely to be randomly distributed. Data from different regions acquired over various 

topography and vegetation conditions were characterized by different SNRs, which 

required us to develop an adaptive methodology suitable for various conditions. The 

filtering framework consisted of three steps with different objectives to minimize as much 

noise as possible from raw PCL data.  

We proposed two approaches for the first step to mitigate atmospheric noise or 

random noise photons from raw PCL data (black points in Figure V-2(1) and Figure 

V-4(1)). The first approach was intended to create an envelope of signal and noise photons 

above and below the probable ground elevation known from ancillary data, such as the 

ASTER GDEM and GCHM, as illustrated in Figure V-2. These two elevation products 

were not intended to precisely filter all possible noise photons caused by the atmosphere 

or solar background but were meant to narrow down possible signal photons which could 

realistically be returned from the vegetation canopy and ground. The first step towards 

extracting possible signal photons was to utilize user defined thresholds (𝑚𝑖𝑛𝑟 & 𝑚𝑎𝑥𝑟, 
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red lines in Figure V-2(1)) above and below the GCHM and GDEM based on Eqs. (1) 

and (2). 

𝑚𝑖𝑛𝑟 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝐸𝑀 − (𝑝𝑚𝑖𝑛 ×  ℎ𝑒𝑖𝑔ℎ𝑡𝐺𝐶𝐻𝑀)                           (V-1) 

        𝑚𝑎𝑥𝑟 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝐸𝑀 + (𝑝𝑚𝑎𝑥 ×  ℎ𝑒𝑖𝑔ℎ𝑡𝐺𝐶𝐻𝑀)                          (V-2) 

where 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝐸𝑀 and ℎ𝑒𝑖𝑔ℎ𝑡𝐺𝐶𝐻𝑀 were the DEM and CHM values of the given 

location for raw PCL data. The pmin = 3 and pmax = 3 were determined to be appropriate 

to mitigate potential errors in the two ancillary datasets and to avoid deleting possible 

signal photons (Figure V-2(1)).  

To avoid reliance on ancillary data, a second alternative approach, named the grid-

based statistical (GBS) filtering method, was proposed. This approach divided the 

horizontal and vertical space along ATD of the raw data into grids cells and then identified 

possible signal grid cells based on their statistical characteristics such as the number of 

photons, standard deviation (SD) and the p-value of the photon-fitting line for each cell. 

The assumption of the second approach was that more points were clustering around 

targets and a general trend could be observed from the specified grid cell without the aid 

of ancillary data. The grid spacing was chosen based on a trial-and-error approach that 

worked efficiently for all datasets to be 20 m for the vertical or elevation axis and 200 m 

along the ATD axis, as shown in Figure V-4(5) along the green and blue arrows, 

respectively. The statistical metrics such as the total number of the photons, SD and p-

value of the fitting line through all photons in each grid cell were generated. The fitting 

line through all photons was produced mainly to check whether there is a possible linear 

trend of photons in the cell. Cells with a larger number of photons could indicate the 

presence of signal photons based on the assumption that noise may be randomly 

distributed throughout the grid space. In each grid interval along the ATD, the grid cell 

with the largest total number of photons was identified as possible signal cell. 

Additionally, two neighboring grid cells above and below the cell with the highest number 

of photons were selected. At this stage, 5 grids with 100 m elevation range were kept for 

each distance interval (Figure V-4(2)). Through comparing the adjacent grids’ elevation 

index (green), dramatic changes of elevation could be detected as shown in Figure V-4(5). 
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This might suggest that our approach was able to cope with real world conditions where 

topography or canopy height was changing dramatically. To enable subsequent self-

adaptive cluster analysis filtering, the photon density of the possible signal photons after 

first filter was calculated as pd1 using the total number of photons divided by the 

maximum ATD of these photons. 

The second step using cluster analysis was intended to remove noise photons while 

keeping signal photons within the envelope established through the first step, as shown in 

Figure V-2(2) and Figure V-4(3). The core of the cluster analysis was to trim the data by 

removing a proportion α of the “most outlying” photons (the most probable noise 

photons). In each ATD interval, one photon was either assigned to a cluster labeled with 

the index number or marked as outlier (noise) (Figure V-3).  

The cluster filter was implemented in an R package named tclust  (Fritz et al., 2012) 

which adopted a “crisp” clustering approach, meaning that each observation is either 

deleted or labeled as a cluster, using a robust mathematical probability framework to 

maximize the trimmed log-likelihood objective function (Eq. (V-3)). For a photon 

dataset 𝐷 = {𝑥1, ⋯ , 𝑥𝑛}, these photons were divided into k clusters labeled 1,…, k and 

the remaining data were labeled with zero which were regarded as noise photons. A k-

variate normal distribution with mean µ and covariance matrix ∑ was proposed as the 

probability density function 𝑓(𝑥𝑖; 𝜇𝑗 , ∑𝑗). Then the “spurious-outlier model” is defined 

via “likelihoods” as follows: 

[∏  ∏ 𝑓(𝑥𝑖; 𝜇𝑗 , ∑𝑗)𝑖∈𝑅𝑗

𝑘
𝑗=1 ] [∏ 𝑔𝑖(𝑥𝑖)𝑖∈𝑅𝑜

]                                       (V-3) 

where 𝑅𝑗 are photons belonging to the jth cluster, i is the indices of the data set D. 𝑅𝑜 is 

the “outlier” cluster with the other probability functions 𝑔𝑖(𝑥). To estimate the parameters 

such as 𝜇𝑗, ∑𝑗, 𝑔𝑖(𝑥) and 𝑓(𝑥𝑖; 𝜇𝑗 , ∑𝑗), the maximization of Eq. (V-3) was conducted. 

According to the study of Gallegos and Ritter (2005), maximizing the products in the first 

bracket in Eq. (V-3) also maximized the second one under certain sensible assumptions 

(see details in Gallegos and Ritter (2005)). Thus, Eq (3) can be simplified as 

∏  ∏ 𝑓(𝑥𝑖; 𝜇𝑗 , ∑𝑗)𝑖∈𝑅𝑗

𝑘
𝑗=1                                                        (V-4) 
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When k > 1, Eq. (V-4) is not a well-defined problem that requires the constraints 

on the cluster scatter matrix ∑𝑗 such as constraints on its eigenvalue and determinants 

(Fritz et al., 2012). The strength of the constraint can control the level of heterogeneity 

among clusters. With the aid of the constraint, the maximization of Eq. (V-4) can 

determine the elements belong to 𝑅𝑗. For k clusters, the total r elements of n were 

classified as signals and thus the trimming proportion will be 1 - r/n. 

The tclust package had two functions that could be used to cluster the data, tkmeans 

and tclust, both of which worked well in all data sets for trimming possible outliers 

considered to be noise photons. Determining the suitable number of clusters k and the 

trimming proportion α are two key decisions for the cluster analysis. We tried different 

values for k in the range of 2 to 10, and our analysis indicated that trimming results were 

fairly insensitive to the choice of the number of clusters k in each moving window as long 

as k was not too small or too large. Thus, k=4 was used in each moving window for 

processing all data sets. However, the choice of α significantly affected the classification 

of signal and noise photons and more photons were removed with higher α (Figure V-3).  

To make the clustering process become automated and self-adaptive for different 

terrain and vegetation conditions, the photon density was adopted as a criterion to 

determine the value of α. Specifically, we gradually increased α by 0.02 from its starting 

α value 0.45 and 0.05 for daytime and nighttime scenarios respectively, until the photon 

density of the current data was less than 60% and 95% of pd1 for the corresponding 

daytime and nighttime scenarios. The two proportions (60% and 95%) were determined 

by comparing expected reference photon density to pd1 using multiple datasets, which 

proved to be effective for the datasets used in this study. The parameters here are not 

universally valid for global terrain and vegetation conditions, however, the concept or 

method proposed here serves as a practical approach to determine these parameters. 

