2,346 research outputs found

    Modeling and Monitoring of the Dynamic Response of Railroad Bridges using Wireless Smart Sensors

    Get PDF
    Railroad bridges form an integral part of railway infrastructure in the USA, carrying approximately 40 % of the ton-miles of freight. The US Department of Transportation (DOT) forecasts current rail tonnage to increase up to 88 % by 2035. Within the railway network, a bridge occurs every 1.4 miles of track, on average, making them critical elements. In an effort to accommodate safely the need for increased load carrying capacity, the Federal Railroad Association (FRA) announced a regulation in 2010 that the bridge owners must conduct and report annual inspection of all the bridges. The objective of this research is to develop appropriate modeling and monitoring techniques for railroad bridges toward understanding the dynamic responses under a moving train. To achieve the research objective, the following issues are considered specifically. For modeling, a simple, yet effective, model is developed to capture salient features of the bridge responses under a moving train. A new hybrid model is then proposed, which is a flexible and efficient tool for estimating bridge responses for arbitrary train configurations and speeds. For monitoring, measured field data is used to validate the performance of the numerical model. Further, interpretation of the proposed models showed that those models are efficient tools for predicting response of the bridge, such as fatigue and resonance. Finally, fundamental software, hardware, and algorithm components are developed for providing synchronized sensing for geographically distributed networks, as can be found in railroad bridges. The results of this research successfully demonstrate the potentials of using wirelessly measured data to perform model development and calibration that will lead to better understanding the dynamic responses of railroad bridges and to provide an effective tool for prediction of bridge response for arbitrary train configurations and speeds.National Science Foundation Grant No. CMS-0600433National Science Foundation Grant No. CMMI-0928886National Science Foundation Grant No. OISE-1107526National Science Foundation Grant No. CMMI- 0724172 (NEESR-SD)Federal Railroad Administration BAA 2010-1 projectOpe

    Formal verification of synchronisation, gossip and environmental effects for wireless sensor networks

    Get PDF
    The Internet of Things (IoT) promises a revolution in the monitoring and control of a wide range of applications, from urban water supply networks and precision agriculture food production, to vehicle connectivity and healthcare monitoring. For applications in such critical areas, control software and protocols for IoT systems must be verified to be both robust and reliable. Two of the largest obstacles to robustness and reliability in IoT systems are effects on the hardware caused by environmental conditions, and the choice of parameters used by the protocol. In this paper we use probabilistic model checking to verify that a synchronisation and dissemination protocol for Wireless Sensor Networks (WSNs) is correct with respect to its requirements, and is not adversely affected by the environment. We show how the protocol can be converted into a logical model and then analysed using the probabilistic model-checker, PRISM. Using this approach we prove under which circumstances the protocol is guaranteed to synchronise all nodes and disseminate new information to all nodes. We also examine the bounds on synchronisation as the environment changes the performance of the hardware clock, and investigate the scalability constraints of this approach. © 2019 Universitatsbibliothek TU Berlin

    Formal Verification of Synchronisation, Gossip and Environmental Effects for Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) promises a revolution in the monitoring and control of a wide range of applications, from urban water supply networks and precision agriculture food production, to vehicle connectivity and healthcare monitoring. For applications in such critical areas, control software and protocols for IoT systems must be verified to be both robust and reliable. Two of the largest obstacles to robustness and reliability in IoT systems are effects on the hardware caused by environmental conditions, and the choice of parameters used by the protocol. In this paper we use probabilistic model checking to verify that a synchronisation and dissemination protocol for Wireless Sensor Networks (WSNs) is correct with respect to its requirements, and is not adversely affected by the environment. We show how the protocol can be converted into a logical model and then analysed using the probabilistic model-checker, PRISM. Using this approach we prove under which circumstances the protocol is guaranteed to synchronise all nodes and disseminate new information to all nodes. We also examine the bounds on synchronisation as the environment changes the performance of the hardware clock, and investigate the scalability constraints of this approach

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    A secure communication framework for wireless sensor networks

    Get PDF
    Today, wireless sensor networks (WSNs) are no longer a nascent technology and future networks, especially Cyber-Physical Systems (CPS) will integrate more sensor-based systems into a variety of application scenarios. Typical application areas include medical, environmental, military, and commercial enterprises. Providing security to this diverse set of sensor-based applications is necessary for the healthy operations of the overall system because untrusted entities may target the proper functioning of applications and disturb the critical decision-making processes by injecting false information into the network. One way to address this issue is to employ en-route-filtering-based solutions utilizing keys generated by either static or dynamic key management schemes in the WSN literature. However, current schemes are complicated for resource-constrained sensors as they utilize many keys and more importantly as they transmit many keying messages in the network, which increases the energy consumption of WSNs that are already severely limited in the technical capabilities and resources (i.e., power, computational capacities, and memory) available to them. Nonetheless, further improvements without too much overhead are still possible by sharing a dynamically created cryptic credential. Building upon this idea, the purpose of this thesis is to introduce an efficient and secure communication framework for WSNs. Specifically, three protocols are suggested as contributions using virtual energies and local times onboard the sensors as dynamic cryptic credentials: (1) Virtual Energy-Based Encryption and Keying (VEBEK); (2) TIme-Based DynamiC Keying and En-Route Filtering (TICK); (3) Secure Source-Based Loose Time Synchronization (SOBAS) for WSNs.Ph.D.Committee Chair: Copeland, John; Committee Co-Chair: Beyah, Raheem; Committee Member: Li, Geoffrey; Committee Member: Owen, Henry; Committee Member: Zegura, Ellen; Committee Member: Zhang, Fumi

    Wireless Cyber-Physical Simulator and Case Studies on Structural Control

    Get PDF
    Abstract: Wireless Structural Control (WSC) systems can play a crucial role in protecting civil infrastructure in the event of earthquakes and other natural disasters. Such systems represent an exemplary class of cyber-physical systems that perform close-loop control using wireless sensor networks. Existing WSC research usually employs wireless sensors installed on small lab structures, which cannot capture realistic delays and data loss in wireless sensor networks deployed on large civil structures. The lack of realistic tools that capture both the cyber (wireless) and physical (structural) aspects of WSC systems has been a hurdle for cyber-physical systems research for civil infrastructure. This advances the state of the art through the following contributions. First, we developed the Wireless Cyber-Physical Simulator (WCPS), an integrated environment that combines realistic simulations of both wireless sensor networks and structures. WCPS integrates Simulink and TOSSIM, a state-of-the-art sensor network simulator featuring a realistic wireless model seeded by signal traces. Second, we performed two realistic case studies each combining a structural model with wireless traces collected from real-world environments. The building study combines a benchmark building model and wireless traces collected from a multi-story building. The bridge study combines the structural model of the Cape Girardea

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore