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ABSTRACT 

FULL-WAVEFORM AND DISCRETE-RETURN LIDAR IN SALT MARSH ENVIRONMENTS: 

AN ASSESSMENT OF BIOPHYSICAL PARAMETERS, VERTICAL UNCERTATINTY, AND 

NON-PARAMETRIC DEM CORRECTION 

by 

Jeffrey N. Rogers 

University of New Hampshire, December, 2014 

 
 
High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are 

necessary to support restoration and other management initiatives, such as adaptation to sea level 

rise.  Lidar (light detection and ranging) data may serve this need by enabling efficient 

acquisition of detailed elevation data from an airborne platform.  However, previous research has 

revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt 

marshes than in other environments.  The increase in vertical uncertainty in lidar data of salt 

marshes can be attributed primarily to low, dense-growing salt marsh vegetation.  Unfortunately, 

this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) 

ineffective for analysis of topographic features controlling tidal inundation frequency and 

ecology.  This study aims to address these challenges by providing a detailed assessment of the 

factors influencing lidar-derived elevation uncertainty in marshes. The information gained from 

this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical 

parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM 

accuracy.  



 xvi 

Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic 

Global Navigation Satellite System) reference data, were acquired for four salt marsh systems 

characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and 

Salicornia spp.) on Cape Cod, Massachusetts.  These data were used to: 1) develop an innovative 

combination of full-waveform lidar and field methods to assess the vertical distribution of 

aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias 

and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects 

of seasonality (temporal differences between peak growth and senescent conditions) using lidar 

data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces 

(RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test 

five nonparametric regression model algorithms (MARS – Multivariate Adaptive Regression, 

CART – Classification and Regression Trees, TreeNet, Random Forests, and GPSM – 

Generalized Path Seeker) with 13 predictor variables derived from both discrete and full 

waveform lidar sources in order to develop a method of improving lidar DEM quality.   

Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) 

between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical 

obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace.  

It was determined that simple, feature-based lidar waveform metrics, such as waveform width, 

can provide new information to estimate salt marsh vegetation biophysical parameters such as 

vegetation height.  The results also clearly illustrate the importance of seasonality, species, and 

lidar interpolation and filtering methods on elevation uncertainty in salt marshes.  Relative 

uncertainty surfaces generated from lidar waveform features were determined useful in 

qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation 



 xvii 

height and presence of Spartina alterniflora.  Finally, DEMs generated using full-waveform 

predictor models produced corrections (compared to ground based RTK GNSS elevations) with 

R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation.  The findings from this 

research have strong potential to advance tidal marsh mapping, research and management 

initiatives. 
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CHAPTER I 

INTRODUCTION 

 

Today, 10% of the world’s population lives within coastal regions with elevations of less 

than 10 m above sea level (Fitzgerald et al. 2008).  However, land area for this same geographic 

region is only about 4% of the total Earth’s land mass (Gedan et al. 2009).  With the onset of 

rapid global climate change in the late twentieth and early twenty-first century, ecological 

systems, people and our infrastructure are potentially at risk.  Coastal wetland systems are 

particularly sensitive and vulnerable to the effects of climate change (Erwin 2009).   

Predictions of sea-level rise (SLR) for the next 100 years vary dramatically from 0.33 m 

to 1.32 m under an intermediate emission scenario (RCP 4.5) (Horton et al. 2014).  As sea level 

rises, vulnerability of coastal regions to flooding caused by storm surges, astronomical tides and 

wave damage increases dramatically (Fitzgerald et al. 2008).  In addition, the normal recurrence 

intervals for tidal flooding and storm patterns begin to exceed thresholds set by current natural 

conditions, making changes to manmade coastlines necessary such as adjustments to structures 

like seawalls.  Wetland systems are extremely vulnerable to changes in quantity and quality of 

water (Erwin 2009).  Therefore, due to their high environmental, economic and social value, salt 

marsh adaption to SLR is a concern for scientists and coastal managers (Craft et al. 2009).   

Whether salt marshes are sustainable largely relates to small elevation differences within 

the marsh surface, which can affect inundation, sedimentation, salinity, and therefore available 

nutrients (Morris et al. 2002).  Accurate salt marsh elevations are integral to understanding 

almost every aspect of salt marsh science and management including inundation, resiliency, and 
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the ability to adapt to SLR.  To best monitor salt marsh health and response to SLR, detailed 

topographic information on the order of centimeters is often necessary.   

Present investigative methods for collecting salt marsh elevation data involve field 

surveys using traditional survey equipment, Real Time Kinematic Global Navigation Satellite 

System (RTK GNSS), aerial photography interpretation, and photogrammetry.  Acquiring terrain 

elevation data using these methods produces accurate, but in most cases, sparse data coverage 

and is typically costly and time consuming due to resource intensive field work (Green et al. 

1996).  Data acquisition becomes even more complicated as the size of the studied system 

increases (Butera 1983; Bork and Su 2007).  Recently, remote sensing tools have been developed 

that demonstrate great promise to improve salt marsh data collection (Lee and Shan 2003; 

Marani et al. 2003; Argitas and Yang 2006; Belluco et al. 2006; Chust et al. 2008).  Lidar has 

been identified as one of those tools and can be used for rapid survey of storm impacts, 

monitoring shoreline change, restoration planning, and flood hazard assessment (Brock and 

Sallenger 2001) and is often proposed as a substitute for field data collection in salt marshes 

(Montane and Torres 2006; Schmid et al. 2011). However, vegetation-induced elevation 

uncertainty is an intrinsic problem with using lidar in salt marsh environments.  Appendix C 

contains a glossary of terms related to elevation uncertainty, as used in this dissertation. 

For lidar to continue to be a viable technology in salt marsh research, the observed 

uncertainty in elevation needs to be less than the elevation ranges significant to marsh ecology 

(Sadro et al. 2007).  For instance, if the lidar bias from vegetative impacts is larger than the 

elevation range determining salt marsh inundation, species dominance, and habitat, then the 

technology’s usefulness for salt marsh research becomes questionable.  Topographic lidar 

uncertainty in salt marsh environments and its removal has been to date an unresolved problem 
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(Schmid et al. 2011; Hladik and Alber 2012; Hladik et al. 2013).  In general, uncorrected lidar 

datasets from salt marshes have been found to be inaccurate and insufficient for use in 

determining inundation frequency or response to SLR (Morris et al. 2005; Rosso et al. 2006; 

Torres and Styles 2007; Schmid et al. 2011; Hladik and Alber 2012).  However, the extent to 

which lidar penetrates the salt marsh canopy and the methods used to correct vegetation-induced 

uncertainty and bias have not been thoroughly assessed (Populus et al. 2001; Gopfert and Heipke 

2006; Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 2012; Hladik et al. 2013).  

Insufficiently understanding lidar accuracy within salt marsh environments contributes to 

significant errors in salt marsh research and our inability to effectively plan for their conservation 

and restoration. 

Research to determine the degree to which lidar penetrates salt marsh canopy has started 

to shed light on this subject (Populus et al. 2001; Gopfert and Heipke 2006; Rosso et al. 2006; 

Schmid et al. 2011; Hladik and Alber 2012; Hladik et al. 2013).   For instance, salt marsh 

species, seasonality, stem density, vertical density, and height influence lidar signal penetration 

properties (Hladik and Alber 2012; Rogers et al. 2015).  Large differences in growth habit and 

leaf structure exist between various salt marsh species, affecting lidar response.  Spartina 

alterniflora has long flat tapering leaves growing up to approximately 2.0 m in height, whereas 

Spartina patens is a low growing ~0.1-0.3 m thatch with narrow rolled, linear leaves (Tiner 

1987).  Salt marsh canopies range from 0.1 – 2.0 m and are typically less than the round-trip 

distance in air of the lidar pulse and resolving threshold for multiple returns (Schmid et al. 2011).  

All of these vegetation attributes are likely to contribute to lidar signal error and produce point 

clouds with numerous single returns that resemble bare-earth surfaces.   
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Recently, attempts have been made to not only understand the source and magnitude of 

salt marsh induced bias, but to improve lidar derived salt marsh digital elevation models (DEMs) 

by removing or reducing vegetation induced bias.  Previous efforts at developing accurate 

correction techniques for removing vegetation induced lidar bias from salt marsh DEMs have 

involved filtering/interpolation/classification methods or algebraic functions of bias based on 

canopy height and density coverage (Rosso et al. 2006; Wang et al. 2009; Schmid et al. 2011).  

Filtering and interpolation methods can be suspect because of the scarcity of true ground returns 

from the low, dense-growing salt marsh vegetation, as well as the potential inaccuracies 

introduced by the uncertain separation of the ground and vegetation returns (Sadro et al. 2007; 

Wang et al. 2009; Schmid et al. 2011).  While correlations exist between salt marsh vegetation 

canopy height, percent coverage and lidar bias (Populus et al. 2001; Gopfert and Heipke 2006; 

Schmid et al. 2011), they do not appear to be strong enough to explain the extent of bias 

observed.   

There have been several innovative approaches to DEM correction that utilize discrete-

return lidar (DRL) data and subtraction of species specific bias estimates (Sadro et al. 2007; 

Hladik and Alber 2012; Hladik et al. 2013).  Field mapped and multi/hyperspectral derived 

vegetation GIS layers have been used in combination with a site specific determination of 

vegetation induced bias to remove a constant, species-based bias (Hladik and Alber 2012; Hladik 

et al. 2013).  Although this method appears superior to other interpolation and filtering methods, 

it seems inadequate to address the ultimate goal.  Correction techniques that are based on 

vegetation assume 1) a priori knowledge of species location, which is usually unavailable, 

inaccurate, or requires additional flight sensors, processing and interpretation that add to time, 

cost and introduced errors; and 2) that each area of vegetation that requires DEM modification 
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has a constant correction factor across its entire extent.  It has been well documented that 

vegetation height, and therefore lidar bias, varies continuously, even within a species, along 

complex environmental gradients, which would make species-based correction methods 

challenging to implement.   

Even after considering previous research contributions, there is a critical need to better 

understand the physical characteristics that affect vertical lidar uncertainty in salt marshes, such 

that coastal scientists can develop and use lidar DEMs with confidence in salt marsh research 

and management.  While a significant amount of work has been done with DRL systems, full 

waveform systems have not been fully evaluated.  Most of the methods discussed in the literature 

for full-waveform lidar processing to estimate surface characteristics (e.g., slope, and/or 

radiometric properties) or forest biomass (Drake et al. 2002; Wright and Brock 2002; 

Nayegandhi et al. 2006; Mallet and Bretar 2009) use computationally-complex signal processing 

approaches such as deconvolution or decomposition (Jutzi and Stilla 2006).  Only a few studies 

have been conducted on the use of simple shape-based waveform metrics (Adams et al. 2012; 

Muss et al. 2013; Parrish et al. 2014) for estimation of various biophysical parameters or 

uncertainty.  Since each salt marsh vegetation species should affect the shape of the return 

differently, it may be possible to use shape-based metrics to extract vegetation information.  

 

Organization of the Dissertation 

Three separate, but related, studies were conducted and written as individual research 

papers.  As a result of being in manuscript format, each chapter contains its own Introduction, 

Methods, Results, Discussion and Conclusions.  Chapter II provides additional background 

information on salt marsh formation, relationship with tidal datums, response to sea level rise 
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and a discussion on lidar sensor technology that expands upon the briefer narrative included in 

chapters III, IV, and V. 

Chapter III evaluates an adapted method of in-situ digital photography (Möller 2006) that 

can rapidly assess salt marsh vegetation vertical biomass density, as well its light obscuration 

properties.  Vertical vegetation biomass density is likely to be related to its opacity and therefore 

provides insight into lidar penetration characteristics.  These data, along with other biophysical 

parameters collected in the field (including physical samples and those derived from 

photography), were used to examine relationships among the parameters and metrics extracted 

from lidar waveforms.  The primary focus was on Spartina alterniflora, but other common and 

dominant salt marsh species were included.  The hypothesis tested was that feature-based 

waveform metrics such as waveform width, waveform standard deviation, and amplitude contain 

information that can be used to estimate salt marsh biophysical parameters including vegetation 

height, stem density and biomass.  

Chapter IV considers lidar uncertainty observed in salt marsh environments.  Uncertainty 

from discrete return lidar (DRL) was analyzed by season (specifically, temporal differences 

between peak growth and senescent conditions), vegetation species, and lidar processing 

(interpolation and filtering) methods.  In addition, using feature-based full-waveform analysis, 

additional information contained in lidar waveforms was used to create relative uncertainty 

surfaces (RUS) to assess variation in elevation uncertainty throughout the marsh.  These spatial 

assessments of uncertainty assist in identifying where, within the marsh, are lidar elevations most 

reliable/suspect and where researchers should target additional field work to improve marsh 

elevation data or if the areas of high (or low) uncertainty overlap areas of particular concern, 

such as critical habitat.  Combined with the quantitative analysis of the DRL data, this 
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information can assist coastal managers and scientists in more effectively utilizing lidar data of 

salt marshes. 

Chapter V investigates the potential removal of vegetation-induced bias using full-

waveform lidar feature-based metrics such as waveform width and amplitude, as well as salt 

marsh surface characteristics such as slope and rugosity derived from the DRL.  These were used 

as inputs into nonparametric modeling algorithms.  The research also developed models without 

full waveform inputs using only DRL derived salt marsh surface characteristics.  Vegetative zone 

maps were created using the same modeling parameters and a training set of known vegetation 

species locations.  All model predictor variables were derived from lidar without a priori 

knowledge of species.  The overall goal was to create models to accurately correct salt marsh 

lidar DEMs for vegetative lidar bias.    

Chapter VI provides final conclusions and potential research directions.  Additional 

information regarding the research is included in the appendices.  Appendix A is a report on 

camera calibration for the apparatus developed in Chapter III.  Appendix B is a discussion of the 

various modeling algorithms used in Chapter V.  
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CHAPTER II 

BACKGROUND 

 

Salt Marsh Environments 

A salt marsh is a saline wetland dominated by grasses and other plants that have adapted 

to periodic flooding usually caused by tidal forcing (Mitsch and Gosselink 2000).  They are 

typically found in sheltered embayments throughout middle to high latitudes where wave energy 

is low (Kennish 2001).  Salt marshes are among the most important ecosystems on Earth, known 

to be very biologically productive and an integral link in coastal food webs (Mitsch and 

Gosselink 2000).  They provide habitat and refuge for juvenile fish and crustaceans, many of 

which are of high economic value (Dionne et al. 1999; Gedan et al. 2009).  They serve as 

filtering systems for runoff and tidal waters, removing excess nitrogen, which can lead to 

eutrophication, including toxic algal blooms (Bertness et al. 2002).  Salt marshes are biological 

sinks for atmospheric carbon dioxide (Broome et al. 1988; Chmura et al. 2003).  Also, salt 

marshes limit flooding to coastal communities by acting as natural storage basins and  reducing 

shoreline erosion as they attenuate wave energy (Gedan et al. 2009).  The loss of these 

ecosystems and the services they supply would be staggering (Peterson et al. 2008).  Researchers 

have even attempted to quantify the “cost” per hectare per year for equivalent ecosystem services 

that salt marshes provide (Table 2.1) (Costanza et al. 1997).  Salt marshes have been destroyed, 

damaged or degraded by historical and present human activities.  In some locales as many as 

80% of salt marshes that once occurred have been lost to human development (Bertness et al. 

2002).  Although salt marshes are now protected from direct impacts by United States federal 
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and state laws, indirect impacts continue to degrade tidal marshes.  For example, man-made 

structures such as roads, bridges, undersized culverts, and earthen dikes often present barriers to 

tidal exchange that results in peat oxidation, subsidence and degradation of habitat value (Roman 

et al. 1984; Boumans et al. 2002; Baily and Pearson 2007). 

Salt marshes are considered good examples of ecosystem engineering, consisting of 

“organisms that directly or indirectly modulate the availability of resources to other species 

(other than themselves) by causing state changes in biotic or abiotic materials and in doing so 

modify, maintain and/or create habitats” (Jones et al. 1994).  Salt marsh vegetation has adapted 

to periodic flooding and severe stress of salinity, soil waterlogging and soil phytotoxins caused 

by tidal forcing (Mitsch and Gosselink 2000).  Characteristic patterns of vegetation zonation that 

are based on the vertical elevation gradient are often exhibited by salt marshes (Zedler et al. 

1999; Morris et al. 2005).  Subtle changes in surface elevation often produce differences in 

vegetation speciation and sediment accumulation as a function of the tidal regime, marsh surface 

elevation, inundation duration, and plant species competition (Figure 2.1) (Reed 2002; Shuman 

and Ambrose 2003; Silvestri et al. 2003; Konisky and Burdick 2004); (Bockelmann et al. 2002; 

Silvestri et al. 2003).  Differences between what is salt marsh or unvegetated mudflat may be 

determined by just a few centimeters of elevation (Reed and Cahoon 1992).  However, edaphic 

conditions such as nutrient availability, soil redox potential, organic soil content, sulfide 

concentrations, soil moisture, and porewater salinity also play a role in determining vegetation 

dominance (Morris and Bradley 1999; Mitsch and Gosselink 2000; Morris et al. 2005). 

Geomorphically, a salt marsh is often separated from the tidal flat by a ramp in elevation 

or abrupt change in elevation caused by increased sedimentation and decreased erosion due to 

vegetation growth (Crooks et al. 2002).  Marshes are typically considered either ramped or 
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platform depending on the level of maturity and the primary driver of accretion, bioproductivity 

or tidal sedimentation (Fitzgerald et al. 2008).  Ramped marshes are more intertidal in nature, 

dominated by low marsh vegetation, Spartina alterniflora, and have high mineral sedimentation 

rates.  These marshes are often considered immature and have not yet obtained equilibrium with 

sea level rise (SLR) (Morris et al. 2002).  Platform marshes on the other hand are considered 

mature, having achieved dynamic stability relative to sea level and exhibit a platform-like 

morphology proceeded by either an erosion scarp or a short ramp of low marsh vegetation.  

These systems have a higher peat concentration due to organogenic accretion processes and low 

influx of tidal borne suspended mineral sediments (Fitzgerald et al. 2008).  Platform marshes are 

also more susceptible to the threat of SLR because they accrete at slower rates and are composed 

primarily of vegetation less tolerant of inundation than low marsh systems.   

Marsh morphology is primarily driven by hydrology and its interaction with sediment 

supply, which incorporates tidal influences but may also include groundwater and sheet flow 

(Varnell et al. 2003).  A large number of factors are now known to influence salt marsh 

formation causing change in vertical elevations and accretion.  These factors include organic and 

inorganic sediment supply, compaction, subsidence, edaphic conditions, climate, erosion, ice 

rafting and storm sediment, bioturbation and grazing, elevation, tidal range, flood regime, 

relative sea level rise, vegetation species competition and density, and anthropogenic impacts 

(Figure 2.2) (Redfield 1972; Cahoon et al. 1995; Roman et al. 1997; Orson et al. 1998; 

Schwimmer and Pizzuto 2000; Argow and Fitzgerald 2006; Goodman et al. 2007; Ward et al. 

2008).    

Vertical accretion of the marsh surface is attributable to a combination of two processes, 

mineral sediment deposition and organic matter accumulation (Redfield 1972; Warren and 
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Niering 1993; Morris et al. 2002).  Deposition of suspended sediment is a primary driver of 

accretion in many salt marshes particularly in the intertidal low marsh region or fluvial systems.  

Marsh sediment accumulation rates have been observed to increase from the lower to upper 

reaches of the marsh system (Orson et al. 1990).  Marsh vegetation creates hydraulic drag by 

reducing tidal flow and attenuating waves causing sediment to drop out of suspension (Morris et 

al. 2002; Möller 2006).  In addition, it provides surface areas to collect sediment on its leaf and 

stalk structure (Morris et al. 2002).  This accretion reduces water depths, hence the biofeedback 

drives the system toward equilibrium with sea level (Morris et al. 2002).  Mineral sediments are 

found in high concentrations in fluvial dominated systems and near the marsh edge as a result of 

the reworking of tidal flat sediments (Stoddart et al. 1989; Ward et al. 1998).  Deposition of this 

sediment decreases rapidly as a function of the distance from the marsh edge or channel system 

(Stoddart et al. 1989).  Often mineral-rich, coarser-grained deposits can be found on natural 

levees around tidal channels. 

Although the processes behind mineral sedimentation in marshes are widely understood it 

is only recently that the mechanisms for organic matter accumulation have been recognized 

(Nyman et al. 2006).  High marsh areas accrete by a process known as organogenesis due to the 

infrequent flooding that occurs and the distance from sediment sources (Miller et al. 2001).  In 

addition, it has been found that the primary growth mechanism in some coastal marshes is 

organogenic when mineral-based sediment is not available (Nyman et al. 2006).  SLR in excess 

of marsh accretion rates can increase flooding stress on vegetation, stimulating growth through a 

positive feedback loop (Nyman et al. 2006).  The process works through the production of a 

fibrous network of aquatic roots that develop just above the marsh surface (Nyman et al. 2006).  

Organic sediment development depends on factors such as dominant vegetation type and nutrient 



 12 

availability.  Also, salt water flooding reduces oxidation, which leads to preservation of organic 

materials resulting in marsh accretion.  Less frequent flooding will lead to increased oxidation 

and therefore marsh subsidence.  These organic sediments have lower bulk density when 

measured compared to mineral based accretion deposits (Kearney et al. 1994; Ward et al. 1998).  

Transgressive marshes will often exhibit large sequences of accumulation shifting between 

organogenic deposits to mineral based sediment where the reverse would represent a regression 

(Allen 1995).  

Storm events appear to be a major factor in determining periodic, long-term 

sedimentation rates in some marshes.  Everyday processes such as tidal inundation and 

precipitation are regular and predictable in their influence.  However, low frequency, high 

magnitude events can provide episodic sediment accumulation that can substantially modify the 

marsh system in both positive and negative ways.  Storms can affect salt marsh sediment and 

elevations by sediment deposition, erosion, vegetation disruption, compaction, soil shrinkage, 

soil swelling, and rending/folding of sediment (Cahoon et al. 1995; Cahoon 2006).  Storm 

sediment can provide a quick infusion of mineral deposition stimulating organogenic 

accumulation through root growth (Cahoon 2006).  Sedimentation rates in one marsh exceeded 

24 mm/year for a single event (Roman et al. 1997).  Storms can also cause major erosion or 

overwash deposits leading to an increased availability of sediment for marsh accretion (Ward et 

al. 1998; Ward et al. 2008).  Geomorphology also likely plays a significant role in determining 

the amount and location of storm-related erosion or accumulation such as proximity to an inlet or 

flood tidal delta.   
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Sea Level Rise 

Sea level is one of the most important elevation horizons in geomorphology having a 

direct influence on shoreline processes and features such as salt marshes.  It is both a datum for 

measuring heights and a base level for erosion.  There are two types of sea level rise (SLR) 

observed from a local or global perspective.  Eustatic sea level is a simultaneous global change 

in world-wide water levels.  Changes in eustatic sea level can be attributed to several factors with 

the most well-known being continental glaciation.  Continental glaciation causes sea levels 

around the world to drop by interrupting the hydrologic cycle.  Water is removed from the 

oceans via precipitation onto continental ice sheets locking it away and dropping world-wide sea 

levels (Boggs 1987).  As ice sheets melt through changing long-term climatic conditions, large 

quantities of water are released increasing global ocean volumes and eustatic sea levels.  Eustatic 

sea level curves are best approximations of SLR since they contain numerous unknowns in their 

calculation such as geoidal variability, thermal expansion of sea water and relative crustal 

movements (isostasy) (Barnhardt et al. 1995). 

SLR can also be observed from a local or regional perspective, which is called relative 

sea level rise (RSLR).  Relative sea level is the sum of all vertical movements at the coast 

(Figure 2.3) (Giese and Aubrey 1987; Barnhardt et al. 1995).  In fact, the impacts of all sea level 

interaction with the coast are relative to local land levels and terms like emergent or submergent 

only reflect relative movement of land and sea in a regional context.  This is a result of the 

Earth’s crust being in a constant state of motion causing continents to be subjected to tectonic 

uplift, delta deposits to compact or subside, and coastlines to erode away.  Also, continental ice 

sheets cause crustal depression and ultimately uplift when they melt known as isostatic 

adjustment.  Even humans have affected relative sea level typically realized as local subsidence, 
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through the removal of aquifer water, mining of petroleum products, diking of salt marshes, and 

redirecting river flood waters.  A positive movement of the sea inland is called a transgression 

and a negative movement is a regression.  Unfortunately, the most widely accepted evidence of 

eustacy is also the same evidence for determining isostasy, which poses a problem for scientists 

studying SLR.  Tropical islands make better locations to isolate eustatic sea level trends from the 

geologic record (Church et al. 2006).   

The current cycle of SLR has been occurring since the last glacial ice sheet retreat.  

However, recent SLR (20th and 21st century) is largely thought to be caused by thermal 

expansion of sea water (Church et al. 2008).  The oceans store more than 90 percent of the heat 

in the Earth’s climate system and act as a temporary buffer against the effects of climate change 

(Barnett et al. 2005; Domingues et al. 2008).  Heat transfer is constantly occurring between the 

atmosphere and the ocean's surface.  When materials are heated they increase in volume through 

a process called thermal expansion.  Heat that is transferred to the ocean increases the global 

volume of water resulting in a rise in eustatic sea level (Church et al. 2008).  If the problem is 

overly simplified, based on globally averaged sea surface temperatures, a linear model of ocean 

heat uptake and thermal expansion can translate to a future trend in global sea level rise (Barnett 

et al. 2005).  Small changes in the ocean’s transport of heat or salt can have large effects on 

surface temperature, and ultimately on climate.  Ocean warming and thermal expansion rates 

have been found to be 50 percent larger than previous estimates for the upper 700 m of the 

oceans and even greater for the upper 300 m (Barnett et al. 2005).  Regional variations in sea 

level distribution are largely thought to be due to regional differences in ocean thermal expansion 

(Church et al. 2008).  Although up to now thermal expansion is considered to be the major 
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contributor to SLR in the 20th and 21st century, ice melting will likely play a significant role in 

the long term (Church et al. 2008). 

It has also been demonstrated that there are seasonal, annual and decadal variations in 

regional sea levels.  Sea level responds to the radiative and mechanical forcing of the atmosphere 

(Plag and Tsimplis 1999).  Seasonal and annual variations in pressure systems, wind, and 

temperature can cause an anticipated cycle to local and regional sea level (Harris 1963).  For 

instance, the East Coast of North America typically has its lowest sea levels in late winter and its 

highest in the fall (Provost 1976).  Long-term trends in sea level from tide gauge records clearly 

identify short-term variations on the sub decadal timescale (~5 years) (Plag and Tsimplis 1999; 

Reed 2002).  Fluctuations in the interannual and decadal global circulation patterns such as El 

Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) can cause 

significant variation in seasonal weather cycles and therefore sea level (Plag and Tsimplis 1999). 

In the short term, the increased recurrence intervals in storm frequency and severity are also a 

large, unpredictable driver that strongly influences regional/local SLR rates.     

Eustatic sea levels have varied as much as 120 m between glacial and interglacial cycles 

(Church et al. 2008).  In New England, the isostatic effects of glaciation have strongly influenced 

relative sea-level during the late Quaternary (Belknap et al. 1987a; Belknap et al. 1987b; 

Belknap and Shipp 1991; Kelley et al. 1992; Barnhardt et al. 1995; Barnhardt et al. 1997).  

Retreat of the ice sheets led to isostatic uplift, and sea level fell to approximately -60 m by 10.8 

ka before present time (Barnhardt et al. 1995; Barnhardt et al. 1997).  The timing and magnitude 

of coastal emergence varied widely due to variations in ice thickness and retreat.  Over the last 

7000 years sea level rose much more slowly and in the last several thousand years there has been 

little change in eustatic SLR rates, averaging an increase of approximately 1mm/year (Kelley et 
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al. 1995; Gehrels et al. 1996; Church et al. 2008; Fitzgerald et al. 2008).  Sediment cores and salt 

marshes have shown that SLR in the 19th and early 20th century have increased, accelerating to 2 

mm/year by around 1950 (Gehrels and Belknap 1993; Donnelly et al. 2004; Church et al. 2008).  

Satellite measurements by TOPEX and Jason-1 and tide gauge data of global sea levels from the 

last two decades show a steep increase in eustatic SLR in the last 10 years to about 3mm/yr 

(Church and White 2006).  Evidence of this acceleration in SLR has been noted from other 

observations as well.  Relative sea level has been rising at 3mm/yr for the last 40 years in 

Massachusetts with 2 mm/yr of that due to land subsidence (Giese and Aubrey 1987).  However, 

a comparison of tide-gauge data with marsh basal peat dating in New England, over the last few 

decades indicates a three times increase in SLR acceleration (Donnelly et al. 2004).  SLR 

predictions for the next century by various researchers differ significantly but all suggest a sharp 

increase in eustatic sea level elevation to as much as 1.32 m under an intermediate emission 

scenario (RCP 4.5)  (Figure 2.4) (Church and White 2006; Horton et al. 2014). 

 

Salt Marsh Response to Sea Level Rise 

Salt marsh adaptability to eustatic and relative sea level rise is a concern for scientists and 

coastal managers.  Marsh survival depends on an ability to maintain sediment accretion rates 

equivalent to the rate of sea level rise (SLR) and migrate landward, transgressing over high 

marsh communities onto the upland (Donnelly and Bertness 2001a; Mendelssohn and Kuhn 

2003).  Salt marshes could collapse if SLR accelerates faster than the marsh accretion rate 

(Hartig et al. 2002).  Salt marshes are known to have maintained this equilibrium with sea level 

for approximately the last 4000 years by the accumulation of both mineral sediment and organic 
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matter (Redfield 1965; Redfield 1972).  However with the predicted increases in global eustatic 

SLR in the next century, marsh survivability is unknown. 

For salt marshes to keep up with SLR they must continue their process of self-

maintenance where vegetation and decomposers interact with sea level to regulate the marsh 

elevation toward equilibrium (Morris et al. 2002).  They must maintain sediment accretion and 

decomposition rates so surface elevation growth is comparable to the rate of SLR.  At the same 

time, erosion at the seaward edge must be compensated by migration landward, transgressing 

onto the upland (Donnelly and Bertness 2001b; Mendelssohn and Kuhn 2003; Fitzgerald et al. 

2008).  A number of factors influence vertical accretion in salt marshes including organic and 

inorganic sediment supply and loss (erosion and oxidation of organics), compaction, ice rafting 

and storm sediment, elevation, tidal range, flood regime, relative sea level rise, and vegetation 

species composition and density (Redfield 1972; Roman et al. 1997; Orson et al. 1998; Argow 

and Fitzgerald 2006; Goodman et al. 2007).  Low vertical accretion rates may suggest a marsh 

system is out of equilibrium with sea level (Ward et al. 1998).  Anthropogenic obstructions to 

marsh transgressions are most likely to have the biggest impact on potential for system loss.  

Seawalls, steep slopes and other natural and anthropogenic features obstruct salt marsh migration 

(Fitzgerald et al. 2008).  If SLR outpaces accretion marshes will collapse and there are barriers to 

migration marsh area will be lost through coastal squeeze, (Hartig et al. 2002; Fitzgerald et al. 

2008).  Possible salt marsh responses to sea level rise are outlined in Figure 2.5.  With 

accelerating SLR a marsh can exhibit several different outcomes:   

1) Transgression: The salt marsh accretes at a pace at or above that of SLR that 

allows it to survive, transgressing landward, with low marsh migrating over the high marsh in a 
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landward direction while the seaward edge is eroded and reverts to intertidal mud flats (Donnelly 

and Bertness 2001b; Goodman et al. 2007).  

2) Barriers: The salt marsh meets a natural or man-made physical barrier such as a 

steep slope or seawall, preventing it from landward migration causing coastal squeeze (Donnelly 

and Bertness 2001b; Fitzgerald et al. 2008).  In this case either the marsh elevations will increase 

only in a vertical direction reducing in aerial extent allowing it to survive or it will collapse as 

SLR exceeds the accretion capacity of low marsh vegetation (Reed 2002).  

3) Partial Collapse: The salt marsh is incapable of accreting at a rate that can keep up 

with sea level rise but the higher salinity tolerance, wider elevation range and accretion rates of 

low marsh vegetation permit it to rapidly colonize and migrate over the high marsh transitioning 

to a smooth cordgrass salt marsh.  If SLR continues to increase, areas of low marsh will fall 

below its optimal elevation range, which leads to collapse (Morris et al. 2005).     

4) Collapse:  The marsh is incapable of accreting through both mineral and 

organogenic methods at rates great enough for survival of increased SLR.  The marsh surfaces 

collapse into tidal pools and mud flats, likely from high marsh to low marsh, as tidal channels 

and mosquito ditches allow penetration of salt waters deep into the high marsh system drowning 

the vegetation (Tolley and Christian 1999).   

Salt marsh vegetation communities may or may not be able to respond to a rapidly 

accelerating sea level.  Changes from high marsh dominated systems to low marsh have been 

documented in southern New England salt marshes (Warren and Niering 1993).  Transitioning 

from one marsh type to another has been described as ecosystem state change (Miller et al. 

2001).  Also, additions of sudden and acute stressors such as storm induced wrack deposits to an 

already disturbed community can cause unexpected, severe changes (Brinson et al. 1995; Tolley 
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and Christian 1999).  This type of local disturbance may produce differing results depending on 

its location in the wetland or the wetlands hydrogeomorphic class (Tolley and Christian 1999).  

Vegetation changes may be further indication of marsh systems not keeping up with sea level 

(Warren and Niering 1993; Roman et al. 1997).   