To further reduce the distinct outliers that indicate noise photons, the third step was 

implemented to run a series of 95% confidence interval (CI) filters within each ATD 

distance interval to keep photons within 95% CI until the relative change of the total 

number of signal photons between two adjacent iterations was less than 5%. This step 



 

161 

  

was mainly intended to remove extreme outliers around possible ground and TOC after 

implementing the cluster filter and to minimize the amount of noise in the data before the 

classification procedure was initiated. The results using the third filter were illustrated in 

Figure V-2(3) and Figure V-4(4).  

 

 

Figure V-2. An illustration of noise photons filtering using ancillary data (GDEM and 

GCHM) with moving windows: (1) Reference thresholds (red) generated from GDEM 

and GCHM using Eq. (V-1) and Eq. (V-2) with photon counting LiDAR (PCL) data; (2) 
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Moving windows example with cluster analysis; (3) The moving windows with 95% 

confidence CI filter. 

 

 

 

Figure V-3. Clustering results for photon counting LiDAR data with the same number of 

cluster (k) and different trimming proportions α.  
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Figure V-4. An illustration of noise filtering using the grid-based statistical method, 

cluster analysis filter and 95% CI filter with simulated ICESat-2 data. (1) The grid cells 
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(red dash line) generated along ATD and elevation with raw simulated ICESat-2 data; (2) 

The possible signal photons (PSP) (black) after grid-based statistical filtering. (3) The 

PSP (orange) after the cluster analysis filter. (4) The PSP (blue) after 95% CI filter with 

possible noise photons from the cluster analysis (orange). (5) An example of dramatic 

change of signal photons with ATD and elevation indexes.  

 

5.2.3.2 Classification of filtered PCL Data 

Since noise photons around ground and TOC were still mixed with signal photons 

and difficult to be correctly classified after implementing the above steps, we introduced 

additional steps to classify some filtered photons as noise photons prior to classifying 

them into the GPs and canopy top photons. Next, an overlapping moving window was 

designed to process remaining photons to identify possible GPs and canopy top photons. 

Following this identification, the cubic spline function was utilized to generate continuous 

TOC and ground surface using the GPs and canopy top photons from the above step. 

Detailed steps can be found in the following Section 5.2.3.3 and 5.2.3.4.  

The fundamental idea of the cubic spline is to fit a piecewise function with third-

degree polynomials over various specified intervals (Desquilbet and Mariotti, 2010). The 

cubic spline function requires continuity and slope constraint at each knot (the junctions 

of adjacent intervals) which represents continuous first and second derivatives. These 

constraints allow consistency and efficiency of the spline and avoid dramatic bends at the 

junction of intervals. Both characteristics make the cubic spline interpolation suitable for 

capturing the realistic canopy height and ground along the ATD. Specifically, the number 

of knots (NK) in the cubic interpolation can control the smoothness of interpolation and 

significantly impact the performances of the cubic spline interpolation. The ground 

surface is expected to be smoother than the TOC surface in most conditions, which in turn 

makes the cubic spline interpolation with adjusting NK appropriate to capture the ground 

and top of canopy estimates. In Figure V-5, we randomly selected a 2000 m interval to 

demonstrate the variation of the cubic spline interpolation with a different number of 

knots used.  
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Figure V-5. An example of the effects of a different number of knots on the cubic spline 

interpolation. NK=1/3 represents the number of knots (NK) in the cubic spline 

interpolation equal to a third of the total number of estimated canopy top photons. 

 

5.2.3.3 Canopy top identification 

More specifically, three essential steps were used to generate the TOC from the 

signal photons after noise filtering. (1) An empirically derived width of the moving 

window for selecting canopy photons was 50 m and the moving step was 10 m, both of 

which had been found to be effective distance intervals in various conditions. We 

exemplified three moving overlapping windows to demonstrate this process in Figure 

V-6. The window moved one-fifth of its width to allow for the overlap between two 

adjacent windows. For each moving window, the photons (the red square, green triangle 

and blue plus sign photons) within specified elevation quantile range [0.99, 1] for the 

nighttime scenario and [0.96, 1] for the daytime scenario were assumed to be the possible 

noise photons in the TOC. The duplicated photons (orange circle) among these possible 

noise photons were identified by the adjacent windows and were assumed to be noise or 

false canopy top photons.  

(2) To mitigate the effect of outliers (red circle in Figure V-7(2)) among these 

possible canopy top photons, we used a series of boxplot filters in each moving window 

to remove possible outliers and identify signal photons until the relative change of the 
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total number of signal photons between two adjacent iterations was less than 20%. The 

photons within the elevation quantile range [0.95, 0.99] were classified as canopy top 

photons from these signal photons.  (3) Next, a cubic smoothed spline was adopted to fit 

these canopy top photons (green) after utilizing the smooth.spline function in R (2013) to 

generate the interpolated TOC line (blue) (Figure V-7(3)). To further illustrate, we 

displayed an example of identifying outliers (Figure V-8(1)) and refining possible canopy 

top photons with the boxplot filter (Figure V-8 (2) & (3)). The boxplot filter was based 

on the Tukey’s method which used interquartile range to identify the outliers with less 

depending on the distribution of data (Figure V-8). For the sparse nighttime scenario, the 

step (2) was not necessary due to less noise after implementing the first two steps. 

Through various experiments, 1/5 of the total number of canopy top photons was found 

be an effective number of knots for the TOC interpolation. 

 

 

Figure V-6. An example of overlapping moving windows for identifying noise photons 

around the top of canopy (TOC). 
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Figure V-7. Canopy top photons identification the continuous surface generation 

processes using simulated ICESat-2 data. 

 

5.2.3.4 Ground identification 

Compared to finding the possible canopy photons, identifying possible GPs was 

much more challenging especially under dense vegetation conditions. The possible reason 

was that the original transmitted energy has difficulties penetrating the atmosphere and 
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heavy tree cover, which consequently lead to fewer photons detected by the receiver 

aboard the satellite (Herzfeld et al., 2014; Moussavi et al., 2014). The brief steps of 

classifying GPs were summarized as follows: (1) as we did with the TOC identification, 

the first step of the ground identification was to identify false GPs (noise). The main 

difference was in the window width and moving step which for the sparse photon density 

scenario became 100 m and 20 m, respectively, to ensure that a sufficient number of 

photons could be used for terrain height estimation (Figure V-9(1)). Additionally, the 

elevation quantile range for each interval became [0.00, 0.05]. (2) Prior to selecting the 

possible GPs, a boxplot filter was used to further avoid some extreme outliers. For dense 

photon density scenario, the remaining photons within the elevation quantile [0.00, 0.05] 

were selected as the possible GPs (green dots) in each moving window to generate the 

rough ground interpolated line (blue line) as shown in Figure V-9(2). With regard to the 

sparse density scenario, we selected photons within the elevation quantile [0.00, 0.15] in 

each interval, and then derived the kernel density of these photons. The photons within 3 

m of the maximum density elevation were assumed as the possible GPs. Here, the large 

range of elevation quantile [0.00, 0.15] was mainly chosen to get more possible GPs since 

fewer possible GPs were selected when we still used the elevation range [0.00, 0.05] in 

the sparse photon density scenario. In Figure V-9(2), there were several obvious incorrect 

interpolations marked with red circles because of the wrong choice of possible GPs in the 

dense photon density scenarios. Thus, (3) the automated refined process was conducted 

to adjust incorrect possible GPs after generating the rough interpolated ground line. It 

aimed to adjust the interpolated line close to the “real” GPs. Similar to the TOC 

adjustment, we used a series of boxplot filters in each moving window to remove possible 

outliers until the relative change of the total number of signal photons between two 

adjacent iterations was less than 20%. (4) Next, the cubic spline interpolation was used to 

fit the left GPs, the number of knots for the ground was 1/10 of the total number of GPs.  

