6,288 research outputs found

    The Origin of Space-Time as WW Symmetry Breaking in String Theory

    Get PDF
    Physics in the neighbourhood of a space-time metric singularity is described by a world-sheet topological gauge field theory which can be represented as a twisted N=2N=2 superconformal Wess-Zumino model with a W1+∞⊗W1+∞W_{1+\infty} \otimes W_{1+\infty} bosonic symmetry. The measurable WW-hair associated with the singularity is associated with Wilson loop integrals around gauge defects. The breaking of W1+∞W_{1+\infty} ⊗\otimes W1+∞W_{1+\infty} →\rightarrow W1+∞W_{1+\infty} is associated with expectation values for open Wilson lines that make the metric non-singular away from the singularity. This symmetry breaking is accompanied by massless discrete `tachyon' states that appear as leg poles in SS-matrix elements. The triviality of the SS-matrix in the high-energy limit of the c=1c=1 string model, after renormalisation by the leg pole factors, is due to the restoration of double WW-symmetry at the singularity.Comment: 13 page

    Observation of acoustic spatiotemporal vortices

    Full text link
    Vortices in fluids and gases have piqued the interest of human for centuries. Development of classical-wave physics and quantum mechanics highlighted wave vortices characterized by phase singularities and topological charges. In particular, vortex beams have found numerous applications in modern optics and other areas. Recently, optical spatiotemporal vortex states exhibiting the phase singularity both in space and time have been reported. Here, we report the first generation of acoustic spatiotemporal vortex pulses. We utilize an acoustic meta-grating with mirror-symmetry breaking as the spatiotemporal vortex generator. In the momentum-frequency domain, we unravel that the transmission spectrum functions exhibit a topological phase transition where the vortices with opposite topological charges are created or annihilated in pairs. Furthermore, with the topological textures of the nodal lines, these vortices are robust and exploited to generate spatiotemporal vortex pulse against structural perturbations and disorder. Our work paves the way for studies and applications of spatiotemporal structured waves in acoustics and other wave systems.Comment: 12 pages, 4 figure

    Short distance singularities and automatic O(aa) improvement: the cases of the chiral condensate and the topological susceptibility

    Full text link
    Short-distance singularities in lattice correlators can modify their Symanzik expansion by leading to additional O(aa) lattice artifacts. At the example of the chiral condensate and the topological susceptibility, we show how to account for these lattice artifacts for Wilson twisted mass fermions and show that the property of automatic O(aa) improvement is preserved at maximal twist.Comment: 12 pages, corrected proof for topological susceptibility, version published in JHE

    Topological conditions for discrete symmetry breaking and phase transitions

    Full text link
    In the framework of a recently proposed topological approach to phase transitions, some sufficient conditions ensuring the presence of the spontaneous breaking of a Z_2 symmetry and of a symmetry-breaking phase transition are introduced and discussed. A very simple model, which we refer to as the hypercubic model, is introduced and solved. The main purpose of this model is that of illustrating the content of the sufficient conditions, but it is interesting also in itself due to its simplicity. Then some mean-field models already known in the literature are discussed in the light of the sufficient conditions introduced here

    A topological charge selection rule for phase singularities

    Get PDF
    We present an study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified. The role played by the underlying symmetry is emphasized. An effective model describing the short range dynamics of the vortex clusters has been designed. A method to engineer any desired configuration of clusters of phase singularities is proposed. Its flexibility to create and control clusters of vortices is discussed.Comment: 4 pages, 3 figure

    Duality in twisted N=4 supersymmetric gauge theories in four dimensions

    Get PDF
    We consider a twisted version of the four-dimensional N=4 supersymmetric Yang-Mills theory with gauge groups SU(2) and SO(3), and bare masses for two of its chiral multiplets, thereby breaking N=4 down to N=2. Using the wall-crossing technique introduced by Moore and Witten within the u-plane approach to twisted topological field theories, we compute the partition function and all the topological correlation functions for the case of simply-connected spin four-manifolds of simple type. By including 't Hooft fluxes, we analyse the properties of the resulting formulae under duality transformations. The partition function transforms in the same way as the one first presented by Vafa and Witten for another twist of the N=4 supersymmetric theory in their strong coupling test of S-duality. Both partition functions coincide on K3. The topological correlation functions turn out to transform covariantly under duality, following a simple pattern which seems to be inherent in a general type of topological quantum field theories.Comment: 60 pages, phyzz

    Supersymmetric Large Extra Dimensions and the Cosmological Constant Problem

    Full text link
    This article briefly summarizes and reviews the motivations for - and the present status of - the proposal that the small size of the observed Dark Energy density can be understood in terms of the dynamical relaxation of two large extra dimensions within a supersymmetric higher-dimensional theory.Comment: Talk presented to Theory Canada I, Vancouver, June 2005. References added in V

    The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Get PDF
    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are "magnetic bions" which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are "neutral bions" which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of supersymmetric models added at the end of section 8.1, reference adde
    • …
    corecore