Marsh accretion and subsidence as a response to SLR is not likely to be the only visible 

effects on systems.  As sea level rises there will be an increase in tidal prism that will likely 

cause the enlargement of the marsh drainage networks (Ward et al. 1998; Hughes et al. 2009).  A 

balance exists between erosion, mineral sedimentation, and organogenic deposition which makes 

the marsh particularly sensitive to changing conditions caused by more hydrologic flow over its 

surface (Morris et al. 2002).  A submerging marsh system will alter its channel hydrology and 

geometry to adjust for changing flow rates and larger volumes of water (Ward et al. 1998).  

Headward erosion of existing creeks and new creek formation have been observed at several 

sites and is attributable to relative sea level rise (RSLR) in those regions (Hughes et al. 2009).  

At one site the erosion is likely caused by a combination of factors including bioturbation, 

increased infiltration, herbivory, and RSLR.  Consumptions of vegetation by crabs and their 

burrows is the likely cause of additional instability found at one South Carolina marsh (Hughes 

et al. 2009).  Creek network adjustments are likely to continue to occur with an acceleration of 

SLR (Marani et al. 2003). 

Another impact of SLR on the marsh systems may involve past anthropogenic ditch 

construction.  More than 90% of New England salt marshes have been ditched in an effort to 

control mosquito populations (Kennish 2001).  Ditching increases the draining of porewater from 

the surrounding peat having a “drying effect” on the marsh; this fosters aerobic conditions, 

which can lead over time to marsh subsidence (Warren and Niering 1993).  Ditching provides a 
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conduit for increased tidal inundation and the spread of Spartina alterniflora in-land.  As sea 

level rises these ditch and creek conduits facilitate large amounts of water delivery to the upper 

marsh system not accustomed to regular flooding.  Increased tidal inundation can lead to 

decreased belowground decomposition but also to hypoxic conditions decreasing bioproductivity 

and OM contribution to sediment ‘growth’ (Warren and Niering 1993; Miller et al. 2001).  

However, other research suggests that high marsh vegetation can be less biologically productive 

under increased inundation and higher salinities, further decreasing accretion and leading to 

possible dieback into open water pools (Adamowicz and Roman 2005).  Vincent et al. (2014) 

found vegetation dieback strongly correlated with increased flooding from ditch plugs.  

Although, this is in direct conflict with research by Nyman et al. (2006) and Morris et al. (2002).   

There are mixed conclusions as to long term response to sea level rise but most research 

suggests that salt marshes are stable relative to the present rate of SLR (Reed et al. 2007).  As 

SLR has increased, so have the rates of salt marsh accretion and at least in the short term they are 

keeping pace with SLR (Roman et al. 1997; Goodman et al. 2007).  One study of Maine salt 

marshes found that over a 17 year period, 7 out of 11 marshes achieved accretion with a positive 

balance to current rates of SLR at average rates of 2.8 mm/y (Goodman et al. 2007).  However, 

sites where the marker horizon was lost to erosion were excluded, which skewed the mean. 

Another study in southern New England marshes found changes in vegetation exhibiting a rapid 

shoreward advancement of Spartina alterniflora, which was attributable to an increase in SLR 

(Donnelly and Bertness 2001b).  SLR alone is not the only cause for concern regarding salt 

marsh response.  Anthropogenic disturbances to sediment supply and reduced tidal exchange 

both may lead to increased subsidence, channel modification and changes to marsh 
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biogeochemistry that will play a role in how marshes respond to SLR (Hartig et al. 2002; Kirwan 

and Temmerman 2009).  

There appears to be an optimum rate of RSLR leading to elevations where marsh plants 

experience an optimum depth for productivity and inundation depths exceeding the optimum are 

likely to lead to collapse (Morris et al. 2002).  In addition, accelerated SLR and marsh response 

may not be linearly related and there may be regional differences or thresholds before signs of 

adjustment are visible (Fitzgerald et al. 2008).  Estimates of long-term accretion often 

underestimate the more recent trends because of the time scale of the measurements (Kearney 

and Ward 1986; Orson et al. 1998; Ward et al. 1998).  Marshes that only experience micro-tidal 

inundation are likely to experience greater declines than those with meso/macro tidal water 

levels because they rely more on organogenesis to support vertical accretion (Craft et al. 2009).  

Organogenic marshes with ramp morphology will likely show gradual and persistent loss while 

platform marshes will, at least initially, lose little areal extent (Miller et al. 2001; Fitzgerald et al. 

2008).  Some areas such as marshes on Chesapeake Bay are being replaced by open water and 

tidal flats at an alarming rate due to reduced sediment supply and accumulations rates below that 

of SLR (Kennish 2001). 

Coastal managers often wish to preserve or restore salt marshes as a defense against SLR, 

(Gedan et al. 2009).  The ability of salt marsh systems to attenuate waves and buffer against 

storm damage has been studied for years (Provost 1976; Möller et al. 2002; Möller 2006; 

Fitzgerald et al. 2008).  Various forms of coastal protection date back about 3000 years to 

ancient civilizations (Charlier 2003).  Manmade dikes and sea walls remain in many places along 

the world’s coasts that prevent the sea’s ability to shift inland and provide room for salt marsh 

development (Erwin 2009).  Declining salt marsh area could lead to reduced shoreline protection 
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for coastal communities (Craft et al. 2009).  In the case of dikes there appear to be three 

scenarios for adaptation: raising/reinforcing, realigning, and removing/restoring.  It has been 

found that, in the long term, hard structure revetments are not sustainable solutions and in the 

short term often pass the problem further down the coast (Charlier 2003).  In some cases coastal 

managers have begun a program of managed retreat where dikes and seawalls are removed , to 

return the land back to its natural condition ahead of SLR in order to create coastal flood 

protection (Hazelden and Boorman 2001; Gedan et al. 2009).  However, large scale feasibility of 

this technique is currently unknown.  Salt marsh restoration is an affordable and environmentally 

friendly approach to preventing coastal erosion. 

 

Tidal Datums 

Water level datums are elevations to which all water heights and depths are referenced 

(Brown and Kraus 1998).  Tidal datums are time mean averages of water level measured from a 

gauge over a tidal datum epoch.  The current nineteen year epoch, a period from 1960-1978, is 

used in tidal computations to average out the yearly variability for a period representing the 

regression of the moon’s nodes and other nonlinear trends (Swanson and Thurlow 1979; Brown 

and Kraus 1998; Gibson and Gill 1999).  Tidal datums are local vertical datums that can change 

significantly within a single geographic area.  They are not considered geodetic datums which 

are fixed planes such as North American Vertical Datum 1988 (NAVD88).  As relative sea level 

rises, all tidal datums such as Mean High Water (MHW), Mean Low Water (MLW), and Mean 

Sea Level (MSL) need to be recalculated and adjusted upward accordingly (Giese and Aubrey 

1987).  This may not be a linear relationship with increases of SLR as there may be other 

changes such as basin resonance to consider.  The accuracy of a tidal datum depend on the 
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accuracy of the measurement system, the surveying done between the gauge and a geodetic 

benchmark, and the equations used to process the collected data (Brown and Kraus 1998).   

Using only a 12 month epoch as opposed to 19 years, one researcher determined that the 

probable error would be as much as 1.5 cm for a tidal gauge on the Atlantic coast (Swanson 

1974).   

Mean Lower Low Water (MLLW) is the national standard datum for all nautical charts, 

tide tables, and bathymetric maps in the United States adopted by the National Oceanic and 

Atmospheric Administration National Ocean Survey NOAA NOS (Swanson and Thurlow 1979).  

Before 1979, there was not a national standard and every region had its own specific datums.  

The definition of MLLW is as follows: 

 

“The arithmetic mean of the lower low water heights of a mixed tide 
observed over a specific 19-year Metonic cycle (the National Tidal Datum 
Epoch).  Only the lower low water of each pair of low waters of a tidal day is 
included in the mean.  For stations with shorter series, simultaneous observational 
comparisons are made with a primary control station in order to derive the 
equivalent of a 19-year value.” (Schureman 1975) 
 

Using this same method all other datums are calculated (Swanson and Thurlow 1979) 

such as Mean Low Water (MLW) and Mean High Water (MHW) being the one used to depict 

the Continually Updated Shoreline Project (CUSP) (Figure 2.6).  MLW and MHW are the 

averages of all the low waters and high waters including lows and both highs, respectively, in the 

calculation.  Lowest or Highest water calculations use only the lowest or highest of each pair of 

tide in a day.   
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The Relationship of Salt Marshes to Tidal Datums 

It has been presumed for many years that a relationship exists between salt marsh 

vegetation growth and the tidal datum of mean high water (MHW) (Chapman 1940; Redfield and 

Rubin 1962; Redfield 1972; Provost 1976).  The MHW line is considered by many as the 

transition line between regular flooding and irregular flooding of the marsh platform.  However, 

the elevation of MHW differs between sites due to differences in geography, basin resonance, 

restrictions, bottom contours, prevailing winds and currents (Bockelmann et al. 2002).  

Inundation is typically calculated by relating shore height to inundation frequency from regional 

tide gauge data (Bockelmann et al. 2002).  In that study, Bockelmann (2002) found a curvilinear 

relationship between inundation frequency and shore height.  Shore height correlated only 

weakly with inundation frequency over large distances, where distances of 2.5-5 km had as much 

as 25% differences from regional based MHW and differences of 300% in inundation frequency 

(Bockelmann et al. 2002).  Locally produced datums based on inundation frequency were found 

to be better at predicting the occurrence of dominant plant species over tidal datums based on 

regional tide gauge data (Bockelmann et al. 2002).  

A review of salt marsh studies in the United States by another researcher over an 

approximately 20 year time span showed low correlation between MHW and Spartina 

alterniflora (Mckee and Patrick 1988).  However, this analysis was based on disparate studies 

with different sampling methods and regional-based datum comparisons.  Yet another research 

team found no consistent correlation between S. alterniflora and MHW as it is tied to NGVD and 

defined on the NOAA nautical charts (Lefor et al. 1987).   They found that regional based MHW 

does not seem adequate for this type of analysis and is ideally developed for each individual site 

since biological response depends on local conditions (Lefor et al. 1987).  Most researchers do 
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agree, however, that there does appear to be some agreement between occurrence of salt marsh 

vegetation and local tidal datums (Redfield 1972; Lefor et al. 1987; Gehrels and Belknap 1993; 

Bockelmann et al. 2002; Morris et al. 2002; Li et al. 2009).   

Spartina alterniflora is almost always the most seaward emergent plant on the Atlantic 

coast of North America and its lowest elevation occurrence appears close to MSL.  There are 

different ecological forms of S. alterniflora, tall, medium, and short-form.  One study (Lefor et 

al. 1987) showed that 98.4% of tall-form S. alterniflora observations appeared at or below MHW 

with a peak occurrence of 15 cm below and all onsite observations of Spartina alterniflora were 

between 0-50 cm below (Lefor et al. 1987).    Spartina patens was found largely 10-15 cm above 

MHW .  There also appears to be a consistent correlation between Iva frutescens at the upland 

edge with Highest High Tides (Provost 1976; Lefor et al. 1987).  Research in South Carolina has 

been conducted using lidar to determine a marsh elevation distribution curve as it relates to 

vegetation growth, Mean High Water (MHW) and SLR within an individual salt marsh (Morris 

et al. 2002; Morris et al. 2005). 

 

Lidar Systems 

Lidar (light detection and ranging) is an airborne remote sensing technology that can be 

used to provide high-resolution elevation data over large areas using laser range finding.  

Pioneered by NASA in the early 1970s, lidar became commercially available and viable for 

thescientific and engineering communities starting around the mid-1990s, with ongoing 

development continuing today (Irish and Lillycrop 1999).  Lidar is an active remote sensing 

technique, meaning it uses its own source of electromagnetic radiation, rather than relying on 

reflected sunlight.  Airborne lidar systems are composed of three fundamental components (each 
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with a host of subcomponents): 1) a laser scanner that transmits pulses towards the earth’s 

surface (usually creating a swath on the surface using some form of scan mechanism, such as an 

oscillating scan mirror), 2) an integrated Global Navigation Satellite System (GNSS) - Inertial 

Navigation System (INS) for generating blended navigation solutions, consisting of 3D position 

and orientation of the sensor along the flight track, and 3) a receiver.  Datasets produced from 

lidar are typically three-dimensional point clouds of X-Y-Z laser impacts with physical objects, 

which are typically vegetation, manmade structures, or the ground.  Spatial coordinates of lidar 

points are determined by using the laser ranges, scan angles, blended navigation solution, and 

calibration data in the laser geolocation equation.  The increased availability of lidar is largely 

related to the increases in computing power, data storage and enhanced GNSS accuracies (Mallet 

and Bretar 2009).   

There are two different types of lidar systems in use today: discrete-return lidar (DRL) 

and full-waveform recording (Mallet and Bretar 2009).  DRL systems use a hardware-based 

ranging system comprised of a constant fraction discriminator and time interval meter.  Elevation 

is determined by recording the elapsed time between the emission of a short duration laser pulse 

and the arrival of the reflection of that pulse at the sensor’s receiver.  When this time is 

multiplied by the speed of light, it results in a measurement of the round-trip distance traveled, 

half of which is the distance between the sensor and the target (Bachmann 1979; Lefsky et al. 

2002b).  Discrete systems often have high spatial resolution because of their small diameter 

footprint (0.2-3.0 m diameter).  DRL systems initially recorded only the first or first and last 

pulses returned to the sensor; however, many sensors today are designed to record multiple 

reflections (Lefsky et al. 2002b).  Multiple-return systems are typically used to study forest 

canopy and can discriminate low-intensity signals out of the noise (Mallet and Bretar 2009).  In 
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most available systems the minimum detectable distance between two echoes are greater than 1.5 

m (Lefsky et al. 2002a).   

Full-waveform datasets are collected with pulsed lidar systems recording a complete time 

series of backscattered energy with a digitizer and a high capacity storage device.  Laser pulse 

intensity in the return signal is dependent on the power of the system’s initial pulse, the fraction 

of the pulse intercepted by a surface, the reflectance of the intercepted surface and the fraction of 

the pulse that is returned in the direction of the sensor. Since vegetation, soil and other objects 

have a rough surface at infrared (IR) wavelengths, targets scatter energy, some of which returns 

to the sensor (Wagner et al. 2008).   Full-waveform backscatter allows the user to detect the 

vertical distribution of targets and  can resolve multiple surfaces with a distance of less than 0.15 

m (Mallet and Bretar 2009).  Waveform digitizing systems such as the Enhanced Lidar Visual 

Interactive System (ELVIS) have the ability to record intensity of the return pulse, which can 

better characterize canopy structure but typically have larger diameter footprints on the order of 

10 m (Lefsky et al. 2002b).  At the present time, end users of topographic lidar (e.g., coastal 

scientists) rarely have access to waveform data, either because the data were collected with a 

hardware-based ranging (i.e., discrete return) system without a separate waveform digitizer, or 

because the service provider was only required to provide downstream products, such as point 

clouds and DEMs.  

Lidar sensor platforms produced by various manufacturers have many similar 

characteristics.  Some of the main differences in technical specifications include the laser’s 

wavelength, power, pulse duration/repetition rate, beam size and divergence angle.  NIR lasers 

are most commonly used for vegetative and topographic surveys because of their high vegetation 

reflectance (Lefsky et al. 2002b).  Two of the most commonly used NIR laser wavelengths are 
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1550 nm and 1064 nm. Water in terrestrial lidar systems is typically observed as a data void as 

most of the beam energy is absorbed or specularly reflected away from the receiver.  Full 

waveform bathymetric systems, such as SHOALS 3000 and CZMIL utilize both a NIR laser and 

a green laser near 532 nm due to its better penetration of shallow water (Lefsky et al. 2002b).   In 

bathymetric systems the infrared beam is reflected by the water surface allowing a calculation of 

water depth by the time difference of the NIR backscatter and the green laser backscatter from 

the seafloor.  Water clarity and bottom type reflectivity properties are the most limiting factors 

for depth detection (Irish and Lillycrop 1999).  In some sensors, another band of energy is also 

recorded called the Raman (645 nm) red energy.  Raman results from the excitation of the water 

molecules by the laser energy (Irish and Lillycrop 1999; Pe'eri and Philpot 2007).  Full 

waveform data processing techniques involve the decomposition of the returned backscatter into 

relevant peaks to generate denser point clouds then would be available from discrete pulsed 

systems (Figure 2.7) (Wagner et al. 2008; Mallet and Bretar 2009).  Even though Radar (Radio 

detection and ranging) remote sensing and research on backscatter characteristics has been 

utilized since the 1970s, comparatively little is known about the lidar scattering properties of 

vegetation and other terrain surfaces (Wagner et al. 2008).    

Some factors known to degrade the vertical accuracy of lidar by 5 to 10 cm (or greater) 

are uncertainties in the post-processed trajectory, scan angle uncertainty, ranging uncertainty, 

and calibration issues (Shrestha and Carter 1998; Lefsky et al. 2002b).  These estimates are 

consistent with the literature provided by the lidar instrument manufacturers, such as Optech.  

However, the accuracy of data sets varies from survey to survey and also depends upon surface 

type (road, bare sand, vegetation, or mud).   
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Laser and physical components 

The laser portion of the lidar instrument emits NIR laser pulses between 1064 and 1550 

nm in wavelength at frequencies of up to 500 kHz.  These pulses are reflected off a rotating 

mirror that rotates in a sweep perpendicular to the flight direction.  There are several types of 

mirror configurations that have advantages and disadvantages operating in in-line, oscillating and 

conic geometries (Kukko and Hyyppa 2009).  When a mirror rotates left and right it is called a 

saw-tooth scanner.  This type of configuration has the disadvantage that the mirror does not 

continually rotate at the same speed but rather has to slow to a stop before rotating in the 

opposite direction  (Fowler 2001).  However, oscillating scanners produce a higher footprint 

density in the cross-track direction and sparser in the along-track direction  (Kukko and Hyyppa 

2009).  Another configuration is the rotating polygon, which only moves in one direction at a 

constant rate.  A disadvantage to this type of mirror is a potential systematic bias due to the data 

being collected in one direction with no fixed stop position to indicate the extent of a swath 

(Fowler 2001).  Many providers prefer the mirror scanning system and programmatically 

disregard the swath edges to remove those sources of error (Fowler 2001).   

There are a number of potential sources of error within the laser components of the Lidar 

system.  These are laser range errors, pulse rate and stability, beam divergence errors, and 

mechanical errors associated with the equipment such as scan angle errors, mirror 

misalignments, timing errors, aircraft navigation and bore-sight (Fowler 2001; Kukko and 

Hyyppa 2009).  The uncertainty in the laser range measurement is approximately 2 cm (Habib et 

al. 2009).  Each coordinate is time-tagged, defining its position in both time and space.  Accurate 

timing is very important for post-processing correction between all the various components.  Any 

timing bias or discrepancy could cause major systematic errors.  
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 Lidar point density determines the level of ground topographic detail that can be 

resolved.  Point density is determined by five different factors (Kukko and Hyyppa 2009): 

1) Laser pulse rate: The Laser pulse rate, also known as pulse frequency rate (PFR), 

will increase the data density as the pulse rate is increased. 

2) Flight altitude:  Flight altitude determines the width of the swath (assuming a 

constant scan angle) and the proximity between laser points.  The higher the flight altitude, the 

lower the point density (assuming other variables remain constant).  The Laser beam diverges 

into a conic shape as a function of altitude increasing the size of the footprint, which typically 

ranges from 0.6m to 2.5m (Kukko and Hyyppa 2009). As a rule of thumb, horizontal accuracy is 

often claimed to be between 1/5500th and 1/1000th the flight altitude (Toyra et al. 2003; Hodgson 

and Bresnahan 2004; Habib et al. 2009; Optech 2009).   

3) Laser scan angle:  At a set altitude and a constant laser frequency, a smaller scan 

angle will increase the density of points collected.  The highest accuracy typically occurs at the 

scan line nadir and decreases as the swath angle increases (Hodgson et al. 2005).  Scan angle has 

an estimated uncertainty on the order of 0.009 º (Habib et al. 2009). 

4) Aircraft speed:  Flight speed will influence point density by increasing or 

decreasing the spacing between scan lines.  Decreased flight speed leads to increased point 

coverage. 

5) Swath overlap.  The closer the centerlines of the aircraft flight tracks, the greater 

the swath overlap and, therefore, denser the dataset. 

 

Atmospheric conditions are known to degrade the laser coordinates of vertical surface 

points by refraction off of aerosols, excessive humidity, and low-lying clouds (Shrestha and 
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Carter 1998; Lefsky et al. 2002b).    Atmospheric attenuation can dampen the amplitude of lidar 

waveforms and reduce the ranging accuracy.  Surface scattering of the laser as it impacts a 

material or at an angle to a surface also lead to further degradation of the returning lidar pulse 

(Kukko and Hyyppa 2009).  The low horizontal positional accuracy of lidar has been known to 

be a contributing factor in influencing vertical uncertainty (Hodgson and Bresnahan 2004; Raber 

et al. 2007). 

 

Global Navigation Satellite System 

Global Navigation Satellite System (GNSS) provide the positioning for the aircraft and, 

after post processing, the lidar data points.  GNSS measurements of aircraft location are typically 

the biggest limiting factor for determining lidar instrument position accuracy (King 2009).  With 

the establishment of good static ground base station(s), lidar flight position errors can be 

minimized, but not dismissed  (King 2009).  Ionospheric effects are a potential source of error 

but can be negated by cancellation using a base station and a rover (aircraft) unit over short 

distances of 10-20 km and using dual-frequency receivers.  Tropospheric delay at the elevation 

angle and azimuth of each satellite, also known as Zenith Total Delay (ZTD), is another source 

of uncertainty, but can almost fully cancel with a static base station (King 2009).  For baselines 

longer than 10-20 km, uncertainties from these sources can increase to as much as 0.2-0.3 m, but 

are more typically 0.05-0.1 m.   The time of day and satellite constellation has a large impact on 

the quality of the GNSS signal.  Surveys should only be planned on days of optimum satellite 

geometry.    
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Inertial Measurement Unit 

The inertial measurement unit (IMU), the key component of the GNSS-aided inertial 

navigation system (INS), uses orthogonal triads of accelerometers and gyros to measure angular 

rate and acceleration along 3 axes.  Typically these units provide accuracies in the blended 

(Kalman filtered) navigation solution of 0.01 to 0.05 degrees in pitch and roll, while heading 

uncertainty can be a bit higher.  For example Optech’s ALTM 3100 using the Applanix 

POS/AV-510 integrated GNSS-INS system has the following uncertainties, Roll 0.005º, Pitch 

0.005º, Yaw 0.008º (Optech 2005). 

Various types of random noise in the above system components can lead to lidar point 

cloud accuracy problems.  Positional noise in the aircraft GNSS will cause similar noise in the 

point cloud that are independent of the flying height, look angle, and direction.  Angular noise in 

the attitude or mirror angles can affect the horizontal coordinates in the point cloud more than the 

vertical but are dependent on the flying height and look angle.  Finally, range noise usually 

affects the vertical component of the point cloud and is independent of the system flying height 

but dependent on the look angle and flight direction (Habib et al. 2009). 
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Figures and Tables 

 

Table 2.1:  Salt marsh ecosystem services and associated cost presented in 1994 US dollars.  
(After Gedan et al. (2009)). 

 

Ecosystem Service Examples of Human Benefits Average Value           
(Adj. 2007 $ ha-1 year-1) 

Disturbance Regulation 
Storm protection and shoreline 

protection $2,824  
Waste Treatment Nutrient removal and transformation $9,565  

Habitat Fish and shrimp nurseries $280  
Food Production Fishing, hunting, gathering, aquaculture $421  

Raw Materials Fur trapping $136  
Recreation Hunting, fishing, birdwatching $1,171  

Total   $14,397  
 

 

 

Figure 2.1: Cross section of a typical New England salt marsh illustrating the tidal zonation 
of saltmarsh vegetation and plant succession migration direction based on increasing or 
decreasing salinity concentrations.  Tidal datums Mean High Water (MHW) and Mean Low 
Water (MLW) are shown. (After Bertness et al. (2002)). 
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Figure 2.2:  Marsh processes that affect vertical accretion of salt marsh environments.  
(After Fitzgerald et al. (2008)).   
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Figure 2.3:  Diagram depicting various factors that influence Relative Sea Level Rise for the 
Mississippi Delta.  (After Mitsch and Gosselink (2000)). 
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Figure 2.4: Sea Level Rise predictions for the next 100 years.  (After Horton et al. (2014)). 

 

 

 

 

Figure 2.5: Flow chart of possible outcomes to salt marsh systems in response to accelerating 
Sea Level Rise.  
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Figure 2.6: Commonly used tidal datums.  (After Giese and Aubrey (1987)). 
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Figure 2.7: Sample full-waveform returns from a green lidar system in terrestrial and 
bathymetric applications.  The graph on left shows full waveform green laser returns for 
terrestrial vegetation while the right graph shows returns from within the water column. 
(After Wright and Brock (2002)). 
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CHAPTER III 

EVALUATION OF FIELD-MEASURED VERTICAL OBSCURATION AND FULL 

WAVEFORM LIDAR TO ASSESS SALT MARSH VEGETATION BIOPHYSICAL 

PARAMETERS 

 

Published as: 

Rogers, J.N., Parrish, C.E., Ward, L.G., & Burdick, D.M. (2015). Evaluation of field-measured 
vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical 
parameters. Remote Sensing of Environment, 156, 264-275 

 

Abstract 

Local, high-resolution, accurate data sets are needed to support restoration and other 

management initiatives in coastal salt marshes, yet field collections of site-specific vegetation 

data is often impractical.  In this study, a novel combination of full-waveform light detection and 

ranging (lidar) and field techniques for assessing the distribution of aboveground biomass 

throughout its height and its light blocking properties were investigated.  Using new field 

methods, strong correlations were observed (r > 0.9) between subsamples’ vertical biomass 

(VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the 

measure of the vertical distribution of the ratio of vegetation to airspace, for Spartina 

alterniflora.  Also, it was found that simple metrics derived from the lidar waveforms, such as 

waveform width, can provide new information to estimate salt marsh vegetation parameters.  The 

strong correlations between field-collected biophysical parameters and metrics derived from lidar 

data suggest that remote sensing methods can be used to estimate some vegetation biophysical 
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parameters such as plant height and proportion of vegetation area (PVA) using smaller, more 

targeted field surveys.  Future work will be needed to verify the extensibility of the methods to 

other sites and vegetation types.  

 

Introduction 

Salt marshes are important habitats providing valuable ecosystem functions such as fish 

nursery habitat, carbon storage, shoreline protection services, and others (Costanza et al. 1997; 

Chmura et al. 2003; Chmura et al. 2012).  Therefore, coastal change, salt marsh inundation and 

adaptation caused by sea level rise are of great concern for scientists and coastal managers, who 

require timely methods to monitor impacts over short and long temporal periods (Brock and 

Sallenger 2001).  Advances in remote sensing technologies such as airborne light detection and 

ranging (lidar) for topographic/nearshore elevation surveys have led to more responsive, data 

rich, and accurate mapping of many terrestrial and aquatic environments including salt marshes 

(Lee and Shan 2003; Marani et al. 2003; Argitas and Yang 2006; Belluco et al. 2006; Chust et al. 

2008; Schmid et al. 2011; Hladik and Alber 2012; Hladik et al. 2013).    

Previous salt marsh lidar research has dealt mostly with discrete return datasets, which 

are readily available for many coastal areas but provide limited information about the structure of 

the vegetation (Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 2012).  To compensate 

for a lack of information regarding the vegetation, additional research has been conducted using 

data fusion methods between discrete return lidar and hyper- or multi-spectral data to increase 

the contextual information available for analysis (Dubayah and Drake 2000; Anderson et al. 

2008; Millette et al. 2010; Swatantran et al. 2011; Hladik 2012; Hladik et al. 2013; Schalles et al. 

2013).  However, a relatively new capability in commercial, topographic lidar that offers promise 
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for salt marsh vegetation mapping is the recording and analysis of full waveform datasets.  Salt 

marsh vegetation with heights significantly less than the width of the transmit laser pulse 

typically show return waveforms that contain just a single peak (Figure 3.1) (Parrish et al. 2014). 

Nevertheless, the waveforms may contain information that will assist in the analysis of 

vegetation.  Specifically, the shape of the received pulse is expected to vary across the marsh as a 

function of the terrain and vegetation characteristics.  An advantage to waveform shape-based 

metric analysis is that observable details, such as vegetation biophysical parameters, might be 

overlooked based solely on height-based metrics derived from discrete lidar datasets (Muss et al. 

2013). Additionally, waveform shape-based metrics may prove useful when there is no a priori 

knowledge of vegetation species distribution. 

While a significant amount of work has been done on the processing of lidar waveforms 

to estimate surface characteristics (e.g., slope, and/or radiometric properties) or forest biomass 

(Drake et al. 2002; Wright and Brock 2002; Nayegandhi et al. 2006; Mallet and Bretar 2009), 

most of the methods discussed in the published literature involve sophisticated, computationally-

complex signal processing approaches such as deconvolution (Jutzi and Stilla 2006). To date, 

only a few studies have been conducted on the use of simple shape-based waveform metrics 

(Adams et al. 2012; Muss et al. 2013; Parrish et al. 2014) for estimation of biophysical 

parameters.  The basic premise is that, since each salt marsh vegetation species should affect the 

shape of the return differently, by analyzing shape-based metrics it may be possible to extract 

information about the nature of the vegetation.  

This study tests a novel combination of full-waveform lidar and field-based methods.  

The field techniques used were developed to extract vegetation characteristics from digital 

photography (Zehm et al. 2003; Neumeier 2005; Möller 2006) and were adapted for this lidar 
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investigation.  In research conducted by Möller (2006), vertical plant density was determined 

from digital photographs and related to roughness coefficients for water flow across the marsh.  

In this research, the vertical plant density and distribution were expected to have a measurable 

effect on the lidar pulse returns.  Vertical profiles of salt marsh vegetation obscuration (VO) [%] 

and biomass by height (VB) [g/m3] were investigated in their undisturbed growth position using 

in-situ digital photography.  These data, along with other biophysical parameters collected in the 

field (including physical samples or those derived from photography), were used to examine 

relationships among the parameters and metrics extracted from lidar waveforms.  The primary 

focus was on Spartina alterniflora, but other common and dominant salt marsh species were also 

included in the study.  The hypothesis is tested that some simple waveform metrics such as 

waveform width, waveform standard deviation, and amplitude contain information that can assist 

in estimating salt marsh biophysical parameters such as vegetation height, stem density and 

biomass.   

 

Methods 

Study Areas and Ecosystem Description 

The study sites comprised four mesotidal salt marshes (Hatches Harbor, Moors marsh, 

Pamet River marsh, and Great Island - Middle marsh) on the protected bay coast of Cape Cod, 

Massachusetts, USA (Figure 3.2), with field investigations conducted between July and August, 

2010.  This part of Cape Cod Bay exhibits a semidiurnal tide with a mean range of ~2.83 m 

(NOAA, 2013).  All the marshes are largely low marsh dominated by Spartina alterniflora 

(smooth cordgrass) growing upon sandy substrata with typically a small rim of high marsh 

platform.  Marsh sites were chosen based on their proximity to each other to maximize the data 
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collected from a 40 km2 lidar flight area, the availability of large stands of as many major marsh 

species as possible, and the ability to collect the field data within a specified time window 

around the July, 2010 overflight conducted by the National Center for Airborne Laser Mapping 

(NCALM).  In general, wind conditions at the sites averaged 2.5-5.3 m/sec (NNW) during most 

survey days, but occasionally reached up to 7.6 m/sec.  Multiple sample locations for each 

vegetation species type were collected to determine reproducibility of the results and investigate 

variability within each species type.   

Hatches Harbor, a 2.2 km2 (1.2 km2 unrestricted with full tidal flow, 1 km2 restricted with 

partial flow)  salt marsh located at the eastern-most tip of Cape Cod, is one of the youngest 

marshes in the northeastern United States, due to the timing of the Provincetown sand spit 

formation (Uchupi et al. 1996; Portnoy et al. 2003).  Dominant plants that form large 

monoculture stands are S. alterniflora, Salicornia bigelovii and Salicornia depressa. (succulent 

forbs) (Portnoy et al. 2003). 

Moors marsh (2.0 km2) is located behind a long, 1.6 km rock breakwater that allows 

water to flow through its porous structure. Monitoring during this study with pressure 

transducers found the amplitude of the natural tides were muted by 2-4 cm and had a temporal 

lag of up to 30 minutes.  This marsh, like Hatches Harbor, is dominated by S. alterniflora with 

sporadic large monocultures of Salicornia spp.  There is a small fringe of high marsh located at 

the shoreward edge dominated by Spartina patens (salt marsh hay).   

Pamet marsh (2.0 km2) has two distinct branches:  the Little Pamet River, which heads 

north, and the main Pamet River, which lies to the east of an old railroad causeway built on the 

marsh.  Both sides of the railroad dike are considered unrestricted with full tidal flow exchange 

with Cape Cod Bay.  Each location exhibits a slightly different morphology and vegetation.  The 
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Little Pamet has a low lying marsh morphology dominated by S. alterniflora with very little high 

marsh platform.  The Pamet marsh morphology has a more significant portion of high marsh 

platform with S. patens and Distichlis spicata.  A large segment of the marsh appears to be in 

collapse, exhibiting complex patterns of deterioration and the formation of numerous tidal 

channels, mudflats, and shrinking islands (Smith 2009). 