Once ground and TOC surfaces were generated, the photons between ground and TOC 

surfaces were assigned as canopy photons. 
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Figure V-8. An example of box plot removal filter for adjusting possible signal photons. 

 

5.2.3.5 Accuracy assessment 

To quantitatively calibrate the methods’ performances, the accuracy assessment of 

the estimated ground, percentile height metrics (50th, 60th, 75th, 80th, 85th, 90th, 95th 

percentile heights) and TOC from possible signal photons were conducted. Since DR 

LiDAR data from G-LiHT and MABEL data used different vertical coordinate systems, 

we conducted the height conversion between two coordinate systems according to the 

geoid height of the corresponding locations prior to implementing the accuracy 

assessment of MABEL data. Additionally, we further adjusted the elevation of MABEL 

data by adding the median difference between the converted MABEL and DR LiDAR 

data as described in the Gwenzi et al. study (2016) to reduce the geolocation error. For 

terrain and TOC, we extracted the validation elevations and heights with MABEL’s 

individual points and their corresponding 2 m buffers from the DEM and CHM provided 

by G-LiHT to assess the accuracy of terrain and TOC detection. The 2 m buffer was 

utilized mainly because the approximated MABEL footprint diameter was 2m. 

Subsequently, the mean, SD and root mean square error (RMSE) were calculated based 

on these differences to quantify the performances of our algorithm.  

Similar accuracy assessment procedures were applied to simulated ICESat-2 data. 

Unlike the reference data for MABEL, the reference metrics of simulated ICESat-2 were 

extracted from simulated PCL data with accurate geolocation information that did not 

need further conversion or co-registration. To validate the accuracy of the terrain and 

TOC of simulated ICESat-2 data, simulated PCL data (reference data) within 0 to 5th 
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percentile and 95th to 100th percentile were first assigned to be the GPs and canopy top 

photons. Next, we employed the cubic spline interpolation to generate the continuous 

reference terrain and TOC line using the previously selected photons. The LiDAR metrics 

such as percentile heights have been commonly used to estimate the biomass of forest and 

reflect the canopy structures (García et al., 2010; Glenn et al., 2016; Wulder et al., 2008). 

In the present study, we conducted a validation process for these metrics for simulated 

ICESat-2 data to further test the performances of the methodology. The height metrics 

such as 50th, 60th, 75th, 80th, 85th, 90th, 95th percentile heights were directly extracted from 

the reference data and then compared with their corresponding metrics of simulated 

ICESat-2 data. Simultaneously, the descriptive statistics such as mean, SD and RMSE of 

the differences were derived to further assess the accuracy of the methodology. To clearly 

illustrate the proposed methodology, an overview of the major steps is exhibited in Figure 

V-10. 
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Figure V-9. Ground photons identification and the continuous surface generation 

processes using simulated ICESat-2 data. 
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Figure V-10. Flowchart for the classification of photon counting LiDAR data. 

 

5.3 Results 

 Noise filtering 

As mentioned in the methods section, we tested two approaches for the first 

application of the noise filtering, using the ancillary elevation datasets and the grid based 

method. Results demonstrated that both approaches were effective in filtering out random 

noise photons and narrowing down the possible signal photons. Specifically, the first filter 

removed on average 65% and 5% of the total number of photons for the daytime and 

nighttime scenarios, respectively. Due to fewer noise photons existing in the nighttime 

scenarios, the proportion of the filtered photons was significantly smaller compared to the 

daytime scenarios (Table V-2). With the aid of the cluster analysis filter implemented in 

the second step of the filtering sequence, the majority of noise photons around ground 

and TOC were deleted as shown in Figure V-2(2) and Figure V-4(3). The third filter using 
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95% CI was useful for removing most of the extreme outliers which would significantly 

affect the performance of the classification algorithm. It should be noted that some noise 

photons still existed after implementing the three-step noise filtering sequence, our 

approach tried to mitigate the risk of removing possible signal photons. A summary of all 

scenarios indicate that the second and third filters remove on average 10% and 4% of the 

total number of photons for daytime scenarios, respectively. As expected, the second and 

third filters removed a lower percentage of the total of photons for the nighttime scenario, 

with approximately 5% and almost 0%, respectively. A closer examination showed that 

nighttime scenarios with less noise could generate satisfactory input datasets for 

subsequent classification after implementing the first two filters.  

 Ground and canopy top classification 

5.3.2.1 MABEL 

Figure V-11 presents the retrieved ground and TOC from one MABEL transect 

against the adjusted reference data. The original MABEL data was not co-registered 

accurately with the reference data (green) derived from G-LiHT (Figure V-11(1)), 

however, there was a consistent trend that could be observed between MABEL data and 

reference data. After alignment, MABEL data overlaid closely the adjusted reference data 

(red) used for subsequent accuracy assessment. Figure V-11(2) demonstrates an example 

of retrieved ground and TOC with corresponding descriptive statistics. The retrieved 

ground was potentially closer to the adjusted reference ground compared to the retrieved 

TOC. This observation was further confirmed by a smaller RMSE of the retrieved ground 

(5.25 m) than the TOC (6.98 m). Two other MABEL datasets were also investigated and 

the validation results were summarized in Table V-2. As expected, the validation results 

using individual points were less accurate than the result using the 2 m buffer for all 

datasets.  
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Table V-2. Validation results of MABEL retrieved ground and top of canopy. 

 

  Retrieved ground (m) Retrieved top of canopy (m) 

Study sites Criteria mean SD RMSE mean SD RMSE 

Chester, VT Individual 

points 

-0.84 5.25 5.62 0.32 6.45 6.98 

Buffers 0.21 4.16 4.20 0.54  5.04 5.05 

Hinsdale, VT Individual 

points 

0.22 5.41 5.41 1.20 5.73 5.86 

Buffers 0.27 5.14 5.15 0.58 4.40 4.41 

Jacksonville, 

NC 

Individual 

points 

0.07 0.78 0.85 -0.24 6.15 6.47 

Buffers 0.06 0.67 0.75 -0.19 4.26 4.57 

 

 

 

Figure V-11. Retrieved ground and top of canopy (TOC) results using MABEL data near 

Chester of Vermont (VT). (1) Original reference ground and canopy top (green) derived 

from G-LiHT data and adjusted reference ground and TOC data (red) against the filtered 
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MABEL data. (2) Filtered MABEL data, identified noise (black), ground (purple), canopy 

(orange), TOC photons (green), and reference ground and TOC (red) with interpolated 

ground (cyan) and TOC (blue) surfaces  

 

5.3.2.2 Simulated ICESat-2 data 

 

Figure V-12. Retrieved ground and canopy top results using one simulated ICESat-2 

profile data with different acquisition time scenarios in the Sam Houston National Forest 

(SHNF). (1) False-color composite image with a ground track (blue line). (2) Filtered 
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simulated ICESat-2 data, identified noise (dark green), ground (purple), canopy (orange), 

canopy top photons (green), and reference ground and canopy top (red dash lines) with 

interpolated ground (cyan) and canopy top (blue) surfaces for the daytime scenario. (3) 

Filtered simulated ICESat-2 data, identified noise (dark green), ground (purple), canopy 

(orange), canopy top photons (green), and reference ground and canopy top (red dash 

lines) with interpolated ground (cyan) and canopy top (blue) surfaces for the nighttime 

scenario. 