Great Island - Middle Marsh (0.3 km2) is a small back-barrier marsh with a broad high 

marsh platform dominated by S. patens and D. spicata.  Of the four marshes investigated, this is 

the only one that contains extensive ditching that predates a 1947 aerial photograph.  There is a 

large expanse of high marsh plateau with dense stands of S. alterniflora in its lower reaches and 

channels (Figure 3.3).  However, extensive areas of bare ground were formed at this site due to 

marsh wasting (Smith 2009). 

Homogeneous, near monoculture stands for three major species and one genera (S. 

alterniflora, S. patens, D. spicata, and Salicornia spp.) were commonly found at the study sites 

and so were chosen for analysis.  Salt marshes exhibit vegetation zonation based on elevation 

and plants adaptations to the harsh conditions (Bertness and Ellison 1987).  Different marsh 

species have varying morphologies as well as growth habits.  Measurements of salt marsh 

vegetation above-ground biomass may be useful for determining lidar penetration properties, but 

only if measured for the vertical distribution of biomass (VB).  Variability in growth habit and 

height within one community is also common.   

This study investigates two forms of Spartina alterniflora (medium form (MF) 50-100 

cm and tall form (TF) >100 cm) in the analysis.  The mean sample height for S. alterniflora (tall 

and medium) out of 13 stations was 115 cm, with a minimum height of 60 cm, a maximum 

height of 170 cm and a standard deviation of 34 cm.  Regional differences in vegetative zonation, 
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communities, and structure exist between northern and southern salt marshes (Ewanchuk and 

Bertness 2004).  S. alterniflora has at least two distinct variations or ecophenes, short-form (SF) 

<80 cm and tall-form (TF) >100 cm, caused by edaphic factors in northern marshes (Anderson 

and Treshow 1980).  In some locations, three ecophenes are sometimes defined as 0-50 cm (SF), 

50-100 cm (MF), >100 cm (TF) (Reimold et al. 1973; Ornes and Kaplan 1989; Wiegert and 

Freeman 1990; Pennings and Bertness 2001; Hladik and Alber 2012).  Tall-form typically grows 

along estuarine creeks with semidiurnal flooding and can exceed 2 m in height.  In contrast, 

short-form is typically found in high marsh areas with higher salinity, sulfide concentrations 

and/or lower redox potential (Mitsch and Gosselink 2000). 

 

Vegetation Photographic Measurements 

The development of an in-situ, field-based tool for measurement of the vertical mass 

distribution and light blocking properties of shorter, coastal grasses is needed for assessing lidar 

penetration properties.  In addition, it will assist in developing new ways to perform calibration 

and validation (“cal/val”) of overhead remote sensing data.  Therefore, an apparatus was 

designed and built to measure VO consisting of 3 main components: a downward-looking 

camera on a tripod pole, a mirror at a 45 degree angle to the ground, and a red background board 

with a calibration scale (Figure 3.4).  A collapsible A-frame was constructed out of lightweight 

aluminum to house a 0.35 m by 1.38 m flat mirror. The camera used was a Casio EX-Z35 12.1 

megapixel digital camera with a 3x zoom, an aperture of f3.1-5.6, and a focal length of 35.5-

106.5mm (Shutter speed 1/2000 second, aperture 3.1W, and depth of field 8.76 m).  This camera 

was mounted and leveled on a standard tripod, which was extended and inserted into an arm of 

the A-frame so that the camera field of view was centered on the mirror where distortion due to 
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camera optics is minimized (Straatsma et al. 2008).  Lastly, a 0.75 m x 1.5 m red foamcore 

backboard on a frame of wood was constructed with a pre-attached vertical scale of alternating 

white and black centimeter squares. The board also had a pre-calibrated optical depth scale (the 

distance from the board to the base of the mirror) to facilitate rapid setup of the board for the two 

optical depths used in this project.  Since the optimal optical depth for each vegetation species 

was unknown, the background was first set at 25 cm from the mirror and imaged multiple times 

before resetting the background to 10 cm for a second series of images.  The resulting pixel 

resolution was approximately 1.8 mm and 1.6 mm GSD (Ground Sample Distance), respectively, 

at each ground sample station.   

Planimetric (areal) vegetation coverage is an important measurement that is expected to 

relate to data obtained from remote sensing systems, due to the similarities in viewing 

geometries (i.e., near nadir).  Planimetric photos were taken prior to any site disturbance by the 

equipment.  The camera was set on the tripod at a height of approximately 2 m and a planimetric 

photo of the ground and calibration rod was captured with the same digital camera used for the 

profile photography.   Excessive shadows caused by direct sunlight were found to be a challenge 

for both the planimetric and profile photography.  Therefore, several methods were used to 

reduce the exposure and influence of direct sunlight such as choosing field days with diffuse 

illumination conditions, positioning equipment so the image was not in direct sunlight, and the 

use of a shade umbrella when the other two methods were not possible. 

 

Biomass Measurements 

The calibration of the digital photography required physical biomass measurements and 

an understanding of its vertical distribution above ground.  The methodology used to determine 
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biomass and vertical density are similar to the methods used by several other researchers (Zehm 

et al. 2003; Neumeier 2005; Nobis and Hunziker 2005; Möller 2006) and employed a standard 

0.25 x 0.25 m quadrat, a calibrated staff for height measurement, and a 3 cm tall ring of PVC 

pipe (10.16 cm inner diameter), through which the vegetation samples were pulled for 

subsequent measurement (Figure 3.5).   

The vegetation samples were washed and dried to remove all moisture before measuring.  

The in-situ sample was carefully cut into 5 cm lengths starting from the base of the stalk 

(ground) and measured for mass by height, representing the VB measured height.  This produced 

359 subsamples of mass at specific heights for comparison to the photographic data.  Because 

VB samples were a subset of the quadrat, their combined biomass is the equivalent of a standard 

quadrat biomass measurement.  Stem density [n/m2] was also counted from the physical quadrat 

for S. alterniflora and from the in-situ samples for S. patens, D. spicata, and Salicornia spp. 

 

Ground Photography Image Processing/Analysis 

For each sample location surveyed, the highest quality image from each optical depth was 

selected based on clarity of focus, image rotation, contrast, and position.  Histogram processing 

was then applied to adjust for varying illumination levels (e.g., due to differing sun angles or 

atmospheric conditions), such that the backgrounds were consistent across images.  The resulting 

images were comprised of vegetation, background (air space), and a scale bar. 

VErtical vegetation STructure Analysis (VESTA) and Sidelook software was used to 

analyze the vertical vegetation structure from the digital photography (Zehm et al. 2003; Nobis 

and Hunziker 2005).  Color photography taken in the field was run through a threshold tool using 

the green band to create a binary image with pixels classified as vegetation (black) or airspace 
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(white) (Figure 3.6). Tabular data of VO were generated by counting vegetation pixels vs. 

airspace by height in incremental bins of 5 cm by 33 cm (width of usable image on mirror), 

which correspond with the same biomass height increments collected in the field/laboratory 

work.  For a specified height bin, VO is computed as: 

 

𝑣𝑜 = 100 × 𝑁𝑢𝑚 𝑣𝑒𝑔 𝑝𝑖𝑥𝑒𝑙𝑠
𝑇𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

  (1) 

 

An uncertainty analysis of VO was performed modeling each component uncertainty 

(e.g., lens distortion, mirror parameters, mixed pixels, and threshold), and was determined to be 

on the order of 1-2%, which is an order of magnitude better than what can be obtained from the 

lidar data.  Total Vertical Obscuration (TVO), defined as the VO for the entire height of the 

vegetation (i.e. VO for the entire image) was computed.   This quantity was then multiplied by 

the image area computed as the product of image width (0.33 m) and vegetation height to obtain 

a parameter referred to as Proportion of Vegetation Area (PVA) [m2].   

Planimetric image vegetation coverage was also extracted from the collected digital 

photography.  It was determined that the best approximation of down-looking vegetation 

coverage could be obtained using the same green band histogram threshold contrast between the 

vegetation and the dark ground surface/leaf litter.  Excessive light colored leaf litter in the image 

may overestimate ground cover while dark shadows on the vegetation stems may underestimate 

ground cover.  Although shadows and leaf litter may slightly positively or negatively influence 

the overall calculation of vegetation cover, contrast of the ground with live vegetation was 

considered as the best approximation ground cover conditions.   
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Lidar Data Processing 

A July, 2010 lidar survey flown specifically for use in this study was compared with the 

field collected data.  The lidar flight was conducted by the NCALM using an Optech GEMINI 

Airborne Laser Terrain Mapper (ALTM) and an Optech 12-bit IWD-2 intelligent waveform 

digitizer (Table 3.1).   The sites in this study were comprised of marsh vegetation, “bare earth” 

and water (i.e. no trees, buildings, or other structures), so the data were almost entirely composed 

of single-return only pulses.  A Trimble NetR5 base station network with cellular-based 

correction and a Trimble R8 Model 3 Real Time Kinematic (RTK) GPS rover was used in the 

field data collection.  The equipment provided an RMS of < 1 cm in the horizontal and 2cm in 

the vertical for each of the 27 ground sample stations.  The field and airborne data were collected 

within two weeks of one another.     

Waveforms were selected for the 27 sample locations from the larger database by 

developing a custom workflow using ArcGIS, QCoherent LP360 and MATLAB to extract lidar 

waveforms and compute waveform shape-related metrics for the closest lidar point to the center 

of each of the 27 sample locations, typically within 0.5m radius.  For this study five simple 

metrics were computed from the received return waveform: waveform width (full width half 

maximum [FWHM]), sample skewness (a skewness measure of the waveform vector elements), 

waveform amplitude, waveform standard deviation, and Pearson’s 1st skewness coefficient 

(mean – mode)/standard deviation  (Parrish et al. 2014).  Skewness is a measure of the 

asymmetry between the upper and lower sides of a distribution, where a longer tail to the lower 

portion would indicate positive skewness.  Comparisons of the extracted waveform metrics to 

physically and photographically collected data were made to investigate the relationships to 

biomass density, VO and cumulative biomass. 
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Results 

Vertical Biomass (VB) and Obscuration (VO) 

The first relationships investigated were between field collected plant biomass and 

vertical obscuration to determine a possible connection with lidar signal loss and the potential for 

using full waveform data to detect salt marsh vegetation biophysical parameters.  Linear, 

Pearson’s correlations between the 359 VO and VB height subsamples were computed from the 

27 sample locations surveyed in this project (Table 3.2) and all correlations reported are 

significant with a p < 0.05 unless otherwise noted.  Comparison of all vegetation samples across 

all species as a group exhibited a correlation between VO and VB of r = 0.59 (312 df) [degrees 

of freedom (df = n-2)], p < 0.05 and r = 0.53 (357 df), p < 0.05 for the 10 and 25 cm optical 

depths, respectively (Table 3.3).  Examining specific species, S. patens and Salicornia spp. 

exhibited weak correlations compared to D. spicata and S. alterniflora.  The best VO to VB 

results were from S. alterniflora, which showed a correlation of r = 0.80 (216 df) and r = 0.70 

(245 df), for the 10 cm and 25 cm optical depths, respectively (Figure 3.7a).  Individual S. 

alterniflora samples performed even better, often with results of r > 0.90.  For example, sample 

GA3 had a correlation coefficient of 0.97 (20 df) (Figure 3.7b).  A notable improvement in 

species correlation also was observed when the MF and TF S. alterniflora ecophenes were 

separated (Table 3).  As subsets, the r value obtained was MF 0.89 (93 df) for the 10 cm optical 

depth and 0.85 (93 df) for the 25 cm optical depth, while TF improved to 0.84 (120 df) for the10 

cm optical depth and 0.77 (152 df) for the 25 cm optical depth (Figure 3.7c, d).  The Pamet 

marsh TF S. alterniflora samples exhibited low correlation due to windy conditions (WNW 

winds at approximately 7.6 m/sec) in the marsh resulting in the topmost leaves blowing out of 

the image and sample PA5 was removed entirely from all analyses for this reason.    In most 
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cases greater coefficients were observed in the sample groups using the 10 cm optical depth, but 

individual samples seemed to correlate better using the 25 cm optical depth. 

 
Height Assessment 

Recording field measurements of vegetation heights directly with a calibrated staff can 

often be subjective because each observer or even the same observer on multiple visits may 

record stature differently for the same stand (Zehm et al. 2003; Neumeier 2005; Straatsma et al. 

2008).  To evaluate the consistency of the methods, an assessment was conducted of field-

observed height as it compared with the VB sample heights, which was determined by extending 

the in situ collected plants to their full length.  A comparison utilizing samples of all species 

surveyed for field observed height to VB sample measured height for the 25 cm optical depth 

exhibited an r = 0.97 (25 df) (Figure 3.8a).  However, only the S. alterniflora indicated a similar 

correlation, r = 0.97 (11 df).  Field observations of S. alterniflora heights were consistently lower 

than VB measured heights by a mean of 4.5 cm but S. patens, D. spicata and Salicornia spp. was 

found to have no significant correlation and exhibited lower measurements by a mean of 20 cm.   

A similar comparison was made between field observations of vegetation height and 

photographically-derived vegetation heights from the VO binary images.  All samples collected 

had a linear correlation with r = 0.97 (25 df) for the 25 cm optical depth (Figure 3.8b).  As with 

the previous mentioned analysis, the S. alterniflora samples in this comparison demonstrated 

better results with an r = 0.89 (11 df) for the 25 cm optical depth and no significant correlation 

observed for the other surveyed species.  Also, field observations were consistently lower than 

photographically derived heights with S. alterniflora exhibiting a mean difference of 8.6-14 cm 

and the other taxa differing by a mean of 10.4-16.8 cm.  
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Lidar Waveform Analysis 

The results of the lidar waveform analysis are presented in terms of Pearson’s correlation 

coefficient (r) since the goal of this initial test was merely to determine whether there were any 

relationships between the variables.  Several of the parameters correlated well with waveform 

width and waveform standard deviation (Table 3.4).  Evaluating all samples without speciation 

often yielded the best results.  A strong positive linear relationship was observed between the 

width of the lidar waveform return and the height of the vegetation r = 0.82 (25 df) (Figure 

3.9a).  Within the subset of S. alterniflora samples, the parameters vegetation height exhibited a 

correlation to waveform width with an r = 0.75 (11 df).    

Waveform amplitude correlated with planimetric obscuration with an r = 0.71 (25 df) for 

all samples and r = 0.62 (11 df) for the subset of S. alterniflora (Figure 3.9b).  Sample skewness 

was found to correlate with quadrat stem density, which had an r = 0.63 (25 df), while Pearson’s 

1st skewness coefficient showed no significant correlations with any vegetation metrics.  Using 

Proportion of Vegetation Area (PVA), the ability to relate the VO measurements from the field 

photography to the waveform shape metrics was tested.  PVA was found to correlate well with 

waveform width r = 0.73 (25 df) (Figure 3.9c).   

Having found some significant correlations, simple and multiple linear regressions were 

used to investigate the ability to predict the vegetation biophysical parameters from the best 

performing waveform metrics found in Table 3.4 (Table 3.5).  It is important to note that 

waveform width and waveform standard deviation are nearly collinear (Parrish et al. 2014), 

which is to be expected, as they are both measures of the spread of the return pulse.  Waveform 

parameters were evaluated and those that were found to be highly correlated were removed from 

further analysis.  Most of these multiple parameter combinations yielded little or no 
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improvement with the additional parameter in the regression.  However, it was observed that in 

several instances improvements to r values were observed when including an additional 

waveform parameter.  The regression of vegetation height on waveform width improved from r2 

= 0.68 to R2 = 0.72 with the addition of waveform amplitude (note that r2 is used to denote the 

coefficient of determination in the case of simple linear regression, while R2 is used in the case of 

multiple regression).  Most notably, the regression of vegetation height on waveform standard 

deviation improved from r2 = 0.53 to R2 = 0.74 with the addition of amplitude (Table 3.5).   

 

Discussion 

Biomass and Obscuration 

While previous research has documented relationships between the total above-ground 

biomass of S. alterniflora and its height (Howes et al. 1986; Morris and Haskin 1990), this 

research investigated the distribution of mass throughout plant height for several species and 

then compared the biomass density to its light blocking properties (Figure 3.6).  The research 

presented here suggests a strong linear relationship between VO and VB particularly for S. 

alterniflora (Figure 3.7).  Other researchers working with different vegetation species, including 

some in European salt marshes, also found similar relationships (Zehm et al. 2003; Möller 2006).  

However, in the case of this study not all species investigated exhibited strong correlations.  

Thus, vegetation species appears to be a key determinant of the nature of the relationship.  The 

vertical growth habit of the S. alterniflora makes it ideal for analysis by the VO and VB 

methods.  S. alterniflora stalks typically grow vertically 20 cm – 200 cm with narrow leaves at 

the top.  Spacing between individual plants varies, but is normally several centimeters, providing 

sufficient void space for analysis.  Temporal variation is also dramatic between peak growth 
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conditions and senescence with stalks tending to fall over or even stripped from the marsh due to 

ice from winter conditions in northeastern U.S. salt marshes (Ewanchuk and Bertness 2004).     

The relationship of obscuration to biomass may also be further refined by looking at S. 

alterniflora’s two ecophenes assessed in this study, MF and TF.  Correlation was significantly 

higher when they were individually analyzed, where Pearson’s correlation coefficients increased 

from around 0.80 to 0.89 for MF and 0.84 for TF at the 10 cm optical depth.  It appears these 

ecophenes may have subtly different biomass and obscuration properties in addition to their 

differing heights.  Distichlis spicata, in the limited number of sample locations used in this study 

also exhibited a vertical growth habit.  However, D. spicata and S. patens more often form a 

thick mat or thatch-like structure low to the ground, approximately 15-30 cm in height and with a 

high stem density.  Salicornia spp. was also evaluated and initially thought would perform well, 

but did not appear to support a relationship between VO and VB despite its typically upright 

growth habit.  Its dense interlocking stems created an almost opaque wall obscuring the 

background board to nearly the top of the vegetation, regardless of the optical depth used for the 

imagery. 

 

Vegetation Height  

Comparisons among the field observed heights, physical biomass measured heights and 

photographically-derived heights show strong correlations with physical or photo derived 

measurements having a positive bias with respect to field observation in all cases (Figure 3.8a, 

b).  Field observed heights were consistently lower than the VB measured heights and 

photographically derived heights, particularly with the low growing species such as S. patens, D. 

spicata, and Salicorina spp.  In comparison to VB sample heights measured physically the bias is 
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clearly due to the growth habit of the vegetation.  These plants consistently had heights 14 to 20 

cm higher than the field approximation because their leaves and stems lie flat against the ground.  

The height measured from VB samples in this case created an incorrectly assumed upright 

growth habit that does not typically occur for these species and therefore the VB method is not 

an effective method to determine vertically distributed biomass for these species.   

Photo-derived and the field measured heights also displayed high correlation with r of 

between 0.96-0.97 for the two optical depths, which is consistent with the results reported by 

Zehm et al. (2003) using similar techniques.  However, although smaller than the measured 

sample height bias, a positive bias with a mean of 9 cm was still observed.  The source of this 

bias is most likely due to the steep viewing angle between the observer and the lower portion of 

the stadia rod when measuring low growing vegetation.  As a consequence, field observations 

were consistently lower in this class of vegetation.  Spartina alterniflora photographic derived 

height measurements were also positively biased over field observations by 4.5 cm (10 cm) and 

8.6 cm (25 cm), which may be a function of detecting the fine leaf details in the imagery that a 

field observer would have difficulty measuring.  Although the field observed method was clearly 

the fastest method for determining vegetation height, it was not always the most accurate.  The 

digital photographic approach is useful for comparing small differences or percentile thresholds 

that cannot be achieved by visual estimates in the field alone (Neumeier 2005). 

 

Waveform Lidar 

The strength of linear relationships between five simple, shape-based waveform metrics 

and the collected biophysical parameters were assessed.  It appears that some of the simple 

shape-based metrics show promise in predicting various vegetation characteristics in addition to 



 56 

predicting lidar bias (Muss et al. 2013; Parrish et al. 2014).   As demonstrated in Table 3.4, a 

moderate to strong relationship was found between several of the measured biophysical 

parameters with waveform width or waveform amplitude.  Each of the highlighted relationships 

appears to have a logical basis.  For example, the relationship between waveform width and 

vegetation height can be can be attributed to the fact that the convolution of the laser pulse with 

an extended target (i.e., taller vegetation, although still less than half the transmit pulse width, 

converted to a range) will result in greater spreading of the return pulse (Figure 3.9a).  Also, 

waveform amplitude appears to increase with increased planimetric obscuration, which can be 

explained by the fact that dense, healthy vegetation results in higher amplitude returns, especially 

at the near infrared wavelength of the laser (Figure 3.9b).  Similarly, waveform width was 

expected to increase with increasing PVA, since, in areas of higher TVO, the pulse does not 

penetrate the lower layers of the vegetation, which would increase spreading of the return pulse 

(Figure 3.9c).   

Visible on these graphs (Figure 3.9) is a clustering of points of non-S. alterniflora 

species that, when taken without the S. alterniflora data points, exhibit almost no correlation.  

All of the non-S. alterniflora species found and sampled in the marshes have nearly the same 

characteristics and growth habit, such as height (~20-35 cm), planimetric obscuration, and PVA.  

Therefore it is quite logical that clustering would occur, and a lack of correlation is not 

unexpected.  Spartina alterniflora in these marshes was observed to include all of the ecophenes 

(SF, MF, TF) varying in height from 5 cm to 200 cm.  However, the samples of S. alterniflora 

collected and analyzed for this study did not include a representative selection of SF samples 

(<50 cm) and only used MF (50 cm – 100 cm) and TF (>100 cm) samples.  Spartina alterniflora 

exhibited a stronger correlation with the waveform metrics analyzed than the non-S. alterniflora 
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species due to the natural variability in its growth height, planimetric obscuration, etc.  For 

example, in our analysis of waveform width and vegetation height if samples of SF S. 

alterniflora with heights less than 50 cm were to be added, the correlation with the waveform 

width would likely have been much stronger even without the addition of the other species.  The 

non-S. alterniflora species fill in the gap in the height distribution and increase the coefficient of 

determination.  It is only when all the species found in the marsh, varying in all vegetative 

characteristics, such as height from 0 – 2 m, that a strong relationship starts to appear.    

The results of multiple linear regressions were also promising.  Waveform amplitude and 

waveform standard deviation accounted for nearly 75% of the variability in vegetation height.  In 

addition, waveform width and amplitude accounted for 60% of the variability in quadrat stem 

density.  It should be emphasized that the lidar system used in this study had a long transmit 

pulse width of ~12 ns at 70 kHz PRF (Table 1).  Further research is needed to assess whether the 

methods developed here are applicable to lidar systems with shorter pulse widths.  For example, 

with much shorter transmit pulse widths, the returns from marsh vegetation may be multi-modal, 

necessitating a modification of the waveform processing algorithm.  Another possible extension 

involves computing and applying corrections to the waveform features for variable incidence 

angle.  In previous work, Parrish et al. (2014) investigated the effects of pulse broadening with 

incidence angle, using the geometric pulse stretching model of Abdallah et al. (2012), and found 

it to be negligible with the low flying height (600 m), narrow beam divergence (0.25 mrad) and 

relatively small scan angles (+/- 21o), similar to those used in this study.  This finding is 

consistent with that of Bretar et al. (2009).  Likewise, in an empirical study using different 

sediment types (e.g., sand and gravel), Kukko et al. (2008) found the decrease in signal 

amplitude to be negligible for incidence angles up to 20o.  However, these authors examined only 
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the change in incidence angle on the target surface, and not the slight increase in target range that 

also occurs with increasing scan angle (assuming constant flying height and surface elevation 

and a scan mechanism that scans back and forth through nadir).  Thus, another recommended 

topic for further research is to compute range-based corrections to the waveform metrics to see if 

this changes the correlations with vegetation biophysical parameters. 

  

Conclusion 

The primary conclusions from this study can be summarized as follows: (1) There is a 

clear relationship between VB density and VO, and this relationship is species dependent; (2) 

The VO method provides an alternative to field-based height data collection.  Field-based 

collection can be more efficient, but when consistent, quantifiable, high-detail data are needed, 

the VO method is superior; (3) The vertical biomass (VB) and vertical obscuration (VO) 

methods are measurements that can yield important information for use in future salt marsh and 

lidar investigations; (4) Simple, shape-related lidar waveform return metrics may be useful in 

estimating salt marsh biophysical parameters.  It was found that waveform width and amplitude 

had significant correlations with vegetation height, planimetric obscuration, and PVA.  

Waveform data can offer additional information about the target not available in discrete-return 

data.  However, there were differences between species specific and non-speciated results.  

These differences were likely a result of varying growth habits (vegetation height, density, and 

planimetric coverage).  Some analyses performed better on a specific species, namely S. 

alterniflora, while others were improved by including all species, which likely fill a gap in 

parameter variability such as height.   
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Field techniques for data collection are accurate but often cumbersome in salt marsh 

environments.  However, for projects covering large spatial extents (100s to 1000s of km2) it is 

typically cost- and time-prohibitive to collect field data over the entire project area.  Full-

waveform lidar holds the promise of providing more accurate salt marsh elevation models by 

detecting the ground/vegetation measurements within the discrete lidar dead zone of 2 or more 

meters (Nayegandhi et al. 2009).  It may also have the ability to detect coastal vegetation 

biophysical parameters.  The results of this study suggest that, in such situations, it may be 

possible to gain at least a coarse understanding of the vegetation biophysical parameters across 

the entire project area from analysis of the lidar data alone, to support conservation and 

management initiatives, while minimizing the amount of expensive, time-consuming field work 

that needs to be performed.  It is recommended that the methods developed in this study be tested 

further, ideally with larger sample sizes than were logistically feasible in this work.  Specific 

goals of the follow-on studies should include assessing : a) the ability to extend these methods to 

geographic locations with differing vegetation and geomorphology, b) how well the regression 

coefficients hold from one site or region to another, and c) the extensibility of the methods to 

lidar systems with shorter transmit pulse widths.   
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Figures and Tables 

 

 
 
Figure 3.1: Example of a typical transmit pulse (to the left of the vertical dashed line) and 
return waveform (right of the dashed line) in a salt marsh (sample location GA3).  Note that, 
although the return contains only a single peak, its shape may be influenced by the salt 
marsh vegetation, in which case there may be an observable relationship between shape-
based metrics extracted from the waveform and vegetation biophysical parameters of 
interest. 
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Figure 3.2: Site locus map and field sites.  Insets are 1) Hatches Harbor, 2) Moors marsh, 3) 
Pamet marsh, and 4) Great Island – middle marsh.  Labeled dots represent the 27 sampling 
locations. 
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Figure 3.3: Great Island - Middle Marsh tidal channel and Spartina alterniflora. 
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Figure 3.4: Camera and mirror equipment used to capture in-situ digital photography of salt 
marsh grasses. 
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Figure 3.5: S. alterniflora vegetation sample plot HA3 with quadrat and in-situ sampling 
ring.  The sampling occurs in front of the mirror after capturing the digital photographs. 
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Figure 3.6: Binary vegetation image, vertical biomass density plot (VB), cumulative biomass 
%, and vertical obscuration (VO) for Spartina alterniflora sample location GA3 on Great 
Island.  Yellow line is ground as determined from surveyed RTK GPS (GPS points), Red 
dashed line is the lidar elevation from the closest lidar return (lidar points), and Blue line is 
measured vegetation height from photo measurements (vegetation height).  Due to the 
analysis groupings of 5 cm increments the first label reads 5 cm (0-5 cm) not 0. 

 

Table 3.1: Flight parameters of NCALM July 20th, 2010 lidar data set. 

Flight Parameter Value 
Flying Speed 60 m/sec 
Altitude 600 m 
Swath Overlap 50% 
Laser Beam Divergence 0.25 mrad 
Pulse Rate 70 kHz 
Transmit Pulse Width 12 ns 
Scan Rate 40 kHz 
Scan Angle ± 21º 
Point Density 5 pts/m2 
Laser Footprint 0.15 m 
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Table 3.2: Pearson’s correlations between VB and VO at each of the field sample locations.  
"n" is the number of subsamples per sample location used in the calculation (i.e. number of 
5 cm increments). 

 
 

Species Site Location 

10 cm 
Optical 
Depth 

25 cm 
Optical 
Depth 

r n r n 

S. alterniflora 

Great Island 

GA1 0.90 24 0.96 24 
GA2 0.81 15 0.83 15 
GA3 0.90 22 0.97 22 
GA4 0.88 22 0.94 22 

Moors Marsh 
MA1 0.96 16 0.84 16 
MA3 0.92 28 0.94 28 
MA4 0.96 12 0.97 12 

Hatches Harbor HA1 0.97 19 0.94 19 

Pamet Marsh 

PA1 0.73 27 0.90 27 
PA2 - - 0.89 29 
PA3 0.75 14 0.92 17 
PA4 0.94 16 0.96 16 
PA5 0.44 27 0.67 29 

S. patens 

Pamet Marsh 
PP1 0.90 7 0.94 7 
PP2 0.93 5 0.94 7 
PP3 0.98 8 0.89 9 

Moors Marsh MP1 0.25 4 0.80 7 

Great Island 
GP1 0.22 8 0.39 8 
GP2 0.81 6 0.97 6 

Hatches Harbor 

HP1 0.88 8 0.98 8 
HP2 0.99 8 0.82 9 

Salicornia spp. 

HS1 0.62 5 0.82 5 
HS2 0.63 5 0.87 7 

Pamet Marsh PS1 0.91 7 0.97 7 
Moors Marsh MS1 0.99 5 0.97 5 

Distichlis 
spicata Great Island 

GD1 0.91 6 0.92 6 
GD2 0.69 5 0.73 5 
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Table 3.3: Correlation between VB and VO by species, site and ecophene with the number of 
sample locations (N) used in its calculation and subsamples (n).  All correlations are 
significant with p < 0.05 except for Salicornia spp. 10 cm optical depth.  Sample PA5 was 
excluded due to image problems caused by wind. 
 
 

Analysis 

10 cm 
Optical 
Depth 

25 cm 
Optical 
Depth N 

r n r n 
All locations and species 0.59 285 0.53 326 26 
All S. alterniflora 0.80 212 0.70 243 12 
All Medium-form S. alterniflora 0.91 71 0.89 71 5 
All Tall-form S. alterniflora 0.85 141 0.78 172 7 
All non S. alterniflora species 0.46 73 0.46 83 14 
Great Island - all S. alterniflora 0.84 81 0.84 81 4 
Great Island -  Medium-form  S. alterniflora 0.83 13 0.81 13 1 
Great Island -  Tall-form  S. alterniflora 0.87 68 0.93 68 3 
Pamet - all S. alterniflora 0.79 56 0.52 87 4 
Pamet -  Medium-form  S. alterniflora 0.90 30 0.91 30 2 
Pamet -  Tall-form  S. alterniflora 0.71 26 0.46 57 2 
Moors - all S. alterniflora 0.78 56 0.76 56 3 
Moors -  Medium-form  S. alterniflora 0.94 28 0.88 28 2 
Moors -  Tall-form  S. alterniflora 0.92 28 0.94 28 1 
Hatches -  Tall-form  S. alterniflora 0.97 19 0.94 19 1 
All Distichlis spicata 0.84 11 0.84 11 2 
All S. patens 0.46 42 0.42 52 8 
All Salicornia spp. 0.38 20 0.51 20 4 
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Figure 3.7a:  Relationship of vertical obscuration with vertical biomass density for an optical 
depth of 10 cm.  Solid square markers are all S. alterniflora samples represented by 
regression equation [1] and open circle markers are all other species represented by 
regression equation [2].   

(a) 
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Figure 3.7b:  Relationship of vertical obscuration with vertical biomass density for an optical 
depth of 25 cm for the S. alterniflora sample location GA3 from Great Island - Middle 
Marsh.   

(b) 
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Figure 3.7c:  Relationship of vertical obscuration with vertical biomass density for an 
optical depth of 10 cm for Medium-form S. alterniflora samples at all field locations.   

 

(c) 
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Figure 3.7d:  Relationship of vertical obscuration with biomass density for an optical depth 
of 10 cm for Tall-form S. alterniflora samples at all field locations. 

(d) 
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Figure 3.8a:  Relationship of Vertical Biomass sample heights from the in-situ biomass 
samples with field observed height measurements. Solid square markers are Spartina 
alterniflora samples and open circle markers are all other species.  All samples combined 
have an r = 0.97 (25 df), p <0.05, while the subset of S. alterniflora samples has an r = 0.94 (11 
df), p <0.05.  

 

(a) (b) 
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Figure 3.8b:  Relationship of photographically derived heights with field observed height 
measurements.  Circle markers are 10 cm optical depth represented by regression equation 
[1] and square markers are 25 cm optical depth represented by regression equation [2].  
Spartina alterniflora samples are solid markers while open markers represent all other 
species.    The subset of this data that contains S. alterniflora samples has an r = 0.83 (10 df), 
p <0.05 and r = 0.84 (11 df), p <0.05 for 10 cm and 25 cm optical depths. 

 

 

 

 

 

(b) 
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Table 3.4:  Results of Pearson’s correlations (r) of biophysical parameters on waveform 
metrics for all vegetation species and the subset of Spartina alterniflora.  Gray shaded cells 
have a p value <0.05 (df = 24). 

 
 

 

 

Figure 3.9a:  Relationship of waveform width with vegetation height as derived from the 
digital photographs. Sample symbols are as follows: solid square markers are Spartina 
alterniflora, open circle markers are Distichlis spicata, open diamonds are Spartina patens 
and open triangles are Salicornia spp. 

 

All S. alterniflora All S. alterniflora All S. alterniflora All S. alterniflora All S. alterniflora

Photographic Vegetation Height 0.82 0.75 0.5 0.17 0.57 0.17 0.73 0.78 0.4 0.37

Planimetric Obscuration 0.47 0.14 0.6 0.33 0.71 0.62 0.1 0.3 0.1 0.2

Quadrat Stem Density 0.58 0.66 0.6 0.35 0.73 0 0.35 0.48 0.4 0

Quadrat Biomass Density 0.41 0.2 0.3 0.22 0.53 0.14 0.17 0.22 0 0.14

Proportion of Vegetation Area (25cm) 0.73 0.57 0.5 0 0.39 0.61 0.62 0.46 0.4 0.24

Proportion of Vegetation Area (10cm) 0.49 0.14 0.3 0.14 0.26 0.28 0.33 0 0.2 0

Pearson's 1st 
SkewnessParameters

Width Sample Skewness Amplitude
Waveform Standard 

deviation

(a) 
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Figure 3.9b: Relationship of waveform amplitude with planimetric obscuration.  Sample 
symbols are as follows: solid square markers are Spartina alterniflora, open circle markers 
are Distichlis spicata, open diamonds are Spartina patens and open triangles are Salicornia 
spp. 

 

(b) 
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Figure 3.9c:  Relationship of waveform width with proportion vegetation area. Sample 
symbols are as follows: solid square markers are Spartina alterniflora, open circle markers 
are Distichlis spicata, open diamonds are Spartina patens and open triangles are Salicornia 
spp. 

 

 

 

 

 

(c) 
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Table 3.5: Results of multiple linear regressions (R2) of biophysical parameter with 
waveform metrics.  Bold with underline represent improved results. 
 
 

  

Waveform 
Width and 

Sample 
Skewness 

Waveform 
Width and 
Amplitude 

Waveform 
Width and 
Waveform 

SD 

Sample 
Skewness 

and 
Amplitude 

Sample 
Skewness 

and 
Waveform 

SD 

Amplitude 
and 

Waveform 
SD 

Vegetation 
Height 0.68 0.72 0.68 0.38 0.57 0.74 

Planimetric 
Obscuration 0.32 0.53 0.49 0.53 0.36 0.51 

Quadrat Stem 
Density 0.47 0.6 0.38 0.58 0.42 0.6 

Quadrat 
Biomass 
Density 

0.18 0.32 0.27 0.32 0.05 0.29 

PVA (25 cm) 0.54 0.54 0.54 0.23 0.42 0.47 
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CHAPTER IV 

ASSESSMENT OF ELEVATION UNCERTAINTY IN SALT MARSH ENVIRONMENTS 

USING DISCRETE-RETURN AND FULL-WAVEFORM LIDAR 

 

Abstract 

Lidar data can serve as an important source of elevation information for studying, 

monitoring and managing salt marshes.  However, previous studies have shown that lidar data 

tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other 

environments.  This increase in vertical uncertainty hinders the ability to analyze very small 

elevation differences, which can be ecologically significant.  For coastal scientists and managers 

to effectively evaluate and use lidar data in salt marshes, a better understanding of the vertical 

uncertainty is needed. Specifically, the factors affecting the uncertainty: plant species, season, 

and lidar processing methods must be investigated.   This study addresses this need using 

discrete-return (DRL) and full-waveform lidar, along with RTK GNSS reference data, for four 

marshes on Cape Cod, Massachusetts (USA).  The lidar bias (mean elevation residual when 

comparing lidar elevation against GNSS ground truth) and standard deviation were computed 

across: all four marsh systems, four major taxa (Spartina alterniflora, Spartina patens, Distichlis 

spicata, and Salicornia spp.) using varying interpolation and filtering methods.  The effects of 

seasonality (temporal differences between peak growth and senescent conditions) were also 

investigated using lidar data acquired in the summer and following spring.  Relative uncertainty 

surfaces (RUS) were computed from lidar waveform-derived metrics and examined for their 

utility and correlation with individual lidar residuals.  The results clearly illustrate the importance 
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of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in 

salt marshes.  Results demonstrate that RUS generated from lidar waveform features are useful 

in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation 

height and presence of Spartina alterniflora.  Knowledge of where DRL uncertainty persists 

within salt marshes and the effect of various techniques of bias removal implemented to date 

should lead to the development of better correction methods and DEMs with higher value to salt 

marsh researchers and planners.   

   

Introduction 

Salt marshes are tidally influenced, halophytic grasslands found in middle and high 

latitudes around the globe (Mitsch and Gosselink 2000).  They are among the most productive 

ecosystems on the planet and provide valuable services to both the natural and human built 

environments such as fish nursery habitat, carbon storage, sediment traps, water filtration, and 

shoreline protection (Costanza et al. 1997; Mitsch and Gosselink 2000).  Whether salt marshes 

thrive, survive or fail (and are replaced by other coastal habitat, e.g., mudflats) generally relates 

to very small variations in elevation, which affects inundation, available nutrients, sedimentation 

and salinity (Morris et al. 2002).  To monitor their health and response to changes in sea level 

rise (SLR), detailed topographic information on the order of centimeters is necessary.  However, 

acquiring accurate terrain elevation data can be difficult and is typically costly and time 

consuming if traditional data collection methods are used (Green et al. 1996).  Lidar has been 

identified as a valuable tool for rapid survey of storm impacts, monitoring shoreline change, 

restoration planning, and flood hazard assessment (Brock and Sallenger 2001) and is often 
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proposed as a substitute for field-based datasets collected by either conventional survey 

instruments or more modern GNSS devices (Montane and Torres 2006; Schmid et al. 2011).   

Lidar’s usefulness in salt marsh studies is a function of the uncertainty of lidar-derived 

elevation relative to the elevation range of ecological importance (Sadro et al. 2007).  For 

example, lidar in a salt marsh environment is ineffective where its elevation/vertical uncertainty 

(due to vegetative variation and other factors) is greater than the elevation range determining 

inundation, species dominance and habitat.  In addition to impacts from vegetation, systematic 

and nonsystematic factors known to degrade the laser coordinates of points by centimeters to 

decimeters include sensor position and orientation (the post-processed navigation solution from 

the integrated GNSS/INS system), scan angle, calibration and environmental parameters such as 

soil saturation (Shrestha and Carter 1998; Lefsky et al. 2002b; Hodgson and Bresnahan 2004; 

Hopkinson et al. 2004).  Based on all of these factors but, especially the vegetation and 

environmental parameters, uncorrected lidar datasets generally have relatively high vertical 

uncertainty in salt marsh environments and may be inadequate to determine inundation extent 

and frequency (Morris et al. 2005; Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 

2012), key factors influencing salt marsh health. 

Research to determine the extent to which lidar achieves salt marsh canopy penetration 

has started to shed light on vegetation effects (Populus et al. 2001; Gopfert and Heipke 2006; 

Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 2012; Hladik et al. 2013; Rogers et al. 

2015).   Species stem density, vertical density, height, and seasonality likely influence lidar 

signal penetration properties in salt marsh environments.  In addition to the physical attributes of 

vegetation height, leaf morphology and growth habit may also be factors influencing lidar signal 

returns (Hladik and Alber 2012; Rogers et al. 2015).  Leaf structures and growth habit vary 
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greatly from species to species.  For example Spartina alterniflora has long flat tapering leaves 

and grows to a height of up to 2.0 m, while Spartina patens has narrow linear leaves that are 

rolled within a low growing ~0.1-0.3 m thatch in a “cow lick” pattern (Tiner 1987).  All of these 

vegetation attributes are likely to contribute to lidar error, while leading to point clouds that are 

difficult to distinguish visually from bare-earth surfaces.   

Notwithstanding the contributions of previous research, there is a need to better 

understand the factors affecting the vertical uncertainty of lidar data in salt marshes, such that 

coastal scientists and managers can make informed decisions related to:  a) when and how to use 

lidar data in salt marsh research, b) restoration planning, and c) sea-level rise studies. This study 

addresses this need, using lidar data and RTK GNSS ground truth, for four salt marshes on Cape 

Cod, Massachusetts. Variables investigated include: season (specifically, temporal differences 

between peak growth and senescent conditions), vegetation species, and lidar processing 

(interpolation and filtering) method.  

Another important aspect of this study is the use of full-waveform lidar, which records a 

time-series of backscattered signal strength for each laser pulse.  Received signal strength is a 

function of the peak transmitted pulse power, the fraction of the pulse intercepted by a surface, 

the reflectance of the intercepted surface, the angle of incidence, and the fraction of the pulse that 

is returned in the direction of the sensor.  Since vegetation, soil and other objects have a rough 

surface at near infrared (NIR) wavelengths, targets scatter energy, only some of which returns to 

the sensor (Wagner et al. 2008) (Figure 4.1).  Full-waveform data can better characterize canopy 

structure (Drake et al. 2002; Lefsky et al. 2002b; Anderson et al. 2008) allowing the user to 

detect the vertical distribution of targets, and has been shown to improve range resolution 

(Mallet and Bretar 2009).  Salt marsh canopies typically range from 0.1 – 2.0 m depending on 
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species type and salinity regime and latitude.  These heights are often less than the transmitted 

laser pulse width of the lidar system (converted from a temporal duration to a corresponding 

round-trip distance in air) and resolving threshold for discrete-return lidar (DRL) (Schmid et al. 

2011).  Therefore, full-waveform systems may allow for analysis and feature discrimination at a 

level of detail not possible with DRL systems.  

Techniques for working with full-waveform that are discussed in the literature typically 

involve sophisticated, computationally-complex signal processing approaches such as 

deconvolution and decomposition (Jutzi and Stilla 2006). Only a few studies have been 

conducted on the use of simple feature-based waveform metrics (Adams et al. 2012; Muss et al. 

2013; Parrish et al. 2014; Rogers et al. 2015).  In this study, simple shape-based waveform 

features are used to create relative uncertainty surfaces (RUS) and assess spatial variation in 

elevation uncertainty throughout the marsh.  These spatial assessments of uncertainty assist in 

answering the following types of questions: 1) where within the marsh are the elevations most 

reliable or suspect; 2) do the areas of high (or low) uncertainty overlap areas of particular 

concern, such as species transitions or critical habitat; and 3) if resources were available to 

support acquisition of GNSS reference data within only a portion of the marsh, where should 

these efforts best be concentrated to achieve the greatest improvement in the marsh elevation 

data?  Combined with the quantitative analysis of the DRL data, this information can assist 

coastal managers and scientists in more effectively utilizing lidar data of salt marshes.  

 

Methods 

Four separate mesotidal salt marshes on protected coasts of Cape Cod, Massachusetts, 

USA were investigated.  The marsh sites chosen contained representative stands of the dominant 
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plant species for the area (Spartina alterniflora Loisel, Spartina patens, Distichlis spicata, and 

Salicornia spp.) and were in close proximity of the marshes to each other, allowing field data to 

be collected within a specified time window around a lidar overflight.  The sites from north to 

south are Hatches Harbor marsh (1.2 km2), Moors marsh (2.0 km2), Pamet River marsh (2.0 

km2), and Great Island - Middle marsh (0.3 km2) (Figure 4.2).  The area has a semidiurnal tide 

with a mean range of ~2.83 m (NOAA 2013).  All the marshes surveyed in this study are largely 

Spartina alterniflora (smooth cordgrass) dominated low marsh environments with a sandy 

substrate.  Typically, there is a small border of high marsh located at the upland border 

dominated by Spartina patens (salt marsh hay), Distichlis spicata (spike grass) and Salicornia 

spp. (glasswort) (Portnoy et al. 2003) (Figure 4.3).  At two of the sites, Pamet River and Great 

Island, a large segment of the marsh appears to be in collapse, exhibiting extensive areas of bare 

ground due to a form of marsh wasting (Smith 2009).  

The salt marsh vegetation in the study sites were characterized by homogeneous, near 

monoculture stands for three major species and one genus (Spartina alterniflora, Spartina 

patens, Distichlis spicata, and Salicornia spp.). The vegetation demonstrated zonation patterns 

which are driven by small scale elevation changes and edaphic conditions (Bertness and Ellison 

1987).  Within an individual vegetative community, variability in growth habit and height was 

also common.  Spartina alterniflora had three distinct variations or ecophenes observed at these 

sites and other marshes caused by edaphic factors: 0-50 cm (short form [SF]); 50-100 cm 

(medium form [MF]); and >100 cm (tall form [TF]) (Reimold et al. 1973; Anderson and 

Treshow 1980; Ornes and Kaplan 1989; Wiegert and Freeman 1990; Pennings and Bertness 

2001; Hladik and Alber 2012).  Tall-form typically grew along estuarine creeks with semidiurnal 

flooding and exceeded 2 m in height in some locations.  In contrast, short-form was typically 
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found in high marsh areas with higher salinity, sulfide concentrations and/or lower redox 

potential (Mitsch and Gosselink 2000).   

 

Lidar Data Collection 

The National Center for Airborne Laser Mapping (NCALM) collected 37 km2 of lidar 

data for this study on July 20th, 2010 during peak biomass at the daily predicted low tide (± 90 

minutes).  The instrument used was an Optech GEMINI Airborne Laser Terrain Mapper 

(ALTM) and an Optech 12-bit IWD-2 intelligent waveform digitizer mounted in a twin-engine 

Cessna 337 Skymaster (see flight parameters in Table 4.1).  The DRL points were collected via 

the Optech hardware-based ranging system comprised of a constant fraction discriminator and 

time interval meter.  Return waveforms were digitized with a 1 ns sampling period and provided 

in Optech’s NDF binary format with an IDX index file.  The sites investigated in this research 

contained low growing marsh vegetation, “bare earth” and water and did not include trees, 

buildings, or other structures.  Therefore, the data were almost entirely composed of single 

returns (Rogers et al. 2015).  Elevations were initially transformed to NAVD88 using GEOID03 

and later updated using GEOID09 with NOAA’s Vertical Datum Transformation (VDatum) 

version 3.2 (NOAA NGS’s latest geoid model, GEOID 12a, did not become available until after 

the majority of the data processing for this study was completed.) 

Additionally, data were used from the lidar for the North East Project funded primarily 

by the American Recovery and Reinvestment Act (ARRA) of 2009 and led by the United States 

Geological Survey (USGS).  These data were collected for all of Cape Cod on May 5, 2011 

under senescent conditions and 9 months after the NCALM flight.  The lidar data were acquired 

with an Optech GEMINI ALTM during predicted spring low tides (± 90 minutes) at an altitude 
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of 1,000 m AGL, a pulse rate of 100 kHz with an average nominal post spacing of 0.45 m, and 

spot illumination size of 0.23 m (Table 4.1).  The data were collected and processed by the 

provider to meet a vertical accuracy of RMSEz of 9.25 cm in the "open terrain" land cover class, 

and elevations were referenced to NAVD88 using GEOID09. 

 

Field Data Collection 

A detailed set of 3,446 ground-control points (GCPs) was established in various zones 

that included tidal sandflats, low marshes, and high marshes.  Additionally, hard surfaces such as 

roads and parking lots in close proximity to the marshes were surveyed to analyze for overall 

lidar dataset accuracy.  Marsh surface elevations and hard target ground elevations were 

collected with a Trimble NetR5 base station network with cellular-based correction and a 

Trimble R8 Model 3 Real Time Kinematic (RTK) GNSS rover.  Special care was needed to 

ensure vertical accuracy when using the rover unit in marsh environments (Torres and Styles 

2007).  A survey antenna rod was modified with a 12 cm diameter flat base to prevent the rod 

from sinking into the unconsolidated mud and peat.  Ground elevations were recorded in 

arbitrary transects through the marsh with the average point density of 5-7 per m2.  The 

equipment manufacturer specifies the RTK-GPS rover mode provides an RMSE of < 1 cm in the 

horizontal and 2 cm in the vertical.  All collected elevations were referenced to NAVD88 using 

GEOID09 (the same geoid model used with the lidar data).  At most of the locations, dominant 

vegetation species and vegetation heights were logged (where vegetation was present) for later 

comparisons with the lidar dataset.  The field data collected by the RTK GNSS were periodically 

checked to verify that accuracy standards were maintained.  Elevation of a known benchmark 

was surveyed with the same Trimble device for comparison and occupied for >4 hours for a full 
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OPUS solution.  Also, temporary benchmarks were established by occupying the same, hard 

surface locations several times throughout the field day and the residuals were calculated to 

compare any variations found in the coordinates.  Each elevation residual (or individual “vertical 

difference” or “vertical error”) ΔZ was calculated as: 

 
∆𝑍𝑖 = 𝑍𝑙𝑖𝑑𝑎𝑟 − 𝑍𝐺𝑃𝑆    [1] 

 

The sample standard deviation (the spread of the elevations about the mean) for the repeatedly 

RTK GNSS surveyed temporary benchmark was determined to be 0.006 m.  RTK GNSS 

measurements for the surveyed benchmark with OPUS elevation solution were determined to 

have an RMSEz of 0.006 m.  The vertical root mean square error is given by the following 

equation: 

𝑅𝑀𝑆𝐸𝑧 = �∑ (∆𝑍𝑖)2𝑁
𝑖=1

𝑁
   [2] 

 

Discrete-Return Lidar Processing 

NCALM provided as part of its data deliverable a LAS file of last return lidar points and 

a “bare-earth” grid, with point classification performed in TerraSolid TerraScan software.  Upon 

visual inspection of the “bare-earth" grid, the filtering method for ground appeared too 

aggressive with large sections of a 14 m wide by 1.6 km long stone dike completely decimated 

(Figure 4.4).  This issue may have any number of causes and is likely a result of specific 

parameter settings.  However, because complete control was needed over the gridding and 

filtering process and those software settings could not be altered, this data deliverable was not 

chosen as the sole source for analysis.  Discrete lidar return data from both temporal datasets 

were preprocessed using QPS Fledermaus 7.43 from the original LAS point cloud data.  Data 
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evaluation and cleaning were performed using the PFM 3D point cloud editor to remove artifacts 

and erroneous or non-natural points that could influence the ΔZ or gridding results.  After 

cleaning, the point clouds were converted to raster grids with 1 m2 pixel size using several 

different algorithms, (inverse distance weighted [IDW] 1x, IDW 3x, minimum bin, maximum 

bin).  IDW 1x used an inverse distance weighted average of only the points that fell within the 1 

by 1 m cell, while the IDW 3x used a weighting of all lidar returns within a 3 by 3 m grid area 

surrounding the target cell.  The IDW 1x method provides a better estimate of the value of each 

pixel based on the available lidar returns without any influence of the surrounding points, while 

IDW 3x method smooths the data slightly and suppress high-frequency noise.  The minimum bin 

and maximum bin filtering methods use the lowest or highest value of all the lidar returns found 

in the grid cell size and ignores all other values in the cell.  Data were then imported into ESRI 

ArcGIS 10 for point feature and grid based analysis using Spatial Analyst.   

Overall lidar relative accuracy was evaluated using hard surface control data collected 

with the RTK GNSS on flat surfaces such as roads and parking lots  (Rosso et al. 2005; Sadro et 

al. 2007).  These surfaces should provide the best lidar return, produce minimal scatter, and will 

not be influenced by variable conditions such as overlying vegetation or soil moisture content.  

Elevation residuals (ΔZ) were calculated for all hard surface points (n = 101) and then the mean 

was used to obtain estimates of lidar bias (Latypov 2002; Brovelli et al. 2004; Rosso et al. 2006) 

(Figure 4.5).  Lidar bias is defined as the mean elevation residual: 

µ𝑙 = ∑ ∆𝑍𝑖𝑁
𝑖=1
𝑁

  [3] 
 

It is important to note that, due to how elevation residual is defined (Eq. 2), a positive bias 

indicates that the lidar elevations are generally above (i.e., higher than) the reference elevations. 

In this study it was found that the lidar underestimated the RTK GNSS elevations of hard 
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surfaces with a bias of -0.087 m and -0.044 m for the NCALM and ARRA datasets respectively 

(Table 4.2).  Accuracies between flights were calculated from the same hard target data points to 

determine any global bias that may prevent an accurate assessment.  The non-vegetation-induced 

bias was then removed to allow for unbiased comparisons between flights (Rosso et al. 2006) 

and the field collected elevations.  After non-vegetation-induced bias removal, the salt marsh 

vegetation was analyzed in a similar manner looking at differences between lidar derived 

elevation grids, surveyed ground elevations (n = 2,898) and field collected information such as 

vegetation species or plant height.  All regressions and Pearson correlations reported in this 

paper are significant with a p < 0.05 unless otherwise noted. 

 

Relative Uncertainty Surfaces 

Lidar waveforms were extracted by developing a custom workflow using ArcGIS, 

QCoherent LP360 and MATLAB to compute waveform shape-related metrics.  Extending 

previous work (Parrish et al. 2014; Rogers et al. 2015), the ability to create relative uncertainty 

surfaces (RUS) from features computed from lidar waveforms was evaluated.  This process 

entailed first computing lidar echo width and for each lidar point within each marsh.  The 

regression equations obtained from the best-fitting regressions of lidar residuals (ΔZ) on 

waveform features developed in Parrish et al. (2014) were then applied to every lidar waveform 

return within a subset of the project sites.  The equation used was as follows with w representing 

waveform width (full width half maximum [FWHM]) and µw representing waveform mean (a 

measure of the center of the return pulse): 

 

∆𝑍� = f ∙ x [4] 



 89 

 

where x = [1 𝑤 𝜇𝑤 𝑤 ∙ 𝜇𝑤]𝑇 and f = [9.0696 −0.6419 −0.3055 0.0207]𝑇 for 

Moors Marsh and f = [2.3250 −0.1726 0.0334 −0.0029]𝑇 for Pamet Marsh.  The output 

was scaled to an arbitrary range of 0-1 (with 1 representing the highest relative uncertainty), 

interpolated to a regular grid (1 m grid spacing) using an inverse distance weighting (IDW) 

interpolation, and imported into an ArcGIS project containing imagery and other data layers for 

visual analysis.  The reason for scaling to the arbitrary range [0 to 1] is to emphasize that the 

intended use of these RUSs is to visually analyze spatial variation in relative uncertainty across a 

marsh, rather than to determine an exact value of ΔZ (with physically-meaningful units, such as 

meters) at a particular geographic location.  The RUS grid was then lowpass filtered (using a 3x3 

lowpass filter in the spatial domain) to remove high frequency noise and produce a smoother 

grid.  This process workflow is illustrated graphically in Figure 4.6.   

 

Results 

Vegetation-induced bias was investigated across all four marsh sites using a comparison 

of 2,648 field RTK GNSS measurements with lidar derived elevations from the July 20th, 2010 

NCALM dataset.  The reason for focusing on primarily on bias, rather than on standard deviation 

and/or RMSEz, is that previous studies (Populus et al. 2001; Morris et al. 2005; Torres and Styles 

2007; Schmid et al. 2011; Hladik and Alber 2012) have shown that salt marsh vegetation 

introduces errors in lidar data that are generally systematic (i.e., a high bias), rather than random.  

However, an important component of the analysis included also computing the standard 

deviation and RMSEz for each site and verifying that the following relationship is satisfied for 

large sample sizes: 



 90 

 

RMSEz
2 ≈µ2 + σ2  [5] 

where µ is the bias and σ is the standard deviation.  

 

Discrete-Return Lidar Uncertainty Analysis 

Several different gridding interpolation and filtering methods were assessed on the 

NCALM dataset for their effectiveness in producing accurate ground estimates.  However, all 

methods evaluated in this study produced DEMs with still significant positive bias.  Using one of 

the most common interpolation methods, IDW, with a weight of 1 cell, it was found that the lidar 

measurements exhibited a positive bias of 0.14 m (σ = 0.17 m) over the ground control data 

(Figure 4.7).  When separated by species type, most of the overall vegetation bias could be 

attributed to Spartina alterniflora with an observed bias of 0.23 m (σ = 0.2 m) (Table 4.3).  

Using an IDW 3x (interpolation with a weight of 3x3 cells) did not produce significant 

differences from the IDW 1x results.  The Terrascan filtered grid exhibited a modest 

improvement over the IDW method with a positive bias of 0.11 m (σ = 0.14 m) (Figure 4.8).  A 

species-based review of the Terrascan grid was similar in its results with a majority of the overall 

bias attributed to Spartina alterniflora.  Spartina alterniflora always appears to have the highest 

bias, regardless of the processing method used. 

The final methods evaluated were minimum and maximum bin filtering of the LAS data 

where the lowest or highest elevation reading in a defined grid cell, in this case 1 m2, is used and 

all other values that occur in that grid cell are ignored.  As in Schmid, Hadley and Wijekoon 

(2011), the minimum bin method generally improved results over the IDW method reducing 

some positive data drift above the 1:1 correlation line to lower the overall bias to 0.09 m (σ = 
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0.15 m) (Figure 4.9).  However, it increased the number of negative residuals but decreased the 

standard deviation.  It was initially anticipated that: a) maximum bin would provide a 

determination of vegetation height, and b) the difference of maximum bin and minimum bin 

would have a correlation with bias.  However, no strong relationships were found to support 

these assumptions.   

The ARRA May 5th, 2011 dataset was also evaluated with the same gridding and filtering 

methods with the exception of Terrascan, which was unavailable.  This dataset represented leaf-

off conditions with the marsh in its least vegetated state.  As expected, this dataset was much 

improved over leaf-on conditions with overall bias of 0.04 m (σ = 0.06 m) (Figure 4.10).  It is 

interesting to note that the Spartina patens and Distichlis spicata were now the two species with 

the largest bias.  Using the minimum bin approach on this dataset further reduced the overall bias 

but increased the standard deviation.   

The results of the NCALM dataset at individual marsh sites are generally consistent with 

the overall lidar bias described above and are presented in Table 4.4.  Using the IDW 1x 

interpolation method, the NCALM dataset had a range of bias in vegetated areas of 0.10 to 0.22 

m across all sites.  Spartina patens, Distichlis spicata, and Salicornia (sp) had biases very 

consistent with the overall bias (i.e., the mean across species).  However, Spartina alterniflora 

demonstrated the most variation with a site specific range from 0.16 m to 0.35 m.  Results from 

the ARRA early season flight appear to be more varied and inconsistent at the marsh level than 

the peak season dataset (Table 4.5).  There appeared to be fewer patterns of bias for individual 

species.  At this early season flight date Spartina patens, Distichlis spicata, and Salicornia (spp) 

appear to produce larger bias than Spartina alterniflora. 
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Overall bias and standard deviation are summary statistics frequently reported to quantify 

the error of lidar data sets, but observing frequency of residuals reveals a distribution of lidar 

error unique to each species surveyed (Figure 4.11).  Three of the four target species had 

unimodal distributions, while one, S. alterniflora, was clearly multimodal.  Due to its three 

distinct ecophenes, each distribution was also plotted.  The short-form S. alterniflora residual 

distribution had a bias of 0.12 m (σ = 0.12 m) (n = 509).  It has a similar peak as the other shorter 

species but with a slightly longer tail.  The medium-form S. alterniflora exhibited a bias of 0.23 

m (σ = 0.17 m) and also had an extended tail towards higher residuals (n = 530).  Lastly, the tall-

form S. alterniflora showed a broad distribution with a bias of 0.41 m (σ = 0.21 m) (n = 349). 

The role of vegetation height as a source of lidar bias was likewise examined.  The mean 

height for all vegetation at 2,648 RTK GNSS locations was 0.46 m (σ = 0.38 m), with a 

minimum height of 0.02 m and a maximum recorded height of 1.95 m.  Spartina alterniflora was 

significantly taller than the three other major species present in these marshes (Table 4.6).  The 

mean height for Spartina alterniflora (short, medium and tall forms combined) was 0.68 m (σ = 

0.38 m), with a minimum height of 0.03 m, a maximum height of 1.95 m.   Lidar residuals (the 

difference between the NCALM IDW 1x grid and RTK GNSS elevation), plotted with the 

recorded vegetation heights at the same locations exhibited an r2 = 0.49 (n = 2,648) (Figure 

4.12).  A regression of only the S. alterniflora locations exhibited an r2 of 0.36 (n = 1,473).  The 

bias to height ratio (the mean of the ratio of lidar residuals to vegetation heights) was calculated 

for each species and represents the amount of lidar bias as a function of the vegetation height.  

The overall bias to height ratio was 34% for all vegetation species at the four field sites.  Three 

of the individual species surveyed, Spartina alterniflora, Spartina patens, and Distichlis spicata, 
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had a bias to height ratio of 35%, while Salicornia (spp) was observed to have a lower ratio of 

25%. 

 

Temporal Analysis 

To look at the effects of seasonal vegetation growth on the lidar accuracy, a comparison 

of the May 2011 lidar data with the July 2010 dataset was conducted at the same 2,810 ground 

control points.  It was assumed prior to data collection that the July data set, acquired at peak 

vegetation conditions, would display increased elevation bias over the near-senescent early May 

flight.  The results support this assumption, with the July dataset displaying an overall increase in 

bias of 0.1 m (Table 4.7).  A graph of this comparison exhibits a strong positive bias above the 

1:1 correlation line (Figure 4.13). When evaluated by species, GCP locations where Spartina 

alterniflora was dominant exhibited the most significant increase in elevation bias of 0.18 m.  

However, very little change or slight negative change was observed for the other high marsh 

species surveyed. 

To qualitatively and quantitatively evaluate change due to growth/seasonal variation, a 

difference map was created by subtracting the grid of the May flight from the July flight (Figure 

4.14) producing a visual representation of the changes occurring across the marsh. Overall, there 

was a net positive increase in marsh elevations as recorded by the DRL system.  Clear patterns of 

tall vegetation near the tidal channels and in the lowest reaches of the marsh are evident and 

correspond with the distribution of Spartina alterniflora observed during fieldwork and with 

aerial photography.  These areas of intense change ranged up to 1 m in height in tight 

concentrations.  Based on an analysis of 381,654 pixels of marsh surface in a subset of Moors 

marsh, the mean difference was 0.27 m (σ = 0.19 m) with a minimum of -0.34 m, maximum of 1 
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m (Figure 4.15).  It is interesting to note that there were very few pixels that indicated a negative 

change between leaf-on to leaf-off conditions within the marsh subset analyzed.  The presumed 

underlying cause of the temporal change is the growth of the vegetation.  Evaluating the grid 

difference with the field measured vegetation heights exhibited a correlation with an r2 = 0.59 (n 

= 789) (Figure 4.16).  However, a comparison between observed lidar residuals (ΔZ = IDW 1x – 

RTK GNSS) with the difference between the ARRA May 5th, 2011 and the NCALM July 20th 

2010 lidar flights for the Moors marsh site had an r2 = 0.91 (n = 785) (Figure 4.17) indicating 

that the residuals are indeed associated with areas of taller vegetation. 

 

Relative Uncertainty Surfaces 

The next step in this study was to build upon previous work using lidar waveform 

feature-based metrics as they relate to both vertical uncertainty and vegetation height (Parrish et 

al. 2014; Rogers et al. 2015).  Using the regression equation above [4] from Parrish, Rogers and 

Calder (2014), each individual waveform was mapped to an uncertainty value and then 

normalized to a relative value between 0-1 before gridding.  The RUS were obtained in this 

manner for Moors marsh and Pamet marsh (Figure 4.18).  Qualitatively these maps display 

intricate detail as to the spatial variability in vertical error. Visual inspection of the RUSs 

indicated that the areas of greatest uncertainty correspond with distributions of MF and TF 

Spartina alterniflora.   

Several quantitative analyses were conducted on these uncertainty surfaces to determine 

how well they represent ground conditions.  The results of the RUS analysis are presented in 

terms of Pearson’s correlation coefficient (r) since the goal was to merely determine whether 

there were any relationships between the variables.  The first was a comparison between the 
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waveform relative uncertainty value and the discrete-return lidar residuals (ΔZ) at Pamet marsh, 

which exhibited a correlation of r = 0.86 (n = 271) (Figure 4.19).  As lidar residuals and 

vegetation height are assumed to be correlated, a comparison of the waveform uncertainty value 

and vegetation height was also conducted (Figure 4.20), which produced an r = 0.85 (n = 268).  

Lastly, the temporal analysis conducted between the July, 2010 and May 2011 flights produced a 

detailed difference map attributable to seasonal vegetation growth.  A subset of this grid sharing 

the same spatial extent as the waveform RUS grid was produced and the values of waveform 

uncertainty and temporal difference for each grid cell were compared.  This procedure created a 

database of 380,024 values, which when plotted was extremely difficult to interpret visually, due 

to tens of thousands of points plotting on top of one another.  To refine the results to an 

interpretable graph, a random subset of 2,000 points was extracted (Figure 

4.21).  The overall r was 0.82 (n = 380,024), and four individual subsets of 2,000 randomized 

points had r values of 0.81, 0.89, 0.82, and 0.86.   

 

Discussion 

Discrete Lidar Uncertainty 

Comparison of DRL with RTK GNSS ground-truth elevations yielded interesting, if not 

unexpected, results.  Overall, ground elevations were not well mapped in either the spring or fall 

flights by the lidar sensor within vegetated portions of the marsh.  However, the spring dataset 

resulted in measurements closer to ground (bias of 0.04 m, σ = 0.06 m) because senescent 

vegetation was flattened or removed over the winter.  A positive lidar bias of 0.14 m (σ = 0.17 

m) was observed in the vegetated salt marsh surfaces of the July flight (Table 4.3).  When 

individual vegetation species were separated, a majority of the bias can be attributed to just one 
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species during the July flight.  Spartina alterniflora produced a bias of 0.23 m (σ = 0.20 m), 

while the three other species in this study had a combined bias of approximately 0.05m (σ = 0.06 

m).  The vertical growth habit of Spartina alterniflora is very different from the other species 

surveyed, which are low growing matt-like plants with mean heights less than 0.22 m (Table 

4.6).  Spartina alterniflora was observed to grow vertically with stalks 4 – 5 cm apart and 0.2 – 

2.0 m in height with narrow, interlocking leaves near the top of the canopy.  This growth form 

appears to greatly impact lidar pulse returns (Rogers et al. 2015).  A regression of lidar residuals 

and recorded vegetation heights at GCPs exhibited a significant, but moderate coefficient of 

determination, r2 = 0.49.  The association is similar to that found by Schmid et al. (2011), and 

displayed significant scatter suggesting high variability within the vegetation and the possibility 

of other factors influencing the increased lidar residuals such as stem density, biomass density, or 

proportion vegetative area (PVA) [a measure of the cross-sectional area and the light obscuring 

properties of the vegetation] (Rogers et al. 2015). 