 

The capacity of simulated ICESat-2 data to identify ground and vegetation were 

explored in different scenarios. For illustration purposes, here we only selected two 

representative study sites to visually display the classification results. Simultaneously, a 

complete statistical performance evaluation for different vegetation conditions was 

summarized in Table V-3 and Table V-5. 

As shown in Figure V-12, the photons left after noise filtering were classified as 

noise (dark green), ground (purple), canopy (orange) and TOC (green) photons for the 

daytime and nighttime scenarios at the SHNF region. As expected, more photons were 

assigned to the noise photons (green) in the daytime scenario. Compared to the reference 

ground and canopy top (red dash lines), mean bias and RMSE of interpolated ground and 

canopy top were smaller for the nighttime scenario than the daytime scenario. For the 

nighttime scenario, the identified ground and canopy top photons closely matched the 

reference data. Additionally, the RMSEs of interpolated canopy top were larger than the 

interpolated ground for both scenarios (3.39 vs. 0.91 m for daytime scenario and 1.64 vs. 

0.46 m for nighttime scenario). Moreover, it was worth noting that more canopy photons 

(orange) were identified in the daytime scenario than the nighttime scenario. A closer 

examination revealed that the noise photons were mixed with the real signal photons 

within the canopy part and they were difficult to be detected and filtered out.  

 To further demonstrate the algorithms’ performances in different vegetation 

conditions, we selected another study site representing sparse vegetation to visually 

display the classification result with three different scenarios. Figure V-13 depicts 

classification results of high noise level scenario with low returned photon density 

obtained from tropical forests of Gabon. It was observed that the amount of noise was 

around the reference data (green) (Figure V-13(1)) after GBS filtering of raw simulated 
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ICESat-2 data. Fewer photons reflected from the understory were kept after the cluster 

filtering step, especially for the ATD between 2700 and 4000 m (Figure V-13(2)), which 

matches the photon distribution of the reference data with low density at understory 

heights of the same interval (green) (Figure V-13(1)). Consequently, more variation 

between the retrieved ground (cyan line) and reference ground (red dash line) occurred in 

the region within this ATD interval. Regarding the canopy top, larger differences were 

more likely to happen in the same region where the large bias of the retrieved ground 

occurred.  

 
 

Figure V-13. Retrieved ground and canopy top results using simulated ICESat-2 data 

representing scenario acquired during the daytime with high noise level (Day high) in the 

Modah forest of Gabon. 
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Classification results of two other scenarios at the same study site are presented in 

Figure V-14 and Figure V-15. Results of filtered photons after the GBS filter showed that 

the Day low scenario of tropical forest in Gabon was indistinguishable from the Day high 

scenario through visually comparing Figure V-13(1) and Figure V-14(1). However, the 

subtle difference could be observed from Table V-3 with the photon density after the GBS 

filter of 2.65 and 2.60 photons/m, respectively. Additionally, the retrieved ground from 

the Day low scenario (Figure V-14) was more close to the reference ground with RMSE 

of 5.05 m, while the empty space in the understory of the region between 2700 and 4000 

m still existed. For the accuracy of canopy top identification, it was just slightly better 

than the Day high scenario with RMSE of 5.69 m. In contrast, the nighttime scenario 

(Figure V-15) with higher SNR generated more accurate estimated ground and canopy 

top by comparing their corresponding reference data. As a consequence, more accurate 

retrieved ground and canopy top were achieved in terms of the RMSEs (3.05 m for ground 

vs. 3.77 m for the canopy top). 
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Figure V-14. Retrieved ground and canopy top results using simulated ICESat-2 data 

representing scenario acquired during the daytime with low noise level (Day low) in the 

Modah forest of Gabon. 

 

A quantitative accuracy assessment of representative scenarios is summarized in 

Table V-3. The nighttime scenario outperformed the daytime scenario from the 

perspective of the average bias and RMSE. As expected, in all scenarios the RMSE for 

the retrieved ground and canopy decreased as the SNR of simulated ICESat-2 data 

increased. Table V-3 also reveals better performance results are expected when the 

reference photon density is high and terrain is mostly flat, in study sites such as the SHNF 

in Texas. Results for the Tennessee study site (temperate hardwood) were the least 

accurate which was consistent throughout all scenarios when comparing to other study 

sites. The main reason was that the raw photon density and photon density after the GBS 
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filter of this study site were the largest among all scenarios, especially when we just took 

the daytime scenarios into account (Table V-3). 

Based on results of the remaining scenarios (102 scenarios) presented in Table S1, 

the nighttime conditions generates better results than the daytime scenario, and higher 

SNR level scenario gives smaller RMSE. The average RMSE of retrieved ground and 

canopy top for these nighttime scenarios was about 1.83 m and 2.70 m, respectively. By 

contrast, the accuracy for the estimated ground and canopy top using daytime datasets 

were lower with RMSE of 2.80 m and 3.59 m, respectively. Our results highlighted that 

large RMSE (> 5 m) were mainly occurring for daytime scenarios with sparse vegetation 

(reference density <1 photon/m).  

 

 

 

Figure V-15. Retrieved ground and canopy top results using simulated ICESat-2 data 

representing scenario acquired during the nighttime (Night) in the Modah forest of Gabon. 
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Descriptive statistics of the percentile heights’ calibration results for representative 

vegetation conditions are summarized in Table V-4. We did not provide results for Alaska 

because there was no available reference percentile height information that could be used 

for the validation. As shown in Table V-4, nighttime scenarios were more prone to 

achieve smaller mean bias and RMSE than corresponding daytime scenarios. Compared 

to validation results of retrieved ground or canopy top (Table V-3), the percentile heights 

yielded better results with smaller RMSEs except for the results of the nighttime scenario 

at the SHNF. Interestingly, almost all RMSEs of percentile heights were likely to be inside 

the range of RMSE values of corresponding retrieved ground and TOC. Additionally, the 

higher the percentile height, the larger RMSEs were observed in most scenarios.  

In summary, algorithm performance in different vegetation conditions showed that our 

methodology was capable of deriving ground, percentile heights and TOC from simulated 

ICESat-2 data with reasonable accuracies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

182 

  

Table V-3. Validation results of retrieved ground and canopy top with representative 

vegetation conditions using simulated ICESat-2 data. 
 

 
 

Study 

sites 

 

Scenarios 

Retrieved ground (m) Retrieved canopy top (m) Reference 

photon 

density 

Raw 

photon 

density/S

NR 

Photon 

density 

after 

GBF/Clu

ster 

mean SD RMSE mean SD RMSE    

 Day high -1.39 6.6

5 

6.79 -0.38 6.02 6.03 0.53 6.79 / 

0.08 

2.65 / 

1.28 

Gabon Day low 1.35 4.8

6 

5.05 0.13 5.69 5.69 0.53 6.75 / 

0.09 

2.60 / 

1.21 

 Night  1.29 2.7

5 

3.05 0.36 3.75 3.77 0.53 0.70 / 

3.13 

0.60 / 

0.53 

 Day high 0.31 6.2

7 

6.28 -2.41 9.27 9.58 2.18 34.09 / 

0.07 

12.87 / 

5.10 

TN Day low 1.54 5.4

6 

5.68 0.8 5.96 6.01 2.18 10.22 / 

0.27 

4.84 /  

2.45 

 Night  0.27 4.4
7 

4.48 -0.2 5.17 5.18 2.18 2.34 / 
13.62 

2.22 / 
2.05 

 Day high 0.09 0.6

2 

0.64 -0.63 2.23 2.31 2.19 18.41 / 

0.14 

6.05 / 

3.62 

FR, TX Day low 0.11 0.5
5 

0.57 -0.63 1.61 1.73 2.19 9.50 / 
0.30 

3.76 / 
2.25 

 Night  0.07 0.6 0.61 -1.15 2.1 2.4 2.19 2.51 / 

6.84 

2.39 / 

2.18 

 Day 2004 -0.36 0.8

4 

0.91 -0.79 3.3 3.39 3.37 20.25 / 

0.2 

8.79 / 

5.26 

SHNF, 

TX 

Night 

2004 

-0.11 0.4
5 

0.46 -0.08 1.63 1.64 3.37 3.55 / 
19.75 

3.42 / 
3.35 

 Day 2010 -0.32 1.4

8 

1.51 -0.61 2.19 2.27 3.37 19.08 / 

0.22 

8.31 /4.14 

 Night 

2010 

-0.03 0.5

1 

0.52 0.01 1.48 1.48 3.37 3.54 / 

21.60 

3.40 / 

3.18 

Alaska Day high -0.26 1.4
4 

1.47 -1.03 2.24 2.46 1.22 1.86 / 
1.91 

1.39 / 
1.19 

 Night -0.07 1.3

1 

1.31 -0.87 1.63 1.85 1.22 1.24 / 

61.35 

1.23 / 

1.15 
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Table V-4. Validation results of percentile heights (PHs) with representative condition 

using simulated ICESat-2 data. 
 

Study 

sites 

Scenario

s 

Descriptive 

Statistics 

50th 

PH 

60th 

PH 

75th 

PH 

80th 

PH 

85th 

PH 

90th 

PH 

95th 

PH 

 Day Mean bias -0.78 -0.99 -0.58 -0.71 -0.87 -1.11 -1.02 

 high SD 4.37 3.92 4.72 4.86 5.03 5.35 5.54 

  RMSE 4.41 4.02 4.72 4.88 5.07 5.43 5.59 

  Mean bias -1.10 -1.39 -1.60 -1.91 -2.26 -2.44 -2.56 

Gabon Day  SD 4.37 4.15 4.53 5.04 4.98 5.36 5.23 

 low RMSE 4.48 4.35 4.77 5.35 5.44 5.85 5.79 

  Mean bias 0.34 -0.16 -0.73 -0.83 -0.90 -1.46 -1.64 

 Night SD 3.11 3.04 3.54 3.34 3.45 4.05 4.19 

  RMSE 3.11 3.03 3.59 3.42 3.54 4.28 4.48 

  Mean bias 1.84 1.53 0.46 0.31 0.08 -0.23 0.20 

 Day  SD 6.80 7.33 7.04 7.46 7.46 8.01 8.01 

 high RMSE 6.96 7.39 6.97 7.37 7.37 7.92 7.91 

  Mean bias 1.74 1.14 0.92 0.43 0.10 -0.16 -0.17 

TN Day  SD 4.42 4.78 3.83 4.29 5.32 6.09 5.87 

 low RMSE 4.70 4.86 3.89 4.26 5.25 6.02 5.80 

  Mean bias 0.52 0.39 -0.51 -0.59 -0.83 -1.09 -0.85 

 Night SD 5.03 4.67 4.15 4.52 4.83 5.71 6.16 

  RMSE 5.00 4.62 4.13 4.50 4.84 5.74 6.14 

  Mean bias -0.14 -0.21 -0.37 -0.39 -0.49 -0.58 -0.72 

 Day  SD 1.30 1.43 1.56 1.55 1.58 1.64 1.87 

FR,TX high RMSE 1.30 1.44 1.60 1.59 1.65 1.74 1.99 

  Mean bias -0.15 -0.12 -0.28 -0.30 -0.37 -0.43 -0.54 

 Day  SD 1.05 1.30 1.45 1.48 1.53 1.48 1.68 

 low RMSE 1.06 1.30 1.47 1.50 1.56 1.54 1.76 

  Mean bias -0.15 -0.22 -0.32 -0.35 -0.40 -0.44 -0.63 

 Night SD 1.29 1.45 1.56 1.51 1.57 1.67 1.91 

  RMSE 1.29 1.46 1.58 1.54 1.61 1.72 2.00 

  Mean bias -0.60 -0.64 -0.72 -0.71 -0.78 -0.82 -0.87 

 2004  SD 2.98 2.90 2.74 2.56 2.43 2.33 2.61 

 Day RMSE 3.04 2.97 2.83 2.66 2.55 2.47 2.75 

  Mean bias -0.59 -0.59 -0.64 -0.76 -0.84 -1.01 -1.19 

SHNF, 2004  SD 2.67 2.67 2.52 2.56 2.35 2.16 2.30 

TX Night RMSE 2.73 2.73 2.60 2.67 2.49 2.38 2.58 

  Mean bias -0.43 -0.64 -0.83 -0.81 -0.83 -1.04 -1.25 

 2010  SD 2.80 3.01 2.88 2.65 2.63 2.46 2.23 

 Day RMSE 2.83 3.07 2.99 2.77 2.76 2.67 2.55 

 2010 Mean bias -0.49 -0.56 -0.72 -0.65 -0.65 -0.85 -1.02 

 Night SD 2.66 2.70 2.52 1.98 2.02 1.82 1.80 

  RMSE 2.70 2.76 2.61 2.08 2.12 2.00 2.06 

 

5.4 Discussion 

The methodology proposed in the present paper provided encouraging forest 

structure and terrain mapping results from test-bed sensor data for the ICESat-2 mission. 

Our results are in agreement with findings of earlier studies (Gwenzi et al., 2016; 

Moussavi et al., 2014; Wang et al., 2016). Moreover, we built upon the findings of 

previous studies by investigating different SNR scenarios across various vegetation 

conditions to comprehensively assess the performance of our algorithm.  
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 Noise filtering 

Effective noise filtering is a pivotal step toward generating useful terrain and 

vegetation metrics from further ICESat-2 data. The main objective of noise filtering is to 

improve the classification results of photons by removing noise photons that may distort 

the analysis and hinder subsequent classification. For this study, we developed a 

framework with three multi-level noise filters and attempted to find the appropriate 

filtering parameters and self-adaptive approach to allow classification of ground and 

canopy photons under diverse terrain and vegetation conditions. One salient reason to 

employ the multi-level filtering approach is to preserve as much information contained in 

raw data and gradually reduce the effect of possible noise photons. In addition, two 

approaches for the first filtering step were implemented and tested. Specifically, the 

approach using the ancillary elevation data requires accurate geolocation of the original 

data, such as simulated ICESat-2 or MABLE data. Accurate geolocation is essential to 

ensure the extracted ancillary information (GCHM & GDEM) provides a realistic 

envelope to locate signal photons (Figure V-2(1)). Moreover, a competitive or even 

superior alternative to the ancillary data approach, named the GBS filter, has been 

developed as the second approach. This filter has been proved to work efficiently in all 

scenarios and is preferred for preliminary noise filtering to process ICESat-2 data. The 

second filter, named the cluster filter, is effective to remove the noise around the targets 

in most scenarios. However, it may be problematic when the returned photon density is 

relatively low, as is the case with the Gabon study site. A closer examination of these 

scenarios reveals that signal photons and noise photons are difficult to be discerned in the 

low returned photon density condition. We suspect that this problem is caused by the lack 

of an obvious clustering pattern in the low density of return photons scenario, which 

violates the assumption of the cluster filter that signal photons are more prone to cluster 

around the targets.  
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 MABEL 

Compared to the results of simulated ICESat-2 data, MABEL data generated less 

accurate results (Table V-2). Many factors contribute to the large bias of MABEL 

validation such as low geolocation precision of MABEL data (RMSE: ~30 m) (Hancock 

and Lee, 2014) and interpolation error (Moussavi et al., 2014). Undoubtedly, better 

validation results are anticipated when more accurate reference data are available as stated 

in a previous study (Gwenzi et al., 2016). The accuracy of MABEL data for retrieving the 

ground and canopy top is comparable to other studies, but it is hard to judge the 

performances of algorithms solely based on their mean bias and RMSEs. Due to 

inconsistencies with both reference data and MABEL data, the manual adjustment of the 

co-registration could introduce bias. However, we consider that using MABEL data in 

our analysis is useful as a test-bed sensor data for the ICESat-2 mission to explore the 

possible challenges of ATLAS data. 