Using various gridding and filtering methods, it may be possible to improve the overall 

DEM quality and lower lidar bias.  For instance, using a minimum bin approach produced an 

improvement to overall lidar bias from 0.14 m (σ = 0.17 m) down to 0.09 m (σ = 0.17 m) when 

compared with the inverse distance weighting method for the July flight (Table 4.3).  This is also 

consistent with findings by Schmid et al. (2011), but minimum bin can have certain 

disadvangates.  For example, in the ARRA data in this study, minimum bin reduced the bias, but 

increased the standard deviation.  Additionally, in non-vegetated, open terrain areas, minimum 

bin often favors lowest points that are erroneous (these would normally have been ignored, 

filtered out, or averaged into a series of points within a grid cell).  Thus, minimum bin can 

produce poor results in areas such as mud/sand flats or steeper slopes of tidal streams (Schmid et 
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al. 2011).  There is a large difference of effectiveness of minimum bin between the shorter 

species and the taller S. alterniflora (Table 4.4).  Maximum bin filtering did not perform as well 

as was initially expected.  A strong correlation between the difference of maximum and 

minimum bin with either the field collected vegetation height or the observed lidar residuals 

would have been a strong case supporting the use of these methods as part of a DEM 

improvement strategy. 

Intuitively, it appears that without an effective correction technique to remove lidar bias 

from DRL datasets, minimizing bias in salt marsh environments requires that lidar flights should 

be coordinated during leaf-off, senescent conditions.  However, senesced vegetation from the 

previous growing season also appears to impact the DRL pulse returns (Table 4.3) (Schmid et al. 

2011; Hladik and Alber 2012).  Winter/early spring flights during senescent conditions are not 

always logistically feasible and in the case of storm assessments, coastal areas must be surveyed 

immediately.  Furthermore, in some locations such as in the southeastern United States, the 

vegetation does not fully senesce.  The May dataset, as a result of the season, had an overall lidar 

bias of 0.04 m, which was a 0.10 m reduction over the July dataset.  This reduction in bias is the 

direct result of the vegetation being dead and/or removed from the marsh.  These findings are 

consistent with those of other researchers (Morris et al. 2005; Montane and Torres 2006; Schmid 

et al. 2011).  Montane and Torres (2006) found senescent vegetation in a South Carolina to have 

an overall bias of approximately 0.07 m.  Another consideration is that when surveying colder 

northern climates is the impact of heavy winter snow/ice that can be present on the marsh 

surface. The weight of the snow/ice sometimes compress or strip the vegetation (i.e, Spartina 

alterniflora stalks) to the ground line (Ewanchuk and Bertness 2004).  In addition, ice can even 
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temporarily depress the marsh surface (Argow and Fitzgerald 2006) or permanently alter marsh 

surface elevations by rafting vegetation/sediment (Redfield 1972; van Proosdij et al. 2006).       

This research shows changes in DEM surfaces derived from DRL between senescent and 

peak-growth conditions, leading to detailed maps of growth-induced bias (Figure 4.14).  This 

finding further supports DRL flight planning during senescent marsh conditions.  The Moors 

marsh difference surface exhibited significant correlation to vegetation height and lidar residuals 

during the July flight.  It seems natural that seasonal variations in elevation detected by DRL 

would be related to observed lidar residuals and vegetation heights.  Yet even more interesting 

was the difference surface’s strong relationship with the observed lidar residuals (r2 = 0.91) 

compared to the difference surface plotted vs. vegetation height (r2 = 0.59).  A correlation of 

lidar residuals directly with vegetation height across all four marsh sites only yielded an r2 of 

0.49.  Previous research has suggested that lidar bias may correspond to roughly half the canopy 

height of a given vegetation class (Populus et al. 2001) or that vegetation height alone was not 

enough to explain positive bias and that vegetation density also plays a role (Gopfert and Heipke 

2006).  Schmid et al. (2011) suggested that the product of percent coverage (amount of the 

ground covered by vegetation) with vegetation height was a better correlation with lidar bias than 

strictly height.  As demonstrated in this study by an overall bias to height ratio of 34%, the lidar 

bias appears to be less than the half of the canopy height estimate provided by other researchers.  

This is despite the data being collected during peak-growth conditions where previous 

researchers were working with senescent vegetation datasets.  Even with a high PRF (pulse 

repetition frequency) of 125 kHz (Hladik and Alber 2012) and a  small footprint lidar, poor lidar 

penetration is achieved with potentially less than 3% of lidar returns from the ground surface 

likely to be recorded (Wang et al. 2009).  The lower r2 value found for seasonal difference to 
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vegetation height as compared with temporal difference surface’s strong relationship with the 

observed lidar residuals suggests that some other parameters such as planimetric obscuration 

(percent coverage) or biomass density must also influence lidar penetration and pulse return 

(Schmid et al. 2011; Rogers et al. 2015).   

 

Relative Uncertainty Surfaces 

In previous studies, simple, shape-related lidar waveform metrics were found to be 

predictive in estimating uncertainty and salt marsh biophysical parameters (Parrish et al. 2014; 

Rogers et al. 2015).  Waveform features such as width and amplitude had significant correlations 

with lidar uncertainty, vegetation height, planimetric obscuration, and Proportion Vegetation 

Area (a ratio of the vertical obscuration [%] to  the cross-sectional area of the measurement) 

(Rogers et al. 2015).  In fact, waveform amplitude and waveform standard deviation accounted 

for nearly 75% of the variability in vegetation height (Rogers et al. 2015).  The insights from 

those studies led to the creation of the RUSs.  As noted earlier, the motivation for describing 

these surfaces as “relative” and recording grid values using an arbitrary, unitless scale of 0-1, as 

opposed to reporting either estimated residuals or standard uncertainty values in units of meters, 

is to avoid overstating the ability to predict elevation uncertainty from the waveform features.  

Research showed that the waveform features used to generate these surfaces were successful, on 

average, in predicting close to 60% of the total variation in DRL residuals across marshes 

(Parrish et al. 2014).  That analysis indicated that the strength of residual prediction is sufficient 

for creating the RUS qualitative product shown in Figure 4.18, which provides a visual 

representation of the general variation of lidar uncertainty across the marsh.  However, if the 

term “relative” were to be dropped and individual pixel values were assigned physically-
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meaningful residual units (e.g., meters), there may be a tendency to misuse these data layers by 

placing too much faith in the exact value recorded at an individual pixel.  Further research needs 

to be conducted using waveform feature metrics before more confidence can be given to these 

grids for project planning requiring highly accurate residual estimates. 

Attempts were made at analyzing and interpreting the RUSs by comparing them to 

independently collected field data.  The waveform uncertainty value correlated well with the 

discrete-return lidar bias and vegetation height.  Also, the RUS displayed strong correlation with 

the temporal difference (∆𝑍𝑡) between the July and May flights.  The RUS surface is a strong 

indicator of lidar bias and can be used for qualitative analysis.  Tall-form and medium-form 

ecophenes of Spartina alterniflora with vegetation height ranges of 0.5 – 2.0 m corresponded 

well to the higher values in the RUS.  It appears likely that the waveform characteristics 

implemented in the RUS could be used to detect and map the boundary between high and low 

marsh environments with some degree of accuracy, since that boundary represents not only a 

change in vegetation species but also height.  A qualitative product such as RUS can help plan 

projects even if exact uncertainty is not known or surface correction is not possible.  For 

instance, identifying areas within the marsh where the elevations are the most reliable or 

potentially suspect could guide attention and resources to only the areas that require it.  RUS 

might target field data collection, GNSS acquisition efforts, estimate vegetation height, or 

correlate with critical wildlife habitat and specific vegetation species of interest.   RUSs may also 

be used to quickly identify and monitor locations of change within the marsh since areas of 

higher uncertainty should be related to vegetation height, which in most cases will imply changes 

in inundation frequency.  Increased inundation could be a result of SLR or may also represent 

areas that are subsiding due to other factors.  MF and TF S. alterniflora have been shown to 
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correlate with RUS and grow at elevations optimal for that species (Morris et al. 2005).  If areas 

on the high marsh platform, which normally is populated by S. patens, suddenly begin to exhibit 

high RUS values, then further investigation would be necessary to determine the potential cause. 

In previous studies, various attempts have been made to understand salt marsh lidar bias 

and improve the lidar produced DEM through interpolation method, point cloud filtering, or 

classification (Morris et al. 2005; Rosso et al. 2006; Torres and Styles 2007; Wang et al. 2009; 

Schmid et al. 2011).  In addition there have been several innovative approaches to DEM 

correction using vegetation mapping, both field and hyperspectral, and the determination and 

removal of constant, species-based mean correction values (Hladik and Alber 2012; Hladik et al. 

2013).  However this method, although an improvement on previous correction attempts, is 

ultimately limited because it assumes 1) a priori knowledge of species location, which is usually 

unavailable, woefully inaccurate, or requires additional sensors, processing and interpretation 

that add to cost, time and introduced errors; and 2) that each vegetation species requiring a DEM 

correction has a constant correction factor across its entire extent.  As evidenced in this paper 

and visually presented in Figure 4.11, different marsh species, in particular the often spatially 

dominant S. alterniflora, have different ranges of bias that fall in a continuous distribution rather 

than a constant.  This range of bias is presumably influenced by vegetation height, stem density, 

planimetric obscuration, biomass density, and growth habit (Schmid et al. 2011; Hladik and 

Alber 2012; Rogers et al. 2015).  Using full-waveform lidar datasets, such as those used to create 

the RUS products, allows an interpretation of the uncertainty based on a spectrum of results 

rather than a constant.  Future work will attempt to exploit the full-waveform’s enhanced 

information and capabilities to develop new correction methods. 
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Conclusion 

Vegetation-induced lidar uncertainty continues to be a challenge to researchers and 

coastal managers wanting to use lidar for fine topographic analysis in salt marshes.  As in other 

environments, lidar uncertainty varies as a function of the terrain and vegetation cover type.  The 

following conclusions can be drawn from this investigation: 1) DRL returns in salt marsh 

environments include positive bias regardless of flight capture season.  Positive lidar bias of 0.14 

m (σ = 0.17 m) was observed across all survey locations in the peak vegetation dataset.  A 

majority of the bias can be attributed to just one species, Spartina alterniflora; 2) custom 

interpolation and filtering techniques such as minimum bin may improve overall accuracy but 

can introduce additional errors, potentially creating negative bias considerations while not 

addressing a majority of the species-specific bias; 3) different marsh species have diverse ranges 

of bias that fall in a continuous distribution of residuals rather than a constant value.  While most 

species observed in this study have unimodal distributions, S. alterniflora has a multimodal 

distribution as a result of its three distinct ecophenes.  This multimodal distribution complicates 

currently developed correction techniques; 4) temporal measurements of change in vegetation-

induced-bias between peak and senescent growth conditions are possible from lidar datasets.  

This finding further supports DRL flight planning during senescent marsh conditions and the 

ability of the sensor to discriminate small vegetation-induced elevation changes; 5) waveform 

feature metrics can be used to create RUSs that are useful to predict regions of variable 

uncertainty that can be confidently used for targeted ground truth or other field work activities. 

The results of this study suggest that it may be possible to achieve at least a coarse 

understanding of lidar bias across an entire marsh from analysis of the lidar data alone without 

the a priori knowledge of vegetation species location.  RUS maps can be used to minimize the 
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amount of expensive, time-consuming field work, target specific habitats or possibly monitor 

marsh change over time as it may relate to SLR and restoration initiatives.  Achieving this goal 

will require further research to extend analyses to marshes in different regions of the country 

with differing vegetation species and further develop a correction technique using full-waveform 

feature-based uncertainty surfaces to improve lidar accuracy in salt marsh environments. 
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Figures and Tables 
 

 

Figure 4.1:  Lidar flight over a salt marsh.  Black dotted line is ground measured with a 
RTK GNSS. Black dashed line is discrete lidar data returns of “ground.”  Also shown is the 
transmitted lidar pulse, T0, and the single pulse full-waveform returns based on the 
intercepted terrain and cover for three selected locations (arrows).  
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Figure 4.2: Site locus map and RTK GNSS points.  Insets are 1) Hatches Harbor, 2) Moors 
marsh, 3) Pamet marsh, and 4) Great Island – Middle marsh.   

 
 

Table 4.1:  Flight parameters of NCALM July 20th, 2010 and ARRA May 5th, 2011. 

Flight Parameter NCALM ARRA 
Flying Speed (m/sec) 60 54 
Altitude (m) 600 1371 
Swath Overlap (%) 50 30 
Laser Beam Divergence (mrad) 0.25 0.25 
Pulse Rate Frequency (kHz) 70 145 
Transmit Pulse Width (ns) 12 12 
Scan Rate (kHz) 40 54 
Scan Angle (degrees) ± 21 ± 28 
Point Density (pts/m2) 5.00 3.93 

Laser Footprint Diameter (m) 0.15 0.28 
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Figure 4.3: Hatches Harbor - Spartina alterniflora and Salicornia spp. zonation along a man-
made dike. 

 

                

Figure 4.4: (a) Terrascan classified ground elevation grid of Moors marsh delivered from by 
the lidar provider.  (b) IDW (1 cell weighting) grid produced from the LAS data of last 
returns.  The 14 m linear stone dike is largely absent from the provided terrascan grid likely 
due to program settings. 

Spartina alterniflora 

Salicornia spp. 

(a) (b) 
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Table 4.2: Hard target difference (m) between lidar measurement on pavement and RTK 
GNSS (n = 101) for each lidar flight. 

 

  NCALM ARRA 
Mean -0.087 -0.044 
Min -0.250 -0.243 
Max 0.128 0.200 

StDev 0.072 0.102 
RMSEz 0.113 0.110 

 

  

 
Figure 4.5: Scatter plot of RTK GNSS elevation against NCALM lidar elevation NAVD88 (n 
= 101) on hard targets (pavement).  Solid line is a 1:1 correlation where the dashed best fit 
line has the same slope but is offset by a mean difference of -0.087 m. 
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Figure 4.6: Workflow diagram for generation of relative uncertainty surfaces (RUS). 
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Table 4.3 –Difference (m) of Lidar and RTK GNSS by gridding method across all sites (all 
measurements in meters)  
 

 
 

 
 

Grid Method Species N Mean Min Max Stdev RMS
All Vegetation 2648 0.14 -0.34 1.12 0.17 0.22
S. alterniflora 1390 0.23 -0.34 1.12 0.20 0.30
S. patens 709 0.05 -0.24 0.21 0.06 0.07
Distichlis spicata 136 0.06 -0.06 0.15 0.04 0.07
Salicornia spp. 413 0.05 -0.13 0.33 0.06 0.08

All Vegetation 2648 0.14 -0.22 1.13 0.17 0.22
S. alterniflora 1390 0.22 -0.22 1.13 0.19 0.29
S. patens 709 0.05 -0.22 0.20 0.05 0.07
Distichlis spicata 136 0.06 -0.06 0.14 0.04 0.07
Salicornia spp. 413 0.05 -0.13 0.30 0.06 0.08

All Vegetation 2648 0.09 -0.57 1.03 0.15 0.18
S. alterniflora 1390 0.16 -0.57 1.03 0.18 0.24
S. patens 709 0.01 -0.28 0.19 0.06 0.06
Distichlis spicata 136 0.02 -0.10 0.10 0.04 0.05
Salicornia spp. 413 0.01 -0.23 0.26 0.06 0.06

All Vegetation 2648 0.11 -0.60 0.91 0.14 0.18
S. alterniflora 1390 0.18 -0.60 0.91 0.17 0.25
S. patens 709 0.04 -0.11 0.20 0.04 0.06
Distichlis spicata 136 0.05 -0.07 0.12 0.04 0.06
Salicornia spp. 413 0.04 -0.13 0.28 0.05 0.07

All Vegetation 2648 0.04 -0.50 0.29 0.06 0.08
S. alterniflora 1390 0.04 -0.50 0.29 0.06 0.07
S. patens 709 0.06 -0.27 0.23 0.07 0.09
Distichlis spicata 136 0.09 -0.03 0.17 0.04 0.10
Salicornia spp. 413 0.01 -0.20 0.23 0.05 0.05

All Vegetation 2648 0.02 -1.40 0.23 0.10 0.10
S. alterniflora 1390 0.02 -1.12 0.23 0.08 0.08
S. patens 709 0.02 -1.40 0.23 0.12 0.12
Distichlis spicata 136 0.06 -1.33 0.18 0.13 0.14
Salicornia spp. 413 -0.01 -1.07 0.21 0.10 0.10

ARRA 5/5/11 
Minimum Bin

NCALM 
7/20/10   
IDW1x

NCALM 
7/20/10   
IDW3x

NCALM 
7/20/10   

Minimum Bin

NCALM 
7/20/10 

Terrascan 
Ground

ARRA 5/5/11 
IDW1x
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Figure 4.7: Scatter plot of RTK GNSS to NCALM July lidar elevations NAVD88 across all 
four marsh sites using the IDW 1x grid (n = 2,805).  Spartina alterniflora is represented by an 
open circle and all other species are represented by closed circle. The solid line represents 
1:1 correlation.   
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Figure 4.8: Scatter plot of RTK GNSS to NCALM July, Terrascan ground filtered lidar 
elevations NAVD88 across all four marsh sites using the IDW 1x grid (n = 2,805).  Spartina 
alterniflora is represented by an open circle and all other species are represented by closed 
circle. The solid line represents 1:1 correlation. 
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Figure 4.9: Scatter plot of RTK GNSS to NCALM July lidar elevations NAVD88 across all 
four marsh sites using the Minimum Bin grid (n = 2,805). Spartina alterniflora is represented 
by an open circle and all other species are represented by closed circle. The solid line 
represents 1:1 correlation.   

 

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5 0.0 0.5 1.0 1.5 2.0

Li
da

r E
le

va
tio

n 
(m

) 

RTK GNSS Elevation (m) 



 113 

 
Figure 4.10: Scatter plot of RTK GNSS to ARRA May lidar elevations NAVD88 across all 
four marsh sites using the IDW 1x grid (n = 2,805).  Spartina alterniflora is represented by an 
open circle and all other species are represented by closed circle. The solid line represents 
1:1 correlation. 

 

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5 0.0 0.5 1.0 1.5 2.0

Li
da

r E
le

va
tio

n 
 (m

) 

RTK GNSS Elevation (m) 



 114 

 
Figure 4.11: Frequency of occurrence for lidar residuals by vegetation species using the IDW 
1x grid (n = 2,805) across all four marsh sites.  The thick solid line represents the combined 
total of all S. alterniflora ecophene residuals [SF - Short Form (<0.5 m), MF -Medium Form 
(0.5 - 1 m), TF - Tall Form (>1 m)].  
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Table 4.4:  Difference (m) of lidar and RTK GNSS by marsh for NCALM Flight 

 
 

 

 

 

 

 

 

 

 

 

N Mean Min Max Stdev RMS Mean Min Max Stdev RMS
Vegetation 532 0.11 -0.14 0.90 0.14 0.18 0.08 -0.23 0.90 0.14 0.16
Spartina alterniflora 271 0.16 -0.06 0.90 0.18 0.24 0.13 -0.08 0.90 0.17 0.22
Spartina patens 183 0.05 -0.06 0.17 0.04 0.07 0.02 -0.16 0.13 0.04 0.05
Distichlis spicata 57 0.07 -0.02 0.15 0.03 0.08 0.04 -0.05 0.10 0.03 0.05
Salicornia spp. 19 0.06 -0.05 0.21 0.06 0.09 0.03 -0.08 0.14 0.05 0.06

Vegetation 775 0.10 -0.24 0.55 0.11 0.15 0.05 -0.51 0.52 0.10 0.12
Spartina alterniflora 406 0.16 -0.14 0.55 0.11 0.20 0.10 -0.51 0.52 0.11 0.15
Spartina patens 121 0.02 -0.24 0.19 0.06 0.07 -0.02 -0.27 0.19 0.07 0.07
Distichlis spicata 57 0.07 -0.14 0.15 0.04 0.08 0.03 -0.23 0.10 0.05 0.06
Salicornia spp. 237 0.05 -0.13 0.18 0.05 0.07 0.01 -0.23 0.16 0.06 0.06

Vegetation 819 0.22 -0.34 0.96 0.20 0.30 0.15 -0.55 0.83 0.18 0.23
Spartina alterniflora 449 0.35 -0.34 0.96 0.18 0.39 0.26 -0.55 0.83 0.17 0.31
Spartina patens 294 0.05 -0.17 0.21 0.06 0.08 0.01 -0.28 0.19 0.06 0.06
Distichlis spicata 3 0.01 -0.02 0.03 0.03 0.02 -0.01 -0.03 0.01 0.02 0.02
Salicornia spp. 56 0.05 -0.20 0.30 0.06 0.08 0.01 -0.28 0.16 0.06 0.06

Vegetation 679 0.13 -0.23 1.12 0.19 0.23 0.06 -0.57 1.03 0.16 0.18
Spartina alterniflora 347 0.20 -0.23 1.12 0.24 0.31 0.12 -0.57 1.03 0.21 0.24
Spartina patens 159 0.06 -0.09 0.21 0.05 0.08 0.01 -0.25 0.18 0.07 0.07
Distichlis spicata 65 0.05 -0.06 0.13 0.04 0.07 0.01 -0.10 0.09 0.04 0.04
Salicornia spp. 103 0.06 -0.09 0.33 0.07 0.09 0.01 -0.13 0.26 0.07 0.07

IDW - 7/20/10 Minimum Bin - 7/20/10

Pammet Marsh

Moors Marsh

Hatches Harbor

Great Island

Marsh Species
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Table 4.5:  Difference (m) of lidar and RTK GNSS by marsh for ARRA Flight 

 
 

 

N Mean Min Max Stdev RMS Mean Min Max Stdev RMS
Vegetation 532 0.09 -0.20 0.23 0.05 0.10 0.06 -1.40 0.23 0.12 0.13
Spartina alterniflora 271 0.07 -0.06 0.23 0.05 0.09 0.05 -1.12 0.23 0.09 0.10
Spartina patens 183 0.11 -0.16 0.21 0.04 0.12 0.08 -1.40 0.23 0.12 0.15
Distichlis spicata 57 0.12 0.03 0.17 0.03 0.12 0.08 -1.33 0.18 0.19 0.21
Salicornia spp. 19 0.05 -0.20 0.23 0.09 0.10 0.04 -0.33 0.21 0.11 0.12

Vegetation 775 0.01 -0.28 0.20 0.04 0.04 -0.02 -1.25 0.21 0.11 0.11
Spartina alterniflora 406 0.02 -0.28 0.20 0.04 0.05 -0.01 -0.87 0.21 0.09 0.09
Spartina patens 121 -0.01 -0.23 0.11 0.05 0.05 -0.04 -1.25 0.11 0.16 0.16
Distichlis spicata 57 0.11 -0.03 0.17 0.04 0.12 0.07 -1.33 0.18 0.20 0.21
Salicornia spp. 237 -0.01 -0.11 0.09 0.03 0.03 -0.03 -1.07 0.07 0.11 0.12

Vegetation 819 0.02 -0.50 0.17 0.05 0.06 0.00 -1.29 0.19 0.08 0.08
Spartina alterniflora 449 0.02 -0.50 0.17 0.05 0.06 0.00 -0.47 0.19 0.06 0.06
Spartina patens 311 0.03 -0.27 0.14 0.06 0.06 -0.01 -1.29 0.11 0.09 0.09
Distichlis spicata 3 0.05 0.01 0.11 0.05 0.07 0.00 -0.05 0.06 0.05 0.04
Salicornia spp. 56 -0.01 -0.14 0.17 0.04 0.04 -0.01 -0.24 0.16 0.07 0.07

Vegetation 679 0.08 -0.20 0.29 0.05 0.09 0.04 -0.38 0.22 0.06 0.07
Spartina alterniflora 347 0.08 -0.18 0.29 0.05 0.09 0.04 -0.38 0.22 0.06 0.07
Spartina patens 164 0.09 -0.20 0.23 0.05 0.10 0.05 -0.27 0.17 0.05 0.07
Distichlis spicata 65 0.09 0.01 0.16 0.03 0.09 0.05 -0.05 0.15 0.04 0.06
Salicornia spp. 103 0.06 -0.10 0.19 0.04 0.08 0.03 -0.21 0.12 0.04 0.05

IDW - 5/5/11 Minimum Bin - 5/5/11
Marsh Species

Great Island

Hatches Harbor

Moors Marsh

Pamet Marsh
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Figure 4.12: Scatter plot of lidar residuals across all four marsh sites using the IDW 1x grid 
(n = 2,805) and field measured vegetation height.  Spartina alterniflora is represented by an 
open circle and all other species are represented by closed circle.  A regression of only the 
Spartina alterniflora exhibits an r2 of 0.36 (n = 1,473) 

 

Table 4.6: Vegetation heights (cm) across all four marsh sites collected during the NCALM 
July 20th 2010 lidar flight.  The bias to height ratio (BHR) is the mean of the ratio of lidar 
residuals to vegetation heights. 

 

Analysis N Mean Min Max SD BHR 
All Vegetation 2648 46.6 2 195 38.3 34% 
Spartina alterniflora 1473 68.8 3 195 38.5 35% 
Spartina patens 781 18.0 2 41 7.8 35% 
Distichlis spicata 136 22.3 8 42 8.5 34% 
Salicornia spp. 258 19.4 5 27 5.1 25% 
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Table 4.7: Difference between the ARRA May 5th, 2011 and the NCALM July 20th 2010 lidar 
flights across all four marsh sites (n = 2,648)  

 
Analysis N Mean Min Max SD RMS 
All Vegetation 2648 0.10 -0.14 1.06 0.17 0.20 
Spartina alterniflora 1390 0.18 -0.12 1.06 0.19 0.26 
Spartina patens 709 -0.01 -0.11 0.20 0.05 0.05 
Distichlis spicata 136 -0.03 -0.10 0.06 0.03 0.05 
Salicornia spp. 413 0.04 -0.14 0.40 0.06 0.07 

 

 

 

Figure 4.13: Plot of lidar elevation NAVD88 from the ARRA May 5th, 2011 flight and the 
NCALM July 20th 2010 flights across all four marsh sites. The solid line represents 1:1 
correlation.  Spartina alterniflora is represented by an open circle (n = 1,473) while all other 
survey vegetation species are represented by a closed circle (n = 1,337).  
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Figure 4.14: Difference map of increased marsh surface elevations from the ARRA May 5th, 
2011 and the NCALM July 20th 2010 lidar flights for Moors marsh. 
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Figure 4.15: Histogram of marsh surface elevation differences from grids of the ARRA May 
5th, 2011 and the NCALM July 20th 2010 lidar flights (n = 381,654) for Moors marsh. 
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Figure 4.16: Relationship of the elevation difference between the ARRA May 5th, 2011 and 
the NCALM July 20th 2010 lidar flights with field recorded vegetation height (n = 788) 
across all four marsh sites.  Spartina alterniflora is represented by an open circle (n = 436) 
while all other vegetation species surveyed are represented by a closed circle (n = 352).  
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Figure 4.17: Relationship of elevation residuals (ΔZ = IDW 1x – RTK GNSS) with the 
difference between the ARRA May 5th, 2011 and the NCALM July 20th 2010 lidar flights (n = 
785) for the Moors marsh site.  

 

y = 0.9537x - 0.0202 
r² = 0.91 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1

Li
da

r R
es

id
ua

ls
 (m

) 

Lidar Difference (m) 



 123 

 
Figure 4.18a: Relative uncertainty surface (RUS) for Moors marsh developed from lidar 
waveform shape metrics.  Note that relative uncertainty surfaces contain unitless values 
scaled to the range [0-1].  This product is intended to provide a depiction of the general 
variation in elevation uncertainty across the marsh.  Field locations are color coded by 
vegetation height and plotted over the RUS for general comparison. 

(a) 
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Figure 4.18b: Relative uncertainty surface (RUS) for Pamet marsh developed from lidar 
waveform shape metrics.  Note that relative uncertainty surfaces contain unitless values 
scaled to the range [0-1].  This product is intended to provide a depiction of the general 
variation in elevation uncertainty across the marsh.  Field locations are color coded by 
vegetation height and plotted over the RUS for general comparison.  
 
 

(b) 
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Figure 4.19: Relationship of the waveform relative uncertainty value with lidar bias (ΔZ) for 
all vegetation types (n = 271) at Pamet marsh from the NCALM July 20th, 2010 dataset.  The 
Pearson correlation coefficient (r) is presented. 
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Figure 4.20: Relationship of the waveform relative uncertainty value with vegetation height 
for all vegetation types (n = 268) at Pamet marsh from the NCALM July 20th, 2010 dataset.  
The Pearson correlation coefficient (r) is presented. 
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Figure 4.21: Relationship of the waveform relative uncertainty value with randomly selected 
subset of difference measurements (n = 2,000) at Moors marsh from grids of the ARRA May 
5th, 2011 and the NCALM July 20th 2010 lidar flights.  The Pearson correlation coefficient (r) 
is presented. 
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CHAPTER V 

IMPROVING SALT MARSH DIGITAL ELEVATION MODEL ACCURACY WITH FULL-

WAVEFORM LIDAR AND NONPARAMETRIC PREDICTIVE MODELING 

 

Abstract 

While lidar has emerged as the preferred technology for a wide variety of elevation 

mapping applications, the usefulness of lidar for salt marsh mapping remains questionable.  Salt 

marsh vegetation tends to increase the vertical uncertainty in lidar-derived elevation data to the 

point that the data can become ineffective for analysis of topographic features governing tidal 

inundation as well as vegetation zonation.  Previous attempts at improving lidar data of salt 

marshes have ranged from simply computing and subtracting off the global elevation bias for the 

entire data set to computing vegetation-specific, constant correction factors, which can be used 

along with an existing habitat map to apply separate corrections to different areas within a study 

site.  It is hypothesized that correcting salt marsh lidar data by applying location-specific, point-

by-point corrections, which are computed from lidar waveform-derived features, tidal-datum 

based elevation, distance from shoreline and other variables using nonparametric regression will 

produce better results.  Real time kinematic (RTK) Global Navigation Satellite System (GNSS) 

measurements of ground elevation were collected at both vegetated and unvegetated surfaces for 

three marshes in Cape Cod, Massachusetts, to be used as learn/test samples for model 

development and evaluation.  Five different model algorithms for nonparametric regression were 

evaluated with the same dataset.  TreeNet stochastic gradient boosting algorithm consistently 
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produced the best results.  Using all predictor variables, including those derived from full-

waveforms, it was found that the TreeNet model produced an R2 value of 0.98 (n = 785) and 

slopes within 4% of a 1:1 correlation with ground elevations measured directly with RTK GNSS.  

Uncorrected lidar in vegetated areas exhibited a positive (high) bias of 0.24 m with a 0.23 m 

standard deviation, when tested against the ground control data.  The correction essentially 

eliminated the overall elevation bias (µ = 0.00 m).  An even more significant and interesting 

result is that, when examining the error statistics for the entire data set, the point-by-point 

elevation correction also enabled the standard deviation of elevation residuals about the mean to 

be reduced from 0.23 m to 0.07 m.  Models using only DRL predictor variables performed well 

but were less accurate as those using full-waveform predictors.  Lastly, models were constructed 

to predict the vegetative zone (high marsh or low marsh). All models were then scored on a full 

dataset of over 500,000 points to create corrected DEMs and classification maps of vegetation.  

Besides the initial discrete lidar elevation, waveform width was found to be the most important 

predictor of bias and habitat type in nearly all models developed.  The methods tested here 

appear very promising for correction of salt marsh lidar data and do not require an existing 

habitat map. 

  

Introduction 

A salt marsh is a saline wetland dominated by grasses and other plants adapted to 

periodic flooding usually as a result of tidal forcing (Mitsch and Gosselink 2000).  They are 

found throughout middle to high latitudes and exhibit characteristic patterns of vegetation 

zonation that are often based on a vertical elevation gradient (Zedler et al. 1999; Morris et al. 

2005).  Salt marshes provide valuable ecosystem functions, such as critical wildlife  and 
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biodiversity support, water quality improvement, and coastal storm protection (Costanza et al. 

1997; Mitsch and Gosselink 2000).  Geomorphically, a salt marsh is often separated from the 

tidal flat by a ramp or abrupt change in elevation caused by increased sedimentation, peat 

development and decreased erosion due to vegetation (Crooks et al. 2002; Fagherazzi et al. 

2006).  These low-lying landforms are poised systems, balancing accretion and storage with 

erosion and oxidation of sediments in response to tidal flooding (Roman and Burdick 2012) and, 

therefore, are sensitive to increases in water levels resulting from sea level rise (SLR).  In 

general, very small variations in elevation, which affect inundation, available sediments, 

nutrients and salinity, determine whether salt marsh species thrive, survive or fail (Morris et al. 

2002).  Therefore, SLR associated with climate change is a major cause of concern for coastal 

scientists and managers.   