Along with the results of earlier studies, the retrieved ground is more accurate than the 

retrieved canopy top (Gwenzi et al., 2016; Moussavi et al., 2014; Tang et al., 2016). 

Several potential reasons may partly explain this discrepancy. For example, the reference 

data for MABEL come from high-resolution surface products (1 m) such as the CHM of 

G-LiHT, and a slight shift of geolocation could bring large discrepancies of extracted 

reference value, especially for the CHM. In addition, the temporal difference in 

acquisition dates of G-LiHT data and MABEL data, i.e., G-LiHT data was collected in 

August of 2011 while MABEL data used in this study was obtained in September of 2012 

unarguably brings additional variability to validation results,  especially for the validation 

of canopy height.  

 Simulated ICESat-2 data 

Results of processing simulated ICESat-2 data suggest that our methodology is 

applicable for vegetation structure characterization and terrain mapping. Although we 

cannot extend with full certainty the performance of the methodology to genuine ATLAS 

data, results of different exploratory scenarios offer a good understanding of expectations 

in terms of accuracies obtainable for ground and vegetation canopy metrics.  It is fully 
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expected that our methodology will be adjusted post-launch to reflect the on-orbit 

performance of ATLAS and serve as a baseline for further preprocessing ICESat-2 data 

for vegetation and terrain characterization or comparison with other algorithms. 

Moreover, exploring these scenarios can provide insights into the possible challenging 

issues of ICESat-2 data for vegetation studies and prepare for the ICESat-2 mission 

applications (Moussavi et al., 2014).  

Comparing results of the daytime scenario with nighttime scenario (Figure V-11), 

more noise photons are present within the canopy mixed with real signal photons, which 

are difficult to be detected and may further lead to inaccurate estimated metrics of 

vegetation structure, such as percentile heights. In reality, the photons caused by solar 

background could also occur in the middle part of the vegetation canopy space. Therefore, 

identifying noise photons from the mid-story of vegetation canopy may be one aspect of 

further research investigations.  

Among all examined scenarios, the tropical forest with lowest return photon density 

has the least accurate validation results. Both returned photon density and noise level 

influence the algorithms’ performances to a significant degree. In particular, the 

appropriate trimming proportion (α) of the second filter that deletes noise photons around 

targets is adjusted based on the noise level of the dataset; the optimal value for α is 0.10 

and 0.65 for nighttime and daytime scenarios in our case, respectively. Assuredly, finding 

the suitable range of α requires further testing of our algorithm over various vegetation 

conditions. According to the currently limited data sets available to us (115 scenarios), 

the reasonable range of α was found to be [0.05, 0.15] and [0.6, 0.7] for nighttime and 

daytime scenarios, respectively.  

With regard to the return photon density, previous studies have demonstrated its 

importance and usefulness in ground and canopy top identification (Gwenzi et al., 2016; 

Zhang and Kerekes, 2015). Our study also confirms that with higher returned photon 

density, more accurate results are anticipated according to Table V-3 and Table V-5. 

Challenging situations could occur when the dense vegetation cover is present as 

demonstrated in Figure V-13. The accuracy of the ground for low return photon density 
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is heavily affected by the width of the moving window. In the present study, we employ 

larger window width (100 m vs. 50 m) for the tropical forest scenarios to preserve the 

spatial integrity of topography under dense vegetation. In addition, the kernel density 

method implemented for retrieving ground in low returned photon density is useful for 

optimizing the process of GP identification. Both designs further enhance the 

performance of our algorithm. As suggested by Gwenzi et al. (2016), a high repetition 

rate sensor possibly extenuates the impact of low return photon density on the retrieval of 

ground at dense vegetation and canopy height at the sparse vegetation cover. This aspect 

is of particular concern for the ecosystem community, since tropical forests concentrate 

high biomass values that need to be estimated with high accuracy and precision.  

Percentile heights are key parameters for characterizing canopy structure and 

monitoring biomass and carbon dynamics (Falkowski et al., 2009; Popescu, 2007; 

Swatantran et al., 2016; Zhao et al., 2011). Thus, we conducted accuracy assessment of 

percentile heights to further evaluate the performance of the methodology. Validation of 

percentile heights showed similar accuracies as the retrieved ground and canopy top, 

indicating that our methodology can achieve high precision results. More accurate 

percentile height results are yielded in the study site with low return photon density or 

high-level noise such as in Gabon and TN study sites, which mainly result from that the 

photons in the middle part have higher chance to be correctly identified as signals when 

comparing to the identified ground and canopy top photons.  

To our best knowledge, this study expands on early similar work on developing and 

testing algorithms of vegetation characterization for the ICESat-2 mission, with 

encouraging calibration results. Given the availability of test bed data, only limited 

scenarios are investigated in this study. It is recommended that more simulated ICESat-2 

data scenarios should be explored in future studies before the genuine ATLAS data are 

available. A crucially important characteristic of a successful methodology is its ability 

to self-regulate processing parameters based on conditions exhibited within datasets. 

Minimizing the customized parameters to enable automatic and adaptive processing for 

various terrain and vegetation conditions is thus preferred. With this study, we presented 
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a methodology for optimizing processing parameters, such as the trimming proportion, 

the window width and quantile threshold, to enable an adaptive and efficient ICESat-2 

type of data processing. Certainly, the current methodology is not guaranteed to reliably 

extract terrain and characterize vegetation structure for all global dataset conditions. 

Future research investigations could look into the possibility of increasing the synergy 

between ICESat-2 data and other satellite missions, such as Landsat, to further refine 

processing parameters and the self-adaptive capability to meet the needs of the ecosystem 

science community for characterizing vegetation structure, biomass, and carbon with high 

accuracy. 

 

5.5 Conclusion 

ICESat-2 holds great potential to enhance estimates of forest biomass, carbon and 

volume through acquiring synoptic measurements of vegetation canopy height, density, 

the vertical distribution of photosynthetically active material over vast expanses e.g., 

nations, continents and globe. The present study proposes a useful framework to process 

ICESat-2 like data, e.g., MABEL data and simulated ICESat-2 data, to derive the terrain 

elevation and vegetation structure metrics. In addition, a realistic understanding of 

possible challenges related to processing upcoming ICESat-2 data over different 

vegetation conditions is provided. The multi-level noise filters show their effectiveness 

in identifying the possible signal photons and noise photons under different scenarios. 