Accurately determining salt marsh elevation is fundamental to understanding almost 

every aspect of marsh system science and management including response to SLR and storm 

surge inundation in terms of adaptation and resiliency.  However, obtaining high-resolution, 

high-accuracy digital elevation models (DEMs) of salt marshes can be difficult, costly, and time 

consuming using traditional data collection methods (Green et al. 1996).  The importance of lidar 

(light detection and ranging) for conducting rapid surveys of salt marshes has been recognized 

(Brock and Sallenger 2001), and the technology is often proposed as a substitute for field-based 

data sets collected by either differential leveling or RTK GNSS (Real-Time Kinematic Global 

Navigation Satellite System)  (Montane and Torres 2006; Schmid et al. 2011).   

An inherent problem with the use of lidar in salt marsh systems is that the vegetation 

typically increases the vertical uncertainty.  That uncertainty can be quantified empirically as the 

root mean square error (RMSE), obtained by comparison against RTK GNSS, as follows: 
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𝑅𝑀𝑆𝐸 = �1
𝑁
∑ (𝑍𝑖 − 𝑍𝑖,𝑐)2𝑛
𝑖=1   (1) 

 

Where Zi is the ith lidar-derived elevation and Zi,c is the corresponding ground control elevation. 

The RMSE can also be decomposed into the bias, μ (the mean difference between what the lidar 

determines to be bare earth elevation and ground control) and standard deviation of elevation 

differences about the mean, σ.  For large sample sizes, N, it is expected that the following 

relationship will hold: 

𝑅𝑀𝑆𝐸2 ≈ 𝜇2 + 𝜎2  (2) 

 

For lidar to remain a valuable technology in salt marsh research and planning, the 

observed uncertainty in elevation needs to be less than the elevation ranges of ecological 

importance (Sadro et al. 2007).  For instance, if the uncertainty due to vegetative impacts on the 

lidar signal is greater than the elevation range determining inundation, species dominance, and 

habitat, then the lidar is not useful for restoration planning, hydrologic modeling, and SLR 

studies.  Quantifying uncertainties of salt marsh lidar data and applying corrections to produce an 

accurate DEM (to within 4-7 cm) has, to date, been an unresolved problem.  In general, 

uncorrected lidar datasets from salt marshes lack sufficient accuracy for use in the tasks 

mentioned above (Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 2012).  However, 

research to determine the extent to which lidar penetrates the salt marsh canopy and methods to 

correct for vegetation-induced elevation uncertainty have begun to achieve results (Populus et al. 

2001; Gopfert and Heipke 2006; Rosso et al. 2006; Schmid et al. 2011; Hladik and Alber 2012; 

Hladik et al. 2013; Rogers et al. In Review).   
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Previous Research  

Prior attempts at developing correction techniques for vegetation-induced lidar 

uncertainty have involved: 1) subtracting off a global (i.e., computed for the entire data set) 

elevation bias; 2) filtering/interpolation/classification methods, algebraic functions based on 

canopy height and density coverage; and 3) subtraction of species-specific bias based on 

vegetation cover maps (Rosso et al. 2006; Wang et al. 2009; Schmid et al. 2011; Hladik and 

Alber 2012; Hladik et al. 2013; Rogers et al. In Review).  Because of the spatial variation in 

elevation uncertainty across a marsh (Parrish et al. 2014), subtracting off a global bias tends to 

overcorrect the elevation error in some places and undercorrect it in others.  Filtering and 

interpolation correction methods are greatly hindered by the dearth of true ground returns from 

the low, dense growing salt marsh vegetation and the potential inaccuracies introduced by 

uncertainty in the separation of ground and vegetation returns (Sadro et al. 2007; Wang et al. 

2009; Schmid et al. 2011; Rogers et al. In Review).  While relationships between vegetation 

canopy height, percent coverage and lidar uncertainty have been observed (Populus et al. 2001; 

Gopfert and Heipke 2006; Schmid et al. 2011), these methods can also fail to produce the desired 

level of elevation correction in a salt marsh.   

Advancements in salt marsh DEM correction methods have been made by conducting 

species-specific elevation correction (Sadro et al. 2007; Hladik and Alber 2012; Hladik et al. 

2013).  Since the error is primarily attributable to vegetation and tends to be species-dependent, 

this method vastly improved DEM accuracy by focusing the appropriate amount of correction 

where it is needed.  Yet a requirement of vegetation-based correction techniques is a priori 

knowledge of species distribution.  From past project experience, existing vegetation maps are 

typically unavailable, too outdated, too coarse, or too inaccurate for many project sites.  If a 
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project required collecting this information, it would also necessitate additional fieldwork or 

multi/hyperspectral sensor data, as well as the processing and interpretation that add to cost, time 

and introduced errors.  However, even if this vegetation information were always available and 

accurate, it has been observed that some salt marsh species correspond to different ranges of 

elevation uncertainty that fall in a continuous distribution rather than a constant (Rogers et al. In 

Review).  Lidar uncertainty is presumably influenced by vegetation height, stem density, 

biomass, and species growth habit (Schmid et al. 2011; Hladik and Alber 2012; Rogers et al. 

2015).  These vegetation characteristics vary over the marsh surface as a function of edaphic 

conditions  (nutrients, salinity, sulfide concentrations, lower redox potential) as well as other 

factors (Mendelssohn et al. 1981; Bertness and Ellison 1987; Mitsch and Gosselink 2000; Byrd 

and Kelly 2006).  For example, medium-form Spartina alterniflora has a height range of 50 – 

100 cm, and one would expect the observed lidar uncertainty to have a range as well.  It seems 

unlikely that each vegetation species/ecophene region would require a constant DEM correction 

factor across its entire extent (Hladik and Alber 2012; Hladik et al. 2013). 

 

Full-waveform and Nonparametric Modeling Approach 

An alternate method to the problem of salt marsh lidar elevation correction involves the 

use of full-waveform lidar systems.  Full-waveform equipment records the time series of 

backscattered energy with a digitizer and a high-capacity storage device.  The amplitude of the 

laser return is dependent on the power of the peak transmitted pulse, the surface-intercepted 

fraction of the pulse, the surface reflectance, the incidence angle, and the fraction of the pulse 

returned toward the sensor (Lefsky et al. 2002b).  As a result only a small fraction of the 

transmitted energy from the initial pulse returns to the sensor from the ground target (Wagner et 
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al. 2008).  Ground targets, such as vegetation, soil and other objects tend to have a rough surface 

at the near infrared (NIR) wavelengths commonly used in topographic lidar and scatter lidar 

energy diffusely, at least as a first-order approximation.  Water is often observed as a data void 

since most of the energy at NIR wavelengths is absorbed or undergoes specular reflection in a 

direction away from the sensor, although some strong returns from near-nadir beams (i.e., 

directly below the aircraft) are often observed.   

Full-waveform digitizing systems can reveal the vertical distribution of the targets and 

can resolve surfaces closer together in the range direction than discrete-return lidar (DRL) 

systems  (Drake et al. 2002; Lefsky et al. 2002b; Anderson et al. 2008; Parrish et al. 2011).  Data 

processing techniques for full-waveform lidar usually involve computationally-complex 

decomposition or deconvolution (Jutzi and Stilla 2006) of the returned backscatter into relevant 

peaks to generate denser point clouds then would be available from DRL systems (Wagner et al. 

2008; Mallet and Bretar 2009).  Studies utilizing simple, feature-based waveform metrics have 

started to demonstrate utility in the waveform data beyond these resource intensive approaches 

(Adams et al. 2012; Muss et al. 2013; Parrish et al. 2014; Rogers et al. 2015; Rogers et al. In 

Review).   

In a previous study by the authors, it was observed that distributions of vegetation height 

display unique, species-based characteristics (Figure 5.1) (Rogers et al. In Review).  While this 

relationship appeared to be particularly true with S. alterniflora and Salicornia spp., S. patens 

and D. spicata maintain very similar growth characteristics and range of elevation dominance.  

Additionally, there is a known association between elevation and vegetation height such that as 

marsh elevation decreases the vegetation height increases (Figure 5.2).  It has also been 

determined that individual marsh species exhibit varying ranges of elevation uncertainty unique 
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to their growth and form (Schmid et al. 2011; Hladik 2012; Rogers et al. In Review).  Therefore, 

the ability to discriminate between species using these and other observable characteristics and 

relationships might play a role in determining a lidar elevation correction strategy.  Furthermore, 

a relationship between metrics derived from lidar waveform features (in particular waveform 

width’s association with elevation uncertainty and vegetation height) (Parrish et al. 2014; Rogers 

et al. 2015), suggest that a non-parametric modeling approach might lead to a successful 

correction technique.      

Investigating problems with numerous independent variables and complex, possibly 

nonlinear response curves require the use of machine learning, nonparametric modeling.  Unlike 

typical statistical analysis of dependent and independent variables that utilize single or multiple 

regression to make predictions of variable outcome, nonparametric modeling does not necessitate 

any hypothesis concerning variable distribution as prerequisite to analysis  (Bourennane et al. 

2014).  Nonlinear approaches are often required in environmental modeling problems due to the 

complex and often concealed relationships between predictor variables (Tayyebi and Pijanowski 

2014).   

This research investigates the following: 1) the potential removal of vegetation-induced 

elevation uncertainty using full-waveform lidar feature-based metrics such as waveform width 

and amplitude, as well as salt marsh surface characteristics such as slope and rugosity derived 

from the DRL, as inputs into a battery of nonparametric modeling algorithms; 2) the use of 

nonparametric modeling and DRL-derived salt marsh surface characteristics (i.e. no full-

waveform inputs included) to remove vegetation-induced uncertainty; and 3) creation of a 

vegetative zone maps using the same modeling parameters and a training set of known 

vegetation species locations.  The ultimate goal of this work is to enable generation of models 
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that can correct salt marsh lidar-derived DEMs to a level suitable for ecological applications.  

Also, it may be possible to derive vegetative classification maps from lidar data (with limited 

ground truth efforts) that could assist with locating habitat, research planning, or vegetation 

modeling. 

   

Methods 

The study sites were comprised of three individual, mesotidal salt marshes (Moors marsh: 

2.0 km2; Pamet River marsh: 2.0 km2; and Great Island Middle marsh; 0.3 km2) located on 

protected shorelines of Cape Cod, Massachusetts (Figure 5.3).  These marshes were selected 

based on the following criteria:  1) they are physically close to one another but hydrologically 

separate, 2) they contain large stands of the major marsh species present in northeastern United 

States, and 3) they are accessible, enabling collection of field data within a narrow time window 

around the capture of a lidar overflight conducted by the National Center for Airborne Lidar 

Mapping (NCALM).  This area of Cape Cod Bay exhibits semidiurnal tides with a mean range of 

~2.83 m (NOAA 2013).   

 

Vegetative Community 

Low marsh environments dominated by Spartina alterniflora (smooth cordgrass) are 

most commonly found in the studied marshes, but it was also common to find small topographic 

highs (typically isolated) and a narrow border of high marsh located in the landward portion of 

the marshes that are dominated by S. patens (salt marsh hay), D. spicata (spike grass) and 

Salicornia spp. (glasswort) (Portnoy et al. 2003) (Figure 5.4).  The marsh vegetation 

demonstrates zonation driven by small scale elevation changes and edaphic conditions (Bertness 
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and Ellison 1987).  Varying plant morphologies and growth habits are employed by the 

vegetation to adapt to the harsh conditions found in tidal marshes.   

Within each vegetative community there was variability in growth habit and height.  For 

example, Spartina alterniflora at these sites has three distinct variations or ecophenes caused by 

edaphic factors, often reported as short form (0-50 cm; SF), medium form (50-100 cm; MF), and 

tall form (>100 cm; TF) (Reimold et al. 1973; Anderson and Treshow 1980; Ornes and Kaplan 

1989; Wiegert and Freeman 1990; Pennings and Bertness 2001; Hladik and Alber 2012).  Tall-

form S. alterniflora ranges up to 2 m in height and was typically found at lower elevations with 

semidiurnal flooding and along estuarine creeks.  In contrast, SF S. alterniflora is commonly 

found in high marsh depressions with higher salinity, greater sulfide concentrations and/or lower 

redox potential (Mitsch and Gosselink 2000).   

 

Lidar Data Collection 

Approximately 37 km2 of lidar data was collected by The National Center for Airborne 

Laser Mapping (NCALM) on July 20th, 2010 centered on the daily predicted low tide (± 90 

minutes).  An Optech GEMINI Airborne Laser Terrain Mapper (ALTM) and an Optech 12-bit 

IWD-2 intelligent waveform digitizer were mounted in a twin-engine Cessna 337 Skymaster.  

Data were collected at a pulse repetition rate of 70 kHz and a flight speed of 60 m/sec and 

altitude of 600 m (Table 5.1) during peak biomass.  DRL was collected using the Optech 

hardware-based constant fraction discriminator and time interval meter.  Waveform data were 

delivered in Optech’s NDF binary format with an IDX index file and sampled at 1 ns intervals.  

The salt marshes studied are comprised of low-growing marsh vegetation, “bare earth” and water 

features and did not include trees, buildings, or other structures such that the dataset was almost 
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entirely composed of single return pulses (Rogers et al. 2015).  Elevations delivered in NAVD88 

were converted to a local tidal datum, mean high water (MHW), using NOAA’s Vertical Datum 

Transformation (VDatum) version 3.2 (Yang et al. 2013).  

 

Field Data Collection 

To characterize the salt marsh environment, ~2,800 ground control points (GCPs) were 

established in various zones including tidal sandflats, low marsh, and high marsh.  Hard surfaces 

such as roads and parking lots in close proximity to the marshes were also surveyed to analyze 

the overall lidar dataset accuracy (Rogers et al. In Review).  Marsh surface elevations and hard 

target GCPs were collected with a Trimble NetR5 base station network with cellular-based 

correction and a Trimble R8 Model 3 RTK GNSS rover.  Due to the conditions found in salt 

marsh environments, special care was needed when using the rover to ensure vertical accuracy 

(Torres and Styles 2007).  A GNSS survey rod was modified with a 12 cm diameter flat base to 

keep the rod from depressing into the unconsolidated mud and peat.  Transects were taken 

through the marsh to record ground elevations, with an average point spacing of 5-7 m.  The 

GNSS equipment provided an RMSE of < 1 cm in the horizontal and 2 cm in the vertical (based 

on comparisons against geodetic control within the survey site), with elevations referenced to 

NAVD88 using GEOID09 (the latest NGS geoid model available at the time that the majority of 

work in this study was completed).  At each location surface conditions were recorded such as 

the presence of sand, mud or dominant vegetation species and canopy height for later use in the 

model.   
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Model Predictor Variables 

A custom process was developed with ArcGIS10, QCoherent LP360 and MATLAB to 

extract lidar waveforms from the provided data files and compute waveform shape-related 

metrics.  This research is a continuation of previous work on waveform shape metrics by the 

authors (Parrish et al. 2014; Rogers et al. 2015; Rogers et al. In Review).  Each lidar point within 

a subset of the studied marshes had a number of waveform features calculated, including lidar 

echo width, mean, area under the curve (AUC), skewness, and peak amplitude (Table 5.2).  Each 

of the feature metrics was then exported as an individual ASCII file and gridded in ArcGIS 

Spatial Analyst using an inverse distance weighting (IDW) with a 1 m cell size.   

The DRL dataset used to produce predictor variables for the model included uncorrected 

starting elevations and other surface measures such as rugosity and slope (Table 5.2).  Lidar LAS 

files were preprocessed using QPS Fledermaus 7.43 from the original LAS point cloud data.  

Lidar data evaluation and cleaning were performed using the PFM 3D point cloud editor to 

remove artifacts as well as erroneous or non-natural points that could influence the gridding 

results.  Elevations were converted to MHW in VDatum v. 3.2 and gridded using an IDW 

interpolation method with a cell size of 1 m and a weighting value of 1 (only values within that 

cell were used in the cell value calculation) (Rogers et al. In Review).   Grids of surface slope 

(the rate of change in value from each cell to its neighbors (Burrough and McDonell 1998)), and 

three measures of curvature (fourth-order polynomials of a surface on a cell-by-cell basis - 

curvature, profile curvature and planimetric curvature (Zevenbergen and Thorne 1987)), were 

calculated with ArcGIS v10.  Rugosity, which is a measure of surface roughness (Sappington et 

al. 2007), was calculated using Benthic Terrain Modeler for ArcGIS10.  
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Distance from shoreline was the only model input variable not taken directly from the 

lidar dataset.  It was critical that the elevation data used in this research be referenced to a local 

tidal datum such as MHW as opposed to NAVD88 orthometric heights or NAD83 ellipsoid 

heights because salt marsh vegetation speciation is tidally driven.  A relationship has been 

established between tidal datum elevations (i.e. Mean High Water [MHW]) and the frequency of 

salt marsh species occurrence (Lefor et al. 1987; Mckee and Patrick 1988; Morris et al. 2005).  

Therefore a tidal datum is the best possible method to analyze difference in topographic height 

and speciation that will assist with model pattern recognition.  Another reason the MHW datum 

was chosen was to be consistent with the NOAA Continually Updated Shoreline Product 

(CUSP).  MHW shoreline was extracted from the lidar following procedures similar to those 

used by NOAA NGS (Graham et al. 2003; White et al. 2011).  Also referenced was a 2009 

MassGIS high resolution (0.3 m pixel) orthophoto captured one year prior to the lidar survey.  

The final shoreline was an interpretation of these datasets and represents the lowest extent of 

vegetation, which is approximately the -1 MHW contour line, with deep water channels greater 

or equal to 1 m in width extending into vegetated areas.    

The target variable, RTK GNSS data for “true” ground elevation in MHW, point file (n = 

785) was the subset of total available field data (n > 2800) that overlapped the extracted 

waveform datasets.  The data file also included the dominant vegetation species found at each 

location and was intersected with the multiple predictor grid layers calculated above.  Using the 

“extract multivalues to point” utility in ArcGIS10, all XY locations were attributed with the 

corresponding waveform or surface values found in Table 5.2.  Distance to shoreline was 

calculated in meters for each point using a “multiple minimum distance” script in ArcGIS and the 

positive direction was defined to be shoreward of this line.   
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Models and Model Construction 

The complex and often nonlinear relationships between predictors can be extracted using 

nonparametric, computer-based, predictive modeling with the 13 predictor variables available in 

this study (Table 2), without any prior assumptions as to the distribution of the variables.  All 

models were created using Salford Predictive Modeler version 7.0, a commercially available 

software by Salford Systems (www.salford-systems.com).  A battery of five nonparametric and 

one parametric model runs was conducted on the target variable with the available predictor 

dataset to determine the most predictive models.  The available data from the three study 

marshes were combined into one database and then partitioned into “learn” (n = 560 [71%]) and 

“test” (n = 225 [29%]) datasets.  The modeling software randomly selects records from the 

provided dataset based on the user preference of the required test partition size.  The commonly-

referenced standard is an 80/20 split of learn to test records.  However, in this analysis a slightly 

more robust testing sample size was established to ensure model accuracy on the independent 

dataset.  The test data are held back from the model development process making them 

completely independent of the model learn data and are used solely for model validation.  

Models were then evaluated for their performance using three criteria: 1) a high regression 

coefficient of determination (R2) returned from the model with the independent test dataset; 2) 

similar regression coefficients values between learn and test datasets; and 3) the closeness of fit 

of the final regression equation line to a perfect 1:1 correlation.  Therefore, a perfect model 

would produce an R2 value equal to 1 and an equation of y = x.   A summary of each of the 

model algorithms employed in this study can be found in Table 5.3.  An algorithmic-level 

description of the different models is available in the references listed in the last column of 

Table 5.3.  In the implementation of each of the following models, the algorithm rules were 
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selected to maximize the accuracy and then tested on the independent test dataset.  Final models 

were then scored against the complete marsh-wide grid of 525,941 records with each of the 

above predictor variables available for every XY point/cell in the grid. 

 

Results 

Full-waveform lidar was collected and available for the entire geographic area covering 

the selected salt marshes.  However, only subsets of waveform data from each of the three 

marshes were used due to extraction and processing time constraints.  Therefore, the model 

training dataset included only field data that were bound by the extracted subset of full-

waveform data (n = 785 total across the three marshes) (Figure 5.3).  This same subset of ground 

control data was also used for the DRL model runs for consistency and comparability between 

the various models. 

 

Ground Detection Correction Models Using Full-waveform Features 

The results of five different regression-based nonparametric models and one parametric 

model are presented in Table 5.4.  The dataset used for these model runs included all available 

waveform metrics as well as those predictors derived from the DRL elevation data from the same 

flight (Table 5.2).  The resulting models produced “test” sample regression coefficients ranging 

from R2 = 0.919 to 0.963 with regression line slopes from 0.897 to 0.982 and y intercepts near 0.  

The top two most successful models were TreeNet and MARS with test sample R2 values of 0.96 

and slopes within 4% of a 1:1 correlation.  Since the learn and test sample results were very close 

in R2 value, the model was scored (run) against all of the available data with ground truth RTK 

GNSS elevations (Learn + Test samples, n = 785) and plotted with the original uncorrected lidar 
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data to visualize the improvement.  The TreeNet algorithm produced slightly better results than 

MARS on the independent test sample with a tighter linear clustering for the scored dataset of all 

available data with an R2 of 0.982 (Figure 5.5a).  The MARS model results appear to be a little 

more scattered than the TreeNet model with additional negative residuals (Figures 5.5b). 

When investigating variable importance among the various nonparametric models 

produced, there is an apparent trend (Table 5.5).  The obvious and most influential variable 

when calculating corrected elevation is starting elevation.  After calculating the most important 

variable, the modeling software then assigns it a score of 100 and all other variables are rescaled 

relative to the most important variable.  The second most important variable in 4 of 5 

nonparametric models was waveform width.  The CART model used distance from shoreline as 

the second and waveform width as the third most important variables.  The predictive power of 

waveform width is consistent with previous findings by the authors in relation to observed lidar 

uncertainty and vegetation characteristics such as height (Parrish et al. 2014; Rogers et al. 2015; 

Rogers et al. In Review).  However, the third most important variable was not consistent across 

models.  In two of five cases (TreeNet and Random Forest) that variable was distance from 

shoreline but in the MARS and Generalized Path Seeker models, curve and waveform amplitude 

respectively were the third most important variable. 

Bias caused by the salt marsh vegetation on lidar returns was evident in the uncorrected 

dataset by comparing the vegetated field RTK GNSS measurements used in this study (n = 694, 

91 GCPs were bare ground) with lidar derived elevations from the NCALM dataset (Rogers et al. 

In Review).  Lidar measurements exhibited a positive bias of 0.24 m over the ground control data 

(Table 5.6).  Separated by species type, most of that overall vegetation bias can be attributed to 

just S. alterniflora with an observed bias of 0.35 m.  The other species surveyed (S. patens, D. 
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spicata, and Salicornia spp.), had a bias of between 0.05 to 0.06 m with standard deviations 

ranging from 0.05 to 0.08 m.  The resulting “corrected” elevations from the TreeNet and MARS 

models were evaluated in a similar manner to the uncorrected lidar and exhibited an overall bias 

of 0.00 and standard deviation, σ, of 0.07 m compared to the ground control data.  After 

correction, the biases of S. alterniflora and the other species were reduced substantially (0.01 to 

0.02 m; Table 5.6).  The MARS model correction produced similar results, but with a slightly 

larger standard deviation (µ = 0.00 m; σ = 0.10 m), and less reduction in bias for the shorter 

species compared with the TreeNet model results.  The frequency distribution of uncorrected 

residuals demonstrated a range of lidar error unique to each species surveyed (Figure 5.6).  

Three of the four target species had similar residual distributions but S. alterniflora was offset 

and had a long, asymmetric tail.  A histogram of the TreeNet corrected residuals illustrates a 

tight grouping around 0 m with only S. alterniflora exhibiting small shoulders on either side 

(Figure 5.7). 

 

Ground Detection Correction Models Using Discrete-Return Lidar Predictors 

Using the same algorithms as implemented with the full-waveform dataset, new model 

runs were conducted with only predictors derived from the DRL elevation data such as rugosity 

and slope (Table 5.2).  These models, without the use of the waveform feature-based metrics, 

produced test sample regression coefficients ranging from 0.828 to 0.911 and regression line 

slopes from 0.799 to 0.913 with intercepts a little below 0 (Table 5.4).  TreeNet and Random 

Forest (RF) created the two most successful models with test sample R2 values of approximately 

0.91 and slopes within 9% and 14% of a 1:1 correlation, respectively.  The TreeNet algorithm 

(Figure 5.8a) had slightly more scatter on the scored dataset of all available data than the RF 
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algorithm (Figure 5.8b).  However, the TreeNet model results had a significantly better slope 

line and y intercept than RF.  The RF results had residuals that suggested a more pronounced 

overestimation of bare ground (sandflats) and underestimated high marsh vegetation.  Both 

models with only DRL data contained significantly more scatter and underestimation than 

models developed using all of the waveform predictors.  Variable importance for the DRL-based 

models also showed starting elevation was most influential, with the second most important 

variable typically being rugosity (Table 5.7).  Model variation in variable importance was 

illustrated in the CART model, which considered distance from shoreline as the second most 

important variable and rugosity the third.   

The top two DRL-based models, TreeNet and Random Forest, were also evaluated on 

their ability to remove overall lidar bias as well as species bias (Table 5.6).  The TreeNet 

corrected data exhibited an overall bias, μ, of -0.01 (σ = 0.14 m), but species contributions varied 

widely (-0.05 to 0.10; Table 5.6).  The Random Forest model correction produced a similar 

overall bias, µ, of -0.01 (σ = 0.11 m.  However, the shorter vegetation species had a tendency to 

be underestimated, producing negative bias of between -0.07 and -0.08 m.  A TreeNet residuals 

histogram exhibits a symmetric grouping around 0 m with S. alterniflora with moderate 

shoulders on either side (Figure 5.9). 

 

Vegetation Classification Models 

Based on the strong relationships between waveform-based metrics and vegetation 

biophysical parameters (Rogers et al. 2015), predictive modeling was also evaluated as a method 

to classify salt marsh vegetation strictly from lidar data and without the use of spectral properties 

typically used in vegetation classification.  Dominant species or ground type had been collected 
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as part of the field data for the 785 RTK GNSS locations across the three marshes that 

overlapped the extracted waveform data footprint.  A model developed to separately classify the 

three major species and one genus (S. alterniflora, S. patens, D. spicata, and Salicornia spp.) did 

not produce useful results due to similarities in growth characteristics and waveform response 

that created considerable confusion.  Therefore, a simplified approach was attempted, relying on 

zonation to classify vegetation.     

Salt marsh ecologists often refer to the vegetative zonation within the marsh system as 

high marsh (HM) and low marsh (LM) and these designations represent the species present as 

well as the frequency of inundation, which are integrally related.  High marsh vegetation species 

in northeastern United States marshes include S. patens, D. spicata, Salicornia spp. and often 

short-form S. alterniflora, while the low marsh is comprised primarily of medium and tall-form 

S. alterniflora.  The zonation model employed only three classes: bare ground (GR); high marsh 

(HM); and low marsh (LM).  Three model algorithms were evaluated and their prediction 

success, the ability to discriminate between the three classes, is presented in a confusion matrix 

(Table 5.8).  The TreeNet model produced the highest success rate with an overall classification 

success of 92% in the independent test dataset with the lowest success in the GR class.  Random 

Forest and CART models also performed well with prediction success in the mid-80th percentile.  

Variable importance of each of the three zonation models was evaluated (Table 5.9) and as with 

the waveform based elevation correction models found in Table 5.4, the three most important 

predictors were waveform width, starting lidar elevation, and distance from shoreline.   

The models were scored against the complete lidar dataset for Moors marsh of 525,941 

grid cells with all 13 predictors to create classified grids of vegetation.  As a reference and for 

comparison, a vegetation zonation map was created using traditional aerial photo interpretation 
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and ground-truth data (Figure 5.10).  The field map displays a system dominated by low marsh 

with a large central channel and several scattered high marsh regions, which are presumably 

topographic highs.  Comparisons between maps generated by the various classification models 

produced similar predictions, with some performing better in high marsh and others better at 

discriminating between low marsh and unvegetated tidal flats (Table 5.8).  The best performing 

model, TreeNet, produced a classification map that is reasonably close to the field map (Figure 

5.11).  Data gaps are typically water features such as salt ponds that are shown as white.  The 

resultant grid distinctly displays the two vegetative regions.  The model appeared to have some 

difficulty in interpreting bare ground just inside the shoreline contour and confused it with high 

marsh vegetation.  It has been reported that classification of multi/hyperspectral imagery of S. 

alterniflora also has difficulty in this zone due to spectral confusion with mixed pixels that 

include mud: “the Spartina problem” (Hladik et al. 2013).  The cause in this case is not likely the 

same but may be in part due to the presence of large mats of macroalgae on rocks (Ascophyllum 

nodosum var. scorpioides and Fucus vesiculosus var. spiralis).  These macroalgae were not 

evaluated in this study but are commonly found in the intertidal zone and might produce similar 

waveform response to high marsh vegetation based on its biophysical characteristics.  There 

were also several high marsh areas identified by the model that were not interpreted as high 

marsh (SF S. alterniflora) from either the field or aerial survey.  A subsequent site visit to the 

marsh confirmed that these were indeed areas that should be classified as high marsh that were 

missed from the aerial photo interpretation. 
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Discussion 

Nonparametric DEM Correction 

The predictive modeling developed in this research provides a viable alternative to 

previous methods of DEM correction.   Applying nonparametric modeling on a location-specific, 

point-by-point basis, reduced not only the global bias, but also the standard deviation of 

elevation residuals when an empirical accuracy assessment for the entire data set was performed.  

The models developed using both full-waveform and DRL surface predictors were successful at 

adapting to each pixel’s varying predictors, eliminating a majority of the vegetation-induced 

bias.  The models accomplished this without a priori knowledge of vegetation species location 

and using only a single remote sensing platform.  Although many of the algorithms evaluated in 

this study provided good results, the TreeNet algorithm consistently provided the best 

performance.  The final model achieved an exceptional R2 of 0.96 on the test dataset and 0.98 on 

the combined learn and test datasets, which dropped the overall bias from the uncorrected 0.24 to 

0.0 m, and, interestingly, also reduced the standard deviation, σ, from 0.23 to 0.07 m.    

These strong results may suggest that the model may be subject to an overfitting of the 

data.  While this is a valid consideration, it should be noted that the model algorithms used in this 

study, in particular TreeNet, are designed to be resistant to overfitting.  TreeNet uses several 

regularization techniques to minimize overfitting such as a gradual buildup of the model through 

successive gradient boosting iterations (trees).  Variables are introduced one at a time but are 

only permitted to adjust the model outcome by very small coefficients (Friedman 2002).  

Increasing the number of trees reduces the error on the learn dataset and the software determines 

the optimal tree that minimizes overfitting and error.  In addition, another method of overfitting 

regularization employed by TreeNet consists of the subsample size, which is a constant fraction 
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of the size of the training set.  A small subsample size introduces randomness into the algorithm 

by forcing the regression trees to be fit to reduced datasets at each boosting iteration (Friedman 

2002).  Nevertheless, one final method of ensuring validity of the models (i.e. absence of 

overfitting), would be the comparison of the results of multiple nonparametric algorithms.  The 

results from the various algorithms based on very different mathematical formulas and concepts 

produced a cluster of similar results giving further indication that the data were not overfit. 

The set of predictors appears to be sufficient to provide discriminatory power and high 

predictive model accuracy.  In some of the models this list could be paired back and still achieve 

similar results.  In addition to starting elevation, waveform width appears to be the variable with 

the strongest predictive power, although several other predictors such as distance from shoreline, 

rugosity and waveform amplitude also played key roles in some models.  Previous research has 

suggested that the relationship between waveform width and vegetation height or lidar 

uncertainty has strong predictive power (Parrish et al. 2014; Rogers et al. 2015; Rogers et al. In 

Review).  This relationship can be attributed to the convolution of the laser pulse with an 

extended target (i.e., taller vegetation results in greater spreading of the return pulse) (Rogers et 

al. 2015).  Distance from shoreline also played a key role in the developed models.  As distance 

increased from the shoreline (i.e. the lowest elevational extent of vegetation), the vegetation 

height was likely to decrease as well.  Although variations in rugosity (surface roughness) were 

slight across much of the uncorrected DEM surface, there were perceptible differences between 

vegetation species, presumably representative of growth habits, which were used in the 

correction process.  For example, S. alterniflora stands appeared to have greater rugosity than the 

high marsh species.  The predictive power of waveform amplitude was likely due to increased 

planimetric obscuration (i.e. vegetation coverage) with vegetation height, especially at the near 
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infrared wavelength of the laser (Rogers et al. 2015).  Not surprisingly, waveform amplitude and 

waveform standard deviation (a collinear variable with waveform width used in this study) were 

found to account for nearly 75% of the variability in vegetation height (Rogers et al. 2015).  

The coupling of nonparametric modeling tools and GIS has become standard practice in 

many different environmental fields such as land use, geomorphology, soil science, and wildlife 

habitat (Gutierrez et al. 2009; Timm and McGarigal 2012; Bourennane et al. 2014; Meissner et 

al. 2014; Tayyebi and Pijanowski 2014).  An uncorrected lidar DEM for Moors Marsh displays 

highly variable elevations with undulating clusters of vegetation growth (Figure 5.12).   

However, the scored results from the TreeNet full-waveform model for the same geographic area 

produced a vastly improved DEM over the uncorrected lidar dataset and suggest that the model 

performs extremely well at removing vegetation-induced uncertainty (Figure 5.13).  All high 

elevation clustering visible in the uncorrected DEM was removed and a smooth topographic 

surface was uncovered.  Topographic highs hidden in the original DRL dataset are now plainly 

visible after model correction.  Species-based correction methods have been found to create step 

like patterns in marsh DEMs when transitioning from one species polygon to another and step 

removal required additional smoothing algorithms that would increase DEM inaccuracy (Hladik 

et al. 2013).  This was particularly true within the ecophenes of S. alterniflora  (Hladik et al. 