Our validation results of terrain and vegetation structure metrics demonstrate that the 

proposed methodology is capable of meeting the science objectives of the ICESat-2 

mission on measuring vegetation canopy height and supporting ongoing biomass 

mapping over a large scale. Despite that validation results obtained over densely 

vegetated conditions are not impressive, this study facilitated our understating of possible 

issues related to data processing. The current methodology can provide a valuable basis 

to characterize terrain and vegetation structure that can be adjusted after launching 

ICESat-2 to derive useful vegetation metrics over large areas. Due to the fuzzy margin 

between noise photons and ground or canopy top photons of ATLAS data, adopting the 
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uncertainty concept to classify the photons of ground and canopy top could be more 

intuitive and possibly have potential for further research investigations. Certainly, more 

efforts and scenarios of simulated ICESat-2 data are needed to further enhance their utility 

for canopy structure and terrain characterization. Given the profile configuration of 

ICESat-2 data, incorporating them with other data such as optical images, airborne 

LiDAR, radar and upcoming GEDI data can expand their potential applications and 

increase the accuracy of estimated parameters. In addition, future studies should also 

place an emphasis on generating gridded products using the dense orbit pattern of ICESat-

2 data.  
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5.6 Appendix  

Table V-5. Complete validation results of retrieved ground and canopy top using 

simulated ICESat-2 data with detailed background information. (density unit: photons/m) 

 

Scena

rios  

Raw 

density 

After 

GBS 

density 

After 

cluster 

density 

Reference 

Density 

Ground (m) Canopy top (m) 

Mean SD RMSE Mean SD RMSE 

day 39.75 11.46 5.61 3.97 -0.33 1.25 1.30 -0.17 1.25 1.26 

night 5.20 4.23 3.99 3.94 0.37 0.81 0.89 -0.79 0.96 1.24 

day 20.31 8.74 4.80 0.81 -0.97 2.97 3.13 -0.07 6.81 6.81 

night 1.38 1.09 1.01 0.88 -1.89 1.89 2.67 -0.44 4.63 4.65 

day 58.63 14.06 6.88 4.82 -0.56 2.32 2.39 -0.86 2.00 2.18 

night 6.58 5.13 4.85 4.80 0.09 0.79 0.79 -1.00 1.84 2.10 

day 23.33 7.08 3.90 0.63 0.39 7.08 7.09 -1.00 6.47 6.54 

night 1.44 0.93 0.87 0.72 -1.27 3.54 3.76 -0.82 3.37 3.47 

day 42.01 17.39 8.52 6.01 -0.92 1.05 1.39 -3.52 1.80 3.95 

night 7.16 6.39 6.05 6.00 -0.24 0.36 0.44 -2.52 1.41 2.88 

day 23.06 7.09 3.89 0.63 1.72 7.22 7.42 0.24 5.36 5.37 

night 1.43 0.93 0.85 0.72 -0.92 3.06 3.20 -0.11 4.13 4.13 

day 51.43 10.85 5.29 3.62 -1.17 2.47 2.74 -1.60 2.31 2.81 

night 5.29 3.97 3.79 3.72 0.10 1.45 1.45 -2.40 1.53 2.85 

day 23.06 7.01 3.85 0.63 1.72 6.08 6.32 2.77 7.27 7.78 

night 1.42 0.92 0.84 0.71 -0.75 3.70 3.77 -0.74 4.65 4.70 

day 22.21 9.79 4.79 3.42 -0.71 0.82 1.09 -3.14 2.09 3.77 

night 4.04 3.64 3.44 3.40 -0.20 0.32 0.38 -2.46 1.50 2.88 

day 25.34 8.02 4.40 0.72 1.30 6.47 6.60 1.10 6.61 6.70 

night 1.60 1.05 0.97 0.81 -1.39 3.95 4.19 0.70 3.20 3.27 

day 26.34 14.86 7.28 5.09 0.10 0.47 0.48 -0.49 1.14 1.24 

night 5.60 5.33 5.05 5.02 0.20 0.65 0.68 -0.60 0.89 1.07 

day 26.53 7.93 4.33 0.71 2.60 8.12 8.53 1.36 7.25 7.38 

night 1.58 1.03 0.94 0.80 -0.97 4.23 4.34 0.12 3.35 3.35 

day 24.13 14.17 6.92 4.93 0.00 0.13 0.13 -0.49 0.67 0.84 

night 5.40 5.16 4.88 4.85 0.00 0.12 0.12 -0.41 0.48 0.63 

day 23.95 12.41 6.05 4.13 -0.31 1.53 1.56 -0.92 2.45 2.62 

night 4.74 4.47 4.24 4.20 0.13 1.29 1.30 -1.85 1.80 2.58 

day 17.57 10.29 5.04 3.59 0.02 0.09 0.09 -0.57 0.59 0.83 

night 3.91 3.74 3.54 3.53 0.01 0.08 0.08 -0.43 0.44 0.62 

day 18.85 10.08 4.92 3.37 -0.84 0.95 1.27 -2.00 2.90 3.53 

night 3.84 3.62 3.43 3.40 -0.21 0.30 0.36 -1.87 1.97 2.72 

day 16.36 9.48 4.62 3.22 -0.14 0.22 0.26 -0.66 0.82 1.05 

night 3.52 3.36 3.16 3.15 -0.09 0.10 0.13 -0.66 0.70 0.96 

day 24.30 12.54 6.14 4.16 0.15 2.41 2.42 -0.87 2.50 2.65 

night 4.73 4.45 4.22 4.19 0.29 2.15 2.17 -0.84 2.05 2.21 

day 19.68 11.56 5.65 3.99 -0.11 0.15 0.18 -1.44 0.96 1.73 

night 4.34 4.16 3.92 3.91 -0.09 0.12 0.15 -0.87 0.74 1.14 

day 17.58 9.66 4.73 3.33 -0.11 0.53 0.55 -0.81 2.53 2.66 

night 3.74 3.54 3.34 3.32 -0.01 0.23 0.23 -0.79 1.98 2.13 

day 21.40 12.26 5.97 4.11 -0.11 0.28 0.30 -0.67 1.28 1.45 

night 4.53 4.31 4.07 4.05 -0.03 0.14 0.14 -0.84 0.98 1.29 

day 15.82 8.41 4.62 2.85 -0.79 2.27 2.40 0.66 3.46 3.52 
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Table V-5 Continued         