2013).  A map depicting the difference between the uncorrected lidar and the full-waveform 

corrected DEMs confirms the extent of vegetation-based uncertainty reduction (Figure 5.14).   A 

continuous surface is produced, rather than stepped platforms.  Although the overall DEM bias 

was clearly improved with species-based correction methods (Hladik et al. 2013), nonparametric 

modeling with full-waveform predictors improves bias removal while compensating for 

changing vegetation conditions on a pixel by pixel basis creating more accurate DEMs. 
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The small footprint, full-waveform data used in this project is still relatively new and not 

commonly included in lidar surveys.  Therefore, since most researchers may not have access or 

the ability to process this type of data for some time, elevation correction of the raw salt marsh 

lidar DEM using only DRL data sources (i.e. no waveform model predictors) would be valuable 

as an alternative to full-waveform based correction even if it were slightly less accurate.  

However, there is one waveform-based parameter that is regularly supplied with DRL 

systems.  In addition to recording return pulse time to correspond with elevation, most 

topographic lidar systems record the intensity, or the amplitude (typically scaled to an arbitrary 

range of 0-255), of the return pulse.  Lidar intensity is in essence the amplitude of the return 

pulse, and is a function of the reflectivity of the surface at the laser wavelength (as well as range, 

incidence angle, and other variables).  Since amplitude was found to correlate well with some 

salt marsh biophysical parameters (Rogers et al. 2015) and was a moderate contributor in the 

full-waveform model, intensity was included in the DRL based models.  The lidar intensity value 

provided with the NCALM data delivery was uncalibrated but since the data were collected for 

all three marshes with the same sensor and in one continuous flight, intensity values by ground 

feature type from site to site are not expected to vary.   

As anticipated, the DRL-based model did not produce corrected DEMs of similar quality 

to models created using waveforms.  The use of the DRL data predictors and intensity did 

improve the resulting DEM over the uncorrected lidar with an R2 = 0.93 and with a slope within 

9% of a 1:1 correlation.  The use of this type of model may be acceptable in some circumstances 

where partial correction is better than correction accomplished by some other means or no 

correction at all.  This is particularly the case when data acquisition does not specify recording 

full-waveform returns or when processing historical DRL datasets.  Scored results for the full 
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geographic area produced an improved DEM (Figure 5.15) over the uncorrected lidar dataset 

(Figure 5.12).  Differences between the uncorrected and the DRL corrected DEMs suggest that 

the model performs reasonably well at removing vegetation-induced uncertainty (Figure 5.16).  

Although, a comparison of the waveform model difference map (Figure 5.14) and the DRL 

model difference map (Figure 5.16) reveals that the DRL model under-corrected elevations in 

areas of tallest vegetation and over-corrected in areas with the shortest vegetation (Figure 5.17).  

This is particularly prevalent in areas that could be identified as SF S. alterniflora.   

 

Vegetation Classification 

Salt marsh vegetation mapping is traditionally performed using field based data, aerial 

interpretation or classification from spectral signatures found in multi/hyperspectral imagery to 

show patterns in time and space as plants respond to changes in important drivers like hydrology, 

sea level, and sediment supply (Figure 5.10) (Kirwan et al. 2011; Konisky 2012).  A logical 

extension of the uncertainty correction modeling was to test its ability to map vegetation.  Due to 

the similarities in biophysical characteristics between some of the vegetation found at this and 

other northeastern United States salt marshes, mapping in a general sense, if not wholly by 

species, is still of value.  Using a combination of predictor variables including waveform width, 

rugosity, and distance from shoreline, several useful models were created.  A three zone model 

(high marsh, low marsh, and bare ground) produced the lowest error rate with an overall 

classification success of 92%.  Such maps are commonly used by salt marsh scientists to 

investigate marsh habitat and monitor changes in the marsh over time due to tidal restrictions, 

restored flow after a restoration project, storm assessment, or the potential impacts or monitoring 

of SLR.  Once an appropriate shoreline file is chosen or created, salt marsh mapping using full-
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waveform lidar and nonparametric, predictive modeling could be automated and provide 

standardized results with minimal human input or interpretation, which may allow for rapid, 

unbiased assessments of vegetation zones.  Although future research is needed to assess its full 

capabilities, this new vegetation classification method may also prove to be more efficient and 

more accurate than the traditional methods currently being employed.   

It is important to note that these maps are created solely from lidar data and without the 

use of any spectra derived from aerial photography or multi/hyperspectral imagery.   There is 

little if any spectral difference between the three ecophenes of S. alterniflora (Schmidt and 

Skidmore 2003; Artigas and Yang 2005) and using traditional remote sensing classification 

methods often results in considerable confusion among the classes.  Overall classification 

accuracies from other studies using spectral signatures or hybrid approaches of lidar and 

hyperspectral imagery ranged from 59% to >90% (Rosso et al. 2006; Wang et al. 2007; Hladik et 

al. 2013).  That the nonparametric modeling of the full-waveform metrics could achieve similar 

or better results without the use of spectra is significant.  The classification based on lidar 

modeling appears a viable alternative to differentiate salt marsh vegetation into identifiable 

regions or classes.  One possible future research direction could be to add spectral values from 

the various bands of multi/hyperspectral imagery as predictor variables to the waveform model 

to produce potentially highly accurate vegetation classification maps. 

 

Conclusion 

The utility of salt marsh DEMs based on lidar is weakened by vegetation-induced 

uncertainty, which continues to challenge researchers and coastal managers who desire to use 

high resolution lidar datasets for regional or site-specific analysis.  Without a satisfactory 
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correction method, lidar-based DEM models are often not suitable for restoration planning, 

hydrologic modeling, storm impact analysis, SLR adaptability studies or other applications 

where fine topographic details are necessary.  The conclusions drawn from this research are as 

follows: 1) nonparametric predictive modeling techniques, coupled with full-waveform shape-

based metrics, provide a powerful tool to reduce elevation uncertainty due to salt marsh 

vegetation, even during peak vegetation growth conditions.  The highest performing model 

produced an R2 of 0.98, a slope within 4% of a 1:1 correlation, and reduced bias, µ, from 0.24 m 

to 0.00 m, and standard deviation, σ, from 0.23 to 0.07 m; 2) in addition to DRL starting 

elevation, waveform width was determined to be the most significant predictor variable in nearly 

all models that used waveform feature-based metrics; 3) moderately successful models can be 

built from predictors based solely on DRL sources (with intensity), which may provide adequate 

correction in some circumstances particularly when working with historic datasets.  The best 

models resulted in an R2 of 0.92, slopes within 9% of 1:1 correlation, and  reduced bias to -0.01 

m, and standard deviation to 0.14 m;  4) accurate salt marsh zone classification maps (overall 

classification accuracy >90%) can be created using only a lidar data source and without multi- or 

hyperspectral imagery.   

Full-waveform lidar combined with predictive modeling tools appears to deliver highly 

accurate salt marsh elevation models by reducing vegetation-induced lidar uncertainty.  The 

developed model reduced systematic and random error for the entire data set by applying 

location-specific, point-by-point corrections obtained via the nonparametric regression methods.  

Corrected elevation surfaces will be tremendously useful to support coastal research and 

management objectives, while also minimizing the amount of expensive, time-consuming field 

work.  The ability to properly correct salt marsh DEMs should allow the creation of better 
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inundation models such as SLAMM (Sea- Level Affecting Marshes Model) (Chu-Agor et al. 

2011) and the detailed assessment of the impacts of sea level rise on marsh health and resilience.  

Corrected DEMs should also help to plan and monitor the results of salt marsh restoration 

projects.  The five nonparametric models created in this study employed different algorithms to 

reduce elevation uncertainty, yet provided a relatively narrow range of results.  The use of 

multiple algorithms producing similar results provides further validation of a successful outcome 

despite the complex variable relationships and interactions.   

Further research needed includes: a) assess whether models created in this study can be 

successfully scored against full-waveform data from other northeastern salt marshes without 

reworking the developed model; b) extend this type of analysis to marshes in different regions of 

the country with differing vegetation species; c) analyze full-waveform data taken from marsh 

systems in winter (senescent conditions) to determine if this technique is adaptable to data 

collected at different times of the year.   
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Figures and Tables 
 
 
 
 
 

 

Figure 5.1a: Histogram of vegetation height for each of the surveyed species (n = 2,899).  
(SPAL - Spartina alterniflora, DISP - Distichlis spicata, SPPA - Spartina patens, SASP - 
Salicornia spp.) 
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Figure 5.1b: Frequency of occurrence by elevation range (MHW) for each vegetation species 
(n = 2,899).  (SPAL - Spartina alterniflora, DISP - Distichlis spicata, SPPA - Spartina patens, 
SASP - Salicornia spp.) 
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Figure 5.2: Scatterplot of vegetation height and terrain elevation (MHW) at each RTK 
GNSS location (n = 2,899).  Open circles are Spartina alterniflora and closed circles are all 
other species (Spartina patens, Distichilis spicata, and Salicornia spp.).   
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Figure 5.3: Site locus map.  Insets are 1) Moors marsh, 2) Pamet marsh, and 3) Great Island 
– middle marsh.  RTK GNSS points are color coded by dominant vegetation species/ground 
type.  Red boxes are the extent of Full-waveform data used in the model creation analysis.  
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Figure 5.4: Pamet Marsh – Vegetation showing (left to right) Spartina alterniflora, Salicornia 
spp., and Spartina patens zonation along a man-made dike. 

 

Table 5.1: Flight parameters of NCALM July 20th, 2010. 

Flight Parameter Value 
Flying Speed (m/sec) 60 
Altitude (m) 600 
Swath Overlap (%) 50 
Laser Beam Divergence (mrad) 0.25 
Pulse Rate Frequency (kHz) 70 
Transmit Pulse Width (ns) 12 
Scan Rate (kHz) 40 
Scan Angle (degrees) ± 21 
Nominal Point Density (pts/m2) 5 

Laser Footprint Diameter (m) 0.15 
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Table 5.2: Waveform metrics and surface characteristics available to the model predictor 
variables. 

 

Waveform and Surface Metrics 

Source Symbol Metric Name Description 
Fu

ll-
w

av
ef

or
m

 

A Waveform amplitude Maximum of received echo (i.e., peak 
value) 

AUC Area under curve Trapezoidal numerical integration of echo 

µω Waveform mean A measure of the “center” of the return 
pulse 

g1 Waveform skewness 
A measure of the asymmetry of the return 
pulse; positive for our waveforms, which 
are right skewed 

w Waveform width Width (FWHM) of return pulse 

D
er

iv
ed

 fr
om

 D
isc

re
te

 L
id

ar
 

γ Curve 
The curvature of a surface is the fourth-
order polynomial calculated on a cell-by-
cell basis.  

γpl Curve Plan This is the curvature of the surface in the 
direction perpendicular to slope 

γpr Curve Profile This is the curvature of the surface in the 
direction of slope 

d Distance 

Distance (m) from the -1 mean high water 
(MHW) contour line (or lowest extent of 
vegetation).  Positive values for shoreward 
and negative values for seaward distances. 

Z Elevation 

Lidar elevation as derived from the 
discrete-return dataset using a 1 x 1 m cell 
size and inverse distance weighting 
interpolation method. 

ἰ Intensity 

Lidar intensity is the magnitude, of the 
return pulse.  It represents the reflectivity 
of the surface at the laser wavelength 
scaled between 0-255. 

Ɍ Rugosity 

Measure of terrain variation of grid cells 
within a neighborhood in three-
dimensions. Output raster values range 
from 0 (no terrain variation) to 1 (complete 
terrain variation). 

m Slope 
Slope is the maximum rate of change in 
value from each cell to its neighbors 
calculated as a percent. 
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Table 5.3: Regression and classification models used with their descriptions, benefits and 
detriments. 
 

Model Description Pros Cons References 

Classification and 
Regression Trees 

(CART) 

Creates classification trees 
using binary recursive 
partitioning to predict the 
group association based on 
one or more predictor 
variables. 

Ability to handle missing data;  
Can often reveal important 
data relationships that 
sometimes remain concealed 
using other analytical methods  

Regression based 
models are limited in 
the output response to 
data clustering based 
on the terminal node 
assignment 

(Breiman et al. 1984) 

Multivariate 
Adaptive 

Regression 
Splines (MARS) 

Approximates functions by 
capturing essential 
nonlinearities and 
interactions but still 
produces results in a form 
similar to a traditional 
regression 

Predicts continuous numeric 
outcome; Uncovers important 
data patterns; Produces output 
equations similar to those used 
in traditional regression 
approaches.   

Not capable of 
categorical 
classifications 

(Friedman 1991) 

TreeNet - 
Stochastic 

Gradient Boosting 

Generates thousands of 
small decision trees, less 
than 6 terminal nodes, from 
a random sample of the data 
that sequentially eliminate 
residuals and converge on a 
highly accurate model 

Highly resistant to over fitting 
of the data since very small 
trees are used instead of one 
large tree and the models 
produce substantially higher 
accuracies 

Does not produce 
equation style 
regression output; 
lacks interpretable 
decision trees as are 
found with CART 

(Friedman 2002) 

Random Forests 

Random Forests is an 
ensemble of many CART 
trees that are not influenced 
by each other 

Ability to spot 
outliers/anomalies; 
Discovering data patterns; 
Identifying important 
predictors; Predict future 
outcomes.   

Produces somewhat 
more accurate 
classification models 
than regression 

(Breiman 2001) 

Generalized Path 
Seeker Model 

(GPSM) 

A forward stepping model 
that builds linear regressions 
that are additive with 
predictors and cannot 
discover on its own 
nonlinear relationships or 
interactions without the help 
of an analyst.   

Well suited to using more 
predictor columns than 
observation records; Can 
handle highly correlated 
predictors (colinearity);  Finds 
a compact model with good 
performance 

Does not handle 
missing values and 
will enforce row 
deletions to 
compensate for 
missing predictor 
values.  

(Friedman 2012) 
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Table 5.4: Model results from full-waveform and discrete-return lidar based models.  The 
“learn” sample was used to build the model while the “test” sample is independent and used 
for confirming model results.  The scored data column is the results of the model on the 
combined learn and test samples.  The regression line equation for the scored model is 
displayed to give an indication of how close to a 1:1 relationship the model created.  A 
perfect model would have an R2 value of 1 and an equation of y = x.  Models results are 
sorted in order by performance (best to worst), which is determined using three criteria: a 
high independent “test” sample R2 result, similarity of R2 results between the “learn” and 
“test” results, and closeness of fit of the final regression equation line to a 1:1 correlation.  * 
(The learn sample R2 for Random Forest [RF] models, otherwise known as “OOB” [out-of-
bag], is always 1 and therefore not reported.) 

 
 

Type Models Learn (n = 560) Test (n = 225) Scored (n = 785) Equation 

W
av

ef
or

m
 

TreeNET 0.990 0.963 0.982 y = 0.9748x - 0.0103 
MARS 0.967 0.960 0.964 y = 0.9642x - 0.0169 
GPSM 0.934 0.948 0.938 y = 0.9329x - 0.0327 

Regression 0.934 0.947 0.938 y = 0.9326x - 0.0327 
RF * 0.959 0.984 y = 0.8971x - 0.0488 

CART 0.939 0.919 0.934 y = 0.9964x - 0.0009 

Di
sc

re
te

 

TreeNET 0.934 0.910 0.926 y = 0.9126x - 0.0388 
RF * 0.911 0.959 y = 0.8652x - 0.0649 

MARS 0.857 0.872 0.862 y = 0.8567x - 0.0720 
CART 0.917 0.880 0.905 y = 0.9139x - 0.0407 
GPSM 0.817 0.832 0.827 y = 0.7992x - 0.0990 

Regression 0.820 0.828 0.823 y = 0.8201x - 0.0872 
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Figure 5.5a: Plot of RTK GNSS elevations to raw lidar elevation (red) and the same lidar 
points corrected with the TreeNet model (open circles) using full-waveform and discrete-
return lidar data.  All elevations are in local mean high water (MHW) tidal datum.   
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Figure 5.5b: Plot of RTK GNSS elevations to raw lidar elevation (closed circles) and the 
same lidar points corrected with the MARS model (open circles) using full-waveform and 
discrete-return lidar data.  All elevations are in local mean high water (MHW) tidal datum.   
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Table 5.5: Variable importance is presented for each of the models that use full-waveform 
and discrete-return lidar data predictors.  The most important variable is given a score of 
100 and all other variables importance are reported  are rescaled relative to the most 
important variable.  The top 3 important variable from each model run are highlighted in 
bold.   

 

Symbol Predictor 
Variable TreeNet MARS GPSM RF CART 

A Amplitude 9.05 3.16 8.54 0.24 2.71 

AUC Area under curve 7.71 - 1.8 0.21 1.96 

µω Waveform mean 9.85 3.02 - 0.07 10.7 

g1 
Waveform 
skewness 7.77 4.15 2.19 0.07 4.58 

w Width 52.11 42.62 39.16 24.11 30.26 

Z Elevation 100 100 100 100 100 

γ Curve 6.58 7 4.91 0.05 6.13 

γpl Curve Plan 7.55 - - 0.02 2.5 

γpr Curve Profile 7.32 - 6.21 0.08 3.28 

d Distance 16.77 2.86 1.27 3.22 65.95 

Ɍ Rugosity 8.49 5.21 - - 14.14 

m Slope 7.92 3.83 4.08 - 4.89 
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Table 5.6: Bias by species for uncorrected lidar and top two models for both full-waveform 
and discrete-return lidar model results 

 

Model Species N Mean Min Max SD RMS 

Uncorrected 
Lidar 

All Vegetation 694 0.24 -0.20 1.11 0.23 0.33 
S. alterniflora  446 0.35 -0.20 1.11 0.22 0.41 
S. patens 123 0.06 -0.17 0.18 0.05 0.08 
Distichlis spicata 39 0.05 -0.07 0.11 0.05 0.07 
Salicornia spp. 86 0.06 -0.12 0.32 0.08 0.10 

                

TreeNet 
Waveform 

All Vegetation 694 0.00 -0.43 0.29 0.07 0.07 
S. alterniflora  446 -0.01 -0.43 0.27 0.08 0.08 
S. patens 123 0.01 -0.08 0.16 0.04 0.04 
Distichlis spicata 39 0.02 -0.05 0.14 0.04 0.04 
Salicornia spp. 86 0.02 -0.10 0.29 0.06 0.06 

                

MARS 
Waveform 

All Vegetation 694 0.00 -0.42 0.49 0.10 0.10 
S. alterniflora  446 -0.02 -0.42 0.43 0.11 0.11 
S. patens 123 0.01 -0.10 0.26 0.07 0.07 
Distichlis spicata 39 0.03 -0.06 0.16 0.06 0.06 
Salicornia spp. 86 0.05 -0.11 0.49 0.09 0.10 

                

TreeNet 
Discrete 

All Vegetation 694 -0.01 -0.72 0.57 0.14 0.14 
S. alterniflora  446 -0.05 -0.72 0.37 0.14 0.15 
S. patens 123 0.04 -0.14 0.48 0.10 0.11 
Distichlis spicata 39 0.04 -0.11 0.57 0.11 0.12 
Salicornia spp. 86 0.10 -0.07 0.37 0.09 0.13 

                

Random 
Forest 

Discrete 

All Vegetation 694 -0.01 -0.60 0.56 0.11 0.11 
S. alterniflora  446 0.03 -0.22 0.56 0.11 0.11 
S. patens 123 -0.07 -0.47 0.04 0.08 0.11 
Distichlis spicata 39 -0.07 -0.60 0.04 0.10 0.12 
Salicornia spp. 86 -0.08 -0.33 0.08 0.07 0.11 
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Figure 5.6: Frequency of occurrence for lidar residuals (lidar – RTK GNSS = ΔZ) by 
vegetation species (n = 694) across all three marsh sites.  The red solid line represents the 
combined total of all S. alterniflora ecophenes residuals. (SPAL - Spartina alterniflora, DISP - 
Distichlis spicata, SPPA - Spartina patens, SASP - Salicornia spp.) 
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Figure 5.7: Frequency of occurrence for residuals as corrected by the TreeNet model (Lidar 
– RTK GNSS = ΔZ) using full-waveform and discrete-return lidar predictors (n = 694).  
(SPAL - Spartina alterniflora, DISP - Distichlis spicata, SPPA - Spartina patens, SASP - 
Salicornia spp.) 
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Figure 5.8a: Plot of RTK GNSS elevations to raw lidar elevation (red) and the same lidar 
points corrected with the TreeNet model (open circles) using only discrete-return lidar data 
sources.  All elevations are in local mean high water (MHW) tidal datum.  
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Figure 5.8b: Plot of RTK GNSS elevations to raw lidar elevation (closed circles) and the 
same lidar points corrected with the Random Forest model (open circles) using only discrete-
return lidar data sources.  All elevations are in local mean high water (MHW) tidal datum.  
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Table 5.7: Variable importance is presented for each of the models that use only the discrete-
return lidar data predictors.  The most important variable is given a score of 100 and all 
other variables importance are reported  are rescaled relative to the most important 
variable.  The top 3 important variable from each model run are highlighted in bold.  “–“ 
represents not found significant or used by the model.   

 

Symbol Predictor 
Variable TreeNet MARS GPSM Random 

Forest CART 

γ Curve 14.21 - 1.23 0.45 0.78 
γpl Curve Plan 12.29 - - - 3.18 
γpr Curve Profile 17.9 13.78 2.186 0.72 7.51 
d Distance 20.79 - 1.86 0.73 65.17 
Z Elevation 100 100 100 100 100 
ἰ Intensity 23.87 - - 2.44 14.68 
Ɍ Rugosity 24.72 14.92 55.33 2.2 21.96 
m Slope 14.68 - 6.28 0.2 14.74 

 

 

Figure 5.9: Histogram of TreeNet model residuals (Lidar – RTK GNSS = ΔZ) for discrete-
return lidar predictors (n = 694).  (SPAL - Spartina alterniflora, DISP - Distichlis spicata, 
SPPA - Spartina patens, SASP - Salicornia spp.) 
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Table 5.8:  Confusion matrices for the three classification models created to identify 
vegetation zonation.  The three zones are bare ground (GR), high marsh vegetation [S. 
patens, Salicornia spp., D. spicata, short-form S. alterniflora] (HM), and low marsh vegetation 
[tall-form and medium-form S. alterniflora] (LM).  The shaded diagonal (grey) contains the 
cases of agreement between the model and the learn or test datasets.   

 

Model Class 
Learn Dataset Test Dataset 

N Correct GR HM LM N Correct GR HM LM 

T
re

eN
et

 GR 58 94.8% 55 2 1 33 81.8% 27 2 1 
HM 179 98.9% 0 177 2 69 92.8% 0 64 5 
LM 230 99.6% 0 1 229 89 95.5% 1 3 85 

Total 467 98.7% 55 180 232 191 92.1% 28 72 91 

R
an

do
m

 
Fo

re
st

 GR 58 89.7% 52 5 1 33 97.0% 32 1 0 
HM 265 77.4% 9 205 51 110 83.6% 4 92 14 
LM 237 82.3% 15 27 195 82 86.6% 6 5 71 

Total 560 80.7% 76 237 247 225 86.7% 42 98 85 

C
A

R
T

 GR 58 91.4% 53 4 1 33 87.9% 29 4 0 
HM 265 83.4% 1 221 43 110 86.4% 0 95 15 
LM 237 81.9% 12 31 194 82 78.0% 5 13 64 

Total 560 83.6% 66 256 238 225 83.6% 34 112 79 
 

 
 
 

Table 5.9: Variable importance is presented for each of the zonation models using all 
available predictors.  The most important variable is given a score of 100 and all other 
variables importance are reported  are rescaled relative to the most important variable.  The 
top three important variables from each model run are highlighted in bold.   

 

Symbol Predictor Variable TreeNet Random 
Forest CART 

A Waveform Amplitude 35.66 12.4885 7.4541 

AUC Area under curve 26.15 10.5998 10.2763 

mw Waveform mean 29.18 10.3625 19.2795 

g1 Waveform skewness 21.36 8.1181 15.1362 

w Waveform Width 100 100 92.5945 

Z Elevation 68.63 98.8685 100 

γ Curve 15.64 4.79 7.1263 

γpl Curve Plan 21.33 3.8031 0.9588 

γpr Curve Profile 24.25 7.3549 1.8469 

d Distance 60.37 68.5338 77.8668 

ἰ Intensity 51.62 25.7267 38.6824 

Ɍ Rugosity 32.92 22.667 41.7609 

m Slope 29.32 9.5455 8.0322 
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Figure 5.10: Vegetation map of Moors marsh vegetative zones developed from field collected 
data and interpretation from a 2009 high resolution aerial photograph.  Salt ponds are not 
identified on this map.  
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Figure 5.11: Vegetation map of marsh vegetative zones derived from the TreeNet model 
using all available predictors.  Salt ponds and other water features are visible as data voids 
(white).  Red ovals represent areas of high marsh vegetation (SF Spartina alterniflora) not 
interpreted using standard techniques but detected by the full-waveform nonparametric 
model.  Yellow circles are “bare ground” that has been misclassified as high marsh possibly 
due to the presence of macroalgae.  
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Figure 5.12: Uncorrected lidar DEM of last (single) returns using an Inverse Distance 
Weighting algorithm with a radius of 1 cell.  Elevations are in meters and referenced to local 
MHW datum.  
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Figure 5.13: Waveform corrected DEM using the developed TreeNet model.  Notice the 
visible topography that was hidden in the uncorrected DEM by vegetation-induced bias.  
Elevations are in meters and referenced to local MHW datum.    
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Figure 5.14: Difference map between the uncorrected lidar DEM and the Waveform 
TreeNet model corrected DEM.  Differences are attributed to model “removed” vegetation-
induced bias and are measured in meters. 
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Figure 5.15: Corrected DEM using discrete-return lidar derived predictor TreeNet model.  
Results are an improvement over the uncorrected DEM but still contain significant 
vegetation-induced bias as compared to the full-waveform corrected DEM.  Elevations are in 
meters and referenced to local MHW datum. 
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Figure 5.16: Difference map between the uncorrected lidar DEM and the discrete-return 
lidar corrected DEM using the developed TreeNet model.  Differences are attributed to 
model “removed” vegetation-induced bias and are measured in meters. 
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Figure 5.17: Difference map between the full-waveform corrected difference map and the 
discrete-return lidar corrected difference map.  These differences (m) are the 
“improvement” of the full-waveform model over the discrete-return lidar model at removing 
the vegetative induced bias. 

 

 

  



 182 

 

CHAPTER VI 

CONCLUSIONS 

 

This research investigated the utility and uncertainty of discrete-return (DRL) and full-

waveform lidar in salt marsh environments.  Vegetation-induced DRL uncertainty continues to 

challenge researchers and coastal managers considering the use of lidar in salt marshes for 

regional or site specific detailed topographic analysis.  As observed in other environments, lidar 

uncertainty varies as a function of the terrain and vegetation cover.  More specifically, the lidar 

uncertainty in salt marsh environments appears to be driven by the light blocking characteristics 

of individual species, which is also function of the physical location in the marsh.  Without 

correction, digital elevation models (DEM) developed from DRL sources are not acceptable for 

applications where fine topographic details are necessary such as sea level rise resilience studies, 

hydrologic modeling, restoration planning, or storm impact analysis.  The most effective 

approaches to salt marsh DEM correction to date have been based on vegetation species specific 

bias removal.  However these methods assume a priori knowledge of species location, which is a 

level of detail typically unavailable in most projects.  This vegetation detail can be acquired by 

extensive fieldwork or additional flight sensors such as hyperspectral imaging, but these require 

processing and interpretation that will add to time, cost and the possible introduction of errors.  

These vegetation-based methods also assume that each mapped zone that requires DEM 

modification has a constant correction factor across its entire extent when vegetation conditions 

and lidar bias vary continuously across the salt marsh surface.  Waveform data offers additional 

information about the target not available in DRL datasets.  Through conducting a series of 
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analyses of DRL and full-waveform data from salt marshes in Cape Cod Massachusetts, as well 

as a field experiment, the primary conclusions from this study can be summarized as follows:  

 

(1) Using a new photographic field method for imaging in situ vegetation, there was a clear 

relationship between vertical biomass (VB) density and vertical obscuration (VO).  

However, this relationship was found to be species dependent and may not be appropriate 

for other vegetation species with different growth habits.  Correlations of VB and VO in 

individual sample locations of Spartina alterniflora often had r values > 0.9.  The VB and 

VO methods were determined to yield important information that is useful for future salt 

marsh and lidar investigations. 

 

(2) Full waveform lidar are useful in estimating salt marsh biophysical parameters.  Waveform 

width and amplitude had significant correlations with vegetation height, planimetric 

obscuration, and proportion vegetated area (PVA) [a measure of the cross-sectional area 

and the light obscuring properties of the vegetation].   

 

(3) DRL returns in salt marsh environments from the peak vegetation, IDW interpolation 

exhibited a positive bias of 0.14 m (σ = 0.17 m) across all survey locations.  However, a 

DRL accuracy assessment based on bias estimates across the entire salt marsh is grossly 

misleading since a majority of the observed bias could be attributed to just one species, 

Spartina alterniflora.   

 

(4) Regardless of flight capture season, DRL returns in salt marsh environments exhibit 

positive bias.  Temporal measurements of change in vegetation-induced-bias between peak 
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and senescent growth conditions are possible from lidar datasets.  Collecting lidar during 

senescent conditions helped to significantly reduce uncertainty in the elevation 

measurements and had the effect of lowering overall lidar bias from 0.14 m at peak 

vegetation growth to 0.04 m at senescent conditions.   

 

(5) Different marsh species were found to have diverse ranges of bias that are found in a 

continuous distribution of residuals rather than a constant value.  While most species 

observed in this study have unimodal distributions, S. alterniflora was observed to have a 

multimodal distribution as a result of its three distinct ecophenes.  The distribution of bias 

will complicate DRL correction techniques that are vegetation-based using a constant 

factor for bias. 

 

(6) Custom interpolation and filtering techniques such as minimum bin may improve overall 

DRL accuracy, but does not address a majority of the species-specific bias and can 

introduce additional errors that might create negative bias considerations. This technique 

should probably only be used with caution in the instance where other methods such as 

species specific or nonparametric modeling are not possible. 

 

(7) Waveform feature-based metrics can be used to create relative uncertainty surfaces (RUS) 

that are useful to predict regions of variable uncertainty within the marsh and can be 

confidently used for targeted ground truth or other field work activities.  These areas may 

also be used to quickly identify and monitor locations of change within the marsh since 

areas of higher uncertainty should be related to vegetation height, which in most cases will 

imply changes in inundation frequency. 
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(8) Non-parametric predictive modeling techniques, coupled with full waveform feature-based 

metrics, reduce elevation uncertainty due to salt marsh vegetation, even during peak 

vegetation growth conditions.  The highest performing model, TreeNet, produced an R2 of 

0.98, a slope within 4% of a 1:1 correlation, and reduced bias, µ, from 0.24 m to 0.00 m, 

and standard deviation, σ, from 0.23 to 0.07 m.  The developed model reduced systematic 

and random error for the entire data set by applying location-specific, point-by-point 

corrections obtained via the nonparametric regression methods. 

 

(9) Reasonably successful models were built with predictors that were based solely on DRL 

sources (with the addition of intensity), which provides adequate correction in some 

circumstances particularly when working with historic datasets.  The best models resulted 

in an R2 of 0.92, slopes within 9% of 1:1 correlation, and  reduced bias to -0.01m, and 

standard deviation to 0.14 m . 

 

(10) The most significant predictor variable in nearly all models that used waveform feature-

based metrics was waveform width after DRL starting elevation.   

 

(11) Accurate classification maps (>90%) of salt marsh vegetation zones were created using 

only a lidar data source and without the use of other imagery or spectral data. 

 

Field techniques for elevation data collection are often inadequate in salt marsh 

environments especially for projects covering large spatial extents.  Full-waveform lidar holds 
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the promise to deliver more accurate salt marsh elevation models by distinguishing coastal 

vegetation biophysical parameters such as height and planimetric obscuration, as well as 

detecting the ground within the DRL dead zone of less than 2 m.  The results of this study 

suggest that it should be possible to achieve at least a coarse understanding of lidar bias across an 

entire marsh by the creation of RUS maps that can be used to minimize the amount of expensive, 

time-consuming field work, target field investigations, or monitor changes over time.  Waveform 

width was determined to be a very valuable parameter for evaluating key marsh characteristics 

such as uncertainty and vegetation height.  It may be that waveform width will also provide 

important information that can be used in other applications and should potentially be considered 

by instrument manufacturers as a standard deliverable with future DRL datasets such as intensity 

is today.  Predictive modeling tools that use variables derived from full-waveform lidar appears 

to deliver highly accurate salt marsh elevation models by removing vegetation induced 

uncertainty.  Corrected elevation surfaces will minimizing the amount of expensive, time-

consuming fieldwork and better support coastal research and management objectives such as 

studying the impacts of sea level rise on marsh health and resilience as well as plan and monitor 

the results of salt marsh restoration projects.  Five different nonparametric model algorithms and 

one parametric algorithm were employed in this study to correct for vegetation-based 

uncertainty.  These models used a wide range of different algorithms, but produced a relatively 

narrow range of results.  This provided further validation of a lack of overfitting and individual 

model success despite the complex variable relationships and interactions.   

It is recommended that the methods developed in this research be tested further.  Specific 

goals of follow-on studies should include:  a) extending these methods and analyses to marshes 

in different regions of the country with differing vegetation species and geomorphology; b) 
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investigating the extensibility of the full-waveform methods to lidar systems with shorter 

transmit pulse widths; c) determining if models created in this study can be successfully scored 

against full waveform data from other northeastern salt marshes without reworking the 

developed model; d) analyzing full waveform data taken from marsh systems in winter 

(senescent conditions) to determine if this correction technique is adaptable to data collected at 

different times of the year. 
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APPENDIX A 

OPTICAL CALIBRATION 

 

There are several potential sources of uncertainty in the Vertical Obscuration (VO) 

photographic measuring method.  The first of these potential sources involve optical distortions 

that may be present as a result of the camera lens and mirror assembly.  Although great care was 

taken to compensate for introduced errors by using precision leveling devices, the geometry of 

the camera, mirror and background could play a role in increasing uncertainty.  Camera rotation 

along the three axes may create erroneous angles to the image, lengthening or shortening pixel 

dimensions.  Similarly, mirror angles less than or greater than 45 degrees may add to potential 

geometric distortion.  Additionally, a non-perpendicular background board and scale bar may 

affect the geometry of the scale bar, but would not create geometrical distortion in the vegetation 

portion of the image.  Finally, the digital extraction of background from the vegetation, creating 

a binary image, has the potential to be a source of uncertainty.  In the case of this analysis, the 

spectral properties of the background and the vegetation are mixed.  Spectrally mixed pixels are 

a combination of end member spectral properties weighted by the corresponding abundances 

(Liu and Zhang 2014).  The frequency of occurrence of spectrally mixed pixels in this study is 

primarily dependent on camera resolution, the vegetation density, and the size of air spaces or 

gaps.  As a consequence this could lead to a positive bias towards the bottom of the image where 

the stems/leaves are often the densest and small gaps are not easily detected.  Spectral unmixing 

algorithms are sometimes employed to extract the percentage of each end member material 

present in each pixel (Liu and Zhang 2014). 
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Various fully-automated extraction techniques were attempted to extract the vegetation 

pixels from the background such as supervised and unsupervised classification, histogram stretch 

and thresholding using image processing software including ENVI 4.3.  After extensive tests, a 

semi-automated approach was selected utilizing SideLook software (Zehm et al. 2003; Nobis and 

Hunziker 2005), which was found to produce superior results in the least time.  Fully automated 

approaches were not as successful due to the inconsistent red color of the back-board from top to 

bottom in the image.  The color variation was caused by diminishing light levels as a result of 

tall vegetation.  Therefore when the classification or thresholding techniques could separate the 

board from the vegetation at the top of the image, it was unsuccessful at the bottom.  

Unfortunately, manual thresholding does not necessarily resolve this issue because it can also be 

somewhat subjective, introducing uncertainty to the measurement (Neumeier 2005; Nobis and 

Hunziker 2005). 

Threshold values and spectral mixing are very closely related parameters and for the 

purposes of this analysis are investigated together since threshold is an easily controllable 

parameter.  Starting with a field collected, vegetation image that was arbitrarily selected to 

represent “truth” (i.e., assumed to have no other distortions such as those caused by the lens and 

mirror), optimal VO (𝑣otrue) was first computed, and then the 8-bit threshold (0-255) was 

systematically varied between 255 to 235 in 1 DN (digital number) increments.  For each 

iteration, Δ𝑣o (𝑣otrue – 𝑣o) was computed.  The results of this analysis showed that the change in 

𝑣o was < 1% for the entire image, up to a variation of threshold ±3 DN values from the 

empirically-determined “best threshold.”  Therefore, for the purposes of this study mixed pixel 

issues do not significantly impact the results.  If the objective were to investigate small air gaps, 

higher resolution imagery would be necessary. 
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A calibration was conducted for the camera and mirror assembly to determine potential 

optical distortions, which may contribute to erroneous results or increased uncertainty.  Two 

calibration images, one with only the camera lens optics (Figure AA1a) and a second with the 

mirror assembly (Figure AA1b), were taken of a standard black and white checkerboard with 

9.4 cm squares at full field of view (i.e. minimum zoom).  Using ArcGIS 10, polygons and line 

segments of the calibration checkers were hand digitized to the nearest pixel and coded for row 

number (Figure AA2).  Quantifiable barrel distortion was observed in the camera lens 

calibration photo, where checkers varied in size from the center of the image to the outer 

extremities (corners) (Figure AA3).  Barrel distortion is defined as when the image 

magnification decreases with distance from the optical axis with the apparent effect of an image 

appearing to be mapped around a barrel (Pei-Yin et al. 2009).  Deviation in calibration checker 

area due to the barrel lens distortion appears to be very symmetrical varying by as much as 13% 

in the center column from centermost checker to bottom or top of the image (Figure AA4a) and 

8% from center to the left and right edges (Figure AA4b).  The center checker area, across all 

the columns, varied by a minimum of 1% in the adjacent columns to approximately 7% in the 

outermost columns in the center of the image and 11% at the bottom and top.  Length variation 

by area followed similar patterns with variation from top to bottom being as large as 8-10% and 

sided to side by as much as 6% (Figure AA5). 

The rectangular mirror assembly was imaged by the camera as a trapezoidal shape, where 

the top, closer to the camera, is wider than the bottom (Figure AA6a).  This type of optical 

distortion was first thought to be keystone, which is sometimes observed using remote sensing 

imaging platforms (Sasian 1992).  However, calibration checkers and therefore marsh vegetation 

photos, did not exhibit this keystone distortion.  Checkers at the top and bottom of the image are 
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not trapezoidal in shape, as would be expected if this was true keystone distortion.  Instead, it 

was observed that the field of view is wider at the top than at the bottom.   

The portion of the calibration image visible in the mirror and used for VO analysis was 

located in the center calibration columns of the camera image, which contained the least amount 

of observed error (Figure AA6b).  During preprocessing and analysis of the imagery, the edges 

around the mirror where the most extreme errors are found were cropped away and the 

calibration checkers within the mirror were digitized (Figure AA7).  This method of image 

cropping was similar to that used by another researcher that cropped the center columns from 

multiple images, where image distortion is minimal, to create a composite mosaic (Straatsma et 

al. 2008).  Measuring the observed differences in checker area from the mirror it was found that 

they differ by as much as 12% from the center to the bottom but the upper 72% of the image 

contained less than 4% variation (Figure AA8).  With the exception of the bottom most row, row 

area variation from the center to sides was within 1%.  The length variation analysis produced 

very similar results (Figure AA9).  Therefore, checkers at the bottom of the mirror were 

observed to contain the greatest error from the combined lens and mirror distortion as compared 

to the center squares.   

Ideally, each image should be geometrically corrected for the observed optical distortions 

using a predetermined camera model or rectified to a known grid by an affine transformation 

(Figure AA10) (Zehm et al. 2003);  However, this may not be necessary, if the effect on the 

computed VO can be shown to be negligible.  For example, Zehm et al. (2003) showed in their 

calibration photos that results on vertical height measurements differed by approximately 3% on 

average from standard digital photos to their geometrically corrected version.  Other researchers 

conducting similar photographic measurements of vegetation also did not perform geometric 
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correction and determined the errors to be negligible when compared to the other potential 

sources of error within their analysis (Neumeier 2005; Nobis and Hunziker 2005; Möller 2006; 

Straatsma et al. 2008).   

Further evaluation of rectified image uncertainty was conducted by correcting a 

calibration image for lens distortion with ArcGIS to a perfect grid (Figure AA11a) before 

digitizing checkers visible in the mirror (Figure AA11b).   After lens correction was completed, 

image distortions related to the mirror and camera geometry could be isolated from the optical 

lens distortion.  Checker polygons were color coded by area in figure AA12 to visualize the 

variability found in the image by sources other than the camera lens.  This same rectification can 

then be applied to field photos (Figure AA13).  Additional analysis of the camera rectified 

image reveals at least two other sources of error are present (Figure AA14) (Figure AA15).  The 

first source is suggested by a lineation of area and length differences from the bottom of the 

image to the top.  Imaging through the mirror assembly produced a 4% difference in area and 

less than 2% variability in length between the top and bottom of the image with the center.  It 

should be noted that the seemingly chaotic points of figure AA15a only deviate from a straight 

line by at most 1% and could easily be caused by slight digitizing errors in the line segment 

lengths.  Several of the line segments that were significantly off were a known error caused by 

the seam between two sheets of calibration paper.  Secondly, a slight rotation was observed in 

which the cause could be the orientation of the mirror to the calibration board, the orientation of 

the camera mount to the mirror or possibly a warp in the mirror frame assembly.  This observed 

rotation produced area variability from left to right of 0.5 to 2% and length variability of 

approximately 1 to 3% to the center measurement with the greatest differences located at the 

bottom of the image. 
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A mirror correction model could be created to remove the remaining distortions (Figure 

AA16a).  However, such a model would require mirror conditions to be identical in each image.  

Although conditions were similar they were not identical in each captured image (Figure 

AA16b).  There was some variation in the placement of the mirror assembly within each image.  

Using the model created in figure AA16a, a good portion of the observed mirror error could be 

corrected, but it may not eliminate all distortion and could introduce additional errors.  Image 

specific calibration models are not possible due to a lack of calibration checkers in each field 

image. 

The VO analysis used in this study of uncorrected images measured the percent obscured 

of an area in 5 cm increments in height (i.e. a binary image of how much is vegetation versus 

how much is background in a given area).  Therefore, the resulting measurements of VO are 

unit-less and the area discrepancies observed as a result of barrel and mirror distortions should 

not materially affect the results.  However, in the absence of that assumption or when the VO 

digital imaging method is used for measuring vegetation height, the following uncertainty 

assessment is made.  Based on the analysis presented above, height measurements at the bottom 

of the mirror could vary as much as 8% from those at the center.  Yet, approximately 80% of the 

image varies by less than 5% of the center checker.  Based on measurements, imaged vegetation 

with heights less than 20 cm will fall within the image 6-8% error zone equivalent to 1.6 cm of 

error.  This project contained only one sample of Spartina patens that imaged at a height below 

20 cm.   Field observations were consistently lower than photographically derived heights with 

Spartina alterniflora exhibiting a mean difference of 8.6-14 cm and the other taxa differing by a 

mean of 10.4-16.8 cm.  According to the calibration findings, uncorrected VO imaging of height 

will always be underestimated due to the lens and mirror distortions.  That underestimate will be 
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variable over the mirror length increasing as the distance increases from the center of the mirror.  

The combined lens and mirror distortion produce up to a maximum of 3.71 cm of error over the 

total height of the mirror, which is a 2.8% variance in height.  This error is significantly less than 

the difference between the field observed heights and the photographically derived heights. 

The use of the VO method in the field does appear to have some limitations and may not 

be suitable for extremely dense or woody vegetation.  The colored board and mirror assembly are 

difficult to maneuver in these settings and damage may be caused to the apparatus and/or the 

vegetation, thereby introducing the potential for erroneous results.  For instance the mirror and 

background apparatus may not work well in an invasive Phragmites australis stand, because of 

lack of maneuverability and due to height constraints as a result of the tall stalks.  For denser 

vegetated areas the method may need to be modified to exclude the mirror, which is more 

analogous to the Möller and Zehm design (Zehm et al. 2003; Möller 2006). 

 

             

Figure AA1: a) Digital camera on a tripod capturing an image of a calibration checker 
board.  b) Camera and mirror assembly capturing an image of a calibration checker board. 

(a) (b) 
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Figure AA2: a) Camera photo of calibration board. b) Digitized (in red) calibration 
checkers.  Notice arcing barrel shape to the red digitized lines. 
 

 
Figure AA3: Polygons colored by area for camera calibration.  Center squares (red) are 
larger in unitless area than corner squares (pink).  

 
 
 
 
 
 

(a) (b) 
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Figure AA4:  From bottom of image/calibration grid to top a) Camera lens distortion for checker area 
by columns.  b) Camera lens distortion for checker area by rows.  The center checker’s area (largest) 
was used to calculate the percent variance of other checkers.  Dashed lines are column/row separators. 
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Figure AA5:  From bottom of image/calibration grid to top a) Camera lens distortion for 
checker length by columns.  b) Camera lens distortion for checker length by row.  The 
center checker’s length (largest) was used to calculate the percent variance of other 
checkers.  Dashed lines are column/row separators. 
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Figure AA6: a) Digitized calibration checkers over photo of mirror apparatus b) Digitized 
calibration checkers over cropped, usable portion of mirror. 

 

 
Figure AA7: Calibration checkers from mirror digitized (in yellow). 

 

(b) (a) 
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Figure AA8:  From bottom of image/calibration grid to top, a) Deviation in area within the 
mirror portion of the image for each checker by column.  b) Deviation in area within the 
mirror portion of the image for each checker by rows.  The center checker’s area was used 
to calculate the percent variance of other checkers.  Dashed lines are column/row separators. 
Red ovals represent points with digitizing error from the calibration board (seam between 
two sheets of paper).  These graphs contain both lens optical distortion and mirror 
distortion.   
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Figure AA9:  From bottom of image/calibration grid to top, a) Deviation in length within the 
mirror portion of the image for each checker by column.  b) Deviation in length within the 
mirror portion of the image for each checker by rows.  The center checker’s area was used 
to calculate the percent variance of other checkers.  Dashed lines are column/row separators. 
Red ovals represent points with digitizing error from the calibration board (seam between 
two sheets of paper).  These graphs contain both lens optical distortion and mirror 
distortion.  The shaded area essentially represents the cone of error with the bottom of the 
mirror on the left with the largest errors. 
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Figure AA10: a) A perfect grid the same size as the original calibration checker board with 
right angles and no distortion.  b) Calibration photo has been rectified to perfect grid 
removing camera lens barrel distortion.  Notice black, arcing slivers (white arrow) at the 
edges of the photo and the perfect grid matching exactly the photo checkers.  This is the 
same photo as shown in figure AA2a, b. 

 
Figure AA11: Using the camera lens correction model based on the perfect grid from figure 
AA10b, a) Rectified image of mirror apparatus.  Barrel lens distortion has been removed 
from the image (white arrow points to black slivers as seen in figure AA10b).  b) Calibration 
checkers visible in the mirror portion have been digitized (in yellow) from the now rectified 
image. 

(b) (a) 

(a) (b) 
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Figure AA12: Digitized polygons colored by area after lens optics correction.  A diagonal 
pattern of decreasing area is observed from upper right to lower left. This is likely the 
combined effect of both a top to bottom increase in area as a result of the mirror optics and a 
slight camera rotation from left to right.  The center strip of larger area located in row 6 
(black arrow) from the top is the result of a calibration board error (seam between two 
sheets of calibration paper). 

 

                                                                     

Figure AA13: a) Unrectified field image. b) Using the same model developed in figure 
AA10b, the rectified image of salt marsh vegetation (Sample station GA3) with camera lens 
distortion removed is shown.  Notice slender black arcing border along all four sides of the 
image (white arrow). 

(b) (a) 
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Figure AA14:  Camera lens rectified image containing only the mirror related distortions. a) 
Plot of area for each checker by column.  Areas are smaller at the top of the mirror than the 
bottom.  b)  Plot of area for each checker by row.  The mirror’s centermost checker area was 
used to calculate the percent variance of other checkers.  Dashed lines are column/row 
separators.  Red circle represents points with digitizing error from the calibration board 
(seam between two sheets of calibration paper).  There is also a slight change in area from 
left to right suggesting the calibration mirror may not have been exactly perpendicular to 
the background board or there was some distortion of the mirror within the A-frame. 
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Figure AA15: Camera lens rectified image containing only mirror related distortions. a) Plot 
of lengths for each checker by column.  Red circles represent points with digitizing error 
from the calibration board (seam between two sheets of calibration paper).  b)  Plot of 
lengths for each checker by row.  The mirror’s centermost checker length was used to 
calculate the percent variance of other checkers.  Dashed lines are column/row separators.  
Lengths are smaller at the top of the mirror than the bottom.  There is also a slight change in 
length from left to right suggesting the calibration mirror may not have been exactly 
perpendicular to the camera or there was some distortion of the mirror within the A-frame. 
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Figure AA16: a) A second rectification of the mirror image is possible to a known perfect 
grid.  This process can remove any of the remaining mirror and rotation distortions.   
However, unless the mirror is always in the exact position within the photo boundary for 
every image then this process will introduce its own error and an exact mirror correction 
cannot be made.  Since the calibration checkers are not available in each vegetation field plot 
image, an image specific mirror model cannot be generated.  b) Four lens rectified images 
with their mirror trapezoid outlines digitized showing the slight variability in mirror 
position.   

 

 

 

 

 

 

 

 

  

(b) (a) 
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APPENDIX B 

NONPARAMETRIC MODELS 

 

Investigating problems with numerous independent variables and complex, possibly 

nonlinear response curves, requires the use of machine learning, nonparametric modeling 

techniques.  Unlike typical statistical analysis of dependent and independent variables that utilize 

single or multiple regression techniques to make predictions of variable outcome, non-parametric 

modeling does not necessitate any assumption concerning variable distribution (i.e. a normal 

distribution is not necessary) as prerequisite of analysis  (Bourennane et al. 2014).  Non-linear 

approaches are often required in environmental modeling problems due to the complex and often 

concealed relationships between predictor variables (Tayyebi and Pijanowski 2014).  In this 

research there were 12 to 13 predictor variables used in the construction of the models including: 

discrete return lidar elevation, distance from shoreline, waveform amplitude (Figure AB1), 

waveform area-under-the-curve (Figure AB2), surface curvature (Figure AB3), surface 

planimetric curvature (Figure AB4), surface profile curvature (Figure AB5), surface rugosity 

(Figure AB6), waveform skewness (Figure AB7), discrete return lidar (DRL) intensity (Figure 

AB8), waveform mean (Figure AB9), surface slope (Figure AB10), and waveform width 

(Figure AB11). 

Modeling algorithms typically have between two or three analysis types: regression, 

classification or logistic binary depending if the response outcome is categorical or continuous.  

Regression algorithms are used when the response variable is continuous and use a regression-

based model such as Multivariate Adaptive Regression Splines (MARS) where the response 
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variable (y) is fit based on one or more independent predictor variables (x1,x2,…,xn) (Friedman 

1991).  Classification models such as Classification and Regression Trees (CART) are used to 

separate data based on its homogeneity into two or more discrete classes belonging to a 

categorical response variable (Breiman et al. 1984).  Logistic binary methods are similar to 

classification but contain only two binary “yes/no” classes and can often be run from regression-

based models.   

 

Classification and Regression Trees (CART) 

The CART algorithm creates regression (Figure AB12) and classification (Figure AB13) 

trees using binary recursive partitioning to predict the group association based on one or more 

predictor variables (Breiman et al. 1984).  A tree consists of a series of binary “yes/no” rules that 

are applied to the predictor variables until each record is classified into categories.  These trees 

can be simplified into splitter variables as shown in Figure AB14.  The decision rules are 

applied first to the root node and then subsequently progressed until terminal nodes are reached.  

CART creates an optimal tree based on an extensive search of all possible variable splits and 

pruning to minimize residuals and overfitting the data (Breiman et al. 1984).  Data outputs can be 

continuous or discrete values using regression or classification methods.  However, regression-

based CART models are limited in the output response to data clustering based on the terminal 

node assignment.  CART has the ability to handle missing data and can often reveal important 

data relationships that sometimes remain concealed using other analytical methods by capturing 

non-linear, hierarchical relationships as well as interactions among predictor variables (Byrd and 

Kelly 2006).   
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Multivariate Adaptive Regression Splines (MARS) 

MARS is a mathematical model that approximates functions by capturing essential 

nonlinearities and interactions but still produces results in a form similar to a traditional 

regression (Friedman 1991).  This algorithm was the successor to CART and constructed 

specifically for regression type modeling where the model outputs are designed to predict a 

continuous numeric outcome.  In addition to regression, MARS is also capable of producing high 

quality binary classifications with a “yes/no” outcome.  MARS effectively uncovers important 

data patterns and relationships and produces output equations similar to those used in traditional 

regression approaches (Figure AB15).  To accomplish this, MARS creates a sequence of basis 

functions by fitting piecewise linear segments with their own individual slopes and knots 

(boundaries between each linear section) allowing MARS to capture patterns (Figure AB16) 

(Friedman 1991).  Basis functions are then systematically eliminated in a backward stepwise 

fashion with all knots being removed that do not substantially contribute to the goodness-of-fit.  

Each basis function is then used as new predictor variables in the model.  Models run with 

interaction between variables result in basis functions that are 3d planar in nature similar to 

plotted output from parametric multiple regression. MARS can adapt to different basis function 

intervals as well as different predictor variables.  The response variable mean square error is 

successively lowered through applying basis functions until an optimal model is achieved 

(Figure AB17). 

 

TreeNet - Stochastic Gradient Boosting 

The TreeNet algorithm, otherwise known as stochastic gradient boosting, is capable of 

consistently generating extremely accurate models for both regression and classification.  To 
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accomplish this, TreeNet generates thousands of small decision trees (< 6 terminal nodes), from 

a random sample of the data that sequentially eliminate residuals and converge on a highly 

accurate model (Friedman 2002).  TreeNet has the ability to handle contaminated or missing data 

that can be very challenging for other data mining methods, such as neural networks, by rejecting 

training data points that are too much at variance with the existing model.    TreeNet is highly 

resistant to overfitting of the data since very small trees are used instead of one large tree and the 

models produce substantially higher accuracies (Friedman 2002).  TreeNet uses several 

regularization techniques to minimize overfitting such as a gradually building up the model 

through successive gradient boosting iterations (trees).  Variables are introduced one at a time 

but are only permitted to adjust the model outcome by very small coefficients (Friedman 2002).  

Increasing the number of trees reduces the error on the learn dataset and the model determines 

the optimal tree that minimizes overfitting and error.  In addition, another method of overfitting 

regularization employed by TreeNet consists of the subsample size, which is a constant fraction 

of the size of the training set.  A small subsample size of 0.5 has been determined optimal and 

introduces randomness into the algorithm by forcing the regression trees to be fit to reduced 

datasets at each boosting iteration (Friedman 2002). The response variable mean square error or 

average negative log likelihood is successively lowered through applying numerous trees until an 

optimal model is achieved (Figure AB18, AB19). 

 

Random Forests 

The Random Forests (RF) algorithm is an ensemble of many independent CART trees 

(Breiman 2001).  RF interjects randomness into the selection of the best tree splitters by 

evaluating a random subset of predictors at each of the nodes.  The overall prediction is 
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determined from the sum of the predictions made from individual decision trees.  Due to the 

randomness of data selected from the learn sample, approximately 37% of the dataset is never 

used in the model creation, which forms the out-of-bag (OOB) observations and is used for 

testing purposes.  These OOB records are subsequently run through each regression tree to 

produce error estimates and are used for cross-validation of the model errors (Breiman 2001).  

Overfitting is considerably reduced as OOB errors are averaged over hundreds of trees.  RF 

models perform best with a small to moderate number of observations but up to millions of 

predictor columns.  The principal strengths of RF are in spotting outliers/anomalies, discovering 

data patterns, identifying important predictors, and predicting future outcomes (Breiman 2001).   

 

Generalized Path Seeker Model (GPSM) 

Generalized Path Seeker (known in the literature as GPS but here it will be GPSM since 

Global Positioning System has the same acronym) is a flexible regression and logistic binary 

modeling approach.  Some of the principal benefits of using GPSM over other models is its 

simplicity in design and speed (Friedman 2012).  GPSM is well-suited to handle models built 

with more predictor columns then observation records, highly correlated predictors (colinearity), 

and finding a compact model with good performance.   The GPSM algorithm is a forward 

stepping model that builds linear regressions that are additive and cannot discover on its own 

nonlinear relationships or interactions without the help of an analyst.  Three principle strategies 

are employed in GPSM: Ridge, Lasso and Compact (Friedman 2012).  Ridge functions by 

optimally shrinking the coefficients, preventing any coefficient from reaching an unreasonable 

value while still retaining overall model quality and keeping all predictor variables.  Lasso also 

shrinks the coefficients but it selects variables for either inclusion or exclusion from the model.  
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Finally, compact attempts to use as few of the predictor variables as possible.  The response 

variable mean square error is successively lowered through the addition of predictors until an 

optimal model is achieved (Figure AB20).  One weakness is that the GPSM algorithm does not 

handle missing values and will enforce row deletions to compensate for missing predictor values.  

 

Regression  

The Salford Systems Regression algorithm uses a traditional forward, stepwise least 

squares regression.  In this algorithm the best predictor variable is found and introduced to the 

model and a traditional linear regression is built.  Subsequently, another variable is chosen and 

added that best improves the coefficient of determination.  Each variable available is added until 

either there are no predictor variables remaining or they no longer improve the coefficient of 

determination. 
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Figure AB1:  Predictor variable waveform amplitude interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB2:  Predictor variable waveform area-under-the-curve interpolated to a 1 m grid 
for Moors Marsh. 
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Figure AB3:  Predictor variable surface curvature interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB4:  Predictor variable surface planimetric curvature interpolated to a 1 m grid for 
Moors Marsh. 
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Figure AB5:  Predictor variable surface profile curvature interpolated to a 1 m grid for 
Moors Marsh. 
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Figure AB6:  Predictor variable surface rugosity interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB7:  Predictor variable waveform skewness interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB8:  Predictor variable discrete lidar intensity interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB9:  Predictor variable waveform mean interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB10:  Predictor variable surface slope interpolated to a 1 m grid for Moors Marsh. 
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Figure AB11:  Predictor variable waveform width interpolated to a 1 m grid for Moors 
Marsh. 
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Figure AB13: CART classification trees for vegetation zone model.  Each successive split 
refines the classification into three classes (“GR” ground - red, “HM” high marsh – blue, 
and “LM” low marsh – green).  The variables are as follows: NCIDWMHW = elevation in 
mean high water, WIDTH = waveform width, NCINT = lidar intensity, SLOPE = ground 
slope, and RUG = rugosity.  N is the number of samples in the node, “cases” are the subset of 
N that have been placed in the class followed by its percentage of N at that node.  The 
optimal model was found to have 6 nodes. 
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Figure AB14: a) CART regression tree model splitter variables. b) CART classification tree 
model splitter variables. These diagrams are simplified versions of figures AB1 and AB2, 
respectively, without the split values and number of samples. 
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 BF1  = max(0, NCIDW1MHW + 0.3516); 
 BF2  = max(0, -0.3516 - NCIDW1MHW); 
 BF3  = max(0, WIDTH - 13.1143); 
 BF6  = max(0, 0.3113 - NCIDW1MHW) * BF3; 
 BF7  = max(0, CURVE - 16); 
 BF8  = max(0, 16 - CURVE); 
 BF9  = max(0, WIDTH - 14.3601); 
 BF10 = max(0, 14.3601 - WIDTH); 
 BF11 = max(0, WIDTH - 13.4489) * BF1; 
 BF12 = max(0, 13.4489 - WIDTH) * BF1; 
 BF13 = max(0, SKEW - 0.072488) * BF9; 
 BF15 = max(0, 0.00318962 - RUG) * BF9; 
 BF16 = max(0, RUG - 1.16415E-010); 
 BF17 = max(0, DISTANCE - 41.2531) * BF10; 
 BF19 = max(0, SLOPE - 1.40682) * BF16; 
 BF22 = max(0, 0.00206113 - RUG) * BF3; 
 BF25 = max(0, NCIDW1MHW + 0.5929) * BF9; 
 BF28 = max(0, 20.2412 - MEAN) * BF9; 
 BF34 = max(0, -0.4287 - NCIDW1MHW) * BF7; 
 BF38 = max(0, 19.4165 - MEAN) * BF3; 
 BF39 = max(0, AMP - 10); 
 
 Y = -0.459127 + 1.11029 * BF1 - 0.956923 * BF2 - 0.437193 * BF3  
               + 0.147079 * BF6 + 0.00179318 * BF8  
               + 0.671852 * BF9 - 0.370747 * BF11  
               - 0.432482 * BF12 - 0.996613 * BF13  
               - 135.885 * BF15 - 0.00207991 * BF17  
               - 0.394268 * BF19 + 40.2244 * BF22  
               + 0.427146 * BF25 - 0.136851 * BF28  
               - 0.0362495 * BF34 + 0.0461106 * BF38  
               + 0.000439638 * BF39; 
 
 MODEL ELEVMHW = BF1 BF2 BF3 BF6 BF8 BF9 BF11 BF12 BF13 BF15 BF17  
                 BF19 BF22 BF25 BF28 BF34 BF38 BF39; 
 
 

Figure AB15:  MARS regression basis functions of the elevation correction model.  MARS is 
the only model used in this study that creates a formula that is similar to a traditional 
regression equation. 

 
 
 

 
Figure AB16: Graphical representations of MARS regression basis functions from the 
elevation correction model.  Each three dimensional graph (a-g) represents an interaction 
between variables. The contribution to the model is measured in the y axis and the scale 
varies from graph to graph.  a) waveform width and elevation in mean high water. b) 
waveform width and waveform mean; 

Surface 1: Pure Ordinal Surface 6: Pure Ordinala) b) 
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Figure AB16: Graphical representations of MARS regression basis functions from the 
elevation correction model.  Each three dimensional graph (a-g) represents an interaction 
between variables. The contribution to the model is measured in the y axis and the scale 
varies from graph to graph.  c) waveform width and surface rugosity; d) waveform width 
and waveform skewness; e) surface slope and surface rugosity; f) distance from shoreline in 
meters and waveform width; g) surface curvature and elevation in mean high water; h) 
waveform amplitude with no interaction terms. 
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Figure AB17: MARS regression elevation correction model Mean Square Error (MSE) 
curve as a function of the number of basis function.  The blue line is the learn sample (n = 
560) and the red line is the model performance on the independent test sample (n = 225).  In 
this model the learn and test samples are almost completely overlapping with an optimal 
model have 18 basis functions. 

 

 
 
Figure AB18:  TreeNet regression elevation correction model Mean Square Error (MSE) 
curve as a function of the number of trees built.  The blue line is the learn sample (n = 560) 
and the red line is the model performance on the independent test sample (n = 225).  In this 
model the the learn and test samples are almost completely overlapping with an optimal 
model having 772 trees. 

 

 
 
Figure AB19:  TreeNet classification of vegetation zones average negative log likelihood 
(AvgLL) curve as a function of the number of trees built.  The blue line is the learn sample 
(n = 467) and the red line is the model performance on the independent test sample (n = 191).  
In this model the learn and test samples slightly diverge with an optimal model having 470 
trees. 
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Figure AB20:  GPSM regression elevation correction model Mean Square Error (MSE) 
curve as a function of the number of predictors.  The blue line is the learn sample (n = 560) 
and the red line is the model performance on the independent test sample (n = 225).  In this 
model the two slightly offset with the test data performing better than the model based on 
the learn sample with an optimal model using 9 predictors. 
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APPENDIX C 

GLOSSARY OF UNCERTAINTY-RELATED TERMINOLOGY 

 
Various terms related to lidar elevation uncertainty are used throughout this dissertation. 

This appendix defines these terms, as used in this work.  While it is recognized that no 

universally-accepted, standard terminology exits and that other works define many of these terms 

differently, the goals in choosing terminology were to: 1) adhere, to the extent feasible, with 

usage in recognized standards documents, such as those of the International Standards 

Organization (ISO) and the American Society of Mechanical Engineers (ASME); and 2) to be 

self-consistent. 

 

Accuracy – nearness to truth (generally a qualitative concept). Where the term accuracy is used 

in this dissertation, it usually refers to an empirical accuracy assessment (i.e., a comparison 

against GNSS ground truth), which contrasts to a stochastic uncertainty assessment, based on 

probability distributions.  

 

Bias – the mean elevation residual from an empirical assessment (comparison against ground 

control), defined as: 

bias = 𝜇 =
∑ ∆𝑍𝑖𝑁
𝑖=1

𝑁
 

 

Elevation residual – also called “vertical difference” or “vertical error,” an elevation residual is 

defined in this dissertation as the difference between a lidar-derived elevation at a particular 
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location and a corresponding reference or “ground truth” elevation, typically obtained by GNSS. 

Elevation residual is denoted by ΔZ and calculated as follows: 

 

∆𝑍 = 𝑍𝑙𝑖𝑑𝑎𝑟 − 𝑍𝐺𝑃𝑆 

 

Error – the difference between the (theoretically unknowable) “true” value of a quantity and its 

measured value.  Errors can be categorized as systematic and random.  Since the true value can 

never be known, the exact error can also not be known.  

 

Root mean square error (RMSE) – perhaps better termed the root mean square residual (as 

used here), the RMSE is given by: 

𝑅𝑀𝑆𝐸 = �
∑ (∆𝑍𝑖)2𝑁
𝑖=1

𝑁
�
1/2

 

 

For large N, it is expected that the following relationship will hold: 

 

𝑅𝑀𝑆𝐸2 ≈ 𝜇2 + 𝜎2 

 

Standard deviation – quantifies the dispersion of the lidar residuals about the field surveyed 

data.  Standard deviation is given by: 

 

𝜎 = �
∑ (∆𝑍𝑖 − 𝜇)2𝑁
𝑖=1

𝑁 − 1
�
1/2
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Uncertainty – an estimate of the limits of error in a measured or computed quantity.  

Uncertainty estimation is typically based on probability distributions.  Standard uncertainty 

refers to the uncertainty expressed as a standard deviation.  Expanded uncertainty refers to 

uncertainty expressed at other confidence intervals, such as U95, corresponding to the 95% 

confidence interval.  Component uncertainties can be random or systematic. 
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