night 3.17 3.00 2.84 2.82 0.19 1.34 1.36 -0.43 1.37 1.44 

day 27.86 16.00 7.83 5.48 -0.15 0.26 0.30 -1.28 1.22 1.77 

night 5.98 5.72 5.41 5.38 -0.08 0.10 0.12 -1.15 0.98 1.51 

day 18.29 10.37 5.06 3.51 0.38 1.15 1.21 -0.31 1.27 1.31 

night 3.89 3.70 3.51 3.49 0.69 1.19 1.37 -0.97 0.98 1.38 

day 39.82 12.60 6.12 4.38 1.01 4.26 4.38 -1.02 2.30 2.51 

night 6.11 5.24 4.96 4.88 1.67 3.04 3.47 -1.32 2.23 2.60 

day 16.24 8.17 4.48 2.79 -2.41 2.58 3.53 1.58 3.36 3.72 

night 3.23 3.01 2.86 2.82 -0.10 1.12 1.12 -1.77 1.59 2.38 

day 35.23 13.38 6.53 5.13 -0.20 1.21 1.23 -1.62 3.81 4.14 

night 6.30 5.59 5.30 5.25 -0.25 1.05 1.08 -0.72 3.34 3.41 

day 22.69 11.29 5.53 3.77 -0.01 2.10 2.10 -1.00 3.52 3.66 

night 4.48 4.17 3.94 3.89 0.31 1.36 1.40 -1.21 2.55 2.82 

day 33.23 11.07 5.42 4.00 1.23 3.32 3.54 -1.25 2.08 2.43 

night 5.34 4.62 4.39 4.32 1.38 2.39 2.76 -1.32 1.94 2.34 

day 22.04 10.93 5.34 3.72 -0.18 1.59 1.60 -1.06 2.70 2.90 

night 4.36 4.06 3.83 3.80 0.10 1.29 1.29 -1.31 2.06 2.44 

day 36.25 10.03 4.91 3.48 1.73 5.10 5.39 -0.56 2.02 2.09 

night 4.91 4.09 3.86 3.80 2.63 4.65 5.34 -1.35 1.73 2.19 

day 19.54 9.50 4.63 3.08 1.54 3.03 3.40 -0.78 2.77 2.88 

night 3.76 3.49 3.30 3.26 1.43 3.00 3.33 -1.60 1.96 2.53 

day 34.43 14.59 7.14 5.42 1.29 4.02 4.22 -1.20 2.68 2.94 

night 6.67 6.05 5.73 5.67 0.88 2.92 3.05 -1.12 1.97 2.27 

day 33.51 11.31 5.54 3.57 -1.58 2.27 2.77 -2.50 4.36 5.02 

night 4.75 4.04 3.82 3.74 -0.05 1.14 1.14 -2.31 3.80 4.45 

day 16.94 9.59 4.67 3.67 0.33 1.37 1.41 -0.88 1.73 1.95 

night 4.10 3.92 3.73 3.71 0.16 0.92 0.93 -0.85 1.34 1.59 

day 35.30 10.62 5.17 3.43 -1.77 2.36 2.95 -4.69 5.01 6.86 

night 4.66 3.87 3.67 3.60 -0.45 1.31 1.39 -2.29 4.45 5.00 

day 24.07 13.16 6.45 5.20 -0.15 0.39 0.42 -0.61 1.63 1.74 

night 5.70 5.43 5.14 5.12 -0.04 0.16 0.17 -0.40 1.32 1.38 

day 59.02 13.04 6.38 4.11 -2.00 3.30 3.86 -4.22 5.96 7.30 

night 6.32 4.80 4.54 4.45 -0.69 1.94 2.06 -2.02 4.50 4.93 

day 20.60 11.17 5.47 4.31 -0.54 0.77 0.94 -1.51 3.19 3.53 

night 4.84 4.60 4.36 4.33 -0.37 0.54 0.66 -0.83 3.17 3.28 

day 57.44 13.02 6.37 4.14 -1.55 3.05 3.42 -3.46 5.21 6.25 

night 6.33 4.84 4.58 4.48 -0.39 2.30 2.33 -1.82 4.80 5.14 

day 16.60 9.29 4.55 3.51 0.18 1.29 1.30 -1.84 2.62 3.20 

night 3.96 3.78 3.58 3.56 0.22 1.26 1.28 -1.37 1.82 2.28 

day 39.26 11.06 5.38 3.50 -1.21 2.88 3.13 -3.58 3.54 5.04 

night 5.01 4.05 3.82 3.74 -0.24 1.94 1.95 -2.74 3.01 4.07 

day 29.74 16.36 8.01 6.36 0.10 0.96 0.97 -0.91 2.23 2.41 

night 7.00 6.69 6.34 6.31 0.05 0.81 0.81 -0.77 2.01 2.16 

day 23.85 12.57 6.13 4.27 -0.24 0.84 0.87 -0.34 1.87 1.90 

night 4.77 4.50 4.27 4.24 -0.11 0.57 0.58 -0.41 1.43 1.49 

day 15.35 8.53 4.69 3.25 1.48 2.39 2.81 0.44 2.23 2.27 

night 3.71 3.52 3.32 3.28 2.29 2.34 3.28 -1.66 1.15 2.02 

day 28.07 14.70 7.17 5.01 -0.15 1.32 1.33 -0.34 1.89 1.92 

night 5.66 5.32 5.04 5.01 -0.10 0.86 0.87 -0.27 1.77 1.79 

day 46.62 16.06 7.83 5.95 0.06 2.94 2.94 -0.93 2.22 2.40 

night 7.54 6.59 6.25 6.18 -0.09 2.69 2.69 -1.05 1.86 2.14 
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Table V-5 Continued         

day 22.87 9.44 4.61 0.78 -1.05 7.83 7.89 1.64 4.83 5.10 

night 1.54 1.19 1.10 0.96 -1.88 3.08 3.61 0.68 3.59 3.65 

day 35.58 16.80 8.22 6.43 -0.26 2.12 2.14 -0.90 3.54 3.65 

night 7.43 6.91 6.56 6.50 -0.22 1.96 1.98 -0.01 3.45 3.45 

day 19.45 8.17 4.51 0.79 -1.57 3.17 3.54 -2.41 4.95 5.50 

night 1.31 1.03 0.95 0.83 -1.05 1.77 2.06 -1.69 3.23 3.65 

day 32.35 13.93 6.81 5.19 0.74 3.48 3.56 -1.46 3.13 3.46 

night 6.31 5.72 5.42 5.35 0.17 3.18 3.18 -1.35 2.52 2.86 
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CONCLUSIONS AND FURTHER WORK 

 

FW LiDAR bears great potential to provide more information for vegetation 

characterization than DR LiDAR due to the complete digitization of the returned signal 

that can be achieved instead of simple time measurements for individual pulses within the 

returned signal. In this dissertation, we first developed a novel algorithm, named the Gold 

deconvolution, for processing FW LiDAR data to extract information such as amplitudes 

and echo widths for terrain and vegetation characterization. The algorithms developed in 

this study is of both scientific and practical significance in that it provides dedicated and 

non-proprietary alternative tools with broad ecosystem researchers for extensive 

applications of FW LiDAR data. In addition, we conducted comparisons of the new 

method with existing FW LiDAR processing methods such as the Gaussian 

decomposition and RL deconvolution to comprehensively explore advantages and 

limitations of various waveform processing techniques to derive topography and canopy 

height information.  

This study also applied the Bayesian non-linear modeling concept to process 

small-footprint FW LiDAR data and provided a new insight into the waveform 

decomposition and uncertainty estimation. Through the Bayesian decomposition, 

uncertainty at the parameter estimates, point cloud and surface model generation steps 

were quantified in a probabilistic sense. Moreover, uncertainty estimates from the 

Bayesian method enhanced the credibility of decomposition results to capture the true 

error of estimates and traced the uncertainty propagation along the processing steps. 

 A plethora of information contained in FW LiDAR data also offers prospects for 

real-world applications such as characterizing vegetation structures and tree species 

classification. We successfully integrated machine learning methods (the RF and CF) and 

Bayesian method with FW metrics to identify tree species with FW LiDAR data alone. 

The CF method introduced in this study rendered a new perceptive for variable selection 
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by overcoming waveform metrics selection bias caused by the RF method which violates 

the implicit null hypothesis and favors correlated metrics, and enhanced the accuracy of 

subsequent classification. Both machine learning methods (the RF and CF) and the 

Bayesian method generated satisfactory overall accuracy and the Bayesian method 

slightly outperformed the other two methods. Moreover, uncertainty estimates from the 

Bayesian method rendered users with more confidence for interpreting and applying 

classification results to real-world tasks such as forest inventory. It is expected that a 

concomitant expansion of adopting advanced statistical methods such as the Bayesian 

method for tackling complicated relationships between characteristics of interest (e.g. 

height, biomass, carbon) and remotely-sensed predictors, and assisting result 

interpretation and decision making in real-world applications with advances in 

computational capacity and handy operational tools. 

 It is envisioned that a continuing interest is arising in employing upcoming 

ICESat-2 data for biomass estimation and vegetation mapping over large areas. The 

mythological framework developed in this study explored the possible challenges of 

ICESat-2 data processing and provided a basis for further method adjustment for 

processing genuine ICESat-2 data.  

Built on the outcomes of this dissertation, more attention should be paid to the 

following two main research directions: (1) exploiting FW LiDAR data for real-world 

applications such as biomass estimation and vegetation mapping with advanced statistical 

models (machine learning and Bayesian methods) and the development of more handy 

tools and software implementations; (2) incorporating ICESat-2 data with existing remote 

sensing data such as LiDAR and optical imagery for improved global canopy height and 

terrain elevation estimations, and forest structure and biomass mapping over large areas.  
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